

Log on to aw-bc.com/computing
for a full list of Computing titles.

The 8th edition of the best-selling
introduction to software engineering is
now updated with three new chapters on
state-of-the-art topics.

NEW CHAPTERS IN THE 8TH EDITION

• Security engineering, showing you how
you can design software to resist attacks
and recover from damage;

• Service-oriented software engineering,
explaining how reusable web services
can be used to develop new
applications;

• Aspect-oriented software development,
introducing new techniques based on
the separation of concerns.

Software
Engineering

So
ftw

a
re

En
g

in
e

e
rin

g

KEY FEATURES

• Includes the latest developments in software
engineering theory and practice, integrated
with relevant aspects of systems engineering.

• Extensive coverage of agile methods and
reuse.

• Integrated coverage of system safety,
security and reliability – illustrating best
practice in developing critical systems.

• Two running case studies (an information
system and a control system) illuminate
different stages of the software lifecycle.

ONLINE RESOURCES

Visit www.pearsoned.co.uk/sommerville to
access a full range of resources for students
and instructors.

In addition, a rich collection of resources
including links to other websites, teaching
material on related courses and additional
chapters is available at
http://www.software-engin.com.

IAN SOMMERVILLE is Professor of Software
Engineering at the University of St. Andrews
in Scotland

8

8 8

SOMMERVILLESOMMERVILLE

SO
M

M
E

R
V

ILLE

Software
Engineering

Software Engineering

ISBN 0-321-31379-8

9 780321 313799

www.pearson-books.coman imprint of

0321313798_cover.qxd 26/4/06 17:48 Page 1

••

Software Engineering Eighth Edition

Visit the Software Engineering, eighth edition Companion
Website at www.pearsoned.co.uk/sommerville to find
valuable student learning material including:

• Lecture presentations (in PowerPoint and PDF) for all
chapters in the book

• Class quiz questions for each chapter
• Case studies
• Project suggestions
• Suggestions for further reading and links to web

resources for each chapter

This 8th edition has enhanced the 7th edition with
new material on security engineering, service-oriented
software engineering and aspect-oriented software
development. For educational purposes, it is completely
compatible with the 7th edition.

SE8_A01.qxd 4/4/06 8:53 Page i

••

Operating Systems
J Bacon and T Harris

Programming Language Essentials
H E Bal and D Grune

Programming in Ada 95, 2nd ed
J G P Barnes

Java Gently, 3rd ed
J Bishop

Software Design, 2nd ed
D Budgen

Concurrent Programming
A Burns and G Davies

Real-Time Systems and Programming Languages, 3rd ed
A Burns and A Wellings

Database Systems, 4th ed
T Connolly and C Begg

Distributed Systems, 4th ed
G Coulouris, J Dollimore and T Kindberg

Fortran 90 Programming, 2nd ed
T M R Ellis, I R Phillips and T M Lahey

Program Verification
N Francez

Introduction to Programming using SML
M Hansen and H Rischel

Functional C
P Hartel and H Muller

Algorithms and Data Structures, 2nd ed
J Kingston

Introductory Logic and Sets for Computer Scientists
N Nissanke

Human-Computer Interaction
J Preece et al

Algorithms
F Rabhi and G Lapalme

Ada 95 From the Beginning, 3rd ed
J Skansholm

C++ From the Beginning, 2nd ed
J Skansholm

Java From the Beginning, 2nd ed
J Skansholm

Object-Oriented Programming in Eiffel, 2nd ed
P Thomas and R Weedon

Miranda
S Thompson

Haskell, 2nd ed
S Thompson

Discrete Mathematics for Computer Scientists, 2nd ed
J K Truss

Compiler Design
R Wilhem and D Maurer

Discover Delphi
S Williams and S Walmsley

Comparative Programming Languages, 3rd ed
R G Clark

International Computer Science Series

Selected titles in the series

SE8_A01.qxd 4/4/06 8:53 Page ii

••

Software Engineering
Eighth Edition

Ian Sommerville

SE8_A01.qxd 4/4/06 8:53 Page iii

••

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies around the World.

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 1982
Second Edition 1984
Third Edition 1989
Fourth Edition 1992
Fifth Edition 1995
Sixth Edition 2001
Seventh Edition 2004
Eighth Edition 2007

© Addison-Wesley Publishers Limited 1982, 1984
© Pearson Education Limited 1989, 1995, 2001, 2004, 2007

The right of Ian Sommerville to be identified as author of
this Work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London W1T 4LP.

All trademarks used herein are the property of their respective owners. The use
of any trademark in this text does not vest in the author or publisher any trademark
ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

ISBN 13: 978-0-321-31379-9
ISBN 10: 0-321-31379-8

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

10 9 8 7 6 5 4 3 2
10 09 08 07 06

Typeset by 35 in 10/12.5pt Times
Printed and bound in the United States of America

SE8_A01.qxd 4/4/06 8:53 Page iv

••

Preface

The first edition of this textbook on software engineering was published more than
twenty years ago. That edition was written using a dumb terminal attached to an early
minicomputer (a PDP-11) that probably cost about $50,000. I wrote this edition on
a wireless laptop that cost less than $2,000 and is many times more powerful than
that PDP-11. Software then was mostly mainframe software, but personal computers
were just becoming available. None of us then realised how pervasive these would
become and how much they would change the world.

Changes in hardware over the past twenty or so years have been absolutely remark-
able, and it may appear that changes in software have been equally significant.
Certainly, our ability to build large and complex systems has improved dramatically.
Our national utilities and infrastructure—energy, communications and transport—
rely on very complex and, largely, very reliable computer systems. For building
business systems, there is an alphabet soup of technologies—J2EE, .NET, EJB, SAP,
BPEL4WS, SOAP, CBSE—that allow large web-based applications to be deployed
much more quickly than was possible in the past.

However, although much appears to have changed in the last two decades, when
we look beyond the specific technologies to the fundamental processes of soft-
ware engineering, much has stayed the same. We recognised twenty years ago that
the waterfall model of the software process had serious problems, yet a survey
published in December 2003 in IEEE Software showed that more than 40% of
companies are still using this approach. Testing is still the dominant program
validation technique, although other techniques such as inspections have been used
more effectively since the mid-1970s. CASE tools, although now based around the
UML, are still essentially diagram editors with some checking and code-generation
functionality.

SE8_A01.qxd 4/4/06 8:53 Page v

vi Preface

Our current software engineering methods and techniques have made us much
better at building large and complex systems than we were. However, there are still
too many projects that are late, are over budget and do not deliver the software
that meets the customer’s needs. While I was writing the 7th edition, a government
enquiry in the UK reported on the project to provide a national system to be used
in courts that try relatively minor offenders. The cost of this system was estimated
at £156 million and it was scheduled for delivery in 2001. In 2004, costs had
escalated to £390 million and it was still not fully operational. There is, therefore,
still a pressing need for software engineering education.

Over the past few years, the most significant developments in software engineer-
ing have been the emergence of the UML as a standard for object-oriented system
description and the development of agile methods such as extreme programming.
Agile methods are geared to rapid system development, explicitly involve the user
in the development team, and reduce paperwork and bureaucracy in the software
process. In spite of what some critics claim, I think these approaches embody good
software engineering practice. They have a well-defined process, pay attention to
system specification and user requirements, and have high quality standards.

However, this revision has not become a text on agile methods. Rather, I focus
on the basic software engineering processes—specification, design, development,
verification, and validation and management. You need to understand these processes
and associated techniques to decide whether agile methods are the most appropriate
development strategy for you and how to adapt and change methods to suit your
particular situation. A pervasive theme of the book is critical systems—systems whose
failure has severe consequences and where system dependability is critical. In
each part of the book, I discuss specific software engineering techniques that are
relevant to critical systems engineering.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will disagree with my opinions and with my choice of material. Such dis-
agreement is a healthy reflection of the diversity of the discipline and is essential
for its evolution. Nevertheless, I hope that all software engineers and software
engineering students can find something of interest here.

The structure of the book

The structure of the book is based around the fundamental software engineering
processes. It is organised into seven parts. The first six focus on software processes
and the final part discusses some important new software engineering technologies.

Part 1: Introduces software engineering, places it in a broader systems context
and presents the notions of software engineering processes and management.

••••

SE8_A01.qxd 4/4/06 8:53 Page vi

Preface vii

Part 2: Covers the processes, techniques and deliverables that are associated with
requirements engineering. It includes a discussion of software requirements,
system modelling, formal specification and techniques for specifying dependability.
Part 3: This part is devoted to software design and design processes. Three out of
the six chapters focus on the important topic of software architectures. Other topics
include object-oriented design, real-time systems design and user interface design.
Part 4: Describes a number of approaches to development, including agile methods,
software reuse, CBSE and critical systems development. Because change is now
such a large part of development, I have integrated material on software evolution
and maintenance into this part.
Part 5: Focuses on techniques for software verification and validation. It includes
chapters on static V & V, testing and critical systems validation.
Part 6: This part covers a range of management topics: managing people,
cost estimation, quality management, process improvement and configuration
management.
Part 7: The final part includes three chapters that are devoted to important
new technologies that are already starting to be used. The chapters cover security
engineering, service-oriented software engineering and aspect-oriented software
development.

In the introduction to each part, I discuss the structure and organisation in more
detail.

Changes from the 7th edition

This new edition of my textbook can be thought of as a mid-life upgrade than a
radical new revision of the book. I have designed it to be completely compatible
with the 7th edition but have included a new section on Emerging Technologies.
This discusses recent developments which I believe are significant for the future of
software engineering. This section includes three additional chapters:

30. Security engineering where I discuss issues of how to ensure that your soft-
ware is secure and can resist external attacks.
31. Service-oriented software engineering where I describe new approaches to
application development using reusable web services.
32. Aspect-oriented software development where I introduce a new technique of
software development based around the separation of concerns.

As the other chapters in the book are still current and relevant, I have not mod-
ified these, apart from very small changes to link to the new material in Chapters
30–32. More information on changes and the differences between the 6th and 7th
editions is available from the book website.

••••

SE8_A01.qxd 4/4/06 8:53 Page vii

viii Preface

Readership

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software specifica-
tion, and software design or management. Software engineers in industry may find
the book useful as general reading and as a means of updating their knowledge on
particular topics such as requirements engineering, architectural design, dependable
systems development and process improvement. Wherever practicable, the examples
in the text have been given a practical bias to reflect the type of applications that
software engineers must develop.

Using the book for teaching

The book is widely used in a range of software engineering courses and, if you already
use the 7th edition, then you will find this edition to be completely compatible with
it. I have deliberately left Chapters 1 to 29 of the 7th edition unchanged. If you
use these in your teaching, there is no need to change any of your supplementary
material or associated coursework. The new chapters are stand-alone chapters and
you may wish to introduce one or more of them to give students an understanding
of new developments in the subject.

I have designed the book so that it can be used in three types of software
engineering course:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introductory
section, then pick and choose chapters from the other sections of the book.
This will give students a general overview of the subject with the opportunity
of more detailed study for those students who are interested. If the course’s
approach is project-based, the early chapters provide enough material to allow
students to get started on projects, consulting later chapters for reference and
further information as their work progresses.

2. Introductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each part can serve as a text in its own right for an introductory
or intermediate course on that topic. As well as further reading associated with
each chapter, I have also included information on other relevant papers and books
on the web site.

••••

SE8_A01.qxd 4/4/06 8:53 Page viii

Preface ix

3. More advanced courses in specific software engineering topics The chapters
can form a foundation for a specific software course, but they must be sup-
plemented with further reading that explores the topic in greater detail. For
example, I teach an MSc module in systems engineering that relies on material
here. I have included details of this course and a course on critical systems
engineering on the web site.

The benefit of a general text like this is that it can be used in several related
courses. The text can be used in an introductory software engineering course and
in courses on specification, design and critical systems. Courses on component-based
software engineering and systems engineering use the book along with additional
papers that are distributed to students. Having a single text presents students with
a consistent view of the subject—and they don’t have to buy several books.

To reinforce the student’s learning experience, I have included a glossary of key
terms, with additional definitions on the web site. Furthermore, each chapter has:

• a clearly defined set of objectives set out on the first page;

• a list of key points covered in the chapter;

• suggested further reading—either books that are currently in print or easily
available papers (lists of other suggested readings and links can be found on
my web site);

• exercises, including design exercises.

The Software Engineering Body of Knowledge project (http://www.swebok.org)
was established to define the key technical knowledge areas that are relevant to pro-
fessional software engineers. These are organised under 10 headings: requirements,
design, construction, testing, maintenance, configuration management, management,
process, tools and methods, and quality. While it would be impossible to cover all
of the knowledge areas proposed by the SWEBOK project in a single textbook, all
of the top-level areas are discussed in this book.

Web pages

The publishers web site that is associated with the book is:

http://www.pearsoned.co.uk/sommerville

To support the use of this book in software engineering courses, I have included
a wide range of supplementary material on the web site. If you follow the Material
for Instructors links, you can find:

••••

SE8_A01.qxd 4/4/06 8:53 Page ix

x Preface

• lecture presentations (PowerPoint and PDF) for all chapters in the book;

• class quiz questions for each chapter;

• case studies;

• project suggestions;

• course structure descriptions;

• suggestions for further reading and links to web resources for each chapter;

• solutions for a selection of the exercises associated with each chapter and for
the quiz questions (available to instructor’s only).

My own web site, includes all of the material on the publishers web site plus
extensive supplementary material on software engineering such as links to other sites,
invited lectures that I have presented, teaching material that I have developed for
related courses such as Systems Engineering and the web sites of previous editions
of Software Engineering. The URL of this site is:

http://www.software-engin.com

It has been my policy, both in the previous edition and in this edition, to keep
the number of web links in the book to an absolute minimum. The reason for this
is that these links are subject to change and, once printed, it is impossible to update
them. Consequently, the book’s web page includes a large number of links to resources
and related material on software engineering. If you use these and find problems,
please let me know and I will update the links.

I welcome your constructive comments and suggestions about the book and the web
site. You can contact me at ian@software-engin.com. I recommend that you include
[SE8] in the subject of the e-mail message to ensure that my spam filters do not
accidentally reject your mail. I regret that I do not have time to help students with their
homework, so please do not ask me how to solve any of the problems in the book.

Acknowledgements

A large number of people have contributed over the years to the evolution of this book
and I’d like to thank everyone (reviewers, students and book users who have e-mailed
me) who has commented on previous editions and made constructive suggestions
for change. The editorial and production staff at Pearson Education in England and
the US were supportive and helpful, and produced the book in record time. So thanks
to Simon Plumtree, Mary Lince, Ros Woodward, Keith Mansfield, Patty Mahtani,
Daniel Rausch, Carol Noble and Sharon Burkhardt for their help and support.

••••

SE8_A01.qxd 4/4/06 8:54 Page x

Preface xi

As I write, I am about to leave Lancaster University for new challenges at
St Andrews University in Scotland. I’d like to thank all of my current and pre-
vious colleagues at Lancaster for their support and encouragement over the years
as software engineering has evolved.

Finally, I’d like to thank my family, who tolerated my absence when the book
was being written and my frustration when the words were not flowing. A big thank-
you to my wife Anne and daughters Ali and Jane for their help and support.

Ian Sommerville,
February 2006

••••

SE8_A01.qxd 4/4/06 8:54 Page xi

••

Contents at a glance

Preface v

Part 1 Overview 1
Chapter 1 Introduction 3
Chapter 2 Socio-technical systems 20
Chapter 3 Critical systems 43
Chapter 4 Software processes 63
Chapter 5 Project management 92

Part 2 Requirements 115
Chapter 6 Software requirements 117
Chapter 7 Requirements engineering processes 142
Chapter 8 System models 169
Chapter 9 Critical systems specification 193
Chapter 10 Formal specification 217

Part 3 Design 239
Chapter 11 Architectural design 241
Chapter 12 Distributed systems architectures 266
Chapter 13 Application architectures 292
Chapter 14 Object-oriented design 313
Chapter 15 Real-time software design 339
Chapter 16 User interface design 362

Part 4 Development 389
Chapter 17 Rapid software development 391
Chapter 18 Software reuse 415
Chapter 19 Component-based software engineering 439
Chapter 20 Critical systems development 462
Chapter 21 Software evolution 488

Part 5 Verification and validation 513
Chapter 22 Verification and validation 515
Chapter 23 Software testing 537
Chapter 24 Critical systems validation 566

Part 6 Managing people 589
Chapter 25 Managing people 591
Chapter 26 Software cost estimation 612
Chapter 27 Quality management 641
Chapter 28 Process improvement 665
Chapter 29 Configuration management 689

Part 7 Emerging technologies 715
Chapter 30 Security engineering 717
Chapter 31 Service-oriented software engineering 743
Chapter 32 Aspect-oriented software development 770

Glossary 794
References 806
Index 824

SE8_A01.qxd 4/4/06 8:54 Page xii

••

Contents

Preface v

Part 1 Overview 1

Chapter 1 Introduction 3

1.1 FAQs about software engineering 5

1.2 Professional and ethical responsibility 14

Key Points 17
Further Reading 18
Exercises 18

Chapter 2 Socio-technical systems 20

2.1 Emergent system properties 23

2.2 Systems engineering 25

2.3 Organisations, people and computer systems 34

2.4 Legacy systems 38

Key Points 40
Further Reading 41
Exercises 41

SE8_A01.qxd 4/4/06 8:54 Page xiii

xiv Contents

Chapter 3 Critical systems 43

3.1 A simple safety-critical system 46

3.2 System dependability 47

3.3 Availability and reliability 51

3.4 Safety 55

3.5 Security 58

Key Points 60
Further Reading 61
Exercises 61

Chapter 4 Software processes 63

4.1 Software process models 65

4.2 Process iteration 71

4.3 Process activities 74

4.4 The Rational Unified Process 82

4.5 Computer-Aided Software Engineering 85

Key Points 89
Further Reading 90
Exercises 91

Chapter 5 Project management 92

5.1 Management activities 94

5.2 Project planning 96

5.3 Project scheduling 99

5.4 Risk management 104

Key Points 111
Further Reading 112
Exercises 112

••••

SE8_A01.qxd 4/4/06 8:54 Page xiv

Contents xv

Part 2 Requirements 115

Chapter 6 Software requirements 117

6.1 Functional and non-functional requirements 119

6.2 User requirements 127

6.3 System requirements 129

6.4 Interface specification 135

6.5 The software requirements document 136

Key Points 140
Further Reading 140
Exercises 141

Chapter 7 Requirements engineering processes 142

7.1 Feasibility studies 144

7.2 Requirements elicitation and analysis 146

7.3 Requirements validation 158

7.4 Requirements management 161

Key Points 166
Further Reading 167
Exercises 167

Chapter 8 System models 169

8.1 Context models 171

8.2 Behavioural models 173

8.3 Data models 177

8.4 Object models 181

8.5 Structured methods 187

Key Points 190
Further Reading 191
Exercises 191

••••

SE8_A01.qxd 4/4/06 8:54 Page xv

xvi Contents

Chapter 9 Critical systems specification 193

9.1 Risk-driven specification 195

9.2 Safety specification 202

9.3 Security specification 204

9.4 Software reliability specification 207

Key Points 213
Further Reading 214
Exercises 214

Chapter 10 Formal specification 217

10.1 Formal specification in the software process 219

10.2 Sub-system interface specification 222

10.3 Behavioural specification 229

Key Points 236
Further Reading 236
Exercises 237

Part 3 Design 239

Chapter 11 Architectural design 241

11.1 Architectural design decisions 245

11.2 System organisation 247

11.3 Modular decomposition styles 252

11.4 Control styles 256

11.5 Reference architectures 260

Key Points 263
Further Reading 264
Exercises 264

Chapter 12 Distributed systems architectures 266

12.1 Multiprocessor architectures 269

••••

SE8_A01.qxd 4/4/06 8:54 Page xvi

Contents xvii

12.2 Client–server architectures 270

12.3 Distributed object architectures 275

12.4 Inter-organisational distributed computing 282

Key Points 289
Further Reading 290
Exercises 290

Chapter 13 Application architectures 292

13.1 Data processing systems 295

13.2 Transaction processing systems 298

13.3 Event processing systems 304

13.4 Language processing systems 307

Key Points 310
Further Reading 310
Exercises 311

Chapter 14 Object-oriented design 313

14.1 Objects and object classes 316

14.2 An object-oriented design process 320

14.3 Design evolution 335

Key Points 336
Further Reading 337
Exercises 337

Chapter 15 Real-time software design 339

15.1 System design 342

15.2 Real-time operating systems 346

15.3 Monitoring and control systems 349

15.4 Data acquisition systems 355

Key Points 357
Further Reading 359
Exercises 359

••••

SE8_A01.qxd 4/4/06 8:54 Page xvii

xviii Contents

Chapter 16 User interface design 362

16.1 Design issues 366

16.2 The UI design process 376

16.3 User analysis 378

16.4 User interface prototyping 381

16.5 Interface evaluation 383

Key Points 385
Further Reading 386
Exercises 386

Part 4 Development 389

Chapter 17 Rapid software development 391

17.1 Agile methods 396

17.2 Extreme programming 398

17.3 Rapid application development 405

17.4 Software prototyping 409

Key Points 412
Further Reading 413
Exercises 414

Chapter 18 Software reuse 415

18.1 The reuse landscape 418

18.2 Design patterns 421

18.3 Generator-based reuse 423

18.4 Application frameworks 426

18.5 Application system reuse 428

Key Points 437
Further Reading 437
Exercises 438

••••

SE8_A01.qxd 4/4/06 8:54 Page xviii

Contents xix

Chapter 19 Component-based software engineering 439

19.1 Components and component models 442

19.2 The CBSE process 450

19.3 Component composition 452

Key Points 460
Further Reading 460
Exercises 461

Chapter 20 Critical systems development 462

20.1 Dependable processes 466

20.2 Dependable programming 467

20.3 Fault tolerance 475

20.4 Fault-tolerant architectures 482

Key Points 486
Further Reading 486
Exercises 487

Chapter 21 Software evolution 488

21.1 Program evolution dynamics 490

21.2 Software maintenance 492

21.3 Evolution processes 498

21.4 Legacy system evolution 504

Key Points 509
Further Reading 510
Exercises 510

Part 5 Verification and Validation 513

Chapter 22 Verification and validation 515

22.1 Planning verification and validation 519

22.2 Software inspections 521

••••

SE8_A01.qxd 4/4/06 8:54 Page xix

xx Contents

22.3 Automated static analysis 527

22.4 Verification and formal methods 530

Key Points 535
Further Reading 535
Exercises 536

Chapter 23 Software testing 537

23.1 System testing 540

23.2 Component testing 547

23.3 Test case design 551

23.4 Test automation 561

Key Points 563
Further Reading 564
Exercises 565

Chapter 24 Critical systems validation 566

24.1 Reliability validation 568

24.2 Safety assurance 574

24.3 Security assessment 581

24.4 Safety and dependability cases 583

Key Points 586
Further Reading 587
Exercises 587

Part 6 Management 589

Chapter 25 Managing people 591

25.1 Selecting staff 593

25.2 Motivating people 596

25.3 Managing groups 599

25.4 The People Capability Maturity Model 607

••••

SE8_A01.qxd 4/4/06 8:54 Page xx

Contents xxi

Key Points 610
Further Reading 610
Exercises 611

Chapter 26 Software cost estimation 612

26.1 Software productivity 614

26.2 Estimation techniques 620

26.3 Algorithmic cost modelling 623

26.4 Project duration and staffing 637

Key Points 638
Further Reading 639
Exercises 639

Chapter 27 Quality management 641

27.1 Process and product quality 644

27.2 Quality assurance and standards 645

27.3 Quality planning 652

27.4 Quality control 653

27.5 Software measurement and metrics 655

Key Points 663
Further Reading 663
Exercises 664

Chapter 28 Process improvement 665

28.1 Process and product quality 667

28.2 Process classification 669

28.3 Process measurement 672

28.4 Process analysis and modelling 673

28.5 Process change 678

28.6 The CMMI process improvement framework 680

Key Points 687

••••

SE8_A01.qxd 4/4/06 8:54 Page xxi

xxii Contents

Further Reading 687
Exercises 688

Chapter 29 Configuration management 689

29.1 Configuration management planning 692

29.2 Change management 695

29.3 Version and release management 698

29.4 System building 705

29.5 CASE tools for configuration management 706

Key Points 711
Further Reading 711
Exercises 712

Part 7 Emerging Technologies 715

Chapter 30 Security engineering 717

30.1 Security concepts 720

30.2 Security risk management 722

30.3 Design for security 727

30.4 System survivability 737

Key Points 741
Further Reading 742
Exercises 742

Chapter 31 Service-oriented software engineering 743

31.1 Services as reusable components 747

31.2 Service engineering 751

31.3 Software development with services 760

Key Points 768
Further Reading 768
Exercises 769

••••

SE8_A01.qxd 4/4/06 8:54 Page xxii

Contents xxiii

Chapter 32 Aspect-oriented software development 770

32.1 The separation of concerns 772

32.2 Aspects, join points and pointcuts 776

32.3 Software engineering with aspects 780

Key Points 792
Further Reading 792
Exercises 793

Glossary 794
References 806
Index 824

••••

Supporting resources
Visit www.pearsoned.co.uk/sommerville to find valuable online resources

Companion Website for students and instructors
• Lecture presentations (in PowerPoint and PDF) for all chapters in the book
• Class quiz questions for each chapter
• Case studies
• Project suggestions
• Suggestions for further reading and links to web resources for each

chapter

For instructors only
• Course structure descriptions
• Solutions for a selection of the exercises associated with each chapter and

for the quiz questions

For more information please contact your local Pearson Education sales
representative or visit www.pearsoned.co.uk/sommerville

SE8_A01.qxd 4/4/06 8:54 Page xxiii

••

SE8_A01.qxd 4/4/06 8:54 Page xxiv

1OVERVIEW

PART

SE8_C01.qxd 4/4/06 10:53 Page 1

The basic structure of this book follows the essential software processes of specifica-
tion, design, development, verification and validation, and management. However,
rather than plunge immediately into these topics, I have included this overview section
so that you can get a broad picture of the discipline. The chapters in this part are:

Chapter 1 is a general introduction to software engineering. To make this accessi-
ble and easy to understand, I have organised it using a question/answer structure
where I pose and answer questions such as ‘what is software engineering’. I also
introduce professionalism and ethics in this chapter.

Chapter 2 introduces socio-technical systems, a topic that I believe is absolutely essen-
tial for software engineers. Software is never used on its own but always as part of
some broader system including hardware, people and, often, organisations. These
profoundly affect the software requirements and operation. In this chapter I cover
the emergent system properties, systems engineering processes and some of the
ways in which organisational and human concerns affect software systems.

Chapter 3 discusses ‘critical systems’. Critical systems are systems where failure has
severe technical, economic or human consequences, and where system safety, secu-
rity and availability are key requirements. Chapters on aspects of critical systems are
included in each part of the book. In this chapter, I also introduce the first of the
running case studies in the book—the software for an insulin pump used in the treat-
ment of diabetic patients.

The first three chapters set the scene for software engineering and Chapter 4 con-
tinues this by introducing software process and software process models. I intro-
duce basic software engineering processes, the subject of the book, in this chapter.
I also briefly discuss the Rational Unified Process, which is geared to object-oriented
system development. The final section of the chapter discusses how software pro-
cesses can be supported with automated software tools.

Chapter 5 introduces project management. Project management is part of all pro-
fessional development projects and I describe basic project planning, scheduling and
risk estimation here. Students in a software engineering course involved in a stu-
dent project should find the information they need here to draw up bar charts for
a project schedule and resource allocation.

••••

SE8_C01.qxd 4/4/06 10:53 Page 2

Introduction
1

Objectives
The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When
you have read this chapter, you will:

■ understand what software engineering is and why it is important;

■ know the answers to key questions that provide an introduction to
software engineering;

■ understand some ethical and professional issues that are important
for software engineers.

Contents
1.1 FAQs about software engineering

1.2 Professional and ethical responsibility

••••

SE8_C01.qxd 4/4/06 10:53 Page 3

4 Chapter 1 ■ Introduction

Virtually all countries now depend on complex computer-based systems. National
infrastructures and utilities rely on computer-based systems and most electrical prod-
ucts include a computer and controlling software. Industrial manufacturing and dis-
tribution is completely computerised, as is the financial system. Therefore,
producing and maintaining software cost-effectively is essential for the functioning
of national and international economies.

Software engineering is an engineering discipline whose focus is the cost-
effective development of high-quality software systems. Software is abstract and
intangible. It is not constrained by materials, or governed by physical laws or by
manufacturing processes. In some ways, this simplifies software engineering as there
are no physical limitations on the potential of software. However, this lack of nat-
ural constraints means that software can easily become extremely complex and hence
very difficult to understand.

The notion of software engineering was first proposed in 1968 at a conference
held to discuss what was then called the ‘software crisis’. This software crisis resulted
directly from the introduction of new computer hardware based on integrated cir-
cuits. Their power made hitherto unrealisable computer applications a feasible
proposition. The resulting software was orders of magnitude larger and more com-
plex than previous software systems.

Early experience in building these systems showed that informal software devel-
opment was not good enough. Major projects were sometimes years late. The soft-
ware cost much more than predicted, was unreliable, was difficult to maintain and
performed poorly. Software development was in crisis. Hardware costs were tum-
bling whilst software costs were rising rapidly. New techniques and methods were
needed to control the complexity inherent in large software systems.

These techniques have become part of software engineering and are now widely
used. However, as our ability to produce software has increased, so too has the com-
plexity of the software systems that we need. New technologies resulting from the
convergence of computers and communication systems and complex graphical user
interfaces place new demands on software engineers. As many companies still do
not apply software engineering techniques effectively, too many projects still pro-
duce software that is unreliable, delivered late and over budget.

I think that we have made tremendous progress since 1968 and that the devel-
opment of software engineering has markedly improved our software. We have a
much better understanding of the activities involved in software development. We
have developed effective methods of software specification, design and implemen-
tation. New notations and tools reduce the effort required to produce large and com-
plex systems.

We know now that there is no single ‘ideal’ approach to software engineering.
The wide diversity of different types of systems and organisations that use these
systems means that we need a diversity of approaches to software development.
However, fundamental notions of process and system organisation underlie all of
these techniques, and these are the essence of software engineering.

••••

SE8_C01.qxd 4/4/06 10:53 Page 4

1.1 ■ FAQs about software engineering 5

Software engineers can be rightly proud of their achievements. Without com-
plex software we would not have explored space, would not have the Internet and
modern telecommunications, and all forms of travel would be more dangerous and
expensive. Software engineering has contributed a great deal, and I am convinced
that, as the discipline matures, its contributions in the 21st century will be even greater.

1.1 FAQs about software engineering

This section is designed to answer some fundamental questions about software engi-
neering and to give you some impression of my views of the discipline. The for-
mat that I have used here is the ‘FAQ (Frequently Asked Questions) list’. This approach
is commonly used in Internet newsgroups to provide newcomers with answers to
frequently asked questions. I think that it is a very effective way to give a succinct
introduction to the subject of software engineering.

Figure 1.1 summarises the answers to the questions in this section.

1.1.1 What is software?

Many people equate the term software with computer programs. However, I prefer a
broader definition where software is not just the programs but also all associated doc-
umentation and configuration data that is needed to make these programs operate cor-
rectly. A software system usually consists of a number of separate programs,
configuration files, which are used to set up these programs, system documentation,
which describes the structure of the system, and user documentation, which explains
how to use the system and web sites for users to download recent product information.

Software engineers are concerned with developing software products, i.e., soft-
ware which can be sold to a customer. There are two fundamental types of software
product:

1. Generic products These are stand-alone systems that are produced by a devel-
opment organisation and sold on the open market to any customer who is able
to buy them. Examples of this type of product include software for PCs such as
databases, word processors, drawing packages and project management tools.

2. Customised (or bespoke) products These are systems which are commissioned
by a particular customer. A software contractor develops the software especially
for that customer. Examples of this type of software include control systems
for electronic devices, systems written to support a particular business process
and air traffic control systems.

••••

SE8_C01.qxd 4/4/06 10:53 Page 5

6 Chapter 1 ■ Introduction

An important difference between these types of software is that, in generic prod-
ucts, the organisation that develops the software controls the software specification.
For custom products, the specification is usually developed and controlled by the
organisation that is buying the software. The software developers must work to that
specification.

However, the line between these types of products is becoming increasingly blurred.
More and more software companies are starting with a generic system and customising
it to the needs of a particular customer. Enterprise Resource Planning (ERP) sys-
tems, such as the SAP system, are the best examples of this approach. Here, a large
and complex system is adapted for a company by incorporating information about
business rules and processes, reports required, and so on.

••••

Question Answer

What is software?

What is software engineering?

What is the difference between
software engineering and
computer science?

What is the difference between
software engineering and system
engineering?

What is a software process?

What is a software process
model?

What are the costs of software
engineering?

What are software engineering
methods?

What is CASE (Computer-Aided
Software Engineering)?

What are the attributes of good
software?

What are the key challenges
facing software engineering?

Figure 1.1 Frequently
asked questions
about software
engineering

Computer programs and associated documentation. Software products
may be developed for a particular customer or may be developed for a
general market.

Software engineering is an engineering discipline which is concerned
with all aspects of software production.

Computer science is concerned with theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software.

System engineering is concerned with all aspects of computer-based
systems development, including hardware, software and process
engineering. Software engineering is part of this process.

A set of activities whose goal is the development or evolution of
software.

A simplified representation of a software process, presented from a
specific perspective.

Roughly 60% of costs are development costs, 40% are testing costs. For
custom software, evolution costs often exceed development costs.

Structured approaches to software development which include system
models, notations, rules, design advice and process guidance.

Software systems which are intended to provide automated support for
software process activities. CASE systems are often used for method
support.

The software should deliver the required functionality and performance
to the user and should be maintainable, dependable and usable.

Coping with increasing diversity, demands for reduced delivery times
and developing trustworthy software.

SE8_C01.qxd 4/4/06 10:53 Page 6

1.1 ■ FAQs about software engineering 7

1.1.2 What is software engineering?

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification to maintaining
the system after it has gone into use. In this definition, there are two key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods and tools where these are appropriate, but they use them selectively and always
try to discover solutions to problems even when there are no applicable theories
and methods. Engineers also recognise that they must work to organisational and
financial constraints, so they look for solutions within these constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development but also with activities
such as software project management and with the development of tools, meth-
ods and theories to support software production.

In general, software engineers adopt a systematic and organised approach to their
work, as this is often the most effective way to produce high-quality software. However,
engineering is all about selecting the most appropriate method for a set of circum-
stances and a more creative, less formal approach to development may be effective
in some circumstances. Less formal development is particularly appropriate for the
development of web-based systems, which requires a blend of software and graph-
ical design skills.

1.1.3 What’s the difference between software engineering and
computer science?

Essentially, computer science is concerned with the theories and methods that under-
lie computers and software systems, whereas software engineering is concerned with
the practical problems of producing software. Some knowledge of computer sci-
ence is essential for software engineers in the same way that some knowledge of
physics is essential for electrical engineers.

Ideally, all of software engineering should be underpinned by theories of com-
puter science, but in reality this is not the case. Software engineers must often use
ad hoc approaches to developing the software. Elegant theories of computer science
cannot always be applied to real, complex problems that require a software solution.

1.1.4 What is the difference between software engineering and system
engineering?

System engineering is concerned with all aspects of the development and evolution
of complex systems where software plays a major role. System engineering is there-
fore concerned with hardware development, policy and process design and system

••••

SE8_C01.qxd 4/4/06 10:53 Page 7

8 Chapter 1 ■ Introduction

deployment as well as software engineering. System engineers are involved in spec-
ifying the system, defining its overall architecture and then integrating the different
parts to create the finished system. They are less concerned with the engineering of
the system components (hardware, software, etc.).

System engineering is an older discipline than software engineering. People have
been specifying and assembling complex industrial systems such as aircraft and chem-
ical plants for more than a hundred years. However, as the percentage of software
in systems has increased, software engineering techniques such as use-case mod-
elling and configuration management are being used in the systems engineering pro-
cess. I discuss system engineering in Chapter 2.

1.1.5 What is a software process?

A software process is the set of activities and associated results that produce a soft-
ware product. There are four fundamental process activities (covered later in the
book) that are common to all software processes. These are:

1. Software specification where customers and engineers define the software to
be produced and the constraints on its operation.

2. Software development where the software is designed and programmed.

3. Software validation where the software is checked to ensure that it is what the
customer requires.

4. Software evolution where the software is modified to adapt it to changing cus-
tomer and market requirements.

Different types of systems need different development processes. For example,
real-time software in an aircraft has to be completely specified before development
begins whereas, in e-commerce systems, the specification and the program are usu-
ally developed together. Consequently, these generic activities may be organised in
different ways and described at different levels of detail for different types of soft-
ware. However, use of an inappropriate software process may reduce the quality or
the usefulness of the software product to be developed and/or increase the develop-
ment costs.

Software processes are discussed in more detail in Chapter 4, and the important
topic of software process improvement is covered in Chapter 28.

1.1.6 What is a software process model?

A software process model is a simplified description of a software process that pre-
sents one view of that process. Process models may include activities that are part
of the software process, software products and the roles of people involved in soft-

••••

SE8_C01.qxd 4/4/06 10:53 Page 8

1.1 ■ FAQs about software engineering 9

ware engineering. Some examples of the types of software process model that may
be produced are:

1. A workflow model This shows the sequence of activities in the process along
with their inputs, outputs and dependencies. The activities in this model rep-
resent human actions.

2. A dataflow or activity model This represents the process as a set of activities,
each of which carries out some data transformation. It shows how the input to
the process, such as a specification, is transformed to an output, such as a design.
The activities here may represent transformations carried out by people or by
computers.

3. A role/action model This represents the roles of the people involved in the soft-
ware process and the activities for which they are responsible.

Most software process models are based on one of three general models or
paradigms of software development:

1. The waterfall approach This takes the above activities and represents them as
separate process phases such as requirements specification, software design, imple-
mentation, testing and so on. After each stage is defined it is ‘signed-off’, and
development goes on to the following stage.

2. Iterative development This approach interleaves the activities of specification,
development and validation. An initial system is rapidly developed from very
abstract specifications. This is then refined with customer input to produce a
system that satisfies the customer’s needs. The system may then be delivered.
Alternatively, it may be reimplemented using a more structured approach to
produce a more robust and maintainable system.

3. Component-based software engineering (CBSE) This technique assumes that
parts of the system already exist. The system development process focuses on
integrating these parts rather than developing them from scratch. I discuss CBSE
in Chapter 19.

I return to these generic process models in Chapter 4 and Chapter 17.

1.1.7 What are the costs of software engineering?

There is no simple answer to this question as the distribution of costs across the
different activities in the software process depends on the process used and the type
of software that is being developed. For example, real-time software usually
requires more extensive validation and testing than web-based systems. However,

••••

SE8_C01.qxd 4/4/06 10:53 Page 9

10 Chapter 1 ■ Introduction

each of the different generic approaches to software development has a different
profile of cost distribution across the software process activities. If you assume that
the total cost of developing a complex software system is 100 cost units then Figure
1.2 illustrates how these are spent on different process activities.

In the waterfall approach, the costs of specification, design, implementation and
integration are measured separately. Notice that system integration and testing is
the most expensive development activity. Normally, this is about 40% of the total
development costs but for some critical systems it is likely to be at least 50% of
the system development costs.

If the software is developed using an iterative approach, there is no hard line
between specification, design and development. Specification costs are reduced because
only a high-level specification is produced before development in this approach.
Specification, design, implementation, integration and testing are carried out in par-
allel within a development activity. However, you still need an independent system
testing activity once the initial implementation is complete.

Component-based software engineering has only been widely used for a short
time. We don’t have accurate figures for the costs of different software develop-
ment activities in this approach. However, we know that development costs are reduced

••••

Figure 1.2 Software
engineering activity
cost distribution

SE8_C01.qxd 4/4/06 10:53 Page 10

1.1 ■ FAQs about software engineering 11

relative to integration and testing costs. Integration and testing costs are increased
because you have to ensure that the components that you use actually meet their
specification and work as expected with other components.

On top of development costs, costs are also incurred in changing the software
after it has gone into use. The costs of evolution vary dramatically depending on
the type of system. For long-lifetime software systems, such as command and con-
trol systems that may be used for 10 years or more, these costs are likely to exceed
the development costs by a factor of 3 or 4, as illustrated in the bottom bar in Figure
1.3. However, smaller business systems have a much shorter lifetime and corre-
spondingly reduced evolution costs.

These cost distributions hold for customised software that is specified by a cus-
tomer and developed by a contractor. For software products that are (mostly) sold
for PCs, the cost profile is likely to be different. These products are usually devel-
oped from an outline specification using an evolutionary development approach.
Specification costs are relatively low. However, because they are intended for use
on a range of different configurations, they must be extensively tested. Figure 1.3
shows the type of cost profile that might be expected for these products.

The evolution costs for generic software products are particularly hard to esti-
mate. In many cases, there is little formal evolution of a product. Once a version
of the product has been released, work starts on the next release and, for market-
ing reasons, this is likely to be presented as a new (but compatible) product rather
than as a modified version of a product that the user has already bought. Therefore,
the evolution costs are not assessed separately as they are in customised software
but are simply the development costs for the next version of the system.

1.1.8 What are software engineering methods?

A software engineering method is a structured approach to software development
whose aim is to facilitate the production of high-quality software in a cost-effective
way. Methods such as Structured Analysis (DeMarco, 1978) and JSD (Jackson, 1983)
were first developed in the 1970s. These methods attempted to identify the basic
functional components of a system; function-oriented methods are still used. In the
1980s and 1990s, these function-oriented methods were supplemented by object-
oriented (OO) methods such as those proposed by Booch (Booch, 1994) and
Rumbaugh (Rumbaugh, et al., 1991). These different approaches have now been
integrated into a single unified approach built around the Unified Modeling
Language (UML) (Booch, et al., 1999; Rumbaugh, et al., 1999a; Rumbaugh, et al.,
1999b).

••••

Specification Development System testing

25 50 75 1000

Figure 1.3 Product
development costs

SE8_C01.qxd 4/4/06 10:53 Page 11

12 Chapter 1 ■ Introduction

There is no ideal method, and different methods have different areas where they
are applicable. For example, object-oriented methods are often appropriate for
interactive systems but not for systems with stringent real-time requirements.

All methods are based on the idea of developing models of a system that may
be represented graphically and using these models as a system specification or design.
Methods include a number of different components (Figure 1.4).

1.1.9 What is CASE?

The acronym CASE stands for Computer-Aided Software Engineering. It covers a
wide range of different types of programs that are used to support software process
activities such as requirements analysis, system modelling, debugging and testing. All
methods now come with associated CASE technology such as editors for the nota-
tions used in the method, analysis modules which check the system model according
to the method rules and report generators to help create system documentation. The
CASE tools may also include a code generator that automatically generates source
code from the system model and some process guidance for software engineers.

1.1.10 What are the attributes of good software?

As well as the services that it provides, software products have a number of other
associated attributes that reflect the quality of that software. These attributes are not
directly concerned with what the software does. Rather, they reflect its behaviour
while it is executing and the structure and organisation of the source program and
associated documentation. Examples of these attributes (sometimes called non-
functional attributes) are the software’s response time to a user query and the under-
standability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, a banking system must be secure, an

••••

Figure 1.4 Method
components

Component Description Example

System model
descriptions

Rules

Recommendations

Process guidance

Object models, data-flow models,
state machine models, etc.

Every entity in a system model
must have a unique name.

No object should have more than
seven sub-objects associated
with it.

Object attributes should be
documented before defining the
operations associated with an object.

Descriptions of the system models which should
be developed and the notation used to define
these models.

Constraints which always apply to system models.

Heuristics which characterise good design practice
in this method. Following these recommendations
should lead to a well-organised system model.

Descriptions of the activities which may be
followed to develop the system models and the
organisation of these activities.

SE8_C01.qxd 4/4/06 10:53 Page 12

1.1 ■ FAQs about software engineering 13

interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalised into the set of attributes shown in Figure 1.5,
which, I believe, are the essential characteristics of a well-designed software system.

1.1.11 What are the key challenges facing software engineering?

Software engineering in the 21st century faces three key challenges:

1. The heterogeneity challenge Increasingly, systems are required to operate as dis-
tributed systems across networks that include different types of computers and
with different kinds of support systems. It is often necessary to integrate new
software with older legacy systems written in different programming languages.
The heterogeneity challenge is the challenge of developing techniques for build-
ing dependable software that is flexible enough to cope with this heterogeneity.

2. The delivery challenge Many traditional software engineering techniques are
time-consuming. The time they take is required to achieve software quality.
However, businesses today must be responsive and change very rapidly. Their
supporting software must change equally rapidly. The delivery challenge is the
challenge of shortening delivery times for large and complex systems without
compromising system quality.

3. The trust challenge As software is intertwined with all aspects of our lives, it
is essential that we can trust that software. This is especially true for remote
software systems accessed through a web page or web service interface. The
trust challenge is to develop techniques that demonstrate that software can be
trusted by its users.

••••

Product characteristic Description

Maintainability Software should be written in such a way that it may
evolve to meet the changing needs of customers. This is a
critical attribute because software change is an inevitable
consequence of a changing business environment.

Dependability Software dependability has a range of characteristics,
including reliability, security and safety. Dependable
software should not cause physical or economic damage
in the event of system failure.

Efficiency Software should not make wasteful use of system
resources such as memory and processor cycles. Efficiency
therefore includes responsiveness, processing time,
memory utilisation, etc.

Usability Software must be usable, without undue effort, by the type of
user for whom it is designed. This means that it should have
an appropriate user interface and adequate documentation.

Figure 1.5 Essential
attributes of good
software

SE8_C01.qxd 4/4/06 10:53 Page 13

14 Chapter 1 ■ Introduction

Of course, these are not independent. For example, it may be necessary to make
rapid changes to a legacy system to provide it with a web service interface. To address
these challenges, we will need new tools and techniques as well as innovative ways
of combining and using existing software engineering methods.

1.2 Professional and ethical responsibility

Like other engineering disciplines, software engineering is carried out within a legal
and social framework that limits the freedom of engineers. Software engineers must
accept that their job involves wider responsibilities than simply the application of
technical skills. They must also behave in an ethical and morally responsible way
if they are to be respected as professionals.

It goes without saying that you should always uphold normal standards of honesty
and integrity. You should not use your skills and abilities to behave in a dishonest
way or in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behaviour are not bounded by laws but
by the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normally respect the confidentiality of your
employers or clients irrespective of whether a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You
should not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be care-
ful to ensure that the intellectual property of employers and clients is protected.

4. Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game play-
ing on an employer’s machine, say) to extremely serious (dissemination of viruses).

Professional societies and institutions have an important role to play in setting
ethical standards. Organisations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers) and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organisations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behaviour.

The ACM and the IEEE have cooperated to produce a joint code of ethics and
professional practice. This code exists in both a short form, shown in Figure 1.6,
and a longer form (Gotterbarn, et al., 1999) that adds detail and substance to the

••••

SE8_C01.qxd 4/4/06 10:53 Page 14

1.2 ■ Professional and ethical responsibility 15

shorter version. The rationale behind this code is summarised in the first two para-
graphs of the longer form:

Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spec-
ification, design, development, certification, maintenance and testing of software
systems. Because of their roles in developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others
to do good or cause harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for good, software
engineers must commit themselves to making software engineering a beneficial
and respected profession. In accordance with that commitment, software engi-
neers shall adhere to the following Code of Ethics and Professional Practice.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of

••••

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as
software engineering professionals. Without the aspirations, the details can become legalistic and tedious;
without the details, the aspirations can become high sounding but empty; together, the aspirations and the
details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development,
testing and maintenance of software a beneficial and respected profession. In accordance with their
commitment to the health, safety and welfare of the public, software engineers shall adhere to the
following Eight Principles:

1. PUBLIC – Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER – Software engineers shall act in a manner that is in the best interests of their

client and employer consistent with the public interest.
3. PRODUCT – Software engineers shall ensure that their products and related modifications meet the

highest professional standards possible.
4. JUDGMENT – Software engineers shall maintain integrity and independence in their professional

judgment.
5. MANAGEMENT – Software engineering managers and leaders shall subscribe to and promote an ethical

approach to the management of software development and maintenance.
6. PROFESSION – Software engineers shall advance the integrity and reputation of the profession consistent

with the public interest.
7. COLLEAGUES – Software engineers shall be fair to and supportive of their colleagues.
8. SELF – Software engineers shall participate in lifelong learning regarding the practice of their profession

and shall promote an ethical approach to the practice of the profession.

Figure 1.6 ACM/IEEE
Code of Ethics
(©IEEE/ACM 1999)

SE8_C01.qxd 4/4/06 10:53 Page 15

16 Chapter 1 ■ Introduction

the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of software engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obli-
gations of anyone claiming to be or aspiring to be a software engineer.

In any situation where different people have different views and objectives, you
are likely to be faced with ethical dilemmas. For example, if you disagree, in prin-
ciple, with the policies of more senior management in the company, how should
you react? Clearly, this depends on the particular individuals and the nature of the
disagreement. Is it best to argue a case for your position from within the organisa-
tion or to resign in principle? If you feel that there are problems with a software
project, when do you reveal these to management? If you discuss these while they
are just a suspicion, you may be overreacting to a situation; if you leave it too late,
it may be impossible to resolve the difficulties.

Such ethical dilemmas face all of us in our professional lives and, fortunately,
in most cases they are either relatively minor or can be resolved without too much
difficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job, but this may well
affect others such as their partner or their children.

A particularly difficult situation for professional engineers arises when their
employer acts in an unethical way. Say a company is responsible for developing a
safety-critical system and because of time-pressure, falsifies the safety validation
records. Is the engineer’s responsibility to maintain confidentiality or to alert the
customer or publicise, in some way, that the delivered system may be unsafe?

The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these crite-
ria may be too strict. The system may actually operate safely throughout its lifetime.
It is also the case that, even when properly validated, a system may fail and cause an
accident. Early disclosure of problems may result in damage to the employer and other
employees; failure to disclose problems may result in damage to others.

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends entirely on the views of the individuals who are involved. In this
case, the potential for damage, the extent of the damage and the people affected by
the damage should influence the decision. If the situation is very dangerous, it may
be justified to publicise it using the national press (say). However, you should always
try to resolve the situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate
in any systems development associated with military systems. Others will work on mil-
itary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

••••

SE8_C01.qxd 4/4/06 10:53 Page 16

Chapter 1 ■ Key points 17

In this situation it is important that both employers and employees should make
their views known to each other in advance. Where an organisation is involved in
military or nuclear work, it should be able to specify that employees must be will-
ing to accept any work assignment. Equally, if an employee is taken on and makes
clear that he does not wish to work on such systems, employers should not put pres-
sure on him to do so at some later date.

The general area of ethics and professional responsibility is one that has
received increasing attention over the past few years. It can be considered from a
philosophical standpoint where the basic principles of ethics are considered, and
software engineering ethics are discussed with reference to these basic principles.
This is the approach taken by Laudon (Laudon, 1995) and to a lesser extent by Huff
and Martin (Huff and Martin, 1995).

However, I find their approach is too abstract and difficult to relate to everyday
experience. I prefer the more concrete approach embodied in codes of conduct and
practice. I think that ethics are best discussed in a software engineering context and
not as a subject in their own right. In this book, therefore, I do not include abstract
ethical discussions but, where appropriate, include examples in the exercises that
can be the starting point for a group discussion on ethical issues.

••••

■ Software engineering is an engineering discipline that is concerned with all aspects of
software production.

■ Software products consist of developed programs and associated documentation. Essential
product attributes are maintainability, dependability, efficiency and acceptability.

■ The software process includes all of the activities involved in software development. The
high-level activities of software specification, development, validation and evolution are
part of all software processes.

■ Methods are organised ways of producing software. They include suggestions for the
process to be followed, the notations to be used, system models to be developed and rules
governing these models and design guidelines.

■ CASE tools are software systems that are designed to support routine activities in the
software process such as editing design diagrams, checking diagram consistency and
keeping track of program tests that have been run.

■ Software engineers have responsibilities to the engineering profession and society. They
should not simply be concerned with technical issues.

■ Professional societies publish codes of conduct that set out the standards of behaviour
expected of their members.

K E Y P O I N TS

SE8_C01.qxd 4/4/06 10:53 Page 17

18 Chapter 1 ■ Introduction

F U R T H E R R E A D I N G

Fundamentals of Software Engineering. A general software engineering text that takes a rather
different perspective on the subject than this book. (C. Ghezi, et. al., Prentice Hall, 2003.)

‘Software engineering: The state of the practice’. A special issue of IEEE Software that includes
several articles discussing current practice in software engineering, how this has changed and the
extent to which new software technologies are used. (IEEE Software, 20 (6), November 2003.)

Software Engineering: An Engineering Approach. A general text that takes a rather different
approach to my book but which includes a number of useful case studies. (J. F. Peters and W.
Pedrycz, 2000, John Wiley & Sons.)

Professional Issues in Software Engineering. This is an excellent book discussing legal and
professional issues as well as ethics. I prefer its practical approach to more theoretical texts on
ethics. (F. Bott, et al., 3rd edition, 2000, Taylor & Francis.)

‘Software engineering code of ethics is approved’. An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, et al., October 1999.)

‘No silver bullet: Essence and accidents of software engineering’. In spite of its age, this paper is a
good general introduction to the problems of software engineering. The essential message of the
paper, that there is no simple answer to the problems of software engineering, hasn’t changed. (F.
P. Brooks, IEEE Computer, 20 (4), April 1987.)

E X E R C I S E S

1.1 By making reference to the distribution of software costs discussed in Section 1.1.6, explain
why it is appropriate to consider software to be more than the programs that can be
executed by end-users of a system.

1.2 What are the differences between generic software product development and custom
software development?

1.3 What are the four important attributes which all software products should have? Suggest four
other attributes that may sometimes be significant.

1.4 What is the difference between a software process model and a software process? Suggest
two ways in which a software process model might be helpful in identifying possible process
improvements.

1.5 Explain why system testing costs are particularly high for generic software products that are
sold to a very wide market.

1.6 Software engineering methods became widely used only when CASE technology became

••••

SE8_C01.qxd 4/4/06 10:53 Page 18

Chapter 1 ■ Exercises 19

available to support them. Suggest five types of method support that can be provided by
CASE tools.

1.7 Apart from the challenges of heterogeneity, rapid delivery and trust, identify other problems
and challenges that software engineering is likely to face in the 21st century.

1.8 Discuss whether professional engineers should be certified in the same way as doctors or
lawyers.

1.9 For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.6, suggest an
appropriate example that illustrates that clause.

1.10 To help counter terrorism, many countries are planning the development of computer
systems that track large numbers of their citizens and their actions. Clearly this has privacy
implications. Discuss the ethics of developing this type of system.

••••

SE8_C01.qxd 4/4/06 10:53 Page 19

••

Socio-technical systems
2

Objectives
The objectives of this chapter are to introduce the concept of a
socio-technical system—a system that includes people, software
and hardware—and to discuss the systems engineering process.
When you have read this chapter, you will:

■ know what is meant by a socio-technical system and understand
the difference between a technical computer-based system and a
socio-technical system;

■ have been introduced to the concept of emergent system
properties such as reliability, performance, safety and security;

■ understand the activities that are involved in the systems
engineering process;

■ understand why the organisational context of a system affects its
design and use;

■ know what is meant by a ‘legacy system’, and why these systems
are often critical to the operation of many businesses.

Contents
2.1 Emergent system properties

2.2 Systems engineering

2.3 Organisations, people and computer systems

2.4 Legacy systems

SE8_C02.qxd 4/4/06 8:56 Page 20

Chapter 2 ■ Socio-technical systems 21

The term system is one that is universally used. We talk about computer systems,
operating systems, payment systems, the educational system, the system of government,
and so on. These are all obviously quite different uses of the word system although
they share the characteristic that, somehow, the system is more than simply the sum
of its parts.

Very abstract systems such as the system of government are well outside the
scope of this book. Consequently, I focus here on systems that include computers
and that have some specific purpose such as to enable communication, support nav-
igation, and compute salaries. Therefore, a useful working definition of these types
of systems is:

A system is a purposeful collection of interrelated components that work together
to achieve some objective.

This general definition embraces a vast range of systems. For example, a very
simple system such as a pen may only include three or four hardware components.
By contrast, an air traffic control system includes thousands of hardware and soft-
ware components plus human users who make decisions based on information from
the computer system.

Systems that include software fall into two categories:

• Technical computer-based systems are systems that include hardware and soft-
ware components but not procedures and processes. Examples of technical sys-
tems include televisions, mobile phones and most personal computer software.
Individuals and organisations use technical systems for some purpose but
knowledge of this purpose is not part of the system. For example, the word
processor I am using is not aware that is it being used to write a book.

• Socio-technical systems include one or more technical systems but, crucially,
also include knowledge of how the system should be used to achieve some broader
objective. This means that these systems have defined operational processes,
include people (the operators) as inherent parts of the system, are governed by
organisational policies and rules and may be affected by external constraints
such as national laws and regulatory policies. For example, this book was cre-
ated through a socio-technical publishing system that includes various processes
and technical systems.

Essential characteristics of socio-technical systems are as follows.

1. They have emergent properties that are properties of the system as a whole rather
than associated with individual parts of the system. Emergent properties
depend on both the system components and the relationships between them. As
this is so complex, the emergent properties can only be evaluated once the sys-
tem has been assembled.

••

SE8_C02.qxd 4/4/06 8:56 Page 21

22 Chapter 2 ■ Socio-technical systems

2. They are often nondeterministic. This means that, when presented with a spe-
cific input, they may not always produce the same output. The system’s
behaviour depends on the human operators, and people do not always react in
the same way. Furthermore, use of the system may create new relationships
between the system components and hence change its emergent behaviour.

3. The extent to which the system supports organisational objectives does not just
depend on the system itself. It also depends on the stability of these objectives,
the relationships and conflicts between organisational objectives and how peo-
ple in the organisation interpret these objectives. New management may re-
interpret the organisational objective that a system is designed to support, and
a ‘successful’ system may then become a ‘failure’.

In this book, I am concerned with socio-technical systems that include hardware
and software, which have defined operational processes and which offer an inter-
face, implemented in software, to human users. Software engineers should have some
knowledge of socio-technical systems and systems engineering (White, et al., 1993;
Thayer, 2002) because of the importance of software in these systems. For exam-
ple, there were fewer than 10 megabytes of software in the US Apollo space pro-
gram that put a man on the moon in 1969, but there are about 100 megabytes of
software in the control systems of the Columbus space station.

A characteristic of all systems is that the properties and the behaviour of the sys-
tem components are inextricably intermingled. The successful functioning of each
system component depends on the functioning of some other components. Thus,
software can only operate if the processor is operational. The processor can only
carry out computations if the software system defining these computations has been
successfully installed.

Systems are usually hierarchical and so include other systems. For example, a
police command and control system may include a geographical information sys-
tem to provide details of the location of incidents. These other systems are called
sub-systems. A characteristic of sub-systems is that they can operate as indepen-
dent systems in their own right. Therefore, the same geographical information sys-
tem may be used in different systems.

Because software is inherently flexible, unexpected systems problems are often
left to software engineers to solve. Say a radar installation has been sited so that
ghosting of the radar image occurs. It is impractical to move the radar to a site with
less interference, so the systems engineers have to find another way of removing
this ghosting. Their solution may be to enhance the image-processing capabilities
of the software to remove the ghost images. This may slow down the software so
that its performance becomes unacceptable. The problem may then be characterised
as a ‘software failure’ whereas, in fact, it was a failure in the design process for
the system as a whole.

This situation, where software engineers are left with the problem of enhancing
software capabilities without increasing hardware cost, is very common. Many so-
called software failures were not a consequence of inherent software problems; they

••••

SE8_C02.qxd 4/4/06 8:56 Page 22

2.1 ■ Emergent system properties 23

were the result of trying to change the software to accommodate modified system
engineering requirements. A good example of this was the failure of the Denver
airport baggage system (Swartz, 1996), where the controlling software was
expected to deal with several limitations in the equipment used.

Software engineering is therefore critical for the successful development of
complex, computer-based socio-technical systems. As a software engineer, you should
not simply be concerned with the software itself but you should also have a broader
awareness of how that software interacts with other hardware and software systems
and how it is supposed to be used. This knowledge helps you understand the lim-
its of software, to design better software and to participate as equal members of a
systems engineering group.

2.1 Emergent system properties

The complex relationships between the components in a system mean that the sys-
tem is more than simply the sum of its parts. It has properties that are properties
of the system as a whole. These emergent properties (Checkland, 1981) cannot be
attributed to any specific part of the system. Rather, they emerge only once the sys-
tem components have been integrated. Some of these properties can be derived directly
from the comparable properties of sub-systems. However, more often, they result
from complex sub-system interrelationships that cannot, in practice, be derived from
the properties of the individual system components. Examples of some emergent
properties are shown in Figure 2.1.

There are two types of emergent properties:

1. Functional emergent properties appear when all the parts of a system work
together to achieve some objective. For example, a bicycle has the functional
property of being a transportation device once it has been assembled from its
components.

2. Non-functional emergent properties relate to the behaviour of the system in its
operational environment. Examples of non-functional properties are reliability,
performance, safety and security. These are often critical for computer-based
systems, as failure to achieve some minimal defined level in these properties
may make the system unusable. Some users may not need some system func-
tions so the system may be acceptable without them. However, a system that
is unreliable or too slow is likely to be rejected by all its users.

To illustrate the complexity of emergent properties, consider the property of sys-
tem reliability. Reliability is a complex concept that must always be considered at
the system level rather than at the individual component level. The components in

••••

SE8_C02.qxd 4/4/06 8:56 Page 23

24 Chapter 2 ■ Socio-technical systems

a system are interdependent, so failures in one component can be propagated
through the system and affect the operation of other components. It is often diffi-
cult to anticipate how the consequences of component failures propagate through
the system. Consequently, you cannot make good estimates of overall system reli-
ability from data about the reliability of system components.

There are three related influences on the overall reliability of a system:

1. Hardware reliability What is the probability of a hardware component failing
and how long does it take to repair that component?

2. Software reliability How likely is it that a software component will produce an
incorrect output? Software failure is usually distinct from hardware failure in
that software does not wear out. Failures are usually transient so the system
carries on working after an incorrect result has been produced.

3. Operator reliability How likely is it that the operator of a system will make an
error?

All of these are closely linked. Hardware failure can generate spurious signals
that are outside the range of inputs expected by software. The software can then
behave unpredictably. Operator error is most likely in conditions of stress, such as
when system failures are occurring. These operator errors may further stress the hard-
ware, causing more failures, and so on. Thus, the initial, recoverable failure can
rapidly develop into a serious problem requiring a complete system shutdown.

••••

Property Description

Volume The volume of a system (the total space occupied) varies
depending on how the component assemblies are arranged and
connected.

Reliability System reliability depends on component reliability but
unexpected interactions can cause new types of failure and
therefore affect the reliability of the system.

Security The security of the system (its ability to resist attack) is a
complex property that cannot be easily measured. Attacks may
be devised that were not anticipated by the system designers
and so may defeat built-in safeguards.

Repairability This property reflects how easy it is to fix a problem with the
system once it has been discovered. It depends on being able to
diagnose the problem, access the components that are faulty and
modify or replace these components.

Usability This property reflects how easy it is to use the system. It
depends on the technical system components, its operators and
its operating environment.

Figure 2.1 Examples
of emergent
properties

SE8_C02.qxd 4/4/06 8:56 Page 24

2.2 ■ Systems engineering 25

Like reliability, other emergent properties such as performance or usability are
hard to assess but can be measured after the system is operational. Properties such
as safety and security, however, pose different problems. Here, you are not simply
concerned with an attribute that is related to the overall behaviour of the system
but are concerned with behaviour that the system should not exhibit. A secure sys-
tem is one that does not allow unauthorised access to its data but it is clearly impos-
sible to predict all possible modes of access and explicitly forbid them. Therefore,
it may only be possible to assess these properties by default. That is, you only know
that a system is insecure when someone breaks into it.

2.2 Systems engineering

Systems engineering is the activity of specifying, designing, implementing, validating,
deploying and maintaining socio-technical systems. Systems engineers are not just con-
cerned with software but also with hardware and the system’s interactions with users
and its environment. They must think about the services that the system provides, the
constraints under which the system must be built and operated and the ways in which
the system is used to fulfil its purpose. As I have discussed, software engineers need
an understanding of system engineering because problems of software engineering are
often a result of system engineering decisions (Thayer, 1997; Thayer, 2002).

The phases of the systems engineering process are shown in Figure 2.2. This
process was an important influence on the ‘waterfall’ model of the software pro-
cess that I describe in Chapter 4.

There are important distinctions between the system engineering process and the
software development process:

••••

System
integration

Sub-system
development

System
design

Requirements
definition

System
installation

System
evolution

System
decommissioning

Figure 2.2 The
systems engineering
process

SE8_C02.qxd 4/4/06 8:56 Page 25

26 Chapter 2 ■ Socio-technical systems

1. Limited scope for rework during system development Once some system engi-
neering decisions, such as the siting of base stations in a mobile phone system,
have been made, they are very expensive to change. Reworking the system design
to solve these problems is rarely possible. One reason software has become so
important in systems is that it allows changes to be made during system devel-
opment, in response to new requirements.

2. Interdisciplinary involvement Many engineering disciplines may be involved
in system engineering. There is a lot of scope for misunderstanding because
different engineers use different terminology and conventions.

Systems engineering is an interdisciplinary activity involving teams drawn from
various backgrounds. System engineering teams are needed because of the wide knowl-
edge required to consider all the implications of system design decisions. As an
illustration of this, Figure 2.3 shows some of the disciplines that may be involved
in the system engineering team for an air traffic control (ATC) system that uses
radars and other sensors to determine aircraft position.

For many systems, there are almost infinite possibilities for trade-offs between
different types of sub-systems. Different disciplines negotiate to decide how func-
tionality should be provided. Often there is no ‘correct’ decision on how a system
should be decomposed. Rather, you may have several possible alternatives, but you
may not be able to choose the best technical solution. Say one alternative in an air
traffic control system is to build new radars rather than refit existing installations.
If the civil engineers involved in this process do not have much other work, they
may favour this alternative because it allows them to keep their jobs. They may
then rationalise this choice with technical arguments.

2.2.1 System requirements definition

System requirements definitions specify what the system should do (its functions)
and its essential and desirable system properties. As with software requirements analysis

••••

ATC systems
engineering

Electronic
engineering

Electrical
engineering

User interface
design

Mechanical
engineering

Architecture

Structural
engineering

Software
engineering

Civil
engineering

Figure 2.3 Disciplines
involved in systems
engineering

SE8_C02.qxd 4/4/06 8:56 Page 26

2.2 ■ Systems engineering 27

(discussed in Part 2), creating system requirements definitions involves consulta-
tions with system customers and end-users. This requirements definition phase usually
concentrates on deriving three types of requirement:

1. Abstract functional requirements The basic functions that the system must pro-
vide are defined at an abstract level. More detailed functional requirements spec-
ification takes place at the sub-system level. For example, in an air traffic control
system, an abstract functional requirement would specify that a flight-plan database
should be used to store the flight plans of all aircraft entering the controlled
airspace. However, you would not normally specify the details of the database
unless they affected the requirements of other sub-systems.

2. System properties These are non-functional emergent system properties such
as availability, performance and safety, as I have discussed above. These non-
functional system properties affect the requirements for all sub-systems.

3. Characteristics that the system must not exhibit It is sometimes as important to
specify what the system must not do as it is to specify what the system should do.
For example, if you are specifying an air traffic control system, you might spec-
ify that the system should not present the controller with too much information.

An important part of the requirements definition phase is to establish a set of
overall objectives that the system should meet. These should not necessarily be
expressed in terms of the system’s functionality but should define why the system
is being procured for a particular environment.

To illustrate what this means, say you are specifying a system for an office build-
ing to provide for fire protection and for intruder detection. A statement of objec-
tives based on the system functionality might be:

To provide a fire and intruder alarm system for the building that will pro-
vide internal and external warning of fire or unauthorised intrusion.

This objective states explicitly that there needs to be an alarm system that pro-
vides warnings of undesired events. Such a statement might be appropriate if you
were replacing an existing alarm system. By contrast, a broader statement of objec-
tives might be:

To ensure that the normal functioning of the work carried out in the building
is not seriously disrupted by events such as fire and unauthorised intrusion.

If you set out the objective like this, you both broaden and limit the design choices.
For example, this objective allows for intruder protection using sophisticated lock-
ing technology—without any internal alarms. It may also exclude the use of sprin-
klers for fire protection because they can affect the building’s electrical systems
and so seriously disrupt work.

••••

SE8_C02.qxd 4/4/06 8:56 Page 27

28 Chapter 2 ■ Socio-technical systems

A fundamental difficulty in establishing system requirements is that the prob-
lems that complex systems are usually built to help tackle are usually ‘wicked prob-
lems’ (Rittel and Webber, 1973). A ‘wicked problem’ is a problem that is so complex
and where there are so many related entities that there is no definitive problem spec-
ification. The true nature of the problem emerges only as a solution is developed.
An extreme example of a ‘wicked problem’ is earthquake planning. No one can
accurately predict where the epicentre of an earthquake will be, what time it will
occur or what effect it will have on the local environment. We cannot therefore
completely specify how to deal with a major earthquake. The problem can only be
tackled after it has happened.

2.2.2 System design

System design (Figure 2.4) is concerned with how the system functionality is to be
provided by the components of the system. The activities involved in this process are:

1. Partition requirements You analyse the requirements and organise them into
related groups. There are usually several possible partitioning options, and you
may suggest a number of alternatives at this stage of the process.

2. Identify sub-systems You should identify sub-systems that can individually or
collectively meet the requirements. Groups of requirements are usually related
to sub-systems, so this activity and requirements partitioning may be amalga-
mated. However, sub-system identification may also be influenced by other organ-
isational or environmental factors.

3. Assign requirements to sub-systems You assign the requirements to sub-
systems. In principle, this should be straightforward if the requirements parti-
tioning is used to drive the sub-system identification. In practice, there is never
a clean match between requirements partitions and identified sub-systems.
Limitations of externally purchased sub-systems may mean that you have to
change the requirements to accommodate these constraints.

4. Specify sub-system functionality You should specify the specific functions pro-
vided by each sub-system. This may be seen as part of the system design phase

••••

Partition
requirements

Identify
sub-systems

Assign requirements
to sub-systems

Specify sub-system
functionality

Define sub-system
interfaces

Figure 2.4 The
system design
process

SE8_C02.qxd 4/4/06 8:56 Page 28

2.2 ■ Systems engineering 29

or, if the sub-system is a software system, part of the requirements specifica-
tion activity for that system. You should also try to identify relationships between
sub-systems at this stage.

5. Define sub-system interfaces You define the interfaces that are provided and
required by each sub-system. Once these interfaces have been agreed upon, it
becomes possible to develop these sub-systems in parallel.

As the double-ended arrows in Figure 2.4 imply, there is a lot of feedback and
iteration from one stage to another in this design process. As problems and ques-
tions arise, you often have to redo work done in earlier stages.

Although I have separated the processes of requirements engineering and design
in this discussion, in practice they are inextricably linked. Constraints posed by exist-
ing systems may limit design choices, and these choices may be specified in the
requirements. You may have to do some initial design to structure and organise the
requirements engineering process. As the design process continues, you may dis-
cover problems with existing requirements and new requirements may emerge.
Consequently, one way to think of these linked processes is as a spiral, as shown
in Figure 2.5.

The spiral process reflects the reality that requirements affect design decisions
and vice versa, and so it makes sense to interleave these processes. Starting in the

••••

System Requirements and Design

Problem
Definition

Review and
Assessment

Requirements
Elicitation and

Analysis

Architectural
Design

Start

Figure 2.5 A spiral
model of
requirements and
design

SE8_C02.qxd 4/4/06 8:56 Page 29

30 Chapter 2 ■ Socio-technical systems

centre, each round of the spiral may add detail to the requirements and the design.
Some rounds may focus on requirements, some on design. Sometimes, new knowl-
edge collected during the requirements and design process means that the problem
statement itself has to be changed.

For almost all systems, there are many possible designs that meet the require-
ments. These cover a range of solutions that combine hardware, software and human
operations. The solution that you chose for further development may be the most
appropriate technical solution that meets the requirements. However, wider organ-
isational and political considerations may influence the choice of solution. For exam-
ple, a government client may prefer to use national rather than foreign suppliers for
its system, even if the national product is technically inferior. These influences usu-
ally take effect in the review and assessment phase in the spiral model where designs
and requirements may be accepted or rejected. The process ends when the review
and evaluation shows that the requirements and high-level design are sufficiently
detailed to allow the next phase of the process to begin.

2.2.3 System modelling

During the system requirements and design activity, systems may be modelled as
a set of components and relationships between these components. These are nor-
mally illustrated graphically in a system architecture model that gives the reader an
overview of the system organisation.

The system architecture may be presented as a block diagram showing the major
sub-systems and the interconnections between these sub-systems. When drawing a
block diagram, you should represent each sub-system using a rectangle, and you
should show relationships between the sub-systems using arrows that link these rect-
angles. The relationships indicated may include data flow, a ‘uses’/’used by’ rela-
tionship or some other type of dependency relationship.

For example, Figure 2.6 shows the decomposition of an intruder alarm system
into its principal components. The block diagram should be supplemented by brief
descriptions of each sub-system, as shown in Figure 2.7.

••••

Alarm
controller

Voice
synthesiser

Movement
sensors

Siren

Door
sensors

Telephone
caller

External
control centre

Figure 2.6 A simple
burglar alarm system

SE8_C02.qxd 4/4/06 8:56 Page 30

2.2 ■ Systems engineering 31

At this level of detail, the system is decomposed into a set of interacting sub-
systems. Each sub-system should be represented in a similar way until the system
is decomposed into functional components. Functional components are components
that, when viewed from the perspective of the sub-system, provide a single func-
tion. By contrast, a sub-system usually is multifunctional. Of course, when viewed
from another perspective (say that of the component manufacturer), a functional com-
ponent may itself be a system in its own right.

Historically, the system architecture model was used to identify hardware and
software components that could be developed in parallel. However, this hardware/
software distinction is becoming increasingly irrelevant. Almost all components now
include some embedded computing capabilities. For example, a network linking
machines will consist of physical cables plus repeaters and network gateways. The
repeaters and the gateways include processors and software to drive these proces-
sors as well as specialised electronic components.

At the architectural level, it is now more appropriate to classify sub-systems accord-
ing to their function before making decisions about hardware/software trade-offs.
The decision to provide a function in hardware or software may be governed by
non-technical factors such as the availability of off-the-shelf components or the time
available to develop the component.

Block diagrams may be used for all sizes of system. Figure 2.8 shows the archi-
tecture of a much larger system for air traffic control. Several major sub-systems
shown are themselves large systems. The arrowed lines that link these systems show
information flow between these sub-systems.

2.2.4 Sub-system development

During sub-system development, the sub-systems identified during system design
are implemented. This may involve starting another system engineering process for

••••

Sub-system Description

Movement sensors Detects movement in the rooms monitored by the system

Door sensors Detects door opening in the external doors of the building

Alarm controller Controls the operation of the system

Siren Emits an audible warning when an intruder is suspected

Voice synthesiser Synthesises a voice message giving the location of the
suspected intruder

Telephone caller Makes external calls to notify security, the police, etc.

Figure 2.7 Sub-
system descriptions
in the burglar alarm
system

SE8_C02.qxd 4/4/06 8:56 Page 31

32 Chapter 2 ■ Socio-technical systems

individual sub-systems or, if the sub-system is software, a software process involv-
ing requirements, design, implementation and testing.

Occasionally, all sub-systems are developed from scratch during the development
process. Normally, however, some of the sub-systems are commercial, off-the-shelf
(COTS) systems that are bought for integration into the system. It is usually much
cheaper to buy existing products than to develop special-purpose components. At
this stage, you may have to reenter the design activity to accommodate a bought-
in component. COTS systems may not meet the requirements exactly but, if off-
the-shelf products are available, it is usually worth the expense of rethinking the
design.

Sub-systems are usually developed in parallel. When problems are encountered
that cut across sub-system boundaries, a system modification request must be
made. Where systems involve extensive hardware engineering, making modifica-
tions after manufacturing has started is usually very expensive. Often ‘work-
arounds’ that compensate for the problem must be found. These ‘work-arounds’ usually
involve software changes because of the software’s inherent flexibility. This leads
to changes in the software requirements so, as I have discussed in Chapter 1, it is
important to design software for change so that the new requirements can be imple-
mented without excessive additional costs.

••••

Figure 2.8 An
architectural model
of an air traffic
control system

SE8_C02.qxd 4/4/06 8:56 Page 32

2.2 ■ Systems engineering 33

2.2.5 Systems integration

During the systems integration process, you take the independently developed sub-
systems and put them together to make up a complete system. Integration can be
done using a ‘big bang’ approach, where all the sub-systems are integrated at the
same time. However, for technical and managerial purposes, an incremental inte-
gration process where sub-systems are integrated one at a time is the best approach,
for two reasons:

1. It is usually impossible to schedule the development of all the sub-systems so
that they are all finished at the same time.

2. Incremental integration reduces the cost of error location. If many sub-systems
are simultaneously integrated, an error that arises during testing may be in any
of these sub-systems. When a single sub-system is integrated with an already work-
ing system, errors that occur are probably in the newly integrated sub-system or
in the interactions between the existing subsystems and the new sub-system.

Once the components have been integrated, an extensive programme of system
testing takes place. This testing should be aimed at testing the interfaces between
components and the behaviour of the system as a whole.

Sub-system faults that are a consequence of invalid assumptions about other sub-
systems are often revealed during system integration. This may lead to disputes between
the various contractors responsible for the different sub-systems. When problems are
discovered in sub-system interaction, the contractors may argue about which sub-
system is faulty. Negotiations on how to solve the problems can take weeks or months.

As more and more systems are built by integrating COTS hardware and soft-
ware components, system integration is becoming increasingly important. In some
cases, there is no separate sub-system development and the integration is, essen-
tially, the implementation phase of the system.

2.2.6 System evolution

Large, complex systems have a very long lifetime. During their life, they are changed
to correct errors in the original system requirements and to implement new require-
ments that have emerged. The system’s computers are likely to be replaced with
new, faster machines. The organisation that uses the system may reorganise itself
and hence use the system in a different way. The external environment of the sys-
tem may change, forcing changes to the system.

System evolution, like software evolution (discussed in Chapter 21), is inher-
ently costly for several reasons:

1. Proposed changes have to be analysed very carefully from a business and a
technical perspective. Changes have to contribute to the goals of the system
and should not simply be technically motivated.

••••

SE8_C02.qxd 4/4/06 8:56 Page 33

34 Chapter 2 ■ Socio-technical systems

2. Because sub-systems are never completely independent, changes to one sub-
system may adversely affect the performance or behaviour of other sub-
systems. Consequent changes to these sub-systems may therefore be needed.

3. The reasons for original design decisions are often unrecorded. Those respon-
sible for the system evolution have to work out why particular design decisions
were made.

4. As systems age, their structure typically becomes corrupted by change so the
costs of making further changes increases.

Systems that have evolved over time are often reliant on obsolete hardware and
software technology. If they have a critical role in an organisation, they are known
as legacy systems—systems that the organisation would like to replace but where
the risks of introducing a new system are high. I discuss some issues with legacy
systems in Section 2.4.

2.2.7 System decommissioning

System decommissioning means taking the system out of service after the end of its
useful operational lifetime. For hardware systems this may involve disassembling
and recycling materials or dealing with toxic substances. Software has no physical
decommissioning problems, but some software may be incorporated in a system to
assist with the decommissioning process. For example, software may be used to mon-
itor the state of hardware components. When the system is decommissioned, com-
ponents that are not worn can therefore be identified and reused in other systems.

If the data in the system that is being decommissioned is still valuable to your
organisation, you may have to convert it for use by some other system. This can
often involve significant costs as the data structures may be implicitly defined in
the software itself. You have to analyse the software to discover how the data is
structured and then write a program to reorganise the data into the required struc-
tures for the new system.

2.3 Organisations, people and computer systems

Socio-technical systems are enterprise systems that are intended to help deliver some
organisational or business goal. This might be to increase sales, reduce material used
in manufacturing, collect taxes, maintain a safe airspace, etc. Because they are embed-
ded in an organisational environment, the procurement, development and use of these
system is influenced by the organisation’s policies and procedures and by its work-
ing culture. The users of the system are people who are influenced by the way the

••••

SE8_C02.qxd 4/4/06 8:56 Page 34

2.3 ■ Organisations, people and computer systems 35

organisation is managed and by their interactions with other people inside and out-
side of the organisation.

Therefore, when you are trying to understand the requirements for a socio-technical
system you need to understand its organisational environment. If you don’t, the systems
may not meet business needs, and users and their managers may reject the system.

Human and organisational factors from the system’s environment that affect the
system design include:

1. Process changes Does the system require changes to the work processes in the
environment? If so, training will certainly be required. If changes are signifi-
cant, or if they involve people losing their jobs, there is a danger that the users
will resist the introduction of the system.

2. Job changes Does the system de-skill the users in an environment or cause them
to change the way they work? If so, they may actively resist the introduction of
the system into the organisation. Designs that involve managers having to change
their way of working to fit the computer system are often resented. The managers
may feel that their status in the organisation is being reduced by the system.

3. Organisational changes Does the system change the political power structure in
an organisation? For example, if an organisation is dependent on a complex sys-
tem, those who know how to operate the system have a great deal of political
power.

These human, social and organisational factors are often critical in determining whether
or not a system successfully meets its objectives. Unfortunately, predicting their effects
on systems is very difficult for engineers who have little experience of social or cul-
tural studies. To help understand the effects of systems on organisations, various method-
ologies have developed such as Mumford’s socio-technics (Mumford, 1989) and
Checkland’s Soft Systems Methodology (Checkland and Scholes, 1990; Checkland,
1981). There have also been extensive sociological studies of the effects of computer-
based systems on work (Ackroyd, et al., 1992).

Ideally, all relevant organisational knowledge should be included in the system spec-
ification so that the system designers may take it into account. In reality, this is impos-
sible. System designers have to make assumptions based on other comparable systems
and on common sense. If they get these wrong, the system may malfunction in unpre-
dictable ways. For example, if the designers of a system do not understand that dif-
ferent parts of an organisation may actually have conflicting objectives, then any
organisation-wide system that is developed will inevitably have some dissatisfied users.

2.3.1 Organisational processes

In Section 2.2, I introduced a system engineering process model that showed the
sub-processes involved in system development. However, the development process
is not the only process involved in systems engineering. It interacts with the

••••

SE8_C02.qxd 4/4/06 8:56 Page 35

36 Chapter 2 ■ Socio-technical systems

system procurement process and with the process of using and operating the sys-
tem. This is illustrated in Figure 2.9.

The procurement process is normally embedded within the organisation that will
buy and use the system (the client organisation). The process of system procure-
ment is concerned with making decisions about the best way for an organisation to
acquire a system and deciding on the best suppliers of that system.

Large complex systems usually consist of a mixture of off-the-shelf and specially
built components. One reason why more and more software is included in systems
is that it allows more use of existing hardware components, with the software act-
ing as a ‘glue’ to make these hardware components work together effectively. The
need to develop this ‘glueware’ is one reason why the savings from using off-the-
shelf components are sometimes not as great as anticipated. I discuss COTS sys-
tems in more detail in Chapter 18.

Figure 2.10 shows the procurement process for both existing systems and sys-
tems that have to be specially designed. Some important points about the process
shown in this diagram are:

1. Off-the-shelf components do not usually match requirements exactly, unless the
requirements have been written with these components in mind. Therefore, choos-
ing a system means that you have to find the closest match between the sys-
tem requirements and the facilities offered by off-the-shelf systems. You may
then have to modify the requirements and this can have knock-on effects on
other sub-systems.

2. When a system is to be built specially, the specification of requirements acts
as the basis of a contract for the system procurement. It is therefore a legal, as
well as a technical, document.

3. After a contractor to build a system has been selected, there is a contract nego-
tiation period where you may have to negotiate further changes to the require-
ments and discuss issues such as the cost of changes to the system.

I have already outlined the main phases of the system development process.
Complex systems are usually developed by a different organization (the supplier)
from the organization that is procuring the system. The reason for this is that the
procurer’s business is rarely system development so its employees do not have the

••••

Procurement
process

Operational
process

Development
process

Figure 2.9
Procurement,
development and
operational
processes

SE8_C02.qxd 4/4/06 8:56 Page 36

2.3 ■ Organisations, people and computer systems 37

skills needed to develop complex systems themselves. In fact, very few single organ-
isations have the capabilities to design, manufacture and test all the components of
a large, complex system.

This supplier, who is usually called the principal contractor, may contract out
the development of different sub-systems to a number of sub-contractors. For large
systems, such as air traffic control systems, a group of suppliers may form a con-
sortium to bid for the contract. The consortium should include all of the capabili-
ties required for this type of system, such as computer hardware suppliers, software
developers, peripheral suppliers and suppliers of specialist equipment such as
radars.

The procurer deals with the contractor rather than the sub-contractors so that there
is a single procurer/supplier interface. The sub-contractors design and build parts
of the system to a specification that is produced by the principal contractor. Once
completed, the principal contractor integrates these different components and deliv-
ers them to the customer buying the system. Depending on the contract, the pro-
curer may allow the principal contractor a free choice of sub-contractors or may
require the principal contractor to choose sub-contractors from an approved list.

Operational processes are the processes that are involved in using the system
for its defined purpose. For example, operators of an air traffic control system fol-
low specific processes when aircraft enter and leave airspace, when they have to
change height or speed, when an emergency occurs and so on. For new systems,
these operational processes have to be defined and documented during the system
development process. Operators may have to be trained and other work processes
adapted to make effective use of the new system. Undetected problems may arise
at this stage because the system specification may contain errors or omissions. While
the system may perform to specification, its functions may not meet the real oper-
ational needs. Consequently, the operators may not use the system as its design-
ers intended.

The key benefit of having people in a system is that people have a unique capa-
bility of being able to respond effectively to unexpected situations even when they
have never had direct experience of these situations. Therefore, when things go wrong,

••••

Choose
supplier

Issue request
for bids

Choose
system

Adapt
requirements

Survey market for
existing systems

Let contract for
development

Negotiate
contract

Select
tender

Issue request
to tender

Off-the-shelf
system available

Custom system
required

Figure 2.10 The
system procurement
process

SE8_C02.qxd 4/4/06 8:56 Page 37

38 Chapter 2 ■ Socio-technical systems

the operators can often recover the situation, although this may sometimes mean
that the defined process is violated. Operators also use their local knowledge to adapt
and improve processes. Normally, the actual operational process is different from
that anticipated by the system designers.

This means that designers should design operational processes to be flexible and
adaptable. The operational processes should not be too constraining, they should
not require operations to be done in a particular order, and the system software should
not rely on a specific process being followed. Operators usually improve the pro-
cess because they know what does and does not work in a real situation.

An issue that may only emerge after the system goes into operation is the prob-
lem of operating the new system alongside existing systems. There may be physi-
cal problems of incompatibility, or it may be difficult to transfer data from one system
to another. More subtle problems might arise because different systems have dif-
ferent user interfaces. Introducing the new system may increase the operator error
rate for existing systems as the operators mix up user interface commands.

2.4 Legacy systems

Because of the time and effort required to develop a complex system, large computer-
based systems usually have a long lifetime. For example, military systems are often
designed for a 20-year lifetime, and much of the world’s air traffic control still relies
on software and operational processes that were originally developed in the 1960s
and 1970s. It is sometimes too expensive and too risky to discard such business-
critical systems after a few years of use. Their development continues throughout
their life with changes to accommodate new requirements, new operating platforms,
and so forth.

Legacy systems are socio-technical computer-based systems that have been
developed in the past, often using older or obsolete technology. These systems include
not only hardware and software but also legacy processes and procedures—old ways
of doing things that are difficult to change because they rely on legacy software.
Changes to one part of the system inevitably involve changes to other components,

Legacy systems are often business-critical systems. They are maintained
because it is too risky to replace them. For example, for most banks the customer
accounting system was one of their earliest systems. Organisational policies and pro-
cedures may rely on this system. If the bank were to scrap and replace the customer
accounting software (which may run on expensive mainframe hardware) then there
would be a serious business risk if the replacement system didn’t work properly.
Furthermore, existing procedures would have to change, and this may upset the peo-
ple in the organisation and cause difficulties with the bank’s auditors.

Figure 2.11 illustrates the logical parts of a legacy system and their relationships:

••••

SE8_C02.qxd 4/4/06 8:56 Page 38

2.4 ■ Legacy systems 39

1. System hardware In many cases, legacy systems have been written for main-
frame hardware that is no longer available, that is expensive to maintain and
that may not be compatible with current organisational IT purchasing policies.

2. Support software The legacy system may rely on a range of support software
from the operating system and utilities provided by the hardware manufacturer
through to the compilers used for system development. Again, these may be
obsolete and no longer supported by their original providers.

3. Application software The application system that provides the business services
is usually composed of a number of separate programs that have been devel-
oped at different times. Sometimes the term legacy system means this applica-
tion software system rather than the entire system.

4. Application data These are the data that are processed by the application sys-
tem. In many legacy systems, an immense volume of data has accumulated over
the lifetime of the system. This data may be inconsistent and may be dupli-
cated in several files.

5. Business processes These are processes that are used in the business to achieve
some business objective. An example of a business process in an insurance com-
pany would be issuing an insurance policy; in a manufacturing company, a busi-
ness process would be accepting an order for products and setting up the associated
manufacturing process. Business processes may be designed around a legacy
system and constrained by the functionality that it provides.

6. Business policies and rules These are definitions of how the business should
be carried out and constraints on the business. Use of the legacy application
system may be embedded in these policies and rules.

An alternative way of looking at these components of a legacy system is as a series
of layers, as shown in Figure 2.12. Each layer depends on the layer immediately below
it and interfaces with that layer. If interfaces are maintained, then you should be able
to make changes within a layer without affecting either of the adjacent layers.

••••

System
hardware

Business
processes

Application
software

Business policies
and rules

Support
software

Application
 data

ConstrainsUsesUsesRuns-onRuns-on

Embeds
knowledge of

Uses

Figure 2.11 Legacy
system components

SE8_C02.qxd 4/4/06 8:56 Page 39

40 Chapter 2 ■ Socio-technical systems

In practice, this simple encapsulation rarely works, and changes to one layer of
the system may require consequent changes to layers that are both above and below
the changed level. The reasons for this are:

1. Changing one layer in the system may introduce new facilities, and higher lay-
ers in the system may then be changed to take advantage of these facilities. For
example, a new database introduced at the support software layer may include

••••

Socio-technical system

Hardware

Support software

Application software

Business processes

Figure 2.12 Layered
model of a legacy
system

■ Socio-technical systems include computer hardware, software and people, and are situated
within an organisation. They are designed to help the organisation meet some broad goal.

■ The emergent properties of a system are characteristic of the system as a whole rather than
of its component parts. They include properties such as performance, reliability, usability,
safety and security. The success or failure of a system is often dependent on these
emergent properties.

■ The systems engineering process includes specification, design, development, integration
and testing. System integration, where sub-systems from more than one supplier must be
made to work together, is particularly critical.

■ Human and organisational factors such as organisational structure and politics have a
significant effect on the operation of socio-technical systems.

■ Within an organisation, there are complex interactions between the processes of system
procurement, development and operation.

■ A legacy system is an old system that still provides essential business services.

■ Legacy systems are not just application software systems. They are socio-technical systems
so include business processes, application software, support software and system hardware.

K E Y P O I N TS

SE8_C02.qxd 4/4/06 8:56 Page 40

Chapter 2 ■ Exercises 41

facilities to access the data through a web browser, and business processes may
be modified to take advantage of this facility.

2. Changing the software may slow the system down so that new hardware is needed
to improve the system performance. The increase in performance from the new
hardware may then mean that further software changes which were previously
impractical become possible.

3. It is often impossible to maintain hardware interfaces, especially if a radical
change to a new type of hardware is proposed. For example, if a company moves
from mainframe hardware to client-server systems (discussed in Chapter 11)
these usually have different operating systems. Major changes to the applica-
tion software may therefore be required.

F U R T H E R R E A D I N G

‘Software system engineering: A tutorial’. A good general overview of systems engineering,
although Thayer focuses exclusively on computer-based systems and does not discuss socio-
technical issues. (R. H. Thayer, IEEE Computer, April 2002.)

‘Legacy information systems: Issues and directions’. An overview of the problems of legacy systems
with a particular focus on the problems of legacy data. (J. Bisbal, et al., IEEE Software,
September/October 1999.)

Systems Engineering: Coping with Complexity. At the time of this writing, this is still the best
available systems engineering book. It focuses on systems engineering processes with good
chapters on requirements, architecture and project management. (R. Stevens, et al., 1998,
Prentice Hall.)

‘Airport 95: Automated baggage system’. An excellent, readable case study of what can go wrong
with a systems engineering project and how software tends to get the blame for wider systems
failures. (ACM Software Engineering Notes, 21, March 1996.)

E X E R C I S E S

2.1 Explain why other systems within a system’s environment can have unanticipated effects on
the functioning of a system.

2.2 Explain why specifying a system to be used by emergency services for disaster management
is an inherently wicked problem.

2.3 Suggest how the software systems used in a car can help with the decommissioning
(scrapping) of the overall system.

••••

SE8_C02.qxd 4/4/06 8:56 Page 41

42 Chapter 2 ■ Socio-technical systems

2.4 Explain why it is important to produce an overall description of a system architecture at an
early stage in the system specification process.

2.5 Consider a security system that is an extended version of the system shown in Figure 2.6,
which is intended to protect against intrusion and to detect fire. It incorporates smoke
sensors, movement sensors, door sensors, video cameras under computer control, located at
various places in the building, an operator console where the system status is reported, and
external communication facilities to call the appropriate services such as the police and fire
departments. Draw a block diagram of a possible design for such a system.

2.6 A flood warning system is to be procured which will give early warning of possible flood
dangers to sites that are threatened by floods. The system will include a set of sensors to
monitor the rate of change of river levels, links to a meteorological system giving weather
forecasts, links to the communication systems of emergency services (police, coastguard,
etc.), video monitors installed at selected locations, and a control room equipped with
operator consoles and video monitors.

Controllers can access database information and switch video displays. The system database
includes information about the sensors, the location of sites at risk and the threat conditions
for these sites (e.g., high tide, southwesterly winds), tide tables for coastal sites, the
inventory and location of flood control equipment, contact details for emergency services,
local radio stations, and so on.

Draw a block diagram of a possible architecture for such a system. You should identify the
principal sub-systems and the links between them.

2.7 A multimedia virtual museum system offering virtual experiences of ancient Greece is to be
developed for a consortium of European museums. The system should provide users with the
facility to view 3-D models of ancient Greece through a standard web browser and should
also support an immersive virtual reality experience. What political and organisational
difficulties might arise when the system is installed in the museums that make up the
consortium?

2.8 Explain why legacy systems may be critical to the operation of a business.

2.9 Explain why legacy systems can cause difficulties for companies that wish to reorganise their
business processes.

2.10 What are the arguments for and against considering system engineering as a profession in its
own right such as electrical engineering or software engineering?

2.11 You are an engineer involved in the development of a financial system. During installation,
you discover that this system will make a significant number of people redundant. The
people in the environment deny you access to essential information to complete the system
installation. To what extent should you, as a systems engineer, become involved in this? Is it
your professional responsibility to complete the installation as contracted? Should you
simply abandon the work until the procuring organisation has sorted out the problem?

••

SE8_C02.qxd 4/4/06 8:56 Page 42

Critical systems
3

Objectives
The objective of this chapter is to introduce the idea of a critical
system—a system in which dependability is its most important
property. When you have read this chapter, you will:

■ understand that in a critical system, system failure can have severe
human or economic consequences;

■ understand four dimensions of system dependability: availability,
reliability, safety and security;

■ understand that to achieve dependability you need to avoid mistakes
during the development of a system, to detect and remove errors
when the system is in use and to limit the damage caused by
operational failures.

Contents
3.1 A simple safety-critical system

3.2 System dependability

3.3 Availability and reliability

3.4 Safety

3.5 Security

SE8_C03.qxd 4/4/06 8:57 Page 43

44 Chapter 3 ■ Critical systems

Software failures are relatively common. In most cases, these failures cause incon-
venience but no serious, long-term damage. However, in some systems failure can
result in significant economic losses, physical damage or threats to human life. These
systems are called critical systems. Critical systems are technical or socio-technical
systems that people or businesses depend on. If these systems fail to deliver their
services as expected then serious problems and significant losses may result.

There are three main types of critical systems:

1. Safety-critical systems A system whose failure may result in injury, loss of life
or serious environmental damage. An example of a safety-critical system is a
control system for a chemical manufacturing plant.

2. Mission-critical systems A system whose failure may result in the failure of
some goal-directed activity. An example of a mission-critical system is a nav-
igational system for a spacecraft.

3. Business-critical systems A system whose failure may result in very high costs
for the business using that system. An example of a business-critical system is
the customer accounting system in a bank.

The most important emergent property of a critical system is its dependability.
The term dependability was proposed by Laprie (Laprie 1995) to cover the related
systems attributes of availability, reliability, safety and security. As I discuss in Section
3.2, these properties are inextricably linked, so having a single term to cover them
all makes sense.

There are several reasons why dependability is the most important emergent prop-
erty for critical systems:

1. Systems that are unreliable, unsafe or insecure are often rejected by their users.
If users don’t trust a system, they will refuse to use it. Furthermore, they may
also refuse to buy or use products from the same company as the untrustwor-
thy system, believing that these products perhaps cannot be trusted.

2. System failure costs may be enormous. For some applications, such as a reac-
tor control system or an aircraft navigation system, the cost of system failure
is orders of magnitude greater than the cost of the control system.

3. Untrustworthy systems may cause information loss. Data is very expensive to
collect and maintain; it may sometimes be worth more than the computer sys-
tem on which it is processed. A great deal of effort and money may have to
be spent duplicating valuable data to guard against data corruption.

The high cost of critical systems failure means that trusted methods and tech-
niques must be used for development. Consequently, critical systems are usually
developed using well-tried techniques rather than newer techniques that have not

••••

SE8_C03.qxd 4/4/06 8:57 Page 44

Chapter 3 ■ Critical systems 45

been subject to extensive practical experience. Rather than embrace new techniques
and methods, critical systems developers are naturally conservative. They prefer to
use older techniques whose strengths and weaknesses are understood rather than
new techniques which may appear to be better but whose long-term problems are
unknown.

Expensive software engineering techniques that are not cost-effective for non-
critical systems may sometimes be used for critical systems development. For exam-
ple, formal mathematical methods of software development (discussed in Chapter
10) have been successfully used for safety and security critical systems (Hall, 1996;
Hall and Chapman, 2002). One reason why these formal methods are used is that
it helps reduce the amount of testing required. For critical systems, the costs of ver-
ification and validation are usually very high—more than 50% of the total system
development costs.

Although a small number of control systems may be completely automatic, most
critical systems are socio-technical systems where people monitor and control the
operation of computer-based systems. The costs of critical systems failure are usu-
ally so high that we need people in the system who can cope with unexpected sit-
uations, and who can often recover from difficulties when things go wrong.

Of course, while system operators can help recover from problems, they can also
cause problems if they make mistakes. There are three ‘system components’ where
critical systems failures may occur:

1. System hardware may fail because of mistakes in its design, because compo-
nents fail as a result of manufacturing errors, or because the components have
reached the end of their natural life.

2. System software may fail because of mistakes in its specification, design or
implementation.

3. Human operators of the system may fail to operate the system correctly. As
hardware and software have become more reliable, failures in operation are now
probably the largest single cause of system failures.

These failures can be interrelated. A failed hardware component may mean sys-
tem operators have to cope with an unexpected situation and additional workload.
This puts them under stress—and people under stress often make mistakes. This
can cause the software to fail, which means more work for the operators, even more
stress, and so on.

As a result, it is particularly important that designers of critical systems take a
holistic, systems perspective rather than focus on a single aspect of the system. If
the hardware, software and operational processes are designed separately without
taking the potential weaknesses of other parts of the system into account, then it
is more likely that errors will occur at interfaces between the various parts of the
system.

••••

SE8_C03.qxd 4/4/06 8:57 Page 45

46 Chapter 3 ■ Critical systems

3.1 A simple safety-critical system

There are many types of critical computer-based systems, ranging from control sys-
tems for devices and machinery to information and e-commerce systems. They could
be excellent case studies for a software engineering book, as advanced software engi-
neering techniques are often used in their development. However, understanding these
systems can be very difficult, as you need to understand the features and constraints
of the application domain where they operate.

Consequently, the critical systems case study that I use in several chapters in
this book is a medical system that simulates the operation of the pancreas (an inter-
nal organ). I have chosen this because we all have some understanding of medical
problems and it is clear why safety and reliability are so important for this type of
system. The system chosen is intended to help people who suffer from diabetes.

Diabetes is a relatively common condition where the human pancreas is unable
to produce sufficient quantities of a hormone called insulin. Insulin metabolises glu-
cose in the blood. The conventional treatment of diabetes involves regular injec-
tions of genetically engineered insulin. Diabetics measure their blood sugar levels
using an external meter and then calculate the dose of insulin that they should inject.

The problem with this treatment is that the level of insulin in the blood does not just
depend on the blood glucose level but is a function of the time when the insulin injec-
tion was taken. This can lead to very low levels of blood glucose (if there is too much
insulin) or very high levels of blood sugar (if there is too little insulin). Low blood sugar
is, in the short term, a more serious condition, as it can result in temporary brain mal-
functioning and, ultimately, unconsciousness and death. In the long term, continual high
levels of blood sugar can lead to eye damage, kidney damage, and heart problems.

Current advances in developing miniaturised sensors have meant that it is now pos-
sible to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery systems

••••

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Controller

Power supply

Insulin reservoirFigure 3.1 Insulin
pump structure

SE8_C03.qxd 4/4/06 8:57 Page 46

3.2 ■ System dependability 47

like this already exist for the treatment of hospital patients. In the future, it may be pos-
sible for many diabetics to have such systems permanently attached to their bodies.

A software-controlled insulin delivery system might work by using a micro-sensor
embedded in the patient to measure some blood parameter that is proportional to
the sugar level. This is then sent to the pump controller. This controller computes
the sugar level and the amount of insulin that is needed. It then sends signals to a
miniaturised pump to deliver the insulin via a permanently attached needle.

Figure 3.1 shows the components and organisation of the insulin pump. Figure
3.2 is a data-flow model that illustrates how an input blood sugar level is trans-
formed to a sequence of pump control commands.

There are two high-level dependability requirements for this insulin pump system:

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

Failure of the system could, in principle, cause excessive doses of insulin to be
delivered and this could threaten the life of the user. It is particularly important that
overdoses of insulin should not occur.

3.2 System dependability

All of us are familiar with the problem of computer system failure. For no obvious
reason, computer systems sometimes crash and fail to deliver the services that have
been requested. Programs running on these computers may not operate as expected
and, occasionally, may corrupt the data that is managed by the system. We have

••••

Insulin
requirement
computation

Blood sugar
analysis

Blood sugar
sensor

Insulin
delivery

controller

Insulin
pump

Blood

Blood
parameters

Blood sugar
level

Insulin
Pump control
commands Insulin

requirement

Figure 3.2 Data-flow
model of the insulin
pump

SE8_C03.qxd 4/4/06 8:57 Page 47

48 Chapter 3 ■ Critical systems

learned to live with these failures, and few of us completely trust the personal com-
puters that we normally use.

The dependability of a computer system is a property of the system that equates
to its trustworthiness. Trustworthiness essentially means the degree of user confi-
dence that the system will operate as they expect and that the system will not ‘fail’
in normal use. This property cannot be expressed numerically, but we use relative
terms such as ‘not dependable’, ‘very dependable’ and ‘ultra-dependable’ to reflect
the degrees of trust that we might have in a system.

Trustworthiness and usefulness are not, of course, the same thing. I don’t think
that the word processor that I used to write this book is a very dependable system,
but it is very useful. However, to reflect my lack of trust in the system I frequently
save my work and keep multiple backup copies of it. I compensate for the lack of
system dependability by actions that limit the damage that could be caused if the
system failed.

There are four principal dimensions to dependability, as shown in Figure 3.3:

1. Availability Informally, the availability of a system is the probability that it will
be up and running and able to deliver useful services at any given time.

2. Reliability Informally, the reliability of a system is the probability, over a given
period of time, that the system will correctly deliver services as expected by
the user.

3. Safety Informally, the safety of a system is a judgement of how likely it is that
the system will cause damage to people or its environment.

4. Security Informally, the security of a system is a judgement of how likely it is
that the system can resist accidental or deliberate intrusions.

These are complex properties that can be decomposed into a number of other,
simpler properties. For example, security includes integrity (ensuring that the

••••

Dependability

Availability Reliability Security

The ability of the system
to deliver services when

requested

The ability of the system
to deliver services as

specified

The ability of the system
to operate without
catastrophic failure

The ability of the system
to protect itelf against
accidental or deliberate

intrusion

Safety

Figure 3.3
Dimensions of
dependability

SE8_C03.qxd 4/4/06 8:57 Page 48

3.2 ■ System dependability 49

systems program and data are not damaged) and confidentiality (ensuring that infor-
mation can only be accessed by people who are authorised). Reliability includes
correctness (ensuring the system services are as specified), precision (ensuring infor-
mation is delivered at an appropriate level of detail) and timeliness (ensuring that
information is delivered when it is required).

The dependability properties of availability, security, reliability and safety are
all interrelated. Safe system operation usually depends on the system being avail-
able and operating reliability. A system may become unreliable because its data
has been corrupted by an intruder. Denial-of-service attacks on a system are intended
to compromise its availability. If a system that has been proved to be safe is infected
with a virus, safe operation can no longer be assumed. It is because of these close
links that the notion of system dependability as an encompassing property was
introduced.

As well as these four main dimensions, other system properties can also be con-
sidered under the heading of dependability:

1. Repairability System failures are inevitable, but the disruption caused by fail-
ure can be minimised if the system can be repaired quickly. In order for that
to happen, it must be possible to diagnose the problem, access the component
that has failed and make changes to fix that component. Repairability in soft-
ware is enhanced when the organisation using the system has access to the source
code and has the skills to make changes to it. Unfortunately, this is becoming
increasingly uncommon as we move towards system development using third-
party, black-box components (see Chapter 19).

2. Maintainability As systems are used, new requirements emerge. It is important
to maintain the usefulness of a system by changing it to accommodate these
new requirements. Maintainable software is software that can be adapted eco-
nomically to cope with new requirements and where there is a low probability
that making changes will introduce new errors into the system.

3. Survivability A very important attribute for Internet-based systems is surviv-
ability, which is closely related to security and availability (Ellison, et al., 1999).
Survivability is the ability of a system to continue to deliver service whilst it
is under attack and, potentially, while part of the system is disabled. Work on
survivability focuses on identifying key system components and ensuring that
they can deliver a minimal service. Three strategies are used to enhance
survivability—namely, resistance to attack, attack recognition and recovery from
the damage caused by an attack (Ellison, et al., 1999; Ellison, et al., 2002).

4. Error tolerance This property can be considered as part of usability (discussed
in Chapter 16) and reflects the extent to which the system has been designed
so that user input error are avoided and tolerated. When user errors occur, the
system should, as far as possible, detect these errors and either fix them auto-
matically or request the user to re-input their data

••••

SE8_C03.qxd 4/4/06 8:57 Page 49

50 Chapter 3 ■ Critical systems

Because availability, reliability, safety and security are the fundamental depend-
ability properties, I concentrate on them in this chapter and in later chapters that
cover critical systems specification (Chapter 9), critical systems development
(Chapter 20) and critical systems validation (Chapter 24).

Of course, these dependability properties are not all applicable to all systems.
For the insulin pump system, introduced in Section 3.1, the most important prop-
erties are availability (it must work when required), reliability (it must deliver the
correct dose of insulin) and safety (it must never deliver a dangerous dose of insulin).
Security, in this case, is less likely to be an issue, as the pump will not maintain
confidential information and is not networked so cannot be maliciously attacked.

Designers must usually make a trade-off between system performance and sys-
tem dependability. Generally, high levels of dependability can only be achieved at
the expense of system performance. Dependable software includes extra, often redun-
dant, code to perform the necessary checking for exceptional system states and to
recover from system faults. This reduces system performance and increases the amount
of store required by the software. It also adds significantly to the costs of system
development.

Because of additional design, implementation and validation costs, increasing the
dependability of a system can significantly increase development costs. In particu-
lar, validation costs are high for critical systems. As well as validating that the sys-
tem meets its requirements, the validation process may have to prove to an external
regulator such as the Federal Aviation Authority that the system is dependable.

Figure 3.4 shows the relationship between costs and incremental improvements
in dependability. The higher the dependability that you need, the more that you have
to spend on testing to check that you have reached that level. Because of the expo-
nential nature of this cost/dependability curve, it is not possible to demonstrate that
a system is 100% dependable, as the costs of dependability assurance would then
be infinite.

••••

C
os

t

Low Medium High Very
high

Ultra-
high

Dependability

Figure 3.4
Cost/dependability
curve

SE8_C03.qxd 4/4/06 8:57 Page 50

3.3 ■ Availability and reliability 51

3.3 Availability and reliability

System availability and reliability are closely related properties that can both be
expressed as numerical probabilities. The reliability of a system is the probability
that the system’s services will be correctly delivered as specified. The availability
of a system is the probability that the system will be up and running to deliver these
services to users when they request them.

Although they are closely related, you cannot assume that reliable systems will
always be available and vice versa. For example, some systems can have a high
availability requirement but a much lower reliability requirement. If users expect
continuous service then the availability requirements are high. However, if the con-
sequences of a failure are minimal and the system can recover quickly from these
failures then the same system can have low reliability requirements.

An example of a system where availability is more critical than reliability is a tele-
phone exchange switch. Users expect a dial tone when they pick up a phone so the sys-
tem has high availability requirements. However, if a system fault causes a connection
to fail, this is often recoverable. Exchange switches usually include repair facilities that
can reset the system and retry the connection attempt. This can be done very quickly,
and the phone user may not even notice that a failure has occurred. Therefore, avail-
ability rather than reliability is the key dependability requirement for these systems.

A further distinction between these characteristics is that availability does not
simply depend on the system itself but also on the time needed to repair the faults
that make the system unavailable. Therefore, if system A fails once per year, and
system B fails once per month, then A is clearly more reliable then B. However,
assume that system A takes three days to restart after a failure, whereas system
B takes 10 minutes to restart. The availability of system B over the year (120
minutes of down time) is much better than that of system A (4,320 minutes of
down time).

System reliability and availability may be defined more precisely as follows:

1. Reliability The probability of failure-free operation over a specified time in a
given environment for a specific purpose.

2. Availability The probability that a system, at a point in time, will be opera-
tional and able to deliver the requested services.

One of the practical problems in developing reliable systems is that our intu-
itive notions of reliability and availability are sometimes broader than these lim-
ited definitions. The definition of reliability states that the environment in which
the system is used and the purpose that it is used for must be taken into account.
If you measure system reliability in one environment, you can’t assume that the
reliability will be the same in another environment where the system is used in a
different way.

••••

SE8_C03.qxd 4/4/06 8:57 Page 51

52 Chapter 3 ■ Critical systems

For example, let’s say that you measure the reliability of a word processor in an
office environment where most users are uninterested in the operation of the soft-
ware. They follow the instructions for its use and do not try to experiment with the
system. If you measure the reliability of the same system in a university environ-
ment, then the reliability may be quite different. Here, students may explore the
boundaries of the system and use the system in unexpected ways. These may result
in system failures that did not occur in the more constrained office environment.

Human perceptions and patterns of use are also significant. For example, say a
car has a fault in its windscreen wiper system that results in intermittent failures of
the wipers to operate correctly in heavy rain. The reliability of that system as per-
ceived by a driver depends on where they live and use the car. A driver in Seattle
(wet climate) will probably be more affected by this failure than a driver in Las
Vegas (dry climate). The Seattle driver’s perception will be that the system is unre-
liable, whereas the driver in Las Vegas may never notice the problem.

A further difficulty with these definitions is that they do not take into account
the severity of failure or the consequences of unavailability. People, naturally, are
more concerned about system failures that have serious consequences, and their per-
ception of system reliability is influenced by these consequences. For example, say
a failure of initialisation in the engine management software causes a car engine to
cut out immediately after starting, but it operates correctly after a restart that cor-
rects the initialisation problem. This does not affect the normal operation of the car,
and many drivers would not think that a repair was needed. By contrast, most drivers
will think that an engine that cuts out while they are driving at high speed once per
month (say) is both unreliable and unsafe and must be repaired.

A strict definition of reliability relates the system implementation to its specifi-
cation. That is, the system is behaving reliably if its behaviour is consistent with
that defined in the specification. However, a common cause of perceived unrelia-
bility is that the system specification does not match the expectations of the sys-
tem users. Unfortunately, many specifications are incomplete or incorrect and it is
left to software engineers to interpret how the system should behave. As they are
not domain experts, they may not, therefore, implement the behaviour that users
expect.

Reliability and availability are compromised by system failures. These may be
a failure to provide a service, a failure to deliver a service as specified, or the deliv-
ery of a service in such a way that is unsafe or insecure. Some of these failures are
a consequence of specification errors or failures in associated systems such as a
telecommunications system. However, many failures are a consequence of erroneous
system behaviour that derives from faults in the system. When discussing reliabil-
ity, it is helpful to distinguish between the terms fault, error and failure. I have
defined these terms in Figure 3.5.

Human errors do not inevitably lead to system failures. The faults introduced
may be in parts of the system that are never used. Faults do not necessarily result
in system errors, as the faulty state may be transient and may be corrected before
erroneous behaviour occurs. System errors may not result in system failures, as the
behaviour may also be transient and have no observable effects or the system may

••••

SE8_C03.qxd 4/4/06 8:57 Page 52

3.3 ■ Availability and reliability 53

include protection that ensures that the erroneous behaviour is discovered and cor-
rected before the system services are affected.

This distinction between the terms shown in Figure 3.5 helps us identify three
complementary approaches that are used to improve the reliability of a system:

1. Fault avoidance Development techniques are used that either minimise the pos-
sibility of mistakes and/or that trap mistakes before they result in the introduction
of system faults. Examples of such techniques include avoiding error-prone pro-
gramming language constructs such as pointers and the use of static analysis
to detect program anomalies.

2. Fault detection and removal The use of verification and validation techniques
that increase the chances that faults will be detected and removed before the
system is used. Systematic system testing and debugging is an example of a
fault-detection technique.

3. Fault tolerance Techniques that ensure that faults in a system do not result in
system errors or that ensure that system errors do not result in system failures.
The incorporation of self-checking facilities in a system and the use of redun-
dant system modules are examples of fault tolerance techniques.

I cover the development of fault tolerant systems in Chapter 20, where I also
discuss some techniques for fault avoidance. I discuss process-based approaches to
fault avoidance in Chapter 27 and fault detection in Chapters 22 and 23.

Software faults cause software failures when the faulty code is executed with a
set of inputs that expose the software fault. The code works properly for most inputs.
Figure 3.6, derived from Littlewood (Littlewood, 1990), shows a software system
as a mapping of an input to an output set. Given an input or input sequence, the
program responds by producing a corresponding output. For example, given an input
of a URL, a web browser produces an output that is the display of the requested
web page.

••••

Term Description

System failure An event that occurs at some point in time when the system
does not deliver a service as expected by its users

System error An erroneous system state that can lead to system behaviour
that is unexpected by system users.

System fault A characteristic of a software system that can lead to a system
error. For example, failure to initialise a variable could lead to
that variable having the wrong value when it is used.

Human error Human behaviour that results in the introduction of faults into
or mistake a system.

Figure 3.5 Reliability
terminology

SE8_C03.qxd 4/4/06 8:57 Page 53

54 Chapter 3 ■ Critical systems

Some of these inputs or input combinations, shown in the shaded ellipse in Figure
3.6, cause erroneous outputs to be generated. The software reliability is related to
the probability that, in a particular execution of the program, the system input will
be a member of the set of inputs, which cause an erroneous output to occur. If an
input causing an erroneous output is associated with a frequently used part of the
program, then failures will be frequent. However, if it is associated with rarely used
code, then users will hardly ever see failures.

Each user of a system uses it in different ways. Faults that affect the reliability
of the system for one user may never be revealed under someone else’s mode of
working (Figure 3.7). In Figure 3.7, the set of erroneous inputs correspond to the
shaded ellipse in Figure 3.6. The set of inputs produced by User 2 intersects with
this erroneous input set. User 2 will therefore experience some system failures. User
1 and User 3, however, never use inputs from the erroneous set. For them, the soft-
ware will always be reliable.

••••

IeInput set

OeOutput set

Program

Inputs causing
erroneous outputs

Erroneous
outputs

Figure 3.6 A system
as an input/output
mapping

Possible
inputs

User
1

User
3

User
2

Erroneous
inputs

Figure 3.7 Software
usage patterns

SE8_C03.qxd 4/4/06 8:57 Page 54

3.4 ■ Safety 55

The overall reliability of a program, therefore, mostly depends on the number of
inputs causing erroneous outputs during normal use of the system by most users. Software
faults that occur only in exceptional situations have little effect on the system’s reli-
ability. Removing software faults from parts of the system that are rarely used makes
little real difference to the reliability as seen by system users. Mills et al. (Mills, et
al., 1987) found that, in their software, removing 60% of known errors in their soft-
ware led to only a 3% reliability improvement. Adams (Adams, 1984), in a study of
IBM software products, noted that many defects in the products were only likely to
cause failures after hundreds or thousands of months of product usage.

Users in a socio-technical system may adapt to software with known faults, and
may share information about how to get around these problems. They may avoid using
inputs that are known to cause problems so program failures never arise. Furthermore,
experienced users often ‘work around’ software faults that are known to cause fail-
ures. They deliberately avoid using system features that they know can cause prob-
lems for them. For example, I avoid certain features, such as automatic numbering in
the word processing system that I used to write this book. Repairing the faults in these
features may make no practical difference to the reliability as seen by these users.

3.4 Safety

Safety-critical systems are systems where it is essential that system operation is always
safe. That is, the system should never damage people or the system’s environment
even if the system fails. Examples of safety-critical systems are control and moni-
toring systems in aircraft, process control systems in chemical and pharmaceutical
plants and automobile control systems.

Hardware control of safety-critical systems is simpler to implement and analyse
than software control. However, we now build systems of such complexity that they
cannot be controlled by hardware alone. Some software control is essential because
of the need to manage large numbers of sensors and actuators with complex con-
trol laws. An example of such complexity is found in advanced, aerodynamically
unstable military aircraft. They require continual software-controlled adjustment of
their flight surfaces to ensure that they do not crash.

Safety-critical software falls into two classes:

1. Primary, safety-critical software This is software that is embedded as a con-
troller in a system. Malfunctioning of such software can cause a hardware mal-
function, which results in human injury or environmental damage. I focus on
this type of software.

2. Secondary safety-critical software This is software that can indirectly result in
injury. Examples of such systems are computer-aided engineering design
systems whose malfunctioning might result in a design fault in the object being

••••

SE8_C03.qxd 4/4/06 8:57 Page 55

56 Chapter 3 ■ Critical systems

designed. This fault may cause injury to people if the designed system mal-
functions. Another example of a secondary safety-critical system is a medical
database holding details of drugs administered to patients. Errors in this sys-
tem might result in an incorrect drug dosage being administered.

System reliability and system safety are related but separate dependability
attributes. Of course, a safety-critical system should be reliable in that it should con-
form to its specification and operate without failures. It may incorporate fault-tol-
erant features so that it can provide continuous service even if faults occur.
However, fault-tolerant systems are not necessarily safe. The software may still mal-
function and cause system behaviour, which results in an accident.

Apart from the fact that we can never be 100% certain that a software system
is fault-free and fault-tolerant, there are several other reasons why software systems
that are reliable are not necessarily safe:

1. The specification may be incomplete in that it does not describe the required behaviour
of the system in some critical situations. A high percentage of system malfunc-
tions (Nakajo and Kume, 1991; Lutz, 1993) are the result of specification rather
than design errors. In a study of errors in embedded systems, Lutz concludes:

...difficulties with requirements are the key root cause of the safety-related soft-
ware errors which have persisted until integration and system testing.

2. Hardware malfunctions may cause the system to behave in an unpredictable
way and may present the software with an unanticipated environment. When
components are close to failure they may behave erratically and generate sig-
nals that are outside the ranges that can be handled by the software.

3. The system operators may generate inputs that are not individually incorrect but
which, in some situations, can lead to a system malfunction. An anecdotal exam-
ple of this is when a mechanic instructed the utility management software on an
aircraft to raise the undercarriage. The software carried out the mechanic’s instruc-
tion perfectly. Unfortunately, the plane was on the ground at the time—clearly, the
system should have disallowed the command unless the plane was in the air.

A specialised vocabulary has evolved to discuss safety-critical systems, and it is
important to understand the specific terms used. In Figure 3.8, I show some defi-
nitions that I have adapted from terms initially defined by Leveson (Leveson, 1985).

The key to assuring safety is to ensure either that accidents do not occur or that
the consequences of an accident are minimal. This can be achieved in three com-
plementary ways:

1. Hazard avoidance The system is designed so that hazards are avoided. For exam-
ple, a cutting system that requires the operator to press two separate buttons at
the same time to operate the machine avoids the hazard of the operator’s hands
being in the blade pathway.

••••

SE8_C03.qxd 4/4/06 8:57 Page 56

3.4 ■ Safety 57

2. Hazard detection and removal The system is designed so that hazards are detected
and removed before they result in an accident. For example, a chemical plant
system may detect excessive pressure and open a relief valve to reduce the pres-
sure before an explosion occurs.

3. Damage limitation The system may include protection features that minimise
the damage that may result from an accident. For example, an aircraft engine
normally includes automatic fire extinguishers. If a fire occurs, it can often be
controlled before it poses a threat to the aircraft.

Accidents generally occur when several things go wrong at the same time. An anal-
ysis of serious accidents (Perrow, 1984) suggests that they were almost all due to a
combination of malfunctions rather than single failures. The unanticipated combina-
tion led to interactions that resulted in system failure. Perrow also suggests that it is
impossible to anticipate all possible combinations of system malfunction, and that acci-
dents are an inevitable part of using complex systems. Software tends to increase sys-
tem complexity, so using software control may increase the probability of system accidents.

However, software control and monitoring can also improve the safety of systems.
Software-controlled systems can monitor a wider range of conditions than
electro-mechanical systems. They can be adapted relatively easily. They involve the

••••

Term Description

Accident (or mishap) An unplanned event or sequence of events which results in
human death or injury, damage to property or to the environ-
ment. A computer-controlled machine injuring its operator is an
example of an accident.

Hazard A condition with the potential for causing or contributing to an
accident. A failure of the sensor that detects an obstacle in front
of a machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can
range from many people killed as a result of an accident to minor
injury or property damage.

Hazard severity An assessment of the worst possible damage that could result
from a particular hazard. Hazard severity can range from
catastrophic where many people are killed to minor where only
minor damage results.

Hazard probability The probability of the events occurring which create a hazard.
Probability values tend to be arbitrary but range from probable
(say 1/100 chance of a hazard occurring) to implausible (no
conceivable situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an
accident. The risk is assessed by considering the hazard prob-
ability, the hazard severity and the probability that a hazard will
result in an accident.

Figure 3.8 Safety
terminology

SE8_C03.qxd 4/4/06 8:57 Page 57

58 Chapter 3 ■ Critical systems

use of computer hardware, which has very high inherent reliability and which is phys-
ically small and lightweight. Software-controlled systems can provide sophisticated
safety interlocks. They can support control strategies that reduce the amount of time
people need to spend in hazardous environments. Therefore, although software con-
trol may introduce more ways in which a system can go wrong, it also allows better
monitoring and protection and hence may improve the safety of the system.

In all cases, it is important to maintain a sense of proportion about system safety.
It is impossible to make a system 100% safe, and society has to decide whether or
not the consequences of an occasional accident are worth the benefits that come
from the use of advanced technologies. It is also a social and political decision about
how to deploy limited national resources to reduce risk to the population as a whole.

3.5 Security

Security is a system attribute that reflects the ability of the system to protect itself
from external attacks that may be accidental or deliberate. Security has become increas-
ingly important as more and more systems are connected to the Internet. Internet
connections provide additional system functionality (e.g., customers may be able to
access their bank accounts directly), but Internet connection also means that the sys-
tem can be attacked by people with hostile intentions. The Internet connection also
means that details of specific system vulnerabilities may be easily disseminated so
that more people may be able to attack the system. Equally, however, the connec-
tion can speed up the distribution of system patches to repair these vulnerabilities.

Examples of attacks might be viruses, unauthorised use of system services and
unauthorised modification of the system or its data. Security is important for all
critical systems. Without a reasonable level of security, the availability, reliability
and safety of the system may be compromised if external attacks cause some dam-
age to the system.

The reason for this is that all methods for assuring availability, reliability and
safety rely on the fact that the operational system is the same as the system that
was originally installed. If this installed system has been compromised in some way
(for example, if the software has been modified to include a virus), then the argu-
ments for reliability and safety that were originally made can no longer hold. The
system software may be corrupted and may behave in an unpredictable way.

Conversely, errors in the development of a system can lead to security loopholes.
If a system does not respond to unexpected inputs or if array bounds are not checked,
then attackers can exploit these weaknesses to gain access to the system. Major secu-
rity incidents such as the original Internet worm (Spafford, 1989) and the Code Red
worm more than 10 years later (Berghel, 2001) took advantage of the fact that pro-
grams in C do not include array bound checking. They overwrote part of memory
with code that allowed unauthorised access to the system.

••••

SE8_C03.qxd 4/4/06 8:57 Page 58

3.5 ■ Security 59

Of course, in some critical systems, security is the most important dimension of
system dependability. Military systems, systems for electronic commerce and sys-
tems that involve the processing and interchange of confidential information must
be designed so that they achieve a high level of security. If an airline reservation
system (say) is unavailable, this causes inconvenience and some delays in issuing
tickets. However, if the system is insecure and can accept fake bookings then the
airline that owns the system can lose a great deal of money.

There are three types of damage that may be caused through external attack:

1. Denial of service The system may be forced into a state where its normal ser-
vices become unavailable. This, obviously, then affects the availability of the
system.

2. Corruption of programs or data The software components of the system may
be altered in an unauthorised way. This may affect the system’s behaviour and
hence its reliability and safety. If damage is severe, the availability of the sys-
tem may be affected.

3. Disclosure of confidential information The information managed by the system
may be confidential, and the external attack may expose this to unauthorised peo-
ple. Depending on the type of data, this could affect the safety of the system and
may allow later attacks that affect the system availability or reliability.

As with other aspects of dependability, there is a specialised terminology asso-
ciated with security. Some important terms, as discussed by Pfleeger (Pfleeger, 1997),
are defined in Figure 3.9.

There is a clear analogy here with some of the terminology of safety so that an
exposure is analogous to an accident and a vulnerability is analogous to a hazard.

••••

Term Description

Exposure Possible loss or harm in a computing system. This can be loss or
damage to data or can be a loss of time and effort if recovery is
necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to
cause loss or harm.

Attack An exploitation of a system’s vulnerability. Generally, this is from
outside the system and is a deliberate attempt to cause some
damage.

Threats Circumstances that have potential to cause loss or harm. You can
think of these as a system vulnerability that is subjected to an attack.

Control A protective measure that reduces a system’s vulnerability.
Encryption would be an example of a control that reduced a
vulnerability of a weak access control system.

Figure 3.9 Security
terminology

SE8_C03.qxd 4/4/06 8:57 Page 59

60 Chapter 3 ■ Critical systems

Therefore, there are comparable approaches that may be used to assure the secu-
rity of a system:

1. Vulnerability avoidance The system is designed so that vulnerabilities do not
occur. For example, if a system is not connected to an external public network
then there is no possibility of an attack from members of the public.

2. Attack detection and neutralisation The system is designed to detect vulnera-
bilities and remove them before they result in an exposure. An example of vul-
nerability detection and removal is the use of a virus checker that analyses
incoming files for viruses and modifies these files to remove the virus.

••••

■ In a critical system, failure can lead to significant economic losses, physical damage or
threats to human life. Three important classes of critical systems are safety-critical systems,
mission-critical systems and business-critical systems.

■ The dependability of a computer system is a property of the system that reflects the user’s
degree of trust in the system. The most important dimensions of dependability are
availability, reliability, safety and security.

■ The availability of a system is the probability that it will be able to deliver services to its
users when requested to do so. Reliability is the probability that system services will be
delivered as specified.

■ Reliability and availability are usually considered to be the most important dimensions of
dependability. If a system is unreliable, it is difficult to ensure system safety or security, as
they may be compromised by system failures.

■ Reliability is related to the probability of an error occurring in operational use. A program
may contain known faults but may still be seen as reliable by its users. They may never use
features of the system that are affected by these faults.

■ The safety of a system is a system attribute that reflects the system’s ability to operate,
normally or abnormally, without threatening people or the environment.

■ Security is important for all critical systems. Without a reasonable level of security, the
availability, reliability and safety of the system may be compromised if external attacks
cause some damage to the system.

■ To improve dependability, you need to take a socio-technical approach to system design,
taking into account the humans in the system as well as the hardware and software.

K E Y P O I N TS

SE8_C03.qxd 4/4/06 8:57 Page 60

Chapter 3 ■ Exercises 61

3. Exposure limitation The consequences of a successful attack are minimised.
Examples of exposure limitation are regular system backups and a configura-
tion management policy that allows damaged software to be recreated.

Most vulnerabilities in computer-based systems result from human rather than
technical failings. People choose easy-to-guess passwords or write them down in
places where they can be found. System administrators make mistakes when setting
up access control or configuration files. To improve security, therefore, we need to
think about how systems are actually used and not just about their technical char-
acteristics. This is discussed in more detail in Chapter 30, which covers security
engineering, in the new section on Emerging Technologies.

F U R T H E R R E A D I N G

‘The evolution of information assurance’. An excellent article discussing the need to protect critical
information in an organisation from accidents and attacks. (R. Cummings, IEEE Computer, 35 (12),
December 2002.)

Practical Design of Safety-critical Computer Systems. A general overview of safety-critical systems
design that discusses safety issues and which takes a systems and not merely a software
perspective. (W. R. Dunn, Reliability Press, 2002.)

Secrets and Lies: Digital Security in a Networked World. An excellent, very readable book on
computer security which approaches it from a socio-technical perspective. (B. Schneier, 2000,
John Wiley & Sons.)

‘Survivability: Protecting your critical systems’. An accessible introduction to the topic of
survivability and why it is important. (R. Ellison et al., IEEE Internet Computing, Nov./Dec. 1999.)

Computer-related Risks. A collection drawn from the Internet Risks Forum of incidents that have
occurred in automated systems. It shows how much can actually go wrong in safety-related
systems. (P. G. Neumann, 1995, Addison-Wesley.)

E X E R C I S E S

3.1 What are the three principal types of critical system? Explain the differences between these.

3.2 Suggest six reasons why dependability is important in critical systems.

3.3 What are the most important dimensions of system dependability?

3.4 Why is the cost of assuring dependability exponential?

••••

SE8_C03.qxd 4/4/06 8:57 Page 61

62 Chapter 3 ■ Critical systems

3.5 Giving reasons for your answer, suggest which dependability attributes are likely to be most
critical for the following systems:

■ An Internet server provided by an ISP with thousands of customers

■ A computer-controlled scalpel used in keyhole surgery

■ A directional control system used in a satellite launch vehicle

■ An Internet-based personal finance management system.

3.6 Identify six consumer products that contain, or that may contain in the future, safety-critical
software systems.

3.7 Reliability and safety are related but distinct dependability attributes. Describe the most
important distinction between these attributes and explain why it is possible for a reliable
system to be unsafe and vice versa.

3.8 In a medical system that is designed to deliver radiation to treat tumours, suggest one
hazard that may arise and propose one software feature that may be used to ensure that the
identified hazard does not result in an accident.

3.9 Explain why there is a close relationship between system availability and system security.

3.10 In computer security terms, explain the differences between an attack and a threat.

3.11 Is it ethical for an engineer to agree to deliver a software system with known faults to a
customer? Does it make any difference if the customer is told of the existence of these faults
in advance? Would it be reasonable to make claims about the reliability of the software in
such circumstances?

3.12 As an expert in computer security, you have been approached by an organisation that
campaigns for the rights of torture victims and have been asked to help the organisation gain
unauthorised access to the computer systems of an American company. This will help them
confirm or deny that this company is selling equipment that is used directly in the torture of
political prisoners. Discuss the ethical dilemmas that this request raises and how you would
react to this request.

••

SE8_C03.qxd 4/4/06 8:57 Page 62

Software processes
4

Objectives
The objective of this chapter is to introduce you to the idea of a
software process—a coherent set of activities for software production.
When you have read this chapter, you will:

■ understand the concept of software processes and software process
models;

■ understand three generic software process models and when they
might be used;

■ understand, in outline, the activities involved in software
requirements engineering, software development, testing and
evolution;

■ understand how the Rational Unified Process integrates good
software process practice to create a modern, generic process
model;

■ have been introduced to CASE technology that is used to support
software process activities.

Contents
4.1 Software process models

4.2 Process iteration

4.3 Process activities

4.4 The Rational Unified Process

4.5 Computer-Aided Software Engineering

SE8_C04.qxd 4/4/06 8:58 Page 63

64 Chapter 4 ■ Software processes

A software process is a set of activities that leads to the production of a software
product. These activities may involve the development of software from scratch in
a standard programming language like Java or C. Increasingly, however, new soft-
ware is developed by extending and modifying existing systems and by configur-
ing and integrating off-the-shelf software or system components.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgements. Because of the need for judge-
ment and creativity, attempts to automate software processes have met with limited
success. Computer-aided software engineering (CASE) tools (discussed in Section
4.5) can support some process activities. However, there is no possibility, at least
in the next few years, of more extensive automation where software takes over cre-
ative design from the engineers involved in the software process.

One reason the effectiveness of CASE tools is limited is because of the immense
diversity of software processes. There is no ideal process, and many organisations
have developed their own approach to software development. Processes have
evolved to exploit the capabilities of the people in an organisation and the specific
characteristics of the systems that are being developed. For some systems, such as
critical systems, a very structured development process is required. For business
systems, with rapidly changing requirements, a flexible, agile process is likely to
be more effective.

Although there are many software processes, some fundamental activities are com-
mon to all software processes:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2. Software design and implementation The software to meet the specification must
be produced.

3. Software validation The software must be validated to ensure that it does what
the customer wants.

4. Software evolution The software must evolve to meet changing customer
needs.

I discuss these activities briefly in this chapter and discuss them in much more
detail in later parts of the book.

Although there is no ‘ideal’ software process, there is scope for improving the
software process in many organisations. Processes may include outdated techniques
or may not take advantage of the best practice in industrial software engineering.
Indeed, many organisations still do not take advantage of software engineering meth-
ods in their software development.

Software processes can be improved by process standardisation where the diver-
sity in software processes across an organisation is reduced. This leads to improved
communication and a reduction in training time, and makes automated process sup-
port more economical. Standardisation is also an important first step in introducing

••••

SE8_C04.qxd 4/4/06 8:58 Page 64

4.1 ■ Software process models 65

new software engineering methods and techniques and good software engineering
practice. I discuss software process improvement in more detail in Chapter 28.

4.1 Software process models

As I explained in Chapter 1, a software process model is an abstract representation
of a software process. Each process model represents a process from a particular
perspective, and thus provides only partial information about that process. In this
section, I introduce a number of very general process models (sometimes called pro-
cess paradigms) and present these from an architectural perspective. That is, we
see the framework of the process but not the details of specific activities.

These generic models are not definitive descriptions of software processes. Rather,
they are abstractions of the process that can be used to explain different approaches
to software development. You can think of them as process frameworks that may be
extended and adapted to create more specific software engineering processes.

The process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifi-
cation, development, validation and evolution and represents them as separate
process phases such as requirements specification, software design, imple-
mentation, testing and so on.

2. Evolutionary development This approach interleaves the activities of specifi-
cation, development and validation. An initial system is rapidly developed from
abstract specifications. This is then refined with customer input to produce a
system that satisfies the customer’s needs.

3. Component-based software engineering This approach is based on the existence
of a significant number of reusable components. The system development process
focuses on integrating these components into a system rather than developing
them from scratch.

These three generic process models are widely used in current software engi-
neering practice. They are not mutually exclusive and are often used together, espe-
cially for large systems development. Indeed, the Rational Unified Process that I
cover in Section 4.4 combines elements of all of these models. Sub-systems within
a larger system may be developed using different approaches. Therefore, although
it is convenient to discuss these models separately, you should understand that, in
practice, they are often combined.

All sorts of variants of these generic processes have been proposed and may be
used in some organisations. The most important variant is probably formal system
development, where a formal mathematical model of a system is created. This model

••••

SE8_C04.qxd 4/4/06 8:58 Page 65

66 Chapter 4 ■ Software processes

is then transformed, using mathematical transformations that preserve its consistency,
into executable code.

The best-known example of a formal development process is the Cleanroom pro-
cess, which was originally developed by IBM (Mills, et al., 1987; Selby, et al., 1987;
Linger, 1994; Prowell, et al., 1999). In the Cleanroom process each software incre-
ment is formally specified and this specification is transformed into an implemen-
tation. Software correctness is demonstrated using a formal approach. There is no
testing for defects in the process, and the system testing is focused on assessing the
system’s reliability.

Both the Cleanroom approach and another approach to formal development based
on the B method (Wordsworth, 1996) are particularly suited to the development of
systems that have stringent safety, reliability or security requirements. The formal
approach simplifies the production of a safety or security case that demonstrates to
customers or certification bodies that the system does actually meet the safety or
security requirements.

Outside of these specialised domains, processes based on formal transformations
are not widely used. They require specialised expertise and, in reality, for the major-
ity of systems this process does not offer significant cost or quality advantages over
other approaches to system development.

4.1.1 The waterfall model

The first published model of the software development process was derived
from more general system engineering processes (Royce, 1970). This is illustrated
in Figure 4.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The principal stages of the model map
onto fundamental development activities:

••••

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Figure 4.1 The
software life cycle

SE8_C04.qxd 4/4/06 8:58 Page 66

4.1 ■ Software process models 67

1. Requirements analysis and definition The system’s services, constraints and goals
are established by consultation with system users. They are then defined in detail
and serve as a system specification.

2. System and software design The systems design process partitions the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the fundamental
software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is
realised as a set of programs or program units. Unit testing involves verifying
that each unit meets its specification.

4. Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software require-
ments have been met. After testing, the software system is delivered to the
customer.

5. Operation and maintenance Normally (although not necessarily) this is the longest
life-cycle phase. The system is installed and put into practical use. Mainten-
ance involves correcting errors which were not discovered in earlier stages of
the life cycle, improving the implementation of system units and enhancing the
system’s services as new requirements are discovered.

In principle, the result of each phase is one or more documents that are approved
(‘signed off’). The following phase should not start until the previous phase has
finished. In practice, these stages overlap and feed information to each other.
During design, problems with requirements are identified; during coding design prob-
lems are found and so on. The software process is not a simple linear model but
involves a sequence of iterations of the development activities.

Because of the costs of producing and approving documents, iterations are
costly and involve significant rework. Therefore, after a small number of iterations,
it is normal to freeze parts of the development, such as the specification, and to
continue with the later development stages. Problems are left for later resolution,
ignored or programmed around. This premature freezing of requirements may mean
that the system won’t do what the user wants. It may also lead to badly structured
systems as design problems are circumvented by implementation tricks.

During the final life-cycle phase (operation and maintenance), the software is
put into use. Errors and omissions in the original software requirements are dis-
covered. Program and design errors emerge and the need for new functionality is
identified. The system must therefore evolve to remain useful. Making these
changes (software maintenance) may involve repeating previous process stages.

The advantages of the waterfall model are that documentation is produced at each
phase and that it fits with other engineering process models. Its major problem is
its inflexible partitioning of the project into distinct stages. Commitments must be
made at an early stage in the process, which makes it difficult to respond to chang-
ing customer requirements.

••••

SE8_C04.qxd 4/4/06 8:58 Page 67

68 Chapter 4 ■ Software processes

Therefore, the waterfall model should only be used when the requirements are
well understood and unlikely to change radically during system development.
However, the waterfall model reflects the type of process model used in other engi-
neering projects. Consequently, software processes based on this approach are still
used for software development, particularly when the software project is part of a
larger systems engineering project.

4.1.2 Evolutionary development

Evolutionary development is based on the idea of developing an initial implemen-
tation, exposing this to user comment and refining it through many versions until
an adequate system has been developed (Figure 4.2). Specification, development
and validation activities are interleaved rather than separate, with rapid feedback
across activities.

There are two fundamental types of evolutionary development:

1. Exploratory development where the objective of the process is to work with
the customer to explore their requirements and deliver a final system. The devel-
opment starts with the parts of the system that are understood. The system evolves
by adding new features proposed by the customer.

2. Throwaway prototyping where the objective of the evolutionary development
process is to understand the customer’s requirements and hence develop a bet-
ter requirements definition for the system. The prototype concentrates on
experimenting with the customer requirements that are poorly understood.

An evolutionary approach to software development is often more effective than
the waterfall approach in producing systems that meet the immediate needs of cus-
tomers. The advantage of a software process that is based on an evolutionary approach

••••

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Figure 4.2
Evolutionary
development

SE8_C04.qxd 4/4/06 8:58 Page 68

4.1 ■ Software process models 69

is that the specification can be developed incrementally. As users develop a better
understanding of their problem, this can be reflected in the software system.
However, from an engineering and management perspective, the evolutionary
approach has two problems:

1. The process is not visible Managers need regular deliverables to measure
progress. If systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.

2. Systems are often poorly structured Continual change tends to corrupt the soft-
ware structure. Incorporating software changes becomes increasingly difficult
and costly.

For small and medium-sized systems (up to 500,000 lines of code), I think that
the evolutionary approach is the best approach to development. The problems of
evolutionary development become particularly acute for large, complex, long-life-
time systems, where different teams develop different parts of the system. It is dif-
ficult to establish a stable system architecture using this approach, which makes it
hard to integrate contributions from the teams.

For large systems, I recommend a mixed process that incorporates the best fea-
tures of the waterfall and the evolutionary development models. This may involve
developing a throwaway prototype using an evolutionary approach to resolve
uncertainties in the system specification. You can then reimplement the system using
a more structured approach. Parts of the system that are well understood can be
specified and developed using a waterfall-based process. Other parts of the system,
such as the user interface, which are difficult to specify in advance, should always
be developed using an exploratory programming approach.

Evolutionary development processes and process support are covered in more
detail in Chapter 17, along with system prototyping and agile software development.
Evolutionary development is also incorporated in the Rational Unified Process that
I discuss later in this chapter.

4.1.3 Component-based software engineering

In the majority of software projects, there is some software reuse. This usually hap-
pens informally when people working on the project know of designs or code which
is similar to that required. They look for these, modify them as needed and incor-
porate them into their system. In the evolutionary approach, described in Section
4.1.2, reuse is often essential for rapid system development.

This informal reuse takes place irrespective of the development process that is
used. However, in the last few years, an approach to software development called
component-based software engineering (CBSE), which relies on reuse, has
emerged and is becoming increasingly used. I briefly introduce this approach here
but cover it in more detail in Chapter 19.

••••

SE8_C04.qxd 4/4/06 8:58 Page 69

70 Chapter 4 ■ Software processes

This reuse-oriented approach relies on a large base of reusable software com-
ponents and some integrating framework for these components. Sometimes, these
components are systems in their own right (COTS or commercial off-the-shelf sys-
tems) that may provide specific functionality such as text formatting or numeric
calculation. The generic process model for CBSE is shown in Figure 4.3.

While the initial requirements specification stage and the validation stage are com-
parable with other processes, the intermediate stages in a reuse-oriented process are
different. These stages are:

1. Component analysis Given the requirements specification, a search is made for
components to implement that specification. Usually, there is no exact match,
and the components that may be used only provide some of the functionality
required.

2. Requirements modification During this stage, the requirements are analysed using
information about the components that have been discovered. They are then
modified to reflect the available components. Where modifications are impos-
sible, the component analysis activity may be re-entered to search for alterna-
tive solutions.

3. System design with reuse During this phase, the framework of the system is
designed or an existing framework is reused. The designers take into account
the components that are reused and organise the framework to cater to this.
Some new software may have to be designed if reusable components are not
available.

4. Development and integration Software that cannot be externally procured is devel-
oped, and the components and COTS systems are integrated to create the new
system. System integration, in this model, may be part of the development pro-
cess rather than a separate activity.

Component-based software engineering has the obvious advantage of reducing
the amount of software to be developed and so reducing cost and risks. It usually
also leads to faster delivery of the software. However, requirements compromises
are inevitable and this may lead to a system that does not meet the real needs of
users. Furthermore, some control over the system evolution is lost as new versions
of the reusable components are not under the control of the organisation using them.

••••

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

Figure 4.3
Component-based
software engineering

SE8_C04.qxd 4/4/06 8:58 Page 70

4.2 ■ Process iteration 71

CBSE has much in common with an emerging approach to system development
that is based on integrating web services from a range of suppliers. I cover this service-
centric development approach in Chapter 12.

4.2 Process iteration

Change is inevitable in all large software projects. The system requirements change as
the business procuring the system responds to external pressures. Management prior-
ities change. As new technologies become available, designs and implementation change.
This means that the software process is not a one-off process; rather, the process activ-
ities are regularly repeated as the system is reworked in response to change requests.

Iterative development is so fundamental to software that I devote a complete chap-
ter to it later in the book (Chapter 17). In this section, I introduce the topic by describ-
ing two process models that have been explicitly designed to support process iteration:

1. Incremental delivery The software specification, design and implementation are
broken down into a series of increments that are each developed in turn.

2. Spiral development The development of the system spirals outwards from an
initial outline through to the final developed system.

The essence of iterative processes is that the specification is developed in conjunction
with the software. However, this conflicts with the procurement model of many organ-
isations where the complete system specification is part of the system development
contract. In the incremental approach, there is no complete system specification until
the final increment is specified. This requires a new form of contract, which large
customers such as government agencies may find difficult to accommodate.

4.2.1 Incremental delivery

The waterfall model of development requires customers for a system to commit to
a set of requirements before design begins and the designer to commit to particu-
lar design strategies before implementation. Changes to the requirements require
rework of the requirements, design and implementation. However, the separation
of design and implementation should lead to well-documented systems that are
amenable to change. By contrast, an evolutionary approach to development allows
requirements and design decisions to be delayed but also leads to software that may
be poorly structured and difficult to understand and maintain.

Incremental delivery (Figure 4.4) is an in-between approach that combines the advan-
tages of these models. In an incremental development process, customers identify, in

••••

SE8_C04.qxd 4/4/06 8:58 Page 71

72 Chapter 4 ■ Software processes

outline, the services to be provided by the system. They identify which of the ser-
vices are most important and which are least important to them. A number of deliv-
ery increments are then defined, with each increment providing a sub-set of the system
functionality. The allocation of services to increments depends on the service pri-
ority with the highest priority services delivered first.

Once the system increments have been identified, the requirements for the ser-
vices to be delivered in the first increment are defined in detail, and that increment
is developed. During development, further requirements analysis for later increments
can take place, but requirements changes for the current increment are not accepted.

Once an increment is completed and delivered, customers can put it into service.
This means that they take early delivery of part of the system functionality. They
can experiment with the system that helps them clarify their requirements for later
increments and for later versions of the current increment. As new increments are
completed, they are integrated with existing increments so that the system functionality
improves with each delivered increment. The common services may be implemented
early in the process or may be implemented incrementally as functionality is
required by an increment.

This incremental development process has a number of advantages:

1. Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments so they can use the software immediately.

2. Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments.

3. There is a lower risk of overall project failure. Although problems may be encoun-
tered in some increments, it is likely that some will be successfully delivered
to the customer.

4. As the highest priority services are delivered first, and later increments are inte-
grated with them, it is inevitable that the most important system services
receive the most testing. This means that customers are less likely to encounter
software failures in the most important parts of the system.

••••

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Validate
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

Figure 4.4
Incremental delivery

SE8_C04.qxd 4/4/06 8:58 Page 72

4.2 ■ Process iteration 73

However, there are problems with incremental delivery. Increments should be
relatively small (no more than 20,000 lines of code), and each increment should
deliver some system functionality. It can be difficult to map the customer’s require-
ments onto increments of the right size. Furthermore, most systems require a set of
basic facilities that are used by different parts of the system. As requirements are
not defined in detail until an increment is to be implemented, it can be hard to iden-
tify common facilities that are needed by all increments.

A variant of this incremental approach called extreme programming has been
developed (Beck, 2000). This is based around the development and delivery of very
small increments of functionality, customer involvement in the process, constant code
improvement and pair programming. I discuss extreme programming and other so-
called agile methods in Chapter 17.

4.2.2 Spiral development

The spiral model of the software process (Figure 4.5) was originally proposed by
Boehm (Boehm, 1988). Rather than represent the software process as a sequence
of activities with some backtracking from one activity to another, the process is
represented as a spiral. Each loop in the spiral represents a phase of the software
process. Thus, the innermost loop might be concerned with system feasibility, the
next loop with requirements definition, the next loop with system designand so on.

Each loop in the spiral is split into four sectors:

1. Objective setting Specific objectives for that phase of the project are defined.
Constraints on the process and the product are identified and a detailed man-
agement plan is drawn up. Project risks are identified. Alternative strategies,
depending on these risks, may be planned.

2. Risk assessment and reduction For each of the identified project risks, a
detailed analysis is carried out. Steps are taken to reduce the risk. For exam-
ple, if there is a risk that the requirements are inappropriate, a prototype sys-
tem may be developed.

3. Development and validation After risk evaluation, a development model for the
system is chosen. For example, if user interface risks are dominant, an appro-
priate development model might be evolutionary prototyping. If safety risks are
the main consideration, development based on formal transformations may be
the most appropriate and so on. The waterfall model may be the most appro-
priate development model if the main identified risk is sub-system integration.

4. Planning The project is reviewed and a decision made whether to continue with
a further loop of the spiral. If it is decided to continue, plans are drawn up for
the next phase of the project.

The main difference between the spiral model and other software process models
is the explicit recognition of risk in the spiral model. Informally, risk simply means

••••

SE8_C04.qxd 4/4/06 8:58 Page 73

74 Chapter 4 ■ Software processes

something that can go wrong. For example, if the intention is to use a new programming
language, a risk is that the available compilers are unreliable or do not produce suf-
ficiently efficient object code. Risks result in project problems such as schedule and
cost overrun so risk minimisation is a very important project management activity.
Risk management, an essential part of project management, is covered in Chapter 5.

A cycle of the spiral begins by elaborating objectives such as performance and
functionality. Alternative ways of achieving these objectives and the constraints
imposed on each of them are then enumerated. Each alternative is assessed against
each objective and sources of project risk are identified. The next step is to resolve
these risks by information-gathering activities such as more detailed analysis, pro-
totyping and simulation. Once risks have been assessed, some development is car-
ried out, followed by a planning activity for the next phase of the process.

4.3 Process activities

The four basic process activities of specification, development, validation and evo-
lution are organised differently in different development processes. In the waterfall

••••

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code

Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives,
identify, resolve risks

Determine objectives,
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Figure 4.5 Boehm’s
spiral model of the
software process
(©IEEE, 1988)

SE8_C04.qxd 4/4/06 8:58 Page 74

4.3 ■ Process activities 75

model, they are organised in sequence, whereas in evolutionary development they
are interleaved. How these activities are carried out depends on the type of soft-
ware, people and organisational structures involved. There is no right or wrong way
to organise these activities and my goal in this section is simply to provide you
with an introduction to how they can be organised.

4.3.1 Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a
particularly critical stage of the software process as errors at this stage inevitably
lead to later problems in the system design and implementation.

The requirements engineering process is shown in Figure 4.6. This process leads
to the production of a requirements document that is the specification for the sys-
tem. Requirements are usually presented at two levels of detail in this document.
End-users and customers need a high-level statement of the requirements; system
developers need a more detailed system specification.

There are four main phases in the requirements engineering process:

1. Feasibility study An estimate is made of whether the identified user needs may
be satisfied using current software and hardware technologies. The study con-
siders whether the proposed system will be cost-effective from a business point
of view and whether it can be developed within existing budgetary constraints.
A feasibility study should be relatively cheap and quick. The result should inform
the decision of whether to go ahead with a more detailed analysis.

2. Requirements elicitation and analysis This is the process of deriving the
system requirements through observation of existing systems, discussions with

••••

Feasibility
study

Requirements
elicitation and

analysis

Requirements
validation

Feasibility
report

Requirements
document

User and system
requirements

System
models

Requirements
specification

Figure 4.6 The
requirements
engineering process

SE8_C04.qxd 4/4/06 8:58 Page 75

76 Chapter 4 ■ Software processes

potential users and procurers, task analysis and so on. This may involve the
development of one or more system models and prototypes. These help the ana-
lyst understand the system to be specified.

3. Requirements specification The activity of translating the information gathered
during the analysis activity into a document that defines a set of requirements.
Two types of requirements may be included in this document. User require-
ments are abstract statements of the system requirements for the customer and
end-user of the system; system requirements are a more detailed description of
the functionality to be provided.

4. Requirements validation This activity checks the requirements for realism, con-
sistency and completeness. During this process, errors in the requirements doc-
ument are inevitably discovered. It must then be modified to correct these
problems.

Of course, the activities in the requirements process are not simply carried out
in a strict sequence. Requirements analysis continues during definition and speci-
fication, and new requirements come to light throughout the process. Therefore, the
activities of analysis, definition and specification are interleaved. In agile methods
such as extreme programming, requirements are developed incrementally accord-
ing to user priorities, and the elicitation of requirements comes from users who are
part of the development team.

4.3.2 Software design and implementation

The implementation stage of software development is the process of converting a
system specification into an executable system. It always involves processes of soft-
ware design and programming but, if an evolutionary approach to development is
used, may also involve refinement of the software specification.

A software design is a description of the structure of the software to be imple-
mented, the data which is part of the system, the interfaces between system com-
ponents and, sometimes, the algorithms used. Designers do not arrive at a finished
design immediately but develop the design iteratively through a number of versions.
The design process involves adding formality and detail as the design is developed
with constant backtracking to correct earlier designs.

The design process may involve developing several models of the system at dif-
ferent levels of abstraction. As a design is decomposed, errors and omissions in ear-
lier stages are discovered. These feed back to allow earlier design models to be
improved. Figure 4.7 is a model of this process showing the design descriptions
that may be produced at various stages of design. This diagram suggests that the
stages of the design process are sequential. In fact, design process activities are inter-
leaved. Feedback from one stage to another and consequent design rework is
inevitable in all design processes.

••••

SE8_C04.qxd 4/4/06 8:58 Page 76

4.3 ■ Process activities 77

A specification for the next stage is the output of each design activity. This spec-
ification may be an abstract, formal specification that is produced to clarify the require-
ments, or it may be a specification of how part of the system is to be realised. As
the design process continues, these specifications become more detailed. The final
results of the process are precise specifications of the algorithms and data struc-
tures to be implemented.

The specific design process activities are:

1. Architectural design The sub-systems making up the system and their relationships
are identified and documented. This important topic is covered in Chapters 11,
12 and 13.

2. Abstract specification For each sub-system, an abstract specification of its ser-
vices and the constraints under which it must operate is produced.

3. Interface design For each sub-system, its interface with other sub-systems is
designed and documented. This interface specification must be unambiguous
as it allows the sub-system to be used without knowledge of the sub-system
operation. Formal specification methods, as discussed in Chapter 10, may be
used at this stage.

4. Component design Services are allocated to components and the interfaces of
these components are designed.

5. Data structure design The data structures used in the system implementation
are designed in detail and specified.

6. Algorithm design The algorithms used to provide services are designed in detail
and specified.

••••

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products

Figure 4.7 A general
model of the design
process

SE8_C04.qxd 4/4/06 8:58 Page 77

78 Chapter 4 ■ Software processes

This is a general model of the design process and real, practical processes may
adapt it in different ways. Possible adaptations are:

1. The last two stages of design—data structure and algorithm design—may be
delayed until the implementation process.

2. If an exploratory approach to design is used, the system interfaces may be designed
after the data structures have been specified.

3. The abstract specification stage may be skipped, although it is usually an essen-
tial part of critical systems design.

Increasingly, where agile methods of development are used (see Chapter 17), the
outputs of the design process will not be separate specification documents but will
be represented in the code of the program. After the system architecture has been
designed, later stages of the design are incremental. Each increment is represented
as program code rather than as a design model.

A contrasting approach is taken by structured methods for design that rely on pro-
ducing graphical models of the system (see Chapter 8) and, in many cases, auto-
matically generating code from these models. Structured methods were invented in
the 1970s to support function-oriented design (Constantine and Yourdon, 1979; Gane
and Sarson, 1979). Various competing methods to support object-oriented design were
proposed (Robinson, 1992; Booch, 1994) and these were unified in the 1990s to cre-
ate the Unified Modeling Language (UML) and the associated unified design pro-
cess (Rumbaugh, et al., 1991; Booch, et al., 1999; Rumbaugh, et al., 1999a;
Rumbaugh, et al., 1999b). At the time of this writing, a major revision to UML (UML
2.0) is underway.

A structured method includes a design process model, notations to represent the
design, report formats, rules and design guidelines. Structured methods may sup-
port some or all of the following models of a system:

1. An object model that shows the object classes used in the system and their
dependencies.

2. A sequence model that shows how objects in the system interact when the sys-
tem is executing.

3. A state transition model that shows system states and the triggers for the tran-
sitions from one state to another.

4. A structural model where the system components and their aggregations are
documented.

5. A data flow model where the system is modelled using the data transforma-
tions that take place as it is processed. This is not normally used in object-oriented
methods but is still frequently used in real-time and business system design.

••••

SE8_C04.qxd 4/4/06 8:58 Page 78

4.3 ■ Process activities 79

In practice, structured ‘methods’ are really standard notations and embodiments
of good practice. Following these methods and applying the guidelines can result
in a reasonable design. Designer creativity is still required to decide on the system
decomposition and to ensure that the design adequately captures the system speci-
fication. Empirical studies of designers (Bansler and Bødker, 1993) have shown that
they rarely follow methods slavishly. They pick and choose from the guidelines accord-
ing to local circumstances.

The development of a program to implement the system follows naturally from
the system design processes. Although some classes of programs, such as safety-
critical systems, are usually designed in detail before any implementation begins,
it is more common for the later stages of design and program development to be
interleaved. CASE tools may be used to generate a skeleton program from a design.
This includes code to define and implement interfaces, and in many cases the devel-
oper need only add details of the operation of each program component.

Programming is a personal activity and there is no general process that is usu-
ally followed. Some programmers start with components that they understand,
develop them, and then move on to less well-understood components. Others take
the opposite approach, leaving familiar components till last because they know
how to develop them. Some developers like to define data early in the process
then use this to drive the program development; others leave data unspecified
for as long as possible.

Normally, programmers carry out some testing of the code they have developed.
This often reveals program defects that must be removed from the program. This
is called debugging. Defect testing and debugging are different processes. Testing
establishes the existence of defects. Debugging is concerned with locating and cor-
recting these defects.

Figure 4.8 illustrates the stages of debugging. Defects in the code must be located
and the program modified to meet its requirements. Testing must then be repeated
to ensure that the change has been made correctly. Thus the debugging process is
part of both software development and software testing.

When debugging, you generate hypotheses about the observable behaviour of
the program then test these hypotheses in the hope of finding the fault which caused
the output anomaly. Testing the hypotheses may involve tracing the program code
manually. You may write new test cases to localise the problem. Interactive debug-
ging tools that show the intermediate values of program variables and a trace of the
statements executed may be used to help the debugging process.

••••

Locate
error

Design
error repair

Repair
error

Retest
program

Figure 4.8 The
debugging process

SE8_C04.qxd 4/4/06 8:58 Page 79

80 Chapter 4 ■ Software processes

4.3.3 Software validation

Software validation or, more generally, verification and validation (V & V) is intended
to show that a system conforms to its specification and that the system meets the
expectations of the customer buying the system. It involves checking processes, such
as inspections and reviews (see Chapter 22), at each stage of the software process
from user requirements definition to program development. The majority of vali-
dation costs, however, are incurred after implementation when the operational sys-
tem is tested (Chapter 23).

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 4.9 shows a three-stage testing process where system components are
tested, the integrated system is tested and, finally, the system is tested with the cus-
tomer’s data. Ideally, component defects are discovered early in the process and
interface problems when the system is integrated. However, as defects are discov-
ered the program must be debugged and this may require other stages in the test-
ing process to be repeated. Errors in program components, say, may come to light
during system testing. The process is therefore an iterative one with information
being fed back from later stages to earlier parts of the process.

The stages in the testing process are:

1. Component (or unit) testing Individual components are tested to ensure that they
operate correctly. Each component is tested independently, without other sys-
tem components. Components may be simple entities such as functions or object
classes, or may be coherent groupings of these entities.

2. System testing The components are integrated to make up the system. This pro-
cess is concerned with finding errors that result from unanticipated interactions
between components and component interface problems. It is also concerned with
validating that the system meets its functional and non-functional requirements
and testing the emergent system properties. For large systems, this may be a multi-
stage process where components are integrated to form sub-systems that are indi-
vidually tested before they are themselves integrated to form the final system.

3. Acceptance testing This is the final stage in the testing process before the sys-
tem is accepted for operational use. The system is tested with data supplied by
the system customer rather than with simulated test data. Acceptance testing may
reveal errors and omissions in the system requirements definition because the
real data exercise the system in different ways from the test data. Acceptance
testing may also reveal requirements problems where the system’s facilities do
not really meet the user’s needs or the system performance is unacceptable.

••••

Figure 4.9 The
testing process

SE8_C04.qxd 4/4/06 8:58 Page 80

4.3 ■ Process activities 81

Normally, component development and testing are interleaved. Programmers make
up their own test data and incrementally test the code as it is developed. This is an
economically sensible approach, as the programmer knows the component best and
is therefore the best person to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In extreme programming, tests are developed along with the requirements before
development starts. This helps the testers and developers to understand the require-
ments and ensures that there are no delays as test cases are created.

Later stages of testing involve integrating work from a number of programmers
and must be planned in advance. An independent team of testers should work from
preformulated test plans that are developed from the system specification and
design. Figure 4.10 illustrates how test plans are the link between testing and devel-
opment activities.

Acceptance testing is sometimes called alpha testing. Custom systems are devel-
oped for a single client. The alpha testing process continues until the system devel-
oper and the client agree that the delivered system is an acceptable implementation
of the system requirements.

When a system is to be marketed as a software product, a testing process called
beta testing is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may
not have been anticipated by the system builders. After this feedback, the system
is modified and released either for further beta testing or for general sale.

4.3.4 Software evolution

The flexibility of software systems is one of the main reasons why more and more
software is being incorporated in large, complex systems. Once a decision has been
made to procure hardware, it is very expensive to make changes to the hardware

••••

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Figure 4.10 Testing
phases in the
software process

SE8_C04.qxd 4/4/06 8:58 Page 81

82 Chapter 4 ■ Software processes

design. However, changes can be made to software at any time during or after the
system development. Even extensive changes are still much cheaper than corresponding
changes to system hardware.

Historically, there has always been a split between the process of software devel-
opment and the process of software evolution (software maintenance). People think
of software development as a creative activity where a software system was devel-
oped from an initial concept through to a working system. However, they sometimes
think of software maintenance as dull and uninteresting. Although the costs of ‘main-
tenance’ are often several times the initial development costs, maintenance processes
are sometimes considered to be less challenging than original software development.

This distinction between development and maintenance is becoming increasingly
irrelevant. Few software systems are now completely new systems, and it makes
much more sense to see development and maintenance as a continuum. Rather than
two separate processes, it is more realistic to think of software engineering as an
evolutionary process (Figure 4.11) where software is continually changed over its
lifetime in response to changing requirements and customer needs.

4.4 The Rational Unified Process

The Rational Unified Process (RUP) is an example of a modern process model that
has been derived from work on the UML and the associated Unified Software
Development Process (Rumbaugh, et al., 1999b). I have included a description here
as it is a good example of a hybrid process model. It brings together elements from
all of the generic process models (Section 4.1), supports iteration (Section 4.2) and
illustrates good practice in specification and design (Section 4.3).

The RUP recognises that conventional process models present a single view of
the process. In contrast, the RUP is normally described from three perspectives:

1. A dynamic perspective that shows the phases of the model over time.

2. A static perspective that shows the process activities that are enacted.

3. A practice perspective that suggests good practices to be used during the process.

••••

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

Figure 4.11 System
evolution

SE8_C04.qxd 4/4/06 8:58 Page 82

4.4 ■ The Rational Unified Process 83

Most descriptions of the RUP attempt to combine the static and dynamic per-
spectives in a single diagram (Krutchen, 2000). I think that makes the process harder
to understand, so I use separate descriptions of each of these perspectives.

The RUP is a phased model that identifies four discrete phases in the software
process. However, unlike the waterfall model where phases are equated with pro-
cess activities, the phases in the RUP are more closely related to business rather
than technical concerns. Figure 4.12 shows the phases in the RUP. These are:

1. Inception The goal of the inception phase is to establish a business case for the
system. You should identify all external entities (people and systems) that will
interact with the system and define these interactions. You then use this infor-
mation to assess the contribution that the system makes to the business. If this
contribution is minor, then the project may be cancelled after this phase.

2. Elaboration The goals of the elaboration phase are to develop an understand-
ing of the problem domain, establish an architectural framework for the sys-
tem, develop the project plan and identify key project risks. On completion of
this phase, you should have a requirements model for the system (UML use
cases are specified), an architectural description and a development plan for
the software.

3. Construction The construction phase is essentially concerned with system
design, programming and testing. Parts of the system are developed in paral-
lel and integrated during this phase. On completion of this phase, you should
have a working software system and associated documentation that is ready for
delivery to users.

4. Transition The final phase of the RUP is concerned with moving the system
from the development community to the user community and making it work
in a real environment. This is something that is ignored in most software pro-
cess models but is, in fact, an expensive and sometimes problematic activity.
On completion of this phase, you should have a documented software system
that is working correctly in its operational environment.

Iteration within the RUP is supported in two ways, as shown in Figure 4.12. Each
phase may be enacted in an iterative way with the results developed incrementally.
In addition, the whole set of phases may also be enacted incrementally, as shown
by the looping arrow from Transition to Inception in Figure 4.12.

••••

Inception Elaboration Construction

Phase iteration

Transition

Figure 4.12 Phases
in the Rational
Unified Process

SE8_C04.qxd 4/4/06 8:58 Page 83

84 Chapter 4 ■ Software processes

The static view of the RUP focuses on the activities that take place during the devel-
opment process. These are called workflows in the RUP description. There are six
core process workflows identified in the process and three core supporting workflows.
The RUP has been designed in conjunction with the UML—an object-oriented mod-
elling language—so the workflow description is oriented around associated UML mod-
els. The core engineering and support workflows are described in Figure 4.13.

The advantage in presenting dynamic and static views is that phases of the devel-
opment process are not associated with specific workflows. In principle at least, all of
the RUP workflows may be active at all stages of the process. Of course, most effort
will probably be spent on workflows such as business modelling and requirements at
the early phases of the process and in testing and deployment in the later phases.

The practice perspective on the RUP describes good software engineering prac-
tices that are recommended for use in systems development. Six fundamental best
practices are recommended:

1. Develop software iteratively. Plan increments of the system based on customer
priorities and develop and deliver the highest priority system features early in
the development process.

2. Manage requirements. Explicitly document the customer’s requirements and keep
track of changes to these requirements. Analyse the impact of changes on the
system before accepting them.

••••

Workflow Description

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are developed to
model the system requirements.

Analysis and design A design model is created and documented using architectural models, component
models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design models helps
accelerate this process.

Testing Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the implementation.

Deployment A product release is created, distributed to users and installed in their workplace.

Configuration and This supporting workflow manages changes to the system (see Chapter 29).
change management

Project management This supporting workflow manages the system development (see Chapter 5).

Environment This workflow is concerned with making appropriate software tools available to the
software development team.

Figure 4.13 Static
workflows in
Rational Unified
Process

SE8_C04.qxd 4/4/06 8:58 Page 84

4.5 ■ Computer-Aided Software Engineering 85

3. Use component-based architectures. Structure the system architecture into
components as discussed earlier in this chapter.

4. Visually model software. Use graphical UML models to present static and dynamic
views of the software.

5. Verify software quality. Ensure that the software meets the organisational qual-
ity standards.

6. Control changes to software. Manage changes to the software using a change
management system and configuration management procedures and tools (see
Chapter 29).

The RUP is not a suitable process for all types of development but it does repre-
sent a new generation of generic processes. The most important innovations are the
separation of phases and workflows, and the recognition that deploying software in
a user’s environment is part of the process. Phases are dynamic and have goals.
Workflows are static and are technical activities that are not associated with a single
phase but may be used throughout the development to achieve the goals of each phase.

4.5 Computer-Aided Software Engineering

Computer-Aided Software Engineering (CASE) is the name given to software used
to support software process activities such as requirements engineering, design, pro-
gram development and testing. CASE tools therefore include design editors, data
dictionaries, compilers, debuggers, system building tools and so on.

CASE technology provides software process support by automating some pro-
cess activities and by providing information about the software that is being devel-
oped. Examples of activities that can be automated using CASE include:

1. The development of graphical system models as part of the requirements spec-
ification or the software design.

2. Understanding a design using a data dictionary that holds information about
the entities and relations in a design.

3. The generation of user interfaces from a graphical interface description that is
created interactively by the user.

4. Program debugging through the provision of information about an executing
program.

5. The automated translation of programs from an old version of a programming
language such as COBOL to a more recent version.

••••

SE8_C04.qxd 4/4/06 8:58 Page 85

86 Chapter 4 ■ Software processes

CASE technology is now available for most routine activities in the software pro-
cess. This has led to some improvements in software quality and productivity, although
these have been less than predicted by early advocates of CASE. Early advocates
suggested that orders of magnitude improvement were likely if integrated CASE
environments were used. In fact, the improvements that have been achieved are of
the order of 40% (Huff, 1992). Although this is significant, the predictions when
CASE tools were first introduced in the 1980s and 1990s were that the use of CASE
technology would generate huge savings in software process costs.

The improvements from the use of CASE are limited by two factors:

1. Software engineering is, essentially, a design activity based on creative
thought. Existing CASE systems automate routine activities but attempts to har-
ness artificial intelligence technology to provide support for design have not
been successful.

2. In most organisations, software engineering is a team activity, and software engi-
neers spend quite a lot of time interacting with other team members. CASE
technology does not provide much support for this.

CASE technology is now mature, and CASE tools and workbenches are avail-
able from a wide range of suppliers. However, rather than focus on any specific
tools, I simply present an overview of tools here with some discussion of specific
support in other chapters. In my web pages, I include links to other material on
CASE and links to CASE tool suppliers.

4.5.1 CASE classification

CASE classifications help us understand the types of CASE tools and their role in
supporting software process activities. There are several ways to classify CASE tools,
each of which gives us a different perspective on these tools. In this section, I dis-
cuss CASE tools from three of these perspectives:

1. A functional perspective where CASE tools are classified according to their spe-
cific function.

2. A process perspective where tools are classified according to the process activ-
ities that they support.

3. An integration perspective where CASE tools are classified according to how
they are organised into integrated units that provide support for one or more
process activities.

Figure 4.14 is a classification of CASE tools according to function. This table
lists a number of different types of CASE tools and gives specific examples of each

••••

SE8_C04.qxd 4/4/06 8:58 Page 86

4.5 ■ Computer-Aided Software Engineering 87

one. This is not a complete list of CASE tools. Specialised tools, such as tools to
support reuse, have not been included.

Figure 4.15 presents an alternative classification of CASE tools. It shows the pro-
cess phases supported by a number of types of CASE tools. Tools for planning
and estimating, text editing, document preparation and configuration management
may be used throughout the software process.

The breadth of support for the software process offered by CASE technology is
another possible classification dimension. Fuggetta (Fuggetta, 1993) proposes that
CASE systems should be classified in three categories:

1. Tools support individual process tasks such as checking the consistency of a design,
compiling a program and comparing test results. Tools may be general-purpose,
standalone tools (e.g., a word processor) or grouped into workbenches.

2. Workbenches support process phases or activities such as specification, design,
etc. They normally consist of a set of tools with some greater or lesser degree
of integration.

3. Environments support all or at least a substantial part of the software process.
They normally include several integrated workbenches.

••••

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change Requirements traceability tools, change control systems
management tools

Configuration Version management systems, system building tools
management tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing Compilers, interpreters
tools

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Reengineering tools Cross-reference systems, program restructuring systems

Figure 4.14
Functional
classification of
CASE tools

SE8_C04.qxd 4/4/06 8:58 Page 87

88 Chapter 4 ■ Software processes

Figure 4.16 illustrates this classification and shows some examples of these classes
of CASE support. Of course, this is an illustrative example; many types of tools
and workbenches have been left out of this diagram.

General-purpose tools are used at the discretion of the software engineer who
makes decisions about when to apply them for process support. Workbenches, how-
ever, usually support some method that includes a process model and a set of
rules/guidelines, which apply to the software being developed. I have classified envi-
ronments as integrated or process-centred. Integrated environments provide infras-
tructure support for data, control and presentation integration. Process-centred
environments are more general. They include software process knowledge and a
process engine which uses this process model to advise engineers on what tools or
workbenches to apply and when they should be used.

In practice, the boundaries between these classes are blurred. Tools may be sold
as a single product but may embed support for different activities. For example,
most word processors now provide a built-in diagram editor. CASE workbenches
for design usually support programming and testing, so they are more akin to
environments than specialised workbenches. It may therefore not always be easy to
position a product using a classification. Nevertheless, classification provides a use-
ful first step to help understand the extent of process support that a tool provides.

••••

Specification Design Implementation Verification
and

Validation

Re-engineering tools

Testing tools

Debugging tools

Program analysis tools

Language-processing
tools

Method support tools

Prototyping tools

Configuration
management tools

Change management tools

Documentation tools

Editing tools

Planning tools

Figure 4.15 Activity-
based classification
of CASE tools

SE8_C04.qxd 4/4/06 8:58 Page 88

Chapter 4 ■ Key points 89

••••

■ Software processes are the activities involved in producing a software system. Software
process models are abstract representations of these processes.

■ All software processes include software specification, software design and implementation,
software validation and software evolution.

■ Generic process models describe the organisation of software processes. Examples of
generic models include the waterfall model, evolutionary development and component-
based software engineering.

■ Iterative process models present the software process as a cycle of activities. The advantage
of this approach is that it avoids premature commitments to a specification or design.

K E Y P O I N TS

CompilersEditors

CASE
technology

Tools Workbenches Environments

File
comparators

Integrated
environments

Process-centred
environments

Analysis and
design Programming Testing

Multi-method
workbenches

Single-method
workbenches

General-purpose
workbenches

Language-specific
workbenches

Figure 4.16 Tools,
workbenches and
environments

SE8_C04.qxd 4/4/06 8:58 Page 89

90 Chapter 4 ■ Software processes

F U R T H E R R E A D I N G

Extreme Programming Explained: Embrace Change. An evangelical book that describes the extreme
programming process and extreme programming experiences. The author was the inventor of
extreme programming and communicates his enthusiasm very well. (Kent Beck, 2000, Addison-
Wesley.)

The Rational Unified Process—An Introduction. This is the most readable book available on the
RUP at the time of this writing. Krutchen describes the process well, but I would like to have seen
more on the practical difficulties of using the process. (P. Krutchen, 2000, Addison-Wesley.)

Managing Software Quality and Business Risk. This is primarily a book about software
management but it includes an excellent chapter (Chapter 4) on process models. (M. Ould, 1999,
John Wiley & Sons)

‘A classification of CASE technology’. The classification scheme proposed in this article is used in
this chapter, but Fuggetta goes into more detail and illustrates how a number of commercial
products fit into this scheme. (A. Fuggetta, IEEE Computer, 26 (12), December 1993.)

••••

Examples of iterative models include incremental development and the spiral model.

■ Requirements engineering is the process of developing a software specification.
Specifications are intended to communicate the system needs of the customer to the
system developers.

■ Design and implementation processes are concerned with transforming a requirements
specification into an executable software system. Systematic design methods may be used
as part of this transformation.

■ Software validation is the process of checking that the system conforms to its specification
and that it meets the real needs of the users of the system.

■ Software evolution is concerned with modifying existing software systems to meet new
requirements. This is becoming the normal approach to software development for small and
medium-sized systems.

■ The Rational Unified Process is a modern generic process model that is organised into
phases (inception, elaboration, construction and transition) but that separates activities
(requirements, analysis and design, etc.) from these phases.

■ CASE technology provides automated support for software processes. CASE tools support
individual process activities; workbenches support a set of related activities; environments
support all or most software process activities.

SE8_C04.qxd 4/4/06 8:58 Page 90

Chapter 4 ■ Exercises 91

E X E R C I S E S

4.1 Giving reasons for your answer based on the type of system being developed, suggest the
most appropriate generic software process model that might be used as a basis for managing
the development of the following systems:

■ A system to control anti-lock braking in a car

■ A virtual reality system to support software maintenance

■ A university accounting system that replaces an existing system

■ An interactive system that allows railway passengers to find train times from terminals
installed in stations.

4.2 Explain why programs that are developed using evolutionary development are likely to be
difficult to maintain.

4.3 Explain how both the waterfall model of the software process and the prototyping model can
be accommodated in the spiral process model.

4.4 What are the advantages of providing static and dynamic views of the software process as in
the Rational Unified Process?

4.5 Suggest why it is important to make a distinction between developing the user requirements
and developing system requirements in the requirements engineering process.

4.6 Describe the main activities in the software design process and the outputs of these
activities. Using a diagram, show possible relationships between the outputs of these
activities.

4.7 What are the five components of a design method? Take any method you know and describe
its components. Assess the completeness of the method that you have chosen.

4.8 Design a process model for running system tests and recording their results.

4.9 Explain why a software system that is used in a real-world environment must change or
become progressively less useful.

4.10 Suggest how a CASE technology classification scheme may be helpful to managers
responsible for CASE system procurement.

4.11 Survey the tool availability in your local development environment and classify the tools
according to the parameters (function, activity, breadth of support) suggested here.

4.12 Historically, the introduction of technology has caused profound changes in the labour
market and, temporarily at least, displaced people from jobs. Discuss whether the
introduction of advanced CASE technology is likely to have the same consequences for
software engineers. If you don’t think it will, explain why not. If you think that it will reduce
job opportunities, is it ethical for the engineers affected to passively or actively resist the
introduction of this technology?

••••

SE8_C04.qxd 4/4/06 8:58 Page 91

Project management
5

Objectives
The objective of this chapter is to give you an overview of software
project management. When you have read this chapter, you will:

■ know the principal tasks of software project managers;

■ understand why the nature of software makes software project
management more difficult than other engineering project
management;

■ understand the need for project planning in all software projects;

■ know how graphical representations (bar charts and activity
charts) can be used by project managers to represent project
schedules;

■ have been introduced to the notion of risk management and
some of the risks that can arise in software projects.

Contents
5.1 Management activities

5.2 Project planning

5.3 Project scheduling

5.4 Risk management

••

SE8_C05.qxd 4/4/06 8:59 Page 92

Chapter 5 ■ Project management 93

Software project management is an essential part of software engineering. Good man-
agement cannot guarantee project success. However, bad management usually
results in project failure: The software is delivered late, costs more than originally
estimated and fails to meet its requirements.

Software managers are responsible for planning and scheduling project devel-
opment. They supervise the work to ensure that it is carried out to the required stan-
dards and monitor progress to check that the development is on time and within
budget. We need software project management because professional software engi-
neering is always subject to organisational budget and schedule constraints. The soft-
ware project manager’s job is to ensure that the software project meets these
constraints and delivers software that contributes to the goals of the company devel-
oping the software.

Software managers do the same kind of job as other engineering project man-
agers. However, software engineering is different from other types of engineering
in a number of ways. These distinctions make software management particularly
difficult. Some of the differences are:

1. The product is intangible The manager of a shipbuilding project or of a civil
engineering project can see the product being developed. If a schedule slips,
the effect on the product is visible—parts of the structure are obviously unfin-
ished. Software is intangible. It cannot be seen or touched. Software project
managers cannot see progress. They rely on others to produce the documenta-
tion needed to review progress.

2. There are no standard software processes In engineering disciplines with a long
history, the process is tried and tested. The engineering process for some types
of system, such as bridges and buildings is well understood. However, soft-
ware processes vary dramatically from one organisation to another. Although
our understanding of these processes has developed significantly in the past few
years, we still cannot reliably predict when a particular software process is likely
to cause development problems. This is especially true when the software pro-
ject is part of a wider systems engineering project.

3. Large software projects are often ‘one-off’ projects Large software projects are
usually different in some ways from previous projects. Therefore, even man-
agers who have a large body of previous experience may find it difficult to
anticipate problems. Furthermore, rapid technological changes in computers and
communications can make a manager’s experience obsolete. Lessons learned
from previous projects may not be transferable to new projects.

Because of these problems, it is not surprising that some software projects are
late, over budget and behind schedule. Software systems are often new and tech-
nically innovative. Engineering projects (such as new transport systems) that are
innovative often also have schedule problems. Given the difficulties involved, it
is perhaps remarkable that so many software projects are delivered on time and to
budget!

••

SE8_C05.qxd 4/4/06 8:59 Page 93

94 Chapter 5 ■ Project management

Software project management is a huge topic and cannot be covered in a single
chapter. Therefore, I simply introduce the subject here and describe three impor-
tant management activities: project planning, project scheduling and risk manage-
ment. Later chapters (in Part 6) cover other aspects of software management,
including managing people, software cost estimation and quality management.

5.1 Management activities

It is impossible to write a standard job description for a software manager. The job
varies tremendously depending on the organisation and the software product being
developed. However, most managers take responsibility at some stage for some or
all of the following activities:

• Proposal writing

• Project planning and scheduling

• Project cost

• Project monitoring and reviews

• Personnel selection and evaluation

• Report writing and presentations

The first stage in a software project may involve writing a proposal to win a
contract to carry out the work. The proposal describes the objectives of the project
and how it will be carried out. It usually includes cost and schedule estimates, and
justifies why the project contract should be awarded to a particular organisation or
team. Proposal writing is a critical task as the existence of many software organi-
sations depends on having enough proposals accepted and contracts awarded. There
can be no set guidelines for this task; proposal writing is a skill that you acquire
through practice and experience.

Project planning is concerned with identifying the activities, milestones and deliv-
erables produced by a project. A plan is drawn up to guide the development
towards the project goals. Cost estimation is a related activity that is concerned with
estimating the resources required to accomplish the project plan. I cover these in
more detail later in this chapter and in Chapter 26.

Project monitoring is a continuing project activity. The manager must keep track
of the progress of the project and compare actual and planned progress and costs.
Although most organisations have formal mechanisms for monitoring, a skilled man-

••••

SE8_C05.qxd 4/4/06 8:59 Page 94

5.1 ■ Management activities 95

ager can often form a clear picture of what is going on through informal discus-
sions with project staff.

Informal monitoring can often predict potential project problems by revealing
difficulties as they occur. For example, daily discussions with project staff might
reveal a particular problem in finding some software fault. Rather than waiting for
a schedule slippage to be reported, the software manager might assign some expert
to the problem or might decide that it should be programmed around.

During a project, it is normal to have a number of formal project management
reviews. They are concerned with reviewing overall progress and technical devel-
opment of the project and checking whether the project and the goals of the organ-
isation paying for the software are still aligned.

The outcome of a review may be a decision to cancel a project. The develop-
ment time for a large software project may be several years. During that time, organ-
isational objectives are almost certain to change. These changes may mean that the
software is no longer required or that the original project requirements are inap-
propriate. Management may decide to stop software development or to change the
project to accommodate the changes to the organisational objectives.

Project managers usually have to select people to work on their project. Ideally,
skilled staff with appropriate experience will be available to work on the project.
However, in most cases, managers have to settle for a less-than-ideal project team.
The reasons for this are:

1. The project budget may not cover the use of highly paid staff. Less experi-
enced, less well-paid staff may have to be used.

2. Staff with the appropriate experience may not be available either within an organ-
isation or externally. It may be impossible to recruit new staff to the project. Within
the organisation, the best people may already be allocated to other projects.

3. The organisation may wish to develop the skills of its employees. Inexperienced
staff may be assigned to a project to learn and to gain experience.

The software manager has to work within these constraints when selecting pro-
ject staff. However, problems are likely unless at least one project member has some
experience with the type of system being developed. Without this experience, many
simple mistakes are likely to be made. I discuss team building and staff selection
in Chapter 25.

Project managers are usually responsible for reporting on the project to both the
client and contractor organisations. They have to write concise, coherent documents
that abstract critical information from detailed project reports. They must be able
to present this information during progress reviews. Consequently, if you are a pro-
ject manager, you have to be able to communicate effectively both orally and in
writing.

••••

SE8_C05.qxd 4/4/06 8:59 Page 95

96 Chapter 5 ■ Project management

5.2 Project planning

Effective management of a software project depends on thoroughly planning the
progress of the project. Managers must anticipate problems that might arise and pre-
pare tentative solutions to those problems. A plan, drawn up at the start of a pro-
ject, should be used as the driver for the project. This initial plan should be the best
possible plan given the available information. It evolves as the project progresses
and better information becomes available.

A structure for a software development plan is described in Section 5.2.1. As
well as a project plan, managers may also have to draw up other types of plans.
These are briefly described in Figure 5.1 and covered in more detail in the relevant
chapter elsewhere in the book.

The pseudo-code shown in Figure 5.2 sets out a project planning process for soft-
ware development. It shows that planning is an iterative process, which is only com-
plete when the project itself is complete. As project information becomes available
during the project, the plan should be regularly revised. The goals of the business
are an important factor that must be considered when formulating the project plan.
As these change, the project’s goals also change so changes to the project plan are
necessary.

At the beginning of a planning process, you should assess the constraints
(required delivery date, staff available, overall budget, etc.) affecting the project. In
conjunction with this, you should estimate project parameters such as its structure,
size, and distribution of functions. You next define the progress milestones and deliv-
erables. The process then enters a loop. You draw up an estimated schedule for the
project and the activities defined in the schedule are started or given permission to
continue. After some time (usually about two to three weeks), you should review

••••

Plan Description

Quality plan Describes the quality procedures and standards that
will be used in a project. See Chapter 24.

Validation plan Describes the approach, resources and schedule used
for system validation. See Chapter 19.

Configuration Describes the configuration management procedures
management plan and structures to be used. See Chapter 29.

Maintenance plan Predicts the maintenance requirements of the system,
maintenance costs and effort required. See Chapter 27.

Staff development plan Describes how the skills and experience of the project
team members will be developed. See Chapter 22.

Figure 5.1 Types
of plan

SE8_C05.qxd 4/4/06 8:59 Page 96

5.2 ■ Project planning 97

progress and note discrepancies from the planned schedule. Because initial estimates
of project parameters are tentative, you will always have to modify the original plan.

As more information becomes available, you revise your original assumptions
about the project and the project schedule. If the project is delayed, you may have
to renegotiate the project constraints and deliverables with the customer. If this rene-
gotiation is unsuccessful and the schedule cannot be met, a project technical review
may be held. The objective of this review is to find an alternative approach that
falls within the project constraints and meets the schedule.

Of course, you should never assume that everything will always go well.
Problems of some description nearly always arise during a project. Your initial assump-
tions and scheduling should be pessimistic rather than optimistic. There should be
sufficient contingency built into your plan so that the project constraints and mile-
stones need not be renegotiated every time round the planning loop.

5.2.1 The project plan

The project plan sets out the resources available to the project, the work breakdown
and a schedule for carrying out the work. In some organisations, the project plan
is a single document that includes the different types of plan (Figure 5.1). In other
cases, the project plan is solely concerned with the development process.
References to other plans are included but the plans themselves are separate.

The plan structure that I describe here is for this latter type of plan. The details
of the project plan vary depending on the type of project and organisation.
However, most plans should include the following sections:

1. Introduction This briefly describes the objectives of the project and sets out
the constraints (e.g., budget, time, etc.) that affect the project management.

••••

Figure 5.2 Project
planning Establish the project constraints

Make initial assessments of the project parameters
Define project milestones and deliverables
while project has not been completed or cancelled loop

Draw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Renegotiate project constraints and deliverables
if (problems arise) then

Initiate technical review and possible revision
end if

end loop

SE8_C05.qxd 4/4/06 8:59 Page 97

98 Chapter 5 ■ Project management

2. Project organisation This describes the way in which the development team is
organised, the people involved and their roles in the team.

3. Risk analysis This describes possible project risks, the likelihood of these risks
arising and the risk reduction strategies that are proposed. I explain the prin-
ciples of risk management in Section 5.4.

4. Hardware and software resource requirements This specifies the hardware and
the support software required to carry out the development. If hardware has to
be bought, estimates of the prices and the delivery schedule may be included.

5. Work breakdown This sets out the breakdown of the project into activities and
identifies the milestones and deliverables associated with each activity.
Milestones and deliverables are discussed in Section 5.2.2.

6. Project schedule This shows the dependencies between activities, the estimated
time required to reach each milestone and the allocation of people to activities.

7. Monitoring and reporting mechanisms This defines the management reports that
should be produced, when these should be produced and the project monitor-
ing mechanisms used.

You should regularly revise the project plan during the project. Some parts, such
as the project schedule, will change frequently; other parts will be more stable. To
simplify revisions, you should organise the document into separate sections that can
be individually replaced as the plan evolves.

5.2.2 Milestones and deliverables

Managers need information to do their job. Because software is intangible, this infor-
mation can only be provided as reports and documents that describe the state of the
software being developed. Without this information, it is impossible to assess how
well the work is progressing, and cost estimates and schedules cannot be updated.

When planning a project, you should establish a series of milestones, where a
milestone is a recognisable end-point of a software process activity. At each mile-
stone, there should be a formal output, such as a report, that can be presented to
management. Milestone reports need not be large documents. They may simply be
a short report of what has been completed. Milestones should represent the end of
a distinct, logical stage in the project. Indefinite milestones such as ‘Coding 80%
complete’ that can’t be checked are useless for project management. You can’t check
whether this state has been achieved because the amount of code that still has to
be developed is uncertain.

A deliverable is a project result that is delivered to the customer. It is usually
delivered at the end of some major project phase such as specification or design.
Deliverables are usually milestones, but milestones need not be deliverables.

••••

SE8_C05.qxd 4/4/06 8:59 Page 98

5.3 ■ Project scheduling 99

Milestones may be internal project results that are used by the project manager to
check project progress but which are not delivered to the customer.

To establish milestones, the software process must be broken down into basic
activities with associated outputs. For example, Figure 5.3 shows possible activi-
ties involved in requirements specification when prototyping is used to help vali-
date requirements. The milestones in this case are the completion of the outputs for
each activity. The project deliverables, which are delivered to the customer, are the
requirements definition and the requirements specification.

5.3 Project scheduling

Project scheduling is one of the most difficult jobs for a project manager. Managers
estimate the time and resources required to complete activities and organise them
into a coherent sequence. Unless the project being scheduled is similar to a previ-
ous project, previous estimates are an uncertain basis for new project scheduling.
Schedule estimation is further complicated by the fact that different projects may
use different design methods and implementation languages.

If the project is technically advanced, initial estimates will almost certainly be
optimistic even when you try to consider all eventualities. In this respect, software
scheduling is no different from scheduling any other type of large advanced pro-
ject. New aircraft, bridges and even new models of cars are frequently late because
of unanticipated problems. Schedules, therefore, must be continually updated as bet-
ter progress information becomes available.

Project scheduling (Figure 5.4) involves separating the total work involved in a
project into separate activities and judging the time required to complete these
activities. Usually, some of these activities are carried out in parallel. You have to
coordinate these parallel activities and organise the work so that the workforce is
used optimally. It’s important to avoid a situation where the whole project is
delayed because a critical task is unfinished.

••••

Evaluation
report

Prototype
development

Requirements
definition

Requirements
analysis

Feasibility
report

Feasibility
study

Architectural
design

Design
study

System
requirements

Requirements
specification

ACTIVITIES

MILESTONES

Figure 5.3 Milestones
in the requirements
process

SE8_C05.qxd 4/4/06 8:59 Page 99

100 Chapter 5 ■ Project management

Project activities should normally last at least a week. Finer subdivision means that
a disproportionate amount of time must be spent on estimating and chart revision. It is
also useful to set a maximum amount of time for any activity of about 8 to 10 weeks.
If it takes longer than this, it should be subdivided for project planning and scheduling.

As I have already suggested, when you are estimating schedules, you should not
assume that every stage of the project will be problem free. People working on a
project may fall ill or may leave, hardware may break down, and essential support
software or hardware may be delivered late. If the project is new and technically
advanced, certain parts of it may turn out to be more difficult and take longer than
originally anticipated.

As well as calendar time, you also have to estimate the resources needed to com-
plete each task. The principal resource is the human effort required. Other
resources may be the disk space required on a server, the time required on spe-
cialised hardware such as a simulator, and the travel budget required for project
staff. I discuss estimation in more detail in Chapter 26.

A good rule of thumb is to estimate as if nothing will go wrong, then increase
your estimate to cover anticipated problems. A further contingency factor to cover
unanticipated problems may also be added to the estimate. This extra contingency
factor depends on the type of project, the process parameters (deadline, standards,
etc.) and the quality and experience of the software engineers working on the pro-
ject. I always add 30% to my original estimate for anticipated problems then
another 20% to cover things I hadn’t thought of.

Project schedules are usually represented as a set of charts showing the work
breakdown, activities dependencies and staff allocations. I describe these in the fol-
lowing section. Software management tools, such as Microsoft Project, are usually
used to automate chart production.

5.3.1 Bar charts and activity networks

Bar charts and activity networks are graphical notations that are used to illustrate
the project schedule. Bar charts show who is responsible for each activity and when
the activity is scheduled to begin and end. Activity networks show the dependen-
cies between the different activities making up a project. Bar charts and activity
charts can be generated automatically from a database of project information using
a project management tool.

••••

Estimate resources
for activities

Identify activity
dependencies

Identify
activities

Allocate people
to activities

Software
requirements

Activity charts
and bar charts

Create project
charts

Figure 5.4 The
project scheduling
process

SE8_C05.qxd 4/4/06 8:59 Page 100

5.3 ■ Project scheduling 101

To illustrate how these charts are used, I have created a hypothetical set of activ-
ities as shown in Figure 5.5. This table shows activities, their duration, and activ-
ity interdependencies. From Figure 5.5, you can see that Activity T3 is dependent
on Activity T1. This means that T1 must be completed before T3 starts. For exam-
ple, T1 might be the preparation of a component design and T3, the implementa-
tion of that design. Before implementation starts, the design should be complete.

Given the dependencies and estimated duration of activities, an activity chart that
shows activity sequences may be generated (Figure 5.6). This shows which activities
can be carried out in parallel and which must be executed in sequence because of a
dependency on an earlier activity. Activities are represented as rectangles; milestones
and project deliverables are shown with rounded corners. Dates in this diagram show
the start date of the activity and are written in British style, where the day precedes
the month. You should read the chart from left to right and from top to bottom

In the project management tool used to produce this chart, all activities must end
in milestones. An activity may start when its preceding milestone (which may depend
on several activities) has been reached. Therefore, the third column in Figure 5.5
shows the corresponding milestone (e.g., M5) that is reached when the tasks finish
(see Figure 5.6).

Before progress can be made from one milestone to another, all paths leading to
it must be complete. For example, when activities T3 and T6 are finished, then activ-
ity T9, shown in Figure 5.6, can start.

••••

Task Duration (days) Dependencies

T1 8

T2 15

T3 15 T1 (M1)

T4 10

T5 10 T2, T4 (M2)

T6 5 T1, T2 (M3)

T7 20 T1 (M1)

T8 25 T4 (M5)

T9 15 T3, T6 (M4)

T10 15 T5, T7 (M7)

T11 7 T9 (M6)

T12 10 T11 (M8)

Figure 5.5 Task
durations and
dependencies

SE8_C05.qxd 4/4/06 8:59 Page 101

102 Chapter 5 ■ Project management

The minimum time required to finish the project can be estimated by consider-
ing the longest path in the activity graph (the critical path). In this case, it is 11
weeks of elapsed time or 55 working days. In Figure 5.6, the critical path is shown
as a sequence of emboldened boxes. The critical path is the sequence of dependent
activities that defines the time required to complete the project. The overall sched-
ule of the project depends on the critical path. Any slippage in the completion in
any critical activity causes project delays because the following activities cannot
start until the delayed activity has been completed.

However, delays in activities that do not lie on the critical path do not neces-
sarily cause an overall schedule slippage. So long as these delays do not extend
these activities so much that the total time for that activity plus future dependent
activities does not exceed the critical path, the project schedule will not be affected.
For example, if T8 is delayed by two weeks, it will not affect the final completion
date of the project because it does not lie on the critical path. Most project man-
agement tools compute the allowed delays, as shown in the project bar chart.

Managers also use activity charts when allocating project work. They can pro-
vide insights into activity dependencies that are not intuitively obvious. It may be
possible to modify the system design so that the critical path is shortened. The pro-
ject schedule may be shortened because of the reduced amount of time spent wait-
ing for activities to finish.

Inevitably, initial project schedules will be incorrect. As a project develops, esti-
mates should be compared with actual elapsed time. This comparison can be used
as a basis for revising the schedule for later parts of the project. When actual figures

••••

Figure 5.6 An activity
network

SE8_C05.qxd 4/4/06 8:59 Page 102

5.3 ■ Project scheduling 103

are known, the activity chart should be reviewed. Later project activities may then
be reorganised to reduce the length of the critical path.

Figure 5.7 is a complementary way of representing project schedule information.
It is a bar chart showing a project calendar and the start and finish dates of activ-
ities. Sometimes these are called Gantt charts, after their inventor. Reading from
left to right, the bar chart clearly shows when activities start and end.

Some of the activities shown in the bar chart in Figure 5.7 are followed by a
shaded bar whose length is computed by the scheduling tool. This highlights the
flexibility in the completion date of these activities. If an activity does not com-
plete on time, the critical path will not be affected until the end of the period marked
by the shaded bar. Activities that lie on the critical path have no margin of error
and can be identified because they have no associated shaded bar.

In addition to considering schedules, as a project manager you must also con-
sider resource allocation and, in particular, the allocation of staff to project activi-
ties. This allocation can also be input to project management tools and a bar chart
generated that shows when staff are employed on the project (Figure 5.8). People
don’t have to be assigned to a project at all times. During intervening periods they
may be on holiday, working on other projects, attending training courses or engag-
ing in some other activity.

Large organisations usually employ a number of specialists who work on a pro-
ject when needed. In Figure 5.8, you can see that Mary and Jim are specialists who

••••

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T1
T2

M1

T7
T3

M5

T8

M3

M2

T6

T5

M4

T9

M7

T10

M6

T11
M8

T12

Start

Finish

Figure 5.7 Activity
bar chart

SE8_C05.qxd 4/4/06 8:59 Page 103

104 Chapter 5 ■ Project management

work on only a single task in the project. This can cause scheduling problems. If
one project is delayed while a specialist is working on it, this may have a knock-
on effect on other projects. They may also be delayed because the specialist is not
available.

5.4 Risk management

Risk management is increasingly seen as one of the main jobs of project managers.
It involves anticipating risks that might affect the project schedule or the quality of
the software being developed and taking action to avoid these risks (Hall, 1998)
(Ould, 1999). The results of the risk analysis should be documented in the project
plan along with an analysis of the consequences of a risk occurring. Effective risk
management makes it easier to cope with problems and to ensure that these do not
lead to unacceptable budget or schedule slippage.

Simplistically, you can think of a risk as something that you’d prefer not to have
happen. Risks may threaten the project, the software that is being developed or the
organisation. There are, therefore, three related categories of risk:

1. Project risks are risks that affect the project schedule or resources. An exam-
ple might be the loss of an experienced designer.

••••

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T8 T11

T12

T1

T3

T9

T2

T6 T10

T7

T5

Fred

Jane

Anne

Mary

Jim

Figure 5.8 Staff
allocation vs. time
chart

SE8_C05.qxd 4/4/06 8:59 Page 104

5.4 ■ Risk management 105

2. Product risks are risks that affect the quality or performance of the software
being developed. An example might be the failure of a purchased component
to perform as expected.

3. Business risks are risks that affect the organisation developing or procuring the
software. For example, a competitor introducing a new product is a business risk.

Of course, these risk types overlap. If an experienced programmer leaves a pro-
ject, this can be a project risk because the delivery of the system may be delayed.
It can also be a product risk because a replacement may not be as experienced and
so may make programming errors. Finally, it can be a business risk because the
programmer’s experience is not available for bidding for future business.

The risks that may affect a project depend on the project and the organisational
environment where the software is being developed. However, many risks are uni-
versal—some of the most common risks are shown in Figure 5.9.

Risk management is particularly important for software projects because of the
inherent uncertainties that most projects face. These stem from loosely defined
requirements, difficulties in estimating the time and resources required for

••••

Risk Risk type Description

Staff turnover Project Experienced staff will leave the project
before it is finished.

Management change Project There will be a change of organisational
management with different priorities.

Hardware unavailability Project Hardware which is essential for the project
will not be delivered on schedule.

Requirements change Project and There will be a larger number of changes
product to the requirements than anticipated.

Specification delays Project and Specifications of essential interfaces are
product not available on schedule.

Size underestimate Project and The size of the system has been
product underestimated.

CASE tool under- Product CASE tools which support the project do
performance not perform as anticipated.

Technology change Business The underlying technology on which the system
is built is superseded by new technology.

Product competition Business A competitive product is marketed before
the system is completed.

Figure 5.9 Possible
software risks

SE8_C05.qxd 4/4/06 8:59 Page 105

106 Chapter 5 ■ Project management

software development, dependence on individual skills and requirements changes
due to changes in customer needs. You have to anticipate risks, understand the
impact of these risks on the project, the product and the business, and take steps
to avoid these risks. You may need to draw up contingency plans so that, if the
risks do occur, you can take immediate recovery action.

The process of risk management is illustrated in Figure 5.10. It involves sev-
eral stages:

1. Risk identification Possible project, product and business risks are identified.

2. Risk analysis The likelihood and consequences of these risks are assessed.

3. Risk planning Plans to address the risk either by avoiding it or minimising
its effects on the project are drawn up.

4. Risk monitoring The risk is constantly assessed and plans for risk mitigation
are revised as more information about the risk becomes available.

The risk management process, like all other project planning, is an iterative
process which continues throughout the project. Once an initial set of plans are
drawn up, the situation is monitored. As more information about the risks
becomes available, the risks have to be reanalysed and new priorities established.
The risk avoidance and contingency plans may be modified as new risk infor-
mation emerges.

You should document the outcomes of the risk management process in a risk
management plan. This should include a discussion of the risks faced by the pro-
ject, an analysis of these risks and the plans that are required to manage these risks.
Where appropriate, you should also include in the plan results of the risk manage-
ment process such as specific contingency plans to be activated if the risk occurs.

5.4.1 Risk identification

Risk identification is the first stage of risk management. It is concerned with dis-
covering possible risks to the project. In principle, these should not be assessed or
prioritised at this stage, although, in practice, risks with very minor consequences
or very low probability risks are not usually considered.

••••

Figure 5.10 The risk
management process

SE8_C05.qxd 4/4/06 8:59 Page 106

5.4 ■ Risk management 107

Risk identification may be carried out as a team process using a brainstorming
approach or may simply be based on experience. To help the process, a checklist
of different types of risk may be used. There are at least six types of risk that can
arise:

1. Technology risks Risks that derive from the software or hardware technologies
that are used to develop the system.

2. People risks Risks that are associated with the people in the development team.

3. Organisational risks Risks that derive from the organisational environment where
the software is being developed.

4. Tools risks Risks that derive from the CASE tools and other support software
used to develop the system.

5. Requirements risks Risks that derive from changes to the customer requirements
and the process of managing the requirements change.

6. Estimation risks Risks that derive from the management estimates of the sys-
tem characteristics and the resources required to build the system.

Figure 5.11 gives some examples of possible risks in each of these categories. When
you have finished the risk identification process, you should have a long list of risks
that could occur and which could affect the product, the process and the business.

5.4.2 Risk analysis

During the risk analysis process, you have to consider each identified risk and make
a judgement about the probability and the seriousness of it. There is no easy way
to do this—you must rely on your own judgement and experience, which is why
experienced project managers are generally the best people to help with risk man-
agement. These risk estimates should not generally be precise numeric assessments
but should be based around a number of bands:

• The probability of the risk might be assessed as very low (<10%), low
(10–25%), moderate (25-50%), high (50–75%) or very high (>75%).

• The effects of the risk might be assessed as catastrophic, serious, tolerable or
insignificant.

You should then tabulate the results of this analysis process using a table ordered
according to the seriousness of the risk. Figure 5.12 illustrates this for the risks iden-
tified in Figure 5.11. Obviously, the assessment of probability and seriousness is arbi-
trary here. In practice, to make this assessment you need detailed information about
the project, the process, the development team and the organisation.

••••

SE8_C05.qxd 4/4/06 8:59 Page 107

108 Chapter 5 ■ Project management

Of course, both the probability and the assessment of the effects of a risk may
change as more information about the risk becomes available and as risk manage-
ment plans are implemented. Therefore, you should update this table during each
iteration of the risk process.

Once the risks have been analysed and ranked, you should assess which are most
significant. Your judgement must depend on a combination of the probability of
the risk arising and the effects of that risk. In general, catastrophic risks should always
be considered, as should all serious risks that have more than a moderate proba-
bility of occurrence.

Boehm (Boehm, 1988) recommends identify and monitoring the ‘top 10’ risks,
but I think that this figure is rather arbitrary. The right number of risks to monitor
must depend on the project. It might be 5 or it might be 15. However, the number
of risks chosen for monitoring should be manageable. A very large number of risks
would simply require too much information to be collected. From the risks identi-
fied in Figure 5.12, it is appropriate to consider all 8 risks that have catastrophic
or serious consequences.

5.4.3 Risk planning

The risk planning process considers each of the key risks that have been identified
and identifies strategies to manage the risk. Again, there is no simple process that

••••

Risk type Possible risks

Technology The database used in the system cannot process as many
transactions per second as expected.
Software components which should be reused contain defects
which limit their functionality.

People It is impossible to recruit staff with the skills required.
Key staff are ill and unavailable at critical times.
Required training for staff is not available.

Organisational The organisation is restructured so that different management are
responsible for the project.
Organisational financial problems force reductions in the project
budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Requirements Changes to requirements which require major design rework are
proposed.
Customers fail to understand the impact of requirements changes.

Estimation The time required to develop the software is underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

Figure 5.11 Risks
and risk types

SE8_C05.qxd 4/4/06 8:59 Page 108

5.4 ■ Risk management 109

can be followed to establish risk management plans. It relies on the judgement and
experience of the project manager. Figure 5.13 shows possible strategies that have
been identified for the key risks from Figure 5.12.

These strategies fall into three categories:

1. Avoidance strategies Following these strategies means that the probability that
the risk will arise will be reduced. An example of a risk avoidance strategy is
the strategy for dealing with defective components shown in Figure 5.13.

2. Minimisation strategies Following these strategies means that the impact of the
risk will be reduced. An example of a risk minimisation strategy is that for staff
illness shown in Figure 5.13

••••

Risk Probability Effects

Organisational financial problems force reductions Low Catastrophic
in the project budget.

It is impossible to recruit staff with the skills High Catastrophic
required for the project.

Key staff are ill at critical times in the project. Moderate Serious

Software components which should be reused Moderate Serious
contain defects which limit their functionality.

Changes to requirements which require major Moderate Serious
design rework are proposed.

The organisation is restructured so that different High Serious
management are responsible for the project.

The database used in the system cannot Moderate Serious
process as many transactions per second
as expected.

The time required to develop the software is High Serious
underestimated.

CASE tools cannot be integrated. High Tolerable

Customers fail to understand the impact of Moderate Tolerable
requirements changes.

Required training for staff is not available. Moderate Tolerable

The rate of defect repair is underestimated. Moderate Tolerable

The size of the software is underestimated. High Tolerable

The code generated by CASE tools is inefficient. Moderate Insignificant

Figure 5.12 Risk
analysis

SE8_C05.qxd 4/4/06 8:59 Page 109

110 Chapter 5 ■ Project management

3. Contingency plans Following these strategies means that you are prepared for the
worst and have a strategy in place to deal with it. An example of a contingency
strategy is the strategy for organisational financial problems in Figure 5.13.

You can see here the analogy with the strategies used in critical systems to ensure
reliability, security and safety. Essentially, it is best to use a strategy that avoids
the risk. If this is not possible, use one that reduces the chances that the risk will
have serious effects. Finally, have strategies in place that reduce the overall impact
of a risk on the project or product.

5.4.4 Risk monitoring

Risk monitoring involves regularly assessing each of the identified risks to decide
whether or not that risk is becoming more or less probable and whether the effects
of the risk have changed. Of course, this cannot usually be observed directly, so
you have to look at other factors that give you clues about the risk probability and
its effects. These factors are obviously dependent on the types of risk. Figure 5.14
gives some examples of factors that may be helpful in assessing these risk types.

Risk monitoring should be a continuous process, and, at every management progress
review, you should consider and discuss each of the key risks separately.

••••

Risk Strategy

Organisational financial Prepare a briefing document for senior management
problems showing how the project is making a very important

contribution to the goals of the business.

Recruitment problems Alert customer of potential difficulties and the possibility
of delays, investigate buying-in components.

Staff illness Reorganise team so that there is more overlap of work
and people therefore understand each other’s jobs.

Defective components Replace potentially defective components with bought-in
components of known reliability.

Requirements changes Derive traceability information to assess requirements
change impact, maximise information hiding in the design.

Organisational Prepare a briefing document for senior management
restructuring showing how the project is making a very important

contribution to the goals of the business.

Database performance Investigate the possibility of buying a higher-performance
database.

Underestimated Investigate buying-in components, investigate the use of a
development time program generator.

Figure 5.13 Risk
management
strategies

SE8_C05.qxd 4/4/06 8:59 Page 110

Chapter 5 ■ Key points 111

••••

Risk type Potential indicators

Technology Late delivery of hardware or support software, many reported
technology problems

People Poor staff morale, poor relationships amongst team members,
job availability

Organisational Organisational gossip, lack of action by senior management

Tools Reluctance by team members to use tools, complaints about
CASE tools, demands for higher-powered workstations

Requirements Many requirements change requests, customer complaints

Estimation Failure to meet agreed schedule, failure to clear reported defects

Figure 5.14 Risk
factors

■ Good software project management is essential if software engineering projects are to be
developed on schedule and within budget.

■ Software management is distinct from other engineering management. Software is
intangible. Projects may be novel or innovative so there is no body of experience to guide
their management. Software processes are not well understood.

■ Software managers have diverse roles. Their most significant activities are project planning,
estimating and scheduling. Planning and estimating are iterative processes. They continue
throughout a project. As more information becomes available, plans and schedules must be
revised.

■ A project milestone is a predictable outcome of an activity where some formal report of
progress should be presented to management. Milestones should occur regularly
throughout a software project. A deliverable is a milestone that is delivered to the project
customer.

■ Project scheduling involves the creation of various graphical plan representations of part of
the project plan. These include activity charts showing the interrelationships of project
activities and bar charts showing activity durations.

■ Major project risks should be identified and assessed to establish their probability and the
consequences for the project. You should make plans to avoid, manage or deal with likely
risks if or when they arise. Risks should be explicitly discussed at each project progress
meeting.

K E Y P O I N TS

SE8_C05.qxd 4/4/06 8:59 Page 111

112 Chapter 5 ■ Project management

F U R T H E R R E A D I N G

Waltzing with Bears: Managing Risk on Software Projects. A very practical and easy-to-read
introduction to risks and risk management. (T. DeMarco and T. Lister, 2003, Dorset House.)

Managing Software Quality and Business Risk. Chapter 3 of this book is simply the best discussion
of risk that I have seen anywhere. The book is oriented around risk and I think it is probably the
best book on this topic currently available. (M. Ould, 1999, John Wiley & Sons.)

The Mythical Man Month (Anniversary Edition). The problems of software management have been
unchanged since the 1960s and this is one of the best books on the topic. An interesting and
readable account of the management of one of the first very large software projects, the IBM
OS/360 operating system. The anniversary edition (published 20 years after the original edition in
1975) includes other classic papers by Brooks. (F. P. Brooks, 1995, Addison-Wesley.)

Software Project Survival Guide. This is a very pragmatic account of software management, but it
contains good practical advice. It is easy to read and understand. (S. McConnell, 1998, Microsoft
Press.)

See Part 6 for other readings on management.

E X E R C I S E S

5.1 Explain why the intangibility of software systems poses special problems for software project
management.

5.2 Explain why the best programmers do not always make the best software managers. You may
find it helpful to base your answer on the list of management activities in Section 5.1.

5.3 Explain why the process of project planning is iterative and why a plan must be continually
reviewed during a software project.

5.4 Briefly explain the purpose of each of the sections in a software project plan.

5.5 What is the critical distinction between a milestone and a deliverable?

5.6 Figure 5.15 sets out a number of activities, durations and dependencies. Draw an activity
chart and a bar chart showing the project schedule.

5.7 Figure 5.5 gives task durations for software project activities. Assume that a serious,
unanticipated setback occurs and instead of taking 10 days, task T5 takes 40 days. Revise
the activity chart accordingly, highlighting the new critical path. Draw up new bar charts
showing how the project might be reorganised.

5.8 Using reported instances of project problems in the literature, list management difficulties
that occurred in these failed programming projects. (I suggest that you start with Brooks’s
book, as suggested in Further Reading.)

••••

SE8_C05.qxd 4/4/06 8:59 Page 112

Chapter 5 ■ Exercises 113

5.9 In addition to the risks shown in Figure 5.11, identify six other possible risks that could arise
in software projects.

5.10 Fixed-price contracts, where the contractor bids a fixed price to complete a system
development, may be used to move project risk from client to contractor. If anything goes
wrong, the contractor has to pay. Suggest how the use of such contracts may increase the
likelihood that product risks will arise.

5.11 You are asked by your manager to deliver software to a schedule that you know can only be
met by asking your project team to work unpaid overtime. All team members have young
children. Discuss whether you should accept this demand from your manager or whether you
should persuade your team to give their time to the organisation rather than to their families.
What factors might be significant in your decision?

5.12 As a programmer, you are offered a promotion to project management but you feel that you
can make a more effective contribution in a technical rather than a managerial role. Discuss
whether you should accept the promotion.

••••

Task Duration (days) Dependencies

T1 10

T2 15 T1

T3 10 T1, T2

T4 20

T5 10

T6 15 T3, T4

T7 20 T3

T8 35 T7

T9 15 T6

T10 5 T5, T9

T11 10 T9

T12 20 T10

T13 35 T3, T4

T14 10 T8, T9

T15 20 T12, T14

T16 10 T15

Figure 5.15 Task
durations and
dependencies

SE8_C05.qxd 4/4/06 8:59 Page 113

••

SE8_C05.qxd 4/4/06 8:59 Page 114

2REQUIREMENTS

PART

SE8_C06.qxd 4/4/06 9:00 Page 115

••

Perhaps the major problem that we face in developing large and complex soft-
ware systems is that of requirements engineering. Requirements engineering
is concerned with establishing what the system should do, its desired and essen-
tial emergent properties, and the constraints on system operation and the soft-
ware development processes. You can therefore think of requirements
engineering as the communications process between the software customers
and users and the software developers.

Requirements engineering is not simply a technical process. The system require-
ments are influenced by users’ likes, dislikes and prejudices, and by political
and organisational issues. These are fundamental human characteristics, and
new technologies, such as use-cases, scenarios and formal methods, don’t help
us much in resolving these thorny problems.

The chapters in this section fall into two classes—in Chapters 6 and 7 I intro-
duce the basics of requirements engineering, and in Chapters 8 to 10 I
describe models and techniques that are used in the requirements engineer-
ing process. More specifically:

1. The topic of Chapter 6 is software requirements and requirements documents.
I discuss what is meant by a requirement, different types of requirements
and how these requirements are organised into a requirements specifica-
tion document. I introduce the second running case study—a library system—
in this chapter.

2. In Chapter 7, I focus on the activities in the requirements engineering pro-
cess. I discuss how feasibility studies should always be part of requirements
engineering, techniques for requirements elicitation and analysis, and
requirements validation. Because requirements inevitably change, I also
cover the important topic of requirements management.

3. Chapter 8 describes types of system models that may be developed in the
requirements engineering process. These provide a more detailed descrip-
tion for system developers. The emphasis here is on object-oriented mod-
elling but I also include a description of data-flow diagrams. I find these are
intuitive and helpful, especially for giving you an end-to-end picture of how
information is processed by a system.

4. The emphasis in Chapters 9 and 10 is on critical systems specification. In Chapter
9, I discuss the specification of emergent dependability properties. I describe
risk-driven approaches and specific issues of safety, reliability and security spec-
ification. In Chapter 10, I introduce formal specification techniques. Formal meth-
ods have had less impact than was once predicted but they are being
increasingly used in the specification of safety and mission-critical systems. I
cover both algebraic and model-based approaches in this chapter.

SE8_C06.qxd 4/4/06 9:00 Page 116

••

Software requirements
6

Objectives
The objectives of this chapter are to introduce software system
requirements and to explain different ways of expressing software
requirements. When you have read the chapter, you will:

■ understand the concepts of user requirements and system
requirements and why these requirements should be written in
different ways;

■ understand the differences between functional and non-functional
software requirements;

■ understand how requirements may be organised in a software
requirements document.

Contents
6.1 Functional and non-functional requirements

6.2 User requirements

6.3 System requirements

6.4 Interface specification

6.5 The software requirements document

SE8_C06.qxd 4/4/06 9:00 Page 117

••••

118 Chapter 6 ■ Software requirements

The requirements for a system are the descriptions of the services provided by the
system and its operational constraints. These requirements reflect the needs of cus-
tomers for a system that helps solve some problem such as controlling a device,
placing an order or finding information. The process of finding out, analysing, doc-
umenting and checking these services and constraints is called requirements engi-
neering (RE). In this chapter, I concentrate on the requirements themselves and how
to describe them. I introduced the requirements engineering process in Chapter 4
and I discuss the RE process in more detail in Chapter 7.

The term requirement is not used in the software industry in a consistent way.
In some cases, a requirement is simply a high-level, abstract statement of a service
that the system should provide or a constraint on the system. At the other extreme,
it is a detailed, formal definition of a system function. Davis (Davis, 1993) explains
why these differences exist:

If a company wishes to let a contract for a large software development project,
it must define its needs in a sufficiently abstract way that a solution is not pre-
defined. The requirements must be written so that several contractors can bid for
the contract, offering, perhaps, different ways of meeting the client organisation’s
needs. Once a contract has been awarded, the contractor must write a system
definition for the client in more detail so that the client understands and can val-
idate what the software will do. Both of these documents may be called the require-
ments document for the system.

Some of the problems that arise during the requirements engineering process are a result
of failing to make a clear separation between these different levels of description. I dis-
tinguish between them by using the term user requirements to mean the high-level abstract
requirements and system requirements to mean the detailed description of what the sys-
tem should do. User requirements and system requirements may be defined as follows:

1. User requirements are statements, in a natural language plus diagrams, of what
services the system is expected to provide and the constraints under which it
must operate.

2. System requirements set out the system’s functions, services and operational
constraints in detail. The system requirements document (sometimes called a
functional specification) should be precise. It should define exactly what is to
be implemented. It may be part of the contract between the system buyer and
the software developers.

Different levels of system specification are useful because they communicate infor-
mation about the system to different types of readers. Figure 6.1 illustrates the dis-
tinction between user and system requirements. This example from a library system
shows how a user requirement may be expanded into several system requirements.
You can see from Figure 6.1 that the user requirement is more abstract, and the
system requirements add detail, explaining the services and functions that should
be provided by the system to be developed.

SE8_C06.qxd 4/4/06 9:00 Page 118

••••

You need to write requirements at different levels of detail because different types
of readers use them in different ways. Figure 6.2 shows the types of readers for the
user and system requirements. The readers of the user requirements are not usually
concerned with how the system will be implemented and may be managers who
are not interested in the detailed facilities of the system. The readers of the system
requirements need to know more precisely what the system will do because they
are concerned with how it will support the business processes or because they are
involved in the system implementation.

6.1 Functional and non-functional requirements

Software system requirements are often classified as functional requirements, non-
functional requirements or domain requirements:

1. Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs and how the system
should behave in particular situations. In some cases, the functional require-
ments may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions offered
by the system. They include timing constraints, constraints on the development
process and standards. Non-functional requirements often apply to the system as
a whole. They do not usually just apply to individual system features or services.

Figure 6.1 User and
system requirements

6.1 ■ Functional and non-functional requirements 119

SE8_C06.qxd 4/4/06 9:00 Page 119

••••

120 Chapter 6 ■ Software requirements

3. Domain requirements These are requirements that come from the application
domain of the system and that reflect characteristics and constraints of that domain.
They may be functional or non-functional requirements

In reality, the distinction between different types of requirements is not as clear-cut
as these simple definitions suggest. A user requirement concerned with security, say,
may appear to be a non-functional requirement. However, when developed in more
detail, this requirement may generate other requirements that are clearly functional,
such as the need to include user authentication facilities in the system.

6.1.1 Functional requirements

The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users
of the software and the general approach taken by the organisation when writing
requirements. When expressed as user requirements, the requirements are usually
described in a fairly abstract way. However, functional system requirements
describe the system function in detail, its inputs and outputs, exceptions, and so on.

Functional requirements for a software system may be expressed in a number of
ways. For example, here are examples of functional requirements for a university
library system called LIBSYS, used by students and faculty to order books and doc-
uments from other libraries.

1. The user shall be able to search either all of the initial set of databases or select
a subset from it.

2. The system shall provide appropriate viewers for the user to read documents
in the document store.

3. Every order shall be allocated a unique identifier (ORDER_ID), which the user
shall be able to copy to the account’s permanent storage area.

These functional user requirements define specific facilities to be provided by
the system. These have been taken from the user requirements document, and they

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

User
requirements

System
requirements

Figure 6.2 Readers of
different types of
specification

SE8_C06.qxd 4/4/06 9:00 Page 120

••••

illustrate that functional requirements may be written at different levels of detail
(contrast requirements 1 and 3).

The LIBSYS system is a single interface to a range of article databases. It allows
users to download copies of published articles in magazines, newspapers and sci-
entific journals. I give a more detailed description of the requirements for the sys-
tem on which LIBSYS is based in my book with Gerald Kotonya on requirements
engineering (Kotonya and Sommerville, 1998).

Imprecision in the requirements specification is the cause of many software engi-
neering problems. It is natural for a system developer to interpret an ambiguous
requirement to simplify its implementation. Often, however, this is not what the cus-
tomer wants. New requirements have to be established and changes made to the
system. Of course, this delays system delivery and increases costs.

Consider the second example requirement for the library system that refers to
‘appropriate viewers’ provided by the system. The library system can deliver doc-
uments in a range of formats; the intention of this requirement is that viewers for
all of these formats should be available. However, the requirement is worded
ambiguously; it does not make clear that viewers for each document format should
be provided. A developer under schedule pressure might simply provide a text viewer
and claim that the requirement had been met.

In principle, the functional requirements specification of a system should be both
complete and consistent. Completeness means that all services required by the user
should be defined. Consistency means that requirements should not have contra-
dictory definitions. In practice, for large, complex systems, it is practically impos-
sible to achieve requirements consistency and completeness.

One reason for this is that it is easy to make mistakes and omissions when writ-
ing specifications for large, complex systems. Another reason is that different sys-
tem stakeholders (see Chapter 7) have different—and often inconsistent—needs. These
inconsistencies may not be obvious when the requirements are first specified, so
inconsistent requirements are included in the specification. The problems may only
emerge after deeper analysis or, sometimes, after development is complete and the
system is delivered to the customer.

6.1.2 Non-functional requirements

Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific functions delivered by the system. They may
relate to emergent system properties such as reliability, response time and store occu-
pancy. Alternatively, they may define constraints on the system such as the capa-
bilities of I/O devices and the data representations used in system interfaces.

Non-functional requirements are rarely associated with individual system features.
Rather, these requirements specify or constrain the emergent properties of the sys-
tem, as discussed in Chapter 2. Therefore, they may specify system performance,
security, availability, and other emergent properties. This means that they are often

6.1 ■ Functional and non-functional requirements 121

SE8_C06.qxd 4/4/06 9:00 Page 121

••••

122 Chapter 6 ■ Software requirements

more critical than individual functional requirements. System users can usually find
ways to work around a system function that doesn’t really meet their needs.
However, failing to meet a non-functional requirement can mean that the whole sys-
tem is unusable. For example, if an aircraft system does not meet its reliability require-
ments, it will not be certified as safe for operation; if a real-time control system
fails to meet its performance requirements, the control functions will not operate
correctly.

Non-functional requirements are not just concerned with the software system to
be developed. Some non-functional requirements may constrain the process that should
be used to develop the system. Examples of process requirements include a speci-
fication of the quality standards that should be used in the process, a specification
that the design must be produced with a particular CASE toolset and a description
of the process that should be followed.

Non-functional requirements arise through user needs, because of budget con-
straints, because of organisational policies, because of the need for interoperability
with other software or hardware systems, or because of external factors such as safety
regulations or privacy legislation. Figure 6.3 is a classification of non-functional
requirements. You can see from this diagram that the non-functional requirements
may come from required characteristics of the software (product requirements), the
organization developing the software (organizational requirements) or from exter-
nal sources.

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organisational
requirements

External
requirements

Non-functional
requirements

Figure 6.3 Types of
non-functional
requirements

SE8_C06.qxd 4/4/06 9:00 Page 122

••••

The types of non-functional requirements are:

1. Product requirements These requirements specify product behaviour.
Examples include performance requirements on how fast the system must exe-
cute and how much memory it requires; reliability requirements that set out the
acceptable failure rate; portability requirements; and usability requirements.

2. Organisational requirements These requirements are derived from policies and
procedures in the customer’s and developer’s organisation. Examples include
process standards that must be used; implementation requirements such as the
programming language or design method used; and delivery requirements that
specify when the product and its documentation are to be delivered.

3. External requirements This broad heading covers all requirements that are derived
from factors external to the system and its development process. These may
include interoperability requirements that define how the system interacts with
systems in other organisations; legislative requirements that must be followed
to ensure that the system operates within the law; and ethical requirements. Ethical
requirements are requirements placed on a system to ensure that it will be accept-
able to its users and the general public.

Figure 6.4 shows examples of product, organisational and external requirements
taken from the library system LIBSYS whose user requirements were discussed in
Section 6.1.1. The product requirement restricts the freedom of the LIBSYS
designers in the implementation of the system user interface. It says nothing about
the functionality of LIBSYS and clearly identifies a system constraint rather than
a function. This requirement has been included because it simplifies the problem
of ensuring the system works with different browsers.

The organisational requirement specifies that the system must be developed accord-
ing to a company standard process defined as XYZCo-SP-STAN-95. The external
requirement is derived from the need for the system to conform to privacy legisla-
tion. It specifies that library staff should not be allowed access to data, such as the
addresses of system users, which they do not need to do their job.

Product requirement
8.1 The user interface for LIBSYS shall be implemented as simple HTML without
frames or Java applets.

Organisational requirement
9.3.2 The system development process and deliverable documents shall conform to
the process and deliverables defined in XYZCo-SP-STAN-95.

External requirement
10.6 The system shall not disclose any personal information about system users
apart from their name and library reference number to the library staff who use the
system.

Figure 6.4 Examples
of non-functional
requirements

6.1 ■ Functional and non-functional requirements 123

SE8_C06.qxd 4/4/06 9:00 Page 123

••••

124 Chapter 6 ■ Software requirements

A common problem with non-functional requirements is that they can be diffi-
cult to verify. Users or customers often state these requirements as general goals
such as ease of use, the ability of the system to recover from failure or rapid user
response. These vague goals cause problems for system developers as they leave
scope for interpretation and subsequent dispute once the system is delivered. As an
illustration of this problem, consider Figure 6.5. This shows a system goal relating
to the usability of a traffic control system and is typical of how a user might express
usability requirements. I have rewritten it to show how the goal can be expressed
as a ‘testable’ non-functional requirement. While it is impossible to objectively ver-
ify the system goal, you can design system tests to count the errors made by con-
trollers using a system simulator.

Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested. Figure 6.6 shows a number of possible met-
rics that you can use to specify non-functional system properties. You can measure
these characteristics when the system is being tested to check whether or not the
system has met its non-functional requirements.

In practice, however, customers for a system may find it practically impossible
to translate their goals into quantitative requirements. For some goals, such as main-
tainability, there are no metrics that can be used. In other cases, even when quan-
titative specification is possible, customers may not be able to relate their needs to
these specifications. They don’t understand what some number defining the
required reliability (say) means in terms of their everyday experience with com-
puter systems. Furthermore, the cost of objectively verifying quantitative non-
functional requirements may be very high, and the customers paying for the system
may not think these costs are justified.

Therefore, requirements documents often include statements of goals mixed with
requirements. These goals may be useful to developers because they give indica-
tions of customer priorities. However, you should always tell customers that they
are open to misinterpretation and cannot be objectively verified.

Non-functional requirements often conflict and interact with other functional or
non-functional requirements. For example, it may be a requirement that the
maximum memory used by a system should be no more than 4 Mbytes. Memory
constraints are common for embedded systems where space or weight is limited
and the number of ROM chips storing the system software must be minimised. Another
requirement might be that the system should be written using Ada, a programming

A system goal
The system should be easy to use by experienced controllers and should be
organised in such a way that user errors are minimised.

A verifiable non-functional requirement
Experienced controllers shall be able to use all the system functions after a total of
two hours’ training. After this training, the average number of errors made by
experienced users shall not exceed two per day.

Figure 6.5 System
goals and verifiable
requirements

SE8_C06.qxd 4/4/06 9:00 Page 124

••••

language for critical, real-time software development. However, it may not be pos-
sible to compile an Ada program with the required functionality into less that 4 Mbytes.
There therefore has to be a trade-off between these requirements: an alternative devel-
opment language or increased memory added to the system.

It is helpful if you can differentiate functional and non-functional requirements
in the requirements document. In practice, this is difficult to do. If the non-func-
tional requirements are stated separately from the functional requirements, it is some-
times difficult to see the relationships between them. If they are stated with the
functional requirements, you may find it difficult to separate functional and non-
functional considerations and to identify requirements that relate to the system as
a whole. However, you should explicitly highlight requirements that are clearly related
to emergent system properties, such as performance or reliability. You can do this
by putting them in a separate section of the requirements document or by distin-
guishing them, in some way, from other system requirements.

Non-functional requirements such as safety and security requirements are par-
ticularly important for critical systems. I therefore discuss dependability require-
ments in more detail in Chapter 9, which covers critical systems specification.

6.1.3 Domain requirements

Domain requirements are derived from the application domain of the system rather
than from the specific needs of system users. They usually include specialised domain
terminology or reference to domain concepts. They may be new functional require-

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target-dependent statements
Number of target systems

Figure 6.6 Metrics
for specifying
non-functional
requirements

6.1 ■ Functional and non-functional requirements 125

SE8_C06.qxd 4/4/06 9:00 Page 125

••••

126 Chapter 6 ■ Software requirements

ments in their own right, constrain existing functional requirements or set out how
particular computations must be carried out. Because these requirements are spe-
cialised, software engineers often find it difficult to understand how they are related
to other system requirements.

Domain requirements are important because they often reflect fundamentals of
the application domain. If these requirements are not satisfied, it may be impossi-
ble to make the system work satisfactorily. The LIBSYS system includes a num-
ber of domain requirements:

1. There shall be a standard user interface to all databases that shall be based on
the Z39.50 standard.

2. Because of copyright restrictions, some documents must be deleted immedi-
ately on arrival. Depending on the user’s requirements, these documents will
either be printed locally on the system server for manual forwarding to the user
or routed to a network printer.

The first requirement is a design constraint. It specifies that the user interface to
the database must be implemented according to a specific library standard. The devel-
opers therefore have to find out about that standard before starting the interface design.
The second requirement has been introduced because of copyright laws that apply
to material used in libraries. It specifies that the system must include an automatic
delete-on-print facility for some classes of document. This means that users of the
library system cannot have their own electronic copy of the document.

To illustrate domain requirements that specify how a computation is carried out,
consider Figure 6.7, taken from the requirements specification for an automated train
protection system. This system automatically stops a train if it goes through a red
signal. This requirement states how the train deceleration is computed by the sys-
tem. It uses domain-specific terminology. To understand it, you need some under-
standing of the operation of railway systems and train characteristics.

The requirement for the train system illustrates a major problem with domain require-
ments. They are written in the language of the application domain (mathematical equa-
tions in this case), and it is often difficult for software engineers to understand them.
Domain experts may leave information out of a requirement simply because it is so
obvious to them. However, it may not be obvious to the developers of the system,
and they may therefore implement the requirement in the wrong way.

The deceleration of the train shall be computed as:

Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81 ms2
* compensated gradient/alpha and where the values of

9.81 ms2/alpha are known for different types of train.

Figure 6.7 A domain
requirement from a
train protection
system

SE8_C06.qxd 4/4/06 9:00 Page 126

••••

6.2 User requirements

The user requirements for a system should describe the functional and non-
functional requirements so that they are understandable by system users without detailed
technical knowledge. They should only specify the external behaviour of the sys-
tem and should avoid, as far as possible, system design characteristics.
Consequently, if you are writing user requirements, you should not use software
jargon, structured notations or formal notations, or describe the requirement by describ-
ing the system implementation. You should write user requirements in simple lan-
guage, with simple tables and forms and intuitive diagrams.

However, various problems can arise when requirements are written in natural
language sentences in a text document:

1. Lack of clarity It is sometimes difficult to use language in a precise and unam-
biguous way without making the document wordy and difficult to read.

2. Requirements confusion Functional requirements, non-functional requirements,
system goals and design information may not be clearly distinguished.

3. Requirements amalgamation Several different requirements may be expressed
together as a single requirement.

As an illustration of some of these problems, consider one of the requirements
for the library shown in Figure 6.8.

This requirement includes both conceptual and detailed information. It expresses
the concept that there should be an accounting system as an inherent part of LIB-
SYS. However, it also includes the detail that the accounting system should sup-
port discounts for regular LIBSYS users. This detail would have been better left to
the system requirements specification.

It is good practice to separate user requirements from more detailed system require-
ments in a requirements document. Otherwise, non-technical readers of the user require-
ments may be overwhelmed by details that are really only relevant for technicians.
Figure 6.9 illustrates this confusion. This example is taken from an actual require-
ments document for a CASE tool for editing software design models. The user may
specify that a grid should be displayed so that entities may be accurately positioned
in a diagram.

6.2 ■ User requirements 127

4.5 LIBSYS shall provide a financial accounting system that maintains records of all
payments made by users of the system. System managers may configure this system
so that regular users may receive discounted rates.

Figure 6.8 A user
requirement for an
accounting system
in LIBSYS

SE8_C06.qxd 4/4/06 9:00 Page 127

••••

128 Chapter 6 ■ Software requirements

The first sentence mixes up three kinds of requirements.

1. A conceptual, functional requirement states that the editing system should pro-
vide a grid. It presents a rationale for this.

2. A non-functional requirement giving detailed information about the grid units
(centimetres or inches).

3. A non-functional user interface requirement that defines how the grid is
switched on and off by the user.

The requirement in Figure 6.9 also gives some but not all initialisation infor-
mation. It defines that the grid is initially off. However, it does not define its units
when turned on. It provides some detailed information—namely, that the user may
toggle between units—but not the spacing between grid lines.

User requirements that include too much information constrain the freedom of
the system developer to provide innovative solutions to user problems and are dif-
ficult to understand. The user requirement should simply focus on the key facili-
ties to be provided. I have rewritten the editor grid requirement (Figure 6.10) to
focus only on the essential system features.

Whenever possible, you should try to associate a rationale with each user
requirement. The rationale should explain why the requirement has been included
and is particularly useful when requirements are changed. For example, the ratio-
nale in Figure 6.10 recognises that an active grid where positioned objects auto-
matically ‘snap’ to a grid line can be useful. However, this has been deliberately
rejected in favour of manual positioning. If a change to this is proposed at some
later stage, it will be clear that the use of a passive grid was deliberate rather than
an implementation decision.

To minimise misunderstandings when writing user requirements, I recommend
that you follow some simple guidelines:

1. Invent a standard format and ensure that all requirement definitions adhere to
that format. Standardising the format makes omissions less likely and require-
ments easier to check. The format I use shows the initial requirement in bold-
face, including a statement of rationale with each user requirement and a
reference to the more detailed system requirement specification. You may also

2.6 Grid facilities To assist in the positioning of entities on a diagram, the user
may turn on a grid in either centimetres or inches, via an option on the control
panel. Initially, the grid is off. The grid may be turned on and off at any time during
an editing session and can be toggled between inches and centimetres at any time.
A grid option will be provided on the reduce-to-fit view but the number of grid lines
shown will be reduced to avoid filling the smaller diagram with grid lines.

Figure 6.9 A user
requirement for an
editor grid

SE8_C06.qxd 4/4/06 9:00 Page 128

••••

include information on who proposed the requirement (the requirement source)
so that you know whom to consult if the requirement has to be changed.

2. Use language consistently. You should always distinguish between mandatory
and desirable requirements. Mandatory requirements are requirements that the
system must support and are usually written using ‘shall’. Desirable require-
ments are not essential and are written using ‘should’.

3. Use text highlighting (bold, italic or colour) to pick out key parts of the
requirement.

4. Avoid, as far as possible, the use of computer jargon. Inevitably, however, detailed
technical terms will creep into the user requirements.

The Robertsons (Robertson and Robertson, 1999), in their book that covers the
VOLERE requirements engineering method, recommend that user requirements be
initially written on cards, one requirement per card. They suggest a number of fields
on each card, such as the requirements rationale, the dependencies on other require-
ments, the source of the requirements, supporting materials, and so on. This
extends the format that I have used in Figure 6.10, and it can be used for both user
and system requirements.

6.3 System requirements

System requirements are expanded versions of the user requirements that are used
by software engineers as the starting point for the system design. They add detail
and explain how the user requirements should be provided by the system. They may

2.6.1 Grid facilities

The editor shall provide a grid facility where a matrix of horizontal and vertical
lines provide a background to the editor window. This grid shall be a passive grid
where the alignment of entities is the user’s responsibility.

Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities ‘snap-to’ grid lines can be
useful, the positioning is imprecise. The user is the best person to decide
where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

Source: Ray Wilson, Glasgow Office

Figure 6.10
A definition of an
editor grid facility

6.3 ■ System requirements 129

SE8_C06.qxd 4/4/06 9:00 Page 129

••••

130 Chapter 6 ■ Software requirements

be used as part of the contract for the implementation of the system and should
therefore be a complete and consistent specification of the whole system.

Ideally, the system requirements should simply describe the external behaviour
of the system and its operational constraints. They should not be concerned with
how the system should be designed or implemented. However, at the level of detail
required to completely specify a complex software system, it is impossible, in prac-
tice, to exclude all design information. There are several reasons for this:

1. You may have to design an initial architecture of the system to help structure
the requirements specification. The system requirements are organised accord-
ing to the different sub-systems that make up the system. As I discuss in Chapter
7 and Chapter 18, this architectural definition is essential if you want to reuse
software components when implementing the system.

2. In most cases, systems must interoperate with other existing systems. These con-
strain the design, and these constraints impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements (such
as N-version programming to achieve reliability, discussed in Chapter 20) may
be necessary. An external regulator who needs to certify that the system is safe
may specify that an architectural design that has already been certified be used.

Natural language is often used to write system requirements specifications as
well as user requirements. However, because system requirements are more
detailed than user requirements, natural language specifications can be confusing
and hard to understand:

1. Natural language understanding relies on the specification readers and writers
using the same words for the same concept. This leads to misunderstandings
because of the ambiguity of natural language. Jackson (Jackson, 1995) gives
an excellent example of this when he discusses signs displayed by an escala-
tor. These said ‘Shoes must be worn’ and ‘Dogs must be carried’. I leave it to
you to work out the conflicting interpretations of these phrases.

2. A natural language requirements specification is overflexible. You can say the
same thing in completely different ways. It is up to the reader to find out when
requirements are the same and when they are distinct.

3. There is no easy way to modularise natural language requirements. It may be
difficult to find all related requirements. To discover the consequence of a change,
you may have to look at every requirement rather than at just a group of related
requirements.

Because of these problems, requirements specifications written in natural lan-
guage are prone to misunderstandings. These are often not discovered until later
phases of the software process and may then be very expensive to resolve.

SE8_C06.qxd 4/4/06 9:00 Page 130

••••

It is essential to write user requirements in a language that non-specialists can
understand. However, you can write system requirements in more specialised nota-
tions (Figure 6.11). These include stylised, structured natural language, graphical
models of the requirements such as use-cases to formal mathematical specifications.
In this chapter, I discuss how structured natural language supplemented by simple
graphical models may be used to write system requirements. I discuss graphical sys-
tem modelling in Chapter 8 and formal system specification in Chapter 10.

6.3.1 Structured language specifications

Structured natural language is a way of writing system requirements where the free-
dom of the requirements writer is limited and all requirements are written in a stan-
dard way. The advantage of this approach is that it maintains most of the
expressiveness and understandability of natural language but ensures that some degree
of uniformity is imposed on the specification. Structured language notations limit
the terminology that can be used and use templates to specify system requirements.
They may incorporate control constructs derived from programming languages and
graphical highlighting to partition the specification.

An early project that used structured natural language for specifying system require-
ments is described by Heninger (Heninger, 1980). Special-purpose forms were designed
to describe the input, output and functions of an aircraft software system. The sys-
tem requirements were specified using these forms.

Figure 6.11
Notations for
requirements
specification

Notation Description

Structured natural This approach depends on defining standard forms or
language templates to express the requirements specification.

Design description This approach uses a language like a programming language
languages but with more abstract features to specify the requirements by

defining an operational model of the system. This approach is
not now widely used although it can be useful for interface
specifications.

Graphical notations A graphical language, supplemented by text annotations is
used to define the functional requirements for the system. An
early example of such a graphical language was SADT (Ross,
1977) (Schoman and Ross, 1977). Now, use-case descriptions
(Jacobsen, et al., 1993) and sequence diagrams are commonly
used (Stevens and Pooley, 1999).

Mathematical These are notations based on mathematical concepts such as
specifications finite-state machines or sets. These unambiguous specifications

reduce the arguments between customer and contractor about
system functionality. However, most customers don’t
understand formal specifications and are reluctant to accept it
as a system contract.

6.3 ■ System requirements 131

SE8_C06.qxd 4/4/06 9:00 Page 131

••••

132 Chapter 6 ■ Software requirements

To use a form-based approach to specifying system requirements, you must define
one or more standard forms or templates to express the requirements. The specifi-
cation may be structured around the objects manipulated by the system, the func-
tions performed by the system or the events processed by the system. An example
of such a form-based specification is shown in Figure 6.12. I have taken this exam-
ple from the insulin pump system that was introduced in Chapter 3.

The insulin pump bases its computations of the user’s insulin requirement on the
rate of change of blood sugar levels. These rates of change computed using the cur-
rent and previous readings. You can download a complete version of the specifi-
cation for the insulin pump from the book’s web pages.

When a standard form is used for specifying functional requirements, the fol-
lowing information should be included:

1. Description of the function or entity being specified

2. Description of its inputs and where these come from

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose—the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is
increasing but the rate of increase is decreasing. If the level is increasing and the
rate of increase is increasing, then CompDose is computed by dividing the difference
between the current sugar level and the previous level by 4 and rounding the result.
If the result, is rounded to zero then CompDose is set to the minimum dose that
can be delivered.

Requires Two previous readings so that the rate of change of sugar level can
be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single
dose of insulin.

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side effects None

Figure 6.12 System
requirements
specification using a
standard form

SE8_C06.qxd 4/4/06 9:00 Page 132

••••

3. Description of its outputs and where these go to

4. Indication of what other entities are used (the requires part)

5. Description of the action to be taken

6. If a functional approach is used, a pre-condition setting out what must be true
before the function is called and a post-condition specifying what is true after
the function is called

7. Description of the side effects (if any) of the operation.

Using formatted specifications removes some of the problems of natural language
specification. Variability in the specification is reduced and requirements are
organised more effectively. However, it is difficult to write requirements in an unam-
biguous way, particularly when complex computations are required. You can see
this in the description shown in Figure 6.12, where it isn’t made clear what hap-
pens if the pre-condition is not satisfied.

To address this problem, you can add extra information to natural language require-
ments using tables or graphical models of the system. These can show how com-
putations proceed, how the system state changes, how users interact with the
system and how sequences of actions are performed.

Tables are particularly useful when there are a number of possible alternative
situations and you need to describe the actions to be taken for each of these. Figure
6.13 is a revised description of the computation of the insulin dose.

Graphical models are most useful when you need to show how state changes
(see Chapter 8) or where you need to describe a sequence of actions. Figure 6.14
illustrates the sequence of actions when a user wishes to withdraw cash from an
automated teller machine (ATM).

You should read a sequence diagram from top to bottom to see the order of the
actions that take place. In Figure 6.14, there are three basic sub-sequences:

1. Validate card The user’s card is validated by checking the card number and
user’s PIN.

2. Handle request The user’s request is handled by the system. For a withdrawal,
the database must be queried to check the user’s balance and to debit the amount
withdrawn. Notice the exception here if the requestor does not have enough
money in their account.

3. Complete transaction The user’s card is returned and, when it is removed, the
cash and receipt are delivered.

You will see sequence diagrams again in Chapter 8, which covers system mod-
els, and in Chapter 14, which covers object-oriented design.

6.3 ■ System requirements 133

SE8_C06.qxd 4/4/06 9:00 Page 133

••••

134 Chapter 6 ■ Software requirements

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of increase CompDose = 0
decreasing ((r2 – r1) < (r1 – r0))

Sugar level increasing and rate of increase CompDose = round ((r2 – r1)/4)
stable or increasing. ((r2 – r1) > (r1 – r0)) If rounded result = 0 then

CompDose = MinimumDose

Figure 6.13 Tabular
specification of
computation

Figure 6.14
Sequence diagram of
ATM withdrawal

SE8_C06.qxd 4/4/06 9:00 Page 134

••••

6.4 Interface specification

Almost all software systems must operate with existing systems that have already
been implemented and installed in an environment. If the new system and the exist-
ing systems must work together, the interfaces of existing systems have to be pre-
cisely specified. These specifications should be defined early in the process and
included (perhaps as an appendix) in the requirements document.

There are three types of interface that may have to be defined:

1. Procedural interfaces where existing programs or sub-systems offer a range of
services that are accessed by calling interface procedures. These interfaces are
sometimes called Application Programming Interfaces (APIs).

2. Data structures that are passed from one sub-system to another. Graphical data
models (described in Chapter 8) are the best notations for this type of descrip-
tion. If necessary, program descriptions in Java or C++ can be generated auto-
matically from these descriptions.

3. Representations of data (such as the ordering of bits) that have been established
for an existing sub-system. These interfaces are most common in embedded,
real-time system. Some programming languages such as Ada (although not Java)
support this level of specification. However, the best way to describe these is
probably to use a diagram of the structure with annotations explaining the func-
tion of each group of bits.

Formal notations, discussed in Chapter 10, allow interfaces to be defined in an
unambiguous way, but their specialised nature means that they are not understand-
able without special training. They are rarely used in practice for interface specifi-
cation although, in my view, they are ideally suited for this purpose. A
programming language such as Java can be used to describe the syntax of the inter-
face. However, this has to be supplemented by further description explaining the
semantics of each of the defined operations.

Figure 6.15 is an example of a procedural interface definition defined in Java.
In this case, the interface is the procedural interface offered by a print server. This
manages a queue of requests to print files on different printers. Users may exam-
ine the queue associated with a printer and may remove their print jobs from that
queue. They may also switch jobs from one printer to another. The specification in
Figure 6.15 is an abstract model of the print server that does not reveal any inter-
face details. The functionality of the interface operations can be defined using struc-
tured natural language or tabular description.

6.4 ■ Interface specification 135

SE8_C06.qxd 4/4/06 9:00 Page 135

••••

136 Chapter 6 ■ Software requirements

6.5 The software requirements document

The software requirements document (sometimes called the software requirements
specification or SRS) is the official statement of what the system developers should
implement. It should include both the user requirements for a system and a detailed
specification of the system requirements. In some cases, the user and system
requirements may be integrated into a single description. In other cases, the user
requirements are defined in an introduction to the system requirements specifica-
tion. If there are a large number of requirements, the detailed system requirements
may be presented in a separate document.

The requirements document has a diverse set of users, ranging from the senior
management of the organisation that is paying for the system to the engineers respon-
sible for developing the software. Figure 6.16, taken from my book with Gerald
Kotonya on requirements engineering (Kotonya and Sommerville, 1998) illustrates
possible users of the document and how they use it.

The diversity of possible users means that the requirements document has to be
a compromise between communicating the requirements to customers, defining the
requirements in precise detail for developers and testers, and including information
about possible system evolution. Information on anticipated changes can help sys-
tem designers avoid restrictive design decisions and help system maintenance engi-
neers who have to adapt the system to new requirements.

The level of detail that you should include in a requirements document depends
on the type of system that is being developed and the development process used.
When the system will be developed by an external contractor, critical system spec-
ifications need to be precise and very detailed. When there is more flexibility in
the requirements and where an in-house, iterative development process is used, the
requirements document can be much less detailed and any ambiguities resolved dur-
ing development of the system.

A number of large organisations, such as the US Department of Defense and the
IEEE, have defined standards for requirements documents. Davis (Davis, 1993) dis-
cusses some of these standards and compares their contents. The most widely known

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer

Figure 6.15 The Java
PDL description of a
print server interface

SE8_C06.qxd 4/4/06 9:00 Page 136

••••

standard is IEEE/ANSI 830-1998 (IEEE, 1998). This IEEE standard suggests the
following structure for requirements documents:

1. Introduction
1.1 Purpose of the requirements document
1.2 Scope of the product
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the remainder of the document

2. General description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies

3. Specific requirements cover functional, non-functional and interface require-
ments. This is obviously the most substantial part of the document but because

Use the requirements to
develop validation tests for
the system.

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

Use the requirements to
understand what system is
to be developed.

System test
engineers

Managers

System
engineers

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

System
customers

Use the requirements to
understand the system and
the relationships between its
parts.

System
maintenance

engineers

Figure 6.16 Users of
a requirements
document

6.5 ■ The software requirements document 137

SE8_C06.qxd 4/4/06 9:00 Page 137

••••

138 Chapter 6 ■ Software requirements

of the wide variability in organisational practice, it is not appropriate to define
a standard structure for this section. The requirements may document external
interfaces, describe system functionality and performance, specify logical
database requirements, design constraints, emergent system properties and
quality characteristics.

4. Appendices

5. Index

Although the IEEE standard is not ideal, it contains a great deal of good advice
on how to write requirements and how to avoid problems. It is too general to be
an organisational standard in its own right. It is a general framework that can be
tailored and adapted to define a standard geared to the needs of a particular organ-
isation. Figure 6.17 illustrates a possible organisation for a requirements document
that is based on the IEEE standard. However, I have extended this to include infor-
mation about predicted system evolution. This was first proposed by Heninger
(Heninger, 1980) and, as I have discussed, helps the maintainers of the system and
may allow designers to include support for future system features.

Of course, the information that is included in a requirements document must depend
on the type of software being developed and the approach to development that is
used. If an evolutionary approach is adopted for a software product (say), the require-
ments document will leave out many of detailed chapters suggested above. The focus
will be on defining the user requirements and high-level, non-functional system require-
ments. In this case, the designers and programmers use their judgement to decide
how to meet the outline user requirements for the system.

By contrast, when the software is part of a large system engineering project that
includes interacting hardware and software systems, it is often essential to define
the requirements to a fine level of detail. This means that the requirements docu-
ments are likely to be very long and should include most if not all of the chapters
shown in Figure 6.17. For long documents, it is particularly important to include a
comprehensive table of contents and document index so that readers can find the
information that they need.

Requirements documents are essential when an outside contractor is developing
the software system. However, agile development methods argue that requirements
change so rapidly that a requirements document is out of date as soon as it is writ-
ten, so the effort that is largely wasted. Rather than a formal document, approaches
such as extreme programming (Beck, 1999) propose that user requirements should
be collected incrementally and written on cards. The user then prioritises require-
ments for implementation in the next increment of the system.

For business systems where requirements are unstable, I think that this approach
is a good one. However, I would argue that it is still useful to write a short sup-
porting document that defines the business and dependability requirements for the
system. It is easy to forget the requirements that apply to the system as a whole
when focusing on the functional requirements for the next system release.

SE8_C06.qxd 4/4/06 9:00 Page 138

••••

Chapter Description

Preface This should define the expected readership of the document
and describe its version history, including a rationale for the
creation of a new version and a summary of the changes
made in each version.

Introduction This should describe the need for the system. It should briefly
describe its functions and explain how it will work with other
systems. It should describe how the system fits into the
overall business or strategic objectives of the organisation
commissioning the software.

Glossary This should define the technical terms used in the document.
You should not make assumptions about the experience or
expertise of the reader.

User requirements The services provided for the user and the non-functional
definition system requirements should be described in this section. This

description may use natural language, diagrams or other
notations that are understandable by customers. Product
and process standards which must be followed should be
specified.

System architecture This chapter should present a high-level overview of the
anticipated system architecture showing the distribution of
functions across system modules. Architectural components
that are reused should be highlighted.

System requirements This should describe the functional and non-functional
specification requirements in more detail. If necessary, further detail

may also be added to the non-functional requirements,
e.g. interfaces to other systems may be defined.

System models This should set out one or more system models showing
the relationships between the system components and the
system and its environment. These might be object models,
data-flow models and semantic data models.

System evolution This should describe the fundamental assumptions on which
the system is based and anticipated changes due to hardware
evolution, changing user needs, etc.

Appendices These should provide detailed, specific information which
is related to the application which is being developed.
Examples of appendices that may be included are hardware
and database descriptions. Hardware requirements define the
minimal and optimal configurations for the system. Database
requirements define the logical organisation of the data used
by the system and the relationships between data.

Index Several indexes to the document may be included. As well
as a normal alphabetic index, there may be an index of
diagrams, an index of functions, etc.

Figure 6.17
The structure
of a requirements
document

6.5 ■ The software requirements document 139

SE8_C06.qxd 4/4/06 9:00 Page 139

••••

140 Chapter 6 ■ Software requirements

F U R T H E R R E A D I N G

Software Requirements, 2nd ed. This book, designed for writers and users of requirements,
discusses good requirements engineering practice. (K. M. Weigers, 2003, Microsoft Press.)

Mastering the Requirements Process. A well-written, easy-to-read book that is based on a
particular method (VOLERE) but which also includes lots of good general advice about
requirements engineering. (S. Robertson and J. Robertson, 1999, Addison-Wesley.)

Requirements Engineering: Processes and Techniques. This book covers all aspects of the
requirements engineering process and discusses specific requirements specification techniques.
(G. Kotonya and I. Sommerville, 1999, John Wiley & Sons.)

Software Requirements Engineering. This collection of papers on requirements engineering
includes several relevant articles such as ‘Recommended Practice for Software Requirements
Specification’, a discussion of the IEEE standard for requirements documents. (R. H. Thayer and M.
Dorfman (eds.), 1997, IEEE Computer Society Press.)

■ Requirements for a software system set out what the system should do and define
constraints on its operation and implementation.

■ Functional requirements are statements of the services that the system must provide or are
descriptions of how some computations must be carried out. Domain requirements are
functional requirements that are derived from characteristics of the application domain.

■ Non-functional requirements constrain the system being developed and the development
process that should be used. They may be product requirements, organisational
requirements or external requirements. They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

■ User requirements are intended for use by people involved in using and procuring the
system. They should be written using in natural language, with tables and diagrams that
are easily understood.

■ System requirements are intended to communicate, in a precise way, the functions that the
system must provide. To reduce ambiguity, they may be written in a structured form of
natural language supplemented by tables and system models.

■ The software requirements document is the agreed statement of the system requirements.
It should be organised so that both system customers and software developers can use it.

■ The IEEE standard for requirements documents is a useful starting point for more specific
requirements specification standards.

K E Y P O I N TS

SE8_C06.qxd 4/4/06 9:00 Page 140

••••

E X E R C I S E S

6.1 Identify and briefly describe four types of requirements that may be defined for a computer-
based system

6.2 Discuss the problems of using natural language for defining user and system requirements,
and show, using small examples, how structuring natural language into forms can help avoid
some of these difficulties.

6.3 Discover ambiguities or omissions in the following statement of requirements for part of a
ticket-issuing system.

An automated ticket-issuing system sells rail tickets. Users select their destination and input
a credit card and a personal identification number. The rail ticket is issued and their credit
card account charged. When the user presses the start button, a menu display of potential
destinations is activated, along with a message to the user to select a destination. Once a
destination has been selected, users are requested to input their credit card. Its validity is
checked and the user is then requested to input a personal identifier. When the credit
transaction has been validated, the ticket is issued.

6.4 Rewrite the above description using the structured approach described in this chapter.
Resolve the identified ambiguities in some appropriate way.

6.5 Draw a sequence diagram showing the actions performed in the ticket-issuing system. You
may make any reasonable assumptions about the system. Pay particular attention to
specifying user errors.

6.6 Using the technique suggested here, where natural language is presented in a standard way,
write plausible user requirements for the following functions:

■ The cash-dispensing function in a bank ATM

■ The spelling-check and correcting function in a word processor

■ An unattended petrol (gas) pump system that includes a credit card reader. The customer
swipes the card through the reader and then specifies the amount of fuel required. The
fuel is delivered and the customer’s account debited.

6.7 Describe four types of non-functional requirements that may be placed on a system. Give
examples of each of these types of requirement.

6.8 Write a set of non-functional requirements for the ticket-issuing system, setting out its
expected reliability and its response time.

6.9 Suggest how an engineer responsible for drawing up a system requirements specification
might keep track of the relationships between functional and non-functional requirements.

6.10 You have taken a job with a software user who has contracted your previous employer to
develop a system for them. You discover that your company’s interpretation of the
requirements is different from the interpretation taken by your previous employer. Discuss
what you should do in such a situation. You know that the costs to your current employer
will increase if the ambiguities are not resolved. You have also a responsibility of
confidentiality to your previous employer.

Chapter 6 ■ Exercises 141

SE8_C06.qxd 4/4/06 9:00 Page 141

••

Requirements
engineering processes

7

Objectives
The objective of this chapter is to discuss the activities involved in
the requirements engineering process. When you have read this
chapter, you will:

■ understand the principal requirements of engineering activities
and their relationships;

■ have been introduced to several techniques of requirements
elicitation and analysis;

■ understand the importance of requirements validation and how
requirements reviews are used in this process;

■ understand why requirements management is necessary and how
it supports other requirements engineering activities.

Contents
7.1 Feasibility studies

7.2 Requirements elicitation and analysis

7.3 Requirements validation

7.4 Requirements management

SE8_C07.qxd 4/4/06 9:01 Page 142

••

Chapter 7 ■ Requirements engineering processes 143

The goal of the requirements engineering process is to create and maintain a sys-
tem requirements document. The overall process includes four high-level require-
ments engineering sub-processes. These are concerned with assessing whether the
system is useful to the business (feasibility study); discovering requirements (elic-
itation and analysis); converting these requirements into some standard form (spec-
ification); and checking that the requirements actually define the system that the
customer wants (validation). Figure 7.1 illustrates the relationship between these activ-
ities. It also shows the documents produced at each stage of the requirements engi-
neering process. Specification and documentation are covered in Chapter 6; this chapter
concentrates on the other requirements engineering activities.

The activities shown in Figure 7.1 are concerned with the discovery, documen-
tation and checking of requirements. In virtually all systems, however, requirements
change. The people involved develop a better understanding of what they want the
software to do; the organisation buying the system changes; modifications are made
to the system’s hardware, software and organisational environment. The process of
managing these changing requirements is called requirements management, which
is covered in the final section of this chapter.

I present an alternative perspective on the requirements engineering process in
Figure 7.2. This presents the process as a three-stage activity where the activities
are organised as an iterative process around a spiral. The amount of time and effort
devoted to each activity in an iteration depends on the stage of the overall process
and the type of system being developed. Early in the process, most effort will be
spent on understanding high-level business and non-functional requirements and the
user requirements. Later in the process, in the outer rings of the spiral, more effort
will be devoted to system requirements engineering and system modelling.

This spiral model accommodates approaches to development in which the require-
ments are developed to different levels of detail. The number of iterations around the
spiral can vary, so the spiral can be exited after some or all of the user requirements
have been elicited. If the prototyping activity shown under requirements validation

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

Figure 7.1 The
requirements
engineering process

SE8_C07.qxd 4/4/06 9:01 Page 143

••••

144 Chapter 7 ■ Requirements engineering processes

is extended to include iterative development, as discussed in Chapter 17, this model
allows the requirements and the system implementation to be developed together.

Some people consider requirements engineering to be the process of applying a
structured analysis method such as object-oriented analysis (Larman, 2002). This
involves analysing the system and developing a set of graphical system models, such
as use-case models, that then serve as a system specification. The set of models
describes the behaviour of the system and are annotated with additional informa-
tion describing, for example, its required performance or reliability.

Although structured methods have a role to play in the requirements engineering pro-
cess, there is much more to requirements engineering than is covered by these meth-
ods. Requirements elicitation, in particular, is a human-centred activity and people dislike
the constraints imposed by rigid system models. I focus on general approaches to require-
ments engineering here and cover structured methods and system models in Chapter 8.

7.1 Feasibility studies

For all new systems, the requirements engineering process should start with a fea-
sibility study. The input to the feasibility study is a set of preliminary business require-
ments, an outline description of the system and how the system is intended to support

Figure 7.2 Spiral
model of
requirements
engineering
processes

SE8_C07.qxd 4/4/06 9:01 Page 144

••••

business processes. The results of the feasibility study should be a report that rec-
ommends whether or not it is worth carrying on with the requirements engineering
and system development process.

A feasibility study is a short, focused study that aims to answer a number of
questions:

1. Does the system contribute to the overall objectives of the organisation?

2. Can the system be implemented using current technology and within given cost
and schedule constraints?

3. Can the system be integrated with other systems which are already in place?

The issue of whether or not the system contributes to business objectives is crit-
ical. If a system does not support these objectives, it has no real value to the busi-
ness. While this may seem obvious, many organisations develop systems which do
not contribute to their objectives because they don’t have a clear statement of these
objectives, because they fail to define the business requirements for the system or
because other political or organisation factors influence the system procurement.
Although this is not discussed explicitly, a feasibility study should be part of the
Inception phase in the Rational Unified Process, as discussed in Chapter 4.

Carrying out a feasibility study involves information assessment, information col-
lection and report writing. The information assessment phase identifies the infor-
mation that is required to answer the three questions set out above. Once the
information has been identified, you should talk with information sources to dis-
cover the answers to these questions. Some examples of possible questions that may
be put are:

1. How would the organisation cope if this system were not implemented?

2. What are the problems with current processes and how would a new system
help alleviate these problems?

3. What direct contribution will the system make to the business objectives and
requirements?

4. Can information be transferred to and from other organisational systems?

5. Does the system require technology that has not previously been used in the
organisation?

6. What must be supported by the system and what need not be supported?

In a feasibility study, you may consult information sources such as the managers
of the departments where the system will be used, software engineers who are famil-
iar with the type of system that is proposed, technology experts and end-users of
the system. Normally, you should try to complete a feasibility study in two or three
weeks.

7.1 ■ Feasibility studies 145

SE8_C07.qxd 4/4/06 9:01 Page 145

••••

146 Chapter 7 ■ Requirements engineering processes

Once you have the information, you write the feasibility study report. You should
make a recommendation about whether or not the system development should con-
tinue. In the report, you may propose changes to the scope, budget and schedule of
the system and suggest further high-level requirements for the system.

7.2 Requirements elicitation and analysis

The next stage of the requirements engineering process is requirements elicitation
and analysis. In this activity, software engineers work with customers and system
end-users to find out about the application domain, what services the system should
provide, the required performance of the system, hardware constraints, and so on.

Requirements elicitation and analysis may involve a variety of people in an organ-
isation. The term stakeholder is used to refer to any person or group who will be affected
by the system, directly or indirectly. Stakeholders include end-users who interact with
the system and everyone else in an organisation that may be affected by its installa-
tion. Other system stakeholders may be engineers who are developing or maintaining
related systems, business managers, domain experts and trade union representatives.

Eliciting and understanding stakeholder requirements is difficult for several reasons:

1. Stakeholders often don’t know what they want from the computer system except
in the most general terms. They may find it difficult to articulate what they
want the system to do or make unrealistic demands because they are unaware
of the cost of their requests.

2. Stakeholders naturally express requirements in their own terms and with
implicit knowledge of their own work. Requirements engineers, without expe-
rience in the customer’s domain, must understand these requirements.

3. Different stakeholders have different requirements, which they may express in
different ways. Requirements engineers have to consider all potential sources
of requirements and discover commonalities and conflict.

4. Political factors may influence the requirements of the system. For example,
managers may demand specific system requirements that will increase their influ-
ence in the organisation.

5. The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. Hence the impor-
tance of particular requirements may change. New requirements may emerge
from new stakeholders who were not originally consulted.

A very general process model of the elicitation and analysis process is shown in
Figure 7.3. Each organisation will have its own version or instantiation of this

SE8_C07.qxd 4/4/06 9:01 Page 146

••••

general model, depending on local factors such as the expertise of the staff, the type
of system being developed and the standards used. Again, you can think of these
activities within a spiral so that the activities are interleaved as the process pro-
ceeds from the inner to the outer rings of the spiral.

The process activities are:

1. Requirements discovery This is the process of interacting with stakeholders in
the system to collect their requirements. Domain requirements from stakeholders
and documentation are also discovered during this activity.

2. Requirements classification and organisation This activity takes the unstruc-
tured collection of requirements, groups related requirements and organises them
into coherent clusters.

3. Requirements prioritisation and negotiation Inevitably, where multiple stake-
holders are involved, requirements will conflict. This activity is concerned with

Figure 7.3 The
requirements
elicitation and
analysis process

7.2 ■ Requirements elicitation and analysis 147

SE8_C07.qxd 4/4/06 9:01 Page 147

••

148 Chapter 7 ■ Requirements engineering processes

prioritising requirements, and finding and resolving requirements conflicts
through negotiation.

4. Requirements documentation The requirements are documented and input into
the next round of the spiral. Formal or informal requirements documents may
be produced.

Figure 7.3 shows that requirements elicitation and analysis is an iterative pro-
cess with continual feedback from each activity to other activities. The process cycle
starts with requirements discovery and ends with requirements documentation. The
analyst’s understanding of the requirements improves with each round of the cycle.

In this chapter, I focus primarily on requirements discovery and the various tech-
niques that have been developed to support this. Requirements classification and orga-
nization is primarily concerned with identifying overlapping requirements from
different stakeholders and grouping related requirements. The most common way of
grouping requirements is to use a model of the system architecture to identify sub-
systems and to associate requirements with each sub-system. This emphasises that
requirements engineering and architectural design cannot always be separated.

Inevitably, stakeholders have different views on the importance and priority of
requirements, and sometimes these views conflict. During the process, you should
organise regular stakeholder negotiations so that compromises can be reached. It is
impossible to completely satisfy every stakeholder, but if some stakeholders feel
that their views have not been properly considered, they may deliberately attempt
to undermine the RE process.

In the requirements documentation stage, the requirements that have been
elicited are documented in such a way that they can be used to help with further
requirements discovery. At this stage, an early version of the system requirements
document may be produced, but it will have missing sections and incomplete
requirements. Alternatively, the requirements may be documented as tables in a doc-
ument or on cards. Writing requirements on cards (the approach used in extreme
programming) can be very effective, as these are easy for stakeholders to handle,
change and organise.

7.2.1 Requirements discovery

Requirements discovery is the process of gathering information about the proposed
and existing systems and distilling the user and system requirements from this infor-
mation. Sources of information during the requirements discovery phase include doc-
umentation, system stakeholders and specifications of similar systems. You interact
with stakeholders through interviews and observation, and may use scenarios and
prototypes to help with the requirements discovery. In this section, I discuss an
approach that helps ensure you get broad stakeholder coverage when discovering
requirements, and I describe techniques of requirements discovery including inter-
viewing, scenarios and ethnography. Other requirements discovery techniques that

••

SE8_C07.qxd 4/4/06 9:01 Page 148

••

may be used include structured analysis methods, covered in Chapter 8, and sys-
tem prototyping, covered in Chapter 17.

Stakeholders range from system end-users through managers and external stake-
holders such as regulators who certify the acceptability of the system. For exam-
ple, system stakeholders for a bank ATM include:

1. Current bank customers who receive services from the system

2. Representatives from other banks who have reciprocal agreements that allow
each other’s ATMs to be used

3. Managers of bank branches who obtain management information from the system

4. Counter staff at bank branches who are involved in the day-to-day running of
the system

5. Database administrators who are responsible for integrating the system with
the bank’s customer database

6. Bank security managers who must ensure that the system will not pose a secu-
rity hazard

7. The bank’s marketing department who are likely be interested in using the sys-
tem as a means of marketing the bank

8. Hardware and software maintenance engineers who are responsible for main-
taining and upgrading the hardware and software

9. National banking regulators who are responsible for ensuring that the system
conforms to banking regulations

In addition to system stakeholders, we have already seen that requirements may
come from the application domain and from other systems that interact with the
system being specified. All of these must be considered during the requirements
elicitation process.

These requirements sources (stakeholders, domain, systems) can all be represented
as system viewpoints, where each viewpoint presents a sub-set of the requirements
for the system. Each viewpoint provides a fresh perspective on the system, but these
perspectives are not completely independent—they usually overlap so that they have
common requirements.

Viewpoints

Viewpoint-oriented approaches to requirements engineering (Mullery, 1979;
Finkelstein et al., 1992; Kotonya and Sommerville, 1992; Kotonya and Sommerville,
1996) organise both the elicitation process and the requirements themselves using view-
points. A key strength of viewpoint-oriented analysis is that it recognises multiple per-
spectives and provides a framework for discovering conflicts in the requirements proposed
by different stakeholders.

••

7.2 ■ Requirements elicitation and analysis 149

SE8_C07.qxd 4/4/06 9:01 Page 149

••

150 Chapter 7 ■ Requirements engineering processes

Viewpoints can be used as a way of classifying stakeholders and other sources
of requirements. There are three generic types of viewpoint:

1. Interactor viewpoints represent people or other systems that interact directly
with the system. In the bank ATM system, examples of interactor viewpoints
are the bank’s customers and the bank’s account database.

2. Indirect viewpoints represent stakeholders who do not use the system themselves
but who influence the requirements in some way. In the bank ATM system,
examples of indirect viewpoints are the management of the bank and the bank
security staff.

3. Domain viewpoints represent domain characteristics and constraints that influ-
ence the system requirements. In the bank ATM system, an example of a domain
viewpoint would be the standards that have been developed for interbank com-
munications.

Typically, these viewpoints provide different types of requirements. Interactor
viewpoints provide detailed system requirements covering the system features and
interfaces. Indirect viewpoints are more likely to provide higher-level organisational
requirements and constraints. Domain viewpoints normally provide domain constraints
that apply to the system.

The initial identification of viewpoints that are relevant to a system can some-
times be difficult. To help with this process, you should try to identify more spe-
cific viewpoint types:

1. Providers of services to the system and receivers of system services

2. Systems that should interface directly with the system being specified

3. Regulations and standards that apply to the system

4. The sources of system business and non-functional requirements

5. Engineering viewpoints reflecting the requirements of people who have to develop,
manage and maintain the system

6. Marketing and other viewpoints that generate requirements on the product fea-
tures expected by customers and how the system should reflect the external image
of the organisation

Almost all organisational systems must interoperate with other systems in the
organisation. When a new system is planned, the interactions with other systems
must be planned. The interfaces offered by these other systems have already been
designed. These may place requirements and constraints on the new system.
Furthermore, new systems may have to conform to existing regulations and stan-
dards, and these constrain the system requirements.

••

SE8_C07.qxd 4/4/06 9:01 Page 150

••

As I discussed earlier in the chapter, you should identify high-level business and
non-functional requirements early in the RE process. The sources of these require-
ments may be useful viewpoints in a more detailed process. They may be able to expand
and develop the high-level requirements into more specific system requirements.

Engineering viewpoints may be important for two reasons. Firstly, the engineers
developing the system may have experience with similar systems and may be able
to suggest requirements from that experience. Secondly, technical staff who have
to manage and maintain the system may have requirements that will help simplify
system support. System management requirements are increasingly important
because system management costs are an increasing proportion of the total lifetime
costs for a system.

Finally, viewpoints that provide requirements may come from the marketing and
external affairs departments in an organisation. This is especially true for web-based
systems, particularly e-commerce systems and shrink-wrapped software products.
Web-based systems must present a favourable image of the organisation as well as deliver
functionality to the user. For software products, the marketing department should know
what system features will make the system more marketable to potential buyers.

For any non-trivial system, there are a huge number of possible viewpoints, and
it is practically impossible to elicit requirements from all of them. Therefore, it is
important that you organise and structure the viewpoints into a hierarchy.
Viewpoints in the same branch are likely to share common requirements.

As an illustration, consider the viewpoint hierarchy shown in Figure 7.4. This is
a relatively simple diagram of the viewpoints that may be consulted in deriving the
requirements for the LIBSYS system. You can see that the classification of inter-
actor, indirect and domain viewpoints helps identify sources of requirements apart
from the immediate users of the system.

Article
providersFinanceLibrary

manager
Library
staff

Users

InteractorIndirect

All VPs

Classification
system

UI
standards

Domain

ExternalStaffStudents Cataloguers
System

managers

Figure 7.4
Viewpoints in LIBSYS

••

7.2 ■ Requirements elicitation and analysis 151

SE8_C07.qxd 4/4/06 9:01 Page 151

••

152 Chapter 7 ■ Requirements engineering processes

Once viewpoints have been identified and structured, you should try to identify
the most important viewpoints and start with them when discovering system
requirements.

Interviewing

Formal or informal interviews with system stakeholders are part of most requirements
engineering processes. In these interviews, the requirements engineering team puts
questions to stakeholders about the system that they use and the system to be devel-
oped. Requirements are derived from the answers to these questions. Interviews may
be of two types:

1. Closed interviews where the stakeholder answers a predefined set of questions.

2. Open interviews where there is no predefined agenda. The requirements engi-
neering team explores a range of issues with system stakeholders and hence
develops a better understanding of their needs.

In practice, interviews with stakeholders are normally a mix of these. The
answers to some questions may lead to other issues that are discussed in a less struc-
tured way. Completely open-ended discussions rarely work well; most interviews
require some questions to get started and to keep the interview focused on the sys-
tem to be developed.

Interviews are good for getting an overall understanding of what stakeholders
do, how they might interact with the system and the difficulties that they face with
current systems. People like talking about their work and are usually happy to get
involved in interviews. However, interviews are not so good for understanding the
requirements from the application domain.

It is hard to elicit domain knowledge during interviews for two reasons:

1. All application specialists use terminology and jargon that is specific to a domain.
It is impossible for them to discuss domain requirements without using this ter-
minology. They normally use terminology in a precise and subtle way that is
easy for requirements engineers to misunderstand.

2. Some domain knowledge is so familiar to stakeholders that they either find it
difficult to explain or they think it is so fundamental that it isn’t worth men-
tioning. For example, for a librarian, it goes without saying that all acquisitions
are catalogued before they are added to the library. However, this may not be
obvious to the interviewer so it isn’t taken into account in the requirements.

Interviews are not an effective technique for eliciting knowledge about organi-
sational requirements and constraints because there are subtle power and influence
relationships between the stakeholders in the organisation. Published organisational
structures rarely match the reality of decision making in an organisation, but

••

SE8_C07.qxd 4/4/06 9:01 Page 152

••

interviewees may not wish to reveal the actual rather than the theoretical structure
to a stranger. In general, most people are reluctant to discuss political and organi-
sational issues that may affect the requirements.

Effective interviewers have two characteristics:

1. They are open-minded, avoid preconceived ideas about the requirements and
are willing to listen to stakeholders. If the stakeholder comes up with surpris-
ing requirements, they are willing to change their mind about the system.

2. They prompt the interviewee to start discussions with a question, a requirements
proposal or by suggesting working together on a prototype system. Saying to
people ‘tell me what you want’ is unlikely to result in useful information. Most
people find it much easier to talk in a defined context rather than in general
terms.

Information from interviews supplements other information about the system
from documents, user observations, and so on. Sometimes, apart from informa-
tion from documents, interviews may be the only source of information about the
system requirements. However, interviewing on its own is liable to miss essen-
tial information, so it should be used alongside other requirements elicitation
techniques.

Scenarios

People usually find it easier to relate to real-life examples than to abstract descrip-
tions. They can understand and critique a scenario of how they might interact with
a software system. Requirements engineers can use the information gained from this
discussion to formulate the actual system requirements.

Scenarios can be particularly useful for adding detail to an outline requirements
description. They are descriptions of example interaction sessions. Each scenario
covers one or more possible interactions. Several forms of scenarios have been devel-
oped, each of which provides different types of information at different levels of
detail about the system. Using scenarios to describe requirements is an integral part
of agile methods, such as extreme programming, that I discuss in Chapter 17.

The scenario starts with an outline of the interaction, and, during elicitation, details
are added to create a complete description of that interaction. At its most general,
a scenario may include:

1. A description of what the system and users expect when the scenario starts

2. A description of the normal flow of events in the scenario

3. A description of what can go wrong and how this is handled

4. Information about other activities that might be going on at the same time

5. A description of the system state when the scenario finishes.

••

7.2 ■ Requirements elicitation and analysis 153

SE8_C07.qxd 4/4/06 9:01 Page 153

••••

154 Chapter 7 ■ Requirements engineering processes

Scenario-based elicitation can be carried out informally, where the requirements
engineer works with stakeholders to identify scenarios and to capture details of these
scenarios. Scenarios may be written as text, supplemented by diagrams, screen shots,
and so on. Alternatively, a more structured approach such as event scenarios or use-
cases may be adopted.

As an example of a simple text scenario, consider how a user of the LIBSYS
library system may use the system. This scenario is shown in Figure 7.5. The user
wishes to print a personal copy of an article in a medical journal. This journal makes
copies of articles available free to subscribers, but nonsubscribers have to pay a fee
per article. The user knows the article, title and date of publication.

Use-cases

Use-cases are a scenario-based technique for requirements elicitation which were
first introduced in the Objectory method (Jacobsen, et al., 1993). They have now

Initial assumption: The user has logged on to the LIBSYS system and has located
the journal containing the copy of the article.

Normal: The user selects the article to be copied. The system prompts the user to
provide subscriber information for the journal or to indicate a method of payment
for the article. Payment can be made by credit card or by quoting an organisational
account number.

The user is then asked to fill in a copyright form that maintains details of the
transaction and submit it to the LIBSYS system.

The copyright form is checked and, if it is approved, the PDF version of the article is
downloaded to the LIBSYS working area on the user’s computer and the user is
informed that it is available. The user is asked to select a printer and a copy of the
article is printed. If the article has been flagged as ‘print-only’ it is deleted from the
user’s system once the user has confirmed that printing is complete.

What can go wrong: The user may fail to fill in the copyright form correctly. In this
case, the form should be re-presented to the user for correction. If the resubmitted
form is still incorrect, then the user’s request for the article is rejected.

The payment may be rejected by the system, in which case the user’s request for the
article is rejected.

The article download may fail, causing the system to retry until successful or the user
terminates the session.

It may not be possible to print the article. If the article is not flagged as ‘print-only’ it
is held in the LIBSYS workspace. Otherwise, the article is deleted and the user’s
account credited with the cost of the article.

Other activities: Simultaneous downloads of other articles.

System state on completion: User is logged on. The downloaded article has been
deleted from LIBSYS workspace if it has been flagged as print-only.

Figure 7.5 Scenario
for article
downloading in
LIBSYS

SE8_C07.qxd 4/4/06 9:01 Page 154

••••

become a fundamental feature of the UML notation for describing object-oriented
system models. In their simplest form, a use-case identifies the type of interaction
and the actors involved . For example, Figure 7.6 shows the high-level use-case of
the article printing facility in LIBSYS described in Figure 7.5.

Figure 7.6 illustrates the essentials of the use-case notation. Actors in the pro-
cess are represented as stick figures, and each class of interaction is represented as
a named ellipse. The set of use-cases represents all of the possible interactions to
be represented in the system requirements. Figure 7.7 develops the LIBSYS exam-
ple and shows other use-cases in that environment.

There is sometimes confusion about whether a use-case is a scenario on its own
or, as suggested by Fowler (Fowler and Scott, 1997), a use-case encapsulates a set
of scenarios, and each scenario is a single thread through the use-case. If a scenario
includes multiple threads, there would be a scenario for the normal interaction plus
scenarios for each possible exception.

Use-cases identify the individual interactions with the system. They can be doc-
umented with text or linked to UML models that develop the scenario in more detail.
Sequence diagrams (introduced in Chapter 6) are often used to add information to
a use-case. These sequence diagrams show the actors involved in the interaction,
the objects they interact with and the operations associated with these objects.

As an illustration of this, Figure 7.8 shows the interactions involved in using
LIBSYS for downloading and printing an article. In Figure 7.8, there are four objects
of classes—Article, Form, Workspace and Printer—involved in this interaction. The
sequence of actions is from top to bottom, and the labels on the arrows between
the actors and objects indicate the names of operations. Essentially, a user request
for an article triggers a request for a copyright form. Once the user has completed
the form, the article is downloaded and sent to the printer. Once printing is com-
plete, the article is deleted from the LIBSYS workspace.

The UML is a de facto standard for object-oriented modelling, so use-cases and
use-case–based elicitation is increasingly used for requirements elicitation. Other
types of UML models are discussed in Chapter 8, which covers system modelling,
and in Chapter 14, which covers object-oriented design.

Scenarios and use-cases are effective techniques for eliciting requirements for
interactor viewpoints, where each type of interaction can be represented as a use-
case. They can also be used in conjunction with some indirect viewpoints where
these viewpoints receive some results (such as a management report) from the sys-
tem. However, because they focus on interactions, they are not as effective for elic-
iting constraints or high-level business and non-functional requirements from
indirect viewpoints or for discovering domain requirements.

Article printing

Figure 7.6 A simple
use-case for article
printing

7.2 ■ Requirements elicitation and analysis 155

SE8_C07.qxd 4/4/06 9:01 Page 155

••••

156 Chapter 7 ■ Requirements engineering processes

Figure 7.7 Use cases
for the library system

Figure 7.8 System
interactions for
article printing

SE8_C07.qxd 4/4/06 9:01 Page 156

••••

7.2.2 Ethnography

Software systems do not exist in isolation—they are used in a social and organisa-
tional context, and software system requirements may be derived or constrained by
that context. Satisfying these social and organisational requirements is often criti-
cal for the success of the system. One reason why many software systems are deliv-
ered but never used is that they do not take proper account of the importance of
these requirements.

Ethnography is an observational technique that can be used to understand social
and organisational requirements. An analyst immerses him or herself in the work-
ing environment where the system will be used. He or she observes the day-to-day
work and notes made of the actual tasks in which participants are involved. The value
of ethnography is that it helps analysts discover implicit system requirements that
reflect the actual rather than the formal processes in which people are involved.

People often find it very difficult to articulate details of their work because it is
second nature to them. They understand their own work but may not understand its
relationship with other work in the organisation. Social and organisational factors
that affect the work but that are not obvious to individuals may only become clear
when noticed by an unbiased observer.

Suchman (Suchman, 1987) used ethnography to study office work and found that
the actual work practices were far richer, more complex and more dynamic than the
simple models assumed by office automation systems. The difference between the assumed
and the actual work was the most important reason why these office systems have had
no significant effect on productivity. Other ethnographic studies for system require-
ments understanding have included work on air traffic control (Bentley, et al., 1992;
Hughes, et al., 1993), underground railway control rooms (Heath and Luff, 1992), finan-
cial systems and various design activities (Heath, et al., 1993; Hughes, et al., 1994).
In my own research, I have investigated methods of integrating ethnography into the
software engineering process by linking it to requirements engineering methods (Viller
and Sommerville, 1999; Viller and Sommerville, 1998; Viller and Sommerville, 2000)
and by documenting patterns of interaction in cooperative systems (Martin, et al., 2001;
Martin, et al., 2002; Martin and Sommerville, 2004).

Ethnography is particularly effective at discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work rather
than the way in which process definitions say they ought to work. For exam-
ple, air traffic controllers may switch off an aircraft conflict alert system that
detects aircraft with intersecting flight paths even though normal control pro-
cedures specify that it should be used. Their control strategy is designed to ensure
that these aircraft are moved apart before problems occur and they find that
the conflict alert alarm distracts them from their work.

2. Requirements that are derived from cooperation and awareness of other peo-
ple’s activities. For example, air traffic controllers may use an awareness of
other controllers’ work to predict the number of aircraft that will be entering

7.2 ■ Requirements elicitation and analysis 157

SE8_C07.qxd 4/4/06 9:01 Page 157

••••

158 Chapter 7 ■ Requirements engineering processes

their control sector. They then modify their control strategies depending on that
predicted workload. Therefore, an automated ATC system should allow con-
trollers in a sector to have some visibility of the work in adjacent sectors.

Ethnography may be combined with prototyping (Figure 7.9). The ethnography
informs the development of the prototype so that fewer prototype refinement cycles
are required. Furthermore, the prototyping focuses the ethnography by identifying
problems and questions that can then be discussed with the ethnographer. He or she
should then look for the answers to these questions during the next phase of the
system study (Sommerville, et al., 1993).

Ethnographic studies can reveal critical process details that are often missed by
other requirements elicitation techniques. However, because of its focus on the end-
user, this approach is not appropriate for discovering organisational or domain
requirements. Ethnographic studies cannot always identify new features that should
be added to a system. Ethnography is not, therefore, a complete approach to elici-
tation on its own, and it should be used to complement other approaches, such as
use-case analysis.

7.3 Requirements validation

Requirements validation is concerned with showing that the requirements actu-
ally define the system that the customer wants. Requirements validation overlaps
analysis in that it is concerned with finding problems with the requirements.
Requirements validation is important because errors in a requirements document
can lead to extensive rework costs when they are discovered during development
or after the system is in service. The cost of fixing a requirements problem by
making a system change is much greater than repairing design or coding errors.
The reason for this is that a change to the requirements usually means that the
system design and implementation must also be changed and then the system must
be tested again.

Ethnographic
analysis

Debriefing
meetings

Focused
ethnography

Prototype
evaluation

Generic system
development

System
prototyping

Figure 7.9
Ethnography and
prototyping for
requirements
analysis

SE8_C07.qxd 4/4/06 9:01 Page 158

••••

During the requirements validation process, checks should be carried out on the
requirements in the requirements document. These checks include:

1. Validity checks A user may think that a system is needed to perform certain
functions. However, further thought and analysis may identify additional or dif-
ferent functions that are required. Systems have diverse stakeholders with dis-
tinct needs, and any set of requirements is inevitably a compromise across the
stakeholder community.

2. Consistency checks Requirements in the document should not conflict. That is,
there should be no contradictory constraints or descriptions of the same sys-
tem function.

3. Completeness checks The requirements document should include requirements,
which define all functions, and constraints intended by the system user.

4. Realism checks Using knowledge of existing technology, the requirements should
be checked to ensure that they could actually be implemented. These checks
should also take account of the budget and schedule for the system develop-
ment.

5. Verifiability To reduce the potential for dispute between customer and contractor,
system requirements should always be written so that they are verifiable. This
means that you should be able to write a set of tests that can demonstrate that
the delivered system meets each specified requirement.

A number of requirements validation techniques can be used in conjunction or
individually:

1. Requirements reviews The requirements are analysed systematically by a team
of reviewers. This process is discussed in the following section.

2. Prototyping In this approach to validation, an executable model of the system
is demonstrated to end-users and customers. They can experiment with this model
to see if it meets their real needs. I discuss prototyping and prototyping tech-
niques in Chapter 17.

3. Test-case generation Requirements should be testable. If the tests for the
requirements are devised as part of the validation process, this often reveals
requirements problems. If a test is difficult or impossible to design, this usu-
ally means that the requirements will be difficult to implement and should be
reconsidered. Developing tests from the user requirements before any code is
written is an integral part of extreme programming.

You should not underestimate the problems of requirements validation. It is dif-
ficult to show that a set of requirements meets a user’s needs. Users must picture

7.3 ■ Requirements validation 159

SE8_C07.qxd 4/4/06 9:01 Page 159

••

160 Chapter 7 ■ Requirements engineering processes

the system in operation and imagine how that system would fit into their work. It
is hard for skilled computer professionals to perform this type of abstract analysis
and even harder for system users. As a result, you rarely find all requirements prob-
lems during the requirements validation process. It is inevitable that there will be
further requirements changes to correct omissions and misunderstandings after the
requirements document has been agreed upon.

7.3.1 Requirements reviews

A requirements review is a manual process that involves people from both client
and contractor organisations. They check the requirements document for anomalies
and omissions. The review process may be managed in the same way as program
inspections (see Chapter 22). Alternatively, it may be organised as a broader activ-
ity with different people checking different parts of the document.

Requirements reviews can be informal or formal. Informal reviews simply
involve contractors discussing requirements with as many system stakeholders as
possible. It is surprising how often communication between system developers and
stakeholders ends after elicitation and there is no confirmation that the documented
requirements are what the stakeholders really said they wanted. Many problems can
be detected simply by talking about the system to stakeholders before making a com-
mitment to a formal review.

In a formal requirements review, the development team should ‘walk’ the client
through the system requirements, explaining the implications of each requirement.
The review team should check each requirement for consistency as well as check
the requirements as a whole for completeness. Reviewers may also check for:

1. Verifiability Is the requirement as stated realistically testable?

2. Comprehensibility Do the procurers or end-users of the system properly under-
stand the requirement?

3. Traceability Is the origin of the requirement clearly stated? You may have to
go back to the source of the requirement to assess the impact of a change.
Traceability is important as it allows the impact of change on the rest of the
system to be assessed. I discuss it in more detail in the following section.

4. Adaptability Is the requirement adaptable? That is, can the requirement be changed
without large-scale effects on other system requirements?

Conflicts, contradictions, errors and omissions in the requirements should be pointed
out by reviewers and formally recorded in the review report. It is then up to the
users, the system procurer and the system developer to negotiate a solution to these
identified problems.

••

SE8_C07.qxd 4/4/06 9:01 Page 160

••

7.4 Requirements management

The requirements for large software systems are always changing. One reason for
this is that these systems are usually developed to address ‘wicked’ problems (as
discussed in Chapter 2). Because the problem cannot be fully defined, the software
requirements are bound to be incomplete. During the software process, the stake-
holders’ understanding of the problem is constantly changing. These requirements
must then evolve to reflect this changed problem view.

Furthermore, once a system has been installed, new requirements inevitably emerge.
It is hard for users and system customers to anticipate what effects the new system
will have on the organisation. Once end-users have experience of a system, they
discover new needs and priorities:

1. Large systems usually have a diverse user community where users have dif-
ferent requirements and priorities. These may be conflicting or contradictory.
The final system requirements are inevitably a compromise between them and,
with experience, it is often discovered that the balance of support given to dif-
ferent users has to be changed.

2. The people who pay for a system and the users of a system are rarely the same peo-
ple. System customers impose requirements because of organisational and budgetary
constraints. These may conflict with end-user requirements and, after delivery, new
features may have to be added for user support if the system is to meet its goals.

3. The business and technical environment of the system changes after installation, and
these changes must be reflected in the system. New hardware may be introduced,
it may be necessary to interface the system with other systems, business priorities
may change with consequent changes in the system support, and new legislation
and regulations may be introduced which must be implemented by the system.

Requirements management is the process of understanding and controlling
changes to system requirements. You need to keep track of individual requirements
and maintain links between dependent requirements so that you can assess the impact
of requirements changes. You need to establish a formal process for making change
proposals and linking these to system requirements. The process of requirements
management should start as soon as a draft version of the requirements document
is available, but you should start planning how to manage changing requirements
during the requirements elicitation process.

7.4.1 Enduring and volatile requirements

Requirements evolution during the RE process and after a system has gone into ser-
vice is inevitable. Developing software requirements focuses attention on software

••

7.4 ■ Requirements management 161

SE8_C07.qxd 4/4/06 9:01 Page 161

••••

162 Chapter 7 ■ Requirements engineering processes

capabilities, business objectives and other business systems. As the requirements
definition is developed, you normally develop a better understanding of users’ needs.
This feeds information back to the user, who may then propose a change to the
requirements (Figure 7.10). Furthermore, it may take several years to specify and
develop a large system. Over that time, the system’s environment and the business
objectives change, and the requirements evolve to reflect this.

From an evolution perspective, requirements fall into two classes:

1. Enduring requirements These are relatively stable requirements that derive from
the core activity of the organisation and which relate directly to the domain of
the system. For example, in a hospital, there will always be requirements con-
cerned with patients, doctors, nurses and treatments. These requirements may
be derived from domain models that show the entities and relations that char-
acterise an application domain (Easterbrook, 1993; Prieto-Díaz and Arango, 1991).

2. Volatile requirements These are requirements that are likely to change during the
system development process or after the system has been become operational. An
example would be requirements resulting from government healthcare policies.

Harker and others (Harker, et al., 1993) have suggested that volatile requirements
fall into five classes. Using these as a base, I have developed the classification shown
in Figure 7.11.

7.4.2 Requirements management planning

Planning is an essential first stage in the requirements management process.
Requirements management is very expensive. For each project, the planning stage
establishes the level of requirements management detail that is required. During the
requirements management stage, you have to decide on:

1. Requirements identification Each requirement must be uniquely identified so
that it can be cross-referenced by other requirements and so that it may be used
in traceability assessments.

Time

Changed
understanding

of problem

Initial
understanding

of problem

Changed
requirements

Initial
requirements

Figure 7.10
Requirements
evolution

SE8_C07.qxd 4/4/06 9:01 Page 162

••••

2. A change management process This is the set of activities that assess the
impact and cost of changes. I discuss this process in more detail in the fol-
lowing section.

3. Traceability policies These policies define the relationships between require-
ments, and between the requirements and the system design that should be
recorded and how these records should be maintained.

4. CASE tool support Requirements management involves the processing of large
amounts of information about the requirements. Tools that may be used range
from specialist requirements management systems to spreadsheets and simple
database systems.

There are many relationships among requirements and between the requirements
and the system design. There are also links between requirements and the underly-
ing reasons why these requirements were proposed. When changes are proposed,
you have to trace the impact of these changes on other requirements and the sys-
tem design. Traceability is the property of a requirements specification that reflects
the ease of finding related requirements.

There are three types of traceability information that may be maintained:

1. Source traceability information links the requirements to the stakeholders who
proposed the requirements and to the rationale for these requirements. When a
change is proposed, you use this information to find and consult the stakeholders
about the change.

Requirement Description
Type

Mutable Requirements which change because of changes to the
requirements environment in which the organisation is operating. For example,

in hospital systems, the funding of patient care may change and
thus require different treatment information to be collected.

Emergent Requirements which emerge as the customer’s understanding of
requirements the system develops during the system development. The design

process may reveal new emergent requirements.

Consequential Requirements which result from the introduction of the computer
requirements system. Introducing the computer system may change the

organisation’s processes and open up new ways of working which
generate new system requirements.

Compatibility Requirements which depend on the particular systems or business
requirements processes within an organisation. As these change, the compatibility

requirements on the commissioned or delivered system may also
have to evolve.

Figure 7.11
Classification of
volatile requirements

7.4 ■ Requirements management 163

SE8_C07.qxd 4/4/06 9:01 Page 163

••••

164 Chapter 7 ■ Requirements engineering processes

2. Requirements traceability information links dependent requirements within the
requirements document. You use this information to assess how many require-
ments are likely to be affected by a proposed change and the extent of conse-
quential requirements changes that may be necessary.

3. Design traceability information links the requirements to the design modules
where these requirements are implemented. You use this information to assess
the impact of proposed requirements changes on the system design and imple-
mentation.

Traceability information is often represented using traceability matrices, which
relate requirements to stakeholders, each other or design modules. In a requirements
traceability matrix, each requirement is entered in a row and in a column in the
matrix. Where dependencies between different requirements exist, these are
recorded in the cell at the row/column intersection.

Figure 7.12 shows a simple traceability matrix that records the dependencies
between requirements. A ‘D’ in the row/column intersection illustrates that the require-
ment in the row depends on the requirement named in the column; an ‘R’ means
that there is some other, weaker relationship between the requirements. For exam-
ple, they may both define the requirements for parts of the same subsystem.

Traceability matrices may be used when a small number of requirements have
to be managed, but they become unwieldy and expensive to maintain for large
systems with many requirements. For these systems, you should capture trace-
ability information in a requirements database where each requirement is explic-
itly linked to related requirements. You can then assess the impact of changes
by using the database browsing facilities. Traceability matrices can be generated
automatically from the database.

Req. id 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 D R

1.2 D R D

1.3 R R

2.1 R D D

2.2 D

2.3 R D

3.1 R

3.2 R

Figure 7.12
A traceability matrix

SE8_C07.qxd 4/4/06 9:01 Page 164

••••

Requirements management needs automated support; the CASE tools for this should
be chosen during the planning phase. You need tool support for:

1. Requirements storage The requirements should be maintained in a secure, man-
aged data store that is accessible to everyone involved in the requirements engi-
neering process.

2. Change management The process of change management (Figure 7.13) is sim-
plified if active tool support is available.

3. Traceability management As discussed above, tool support for traceability allows
related requirements to be discovered. Some tools use natural language pro-
cessing techniques to help you discover possible relationships between the
requirements.

For small systems, it may not be necessary to use specialised requirements man-
agement tools. The requirements management process may be supported using the
facilities available in word processors, spreadsheets and PC databases. However,
for larger systems, more specialised tool support is required. I have included links
to information about requirements management tools such as DOORS and
RequisitePro in the book’s web pages.

7.4.3 Requirements change management

Requirements change management (Figure 7.13) should be applied to all proposed
changes to the requirements. The advantage of using a formal process for change
management is that all change proposals are treated consistently and that changes
to the requirements document are made in a controlled way. There are three prin-
cipal stages to a change management process:

1. Problem analysis and change specification The process starts with an identi-
fied requirements problem or, sometimes, with a specific change proposal. During
this stage, the problem or the change proposal is analysed to check that it is
valid. The results of the analysis are fed back to the change requestor, and some-
times a more specific requirements change proposal is then made.

2. Change analysis and costing The effect of the proposed change is assessed using
traceability information and general knowledge of the system requirements. The
cost of making the change is estimated in terms of modifications to the

Change
implementation

Change analysis
and costing

Problem analysis and
change specification

Identified
problem

Revised
requirements

Figure 7.13
Requirements
change management

7.4 ■ Requirements management 165

SE8_C07.qxd 4/4/06 9:01 Page 165

••••

166 Chapter 7 ■ Requirements engineering processes

requirements document and, if appropriate, to the system design and imple-
mentation. Once this analysis is completed, a decision is made whether to pro-
ceed with the requirements change.

3. Change implementation The requirements document and, where necessary, the
system design and implementation are modified. You should organise the
requirements document so that you can make changes to it without extensive
rewriting or reorganisation. As with programs, changeability in documents is
achieved by minimising external references and making the document sections
as modular as possible. Thus, individual sections can be changed and replaced
without affecting other parts of the document.

If a requirements change to a system is urgently required, there is always a temp-
tation to make that change to the system and then retrospectively modify the

■ The requirements engineering process includes a feasibility study, requirements elicitation
and analysis, requirements specification, requirements validation and requirements
management.

■ Requirements elicitation and analysis is an iterative process that can be represented as a
spiral of activities—requirements discovery, requirements classification and organisation,
requirements negotiation and requirements documentation.

■ Different stakeholders in the system have different requirements. All complex systems
should therefore be analysed from a number of viewpoints. Viewpoints can be people or
other systems that interact with the system being specified, stakeholders who are affected
by the system, or domain viewpoints that constrain the requirements.

■ Social and organisational factors have a strong influence on system requirements and may
determine whether the software is actually used.

■ Requirements validation is the process of checking the requirements for validity,
consistency, completeness, realism and verifiability. Requirements reviews and prototyping
are the principal techniques used for requirements validation.

■ Business, organisational and technical changes inevitably lead to changes to the
requirements for a software system. Requirements management is the process of managing
and controlling these changes.

■ The requirements management process includes management planning, where policies and
procedures for requirements management are designed, and change management, where
you analyse proposed requirements changes and assess their impact.

K E Y P O I N TS

SE8_C07.qxd 4/4/06 9:01 Page 166

••••

requirements document. This almost inevitably leads to the requirements specifica-
tion and the system implementation getting out of step. Once system changes have
been made, requirements document changes may be forgotten or made in a way that
is not consistent with the system changes.

Iterative development processes, such as extreme programming, have been
designed to cope with requirements that change during the development process.
In these processes, when a user proposes a requirements change, this does not go
through a formal change management process. Rather, the user has to prioritise that
change and, if it is high priority, decide what system features that were planned for
the next iteration should be dropped.

F U R T H E R R E A D I N G

‘Requirements engineering’. This special issue includes two papers that focus on requirements
engineering for particular domains (cars and medical devices) that offer interesting perspectives on
the RE processes in these areas. (IEEE Software, 20 (1), January/February 2003.)

Mastering the Requirements Process. A readable book that is intended for practising requirements
engineers. It gives specific guidance on developing an effective requirements engineering process.
(S. Robertson and J. Robertson, 1999, Addison-Wesley.)

Requirements Engineering: Processes and Techniques. This book includes a more detailed look at
the activities in the requirements engineering process and discusses the VORD method and its
application. (G. Kotonya and I. Sommerville, 1999, John Wiley & Sons.)

E X E R C I S E S

7.1 Suggest who might be stakeholders in a university student records system. Explain why it is
almost inevitable that the requirements of different stakeholders will conflict in some way.

7.2 A software system is to be developed to manage the records of patients who enter a clinic for
treatment. The records include records of all regular patient monitoring (temperature, blood
pressure, etc.), treatments given, patient reactions and so on. After treatment, the records of
their stay are sent to the patient’s doctor who maintains their complete medical record.
Identify the principal viewpoints which might be taken into account in the specification of this
system and organise these using a viewpoint hierarchy diagram.

7.3 For three of the viewpoints identified in the library system, LIBSYS (Figure 7.4), suggest three
requirements that could be suggested by stakeholders associated with that viewpoint.

7.4 The LIBSYS system has to include support for cataloguing new documents where the system
catalog may be distributed across several machines. What are likely to be the most important
types of non-functional requirements associated with the cataloguing facilities?

Chapter 7 ■ Exercises 167

SE8_C07.qxd 4/4/06 9:01 Page 167

168 Chapter 7 ■ Requirements engineering processes

7.5 Using your knowledge of how an ATM is used, develop a set of use-cases that could serve as
a basis for understanding the requirements for an ATM system.

7.6 Discuss an example of a type of system where social and political factors might strongly
influence the system requirements. Explain why these factors are important in your example.

7.7 Who should be involved in a requirements review? Draw a process model showing how a
requirements review might be organised.

7.8 Why do traceability matrices become difficult to manage when there are many system
requirements? Design a requirements structuring mechanism, based on viewpoints, which
might help reduce the scale of this problem.

7.9 When emergency changes have to be made to systems, the system software may have to be
modified before changes to the requirements have been approved. Suggest a process model
for making these modifications that ensures that the requirements document and the system
implementation do not become inconsistent.

7.10 Your company uses a standard analysis method that is normally applied in all requirements
analyses. In your work, you find that this method cannot represent social factors that are
significant in the system you are analysing. You point this out to your manager, who makes it
clear that the standard should be followed. Discuss what you should do in such a situation.

••

SE8_C07.qxd 4/4/06 9:01 Page 168

System models

Objectives
The objective of this chapter is to introduce a number of system models
that may be developed during the requirements engineering process.
When you have read the chapter, you will:

■ understand why it is important to establish the boundaries of a
system and model its context;

■ understand the concepts of behavioural modelling, data modelling
and object modelling;

■ have been introduced to some of the notations defined in the Unified
Modeling Language (UML) and how these notations may be used to
develop system models.

Contents
8.1 Context models

8.2 Behavioural models

8.3 Data models

8.4 Object models

8.5 Structured methods

8

SE8_C08.qxd 4/4/06 9:02 Page 169

••

170 Chapter 8 ■ System models

User requirements should be written in natural language because they have to be
understood by people who are not technical experts. However, more detailed sys-
tem requirements may be expressed in a more technical way. One widely used tech-
nique is to document the system specification as a set of system models. These models
are graphical representations that describe business processes, the problem to be solved
and the system that is to be developed. Because of the graphical representations
used, models are often more understandable than detailed natural language descrip-
tions of the system requirements. They are also an important bridge between the
analysis and design processes.

You can use models in the analysis process to develop an understanding of the
existing system that is to be replaced or improved or to specify the new system that
is required. You may develop different models to represent the system from dif-
ferent perspectives. For example:

1. An external perspective, where the context or environment of the system is
modelled

2. A behavioural perspective, where the behaviour of the system is modelled

3. A structural perspective, where the architecture of the system or the structure
of the data processed by the system is modelled

I cover these three perspectives in this chapter and also discuss object modelling,
which combines, to some extent, behavioural and structural modelling.

The most important aspect of a system model is that it leaves out detail. A sys-
tem model is an abstraction of the system being studied rather than an alternative
representation of that system. Ideally, a representation of a system should maintain
all the information about the entity being represented. An abstraction deliberately
simplifies and picks out the most salient characteristics. For example, in the very
unlikely event of this book being serialised in a newspaper, the presentation there
would be an abstraction of the book’s key points. If it were translated from English
into Italian, this would be an alternative representation. The translator’s intention
would be to maintain all the information as it is presented in English.

Different types of system models are based on different approaches to abstrac-
tion. A data-flow model (for example) concentrates on the flow of data and the func-
tional transformations on that data. It leaves out details of the data structures. By
contrast, a model of data entities and their relationships documents the system data
structures rather than its functionality.

Examples of the types of system models that you might create during the anal-
ysis process are:

1. A data- flow model Data-flow models show how data is processed at different
stages in the system.

2. A composition model A composition or aggregation model shows how entities
in the system are composed of other entities.

••

SE8_C08.qxd 4/4/06 9:02 Page 170

••

3. An architectural model Architectural models show the principal sub-systems
that make up a system.

4. A classification model Object class/inheritance diagrams show how entities have
common characteristics.

5. A stimulus-response model A stimulus-response model, or state transition dia-
gram, shows how the system reacts to internal and external events.

All these types of models are covered in this chapter. Wherever possible, I use
notations from the Unified Modeling Language (UML), which has become a stan-
dard modelling language for object-oriented modelling (Booch, et al., 1999;
Rumbaugh, et al., 1999a). Where UML does not include appropriate notations, I use
simple intuitive notations for model description. A new version of UML (UML 2.0)
is under development but was not available when I wrote this chapter. However, I
understand that the UML notation that I have used here is likely to be compatible
with UML 2.0.

8.1 Context models

At an early stage in the requirements elicitation and analysis process you should
decide on the boundaries of the system. This involves working with system stake-
holders to distinguish what is the system and what is the system’s environment.
You should make these decisions early in the process to limit the system costs and
the time needed for analysis.

In some cases, the boundary between a system and its environment is relatively
clear. For example, where an automated system is replacing an existing manual or
computerised system, the environment of the new system is usually the same as the
existing system’s environment. In other cases, there is more flexibility, and you decide
what constitutes the boundary between the system and its environment during the
requirements engineering process.

For example, say you are developing the specification for the library system LIB-
SYS. Recall that this system is intended to deliver electronic versions of copyrighted
material to users’ computers. The users may then print personal copies of the mate-
rial. In developing the specification for this system, you have to decide whether
other library database systems such as library catalogues are within the system bound-
ary. If they are, then you may have to allow access to the system through the cat-
alogue user interface; if they are not, then users may be inconvenienced by having
to move from one system to another.

The definition of a system boundary is not a value-free judgement. Social and
organisational concerns may mean that the position of a system boundary may be
determined by non-technical factors. For example, a system boundary may be posi-

••

8.1 ■ Context models 171

SE8_C08.qxd 4/4/06 9:02 Page 171

••••

172 Chapter 8 ■ System models

tioned so that the analysis process can all be carried out on one site; it may be cho-
sen so that a particularly difficult manager need not be consulted; it may be posi-
tioned so that the system cost is increased, and the system development division
must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of
the analysis activity is the definition of that context and the dependencies that a
system has on its environment. Normally, producing a simple architectural model
is the first step in this activity.

Figure 8.1 is an architectural model that illustrates the structure of the information
system that includes a bank auto-teller network. High-level architectural models are
usually expressed as simple block diagrams where each sub-system is represented by
a named rectangle, and lines indicate associations between sub-systems.

From Figure 8.1, we see that each ATM is connected to an account database, a
local branch accounting system, a security system and a system to support machine
maintenance. The system is also connected to a usage database that monitors how
the network of ATMs is used and to a local branch counter system. This counter
system provides services such as backup and printing. These, therefore, need not
be included in the ATM system itself.

Architectural models describe the environment of a system. However, they do
not show the relationships between the other systems in the environment and the
system that is being specified. External systems might produce data for or consume
data from the system. They might share data with the system, or they might be con-
nected directly, through a network or not at all. They might be physically co-located
or located in separate buildings. All of these relations might affect the requirements
of the system being defined and must be taken into account.

Therefore, simple architectural models are normally supplemented by other mod-
els, such as process models, that show the process activities supported by the system.
Data-flow models (described in the following section) may also be used to show the
data that is transferred between the system and other systems in its environment.

Auto-teller
system

Security
system

Maintenance
system

Account
database

Usage
database

Branch
accounting

system

Branch
counter
system

Figure 8.1 The
context of an ATM
system

SE8_C08.qxd 4/4/06 9:02 Page 172

••••

Figure 8.2 illustrates a process model for the process of procuring equipment in
an organisation. This involves specifying the equipment required, finding and
choosing suppliers, ordering the equipment, taking delivery of the equipment and
testing it after delivery. When specifying computer support for this process, you
have to decide which of these activities will actually be supported. The other activ-
ities are outside the boundary of the system. In Figure 8.2, the dotted line encloses
the activities that are within the system boundary.

8.2 Behavioural models

Behavioural models are used to describe the overall behaviour of the system. I dis-
cuss two types of behavioural model here: data-flow models, which model the data
processing in the system, and state machine models, which model how the system
reacts to events. These models may be used separately or together, depending on
the type of system that is being developed.

Equipment
spec.

Equipment
spec.

Specify
equipment
required

Validate
specification

Checked
spec.

Delivery
note

Delivery
note

Supplier
database

Supplier list

Find
suppliers

Choose
supplier

Get cost
estimates

Checked and
signed order form

Accept
delivery of
equipment

Check
delivered

items

Installation
instructions

Installation
acceptance

Equipment
details

Install
equipment

Accept
delivered

equipment

Equipment
database

Spec. +
supplier +
estimate Order

notification

Order
details plus
Blank order

form

Place
equipment

order

Figure 8.2 Process
model of equipment
procurement

8.2 ■ Behavioural models 173

SE8_C08.qxd 4/4/06 9:02 Page 173

••••

174 Chapter 8 ■ System models

Complete
order form

Order
details +

blank
order form

Validate
order

Record
order

Send to
supplier

Adjust
available
budget

Budget
file

Orders
file

Completed
order form

Signed
order form

Signed
order form

Checked and
signed order

+ order
notification

Order
amount

+ account
details

Signed
order form

Order
details

Most business systems are primarily driven by data. They are controlled by the
data inputs to the system with relatively little external event processing. A data-
flow model may be all that is needed to represent the behaviour of these systems.
By contrast, real-time systems are often event-driven with minimal data process-
ing. A state machine model (discussed in Section 8.2.2) is the most effective way
to represent their behaviour. Other classes of system may be both data and event
driven. In these cases, you may develop both types of model.

8.2.1 Data-flow models

Data-flow models are an intuitive way of showing how data is processed by a sys-
tem. At the analysis level, they should be used to model the way in which data is
processed in the existing system. The use of data-flow models for analysis became
widespread after the publication of DeMarco’s book (DeMarco, 1978) on structured
systems analysis. They are an intrinsic part of structured methods that have been
developed from this work. The notation used in these models represents functional
processing (rounded rectangles), data stores (rectangles) and data movements
between functions (labelled arrows).

Data-flow models are used to show how data flows through a sequence of pro-
cessing steps. For example, a processing step could be to filter duplicate records in
a customer database. The data is transformed at each step before moving on to the
next stage. These processing steps or transformations represent software processes
or functions when data-flow diagrams are used to document a software design.
However, in an analysis model, people or computers may carry out the processing.

A data-flow model, which shows the steps involved in processing an order for
goods (such as computer equipment) in an organisation, is illustrated in Figure 8.3.
This particular model describes the data processing in the Place equipment order

Figure 8.3 Data-flow
diagram of order
processing

SE8_C08.qxd 4/4/06 9:02 Page 174

••••

activity in the overall process model shown in Figure 8.2. The model shows how
the order for the goods moves from process to process. It also shows the data stores
(Orders file and Budget file) that are involved in this process.

Data-flow models are valuable because tracking and documenting how the data asso-
ciated with a particular process moves through the system helps analysts understand
what is going on. Data-flow diagrams have the advantage that, unlike some other mod-
elling notations, they are simple and intuitive. It is usually possible to explain them to
potential system users who can then participate in validating the analysis.

In principle, the development of models such as data-flow models should be a
‘top-down’ process. In this example, this would imply that you should start by analysing
the overall procurement process. You then move on to the analysis of sub-processes
such as ordering. In practice, analysis is never like that. You learn about several
levels at the same time. Lower-level models may be developed first and then abstracted
to create a more general model.

Data-flow models show a functional perspective where each transformation rep-
resents a single function or process. They are particularly useful during the analysis
of requirements as they can be used to show end-to-end processing in a system.
That is, they show the entire sequence of actions that take place from an input being
processed to the corresponding output that is the system’s response. Figure 8.4 illus-
trates this use of data flow diagrams. It is a diagram of the processing that takes
place in the insulin pump system introduced in Chapter 3.

8.2.2 State machine models

A state machine model describes how a system responds to internal or external events.
The state machine model shows system states and events that cause transitions from
one state to another. It does not show the flow of data within the system. This type
of model is often used for modelling real-time systems because these systems are
often driven by stimuli from the system’s environment. For example, the real-time

8.2 ■ Behavioural models 175

Insulin
requirement
computation

Blood sugar
analysis

Blood sugar
sensor

Insulin
delivery

controller

Insulin
pump

Blood

Blood
parameters

Blood sugar
level

Insulin
Pump control
commands Insulin

requirement

Figure 8.4 Data-flow
diagram of an insulin
pump

SE8_C08.qxd 4/4/06 9:02 Page 175

••••

176 Chapter 8 ■ System models

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

Figure 8.5 State
machine model of a
simple microwave
oven

alarm system discussed in Chapter 13 responds to stimuli from movement sensors,
door opening sensors, and so on.

State machine models are an integral part of real-time design methods such as
that proposed by Ward and Mellor (Ward and Mellor, 1985) and Harel (Harel, 1987;
Harel, 1988). Harel’s method uses a notation called Statecharts and these were the
basis for the state machine-modelling notation in the UML.

A state machine model of a system assumes that, at any time, the system is in
one of a number of possible states. When a stimulus is received, this may trigger
a transition to a different state. For example, a system controlling a valve may move
from a state ‘Valve open’ to a state ‘Valve closed’ when an operator command (the
stimulus) is received.

This approach to system modelling is illustrated in Figure 8.5. This diagram shows
a state machine model of a simple microwave oven equipped with buttons to set
the power and the timer and to start the system. Real microwave ovens are actually
much more complex than the system described here. However, this model includes
the essential features of the system. To simplify the model, I have assumed that the
sequence of actions in using the microwave is:

1. Select the power level (either half-power or full-power).

2. Input the cooking time.

SE8_C08.qxd 4/4/06 9:02 Page 176

••••

3. Press Start, and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open and, on
completion of cooking, a buzzer is sounded. The oven has a very simple alphanu-
meric display that is used to display various alerts and warning messages.

The UML notation that I use to describe state machine models is designed for
modelling the behaviour of objects. However, it is a general-purpose notation that
can be used for any type of state machine modelling. The rounded rectangles in a
model represent system states. They include a brief description (following ‘do’) of
the actions taken in that state. The labelled arrows represent stimuli that force a
transition from one state to another.

Therefore, from Figure 8.5, we can see that the system responds initially to either
the full-power or the half-power button. Users can change their mind after select-
ing one of these and press the other button. The time is set and, if the door is closed,
the Start button is enabled. Pushing this button starts the oven operation and cook-
ing takes place for the specified time.

The UML notation lets you indicate the activity that takes place in a state. In a
detailed system specification, you have to provide more detail about both the stim-
uli and the system states (Figure 8.6). This information may be maintained in a data
dictionary or encyclopaedia (covered in Section 8.3) that is maintained by the CASE
tools used to create the system model.

The problem with the state machine approach is that the number of possible states
increases rapidly. For large system models, therefore, some structuring of these state
models is necessary. One way to do this is by using the notion of a superstate that
encapsulates a number of separate states. This superstate looks like a single state
on a high-level model but is then expanded in more detail on a separate diagram.
To illustrate this concept, consider the Operation state in Figure 8.5. This is a super-
state that can be expanded, as illustrated in Figure 8.7.

The Operation state includes a number of sub-states. It shows that operation starts
with a status check, and that if any problems are discovered, an alarm is indicated
and operation is disabled. Cooking involves running the microwave generator for
the specified time; on completion, a buzzer is sounded. If the door is opened dur-
ing operation, the system moves to the disabled state, as shown in Figure 8.5.

8.3 Data models

Most large software systems make use of a large database of information. In some
cases, this database is independent of the software system. In others, it is created
for the system being developed. An important part of systems modelling is defin-

8.2 ■ Behavioural models 177

SE8_C08.qxd 4/4/06 9:02 Page 177

••••

178 Chapter 8 ■ System models

ing the logical form of the data processed by the system. These are sometimes called
semantic data models.

The most widely used data modelling technique is Entity-Relation-Attribute mod-
elling (ERA modelling), which shows the data entities, their associated attributes
and the relations between these entities. This approach to modelling was first pro-
posed in the mid-1970s by Chen (Chen, 1976); several variants have been devel-
oped since then (Codd, 1979; Hammer and McLeod, 1981; Hull and King, 1987),
all with the same basic form.

Figure 8.6 State and
stimulus description
for the microwave
oven

State Description

Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on. Display
shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for
5 seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

Stimulus Description

Half power The user has pressed the half power button.

Full power The user has pressed the full power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the start button.

Cancel The user has pressed the cancel button.

SE8_C08.qxd 4/4/06 9:02 Page 178

••••

Entity-relationship models have been widely used in database design. The rela-
tional database schemas derived from these models are naturally in third normal
form, which is a desirable characteristic (Barker, 1989). Because of the explicit typ-
ing and the recognition of sub- and super-types, it is also straightforward to imple-
ment these models using object-oriented databases.

The UML does not include a specific notation for this database modelling, as it
assumes an object-oriented development process and models data using objects and
their relationships. However, you can use the UML to represent a semantic data
model. You can think of entities in an ERA model as simplified object classes (they
have no operations), attributes as class attributes and named associations between
the classes as relations.

Figure 8.8 is an example of a data model that is part of the library system LIBSYS
introduced in earlier chapters. Recall that LIBSYS is designed to deliver copies of copy-
righted articles that have been published in magazines and journals and to collect pay-
ments for these articles. Therefore, the data model must include information about the
article, the copyright holder and the buyer of the article. I have assumed that payments
for articles are not made directly but through national copyright agencies.

Figure 8.8 shows that an Article has attributes representing the title, the authors,
the name of the PDF file of the article and the fee payable. This is linked to the
Source, where the article was published, and to the Copyright Agency for the coun-
try of publication. Both Copyright Agency and Source are linked to Country. The
country of publication is important because copyright laws vary by country. The
diagram also shows that Buyers place Orders for Articles.

Like all graphical models, data models lack detail, and you should maintain more
detailed descriptions of the entities, relationships and attributes that are included in

Cook
do: run

generator

Done

do: buzzer on
for 5 secs.

Waiting

Alarm

do: display
event

do: check
status

Checking

Turntable
fault

Emitter
fault

Disabled

OK

Timeout

Time

Door open Cancel

Operation
Figure 8.7 Microwave
oven operation

8.3 ■ Data models 179

SE8_C08.qxd 4/4/06 9:02 Page 179

••••

180 Chapter 8 ■ System models

the model. You may collect these more detailed descriptions in a repository or data
dictionary. Data dictionaries are generally useful when developing system models
and may be used to manage all information from all types of system models.

A data dictionary is, simplistically, an alphabetic list of the names included in
the system models. As well as the name, the dictionary should include an associ-
ated description of the named entity and, if the name represents a composite object,
a description of the composition. Other information such as the date of creation,
the creator and the representation of the entity may also be included depending on
the type of model being developed.

The advantages of using a data dictionary are:

1. It is a mechanism for name management. Many people may have to invent names
for entities and relationships when developing a large system model. These names
should be used consistently and should not clash. The data dictionary software
can check for name uniqueness where necessary and warn requirements ana-
lysts of name duplications.

2. It serves as a store of organisational information. As the system is developed,
information that can link analysis, design, implementation and evolution is added
to the data dictionary, so that all information about an entity is in one place.

Source

1

Article

1

Buyer

places

fee-payable-to

n

1

n

published-in

delivers in

m n

1

1

1

Copyright
Agency

Country

1

Order
in

1

title
authors
pdf file
fee

title
publisher
issue
date
pages

order number
total payment
date
tax status

name
address

copyright form
tax rate

name
address
e-mail
billing info

Figure 8.8 Semantic
data model for the
LIBSYS system

SE8_C08.qxd 4/4/06 9:02 Page 180

••••

The data dictionary entries shown in Figure 8.9 define the names in the
semantic data model for LIBSYS (Figure 8.8). I have simplified the presenta-
tion of this example by leaving out some names and by shortening the associ-
ated information.

All system names, whether they are names of entities, relations, attributes
or services, should be entered in the dictionary. Software is normally used to
create, maintain and interrogate the dictionary. This software might be inte-
grated with other tools so that dictionary creation is partially automated. For
example, CASE tools that support system modelling generally include support
for data dictionaries and enter the names in the dictionary when they are first
used in the model.

8.4 Object models

An object-oriented approach to the whole software development process is now
commonly used, particularly for interactive systems development. This means express-
ing the systems requirements using an object model, designing using objects and

Name Description Type Date

Article Details of the published article that Entity 30.12.2002
may be ordered by people using
LIBSYS.

authors The names of the authors of the article Attribute 30.12.2002
who may be due a share of the fee.

Buyer The person or organisation that orders a Entity 30.12.2002
copy of the article.

fee-payable-to A 1:1 relationship between Article and Relation 29.12.2002
the Copyright Agency who should be
paid the copyright fee.

Address The address of the buyer. This is used to Attribute 31.12.2002
(Buyer) any paper billing information that is

required.

8.4 ■ Object models 181

Figure 8.9 Examples
of data dictionary
entries

SE8_C08.qxd 4/4/06 9:02 Page 181

••

182 Chapter 8 ■ System models

developing the system in an object-oriented programming language such as Java
or C++.

Object models that you develop during requirements analysis may be used
to represent both system data and its processing. In this respect, they combine
some of the uses of data-flow and semantic data models. They are also useful
for showing how entities in the system may be classified and composed of other
entities.

For some classes of system, object models are natural ways of reflecting the real-
world entities that are manipulated by the system. This is particularly true when the
system processes information about tangible entities, such as cars, aircraft or books,
which have clearly identifiable attributes. More abstract, higher-level entities, such
as the concept of a library, a medical record system or a word processor, are harder
to model as object classes. They do not necessarily have a simple interface con-
sisting of independent attributes and operations.

Developing object models during requirements analysis usually simplifies the tran-
sition to object-oriented design and programming. However, I have found that end-
users of a system often find object models unnatural and difficult to understand.
They may prefer to adopt a more functional, data-processing view. Therefore, it is
sometimes helpful to supplement object models with data-flow models that show
the end-to-end data processing in the system.

An object class is an abstraction over a set of objects that identifies common
attributes (as in a semantic data model) and the services or operations that are pro-
vided by each object. Objects are executable entities with the attributes and ser-
vices of the object class. Objects are instantiations of the object class, and many
objects may be created from a class. Generally, the models developed using anal-
ysis focus on object classes and their relationships.

In object-oriented requirements analysis, you should model real-world entities
using object classes. You should not include details of the individual objects
(instantiations of the class) in the system. You may create different types of object
models, showing how object classes are related to each other, how objects, are aggre-
gated to form other objects, how objects interact with other objects and so on. These
each present unique information about the system that is being specified.

The analysis process for identifying objects and object classes is recognised as
one of the most difficult areas of object-oriented development. Object identifica-
tion is basically the same for analysis and design. The methods of object identifi-
cation covered in Chapter 14, which discusses object-oriented design, may be used.
I concentrate here on some of the object models that might be generated during the
analysis process.

Various methods of object-oriented analysis were proposed in the 1990s (Coad and
Yourdon, 1990; Rumbaugh, et al., 1991; Jacobsen, et al., 1993; Booch, 1994). These
methods had a great deal in common, and three of the key developers (Booch,
Rumbaugh, and Jacobsen) decided to integrate their approaches to produce a unified
method (Rumbaugh et al., 1999b). The Unified Modeling Language (UML) used in this
unified method has become a standard for object modelling. The UML includes

••

SE8_C08.qxd 4/4/06 9:02 Page 182

••••

notations for different types of system models. We have already seen use-case models
and sequence diagrams in earlier chapters and state machine models earlier in this chapter.

An object class in UML, as illustrated in the examples in Figure 8.10, is repre-
sented as a vertically oriented rectangle with three sections:

1. The name of the object class is in the top section.

2. The class attributes are in the middle section.

3. The operations associated with the object class are in the lower section of the
rectangle.

I don’t have space to cover all of the UML, so I focus here on object models
that show how objects can be classified and can inherit attributes and operations
from other objects, aggregation models that show how objects are composed, and
simple behavioural models, which show object interactions.

8.4.1 Inheritance models

Object-oriented modelling involves identifying the classes of object that are impor-
tant in the domain being studied. These are then organised into a taxonomy. A tax-
onomy is a classification scheme that shows how an object class is related to other
classes through common attributes and services.

To display this taxonomy, the classes are organised into an inheritance hierar-
chy with the most general object classes at the top of the hierarchy. More specialised
objects inherit their attributes and services. These specialised objects may have their
own attributes and services.

Figure 8.10 illustrates part of a simplified class hierarchy for a model of a library.
This hierarchy gives information about the items held in the library. The library
holds various items, such as books, music, recordings of films, magazines and news-
papers. In Figure 8.10, the most general item is at the top of the tree and has a set
of attributes and services that are common to all library items. These are inherited
by the classes Published item and Recorded item, which add their own attributes
that are then inherited by lower-level items.

Figure 8.11 is an example of another inheritance hierarchy that might be part of
the library model. In this case, the users of a library are shown. There are two classes
of user: those who are allowed to borrow books, and those who may only read books
in the library without taking them away.

In the UML notation, inheritance is shown ‘upwards’ rather than ‘downwards’
as it is in some other object-oriented notations or in languages such as Java, where
sub-classes inherit from super-classes. That is, the arrowhead (shown as a triangle)
points from the classes that inherit attributes and operations to the super-class. Rather
than use the term inheritance, UML refers to the generalisation relationship.

8.4 ■ Object models 183

SE8_C08.qxd 4/4/06 9:02 Page 183

••••

184 Chapter 8 ■ System models

Catalogue number
Acquisition date
Cost
Type
Status
Number of copies

Library item

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Author
Edition
Publication date
ISBN

Book

Year
Issue

Magazine

Director
Date of release
Distributor

Film

Version
Platform

Computer
program

Title
Publisher

Published item

Title
Medium

Recorded item

Figure 8.10 Part of
a class hierarchy for
a library

Name
Address
Phone
Registration #

Library user

Register ()
De-register ()

Affiliation

Reader

Items on loan
Max. loans

Borrower

Department
Department phone

Staff

Major subject
Home address

Student

Figure 8.11 User
class hierarchy

SE8_C08.qxd 4/4/06 9:02 Page 184

••••

The design of class hierarchies is not easy, so the analyst needs to understand,
in detail, the domain in which the system is to be installed. As an example of the
subtlety of the problems that arise in practice, consider the library item hierarchy.
It would seem that the attribute Title could be held in the most general item, then
inherited by lower-level items.

However, while everything in a library must have some kind of identifier or reg-
istration number, it does not follow that everything must have a title. For example,
a library may hold the personal papers of a retired politician. Many of these items,
such as letters, may not be explicitly titled. These will be classified using some other
class (not shown here) that has a different set of attributes.

Figure 8.10 and Figure 8.11 show class inheritance hierarchies where every object
class inherits its attributes and operations from a single parent class. Multiple inher-
itance models may also be constructed where a class has several parents. Its inher-
ited attributes and services are a conjunction of those inherited from each
super-class. Figure 8.12 shows an example of a multiple inheritance model that may
also be part of the library model.

The main problem with multiple inheritance is designing an inheritance graph
where objects do not inherit unnecessary attributes. Other problems include the dif-
ficulty of reorganising the inheritance graph when changes are required and resolv-
ing name clashes where attributes of two or more super-classes have the same name
but different meanings. At the system modelling level, such clashes are relatively
easy to resolve by manually altering the object model. They cause more problems
in object-oriented programming.

8.4.2 Object aggregation

As well as acquiring attributes and services through an inheritance relationship with
other objects, some objects are groupings of other objects. That is, an object is an

Tapes

Talking book

Author
Edition
Publication date
ISBN

Book

Speaker
Duration
Recording date

Voice recording
Figure 8.12 Multiple
inheritance

8.4 ■ Object models 185

SE8_C08.qxd 4/4/06 9:02 Page 185

••••

186 Chapter 8 ■ System models

aggregate of a set of other objects. The classes representing these objects may be
modelled using an object aggregation model, as shown in Figure 8.13. In this exam-
ple, I have modelled a library item, which is a study pack for a university course.
This study pack includes lecture notes, exercises, sample solutions, copies of trans-
parencies used in lectures, and videotapes.

The UML notation for aggregation is to represent the composition by including
a diamond shape on the source of the link. Therefore, Figure 8.13 can be read as
‘A study pack is composed of one of more assignments, OHP slide packages, lec-
ture notes and videotapes.’

8.4.3 Object behaviour modelling

To model the behaviour of objects, you have to show how the operations provided
by the objects are used. In the UML, you model behaviours using scenarios that
are represented as UML use-cases (discussed in Chapter 7). One way to model
behaviour is to use UML sequence diagrams that show the sequence of actions involved
in a use-case. As well as sequence diagrams, the UML also includes collaboration
diagrams that show the sequence of messages exchanged by objects. These are sim-
ilar to sequence diagrams so I do not cover them here.

You can see how sequence diagrams can be used for behaviour modelling in
Figure 8.14 that expands a use-case from the LIBSYS system where users with-

Videotape

Tape ids.

Lecture
notes

Text

OHP slides

Slides

Assignment

Credits

Solutions

Text
Diagrams

Exercises

#Problems
Description

Course title
Number
Year
Instructor

Study pack
Figure 8.13
Aggregate object
representing a
course

SE8_C08.qxd 4/4/06 9:02 Page 186

••••

draw items from the library in electronic form. For example, imagine a situation
where the study packs shown in Figure 8.13 could be maintained electronically and
downloaded to the student’s computer.

In a sequence diagram, objects and actors are aligned along the top of the diagram.
Labelled arrows indicate operations; the sequence of operations is from top to bot-
tom. In this scenario, the library user accesses the catalogue to see whether the item
required is available electronically; if it is, the user requests the electronic issue of
that item. For copyright reasons, this must be licensed so there is a transaction between
the item and the user where the license is agreed. The item to be issued is then sent
to a network server object for compression before being sent to the library user.

You can find another example of a sequence diagram that expands a LIBSYS
use-case in Figure 7.8, which shows the sequence of actions involved in printing
an article.

8.5 Structured methods

A structured method is a systematic way of producing models of an existing sys-
tem or of a system that is to be built. They were first developed in the 1970s to
support software analysis and design (Constantine and Yourdon, 1979; Gane and

Figure 8.14 The issue
of electronic items

8.5 ■ Structured methods 187

SE8_C08.qxd 4/4/06 9:02 Page 187

••••

188 Chapter 8 ■ System models

Sarson, 1979; Jackson, 1983) and evolved in the 1980s and 1990s to support object-
oriented development (Rumbaugh, et al., 1991; Robinson, 1992; Jacobsen, et al.,
1993; Booch, 1994). These object-oriented methods coalesced, with the UML pro-
posed as a standard modelling language (Booch, et al., 1999, Rumbaugh, et al., 1999a)
and the Unified Process (Rumbaugh, et al., 1999b), and later with the Rational Unified
Process (Krutchen, 2000), as an associated structured method. Budgen (Budgen, 2003)
summarises and compares several of these structured methods.

Structured methods provide a framework for detailed system modelling as part
of requirements elicitation and analysis. Most structured methods have their own
preferred set of system models. They usually define a process that may be used to
derive these models and a set of rules and guidelines that apply to the models. Standard
documentation is produced for the system. CASE tools are usually available for method
support. These tools support model editing and code and report generation, and pro-
vide some model-checking capabilities.

Structured methods have been applied successfully in many large projects. They
can deliver significant cost reductions because they use standard notations and ensure
that standard design documentation is produced. However, structured methods suf-
fer from a number of weaknesses:

1. They do not provide effective support for understanding or modelling non-
functional system requirements.

2. They are indiscriminate in that they do not usually include guidelines to help
users decide whether a method is appropriate for a particular problem. Nor do
they normally include advice on how they may be adapted for use in a partic-
ular environment.

3. They often produce too much documentation. The essence of the system
requirements may be hidden by the mass of detail that is included.

4. The models that are produced are very detailed, and users often find them dif-
ficult to understand. These users therefore cannot check the realism of these
models.

In practice, however, requirements engineers and designers don’t restrict them-
selves to the models proposed in any particular method. For example, object-oriented
methods do not usually suggest that data-flow models should be developed.
However, in my experience, such models are often useful as part of a requirements
analysis process because can present an overall picture of the end-to-end process-
ing in the system. They may also contribute directly to object identification (the
data which flows) and the identification of operations on these objects (the trans-
formations).

Analysis and design CASE tools support the creation, editing and analysis of the
graphical notations used in structured methods. Figure 8.15 shows the components
that may be included method support environment.

SE8_C08.qxd 4/4/06 9:02 Page 188

••••

Comprehensive method support tools, as illustrated in Figure 8.15, normally include:

1. Diagram editors used to create object models, data models, behavioural mod-
els, and so on. These editors are not just drawing tools but are aware of the
types of entities in the diagram. They capture information about these entities
and save this information in the central repository.

2. Design analysis and checking tools that process the design and report on errors
and anomalies. These may be integrated with the editing system so that user
errors are trapped at an early stage in the process.

3. Repository query languages that allow the designer to find designs and asso-
ciated design information in the repository.

4. A data dictionary that maintains information about the entities used in a sys-
tem design.

5. Report definition and generation tools that take information from the central
store and automatically generate system documentation.

6. Forms definition tools that allow screen and document formats to be specified.

7. Import/export facilities that allow the interchange of information from the cen-
tral repository with other development tools.

8. Code generators that generate code or code skeletons automatically from the
design captured in the central store.

Most comprehensive CASE toolsets allow the user to generate a program or a
program fragment from the information provided in the system model. CASE tools

Central
information
repository

Code
generator

Query
language
facilities

Structured
diagramming

tools

Data
dictionary

Report
generation

facilities

Design, analysis
and checking

tools

Forms
creation

tools

Import/export
facilities

Figure 8.15 The
components of a
CASE tool for
structured method
support

8.5 ■ Structured methods 189

SE8_C08.qxd 4/4/06 9:02 Page 189

••••

190 Chapter 8 ■ System models

often support different languages so the user can generate a program in C, C++ or
Java from the same design model. Because models exclude low-level details, the
code generator in a design workbench cannot usually generate the complete sys-
tem. Some hand coding is usually necessary to add detail to the generated code.

■ A model is an abstract view of a system that ignores some system details. Complementary
system models can be developed to present other information about the system.

■ Context models show how the system being modelled is positioned in an environment with
other systems and processes. They define the boundaries of the system. Architectural
models, process models and data-flow models may be used as context models.

■ Data-flow diagrams may be used to model the data processing carried out by a system. The
system is modelled as a set of data transformations with functions acting on the data.

■ State machine models are used to model a system’s behaviour in response to internal or
external events.

■ Semantic data models describe the logical structure of the data that is imported to and
exported by the system. These models show system entities, their attributes and the
relationships in which they participate.

■ Object models describe the logical system entities and their classification and aggregation.
They combine a data model with a processing model. Possible object models that may be
developed include inheritance models, aggregation models and behavioural models.

■ Sequence models that show interactions between actors and objects in a system are used
to model dynamic behaviour.

■ Structured methods provide a framework for supporting the development of system models.
They normally have extensive case tool support, including model editing and checking and
code generation.

K E Y P O I N TS

F U R T H E R R E A D I N G

Software Design, 2nd ed. Although this book is primarily focused on software design, the author
discusses a number of structured methods that can also be used in the requirements engineering
process. He does not just focus on object-oriented approaches. (D. Budgen, 2003, Addison-
Wesley.)

SE8_C08.qxd 4/4/06 9:02 Page 190

••••

Requirements Analysis and System Design. This book focuses on information systems analysis and
discusses how different UML models can be used in the analysis process. (L. Maciaszek, 2001,
Addison-Wesley.)

Software Engineering with Objects and Components. A short, readable introduction to the use of
the UML in system specification and design. Although much less comprehensive than the full
descriptions of the UML, this book is far better if you are trying to learn and understand the
notation. (P. Stevens with R. Pooley, 1999, Addison-Wesley.)

E X E R C I S E S

8.1 Draw a context model for a patient information system in a hospital. You may make any
reasonable assumptions about the other hospital systems that are available, but your model
must include a patient admissions system and an image storage system for X-rays, as well as
other diagnostic records.

8.2 Based on your experience with a bank ATM, draw a data-flow diagram modelling the data
processing involved when a customer withdraws cash from the machine.

8.3 Model the data processing that might take place in an e-mail system. You should model the
mail-sending and mail-receiving processing separately.

8.4 Draw state machine models of the control software for:

■ An automatic washing machine that has different programs for different types of clothes

■ The software for a DVD player

■ A telephone answering system that records incoming messages and displays the number
of accepted messages on an LED. The system should allow the telephone customer to dial
in from any location, type a sequence of numbers (identified as tones) and play the
recorded messages.

8.5 A software system model may be represented as a directed graph where nodes are the
entities in the model and arcs are the relationships between these entities. Entities and
relationships in the model may be labelled with a name and other information. Each entity in
the model is typed and may be ‘exploded’ into a sub-model. Draw a data model that
describes the structure of a software system model.

8.6 Model the object classes that might be used in an e-mail system. If you have tried Exercise
8.3, describe the similarities and differences between the data processing model and the
object model.

8.7 Using the information about the system data shown in Figure 8.8, draw a sequence diagram
that shows a possible sequence of actions that occur when a new article is catalogued by the
LIBSYS system.

8.8 Develop an object model, including a class hierarchy diagram and an aggregation diagram
showing the principal components of a personal computer system and its system software.

Chapter 8 ■ Exercises 191

SE8_C08.qxd 4/4/06 9:02 Page 191

192 Chapter 8 ■ System models

8.9 Develop a sequence diagram showing the interactions involved when a student registers for a
course in a university. Courses may have limited enrolment, so the registration process must
include checks that places are available. Assume that the student accesses an electronic
course catalogue to find out about available courses.

8.10 Under what circumstances would you recommend against using structured methods for
system development?

••

SE8_C08.qxd 4/4/06 9:02 Page 192

Critical systems
specification

Objectives
The objective of this chapter is to explain how to specify functional and
non-functional dependability requirements for critical systems. When
you have read this chapter, you will:

■ understand how dependability requirements for critical systems can
be identified by analysing the risks faced by these systems;

■ understand that safety requirements are generated from the system
risk analysis rather than system stakeholders;

■ understand the process of deriving security requirements and how
security requirements are generated to counter different types of
threat to the system;

■ understand metrics for reliability specification and how these metrics
may be used to specify reliability requirements.

Contents
9.1 Risk-driven specification

9.2 Safety specification

9.3 Security specification

9.4 Software reliability specification

9

SE8_C09.qxd 4/4/06 9:03 Page 193

••

194 Chapter 9 ■ Critical systems specification

In September 1993, a plane landed at Warsaw airport in Poland during a thunder-
storm. For nine seconds after landing, the brakes on the computer-controlled brak-
ing system did not work. The plane ran off the end of the runway, hit an earth bank
and caught fire. The subsequent enquiry showed that the braking system software
had worked perfectly according to its specification. However, for reasons I won’t
go into here, the braking system did not recognise that the plane had landed. A safety
feature on the aircraft had stopped the deployment of the braking system because
this can be dangerous if the plane is in the air. The system failure was caused by
an error in the system specification.

This illustrates the importance of specification for critical systems. Because of
the high potential costs of system failure, it is important to ensure that the specifi-
cation for critical systems accurately reflects the real needs of users of the system.
If you don’t get the specification right, then, irrespective of the quality of the soft-
ware development, the system will not be dependable.

The need for dependability in critical systems generates both functional and non-
functional system requirements:

1. System functional requirements may be generated to define error checking and
recovery facilities and features that provide protection against system failures.

2. Non-functional requirements may be generated to define the required reliabil-
ity and availability of the system.

In addition to these requirements, safety and security considerations can gener-
ate a further type of requirement that is difficult to classify as a functional or a non-
functional requirement. They are high-level requirements that are perhaps best described
as ‘shall not’ requirements. By contrast with normal functional requirements that
define what the system shall do, ‘shall not’ requirements define system behaviour
that is unacceptable. Examples of ‘shall not’ requirements are:

The system shall not allow users to modify access permissions on any files that
they have not created. (security)

The system shall not allow reverse thrust mode to be selected when the air-
craft is in flight. (safety)

The system shall not allow the simultaneous activation of more than three alarm
signals. (safety)

These ‘shall not’ requirements are sometimes decomposed into more specific soft-
ware functional requirements. Alternatively, implementation decisions may be
deferred until the system is designed.

The user requirements for critical systems will always be specified using natural
language and system models. However, as I discuss in Chapter 10, formal specifi-
cation and associated verification are most likely to be cost-effective in critical systems
development (Hall, 1996; Hall and Chapman, 2002; Wordsworth, 1996). Formal

••

SE8_C09.qxd 4/4/06 9:03 Page 194

••

9.1 ■ Risk-driven specification 195

••

specifications are not just a basis for a verification of the design and implementa-
tion. They are the most precise way of specifying systems so reduce the scope for
misunderstanding. Furthermore, constructing a formal specification forces a detailed
analysis of the requirements, which is an effective way of discovering problems in
the specification. In a natural language specification, errors can be concealed by the
imprecision of the language. This is not the case if the system is formally specified.

9.1 Risk-driven specification

Critical systems specification supplements the normal requirements specification pro-
cess by focusing on the dependability of the system. Its objective is to understand
the risks faced by the system and generate dependability requirements to cope with
them. Risk-driven specification has been widely used by safety and security critical
systems developers. In safety-critical systems, the risks are hazards that can result
in accidents; in security-critical systems, the risks are vulnerabilities that can lead to
a successful attack on a system. Because of the increasing importance of security,
I have included a detailed discussion of risk driven approaches in Chapter 31,
covering security engineering, in the new section on Emerging Technologies.

The risk-driven specification process involves understanding the risks faced by
the system, discovering their root causes and generating requirements to manage
these risks. Figure 9.1 shows the iterative process of risk analysis:

1. Risk identification Potential risks that might arise are identified. These are
dependent on the environment in which the system is to be used.

2. Risk analysis and classification The risks are considered separately. Those that
are potentially serious and not implausible are selected for further analysis. At
this stage, some risks may be eliminated simply because they are very unlikely
ever to arise (e.g., simultaneous lightning strike and earthquake).

3. Risk decomposition Each risk is analysed individually to discover potential root
causes of that risk. Techniques such as fault-tree analysis (discussed later in
this chapter) may be used.

4. Risk reduction assessment Proposals for ways in which the identified risks may
be reduced or eliminated are made. These then generate system dependability
requirements that define the defences against the risk and how the risk will be
managed if it arises.

For large systems, risk analysis may be structured into phases. Multiphase risk
analysis is necessary for large systems such as chemical plants or aircraft. The phases
of risk analysis include:

SE8_C09.qxd 4/4/06 9:03 Page 195

••••

196 Chapter 9 ■ Critical systems specification

• Preliminary risk analysis where major risks are identified

• More detailed system and sub-system risk analysis

• Software risk analysis where the risks of software failure are considered

• Operational risk analysis that is concerned with the system user interface and
risks that arise from operator errors.

Leveson (Leveson, 1995) discusses this multiphase risk analysis process in her book
on safety-critical systems.

9.1.1 Risk identification

The objective of risk identification, the first stage of the risk analysis process, is to
identify the risks that the critical system must cope with. This can be a complex
and difficult process because risks often arise from interactions between the system
and rare environmental conditions. The Warsaw accident that I discussed earlier hap-
pened when crosswinds generated during a thunderstorm caused the plane to tilt so
that it landed on one rather than two wheels.

In safety-critical systems, the principal risks are hazards that can lead to an acci-
dent. You can tackle the hazard-identification problem by considering different classes
of hazards, such as physical hazards, electrical hazards, biological hazards, radia-
tion hazards, service failure hazards and so on. Each of these classes can then be
analysed to discover associated hazards. Possible combinations of hazards must also
be identified.

I introduced an example of an insulin pump system in Chapter 3. Like many
medical devices, this is a safety-critical system. Some of the hazards or risks that
might arise in this system are:

1. Insulin overdose (service failure)

2. Insulin underdose (service failure)

3. Power failure due to exhausted battery (electrical)

4. Electrical interference with other medical equipment such as a heart pacemaker
(electrical)

Risk analysis and
classification

Risk reduction
assessment

Risk
assessment

Dependability
requirements

Risk
decomposition

Root cause
analysis

Risk
description

Risk
identification

Figure 9.1 Risk-driven
specification

SE8_C09.qxd 4/4/06 9:03 Page 196

••••

5. Poor sensor and actuator contact caused by incorrect fitting (physical)

6. Parts of machine breaking off in patient’s body (physical)

7. Infection caused by introduction of machine (biological)

8. Allergic reaction to the materials or insulin used in the machine (biological).

Software-related risks are normally concerned with failure to deliver a system ser-
vice or with the failure of monitoring and protection systems. Monitoring systems
may detect potentially hazardous conditions such as power failures.

Experienced engineers, working with domain experts and professional safety advis-
ers, should identify system risks. Group working techniques such as brainstorming
may be used to identify risks. Analysts with direct experience of previous incidents
may also be able to identify risks.

9.1.2 Risk analysis and classification

The risk analysis and classification process is primarily concerned with understanding
the likelihood that a risk will arise and the potential consequences if an accident or
incident associated with that risk should occur. We need to make this analysis to
understand whether a risk is a serious threat to the system or environment and to
provide a basis for deciding the resources that should be used to manage the risk.

For each risk, the outcome of the risk analysis and classification process is a
statement of acceptability. Risks can be categorised in three ways:

1. Intolerable The system must be designed in such a way so that either the risk
cannot arise or, if it does arise, it will not result in an accident. Intolerable risks
would, typically, be those that threaten human life or the financial stability of
a business and which have a significant probability of occurrence. An exam-
ple of an intolerable risk for an e-commerce system in an Internet bookstore,
say, would be a risk of the system going down for more than a day.

2. As low as reasonably practical (ALARP) The system must be designed so that
the probability of an accident arising because of the hazard is minimised, sub-
ject to other considerations such as cost and delivery. ALARP risks are those
which have less serious consequences or which have a low probability of occur-
rence. An ALARP risk for an e-commerce system might be corruption of the
web page images that presented the brand of the company. This is commer-
cially undesirable but is unlikely to have serious short-term consequences.

3. Acceptable While the system designers should take all possible steps to reduce
the probability of an ‘acceptable’ hazard arising, these should not increase costs,
delivery time or other non-functional system attributes. An example of an accept-
able risk for an e-commerce system is the risk that people using beta-release
web browsers could not successfully complete orders.

9.1 ■ Risk-driven specification 197

SE8_C09.qxd 4/4/06 9:03 Page 197

••••

198 Chapter 9 ■ Critical systems specification

Figure 9.2 (Brazendale and Bell, 1994), developed for safety-critical systems,
shows these three regions. The shape of the diagram reflects the costs of ensuring
risks do not result in incidents or accidents. The cost of system design to cope with
the risk is a function of the width of the triangle. The highest costs are incurred by
risks at the top of the diagram, the lowest costs by risks at the apex of the triangle.

The boundaries between the regions in Figure 9.2 tend to move over time, due
to public expectations of safety and political considerations. Although the financial
costs of accepting risks and paying for any resulting accidents may be less than the
costs of accident prevention, public opinion may demand that the additional costs
must be accepted. For example, it may be cheaper for a company to clean up pol-
lution on the rare occasion it occurs rather than install systems for pollution pre-
vention. This may have been acceptable in the 1960s and 1970s but it is not likely
to be publicly or politically acceptable now. The boundary between the intolerable
region and the ALARP region has moved downwards so that risks that may have
been accepted in the past are now intolerable.

Risk assessment involves estimating the risk probability and the risk severity.
This is usually very difficult to do in an exact way and generally depends on mak-
ing engineering judgements. Probabilities and severities are assigned using relative
terms such as probable, unlikely, and rare and high, and medium and low. Previous
system experience may allow some numeric value to be associated with these terms.
However, because accidents are relatively uncommon, it is very difficult to vali-
date the accuracy of this value.

Figure 9.3 shows a risk classification for the risks (hazards) identified in the pre-
vious section for the insulin delivery system. As I am not a physician, I have included
the estimates to illustrate the principle. They are not necessarily the actual probabil-
ities and severities that would arise in a real analysis of an insulin delivery system.
Notice that an insulin overdose is potentially more serious than an insulin underdose
in the short term. Insulin overdose can result in illness, coma and ultimately death.

Unacceptable region
Risk cannot be tolerated

Risk tolerated only if
risk reduction is impractical

or grossly expensive

Acceptable
region

Negligible risk

ALARP
region

Figure 9.2 Levels of
risk

SE8_C09.qxd 4/4/06 9:03 Page 198

••••

Hazards 3–8 are not software related so I do not discuss them further here. To
counter these hazards, the machine should have built-in self-checking software that
should monitor the system state and warn of some of these hazards. The warning
will often allow the hazard to be detected before it causes an accident. Examples
of hazards that might be detected are power failure and incorrect placement of the
machine. The monitoring software is, of course, safety-related as failure to detect
a hazard could result in an accident.

9.1.3 Risk decomposition

Risk decomposition is the process of discovering the root causes of risks in a par-
ticular system. Techniques for risk decomposition have been primarily derived from
safety-critical systems development where hazard analysis is a central part of the
safety process. Risk analysis can be either deductive or inductive. Deductive, top-
down techniques, which tend to be easier to use, start with the risk and work from
that to the possible system failure; inductive, bottom-up techniques start with a pro-
posed system failure and identify which hazards might arise that could lead to that
failure.

Various techniques have been proposed as possible approaches to risk decom-
position. These include reviews and checklists, as well as more formal techniques
such as Petri net analysis (Peterson, 1981), formal logic (Jahanian and Mok, 1986)
and fault-tree analysis (Leveson and Stolzy, 1987; Storey, 1996).

I cover fault-tree analysis here. This technique was developed for safety-critical
systems and is relatively easy to understand without specialist domain knowledge.
Fault-tree analysis involves identifying the undesired event and working backwards
from that event to discover the possible causes of the hazard. You put the hazard
at the root of the tree and identify the states that can lead to that hazard. For each

Figure 9.3 Risk
analysis of identified
hazards in an insulin
pump

Identified hazard Hazard probability Hazard severity Estimated risk Acceptability

1. Insulin overdose Medium High High Intolerable

2. Insulin underdose Medium Low Low Acceptable

3. Power failure High Low Low Acceptable

4. Machine incorrectly fitted High High High Intolerable

5. Machine breaks in patient Low High Medium ALARP

6. Machine causes infection Medium Medium Medium ALARP

7. Electrical interference Low High Medium ALARP

8. Allergic reaction Low Low Low Acceptable

9.1 ■ Risk-driven specification 199

SE8_C09.qxd 4/4/06 9:03 Page 199

••••

200 Chapter 9 ■ Critical systems specification

of these states, you then identify the states that can lead to that and continue this
decomposition until you identify the root causes of the risk. States can be linked
with ‘and’ and ‘or’ symbols. Risks that require a combination of root causes are
usually less probable than risks that can result from a single root cause.

Figure 9.4 is the fault tree for the software-related hazards in the insulin deliv-
ery system. Insulin underdose and insulin overdose really represent a single haz-
ard, namely, ‘incorrect insulin dose administered’, and a single fault tree can be
drawn. Of course, when specifying how the software should react to hazards, you
have to distinguish between an insulin underdose and an insulin overdose.

The fault tree in Figure 9.4 is incomplete. Only potential software faults have
been fully decomposed. Hardware faults such as low battery power causing a sen-
sor failure are not shown. At this level, further analysis is not possible. However,

Incorrect
sugar level
measured

Incorrect
insulin dose
administered

or

Correct dose
delivered at
wrong time

Sensor
failure

or

Sugar
computation

error

Timer
failure

Pump
signals

incorrect

or

Insulin
computation

incorrect

Delivery
system
failure

Arithmetic
error

or

Algorithm
error

Arithmetic
error

or

Algorithm
error

Figure 9.4 Fault tree
for insulin delivery
system

SE8_C09.qxd 4/4/06 9:03 Page 200

••••

as a design and implementation and developed, more detailed fault trees may be
developed. Leveson and Harvey (Leveson and Harvey, 1983) and Leveson
(Leveson, 1985) show how fault trees can be developed throughout the software
design down to the individual programming language statement level.

Fault trees are also used to identify potential hardware problems. A fault tree
may provide insights into requirements for software to detect and, perhaps, correct
these problems. For example, insulin doses are not administered at a very high fre-
quency, no more than two or three times per hour and sometimes less often than
this. Therefore, processor capacity is available to run diagnostic and self-checking
programs. Hardware errors such as sensor, pump or timer errors can be discovered
and warnings issued before they have a serious effect on the patient.

9.1.4 Risk reduction assessment

Once potential risks and their root causes have been identified, you should then derive
system dependability requirements that manage the risks and ensure that incidents
or accidents do not occur. There are three possible strategies that you can use:

1. Risk avoidance The system is designed so that the risk or hazard cannot arise.

2. Risk detection and removal The system is designed so that risks are detected
and neutralised before they result in an accident.

3. Damage limitation The system is designed so that the consequences of an acci-
dent are minimised.

Normally, designers of critical systems use a combination of these approaches.
In a safety-critical system, intolerable hazards may be handled by minimising their
probability and adding a protection system that provides a safety backup. For exam-
ple, in a chemical plant control system, the system will attempt to detect and avoid
excess pressure in the reactor. However, there should also be an independent pro-
tection system that monitors the pressure and opens a relief valve if high pressure
is detected.

In the insulin delivery system, a ‘safe state’ is a shutdown state where no insulin
is injected. Over a short period this will not pose a threat to the diabetic’s health.
If the potential software problems identified in Figure 9.4 are considered, the fol-
lowing ‘solutions’ might be developed:

1. Arithmetic error This arises when some arithmetic computation causes a rep-
resentation failure. The specification must identify all possible arithmetic
errors that may occur. These depend on the algorithm used. The specification
might state that an exception handler must be included for each identified arith-
metic error. The specification should set out the action to be taken for each of
these errors if they arise. A safe action is to shut down the delivery system and
activate a warning alarm.

9.1 ■ Risk-driven specification 201

SE8_C09.qxd 4/4/06 9:03 Page 201

••••

202 Chapter 9 ■ Critical systems specification

2. Algorithmic error This is a more difficult situation as no definite anomalous
situation can be detected. It might be detected by comparing the required insulin
dose computed with the previously delivered dose. If it is much higher, this
may mean that the amount has been computed incorrectly. The system may
also keep track of the dose sequence. After a number of above-average doses
have been delivered, a warning may be issued and further dosage limited.

Some of the resulting safety requirements for the insulin pump system are
shown in Figure 9.5 These are user requirements and, naturally, they would be
expressed in more detail in a final system specification. In these requirements, the
references to Tables 3 and 4 relate to tables that would be included in the require-
ments document.

9.2 Safety specification

The processes of risk management discussed so far have evolved from the processes
developed for safety-critical systems. Until relatively recently, safety-critical sys-
tems were mostly control systems where failure of the equipment being controlled
could cause injury. In the 1980s and 1990s, as computer control become
widespread, the safety engineering community developed standards for safety-
critical systems specification and development.

The process of safety specification and assurance is part of an overall safety life
cycle that is defined in an international standard for safety management IEC 61508
(IEC, 1998). This standard was developed specifically for protection systems such
as a system that stops a train if it passes a red signal. Although it can be used for

SR1: The system shall not deliver a single dose of insulin that is greater than a
specified maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is
greater than a specified maximum for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be executed
at least four times per hour.

SR4: The system shall include an exception handler for all of the exceptions that
are identified in Table 3.

SR5: The audible alarm shall be sounded when any hardware or software
anomaly is discovered and a diagnostic message as defined in Table 4
should be displayed.

SR6: In the event of an alarm in the system, insulin delivery shall be suspended
until the user has reset the system and cleared the alarm.

Figure 9.5 Examples
of safety
requirements for an
insulin pump

SE8_C09.qxd 4/4/06 9:03 Page 202

••••

more general safety-critical systems, such as control systems, I think that its sepa-
ration of safety specification from more general system specification is inappropri-
ate for critical information systems. Figure 9.6 illustrates the system model that is
assumed by the IEC 61508 standard.

Figure 9.7 is a simplified form of Redmill’s presentation of the safety life cycle
(Redmill, 1998). As you can see from Figure 9.7, this standard covers all aspects
of safety management from initial scope definition through planning and system
development to system decommissioning.

In this model, the control system controls some equipment that has associated high-
level safety requirements. These high-level requirements generate two types of more
detailed safety requirements that apply to the protection system for the equipment:

1. Functional safety requirements that define the safety functions of the system

2. Safety integrity requirements that define the reliability and availability of the
protection system. These are based on the expected usage of the protection sys-
tem and are intended to ensure that it will work when it is needed. Systems are
classified using a safety integrity level (SIL) from 1 to 4. Each SIL level rep-
resents a higher level of reliability; the more critical the system, the higher the
SIL required.

The first stages of the IEC 61508 safety life cycle define the scope of the sys-
tem, assess the potential system hazards and estimate the risks they pose. This is
followed by safety requirements specification and the allocation of these safety
requirements to different sub-systems. The development activity involves plan-
ning and implementation. The safety-critical system itself is designed and imple-
mented, as are related external systems that may provide additional protection. In
parallel with this, the safety validation, installation, and operation and maintenance
of the system are planned.

Safety management does not stop on delivery of the system. After delivery, the
system must be installed as planned so that the hazard analysis remains valid. Safety

System
requirements

Control
system

Equipment
Safety

requirements

Protection
system

Functional safety
requirements

Safety integrity
requirements

Figure 9.6 Control
system safety
requirements

9.2 ■ Safety specification 203

SE8_C09.qxd 4/4/06 9:03 Page 203

••••

204 Chapter 9 ■ Critical systems specification

validation is then carried out before the system is put into use. Safety must also be
managed during the operation and (particularly) the maintenance of the system. Many
safety-related systems problems arise because of a poor maintenance process, so it
is particularly important that the system is designed for maintainability. Finally, safety
considerations that may apply during decommissioning (e.g., disposal of hazardous
material in circuit boards) should also be taken into account.

9.3 Security specification

The specification of security requirements for systems has something in common
with safety requirements. It is impractical to specify them quantitatively, and secu-
rity requirements are often ‘shall not’ requirements that define unacceptable

Hazard and risk
analysis

Concept and
scope definition

Validation O & M Installation

Planning Safety-related
systems

development

External risk
reduction
facilities

Operation and
maintenance

Planning and development

System
decommissioning

Safety req.
allocation

Safety req.
derivation

Installation and
commissioning

Safety
validation

Figure 9.7 The IEC
61508 safety life
cycle

SE8_C09.qxd 4/4/06 9:03 Page 204

••••

system behaviour rather than required system functionality. However, there are impor-
tant differences between these types of requirements:

1. The notion of a safety life cycle that covers all aspects of safety management
is well developed. The area of security specification and management is still
immature and there is no accepted equivalent of a security life cycle.

2. Although some security threats are system specific, many are common to all
types of system. All systems must protect themselves against intrusion, denial
of service, and so on. By contrast, hazards in safety-critical systems are
domain-specific.

3. Security techniques and technologies such as encryption and authentication devices
are fairly mature. However, using this technology effectively often requires a
high level of technical sophistication. It can be difficult to install, configure
and stay up to date. Consequently, system managers make mistakes leaving vul-
nerabilities in the system.

4. The dominance of one software supplier in world markets means that a huge
number of systems may be affected if security in their programs is breached.
There is insufficient diversity in the computing infrastructure and consequently
it is more vulnerable to external threats. Safety-critical systems are usually spe-
cialised, custom systems so this situation does not arise.

The conventional (non-computerised) approach to security analysis is based
around the assets to be protected and their value to an organisation. Therefore, a
bank will provide high security in an area where large amounts of money are stored
compared to other public areas (say) where the potential losses are limited. The same
approach can be used for specifying security for computer-based systems. A pos-
sible security specification process is shown in Figure 9.8.

The stages in this process are:

1. Asset identification and evaluation The assets (data and programs) and their
required degree of protection are identified. The required protection depends
on the asset value so that a password file (say) is normally more valuable than
a set of public web pages as a successful attack on the password file has seri-
ous system-wide consequences.

2. Threat analysis and risk assessment Possible security threats are identified and
the risks associated with each of these threats are estimated.

3. Threat assignment Identified threats are related to the assets so that, for each
identified asset, there is a list of associated threats.

4. Technology analysis Available security technologies and their applicability against
the identified threats are assessed.

9.3 ■ Security specification 205

SE8_C09.qxd 4/4/06 9:03 Page 205

••••

206 Chapter 9 ■ Critical systems specification

5. Security requirements specification The security requirements are specified. Where
appropriate, they explicitly identify the security technologies that may be used
to protect against threats to the system.

Security specification and security management are essential for all critical sys-
tems. If a system is insecure, then it is subject to infection with viruses and worms,
corruption and unauthorised modification of data, and denial of service attacks. All
of this means that we cannot be confident that the efforts made to ensure safety and
reliability will be effective.

Different types of security requirements address the different threats faced by a
system. Firesmith (Firesmith, 2003) identifies 10 types of security requirements that
may be included in a system:

1. Identification requirements specify whether a system should identify its users
before interacting with them.

2. Authentication requirements specify how users are identified.

3. Authorisation requirements specify the privileges and access permissions of iden-
tified users.

4. Immunity requirements specify how a system should protect itself against
viruses, worms, and similar threats.

5. Integrity requirements specify how data corruption can be avoided.

6. Intrusion detection requirements specify what mechanisms should be used to
detect attacks on the system.

7. Non-repudiation requirements specify that a party in a transaction cannot deny
its involvement in that transaction.

Figure 9.8 Security
specification

SE8_C09.qxd 4/4/06 9:03 Page 206

••••

8. Privacy requirements specify how data privacy is to be maintained.

9. Security auditing requirements specify how system use can be audited and
checked.

10. System maintenance security requirements specify how an application can pre-
vent authorised changes from accidentally defeating its security mechanisms.

Of course, not every system needs all of these security requirements. The par-
ticular requirements depend on the type of system, the situation of use and the expected
users. As an example, Figure 9.9 shows security requirements that might be
included in the LIBSYS system.

9.4 Software reliability specification

Reliability is a complex concept that should always be considered at the system
rather than the individual component level. Because the components in a system
are interdependent, a failure in one component can be propagated through the sys-
tem and affect the operation of other components. In a computer-based system, you
have to consider three dimensions when specifying the overall system reliability:

1. Hardware reliability What is the probability of a hardware component failing
and how long would it take to repair that component?

2. Software reliability How likely is it that a software component will produce an
incorrect output? Software failures are different from hardware failures in that

SEC1: All system users shall be identified using their library card number and
personal password.

SEC2: Users’ privileges shall be assigned according to the class of user (student,
staff, library staff).

SEC3: Before execution of any command, LIBSYS shall check that the user has
sufficient privileges to access and execute that command.

SEC4: When a user orders a document, the order request shall be logged. The log
data maintained shall include the time of order, the user’s identification and
the articles ordered.

SEC5: All system data shall be backed up once per day and backups stored off-
site in a secure storage area.

SEC6: Users shall not be permitted to have more than one simultaneous login
to LIBSYS.

Figure 9.9 Some
security requirements
for the LIBSYS
system

9.4 ■ Software reliability specification 207

SE8_C09.qxd 4/4/06 9:03 Page 207

••

208 Chapter 9 ■ Critical systems specification

software does not wear out: It can continue operating correctly after produc-
ing an incorrect result.

3. Operator reliability How likely is it that the operator of a system will make an
error?

All of these are closely linked. Hardware failure can cause spurious signals to
be generated that are outside the range of inputs expected by software. The soft-
ware can then behave unpredictably. Unexpected system behaviour may confuse
the operator and result in operator stress. The operator may then act incorrectly and
choose inputs that are inappropriate for the current failure situation. These inputs
further confuse the system and more errors are generated. A single sub-system fail-
ure that is recoverable can thus rapidly develop into a serious problem requiring a
complete system shutdown.

Systems reliability should be specified as a non-functional requirement that, ide-
ally, is expressed quantitatively using one of the metrics discussed in the next sec-
tion. To meet the non-functional reliability requirements, it may be necessary to specify
additional functional and design requirements on the system that specify how fail-
ures may be avoided or tolerated. Examples of these reliability requirements are:

1. A predefined range for all values that are input by the operator shall be
defined, and the system shall check that all operator inputs fall within this pre-
defined range.

2. As part of the initialisation process, the system shall check all disks for bad
blocks.

3. N-version programming shall be used to implement the braking control system.

4. The system must be implemented in a safe subset of Ada and checked using
static analysis.

There are no simple rules for deriving functional reliability requirements. In organ-
isations that develop critical systems, there is usually organisational knowledge about
possible reliability requirements and how these impact the actual reliability of a sys-
tem. These organisations may specialise in specific types of system, such as rail-
way control systems, so the reliability requirements, once derived, are reused
across a range of systems. The higher the safety integrity level (discussed above)
required in safety-critical systems, the more stringent the reliability requirements
are likely to be.

9.4.1 Reliability metrics

Reliability metrics were first devised for hardware components. Hardware compo-
nent failure is inevitable due to physical factors such as mechanical abrasion and
electrical heating. Components have limited life spans, which is reflected in the most

••

SE8_C09.qxd 4/4/06 9:03 Page 208

••••

widely used hardware reliability metric, mean time to failure (MTTF). The MTTF
is the mean time for which a component is expected to be operational. Hardware
component failure is usually permanent, so the mean time to repair (MTTR), which
reflects the time needed to repair or replace the component, is also significant.

However, these hardware metrics are not directly applicable to software relia-
bility specification because software component failures are often transient rather
than permanent. They show up only with some inputs. If the data is undamaged,
the system can often continue in operation after a failure has occurred.

Metrics that have been used for specifying software reliability and availability are
shown in Figure 9.10. The choice of which metric should be used depends on the type
of system to which it applies and the requirements of the application domain. Some
examples of the types of system where these different metrics may be used are:

1. Probability of failure on demand This metric is most appropriate for systems where
services are demanded at unpredictable or at relatively long time intervals and where
there are serious consequences if the service is not delivered. It might be used to
specify protection systems such as the reliability of a pressure relief system in a
chemical plant or an emergency shutdown system in a power plant.

2. Rate of occurrence of failures This metric should be used where regular
demands are made on system services and where it is important that these ser-
vices are correctly delivered. It might be used in the specification of a bank teller
system that processes customer transactions or in a hotel reservation system.

3. Mean time to failure This metric should be used in systems where there are long
transactions; that is, where people use the system for a long time. The MTTF should
be longer than the average length of each transaction. Examples of systems where
this metric may be used are word processor systems and CAD systems.

Metric Explanation

POFOD Probability of failure on demand The likelihood that the system will fail when a service request
is made. A POFOD of 0.001 means that one out of a thousand
service requests may result in failure.

ROCOF Rate of failure occurrence The frequency of occurrence with which unexpected behaviour
is likely to occur. A ROCOF of 2/100 means that two failures
are likely to occur in each 100 operational time units. This
metric is sometimes called the failure intensity.

MTTF Mean time to failure The average time between observed system failures. An MTTF
of 500 means that one failure can be expected every 500 time
units.

AVAIL Availability The probability that the system is available for use at a given
time. Availability of 0.998 means that the system is likely to be
available for 998 of every 1,000 time units.

Figure 9.10 Reliability
metrics

9.4 ■ Software reliability specification 209

SE8_C09.qxd 4/4/06 9:03 Page 209

••

210 Chapter 9 ■ Critical systems specification

4. Availability This metric should be used in non-stop systems where users expect
the system to deliver a continuous service. Examples of such systems are tele-
phone switching systems and railway signalling systems.

There are three kinds of measurements that can be made when assessing the reli-
ability of a system:

1. The number of system failures given a number of requests for system services.
This is used to measure the POFOD.

2. The time (or number of transactions) between system failures. This is used to
measure ROCOF and MTTF.

3. The elapsed repair or restart time when a system failure occurs. Given that the
system must be continuously available, this is used to measure AVAIL.

Time units that may be used in these metrics are calendar time, processor time
or some discrete unit such as number of transactions. In systems that spend much
of their time waiting to respond to a service request, such as telephone switching
systems, the time unit that should be used is processor time. If you use calendar
time, then this includes the time when the system was doing nothing.

Calendar time is an appropriate time unit to use for systems that are in contin-
uous operation. For example, monitoring systems such as alarm systems and other
types of process control systems fall into this category. Systems that process trans-
actions such as bank ATMs or airline reservation systems have variable loads placed
on them depending on the time of day. In these cases, the unit of ‘time’ used should
be the number of transactions; that is., the ROCOF would be number of failed trans-
actions per N thousand transactions.

9.4.2 Non-functional reliability requirements

In many system requirements documents, reliability requirements are not carefully
specified. The reliability specifications are subjective and unmeasurable. For exam-
ple, statements such as ‘The software shall be reliable under normal conditions of
use’ are meaningless. Quasi-quantitative statements such as ‘The software shall exhibit
no more than N faults/1000 lines’ are equally useless. It is impossible to measure
the number of faults/1000 lines of code as you can’t tell when all faults have been
discovered. Furthermore, the statement means nothing in terms of the dynamic
behaviour of the system. It is software failures, not software faults, that affect the
reliability of a system.

The types of failure that can occur are system specific, and the consequences of
a system failure depend on the nature of that failure. When writing a reliability spec-
ification, you should identify different types of failure and think about whether these
should be treated differently in the specification. Examples of different types of failure

••

SE8_C09.qxd 4/4/06 9:03 Page 210

••••

are shown in Figure 9.11. Obviously combinations of these, such as a failure that
is transient, recoverable and corrupting, can occur.

Most large systems are composed of several sub-systems with different reliabil-
ity requirements. Because very high-reliability software is expensive, you should
assess the reliability requirements of each sub-system separately rather than impose
the same reliability requirement on all sub-systems. This avoids placing needlessly
high demands for reliability on those sub-systems where it is unnecessary.

The steps involved in establishing a reliability specification are:

1. For each sub-system, identify the types of system failure that may occur and
analyse the consequences of these failures.

2. From the system failure analysis, partition failures into appropriate classes. A
reasonable starting point is to use the failure types shown in Figure 9.11.

3. For each failure class identified, define the reliability requirement using an appro-
priate reliability metric. It is not necessary to use the same metric for different
classes of failure. If a failure requires some intervention to recover from it, the
probability of that failure occurring on demand might be the most appropriate
metric. When automatic recovery is possible and the effect of the failure is user
inconvenience, ROCOF might be more appropriate.

4. Where appropriate, identify functional reliability requirements that define sys-
tem functionality to reduce the probability of critical failures.

As an example, consider the reliability requirements for a bank ATM. Assume that
each machine in the network is used about 300 times per day. The lifetime of the sys-
tem hardware is 5 years and the software is normally upgraded every year. Therefore,
during the lifetime of a software release, each machine will handle about 100,000
transactions. A bank has 1,000 machines in its network. This means that there are
300,000 transactions on the central database per day (say 100 million per year).

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without operator intervention

Unrecoverable Operator intervention needed to recover from failure

Non-corrupting Failure does not corrupt system state or data

Corrupting Failure corrupts system state or data

Figure 9.11 Failure
classification

9.4 ■ Software reliability specification 211

SE8_C09.qxd 4/4/06 9:03 Page 211

••••

212 Chapter 9 ■ Critical systems specification

Figure 9.12 shows possible failure classes and possible reliability specifications
for different types of system failure. The reliability requirements state that it is
acceptable for a permanent failure to occur in a machine roughly once per three
years. This means that, on average, one machine in the banking network might
be affected each day. By contrast, faults that mean a transaction has to be can-
celled can occur relatively frequently. Their only effect is to cause minor user
inconvenience.

Ideally, faults that corrupt the database should never occur in the lifetime of the
software. Therefore, the reliability requirement that might be placed on this is that
the probability of a corrupting failure occurring when a demand is made is less than
1 in 200 million transactions. That is, in the lifetime of an ATM software release,
there should never be an error that causes database corruption.

However, a reliability requirement like this cannot actually be tested. Say each
transaction takes one second of machine time and a simulator can be built for the
ATM network. Simulating the transactions which take place in a single day across
the network will take 300,000 seconds. This is approximately 3.5 days. Clearly this
period could be reduced by reducing the transaction time and using multiple sim-
ulators. Nevertheless, it is still very difficult to test the system to validate the reli-
ability specification.

It is impossible to validate qualitative requirements that demand a very high level
of reliability. For example, say a system was intended for use in a safety-critical
application so it should never fail over the total lifetime of the system. Assume that
1,000 copies of the system are to be installed, and the system is ‘executed’ 1,000
times per second. The projected lifetime of the system is 10 years. The total esti-
mated number of system executions is therefore approximately 3 * 10

14
. There is

no point in specifying that the rate of occurrence of failure should be 1/10
15

exe-
cutions (this allows for some safety factor) as you cannot test the system for long
enough to validate this level of reliability.

As a further example, consider the reliability requirements for the insulin pump
system. This system delivers insulin a number of times per day and monitors the

Failure class Example Reliability metric

Permanent, The system fails to operate with any ROCOF
non-corrupting. card that is input. Software must be 1 occurrence/1,000 days

restarted to correct failure.

Transient, The magnetic stripe data cannot be ROCOF
non-corrupting read on an undamaged card that is 1 in 1,000 transactions

input.

Transient, A pattern of transactions across the Unquantifiable! Should
corrupting network causes database corruption. never happen in the

lifetime of the system.

Figure 9.12 Reliability
specification for an
ATM

SE8_C09.qxd 4/4/06 9:03 Page 212

••••

user’s blood glucose several times per hour. Because the use of the system is inter-
mittent and failure consequences are serious, the most appropriate reliability met-
ric is POFOD (probability of failure on demand).

Failure to deliver insulin does not have immediate safety implications, so com-
mercial factors rather than the safety factors govern the level of reliability required.
Service costs are high because users need fast repair and replacement. It is in the man-
ufacturer’s interest to limit the number of permanent failures that require repair.

Again, two types of failure can be identified:

1. Transient failures that can be repaired by user actions such as resetting or recal-
ibrating the machine. For these types of failures, a relatively low value of POFOD
(say 0.002) may be acceptable. This means that one failure may occur in every
500 demands made on the machine. This is approximately once every 3.5 days.

2. Permanent failures that require the machine to be repaired by the manufacturer.
The probability of this type of failure should be much lower. Roughly once a
year is the minimum figure, so POFOD should be no more than 0.00002.

■ Risk analysis is a key activity in the critical systems specification process. It involves
identifying risks that can result in accidents or incidents. System requirements are then
generated to ensure that these risks do not arise or, if they occur, they do not result in an
incident.

■ Risk analysis is the process of assessing the likelihood that a risk will result in an accident.
Risk analysis identifies critical risks that must be avoided in the system and classifying
risks according to their seriousness.

■ To specify security requirements, you should identify the assets that are to be protected
and define how security techniques and technology should be used to protect these assets.

■ Reliability requirements should be defined quantitatively in the system requirements
specification.

■ There are several reliability metrics, such as probability of failure on demand (POFOD), rate
of occurrence of failure, mean time to failure (MTTF) and availability. The most appropriate
metric for a specific system depends on the type of system and application domain.
Different metrics may be used for different sub-systems.

■ Non-functional reliability specifications can lead to functional system requirements that
define system features whose function is to reduce the number of system failures and
hence increase reliability.

K E Y P O I N TS

Chapter 9 ■ Key Points 213

SE8_C09.qxd 4/4/06 9:03 Page 213

••••

214 Chapter 9 ■ Critical systems specification

The cost of developing and validating a system reliability specification can be
very high. Organisations must be realistic about whether these costs are worthwhile.
They are clearly justified in systems where reliable operation is critical, such as tele-
phone switching systems or where system failure may result in large economic losses.
They are probably not justified for many types of business or scientific systems. These
have modest reliability requirements, as the costs of failure are simply processing
delays, and it is straightforward and relatively inexpensive to recover from these.

F U R T H E R R E A D I N G

‘Security use cases.’ A good article, available on the web, that focuses on how use-cases can be
used in security specification. The author also has a number of good articles on security
specification that are referenced in this article. (D. G. Firesmith, Journal of Object Technology, 2 (3),
May–June 2003.)

‘Requirements Definition for survivable network systems.’ Discusses the problems of defining
requirements for survivable systems where survivability relates to both available and security.
(R. C. Linger, et al., Proc. ICRE’98, IEEE Press, 1998.)

Requirements Engineering: A Good Practice Guide. This book includes a section on the
specification of critical systems and a discussion of the use of formal methods in critical systems
specification (I. Sommerville and P. Sawyer, 1997, John Wiley & Sons.)

Safeware: System Safety and Computers. This is a thorough discussion of all aspects of safety-
critical systems. It is particularly strong in its description of hazard analysis and the derivation of
requirements from this. (N. Leveson, 1995, Addison-Wesley.)

E X E R C I S E S

9.1 Explain why the boundaries in the risk triangle shown in Figure 9.2 are liable to change with
time and with changing social attitudes.

9.2 In the insulin pump system, the user has to change the needle and insulin supply at regular
intervals and may also change the maximum single dose and the maximum daily dose that
may be administered. Suggest three user errors that might occur and propose safety
requirements that would avoid these errors resulting in an accident.

9.3 A safety-critical software system for treating cancer patients has two principal components:

■ A radiation therapy machine that delivers controlled doses of radiation to tumour sites.
This machine is controlled by an embedded software system.

SE8_C09.qxd 4/4/06 9:03 Page 214

••••

■ A treatment database that includes details of the treatment given to each patient.
Treatment requirements are entered in this database and are automatically downloaded to
the radiation therapy machine.

Identify three hazards that may arise in this system. For each hazard, suggest a defensive
requirement that will reduce the probability that these hazards will result in an accident.
Explain why your suggested defence is likely to reduce the risk associated with the hazard.

9.4 Describe three important differences between the processes of safety specification and
security specification.

9.5 Suggest how fault-tree analysis could be modified for use in security specification. Threats in
a security-critical system are analogous to hazards in a safety-critical system.

9.6 What is the fundamental difference between hardware and software failures? Given this
difference, explain why hardware reliability metrics are often inappropriate for measuring
software reliability.

9.7 Explain why it is practically impossible to validate reliability specifications when these are
expressed in terms of a very small number of failures over the total lifetime of a system.

9.8 Suggest appropriate reliability metrics for the following classes of software system. Give
reasons for your choice of metric. Predict the usage of these systems and suggest
appropriate values for the reliability metrics:

■ A system that monitors patients in a hospital intensive care unit

■ A word processor

■ An automated vending machine control system

■ A system to control braking in a car

■ A system to control a refrigeration unit

■ A management report generator.

9.9 You are responsible for writing the specification for a software system that controls a
network of EPOS (electronic point of sale) terminals in a store. The system accepts bar code
information from a terminal, queries a product database and returns the item name and its
price to the terminal for display. The system must be continually available during the store’s
opening hours.

Giving reasons for your choice, choose appropriate metrics for specifying the reliability of
such a system and write a plausible reliability specification that takes into account the fact
that some faults are more serious than others.

Suggest four functional requirements that might be generated for this store system to help
improve system reliability.

9.10 A train protection system automatically applies the brakes of a train if the speed limit for a
segment of track is exceeded or if the train enters a track segment that is currently signalled
with a red light (i.e., the segment should not be entered). Giving reasons for your answer, chose
a reliability metric that might be used to specify the required reliability for such a system.

Chapter 9 ■ Exercises 215

SE8_C09.qxd 4/4/06 9:03 Page 215

216 Chapter 9 ■ Critical systems specification

There are two essential safety requirements for such a system:

■ The train shall not enter a segment of track that is signalled with a red light.

■ The train shall not exceed the specified speed limit for a section of track.

Assuming that the signal status and the speed limit for the track segment are transmitted to
on-board software on the train before it enters that track segment, propose five possible
functional system requirements for the on-board software that may be generated from the
system safety requirements.

9.11 Should software engineers working on the specification and development of safety-related
systems be professionally certified in some way? Explain your reasoning.

9.12 As an expert in computer security, you have been approached by an organisation that
campaigns for the rights of torture victims and have been asked to help them gain
unauthorised access to the computer systems of a British company. This will help them
confirm or deny that this company is selling equipment used directly in the torture of political
prisoners. Discuss the ethical dilemmas that this request raises and how you would react to
this request.

••

SE8_C09.qxd 4/4/06 9:03 Page 216

Formal specification

Objectives
The objective of this chapter is to introduce formal specification
techniques that can be used to add detail to a system requirements
specification. When you have read this chapter, you will:

■ understand why formal specification techniques help discover
problems in system requirements;

■ understand the use of algebraic techniques of formal specification to
define interface specifications;

■ understand how formal, model-based formal techniques are used for
behavioural specification.

Contents
10.1 Formal specification in the software process

10.2 Sub-system interface specification

10.3 Behavioural specification

10

SE8_C10.qxd 4/4/06 9:04 Page 217

••••

218 Chapter 10 ■ Formal specification

In ‘traditional’ engineering disciplines, such as electrical and civil engineering, progress
has usually involved the development of better mathematical techniques. The engi-
neering industry has had no difficulty accepting the need for mathematical analy-
sis and in incorporating mathematical analysis into its processes. Mathematical analysis
is a routine part of the process of developing and validating a product design.

However, software engineering has not followed the same path. Although there
has now been more than 30 years of research into the use of mathematical tech-
niques in the software process, these techniques have had a limited impact. So-called
formal methods of software development are not widely used in industrial software
development. Most software development companies do not consider it cost-
effective to apply them in their software development processes.

The term formal methods is used to refer to any activities that rely on mathe-
matical representations of software including formal system specification, specifica-
tion analysis and proof, transformational development, and program verification. All
of these activities are dependent on a formal specification of the software. A formal
software specification is a specification expressed in a language whose vocabulary,
syntax and semantics are formally defined. This need for a formal definition means
that the specification languages must be based on mathematical concepts whose prop-
erties are well understood. The branch of mathematics used is discrete mathematics,
and the mathematical concepts are drawn from set theory, logic and algebra.

In the 1980s, many software engineering researchers proposed that using formal
development methods was the best way to improve software quality. They argued
that the rigour and detailed analysis that are an essential part of formal methods
would lead to programs with fewer errors and which were more suited to users’
needs. They predicted that, by the 21st century, a large proportion of software would
be developed using formal methods.

Clearly, this prediction has not come true. There are four main reasons for this:

1. Successful software engineering The use of other software engineering meth-
ods such as structured methods, configuration management and information hid-
ing in software design and development processes have resulted in
improvements in software quality. People who suggested that the only way to
improve software quality was by using formal methods were clearly wrong.

2. Market changes In the 1980s, software quality was seen as the key software
engineering problem. However, since then, the critical issue for many classes
of software development is not quality but time to market. Software must be
developed quickly, and customers are sometimes willing to accept software with
some faults if rapid delivery can be achieved. Techniques for rapid software
development do not work effectively with formal specifications. Of course, qual-
ity is still an important factor, but it must be achieved in the context of rapid
delivery.

3. Limited scope of formal methods Formal methods are not well suited to spec-
ifying user interfaces and user interaction. The user interface component has

SE8_C10.qxd 4/4/06 9:04 Page 218

••••

become a greater and greater part of most systems, so you can only really use
formal methods when developing the other parts of the system.

4. Limited scalability of formal methods Formal methods still do not scale up well.
Successful projects that have used these techniques have mostly been concerned
with relatively small, critical kernel systems. As systems increase in size, the
time and effort required to develop a formal specification grows disproportionately.

These factors mean that most software development companies have been
unwilling to risk using formal methods in their development process. However, for-
mal specification is an excellent way of discovering specification errors and pre-
senting the system specification in an unambiguous way. Organisations that have
made the investment in formal methods have reported fewer errors in the delivered
software without an increase in development costs. It seems that formal methods
can be cost-effective if their use is limited to core parts of the system and if com-
panies are willing to make the high initial investment in this technology.

The use of formal methods is increasing in the area of critical systems develop-
ment, where emergent system properties such as safety, reliability and security are
very important. The high cost of failure in these systems means that companies are
willing to accept the high introductory costs of formal methods to ensure that their
software is as dependable as possible. As I discuss in Chapter 24, critical systems
have very high validation costs, and the costs of system failure are large and increas-
ing. Formal methods can reduce these costs.

Critical systems where formal methods have been applied successfully include
an air traffic control information system (Hall, 1996), railway signalling systems
(Dehbonei and Mejia, 1995), spacecraft systems (Easterbrook, et al., 1998) and med-
ical control systems (Jacky, et al. 1997; Jacky, 1995). They have also been used
for software tool specification (Neil, et al., 1998), the specification of part of IBM’s
CICS system (Wordsworth, 1991) and a real-time system kernel (Spivey, 1990).
The Cleanroom method of software development (Prowell, et al., 1999) relies on
formally based arguments that code conforms to its specification. Because reason-
ing about the security of a system is also possible if a formal specification is devel-
oped, it is likely that secure systems will be an important area for formal methods
use (Hall and Chapman, 2002).

10.1 Formal specification in the software process

Critical systems development usually involves a plan-based software process that
is based on the waterfall model of development discussed in Chapter 4. Both the
system requirements and the system design are expressed in detail and carefully
analysed and checked before implementation begins. If a formal specification of

10.1 ■ Formal specification in the software process 219

SE8_C10.qxd 4/4/06 9:04 Page 219

••••

220 Chapter 10 ■ Formal specification

the software is developed, this usually comes after the system requirements have
been specified but before the detailed system design. There is a tight feedback loop
between the detailed requirements specification and the formal specification. As I
discuss later, one of the main benefits of formal specification is its ability to uncover
problems and ambiguities in the system requirements.

The involvement of the client decreases and the involvement of the contractor
increases as more detail is added to the system specification. In the early stages of
the process, the specification should be ‘customer-oriented’. You should write the
specification so that the client can understand it, and you should make as few assump-
tions as possible about the software design. However, the final stage of the process,
which is the construction of a complete, consistent and precise specification, is prin-
cipally intended for the software contractor. It specifies the details of the system
implementation. You may use a formal language at this stage to avoid ambiguity
in the software specification.

Figure 10.1 shows the stages of software specification and its interface with the
design process. The specification stages shown in Figure 10.1 are not independent
nor are they necessarily developed in the sequence shown. Figure 10.2 shows spec-
ification and design activities that may be carried out in parallel streams. There is
a two-way relationship between each stage in the process. Information is fed from
the specification to the design process and vice versa.

Increasing contractor involvement

Decreasing client involvement

Specification

Design

User
requirements

definition

System
requirements
specification

Architectural
design

Formal
specification

High-level
design

Figure 10.1
Specification and
design

Figure 10.2 Formal
specification in the
software process

System
requirements
specification

Formal
specification

High-level
design

User
requirements

definition

System
modelling

Architectural
design

SE8_C10.qxd 4/4/06 9:04 Page 220

••••

As you develop the specification in detail, your understanding of that specifica-
tion increases. Creating a formal specification forces you to make a detailed sys-
tems analysis that usually reveals errors and inconsistencies in the informal
requirements specification. This error detection is probably the most potent argu-
ment for developing a formal specification (Hall, 1990). It helps you discover require-
ments problems that can be very expensive to correct later.

Depending on the process used, specification problems discovered during for-
mal analysis might influence changes to the requirements specification if this has
not already been agreed. If the requirements specification has been agreed and is
included in the system development contract, you should raise the problems that
you have found with the customer. It is then up to the customer to decide how they
should be resolved before you start the system design process.

Developing and analysing a formal specification front loads software development
costs. Figure 10.3 shows how software process costs are likely to be affected by the
use of formal specification. When a conventional process is used, validation costs are
about 50% of development costs, and implementation and design costs are about twice
the costs of specification. With formal specification, specification and implementa-
tion costs are comparable, and system validation costs are significantly reduced. As
the development of the formal specification uncovers requirements problems, rework
to correct these problems after the system has been designed is avoided.

Two fundamental approaches to formal specification have been used to write
detailed specifications for industrial software systems. These are:

1. An algebraic approach where the system is described in terms of operations
and their relationships

Specification

Specification

Design and
implementation

Design and
implementation

Validation

Validation

Cost
Figure 10.3 Software
development costs
with formal
specification

10.1 ■ Formal specification in the software process 221

SE8_C10.qxd 4/4/06 9:04 Page 221

••••

222 Chapter 10 ■ Formal specification

2. A model-based approach where a model of the system is built using mathe-
matical constructs such as sets and sequences, and the system operations are
defined by how they modify the system state

Different languages in these families have been developed to specify sequential
and concurrent systems. Figure 10.4 shows examples of the languages in each of
these classes. You can see from this table that most of these languages were devel-
oped in the 1980s. It takes several years to refine a formal specification language,
so most formal specification research is now based on these languages and is not
concerned with inventing new notations.

In this chapter, my aim is to introduce both algebraic and model-based
approaches. The examples here should give you an idea of how formal specifica-
tion results in a precise, detailed specification, but I don’t discuss specification lan-
guage details, specification techniques or methods of program verification. You can
download a more detailed description of both algebraic and model-based techniques
from the book’s web site.

10.2 Sub-system interface specification

Large systems are usually decomposed into sub-systems that are developed inde-
pendently. Sub-systems make use of other sub-systems, so an essential part of the
specification process is to define sub-system interfaces. Once the interfaces are agreed
and defined, the sub-systems can then be designed and implemented independently.

Sub-system interfaces are often defined as a set of objects or components
(Figure 10.5). These describe the data and operations that can be accessed through
the sub-system interface. You can therefore define a sub-system interface specifi-
cation by combining the specifications of the objects that make up the interface.

Precise sub-system interface specifications are important because sub-system devel-
opers must write code that uses the services of other sub-systems before these have
been implemented. The interface specification provides information for sub-system
developers so that they know what services will be available in other sub-systems

Sequential Concurrent

Algebraic Larch (Guttag et al., 1993) Lotos (Bolognesi and
OBJ (Futatsugi et al., 1985) Brinksma, 1987)

Model-based Z (Spivey, 1992) CSP (Hoare, 1985)
VDM (Jones, 1980) Petri Nets (Peterson, 1981)
B (Wordsworth, 1996)

Figure 10.4 Formal
specification
languages

SE8_C10.qxd 4/4/06 9:04 Page 222

••••

and how these can be accessed. Clear and unambiguous sub-system interface spec-
ifications reduce the chances of misunderstandings between a sub-system provid-
ing some service and the sub-systems using that service.

The algebraic approach was originally designed for the definition of abstract data
type interfaces. In an abstract data type, the type is defined by specifying the type
operations rather than the type representation. Therefore, it is similar to an object
class. The algebraic method of formal specification defines the abstract data type
in terms of the relationships between the type operations.

Guttag (Guttag, 1977) first discussed this approach in the specification of
abstract data types. Cohen et al. (Cohen, et al., 1986) show how the technique can
be extended to complete system specification using an example of a document retrieval
system. Liskov and Guttag (Liskov and Guttag, 1986) also cover the algebraic spec-
ification of abstract data types.

The structure of an object specification is shown in Figure 10.6. The body of
the specification has four components.

1. An introduction that declares the sort (the type name) of the entity being spec-
ified. A sort is the name of a set of objects with common characteristics. It is
similar to a type in a programming language. The introduction may also
include an ‘imports’ declaration, where the names of specifications defining other
sorts are declared. Importing a specification makes these sorts available for use.

2. A description part, where the operations are described informally. This makes
the formal specification easier to understand. The formal specification com-
plements this description by providing an unambiguous syntax and semantics
for the type operations.

3. The signature part defines the syntax of the interface to the object class or abstract
data type. The names of the operations that are defined, the number and sorts
of their parameters, and the sort of operation results are described in the sig-
nature.

4. The axioms part defines the semantics of the operations by defining a set of
axioms that characterise the behaviour of the abstract data type. These axioms
relate the operations used to construct entities of the defined sort with opera-
tions used to inspect its values.

Interface
objects

Sub-system
A

Sub-system
B

Figure 10.5 Sub-
system interface
objects

10.2 ■ Sub-system interface specification 223

SE8_C10.qxd 4/4/06 9:04 Page 223

••••

224 Chapter 10 ■ Formal specification

The process of developing a formal specification of a sub-system interface
includes the following activities:

1. Specification structuring Organise the informal interface specification into a set
of abstract data types or object classes. You should informally define the oper-
ations associated with each class.

2. Specification naming Establish a name for each abstract type specification, decide
whether they require generic parameters and decide on names for the sorts
identified.

3. Operation selection Choose a set of operations for each specification based on
the identified interface functionality. You should include operations to create
instances of the sort, to modify the value of instances and to inspect the instance
values. You may have to add functions to those initially identified in the infor-
mal interface definition.

4. Informal operation specification Write an informal specification of each oper-
ation. You should describe how the operations affect the defined sort.

5. Syntax definition Define the syntax of the operations and the parameters to each.
This is the signature part of the formal specification. You should update the
informal specification at this stage if necessary.

6. Axiom definition Define the semantics of the operations by describing what con-
ditions are always true for different operation combinations.

To explain the technique of algebraic specification, I use an example of a sim-
ple data structure (a linked list), as shown in Figure 10.7. Linked lists are ordered
data structures where each element includes a link to the following element in the
structure. I have used a simple list with only a few associated operations so that the
discussion here is not too long. In practice, object classes defining a list would prob-
ably have more operations

Assume that the first stage of the specification process, namely specification struc-
turing, has been carried out and that the need for a list has been identified. The
name of the specification and the name of the sort can be the same, although it is

Figure 10.6 The
structure of an
algebraic
specification

SE8_C10.qxd 4/4/06 9:04 Page 224

••••

useful to distinguish between these by using some convention. I use uppercase for
the specification name (LIST) and lowercase with an initial capital for the sort name
(List). As lists are collections of other types, the specification has a generic param-
eter (Elem). The name Elem can represent any type: integer, string, list, and so on.

In general, for each abstract data type, the required operations should include an
operation to bring instances of the type into existence (Create) and to construct the
type from its basic elements (Cons). In the case of lists, there should be an opera-
tion to evaluate the first list element (Head), an operation that returns the list cre-
ated by removing the first element (Tail), and an operation to count the number of
list elements (Length).

To define the syntax of each of these operations, you must decide which param-
eters are required for the operation and the results of the operation. In general, input
parameters are either the sort being defined (List) or the generic sort (Elem). The
results of operations may be either of those sorts or some other sort such as Integer
or Boolean. In the list example, the Length operation returns an integer. Therefore,
you must include an ‘imports’ declaration, declaring that the specification of inte-
ger is used in the specification.

To create the specification, you define a set of axioms that apply to the abstract
type and these specify its semantics. You define the axioms using the operations
defined in the signature part. These axioms specify the semantics by setting out what
is always true about the behaviour of entities with that abstract type.

Operations on an abstract data type usually fall into two classes.

1. Constructor operations that create or modify entities of the sort defined in the
specification. Typically, these are given names such as Create, Update, Add or,
in this case, Cons, meaning construct.

Figure 10.7 A simple
list specification

10.2 ■ Sub-system interface specification 225

SE8_C10.qxd 4/4/06 9:04 Page 225

••

226 Chapter 10 ■ Formal specification

2. Inspection operations that evaluate attributes of the sort defined in the speci-
fication. Typically, these are given names such as Eval or Get.

A good rule of thumb for writing an algebraic specification is to establish the
constructor operations and write down an axiom for each inspection operation over
each constructor. This suggests that if there are m constructor operations and n inspec-
tion operations, there should be m * n axioms defined.

However, the constructor operations associated with an abstract type may not all
be primitive constructors. That is, it may be possible to define them using other
constructors and inspection operations. If you define a constructor operation using
other constructors, then you need only to define the inspection operations using the
primitive constructors.

In the list specification, the constructor operations that build lists are Create, Cons
and Tail. The inspection operations are Head (return the value of the first element
in the list) and Length (return the number of elements in the list), which are used
to discover list attributes. The Tail operation, however, is not a primitive construc-
tor. There is therefore no need to define axioms over the Tail operation for Head
and Length operations, but you do have to define Tail using the primitive construc-
tor operations.

Evaluating the head of an empty list results in an undefined value. The specifi-
cations of Head and Tail show that Head evaluates the front of the list and Tail eval-
uates to the input list with its head removed. The specification of Head states that
the head of a list created using Cons is either the value added to the list (if the ini-
tial list is empty) or is the same as the head of the initial list parameter to Cons.
Adding an element to a list does not affect its head unless the list is empty.

Recursion is commonly used when writing algebraic specifications. The value
of the Tail operation is the list that is formed by taking the input list and removing
its head. The definition of Tail shows how recursion is used in constructing alge-
braic specifications. The operation is defined on empty lists, then recursively on
non-empty lists with the recursion terminating when the empty list results.

It is sometimes easier to understand recursive specifications by developing a short
example. Say we have a list [5, 7] where 5 is the front of the list and 7 the end of
the list. The operation Cons ([5, 7], 9) should return a list [5, 7, 9] and a Tail oper-
ation applied to this should return the list [7, 9]. The sequence of equations that
results from substituting the parameters in the above specification with these val-
ues is:

Tail ([5, 7, 9]) =
Tail (Cons ([5, 7], 9)) = Cons (Tail ([5, 7]), 9) =

Cons (Tail (Cons ([5], 7)), 9) = Cons (Cons (Tail ([5]), 7), 9) =
Cons (Cons (Tail (Cons ([], 5)), 7), 9) = Cons (Cons ([Create], 7), 9) =

Cons ([7], 9) = [7, 9]

The systematic rewriting of the axiom for Tail illustrates that it does indeed pro-
duce the anticipated result. You can check that axiom for Head is correct using the
same rewriting technique.

••

SE8_C10.qxd 4/4/06 9:04 Page 226

••

Now let us look at how you can use algebraic specification of an interface in a
critical system specification. Assume that, in an air traffic control system, an object
has been designed to represent a controlled sector of airspace. Each controlled sec-
tor may include a number of aircraft, each of which has a unique aircraft identifier.
For safety reasons, all aircraft must be separated by at least 300 metres in height.
The system warns the controller if an attempt is made to position an aircraft so that
this constraint is breached.

To simplify the description, I have only defined a limited number of operations
on the sector object. In a practical system, there are likely to be many more oper-
ations and more complex safety conditions related to the horizontal separation of
the aircraft. The critical operations on the object are:

1. Enter This operation adds an aircraft (represented by an identifier) to the
airspace at a specified height. There must not be other aircraft at that height or
within 300 metres of it.

2. Leave This operation removes the specified aircraft from the controlled sector.
This operation is used when the aircraft moves to an adjacent sector.

3. Move This operation moves an aircraft from one height to another. Again, the
safety constraint that vertical separation of aircraft must be at least 300 metres
is checked.

4. Lookup Given an aircraft identifier, this operation returns the current height of
that aircraft in the sector.

It makes it easier to specify these operations if some other interface operations
are defined. These are:

1. Create This is a standard operation for an abstract data type. It causes an empty
instance of the type to be created. In this case, it represents a sector that has
no aircraft in it.

2. Put This is a simpler version of the Enter operation. It adds an aircraft to the
sector without any associated constraint checking.

3. In-space Given an aircraft call sign, this Boolean operation returns true if the
aircraft is in the controlled sector, false otherwise.

4. Occupied Given a height, this Boolean operation returns true if there is an air-
craft within 300 metres of that height, false otherwise.

The advantage of defining these simpler operations is that you can then use them
as building blocks to define the more complex operations on the Sector sort. The
algebraic specification of this sort is shown in Figure 10.8.

Essentially, the basic constructor operations are Create and Put, and I use these
in the specification of the other operations. Occupied and In-space are checking oper-

••

10.2 ■ Sub-system interface specification 227

SE8_C10.qxd 4/4/06 9:04 Page 227

••••

228 Chapter 10 ■ Formal specification

ations that I have defined using Create and Put, and I then use them in other spec-
ifications. I don’t have space to explain all operations in detail here but I discuss
two of them (Occupied and Move). With this information, you should be able to
understand the other operation specifications.

Figure 10.8 The
specification of a
controlled sector

SE8_C10.qxd 4/4/06 9:04 Page 228

••••

1. The Occupied operation takes a sector and a parameter representing the height
and checks whether any aircraft have been assigned to that height. Its specifi-
cation states that:

■ In an empty sector (one that has been create by a Create operation), every
level is vacant. The operation returns false irrespective of the value of the
height parameter.

■ In a non-empty sector (one where there has been previous Put operations),
the Occupied operation checks whether the specified height (parameter H) is
within 300 metres of the height of aircraft that was last added to the sector
by a Put operation. If so, that height is already occupied so the value of Occupied
is true.

■ If it is not occupied, the operation checks the sector recursively. You can
think of this check being carried out on the last aircraft put into the sector.
If the height is not within range of the height of that aircraft, the operation
then checks against the previous aircraft that has been put into the sector and
so on. Eventually, if there are no aircraft within range of the specified height,
the check is carried out against an empty sector and so returns false.

2. The Move operation moves an aircraft in a sector from one height to another.
Its specification states that:

■ If a Move operation is applied to an empty airspace (the result of Create),
the airspace is unchanged and an exception is raised to indicate that the spec-
ified aircraft is not in the airspace.

■ In a non-empty sector, the operation first checks (using In-space) whether
the given aircraft is in the sector. If it is not, an exception is raised. If it
is, the operation checks that the specified height is available (using
Occupied), raising an exception if there is already an aircraft at that
height.

■ If the specified height is available, the Move operation is equivalent to the
specified aircraft leaving the airspace (so the operation Leave is used) and
being put into the sector at the new height.

10.3 Behavioural specification

The simple algebraic techniques described in the previous section can be used to
describe interfaces where the object operations are independent of the object state.
That is, the results of applying an operation should not depend on the results of
previous operations. Where this condition does not hold, algebraic techniques can

10.3 ■ Behavioural specification 229

SE8_C10.qxd 4/4/06 9:04 Page 229

••••

230 Chapter 10 ■ Formal specification

become cumbersome. Furthermore, as they increase in size, I find that algebraic
descriptions of system behaviour become increasingly difficult to understand.

An alternative approach to formal specification that has been more widely used
in industrial projects is model-based specification. Model-based specification is an
approach to formal specification where the system specification is expressed as a
system state model. You can specify the system operations by defining how they
affect the state of the system model. The combination of these specifications
defines the overall behaviour of the system.

Mature notations for developing model-based specifications are VDM (Jones, 1980;
Jones, 1986), B (Wordsworth, 1996) and Z (Hayes, 1987; Spivey, 1992). I use Z
(pronounced Zed, not Zee) here. In Z, systems are modelled using sets and rela-
tions between sets. However, Z has augmented these mathematical concepts with
constructs that specifically support software specification.

In an introduction to model-based specification, I can only give an overview of how
a specification can be developed. A complete description of the Z notation would be
longer than this chapter. Rather, I present some small examples to illustrate the tech-
nique and introduce notation as it is required. A full description of the Z notation is
given in textbooks such as those by Diller (Potter, et al., 1996) and Jacky (Jacky, 1997).

Formal specifications can be difficult and tedious to read especially when they
are presented as large mathematical formulae. The designers of Z have paid par-
ticular attention to this problem. Specifications are presented as informal text sup-
plemented with formal descriptions. The formal description is included as small,
easy-to-read chunks (called schemas) that are distinguished from associated text using
graphical highlighting. Schemas are used to introduce state variables and to define
constraints and operations on the state. Schemas can themselves be manipulated using
operations such as schema composition, schema renaming and schema hiding.

To be most effective, a formal specification must be supplemented by support-
ing, informal description. The Z schema presentation has been designed so that it
stands out from surrounding text (Figure 10.9).

The schema signature defines the entities that make up the state of the system
and the schema predicate sets out conditions that must always be true for these enti-
ties. Where a schema defines an operation, the predicate may set out pre- and post-
conditions. These define the state before and after the operation. The difference between
these pre- and post-conditions defines the action specified in the operation schema.

contents ″ capacity

Container
contents: N
capacity: N

Schema name Schema signature Schema predicateFigure 10.9 The
structure of a Z
schema

SE8_C10.qxd 4/4/06 9:04 Page 230

••••

To illustrate the use of Z in the specification of a critical system, I have devel-
oped a formal specification of the control system of the insulin pump that I intro-
duced in Chapter 3.

Recall that this system monitors the blood glucose level of diabetics and auto-
matically injects insulin as required. Even for a small system like the insulin pump,
the formal specification is fairly long. Although the basic operation of the system
is simple, there are many possible alarm conditions that have to be considered. I
include only some of the schemas defining the system here; the complete specifi-
cation can be downloaded from the book’s web site.

To develop a model-based specification, you have to define state variables and
predicates that model the state of the system that you are specifying as well as define
invariants (conditions that are always true) over these state variables.

The Z state schema that models the insulin pump state is shown in Figure 10.10.
You can see how the two basic parts of the schema are used. In the top part, names
and types are declared, and in the bottom part, the invariants are declared.

The names declared in the schema are used to represent system inputs, system
outputs and internal state variables:

1. System inputs where the convention in Z is for all input variable names to be fol-
lowed by a ? symbol. I have declared names to model the on/off switch on the
pump (switch?), a button for manual delivery of insulin (ManualDeliveryButton?),
the reading from the blood sugar sensor (Reading?), the result of running a hard-
ware test program (HardwareTest?), sensors that detect the presence of the insulin
reservoir and the needle (InsulinReservoir?, Needle?), and the value of the current
time (clock?).

2. System outputs where the convention in Z is for all output variable names to
be followed by a ! symbol. I have declared names to model the pump alarm
(alarm!), two alphanumeric displays (display1! and display2!), a display of the
current time (clock!), and the dose of insulin to be delivered (dose!).

3. State variables used for dose computation I have declared variables to represent
the status of the device (status), to hold previous values of the blood sugar level
(r0, r1 and r2), the capacity of the insulin reservoir and the amount of insulin
currently available (capacity, insulin_available), several variables used to impose
limits on the dose of insulin delivered (max_daily_dose, max_single_dose, mini-
mum_dose, safemin, safemax), and two variables used in the dose computation
(CompDose and cumulative_dose). The type NN means a non-negative number.

The schema predicate defines invariants that are always true. There is an
implicit ‘and’ between each line of the predicate so all predicates must hold at all
times. Some of these predicates simply set limits on the system, but others define
fundamental operating conditions of the system. These include:

1. The dose must be less than or equal to the capacity of the insulin reservoir.
That is, it is impossible to deliver more insulin than is in the reservoir.

10.3 ■ Behavioural specification 231

SE8_C10.qxd 4/4/06 9:04 Page 231

••••

232 Chapter 10 ■ Formal specification

Figure 10.10 State
schema for the
insulin pump

INSULIN_PUMP_STATE
//Input device definition
switch?: (off, manual, auto)
ManualDeliveryButton?: NN
Reading?: NN
HardwareTest?: (OK, batterylow, pumpfail, sensorfail, deliveryfail)
InsulinReservoir?: (present, notpresent)
Needle?: (present, notpresent)
clock?: TIME

//Output device definition
alarm! = (on, off)
display1!: string
display2!: string
clock!: TIME
dose!: NN

// State variables used for dose computation
status: (running, warning, error)
r0, r1, r2: NN
capacity, insulin_available : NN
max_daily_dose, max_single_dose, minimum_dose: NN
safemin, safemax: NN
CompDose, cumulative_dose: NN

r2 = Reading?
dose! � insulin_available
insulin_available � capacity

// The cumulative dose of insulin delivered is set to zero once every 24
hours
clock? = 000000 ⇒ cumulative_dose = 0

// If the cumulative dose exceeds the limit then operation is suspended
cumulative_dose � max_daily_dose � status = error ⇒
display1! = “Daily dose exceeded”

// Pump configuration parameters
capacity = 100 � safemin = 6 � safemax = 14
max_daily_dose = 25 � max_single_dose = 4 � minimum_dose = 1

display2! = nat_to_string (dose!)
clock! = clock?

SE8_C10.qxd 4/4/06 9:04 Page 232

••••

2. The cumulative dose is reset at midnight each day. You can think of the Z
phrase <logical expression 1> ⇒ <logical expression 2> as being the same
as if <logical expression 1> then <logical expression 2>. In this case, <log-
ical expression 1> is ‘clock? = 000000’ and <logical expression 2> is ‘cumu-
lative_dose = 0’.

3. The cumulative dose delivered over a 24-hour period may not exceed
max_daily_dose. If this condition is false, then an error message is output.

4. display2! always shows the value of the last dose of insulin delivered and clock!
always shows the current clock time.

The insulin pump operates by checking the blood glucose every 10 minutes, and
(simplistically) insulin is delivered if the rate of change of blood glucose is increas-
ing. The RUN schema, shown in Figure 10.11, models the normal operating condi-
tion of the pump.

If a schema name is included in the declarations part, this is equivalent to includ-
ing all the names declared in that schema in the declaration and the conditions
in the predicate part. The delta schema (∆) in the first line in Figure 10.11 illustrates
this. The delta means that the state variables defined in INSULIN_PUMP_STATE are
in scope as are a set of other variables that represent state values before and after
some operation. These are indicated by ‘priming’ the name defined in
INSULIN_PUMP_STATE. Therefore, insulin_available represents the amount of insulin
available before some operation, and insulin_available´ represents the amount of insulin
available after some operation.

The RUN schema defines the operation of the system by specifying a set of pred-
icates that are true in normal system use. Of course, these are in addition to the
predicates defined in the INSULIN_PUMP_STATE schema that are invariant (always
true). This schema also shows the use of a Z feature—schema composition—where
the schemas SUGAR_LOW, SUGAR_OK and SUGAR_HIGH are included by giving their
names. Notice that these schemas are ‘ored’ so that there is a schema for each of
three possible conditions. The ability to compose schemas means that you can break
down a specification into smaller parts in the same way that you can define func-
tions and methods in a program.

I won’t go into the details of the RUN schema here but, in essence, it starts by
defining predicates that are true for normal operation. For example, it states that
normal operation is only possible when the amount of insulin available is greater
than the maximum single dose that may be delivered. Three schemas that represent
different blood sugar levels are then ored and, as we shall see later, these define a
value for the state variable CompDose.

The value of CompDose represents the amount of insulin that has been com-
puted for delivery, based on the blood sugar level. The remainder of the predicates
in this schema define various checks to be applied to ensure that the dose actually
delivered (dose!) follows safety rules defined for the system. For example, one safety
rule is that no single dose of insulin may exceed some defined maximum value.

10.3 ■ Behavioural specification 233

SE8_C10.qxd 4/4/06 9:04 Page 233

••••

234 Chapter 10 ■ Formal specification

Finally, the last two predicates define the changes to the value of insulin_available
and cumulative_dose. Notice how I have used the primed version of the names here.

The final schema example given in Figure 10.12 defines how the dose of insulin
is computed assuming that the level of sugar in the diabetic’s blood lies within some
safe zone. In these circumstances, insulin is only delivered if the blood sugar level
is rising and the rate of change of blood sugar level is increasing. The other schemas,

Figure 10.11 The
RUN schema

RUN
∆INSULIN_PUMP_STATE

switch? = auto _
status = running � status = warning
insulin_available � max_single_dose
cumulative_dose < max_daily_dose

// The dose of insulin is computed depending on the blood sugar level

(SUGAR_LOW � SUGAR_OK � SUGAR_HIGH)

// 1. If the computed insulin dose is zero, don’t deliver any insulin

CompDose = 0 ⇒ dose! = 0

�

// 2. The maximum daily dose would be exceeded if the computed dose was
delivered so the insulin dose is set to the difference between the maximum
allowed daily dose and the cumulative dose delivered so far

CompDose + cumulative_dose > max_daily_dose ⇒ alarm! = on � status’ =
warning � dose! = max_daily_dose—cumulative_dose

�

// 3. The normal situation. If maximum single dose is not exceeded then
deliver the computed dose. If the single dose computed is too high, restrict
the dose delivered to the maximum single dose

CompDose + cumulative_dose < max_daily_dose ⇒
(CompDose � max_single_dose ⇒ dose! = CompDose
�

CompDose > max_single_dose ⇒ dose! = max_single_dose)
insulin_available’ = insulin_available—dose!
cumulative_dose’ = cumulative_dose + dose!

insulin_available � max_single_dose * 4 ⇒ status’ = warning �

display1! = “Insulin low”

r1’ = r2
r0’ = r1

SE8_C10.qxd 4/4/06 9:04 Page 234

••••

SUGAR_LOW and SUGAR_HIGH define the dose to be delivered if the sugar level is
outside the safe zone. The predicates in the schema are as follows:

1. The initial predicate defines the safe zone; that is, r2 must lie between safemin
and safemax.

2. If the sugar level is stable or falling, indicated by r2 (the later reading) being
equal to or less than r1 (an earlier reading), then the dose of insulin to be deliv-
ered is zero.

3. If the sugar level is increasing (r2 > r1) but the rate of increase is falling, then
the dose to be delivered is zero.

4. If the sugar level is increasing and the rate of increase is stable, then a mini-
mum dose of insulin is delivered.

5. If the sugar level is increasing and the rate of increase is increasing, then the
dose of insulin to be delivered is derived by applying a simple formula to the
computed values.

I don’t model the temporal behaviour of the system (i.e., the fact that the glu-
cose sensor is checked every 10 minutes) using Z. Although this is certainly pos-
sible, it is rather clumsy, and, in my view, an informal description actually
communicates the specification more concisely than a formal specification.

SUGAR_OK
r2 � safemin � r2 � safemax

// sugar level stable or falling

r2 � r1 ⇒ CompDose = 0
�

// sugar level increasing but rate of increase falling
r2 > r1 � (r2-r1) < (r1-r0) ⇒ CompDose = 0
�

// sugar level increasing and rate of increase increasing compute dose
// a minimum dose must be delivered if rounded to zero

r2 > r1 � (r2-r1) � (r1-r0) � (round ((r2-r1)/4) = 0) ⇒
CompDose = minimum_dose

�

r2 > r1 � (r2-r1) � (r1-r0) � (round ((r2-r1)/4) > 0) ⇒
CompDose = round ((r2-r1)/4)

Figure 10.12 The
SUGAR_OK schema

10.3 ■ Behavioural specification 235

SE8_C10.qxd 4/4/06 9:04 Page 235

••••

236 Chapter 10 ■ Formal specification

F U R T H E R R E A D I N G

‘Correctness by construction: Developing a commercially secure system’. A good description of how
formal methods can be used in the development of a security-critical system. (A. Hall and R.
Chapman, IEEE Software, 19(1), January 2002.)

IEEE Transactions on Software Engineering, January 1998. This issue of the journal includes a
special section on the practical uses of formal methods in software engineering. It includes papers
on both Z and LARCH.

‘Formal methods: Promises and problems’. This article is a realistic discussion of the potential
gains from using formal methods and the difficulties of integrating the use of formal methods into
practical software development (Luqi and J. Goguen. IEEE Software, 14 (1), January 1997.)

■ Methods of formal system specification complement informal requirements specification
techniques. They may be used with a natural language requirements definition to clarify
any areas of potential ambiguity in the specification.

■ Formal specifications are precise and unambiguous. They remove areas of doubt in a
specification and avoid some of the problems of language misinterpretation. However, non-
specialists may find formal specifications difficult to understand.

■ The principal value of using formal methods in the software process is that it forces an
analysis of the system requirements at an early stage. Correcting errors at this stage is
cheaper than modifying a delivered system.

■ Formal specification techniques are most cost-effective in the development of critical
systems where safety, reliability and security are particularly important. They may also be
used to specify standards.

■ Algebraic techniques of formal specification are particularly suited to specifying interfaces
where the interface is defined as a set of object classes or abstract data types. These
techniques conceal the system state and specify the system in terms of relationships
between the interface operations.

■ Model-based techniques model the system using mathematical constructs such as sets and
functions. They may expose the system state, which simplifies some types of behavioural
specification.

■ You define the operations in a model-based specification by defining pre- and post-
conditions on the system state.

K E Y P O I N TS

SE8_C10.qxd 4/4/06 9:04 Page 236

••••

E X E R C I S E S

10.1 Suggest why the architectural design of a system should precede the development of a
formal specification.

10.2 You have been given the task of ‘selling’ formal specification techniques to a software
development organisation. Outline how you would go about explaining the advantages of
formal specifications to sceptical, practising software engineers.

10.3 Explain why it is particularly important to define sub-system interfaces in a precise way and
why algebraic specification is particularly appropriate for sub-system interface specification.

10.4 An abstract data type representing a stack has the following operations associated with it:

New: Bring a stack into existence.
Push: Add an element to the top of the stack.
Top: Evaluate the element on top of the stack.
Retract: Remove the top element from the stack and return the modified stack.
Empty: True if there are no elements on the stack.

Define this abstract data type using an algebraic specification.

10.5 In the example of a controlled airspace sector, the safety condition is that aircraft may not be
within 300 m of height in the same sector. Modify the specification shown in Figure 10.8 to allow
aircraft to occupy the same height in the sector so long as they are separated by at least 8 km of
horizontal difference. You may ignore aircraft in adjacent sectors. Hint: You have to modify the
constructor operations so that they include the aircraft position as well as its height. You also
have to define an operation that, given two positions, returns the separation between them.

10.6 Bank teller machines rely on using information on the user’s card giving the bank identifier,
the account number and the user’s personal identifier. They also derive account information
from a central database and update that database on completion of a transaction. Using your
knowledge of ATM operation, write Z schemas defining the state of the system, card
validation (where the user’s identifier is checked) and cash withdrawal.

10.7 Modify the insulin pump schema, shown in Figure 10.10, to add a further safety condition that
the ManualDeliveryButton? can only have a non-zero value if the pump switch is in the
manual position.

10.8 Write a Z schema called SELF_TEST that tests the hardware components of the insulin pump
and sets the value of the state variable HardwareTest?. Then modify the RUN schema to
check that the hardware is operating successfully before any insulin is delivered. If not, the
dose delivered should be zero and an error should be indicated on the insulin pump display.

10.9 Z supports the notion of sequences where a sequence is like an array. For example, for a
sequence S, you can refer to its elements as S[1], S[2], and so on. It also allows you to
determine the number of elements in a sequence using the # operator. That is, if a sequence
S is [a, b, c, d] then #S is 4. You can add an element to the end of a sequence S by writing S
+ a, and to the beginning of the sequence by writing a + S. Using these constructs, write a Z
specification of the LIST that is specified algebraically in Figure 10.7.

10.10 You are a systems engineer and are asked to suggest the best way to develop the safety-
critical software for a heart pacemaker. You suggest formally specifying the system, but your
manager rejects your suggestion. You think his reasons are weak and based on prejudice. Is
it ethical to develop the system using methods that you think are inadequate?

Chapter 10 ■ Exercises 237

SE8_C10.qxd 4/4/06 9:04 Page 237

••

SE8_C10.qxd 4/4/06 9:04 Page 238

••

3DE SIGN

PART

SE8_C11.qxd 4/4/06 9:05 Page 239

••••

The essence of software design is making decisions about the logical organisa-
tion of the software. Sometimes, you represent this logical organisation as a model
in a defined modelling language such as the UML and sometimes you simply use
informal notations and sketches to represent the design. Of course, you rarely start
from scratch when making decisions about the software organisation but base
your design on previous design experience.

Some authors think that the best way to encapsulate this design experience
is in structured methods where you follow a defined design process and describe
your design using different types of model. I have never been a great fan of
structured methods as I have always found that they are too constraining. Design
is a creative process and I strongly believe that we each tackle such creative
processes in individual ways. There is no right or wrong way to design soft-
ware and neither I nor anyone else can give you a ‘recipe’ for software design.
You learn how to design by looking at examples of existing designs and by dis-
cussing your design with others.

Rather than represent experience as a ‘design method’, I prefer a more loosely
structured approach. The chapters in this part encapsulate knowledge about soft-
ware structures that have been successfully used in other systems, present some
examples and give you some advice on design processes:

Chapters 11 to 13 are about the abstract structures of software. Chapter 11
discusses structural perspectives that have been found to be useful when design-
ing software, Chapter 12 is about structuring software for distributed execution
and Chapter 13 is about generic structures for various types of application. Chapter
13 is a new chapter that I have included in this edition because I have found
many students of software engineering have no experience of applications soft-
ware apart from the interactive systems that they use on an everyday basis on
their own computers.

Chapters 14 to 16 are concerned with more specific software design issues.
Chapter 14, which covers object-oriented design, concerns a way of thinking
about software structures. Chapter 15, on real-time systems design, discusses
the software structures that you need in systems where timely response is a
critical requirement. Chapter 16 is a bit different because it focuses on the user
interface design rather than on software structures. As an engineer, you have
to think about systems—not just software—and the people in the system are
an essential component. Design doesn’t stop with the software structures but
continues through to how the software is used.

SE8_C11.qxd 4/4/06 9:05 Page 240

••••

Architectural design
11

Objectives
The objective of this chapter is to introduce the concepts of software
architecture and architectural design. When you have read the chapter,
you will:

■ understand why the architectural design of software is important;

■ understand the decisions that have to be made about the system
architecture during the architectural design process;

■ have been introduced to three complementary architectural styles
covering the overall system organisation, modular decomposition
and control;

■ understand how reference architectures are used to communicate
architectural concepts and to assess system architectures.

Contents
11.1 Architectural design decisions

11.2 System organisation

11.3 Modular decomposition styles

11.4 Control styles

11.5 Reference architectures

SE8_C11.qxd 4/4/06 9:05 Page 241

242 Chapter 11 ■ Architectural design

Large systems are always decomposed into sub-systems that provide some related
set of services. The initial design process of identifying these sub-systems and estab-
lishing a framework for sub-system control and communication is called architec-
tural design. The output of this design process is a description of the software
architecture.

In the model presented in Chapter 4, architectural design is the first stage in the
design process and represents a critical link between the design and requirements
engineering processes. The architectural design process is concerned with establishing
a basic structural framework that identifies the major components of a system and
the communications between these components.

Bass et al. (Bass, et al., 2003) discuss three advantages of explicitly designing
and documenting a software architecture:

1. Stakeholder communication The architecture is a high-level presentation of the
system that may be used as a focus for discussion by a range of different stake-
holders.

2. System analysis Making the system architecture explicit at an early stage in the
system development requires some analysis. Architectural design decisions have
a profound effect on whether the system can meet critical requirements such
as performance, reliability and maintainability.

3. Large-scale reuse A system architecture model is a compact, manageable
description of how a system is organised and how the components interoper-
ate. The system architecture is often the same for systems with similar require-
ments and so can support large-scale software reuse. As I discuss in Chapter
18, it may be possible to develop product-line architectures where the same
architecture is used across a range of related systems.

Hofmeister et al. (Hofmeister, et al., 2000) discuss how the architectural design
stage forces software designers to consider key design aspects early in the process.
They suggest that the software architecture can serve as a design plan that is used
to negotiate system requirements and as a means of structuring discussions with
clients, developers and managers. They also suggest that it is an essential tool for
complexity management. It hides details and allows the designers to focus on the
key system abstractions.

The system architecture affects the performance, robustness, distributability and main-
tainability of a system (Bosch, 2000). The particular style and structure chosen for an
application may therefore depend on the non-functional system requirements:

1. Performance If performance is a critical requirement, the architecture should
be designed to localise critical operations within a small number of sub-
systems, with as little communication as possible between these sub-systems.
This may mean using relatively large-grain rather than fine-grain components
to reduce component communications.

••••

SE8_C11.qxd 4/4/06 9:05 Page 242

Chapter 11 ■ Architectural design 243

2. Security If security is a critical requirement, a layered structure for the archi-
tecture should be used, with the most critical assets protected in the innermost
layers and with a high level of security validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be designed
so that safety-related operations are all located in either a single sub-system
or in a small number of sub-systems. This reduces the costs and problems
of safety validation and makes it possible to provide related protection
systems.

4. Availability If availability is a critical requirement, the architecture should be
designed to include redundant components and so that it is possible to replace
and update components without stopping the system. Fault-tolerant system archi-
tectures for high-availability systems are covered in Chapter 20.

5. Maintainability If maintainability is a critical requirement, the system archi-
tecture should be designed using fine-grain, self-contained components that may
readily be changed. Producers of data should be separated from consumers and
shared data structures should be avoided.

Obviously there is potential conflict between some of these architectures. For
example, using large-grain components improves performance, and using fine-grain
components improves maintainability. If both of these are important system
requirements, then some compromise solution must be found. As I discuss later,
this can sometimes be achieved by using different architectural styles for different
parts of the system.

There is a significant overlap between the processes of requirements engineer-
ing and architectural design. Ideally, a system specification should not include any
design information. In practice, this is unrealistic except for very small systems.
Architectural decomposition is necessary to structure and organise the specification.
An example of this was introduced in Chapter 2, where Figure 2.8 shows the archi-
tecture of an air traffic control system. You can use such an architectural model as
the starting point for sub-system specification.

A sub-system design is an abstract decomposition of a system into large-grain
components, each of which may be a substantial system in its own right. Block dia-
grams are often used to describe sub-system designs where each box in the diagram
represents a sub-system. Boxes within boxes indicate that the sub-system has itself
been decomposed to sub-systems. Arrows mean that data and or control signals are
passed from sub-system to sub-system in the direction of the arrows. Block dia-
grams present a high-level picture of the system structure, which people from dif-
ferent disciplines who are involved in the system development process can readily
understand.

For example, Figure 11.1 is an abstract model of the architecture for a packing
robot system that shows the sub-systems that have to be developed. This robotic
system can pack different kinds of object. It uses a vision sub-system to pick out

••••

SE8_C11.qxd 4/4/06 9:05 Page 243

244 Chapter 11 ■ Architectural design

objects on a conveyor, identify the type of object and select the right kind of pack-
aging. The system then moves objects from the delivery conveyor to be packaged.
It places packaged objects on another conveyor. Other examples of architectural designs
at this level are shown in Chapter 2 (Figures 2.6 and 2.8).

Bass et al. (Bass, et al., 2003) claim that simple box-and-line diagrams are not
useful architectural representations because they do not show the nature of the rela-
tionships among system components nor do they show components’ externally vis-
ible properties. From a software designer’s perspective, this is absolutely correct.
However, this type of model is effective for communication with system stakeholders
and for project planning because it is not cluttered with detail. Stakeholders can
relate to it and understand an abstract view of the system. The model identifies the
key sub-systems that are to be independently developed so managers can start assign-
ing people to plan the development of these systems. Box-and-line diagrams should
certainly not be the only architectural representation that are used; however, they
are one of a number of useful architectural models.

The general problem of deciding how to decompose a system into sub-systems
is a difficult one. Of course, the system requirements are a major factor and you
should try to create a design where there is a close match between requirements
and sub-systems. This means that, if the requirements change, this change is likely
to be localised rather than distributed across several sub-systems. In Chapter 13, I
describe a number of generic application architectures that can be used as a start-
ing point for sub-system identification.

••••

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

Figure 11.1 Block
diagram of a packing
robot control system

SE8_C11.qxd 4/4/06 9:05 Page 244

11.1 ■ Architectural design decisions 245

11.1 Architectural design decisions

Architectural design is a creative process where you try to establish a system organ-
isation that will satisfy the functional and non-functional system requirements. Because
it is a creative process, the activities within the process differ radically depending
on the type of system being developed, the background and experience of the sys-
tem architect, and the specific requirements for the system. It is therefore more use-
ful to think of the architectural design process from a decision perspective rather
than from an activity perspective. During the architectural design process, system
architects have to make a number of fundamental decisions that profoundly affect
the system and its development process. Based on their knowledge and experience,
they have to answer the following fundamental questions:

1. Is there a generic application architecture that can act as a template for the sys-
tem that is being designed?

2. How will the system be distributed across a number of processors?

3. What architectural style or styles are appropriate for the system?

4. What will be the fundamental approach used to structure the system?

5. How will the structural units in the system be decomposed into modules?

6. What strategy will be used to control the operation of the units in the system?

7. How will the architectural design be evaluated?

8. How should the architecture of the system be documented?

Although each software system is unique, systems in the same application
domain often have similar architectures that reflect the fundamental domain con-
cepts. These application architectures can be fairly generic, such as the architecture
of information management systems, or much more specific. For example, appli-
cation product lines are applications that are built around a core architecture with
variants that satisfy specific customer requirements. When designing a system
architecture, you have to decide what your system and broader application classes
have in common, and decide how much knowledge from these application archi-
tectures you can reuse. I discuss generic application architectures in Chapter 13 and
application product lines in Chapter 18.

For embedded systems and systems designed for personal computers, there is usu-
ally only a single processor, and you will not have to design a distributed architecture
for the system. However, most large systems are now distributed systems where the
system software is distributed across many different computers. The choice of distri-
bution architecture is a key decision that affects the performance and reliability of the
system. This is a major topic in its own right and I cover it separately in Chapter 12.

••••

SE8_C11.qxd 4/4/06 9:05 Page 245

246 Chapter 11 ■ Architectural design

The architecture of a software system may be based on a particular architectural
model or style. An architectural style is a pattern of system organisation (Garlan
and Shaw, 1993) such as a client–server organisation or a layered architecture. An
awareness of these styles, their applications, and their strengths and weaknesses is
important. However, the architectures of most large systems do not conform to a
single style. Different parts of the system may be designed using different archi-
tectural styles. In some cases, the overall system architecture may be a composite
architecture that is created by combining different architectural styles.

Garlan and Shaw’s notion of an architectural style covers the next three design ques-
tions. You have to choose the most appropriate structure, such as client–server or lay-
ered structuring, that will allow you to meet the system requirements. To decompose
structural system units into modules, you decide on the strategy for decomposing sub-
systems into their components or modules. The approaches that you can use allow dif-
ferent types of architecture to be implemented. Finally, in the control modelling
process, you make decisions about how the execution of sub-systems is controlled. You
develop a general model of the control relationships between the parts of the system
established. I cover these three topics in Sections 11.2 through 11.4.

Evaluating an architectural design is difficult because the true test of an archi-
tecture is in how well it meets its functional and non-functional requirements after
it has been deployed. However, in some cases, you can do some evaluation by com-
paring your design against reference or generic architectural models. I cover refer-
ence architectures in Section 11.5 and other generic architectures in Chapter 13.

The product of the architectural design process is an architectural design docu-
ment. This may include a number of graphical representations of the system along
with associated descriptive text. It should describe how the system is structured into
sub-systems, the approach adopted and how each sub-system is structured into mod-
ules. The graphical models of the system present different perspectives on the archi-
tecture. Architectural models that may be developed may include:

1. A static structural model that shows the sub-systems or components that are
to be developed as separate units.

2. A dynamic process model that shows how the system is organised into pro-
cesses at run-time. This may be different from the static model.

3. An interface model that defines the services offered by each sub-system
through its public interface.

4. Relationship models that shows relationships, such as data flow, between the
sub-systems.

5. A distribution model that shows how sub-systems may be distributed across
computers.

A number of researchers have proposed the use of architectural description lan-
guages (ADLs) to describe system architectures. Bass et al. (Bass, et al., 2003) describe

••••

SE8_C11.qxd 4/4/06 9:05 Page 246

11.2 ■ System organisation 247

the main features of these languages. The basic elements of ADLs are components
and connectors, and they include rules and guidelines for well-formed architectures.
However, like all specialised languages, ADLs can only be understood by language
experts and are inaccessible to domain and application specialists. This makes them
difficult to analyse from a practical perspective. I think that they will only be used
in a small number of applications. Informal models and notations such as the UML
(Clements, et al., 2002) will remain the most commonly used notation for archi-
tectural description.

11.2 System organisation

The organisation of a system reflects the basic strategy that is used to structure a
system. You have to make decisions on the overall organisational model of a sys-
tem early in the architectural design process. The system organisation may be directly
reflected in the sub-system structure. However, it is often the case that the sub-system
model includes more detail than the organisational model, and there is not always
a simple mapping from sub-systems to organisational structure.

In this section, I discuss three organisational styles that are very widely used.
These are a shared data repository style, a shared services and servers style and an
abstract machine or layered style where the system is organised as a tier of func-
tional layers. These styles can be used separately or together. For example, a sys-
tem may be organised around a shared data repository but may construct layers around
this to present a more abstract view of the data.

11.2.1 The repository model

Sub-systems making up a system must exchange information so that they can work
together effectively. There are two fundamental ways in which this can be done.

1. All shared data is held in a central database that can be accessed by all sub-
systems. A system model based on a shared database is sometimes called a repos-
itory model.

2. Each sub-system maintains its own database. Data is interchanged with other
sub-systems by passing messages to them.

The majority of systems that use large amounts of data are organised around a
shared database or repository. This model is therefore suited to applications where
data is generated by one sub-system and used by another. Examples of this type of

••••

SE8_C11.qxd 4/4/06 9:05 Page 247

248 Chapter 11 ■ Architectural design

system include command and control systems, management information systems,
CAD systems and CASE toolsets.

Figure 11.2 is an example of a CASE toolset architecture based on a shared repos-
itory. The first shared repository for CASE tools was probably developed in the
early 1970s by a UK company called ICL to support their operating system devel-
opment (McGuffin, et al., 1979). This model became more widely known when Buxton
(Buxton, 1980) made proposals for the Stoneman environment to support the devel-
opment of systems written in Ada. Since then, many CASE toolsets have been devel-
oped around a shared repository.

The advantages and disadvantages of a shared repository are as follows:

1. It is an efficient way to share large amounts of data. There is no need to trans-
mit data explicitly from one sub-system to another.

2. However, sub-systems must agree on the repository data model. Inevitably, this
is a compromise between the specific needs of each tool. Performance may be
adversely affected by this compromise. It may be difficult or impossible to inte-
grate new sub-systems if their data models do not fit the agreed schema.

3. Sub-systems that produce data need not be concerned with how that data is used
by other sub-systems.

4. However, evolution may be difficult as a large volume of information is gen-
erated according to an agreed data model. Translating this to a new model will
certainly be expensive; it may be difficult or even impossible.

5. Activities such as backup, security, access control and recovery from error are
centralised. They are the responsibility of the repository manager. Tools can
focus on their principal function rather than be concerned with these issues.

6. However, different sub-systems may have different requirements for security,
recovery and backup policies. The repository model forces the same policy on
all sub-systems.

••••

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator

Figure 11.2 The
architecture of an
integrated CASE
toolset

SE8_C11.qxd 4/4/06 9:05 Page 248

11.2 ■ System organisation 249

7. The model of sharing is visible through the repository schema. It is straight-
forward to integrate new tools given that they are compatible with the agreed
data model.

8. However, it may be difficult to distribute the repository over a number of
machines. Although it is possible to distribute a logically centralised reposi-
tory, there may be problems with data redundancy and inconsistency.

In the above model, the repository is passive and control is the responsibility of
the sub-systems using the repository. An alternative approach has been derived for
AI systems that use a ‘blackboard’ model, which triggers sub-systems when par-
ticular data become available. This is appropriate when the form of the repository
data is less well structured. Decisions about which tool to activate can only be made
when the data has been analysed. This model is described by Nii (Nii, 1986), and
Bosch (Bosch, 2000) includes a good discussion of how this style relates to system
quality attributes.

11.2.2 The client–server model

The client–server architectural model is a system model where the system is organ-
ised as a set of services and associated servers and clients that access and use the
services. The major components of this model are:

1. A set of servers that offer services to other sub-systems. Examples of servers
are print servers that offer printing services, file servers that offer file man-
agement services and a compile server, which offers programming language
compilation services.

2. A set of clients that call on the services offered by servers. These are normally
sub-systems in their own right. There may be several instances of a client pro-
gram executing concurrently.

3. A network that allows the clients to access these services. This is not strictly nec-
essary as both the clients and the servers could run on a single machine. In prac-
tice, however, most client–server systems are implemented as distributed systems.

Clients may have to know the names of the available servers and the services
that they provide. However, servers need not know either the identity of clients or
how many clients there are. Clients access the services provided by a server
through remote procedure calls using a request-reply protocol such as the http pro-
tocol used in the WWW. Essentially, a client makes a request to a server and waits
until it receives a reply.

Figure 11.3 shows an example of a system that is based on the client–server model.
This is a multi-user, web-based system to provide a film and photograph library. In this

••••

SE8_C11.qxd 4/4/06 9:05 Page 249

250 Chapter 11 ■ Architectural design

system, several servers manage and display the different types of media. Video frames
need to be transmitted quickly and in synchrony but at relatively low resolution. They
may be compressed in a store, so the video server may handle video compression and
decompression into different formats. Still pictures, however, must be maintained at a
high resolution, so it is appropriate to maintain them on a separate server.

The catalogue must be able to deal with a variety of queries and provide links
into the web information system that includes data about the film and video clip,
and an e-commerce system that supports the sale of film and video clips. The client
program is simply an integrated user interface, constructed using a web browser, to
these services.

The most important advantage of the client–server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the sys-
tem or to upgrade servers transparently without affecting other parts of the system.
I discuss distributed architectures, including client–server architectures and distributed
object architectures, in more detail in Chapter 12.

However, changes to existing clients and servers may be required to gain the
full benefits of integrating a new server. There may be no shared data model across
servers and sub-systems may organise their data in different ways. This means that
specific data models may be established on each server to allow its performance to
be optimised. Of course, if an XML-based representation of data is used, it may be
relatively simple to convert from one schema to another. However, XML is an inef-
ficient way to represent data, so performance problems can arise if this is used.

11.2.3 The layered model

The layered model of an architecture (sometimes called an abstract machine model)
organises a system into layers, each of which provide a set of services. Each layer

••••

Catalogue
server

Library
catalogue

Video
server

Film clip
files

Picture
server

Digitised
photographs

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Figure 11.3 The
architecture of a film
and picture library
system

SE8_C11.qxd 4/4/06 9:05 Page 250

11.2 ■ System organisation 251

can be thought of as an abstract machine whose machine language is defined by
the services provided by the layer. This ‘language’ is used to implement the next
level of abstract machine. For example, a common way to implement a language
is to define an ideal ‘language machine’ and compile the language into code for
this machine. A further translation step then converts this abstract machine code to
real machine code.

An example of a layered model is the OSI reference model of network proto-
cols (Zimmermann, 1980), discussed in Section 11.5. Another influential example
was proposed by Buxton (Buxton, 1980), who suggested a three-layer model for an
Ada Programming Support Environment (APSE). Figure 11.4 reflects the APSE struc-
ture and shows how a configuration management system might be integrated using
this abstract machine approach.

The configuration management system manages versions of objects and provides
general configuration management facilities, as discussed in Chapter 29. To sup-
port these configuration management facilities, it uses an object management sys-
tem that provides information storage and management services for configuration
items or objects. This system is built on top of a database system to provide basic
data storage and services such as transaction management, rollback and recovery,
and access control. The database management uses the underlying operating sys-
tem facilities and filestore in its implementation. You can see other examples of
layered architectural models in Chapter 13.

The layered approach supports the incremental development of systems. As a
layer is developed, some of the services provided by that layer may be made avail-
able to users. This architecture is also changeable and portable. So long as its inter-
face is unchanged, a layer can be replaced by another, equivalent layer.
Furthermore, when layer interfaces change or new facilities are added to a layer,
only the adjacent layer is affected. As layered systems localise machine dependen-
cies in inner layers, this makes it easier to provide multi-platform implementations

••••

Figure 11.4 Layered
model of a version
management system

SE8_C11.qxd 4/4/06 9:05 Page 251

252 Chapter 11 ■ Architectural design

of an application system. Only the inner, machine-dependent layers need be reim-
plemented to take account of the facilities of a different operating system or
database.

A disadvantage of the layered approach is that structuring systems in this way
can be difficult. Inner layers may provide basic facilities, such as file management,
that are required at all levels. Services required by a user of the top level may there-
fore have to ‘punch through’ adjacent layers to get access to services that are pro-
vided several levels beneath it. This subverts the model, as the outer layer in the
system does not just depend on its immediate predecessor.

Performance can also be a problem because of the multiple levels of command
interpretation that are sometimes required. If there are many layers, a service request
from a top layer may have to be interpreted several times in different layers before
it is processed. To avoid these problems, applications may have to communicate directly
with inner layers rather than use the services provided by the adjacent layer.

11.3 Modular decomposition styles

After an overall system organisation has been chosen, you need to make a decision
on the approach to be used in decomposing sub-systems into modules. There is not
a rigid distinction between system organisation and modular decomposition. The
styles discussed in Section 11.2 could be applied at this level. However, the com-
ponents in modules are usually smaller than sub-systems, which allows alternative
decomposition styles to be used.

There is no clear distinction between sub-systems and modules, but I find it use-
ful to think of them as follows:

1. A sub-system is a system in its own right whose operation does not depend on
the services provided by other sub-systems. Sub-systems are composed of mod-
ules and have defined interfaces, which are used for communication with other
sub-systems.

2. A module is normally a system component that provides one or more services
to other modules. It makes use of services provided by other modules. It is not
normally considered to be an independent system. Modules are usually com-
posed from a number of other simpler system components.

There are two main strategies that you can use when decomposing a sub-system
into modules:

1. Object-oriented decomposition where you decompose a system into a set of com-
municating objects.

••••

SE8_C11.qxd 4/4/06 9:05 Page 252

11.3 ■ Modular decomposition styles 253

2. Function-oriented pipelining where you decompose a system into functional
modules that accept input data and transform it into output data.

In the object-oriented approach, modules are objects with private state and
defined operations on that state. In the pipelining model, modules are functional
transformations. In both cases, modules may be implemented as sequential com-
ponents or as processes.

You should avoid making premature commitments to concurrency in a system.
The advantage of avoiding a concurrent system design is that sequential programs
are easier to design, implement, verify and test than parallel systems. Time depen-
dencies between processes are hard to formalise, control and verify. It is best to
decompose systems into modules, then decide during implementation whether
these need to execute in sequence or in parallel.

11.3.1 Object-oriented decomposition

An object-oriented, architectural model structures the system into a set of loosely
coupled objects with well-defined interfaces. Objects call on the services offered
by other objects. I have already introduced object models in Chapter 8, and I dis-
cuss object-oriented design in more detail in Chapter 14.

Figure 11.5 is an example of an object-oriented architectural model of an
invoice processing system. This system can issue invoices to customers, receive pay-
ments, and issue receipts for these payments and reminders for unpaid invoices. I
use the UML notation introduced in Chapter 8 where object classes have names
and a set of associated attributes. Operations, if any, are defined in the lower part
of the rectangle representing the object. Dashed arrows indicate that an object uses
the attributes or services provided by another object.

••••

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

invoice#
date
amount
customer

invoice#
date
amount
customer#

invoice#
date
amount
customer#

customer#
name
address
credit period

Customer

Payment

Invoice

Receipt
Figure 11.5 An object
model of an invoice
processing system

SE8_C11.qxd 4/4/06 9:05 Page 253

254 Chapter 11 ■ Architectural design

An object-oriented decomposition is concerned with object classes, their
attributes and their operations. When implemented, objects are created from these
classes and some control model is used to coordinate object operations. In this par-
ticular example, the Invoice class has various associated operations that implement
the system functionality. This class makes use of other classes representing cus-
tomers, payments and receipts.

The advantages of the object-oriented approach are well known. Because objects
are loosely coupled, the implementation of objects can be modified without affect-
ing other objects. Objects are often representations of real-world entities so the struc-
ture of the system is readily understandable. Because these real-world entities are
used in different systems, objects can be reused. Object-oriented programming lan-
guages have been developed that provide direct implementations of architectural com-
ponents.

However, the object-oriented approach does have disadvantages. To use services,
objects must explicitly reference the name and the interface of other objects. If an
interface change is required to satisfy proposed system changes, the effect of that
change on all users of the changed object must be evaluated. While objects may
map cleanly to small-scale real-world entities, more complex entities are sometimes
difficult to represent as objects.

11.3.2 Function-oriented pipelining

In a function-oriented pipeline or data-flow model, functional transformations pro-
cess their inputs and produce outputs. Data flows from one to another and is trans-
formed as it moves through the sequence. Each processing step is implemented as
a transform. Input data flows through these transforms until converted to output.
The transformations may execute sequentially or in parallel. The data can be pro-
cessed by each transform item by item or in a single batch.

When the transformations are represented as separate processes, this model is
sometimes called the pipe and filter style after the terminology used in the Unix
system. The Unix system provides pipes that act as data conduits and a set of com-
mands that are functional transformations. Systems that conform to this model can
be implemented by combining Unix commands using pipes and the control facili-
ties of the Unix shell. The term filter is used because a transformation ‘filters out’
the data it can process from its input data stream.

Variants of this pipelining model have been in use since computers were first
used for automatic data processing. When transformations are sequential with data
processed in batches, this architectural model is a batch sequential model. As I dis-
cuss in Chapter 13, this is a common architecture for data-processing systems such
as billing systems. Data-processing systems usually generate many output reports
that are derived from simple computations on a large number of input records.

An example of this type of system architecture is shown in Figure 11.6. An organ-
isation has issued invoices to customers. Once a week, payments that have been

••••

SE8_C11.qxd 4/4/06 9:05 Page 254

11.3 ■ Modular decomposition styles 255

made are reconciled with the invoices. For those invoices that have been paid, a
receipt is issued. For those invoices that have not been paid within the allowed pay-
ment time, a reminder is issued.

This is a model of only part of the invoice processing system; alternative trans-
formations would be used for the issue of invoices. Notice the difference
between this and its object-oriented equivalent discussed in the previous section.
The object model is more abstract as it does not include information about the
sequence of operations.

The advantages of this architecture are:

1. It supports the reuse of transformations.

2. It is intuitive in that many people think of their work in terms of input and out-
put processing.

3. Evolving the system by adding new transformations is usually straightforward.

4. It is simple to implement either as a concurrent or a sequential system.

The principal problem with this style is that there has to be a common format
for data transfer that can be recognised by all transformations. Each transformation
must either agree with its communicating transformations on the format of the data
that will be processed or with a standard format for all data communicated must be
imposed. The latter is the only feasible approach when transformations are stan-
dalone and reusable. In Unix, the standard format is simply a character sequence.
Each transformation must parse its input and unparse its output to the agreed form.
This increases system overhead and may mean that it is impossible to integrate trans-
formations that use incompatible data formats.

Interactive systems are difficult to write using the pipelining model because of
the need for a stream of data to be processed. While simple textual input and out-
put can be modelled in this way, graphical user interfaces have more complex I/O
formats and control, which is based on events such as mouse clicks or menu selec-
tions. It is difficult to translate this into a form compatible with the pipelining model.

••••

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

Figure 11.6 A
pipeline model of
an invoice processing
system

SE8_C11.qxd 4/4/06 9:05 Page 255

256 Chapter 11 ■ Architectural design

11.4 Control styles

The models for structuring a system are concerned with how a system is decom-
posed into sub-systems. To work as a system, sub-systems must be controlled so
that their services are delivered to the right place at the right time. Structural mod-
els do not (and should not) include control information. Rather, the architect should
organise the sub-systems according to some control model that supplements the struc-
ture model that is used. Control models at the architectural level are concerned with
the control flow between sub-systems.

There are two generic control styles that are used in software systems:

1. Centralised control One sub-system has overall responsibility for control and
starts and stops other sub-systems. It may also devolve control to another sub-
system but will expect to have this control responsibility returned to it.

2. Event-based control Rather than control information being embedded in a sub-
system, each sub-system can respond to externally generated events. These events
might come from other sub-systems or from the environment of the system.

Control styles are used in conjunction with structural styles. All the structural
styles that I have discussed may be realised using centralised or event-based
control.

11.4.1 Centralised control

In a centralised control model, one sub-system is designated as the system controller
and has responsibility for managing the execution of other sub-systems. Centralised
control models fall into two classes, depending on whether the controlled sub-systems
execute sequentially or in parallel.

1. The call–return model This is the familiar top-down subroutine model where
control starts at the top of a subroutine hierarchy and, through subroutine calls,
passes to lower levels in the tree. The subroutine model is only applicable to
sequential systems.

2. The manager model This is applicable to concurrent systems. One system com-
ponent is designated as a system manager and controls the starting, stopping
and coordination of other system processes. A process is a sub-system or mod-
ule that can execute in parallel with other processes. A form of this model may
also be applied in sequential systems where a management routine calls par-
ticular sub-systems depending on the values of some state variables. This is
usually implemented as a case statement.

••••

SE8_C11.qxd 4/4/06 9:05 Page 256

11.4 ■ Control styles 257

The call–return model is illustrated in Figure 11.7. The main program can call
Routines 1, 2 and 3; Routine 1 can call Routines 1.2 or 1.2; Routine 3 can call Routines
3.1 or 3.2; and so on. This is a model of the program dynamics. It is not a struc-
tural model; there is no need for Routine 1.1, for example, to be part of Routine 1.

This familiar model is embedded in programming languages such as C, Ada and
Pascal. Control passes from a higher-level routine in the hierarchy to a lower-level
routine. It then returns to the point where the routine was called. The currently exe-
cuting subroutine has responsibility for control and can either call other routines or
return control to its parent. It is poor programming style to return to some other
point in the program.

This call–return model may be used at the module level to control functions or
objects. Subroutines in a programming language that are called by other subrou-
tines are naturally functional. However, in many object-oriented systems, operations
on objects (methods) are implemented as procedures or functions. For example, when
a Java object requests a service from another object, it does so by calling an asso-
ciated method.

The rigid and restricted nature of this model is both a strength and a weakness.
It is a strength because it is relatively simple to analyse control flows and work out
how the system will respond to particular inputs. It is a weakness because excep-
tions to normal operation are awkward to handle.

Figure 11.8 is an illustration of a centralised management model of control for
a concurrent system. This model is often used in ‘soft’ real-time systems which do
not have very tight time constraints. The central controller manages the execution
of a set of processes associated with sensors and actuators. The building monitor-
ing system discussed in Chapter 15 uses this model of control.

The system controller process decides when processes should be started or
stopped depending on system state variables. It checks whether other processes have
produced information to be processed or to pass information to them for process-
ing. The controller usually loops continuously, polling sensors and other processes
for events or state changes. For this reason, this model is sometimes called an event-
loop model.

••••

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

Figure 11.7 The
call–return model of
control

SE8_C11.qxd 4/4/06 9:05 Page 257

258 Chapter 11 ■ Architectural design

11.4.2 Event-driven systems

In centralised control models, control decisions are usually determined by the val-
ues of some system state variables. By contrast, event-driven control models are
driven by externally generated events. The term event in this context does not just
mean a binary signal. It may be a signal that can take a range of values or a com-
mand input from a menu. The distinction between an event and a simple input is
that the timing of the event is outside the control of the process that handles that
event.

There are many types of event-driven systems. These include editors where user
interface events signify editing commands, rule-based production systems as used
in AI where a condition becoming true causes an action to be triggered, and active
objects where changing a value of an object’s attribute triggers some actions.
Garlan et al. (Garlan, et al., 1992) discuss these different types of system.

In this section, I discuss two event-driven control models:

1. Broadcast models In these models, an event is broadcast to all sub-systems.
Any sub-system that has been programmed to handle that event can respond
to it.

2. Interrupt-driven models These are exclusively used in real-time systems where
external interrupts are detected by an interrupt handler. They are then passed
to some other component for processing.

Broadcast models are effective in integrating sub-systems distributed across dif-
ferent computers on a network. Interrupt-driven models are used in real-time sys-
tems with stringent timing requirements.

In a broadcast model (Figure 11.9), sub-systems register an interest in specific
events. When these events occur, control is transferred to the sub-system that can
handle the event. The distinction between this model and the centralised model shown

••••

Figure 11.8 A
centralised control
model for a real-time
system

SE8_C11.qxd 4/4/06 9:05 Page 258

11.4 ■ Control styles 259

in Figure 11.8 is that the control policy is not embedded in the event and message
handler. Sub-systems decide which events they require, and the event and message
handler ensures that these events are sent to them.

All events could be broadcast to all sub-systems, but this imposes a great deal
of processing overhead. More often, the event and message handler maintains a reg-
ister of sub-systems and the events of interest to them. Sub-systems generate events
indicating, perhaps, that some data is available for processing. The event handler
detects the events, consults the event register and passes the event to those sub-
systems who have declared an interest. In simpler systems, such as PC-based sys-
tems driven by user interface events, there are explicit event-listener sub-systems
that listen for events from the mouse, the keyboard, and so on, and translate these
into more specific commands.

The event handler also usually supports point-to-point communication. A sub-
system can explicitly send a message to another sub-system. There have been a num-
ber of variations of this model, such as the Field environment (Reiss, 1990) and
Hewlett-Packard’s Softbench (Fromme and Walker, 1993). Both of these have been
used to control tool interactions in software engineering environments. Object
Request Brokers (ORBs), discussed in Chapter 12, also support this model of con-
trol for distributed object communications.

The advantage of this broadcast approach is that evolution is relatively simple.
A new sub-system to handle particular classes of events can be integrated by reg-
istering its events with the event handler. Any sub-system can activate any other
sub-system without knowing its name or location. The sub-systems can be imple-
mented on distributed machines. This distribution is transparent to other sub-
systems.

The disadvantage of this model is that sub-systems don’t know if or when events
will be handled. When a sub-system generates an event it does not know which
other sub-systems have registered an interest in that event. It is quite possible for
different sub-systems to register for the same events. This may cause conflicts when
the results of handling the event are made available.

Real-time systems that require externally generated events to be handled very
quickly must be event-driven. For example, if a real-time system is used to control
the safety systems in a car, it must detect a possible crash and, perhaps, inflate an
airbag before the driver’s head hits the steering wheel. To provide this rapid
response to events, you have to use interrupt-driven control.

••••

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

Figure 11.9 A control
model based on
selective
broadcasting

SE8_C11.qxd 4/4/06 9:05 Page 259

260 Chapter 11 ■ Architectural design

An interrupt-driven control model is illustrated in Figure 11.10. There are a known
number of interrupt types with a handler defined for each type. Each type of inter-
rupt is associated with the memory location where its handler’s address is stored.
When an interrupt of a particular type is received, a hardware switch causes con-
trol to be transferred immediately to its handler. This interrupt handler may then
start or stop other processes in response to the event signalled by the interrupt.

This model is mostly used in real-time systems where an immediate response to
some event is necessary. It may be combined with the centralised management model.
The central manager handles the normal running of the system with interrupt-based
control for emergencies.

The advantage of this approach is that it allows very fast responses to events to
be implemented. Its disadvantages are that it is complex to program and difficult
to validate. It may be impossible to replicate patterns of interrupt timing during sys-
tem testing. It can be difficult to change systems developed using this model if the
number of interrupts is limited by the hardware. Once this limit is reached, no other
types of events can be handled. You can sometimes get around this limitation by
mapping several types of events onto a single interrupt. The handler then works out
which event has occurred. However, interrupt mapping may be impractical if a very
fast response to individual interrupts is required.

11.5 Reference architectures

The above architectural models are general models: They can be applied to many
classes of application. As well as these general models, architectural models that

••••

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector

Figure 11.10 An
interrupt-driven
control model

SE8_C11.qxd 4/4/06 9:05 Page 260

11.5 ■ Reference architectures 261

are specific to a particular application domain may also be used. Although
instances of these systems differ in detail, the common architectural structure can
be reused when developing new systems. These architectural models are called domain-
specific architectures.

There are two types of domain-specific architectural model:

1. Generic models are abstractions from a number of real systems. They encap-
sulate the principal characteristics of these systems. For example, in real-time
systems, there might be generic architectural models of different system types
such as data collection systems or monitoring systems. I discuss a range of generic
models in Chapter 13, which covers application architectures. In this section,
I focus on architectural reference models.

2. Reference models are more abstract and describe a larger class of systems. They
are a way of informing designers about the general structure of that class of
system. Reference models are usually derived from a study of the application
domain. They represent an idealised architecture that includes all the features
that systems might incorporate.

There is not, of course, a rigid distinction between these types of model. Generic
models can also serve as reference models. I distinguish between them here because
generic models may be reused directly in a design. Reference models are normally
used to communicate domain concepts and compare or evaluate possible architectures.

Reference architectures are not normally considered a route to implementation. Rather,
their principal function is a means of discussing domain-specific architectures and com-
paring different systems in a domain. A reference model provides a vocabulary for
comparison. It acts as a base, against which systems can be evaluated.

The OSI model is a seven-layer model for open systems interconnection. The model
is illustrated in Figure 11.11. The exact functions of the layers are not important here.

••••

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Communications medium

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application
Figure 11.11 The OSI
reference model
architecture

SE8_C11.qxd 4/4/06 9:05 Page 261

262 Chapter 11 ■ Architectural design

In essence, the lower layers are concerned with physical interconnection, the mid-
dle layers with data transfer and the upper layers with the transfer of semantically
meaningful application information such as standardised documents.

The designers of the OSI model had the very practical objective of defining an
implementation standard so that conformant systems could communicate with each
other. Each layer should only depend on the layer beneath it. As technology devel-
oped, a layer could be transparently reimplemented without affecting the systems
using other layers.

In practice, however, the performance problems of the layered approach to
architectural modelling have compromised this objective. Because of the vast dif-
ferences between networks, simple interconnection may be impossible. Although
the functional characteristics of each layer are well defined, the non-functional char-
acteristics are not defined. System developers have to implement their own higher-
level facilities and skip layers in the model. Alternatively, they have to design
non-standard features to improve system performance.

Consequently, the transparent replacement of a layer in the model is hardly ever
possible. However, this does not negate the usefulness of the model as it provides
a basis for the abstract structuring and the systematic implementation of commu-
nications between systems.

Another proposed reference model is a reference model for CASE environments
(ECMA, 1991; Brown et al., 1992) that identifies five sets of services that a CASE
environment should provide. It should also provide ‘plug-in’ facilities for individ-
ual CASE tools that use these services. The CASE reference model is illustrated in
Figure 11.12. The five levels of service in the CASE reference model are:

1. Data repository services These provide facilities for the storage and manage-
ment of data items and their relationships.

2. Data integration services These provide facilities for managing groups or the
establishment of relationships between them. These services and data reposi-
tory services are the basis of data integration in the environment.

••••

Figure 11.12 The
ECMA reference
architecture for CASE
environments

SE8_C11.qxd 4/4/06 9:05 Page 262

Chapter 11 ■ Key Points 263

3. Task management services These provide facilities for the definition and enact-
ment of process models. They support process integration.

4. Message services These provide facilities for tool-tool, environment-tool and
environment-environment communications. They support control integration.

5. User interface services These provide facilities for user interface development.
They support presentation integration.

This reference model tells us what might be included in any particular CASE
environment, although it is important to emphasise that not every feature of a ref-
erence architecture will be included in actual architectural designs. It means that
we can ask questions of a system design such as ‘how are the data repository ser-
vices provided?’ and ‘does the system provide task management?’

••••

■ The software architecture is the fundamental framework for structuring the system.
Properties of a system such as performance, security and availability are influenced by the
architecture used.

■ Architectural design decisions include decisions on the type of application, the distribution
of the system, the architectural styles to be used and the ways in which the architecture
should be documented and evaluated.

■ Different architectural models such as a structural model, a control model and a
decomposition model may be developed during the architectural design process.

■ Organisational models of a system include repository models, client–server models and
abstract machine models. Repository models share data through a common store.
Client–server models usually distribute data. Abstract machine models are layered, with
each layer implemented using the facilities provided by its foundation layer.

■ Decomposition styles include object-oriented and function-oriented decomposition.
Pipelining models are functional, and object models are based on loosely coupled entities
that maintain their own state and operations.

■ Control styles include centralised control and event-based control. In centralised models of
control, control decisions are made depending on the system state; in event models,
external events control the system.

■ Reference architectures may be used as a vehicle to discuss domain-specific architectures
and to assess and compare architectural designs.

K E Y P O I N TS

SE8_C11.qxd 4/4/06 9:05 Page 263

264 Chapter 11 ■ Architectural design

Again, the principal value of this reference architecture is as a means of classi-
fying and comparing integrated CASE tools and environments. In addition, it can
also be used in education to highlight the key features of these environments and
to discuss them in a generic way.

F U R T H E R R E A D I N G

Software Architecture in Practice, 2nd ed. This is a practical discussion of software architectures
that does not oversell the approach and that provides a clear business rationale why architectures
are important. (L. Bass, et al., 2003, Addison-Wesley.)

Design and Use of Software Architectures. Although this book focuses on product-line
architectures, the first few chapters are an excellent introduction to general issues in software
architecture design. (J. Bosch, 2000, Addison-Wesley.)

Software Architecture: Perspectives on an Emerging Discipline. This was the first book on software
architecture and has a good discussion on different architectural styles. (M. Shaw and D. Garlan,
1996, Prentice-Hall.)

E X E R C I S E S

11.1 Explain why it may be necessary to design the system architecture before the specifications
are written.

11.2 Explain why design conflicts might arise when designing an architecture where availability
and security requirements are the most important functional requirements.

11.3 Construct a table showing the advantages and disadvantages of the structural models
discussed in this chapter.

11.4 Giving reasons for your answer, suggest an appropriate structural model for the following
systems:

■ An automated ticket-issuing system used by passengers at a railway station

■ A computer-controlled video conferencing system that allows video, audio and computer
data to be visible to several participants at the same time

■ A robot floor-cleaner that is intended to clean relatively clear spaces such as corridors. The
cleaner must be able to sense walls and other obstructions.

11.5 Design an architecture for the above systems based on your choice of model. Make
reasonable assumptions about the system requirements.

••••

SE8_C11.qxd 4/4/06 9:05 Page 264

Chapter 11 ■ Exercises 265

11.6 Real-time systems usually use event-driven models of control. Under what circumstances
would you recommend the use of a call–return control model for a real-time system?

11.7 Giving reasons for your answer, suggest an appropriate control model for the following
systems:

■ A batch processing system that takes information about hours worked and pay rates and
prints salary slips and bank credit transfer information

■ A set of software tools that are produced by different vendors, but which must work
together

■ A television controller that responds to signals from a remote control unit.

11.8 Discuss their advantages and disadvantages as far as distributability is concerned of the
data-flow model and the object model. Assume that both single machine and distributed
versions of an application are required.

11.9 You are given two integrated CASE toolsets and are asked to compare them. Explain how you
could use a reference model for CASE (Brown, et al., 1992) to make this comparison.

11.10 Should there be a separate profession of ‘software architect’ whose role is to work
independently with a customer to design a software system architecture? This system would
then be implemented by some software company. What might be the difficulties of
establishing such a profession?

••••

SE8_C11.qxd 4/4/06 9:05 Page 265

••

Distributed systems
architectures

12

Objectives
The objective of this chapter is to discuss models of the software
architecture for distributed systems. When you have read this
chapter, you will:

■ know the advantages and disadvantages of distributed systems
architectures;

■ understand the two principal models of distributed systems
architecture, namely client–server systems and distributed object
systems;

■ understand the concept of an object request broker and the
principles underlying the CORBA standards;

■ have been introduced to peer-to-peer and service-oriented
architectures as ways to implement interorganisational
distributed systems.

Contents
12.1 Multiprocessor architectures

12.2 Client–server architectures

12.3 Distributed object architectures

12.4 Inter-organisational distributed computing

SE8_C12.qxd 4/4/06 9:06 Page 266

Chapter 12 ■ Distributed Systems Architectures 267

Virtually all large computer-based systems are now distributed systems. A distributed
system is a system where the information processing is distributed over several com-
puters rather than confined to a single machine. Obviously, the engineering of dis-
tributed systems has a great deal in common with the engineering of any other software,
but there are specific issues that have to be taken into account when designing this
type of system. I already introduced some of these issues in the introduction to
client–server architectures in Chapter 11 and I cover them in more detail here.

Coulouris et al. (Coulouris, et al., 2001) discuss the important characteristics of
distributed systems. They identify the following advantages of using a distributed
approach to systems development:

1. Resource sharing A distributed system allows the sharing of hardware and soft-
ware resources—such as disks, printers, files and compilers—that are associ-
ated with computers on a network.

2. Openness Distributed systems are normally open systems, which means they
are designed around standard protocols that allow equipment and software from
different vendors to be combined.

3. Concurrency In a distributed system, several processes may operate at the same
time on separate computers on the network. These processes may (but need
not) communicate with each other during their normal operation.

4. Scalability In principle at least, distributed systems are scalable in that the capa-
bilities of the system can be increased by adding new resources to cope with
new demands on the system. In practice, the network linking the individual com-
puters in the system may limit the system scalability. If many new computers
are added, then the network capacity may be inadequate.

5. Fault tolerance The availability of several computers and the potential for repli-
cating information means that distributed systems can be tolerant of some hard-
ware and software failures (see Chapter 20). In most distributed systems, a
degraded service can be provided when failures occur; complete loss of ser-
vice only tends to occur when there is a network failure.

For large-scale organisational systems, these advantages mean that distributed
systems have largely replaced the centralised legacy systems that were developed
in the 1980s and 1990s. However, compared to systems that run on a single pro-
cessor or processor cluster, distributed systems have a number of disadvantages:

1. Complexity Distributed systems are more complex than centralised systems. This
makes it more difficult to understand their emergent properties and to test these
systems. For example, rather than the performance of the system being depen-
dent on the execution speed of one processor, it depends on the network band-
width and the speed of the processors on the network. Moving resources from
one part of the system to another can radically affect the system’s performance.

••

SE8_C12.qxd 4/4/06 9:06 Page 267

268 Chapter 12 ■ Distributed systems architectures

2. Security The system may be accessed from several different computers, and
the traffic on the network may be subject to eavesdropping. This makes it more
difficult to ensure that the integrity of the data in the system is maintained and
that the system services are not degraded by denial-of-service attacks.

3. Manageability The computers in a system may be of different types and may
run different versions of the operating system. Faults in one machine may prop-
agate to other machines with unexpected consequences. This means that more
effort is required to manage and maintain the system in operation.

4. Unpredictability As all users of the WWW know, distributed systems are
unpredictable in their response. The response depends on the overall load on
the system, its organisation and the network load. As all of these may change
over a short period, the time taken to respond to a user request may vary dra-
matically from one request to another.

The design challenge is to design the software and hardware to provide desir-
able distributed system characteristics and, at the same time, minimise the prob-
lems that are inherent in these systems. To do so, you need to understand the advantages
and disadvantages of different distributed systems architectures. I cover two
generic types of distributed systems architecture here:

1. Client–server architectures In this approach, the system may be thought of as
a set of services that are provided to clients that make use of these services.
Servers and clients are treated differently in these systems.

2. Distributed object architectures In this case, there is no distinction between servers
and clients, and the system may be thought of as a set of interacting objects
whose location is irrelevant. There is no distinction between a service provider
and a user of these services.

Both client–server and distributed object architectures are widely used in indus-
try, but the distribution of the applications is generally within a single organisation.
The distribution supported is therefore intra-organisational. I also discuss two other
types of distributed architecture that are more suited to inter-organisational distri-
bution: peer-to-peer (p2p) system architectures and service-oriented architectures.
Peer-to-peer systems have mostly been used for personal systems but are starting
to be used for business applications. At the time of this writing, service-oriented
systems are just being introduced, but the service-oriented approach is likely to become
a very significant distribution model by 2005.

The components in a distributed system may be implemented in different pro-
gramming languages and may execute on completely different types of processors.
Models of data, information representation and protocols for communication may
all be different. A distributed system therefore requires software that can manage
these diverse parts, and ensure that they can communicate and exchange data. The

••••

SE8_C12.qxd 4/4/06 9:06 Page 268

12.1 ■ Multiprocessor architectures 269

term middleware is used to refer to this software—it sits in the middle between the
different distributed components of the system.

Bernstein (Bernstein, 1996) summarises types of middleware that are available
to support distributed computing. Middleware is general-purpose software that is
usually bought off-the-shelf rather than written specially by application developers.
Examples of middleware are software for managing communications with
databases, transaction managers, data converters and communication controllers. I
describe object request brokers, a very important class of middleware for distributed
systems, later in this chapter.

Distributed systems are usually developed using an object-oriented approach. These
systems are made up of loosely integrated, independent parts, each of which may
interact directly with users or with other parts of the system. Parts of the system
may have to respond to independent events. Software objects reflect these charac-
teristics, so are natural abstractions for distributed systems components.

12.1 Multiprocessor architectures

The simplest model of a distributed system is a multiprocessor system where the
software system consists of a number of processes that may (but need not) execute
on separate processors. This model is common in large real-time systems. As I dis-
cuss in Chapter 15, these systems collect information, make decisions using this
information and send signals to actuators that modify the system’s environment.

Logically, the processes concerned with information collection, decision making
and actuator control could all run on a single processor under the control of a sched-
uler. Using multiple processors improves the performance and resilience of the sys-
tem. The distribution of processes to processors may be pre-determined (this is common
in critical systems) or may be under the control of a dispatcher that decides which
process to allocate to each processor.

An example of this type of system is shown in Figure 12.1. This is a simplified
model of a traffic control system. A set of distributed sensors collects information on
the traffic flow and processes this locally before sending it to a control room. Operators
make decisions using this information and give instructions to a separate traffic light
control process. In this example, there are separate logical processes for managing the
sensors, the control room and the traffic lights. These logical processes may be single
processes or a group of processes. In this example, they run on separate processors.

Software systems composed of multiple processes are not necessarily distributed
systems. If more than one processor is available, then distribution can be imple-
mented, but the system designers need not always consider distribution issues dur-
ing the design process. The design approach for this type of system is essentially
that for real-time systems, as discussed in Chapter 15.

••••

SE8_C12.qxd 4/4/06 9:06 Page 269

270 Chapter 12 ■ Distributed systems architectures

12.2 Client–server architectures

I have already introduced the concept of client–server architectures in Chapter 11. In
a client–server architecture, an application is modelled as a set of services that are pro-
vided by servers and a set of clients that use these services (Orfali and Harkey, 1998).
Clients need to be aware of the servers that are available but usually do not know of
the existence of other clients. Clients and servers are separate processes, as shown in
Figure 12.2, which is a logical model of a distributed client–server architecture.

Several server processes can run on a single server processor so there is not nec-
essarily a 1:1 mapping between processes and processors in the system. Figure 12.3
shows the physical architecture of a system with six client computers and two server
computers. These can run the client and server processes shown in Figure 12.2. When
I refer to clients and servers, I mean these logical processes rather than the physi-
cal computers on which they execute.

The design of client–server systems should reflect the logical structure of the
application that is being developed. One way to look at an application is illustrated
in Figure 12.4, which shows an application structured into three layers. The pre-
sentation layer is concerned with presenting information to the user and with all
user interaction. The application processing layer is concerned with implementing
the logic of the application, and the data management layer is concerned with all
database operations. In centralised systems, these need not be clearly separated.
However, when you are designing a distributed system, you should make a clear
distinction between them, as it then becomes possible to distribute each layer to a
different computer.

••••

Traffic lights

Light
control
process

Traffic light control
processor

Traffic flow
processor

Operator consoles
Traffic flow sensors and

cameras

Sensor
processor

Sensor
control
process

Display
process

Figure 12.1 A
multiprocessor traffic
control system

SE8_C12.qxd 4/4/06 9:06 Page 270

12.2 ■ Client–server architectures 271

The simplest client–server architecture is called a two-tier client–server archi-
tecture, where an application is organised as a server (or multiple identical servers)
and a set of clients. As illustrated in Figure 12.5, two-tier client–server architec-
tures can take two forms:

1. Thin-client model In a thin-client model, all of the application processing and
data management is carried out on the server. The client is simply responsible
for running the presentation software.

2. Fat-client model In this model, the server is only responsible for data management.
The software on the client implements the application logic and the interac-
tions with the system user.

A thin-client, two-tier architecture is the simplest approach to use when centralised
legacy systems, as discussed in Chapter 2, are evolved to a client–server architecture.

••••

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

Figure 12.2 A
client–server system

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

Figure 12.3
Computers in a
client–server network

SE8_C12.qxd 4/4/06 9:06 Page 271

272 Chapter 12 ■ Distributed systems architectures

The user interface for these systems is migrated to PCs, and the application itself
acts as a server and handles all application processing and data management. A thin-
client model may also be implemented when the clients are simple network devices
rather than PCs or workstations. The network device runs an Internet browser and
the user interface implemented through that system.

A major disadvantage of the thin-client model is that it places a heavy process-
ing load on both the server and the network. The server is responsible for all com-
putation, and this may involve the generation of significant network traffic between
the client and the server. There is a lot of processing power available in modern
computing devices, which is largely unused in the thin-client approach.

The fat-client model makes use of this available processing power and distributes
both the application logic processing and the presentation to the client. The server
is essentially a transaction server that manages all database transactions. An exam-
ple of this type of architecture is banking ATM systems, where the ATM is the
client and the server is a mainframe running the customer account database. The
hardware in the teller machine carries out a lot of the customer-related processing
associated with a transaction.

••••

Figure 12.4
Application layers

Thin-client
model

Fat-client
model Client

Client

Server

Data management
Application processing

Presentation

Server

Data management

Presentation
Application processing

Figure 12.5 Thin and
fat clients

SE8_C12.qxd 4/4/06 9:06 Page 272

12.2 ■ Client–server architectures 273

This ATM distributed system is illustrated in Figure 12.6. Notice that the ATMs
do not connect directly to the customer database but to a teleprocessing monitor. A
teleprocessing monitor or transaction manager is a middleware system that organ-
ises communications with remote clients and serialises client transactions for pro-
cessing by the database. Using serial transactions means that the system can
recover from faults without corrupting the system data.

While the fat-client model distributes processing more effectively than a thin-
client model, system management is more complex. Application functionality is spread
across many computers. When the application software has to be changed, this involves
reinstallation on every client computer. This can be a major cost if there are hun-
dreds of clients in the system.

The advent of mobile code (such as Java applets and Active X controls), which
can be downloaded from a server to a client, has allowed the development of
client–server systems that are somewhere between the thin- and the fat-client
model. Some of the application processing software may be downloaded to the client
as mobile code, thus relieving the load on the server. The user interface is created
using a web browser that has built-in facilities to run the downloaded code.

The problem with a two-tier client–server approach is that the three logical lay-
ers—presentation, application processing and data management—must be mapped
onto two computer systems—the client and the server. There may either be prob-
lems with scalability and performance if the thin-client model is chosen, or prob-
lems of system management if the fat-client model is used. To avoid these issues,
an alternative approach is to use a three-tier client–server architecture (Figure 12.7).
In this architecture, the presentation, the application processing and the data man-
agement are logically separate processes that execute on different processors.

An Internet banking system (Figure 12.8) is an example of the three-tier
client–server architecture. The bank’s customer database (usually hosted on a main-
frame computer) provides data management services; a web server provides the appli-
cation services such as facilities to transfer cash, generate statements, pay bills and
so on; and the user’s own computer with an Internet browser is the client. This sys-

••••

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

Figure 12.6 A
client–server ATM
system

SE8_C12.qxd 4/4/06 9:06 Page 273

274 Chapter 12 ■ Distributed systems architectures

tem is scalable because it is relatively easy to add new web servers as the number
of customers increase.

The use of a three-tier architecture in this case allows the information transfer
between the web server and the database server to be optimised. The communica-
tions between these systems can use fast, low-level communications protocols. Efficient
middleware that supports database queries in SQL (Structured Query Language) is
used to handle information retrieval from the database.

In some cases, it is appropriate to extend the three-tier client–server model to a
multi-tier variant where additional servers are added to the system. Multi-tier sys-
tems may be used where applications need to access and use data from different
databases. In this case, an integration server is positioned between the application
server and the database servers. The integration server collects the distributed data
and presents it to the application as if it were from a single database.

Three-tier client–server architectures and multi-tier variants that distribute the appli-
cation processing across several servers are inherently more scalable than two-tier
architectures. Network traffic is reduced in contrast with thin-client two-tier archi-
tectures. The application processing is the most volatile part of the system, and it
can be easily updated because it is centrally located. Processing, in some cases, may
be distributed between the application logic and the data management servers, thus
leading to more rapid response to client requests.

Designers of client–server architectures must take a number of factors into
account when choosing the most appropriate architecture. Situations where the

••••

Figure 12.7 A three-
tier client–server
architecture

Database server

Customer
account
database

Web serverClient

Client

Account service
provision

SQL
SQL query

HTTP interaction

Client

Client

Figure 12.8 The
distribution
architecture of an
Internet banking
system

SE8_C12.qxd 4/4/06 9:06 Page 274

12.3 ■ Distributed object architectures 275

client–server architectures that I have discussed are likely to be appropriate are shown
in Figure 12.9.

12.3 Distributed object architectures

In the client–server model of a distributed system, clients and servers are different.
Clients receive services from servers and not from other clients; servers may act as
clients by receiving services from other servers but they do not request services from
clients; clients must know the services that are offered by specific servers and must
know how to contact these servers. This model works well for many types of appli-
cations. However, it limits the flexibility of system designers in that they must decide
where services are to be provided. They must also plan for scalability and so pro-
vide some means for the load on servers to be distributed as more clients are added
to the system.

A more general approach to distributed system design is to remove the distinc-
tion between client and server and to design the system architecture as a distributed
object architecture. In a distributed object architecture (Figure 12.10), the funda-
mental system components are objects that provide an interface to a set of services
that they provide. Other objects call on these services with no logical distinction
between a client (a receiver of a service) and a server (a provider of a service).

Objects may be distributed across a number of computers on a network and com-
municate through middleware. This middleware is called an object request broker.

••••

Architecture Applications

Two-tier C/S Legacy system applications where separating application processing
architecture with and data management is impractical.
thin clients Computationally-intensive applications such as compilers with little

or no data management.
Data-intensive applications (browsing and querying) with little or
no application processing.

Two-tier C/S Applications where application processing is provided by off-the-
architecture shelf software (e.g. Microsoft Excel) on the client.
with fat clients Applications where computationally-intensive processing of data

(e.g. data visualisation) is required.
Applications with relatively stable end-user functionality used in an
environment with well-established system management.

Three-tier or Large-scale applications with hundreds or thousands of clients.
multi-tier C/S Applications where both the data and the application are volatile.
architecture Applications where data from multiple sources are integrated.

Figure 12.9 Use of
different client–server
architectures

SE8_C12.qxd 4/4/06 9:06 Page 275

276 Chapter 12 ■ Distributed systems architectures

Its role is to provide a seamless interface between objects. It provides a set of ser-
vices that allow objects to communicate and to be added to and removed from the
system. I discuss object request brokers in Section 12.3.1.

The advantages of the distributed object model are:

• It allows the system designer to delay decisions on where and how services
should be provided. Service-providing objects may execute on any node of the
network. Therefore, the distinction between fat- and thin-client models
becomes irrelevant, as there is no need to decide in advance where application
logic objects are located.

• It is a very open system architecture that allows new resources to be added to
it as required. As I discuss in the following section, object communication stan-
dards have been developed and implemented that allow objects written in dif-
ferent programming languages to communicate and to provide services to each
other.

• The system is flexible and scalable. Different instances of the system with the
same service provided by different objects or by replicated objects can be cre-
ated to cope with different system loads. New objects can be added as the load
on the system increases without disrupting other system objects.

• It is possible to reconfigure the system dynamically with objects migrating across
the network as required. This may be important where there are fluctuating pat-
terns of demand on services. A service-providing object can migrate to the same
processor as service-requesting objects, thus improving the performance of the
system.

A distributed object architecture can be used as a logical model that allows you
to structure and organise the system. In this case, you think about how to provide
application functionality solely in terms of services and combinations of services.

••••

Software bus

o1 o2 o3 o4

o5 o6

S (o1) S (o2) S (o3) S (o4)

S (o5) S (o6)

Figure 12.10
Distributed object
architecture

SE8_C12.qxd 4/4/06 9:06 Page 276

12.3 ■ Distributed object architectures 277

You then work out how to provide these services using a number of distributed objects.
At this level, the objects that you design are usually large-grain objects (sometimes
called business objects) that provide domain-specific services. For example, in a
retail application, there may be business objects concerned with stock control, cus-
tomer communications, goods ordering and so on. This logical model can, of
course, then be realised as an implementation model.

Alternatively, you can use a distributed object approach to implement
client–server systems. In this case, the logical model of the system is a
client–server model, but both clients and servers are realised as distributed objects
communicating through a software bus. This makes it possible to change the sys-
tem easily, for example, from a two-tier to a multi-tier system. In this case, the server
or the client may not be implemented as a single distributed object but may be com-
posed from smaller objects that provide specialised services.

An example of a type of system where a distributed object architecture might be
appropriate is a data mining system that looks for relationships between the data
that is stored in a number of databases (Figure 12.11). An example of a data min-
ing application might be where a retail business has, say, food stores and hardware
stores, and wants to find relationships between a customer’s food and hardware pur-
chases. For instance, people who buy baby food may also buy particular types of
wallpaper. With this knowledge, the business can then specifically target baby-food
customers with combined offers.

In this example, each database can be encapsulated as a distributed object with
an interface that provides read-only access to its data. Integrator objects are each
concerned with specific types of relationships, and they collect information from
all of the databases to try to deduce the relationships. There might be an integrator
object that is concerned with seasonal variations in goods sold and another that is
concerned with relationships between different types of goods.

••••

Database 1

Database 2

Database 3

Integrator 1

Integrator 2

Visualiser

Display

Report gen.Figure 12.11 The
distribution
architecture of a data
mining system

SE8_C12.qxd 4/4/06 9:06 Page 277

278 Chapter 12 ■ Distributed systems architectures

Visualiser objects interact with integrator objects to produce a visualisation or a
report on the relationships that have been discovered. Because of the large volumes
of data that are handled, visualiser objects will normally use graphical presentations
of the relationships that have been discovered. I discuss graphical information pre-
sentation in Chapter 16.

A distributed object architecture rather than a client–server architecture is appro-
priate for this type of application for three reasons:

1. Unlike a bank ATM system (say), the logical model of the system is not one
of service provision where there are distinguished data management services.

2. You can add databases to the system without major disruption. Each database
is simply another distributed object. The database objects can provide a sim-
plified interface that controls access to the data. The databases that are
accessed may reside on different machines.

3. It allows new types of relationships to be mined by adding new integrator objects.
Parts of the business that are interested in specific relationships can extend the
system by adding integrator objects that operate on their computers without requir-
ing knowledge of any other integrators that are used elsewhere.

The major disadvantage of distributed object architectures is that they are more
complex to design than client–server systems. Client–server systems appear to be
a fairly natural way to think about systems. They reflect many human transactions
where people request and receive services from other people who specialise in pro-
viding these services. It is more difficult to think about general service provision,
and we do not yet have a great deal of experience with the design and development
of large-grain business objects.

12.3.1 CORBA

As I indicated in the previous section, the implementation of a distributed object
architecture requires middleware (object request brokers) to handle communications
between the distributed objects. In principle, the objects in the system may be imple-
mented using different programming languages, the objects may run on different
platforms and their names need not be known to all other objects in the system.
The middleware ‘glue’ therefore has to do a lot of work to ensure seamless object
communications.

Middleware to support distributed object computing is required at two levels:

1. At the logical communication level, the middleware provides functionality that
allows objects on different computers to exchange data and control informa-
tion. Standards such as CORBA and COM (Pritchard, 1999) have been devel-
oped to facilitate logical object communications on different platforms.

••••

SE8_C12.qxd 4/4/06 9:06 Page 278

12.3 ■ Distributed object architectures 279

2. At the component level, the middleware provides a basis for developing com-
patible components. Standards such as EJB, CORBA components or Active X
(Szyperski, 2002) provide a basis for implementing components with standard
methods that can be queried and used by other components. I cover compo-
nent standards in Chapter 19.

In this section, I focus on the middleware for logical object communication and
discuss how this is supported by the CORBA standards. These were defined by the
Object Management Group (OMG), which defines standards for object-oriented devel-
opment. The OMG standards are available, free of charge, from their web site.

The OMG’s vision of a distributed application is shown in Figure 12.12, which
I have adapted from Siegel’s diagram of the Object Management Architecture (Siegal,
1998). This proposes that a distributed application should be made up of a number
of components:

1. Application objects that are designed and implemented for this application.

2. Standard objects that are defined by the OMG for a specific domain. These
domain object standards cover finance/insurance, electronic commerce, health-
care, and a number of other areas.

3. Fundamental CORBA services that provide basic distributed computing services
such as directories and security management.

4. Horizontal CORBA facilities such as user interface facilities, system manage-
ment facilities, and so on. The term horizontal facilities suggests that these facil-
ities are common to many application domains and the facilities are therefore
used in many different applications.

The CORBA standards cover all aspects of this vision. There are four major ele-
ments to these standards:

••••

CORBA services

Domain
facilities

Horizontal CORBA
facilities

Application
objects

Object request broker

Figure 12.12 The
structure of a
CORBA-based
distributed
application

SE8_C12.qxd 4/4/06 9:06 Page 279

280 Chapter 12 ■ Distributed systems architectures

1. An object model for application objects where a CORBA object is an encap-
sulation of state with a well-defined, language-neutral interface described in an
IDL (Interface Definition Language).

2. An object request broker (ORB) that manages requests for object services. The
ORB locates the object providing the service, prepares it for the request, sends
the service request and returns the results to the requester.

3. A set of object services that are general services likely to be required by many
distributed applications. Examples of services are directory services, transac-
tion services and persistence services.

4. A set of common components built on top of these basic services that may be
required by applications. These may be vertical domain-specific components
or horizontal, general-purpose components that are used by many applications.

The CORBA object model considers an object to be an encapsulation of
attributes and services, as is normal for objects. However, CORBA objects must
have a separate interface definition that defines the public attributes and operations
of the object. CORBA object interfaces are defined using a standard, language-
independent interface definition language. If an object wishes to use services pro-
vided by another object, then it accesses these services through the IDL interface.
CORBA objects have a unique identifier called an Interoperable Object Reference
(IOR). This IOR is used when one object requests services from another.

The object request broker knows about the objects that are requesting services
and their interfaces. The ORB handles the communication between the objects. The
communicating objects do not need to know the location of other objects nor do
they need to know anything about their implementation. As the IDL interface insu-
lates the objects from the ORB, it is possible to change the object implementation
in a completely transparent way. The object location can change between invoca-
tions, which is transparent to other objects in the system.

For example, in Figure 12.13, two objects o1 and o2 communicate through an
ORB. The calling object (o1) has an associated IDL stub that defines the interface
of the object providing the required service. The implementer of o1 embeds calls
to this stub in their object implementation when a service is required. The IDL is
a superset of C++, so it is very easy to access this stub if you are programming in
C++, and it is fairly easy in C or Java. Language mappings to IDL have also been
defined for other languages such as Ada and COBOL.

The object providing the service has an associated IDL skeleton that links the
interface to the implementation of the services. In simple terms, when a service is
called through the interface, the IDL skeleton translates this into a call to the ser-
vice in whatever implementation language has been used. When the method or pro-
cedure has been executed, the IDL skeleton translates the results into IDL so that
it can be accessed by the calling object. Where an object both provides services to
other objects and uses services that are provided elsewhere, it needs both an IDL
skeleton and IDL stubs. An IDL stub is required for every object that is used.

••••

SE8_C12.qxd 4/4/06 9:06 Page 280

12.3 ■ Distributed object architectures 281

Object request brokers are not usually implemented as separate processes but are
a set of libraries that can be linked with object implementations. Therefore, in a
distributed system, each computer that is running distributed objects will have its
own object request broker. This will handle all local invocations of objects.
However, a request made for a service that is to be provided by a remote object
requires inter-ORB communications.

This situation is illustrated in Figure 12.14. In this example, when object o1 or
o2 requests a service from o3 or o4, the associated ORBs must communicate. A
CORBA implementation supports ORB-to-ORB communication by providing all ORBs
with access to IDL interface definitions and by implementing the OMG’s standards
Generic Inter-ORB Protocol (GIOP). This protocol defines standard messages that
ORBs can exchange to implement remote object invocation and information trans-
fer. When combined with lower-level Internet TCP/IP protocols, the GIOP allows
ORBs to communicate across the Internet.

The CORBA initiative has been underway since the 1980s, and the early versions
of CORBA were simply concerned with supporting distributed objects. However, as
the standards have evolved they have become more extensive. As well as a mechanism
for distributed object communications, the CORBA standards now define some stan-
dard services that may be provided to support distributed object-oriented applications.

You can think of CORBA services as facilities that are likely to be required by
many distributed systems. The standards define approximately 15 common services.
Some examples of these generic services are:

1. Naming and trading services that allow objects to refer to and discover other
objects on the network. The naming service is a directory service that allows
objects to be named and discovered by other objects. This is like the white pages
of a phone directory. The trading services are like the yellow pages. Objects
can find out what other objects have registered with the trader service and can
access the specification of these objects.

2. Notification services that allow objects to notify other objects that some event
has occurred. Objects may register their interest in a particular event with the

••••

o1 o2

S (o1) S (o2)

IDL
stub

IDL
skeleton

Object Request Broker

Figure 12.13 Object
communications
through an ORB

SE8_C12.qxd 4/4/06 9:06 Page 281

282 Chapter 12 ■ Distributed systems architectures

service and, when that event occurs, they are automatically notified. For exam-
ple, say the system includes a print spooler that queues documents to be
printed and a number of printer objects. The print spooler registers that it is
interested in an ‘end-of-printing’ event from a printer object. The notification
service informs it when printing is complete. It can then schedule the next doc-
ument on that printer.

3. Transaction services that support atomic transactions and rollback on failure.
Transactions are a fault-tolerance facility that supports recovery from errors dur-
ing an update operation. If an object update operation fails, then the object state
can be rolled back to its state before the update was started.

The CORBA standards include interface definitions for a wide range of hori-
zontal and vertical components that may be used by distributed application
builders. Vertical components are components that are specific to an application
domain. Horizontal components are general-purpose components such as user inter-
face components. The development of specifications for horizontal and vertical CORBA
components is a long-term activity, and currently available specifications are pub-
lished on the OMG website.

12.4 Inter-organisational distributed computing

For reasons of security and inter-operability, distributed computing has been pri-
marily implemented at the organisational level. An organisation has a number of
servers and spreads its computational load across these. Because these are all
located within the same organisation, local standards and operational processes
can be applied. Although, for web-based systems, client computers are often outside

••••

Figure 12.14
Inter-ORB
communications

SE8_C12.qxd 4/4/06 9:06 Page 282

12.4 ■ Inter-organisational distributed computing 283

the organisational boundary, their functionality is limited to running user inter-
face software.

Newer models of distributed computing, however, are now available that allow
inter-organisational rather than intra-organisational distributed computing. I discuss
two of these approaches in this section. Peer-to-peer computing is based around com-
putations carried out by individual network nodes. Service-oriented systems rely on
distributed services rather than distributed objects, and rely on XML-based stan-
dards for data exchange.

12.4.1 Peer-to-peer architectures

Peer-to-peer (p2p) systems are decentralised systems where computations may be
carried out by any node on the network and, in principle at least, no distinctions
are made between clients and servers. In peer-to-peer applications, the overall sys-
tem is designed to take advantage of the computational power and storage avail-
able across a potentially huge network of computers. The standards and protocols
that enable communications across the nodes are embedded in the application itself,
and each node must run a copy of that application.

At the time of writing, peer-to-peer technologies have mostly been used for
personal systems (Oram, 2001). For example, file-sharing systems based on the
Gnutella and Kazaa protocols are used to share files on users’ PCs, and instant mes-
saging systems such as ICQ and Jabber provide direct communications between users
without an intermediate server. SETI@home is a long-running project to process
data from radio telescopes on home PCs to search for indications of extraterrestrial
life, and Freenet is a decentralised database that has been designed to make it eas-
ier to publish information anonymously and to make it difficult for authorities to
suppress this information.

However, there are indications that this technology is being increasingly used by
businesses to harness the power in their PC networks (McDougall, 2000). Intel and
Boeing have both implemented p2p systems for computationally intensive applica-
tions. For cooperative applications that support distributed working, this seems to
be the most effective technology.

You can look at the architecture of p2p applications from two perspectives. The
logical network architecture is the distribution architecture of the system, whereas
the application architecture is the generic organisation of components in each appli-
cation type. In this chapter, I focus on the two principal types of logical network
architecture that may be used—decentralised architectures and semi-centralised
architectures.

In principle, in peer-to-peer systems every node in the network could be aware
of every other node, could make connections to it, and could exchange data with
it. In practice, of course, this is impossible, so nodes are organised into ‘localities’
with some nodes acting as bridges to other node localities. Figure 12.15 shows this
decentralised p2p architecture.

••••

SE8_C12.qxd 4/4/06 9:06 Page 283

284 Chapter 12 ■ Distributed systems architectures

In a decentralised architecture, the nodes in the network are not simply func-
tional elements but are also communications switches that can route data and con-
trol signals from one node to another. For example, assume that Figure 12.15 represents
a decentralised, document-management system. This system is used by a consor-
tium of researchers to share documents, and each member of the consortium main-
tains his or her own document store. However, when a document is retrieved, the
node retrieving that document also makes it available to other nodes. Someone who
needs a document issues a search command that is sent to nodes in that ‘locality’.
These nodes check whether they have the document and, if so, return it to the requestor.
If they do not have it, they route the search to other nodes; when the document is
finally discovered, the node can route the document back to the original requestor.
Therefore, if n1 issues a search for a document that is stored at n10, this search is
routed through nodes n3, n6, and n9 to n10.

This decentralised architecture has obvious advantages in that it is highly redun-
dant, and so is fault-tolerant and tolerant of nodes disconnecting from the network.
However, there are obvious overheads in the system in that the same search may
be processed by many different nodes and there is significant overhead in repli-
cated peer communications. An alternative p2p architectural model that departs from
a pure p2p architecture is a semi-centralised architecture where, within the network,
one or more nodes act as servers to facilitate node communications. Figure 12.16
illustrates this model.

In a semi-centralised architecture, the role of a server is to help establish con-
tact between peers in the network or to coordinate the results of a computation. For
example, if Figure 12.16 represents an instant messaging system, then network nodes
communicate with the server (indicated by dashed lines) to find out what other nodes
are available. Once these are discovered, direct communications can be established
and the connection to the server is unnecessary. Therefore nodes n2, n3, n5 and n6
are in direct communication.

In a computational p2p system where a processor-intensive computation is dis-
tributed across a large number of nodes, it is normal for some nodes to be

••••

Figure 12.15
Decentralised
p2p architecture

SE8_C12.qxd 4/4/06 9:06 Page 284

12.4 ■ Inter-organisational distributed computing 285

distinguished nodes whose role is to distribute work to other nodes and to collate
and check the results of the computation.

Although there are obvious overheads in peer-to-peer systems, it is a much more
efficient approach to inter-organisational computing than the service-based
approach that I discuss in the next section. There are still problems with using p2p
approaches for inter-organisational computing, as issues such as security and trust
are still unresolved. This means that p2p systems are most likely to be used either
for non-critical information systems or where there are already working relation-
ships between organisations.

12.4.2 Service-oriented system architecture

The development of the WWW meant that client computers had access to remote
servers outside their own organisations. If these organisations converted their infor-
mation to HTML, then this could be accessed by these computers. However, access
was solely through a web browser, and direct access to the information stores by
other programs was not practical. This meant that opportunistic connections
between servers where, for example, a program queried a number of catalogues,
was not possible.

To get around this problem, the notion of a web service was proposed. Using a
web service, organisations that want to make their information accessible to other
programs can do so by defining and publishing a web service interface. This inter-
face defines the data available and how it can be accessed. More generally, a web
service is a standard representation for some computational or information resource
that can be used by other programs. Therefore, you could define a tax filing ser-
vice where users could fill in their tax forms and have these automatically checked
and submitted to the tax authorities.

A web service is an instance of a more general notion of a service, which is
defined by (Lovelock, et al., 1996) as:

••••

Discovery
server

n1

n6

n2

n3

n5

n4

Figure 12.16 A semi-
centralised p2p
architecture

SE8_C12.qxd 4/4/06 9:06 Page 285

286 Chapter 12 ■ Distributed systems architectures

an act or performance offered by one party to another. Although the process
may be tied to a physical product, the performance is essentially intangible
and does not normally result in ownership of any of the factors of production.

The essence of a service, therefore, is that the provision of the service is inde-
pendent of the application using the service (Turner, et al., 2003). Service providers
can develop specialised services and offer these to a range of service users from
different organisations. Applications may be constructed by linking services from
various providers using either a standard programming language or a specialised
service orchestration language such as BPEL4WS.

There are various service models, from the JINI model (Kumaran, 2001)
through web services (Stal, 2002) and grid services (Foster, et al., 2002).
Conceptually, all of these operate according to the model shown in Figure 12.17,
which is a generalisation of the conceptual web service model described by Kreger
(Kreger, 2001). A service provider offers a service by defining its interface and imple-
menting the service functionality. A service requestor binds that service into its appli-
cation. This means that the requestor’s application includes code to call that service
and process the results of the service call. To ensure that the service can be
accessed by external service users, the service provider makes an entry in a service
registry that includes information about the service and what it does.

The differences between this service model and the distributed object approach
to distributed systems architectures are:

• Services can be offered by any service provider inside or outside of an organ-
isation. Assuming these conform to certain standards (discussed below), organ-
isations can create applications by integrating services from a range of
providers. For example, a manufacturing company can link directly to services
provided by its suppliers.

• The service provider makes information about the service public so that any
authorised user can use it. The service provider and the service user do not need
to negotiate about what the service does before it can be incorporated in an
application program.

••••

Figure 12.17 The
conceptual
architecture of a
service-oriented
system

SE8_C12.qxd 4/4/06 9:06 Page 286

12.4 ■ Inter-organisational distributed computing 287

• Applications can delay the binding of services until they are deployed or until
execution. Therefore, an application using a stock price service (say) could dynam-
ically change service providers while the system was executing.

• Opportunistic construction of new services is possible. A service provider may
recognise new services that can be created by linking existing services in inno-
vative ways.

• Service users can pay for services according to their use rather than their pro-
vision. Therefore, instead of buying an expensive component that is rarely used,
the application writer can use an external service that will be paid for only when
required.

• Applications can be made smaller (which is important if they are to be embed-
ded in other devices) because they can implement exception handling as exter-
nal services.

• Applications can be reactive and adapt their operation according to their envi-
ronment by binding to different services as their environment changes.

At the time of this writing, these advantages have sparked immense interest in
web services as a basis for constructing loosely coupled, distributed applications.
However, there is still limited practical experience with service-oriented architec-
tures so we do not yet know that practical implications of this approach.

Software reuse has been a topic of research for many years; yet, as I discuss in
Chapters 18 and 19, there remain many practical difficulties in reusing software.
One of the major problems has been that standards for reusable components have
been developed only relatively recently, and several standards are in use. However,
the web services initiative has been driven by standards from its inception, and stan-
dards covering many aspects of web services are under development. The three fun-
damental standards that enable communications between web services are:

1. SOAP (Simple Object Access Protocol) This protocol defines an organisation
for structured data exchange between web services.

2. WSDL (Web Services Description Language) This protocol defines how the inter-
faces of web services can be represented.

3. UDDI (Universal Description, Discovery and Integration) This is a discovery
standard that defines how service description information, used by service
requestors to discover services, can be organised.

All of these standards are based on XML—a human- and machine-readable markup
language (Skonnard and Gudgin, 2002). You don’t, however, need to know details
of these standards to understand the web services concept.

Web service application architectures are loosely coupled architectures where ser-
vice bindings can change during execution. Some systems will be solely built using

••••

SE8_C12.qxd 4/4/06 9:06 Page 287

288 Chapter 12 ■ Distributed systems architectures

web services and others will mix web services with locally developed components.
To illustrate how applications may be organised, consider the following scenario:

An in-car information system provides drivers with information on weather,
road traffic conditions, local information and so forth. This is linked to the
car radio so that information is delivered as a signal on a specific radio chan-
nel. The car is equipped with GPS receiver to discover its position and, based
on that position, the system accesses a range of information services.
Information may be delivered in the driver’s specified language.

Figure 12.18 illustrates a possible organisation for such a system. The in-car soft-
ware includes five modules. These handle communications with the driver, with a
GPS receiver that reports the car’s position and with the car radio. The Transmitter
and Receiver modules handle all communications with external services.

The car communicates with an externally provided mobile information service
which aggregates information from a range of other services that provide informa-
tion on weather, traffic information and local facilities. Different providers in

••••

Figure 12.18 A
service-based in-car
information system

SE8_C12.qxd 4/4/06 9:06 Page 288

Chapter 12 ■ Key Points 289

different places provide this service, and the in-car system uses a discovery service
to locate the appropriate information service and bind to it. The discovery service
is also used by the mobile information service to bind to the appropriate weather,
traffic and facilities services. Services exchange SOAP messages that include GPS
position information used, by the services, to select the appropriate information. The
aggregated information is passed back to the car through a service that translates
the information language into the driver’s language.

••••

■ Distributed systems can support resource sharing, openness, concurrency, scalability, fault
tolerance and transparency.

■ Client–server systems are distributed systems where the system is modelled as a set of
services provided by servers to client processes.

■ In a client–server system, the user interface always runs on a client, and data management
is always provided by a shared server. Application functionality may be implemented on the
client computer or on the server.

■ In a distributed object architecture, there is no distinction between clients and servers.
Objects provide general services that may be called on by other objects. This approach may
be used for implementing client–server systems.

■ Distributed object systems require middleware to handle object communications and to
allow objects to be added to and removed from the system.

■ The CORBA standards are a set of standards for middleware that supports distributed
object architectures. They include object model definitions, definitions of an object request
broker and common service definitions. Various implementations of the CORBA standards
are available.

■ Peer-to-peer architectures are decentralised architectures where there are no distinguished
clients and servers. Computations can be distributed over many systems in different
organisations.

■ Service-oriented systems are created by linking software services provided by various
service suppliers. An important aspect of service-oriented architectures is that binding of
services to the architectural components can be delayed until the system is deployed or is
executing.

K E Y P O I N TS

SE8_C12.qxd 4/4/06 9:06 Page 289

290 Chapter 12 ■ Distributed systems architectures

This example illustrates one of the key advantages of the service-oriented
approach. It is not necessary to decide when the system is programmed or deployed
what service provider should be used and what specific services could be accessed.
As the car moves around, the in-car software uses the service discovery service to
find the most appropriate information service and binds to that. Because of the use
of a translation service, it can move across borders and therefore make local infor-
mation available to people who don’t speak the local language.

This vision of service-oriented computing is not yet realisable with current web
services, where the binding of services to applications is still fairly static. However,
in future, we will see more dynamic binding and application architectures and the
realisation of the vision of dynamic, service-oriented systems. Because of the
importance of this topic, I have discussed it more fully in Chapter 31, in the new
section on Emerging Technologies.

F U R T H E R R E A D I N G

‘Turning software into a service’. A good overview paper that discusses the principles of service-
oriented computing. Unlike many papers on this topic, it does not conceal these principles behind
a discussion of the standards involved. (M. Turner, et al., IEEE Computer, 36 (10), October 2003.)

Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Although this book does not have
a lot on p2p architectures, it is an excellent introduction to p2p computing and discusses the
organisation and approach used in a number of p2p systems. (A. Oram (ed), 2001, O’Reilly and
Associates, Inc.)

Distributed Systems: Concepts and Design, 3rd ed. A comprehensive textbook that discusses all
aspects of distributed systems design and implementation. The first two chapters are particularly
relevant to the material here. (G. Couloris, et al., 2001, Addison-Wesley.)

‘Middleware: A model for distributed systems services’. This is an excellent overview paper that
summarises the role of middleware in distributed systems and discusses the range of middleware
services that may be provided. (P. A. Bernstein, Comm. ACM, 39 (2), February 1996.)

E X E R C I S E S

12.1 Explain why distributed systems are inherently more scalable than centralised systems. What
are the likely limits on the scalability of the system?

12.2 What is the fundamental difference between a fat-client and a thin-client approach to
client–server systems development? Explain why the use of Java as an implementation
language blurs the distinction between these approaches.

••••

SE8_C12.qxd 4/4/06 9:06 Page 290

Chapter 12 ■ Exercises 291

12.3 Your customer wants to develop a system for stock information where dealers can access
information about companies and can evaluate various investment scenarios using a
simulation system. Each dealer uses this simulation in a different way, according to his or her
experience and the type of stocks in question. Suggest a client–server architecture for this
system that shows where functionality is located. Justify the client–server system model that
you have chosen.

12.4 By making reference to the application model shown in Figure 12.4, discuss problems that
might arise when converting a 1980s mainframe legacy system for insurance policy
processing to a client–server architecture.

12.5 What are the basic facilities that must be provided by an object request broker?

12.6 Explain why the use of distributed objects with an object request broker simplifies the
implementation of scalable client–server systems. Illustrate your answer with an example.

12.7 How is the CORBA IDL used to support communications between objects that have been
implemented in different programming languages? Explain why this approach may cause
performance problems if there are radical differences between the languages used for object
implementation.

12.8 Using a distributed object approach, propose an architecture for a national theatre booking
system where users can check seat availability and book seats at a group of theatres. The
system should support ticket returns so that people may return their tickets for last-minute
resale to other customers.

12.9 Give two advantages and two disadvantages of decentralised and semi-centralised peer-to-
peer architectures.

12.10 What are the advantages of dynamic binding in a service-oriented system?

12.11 For the in-car information system, explain why it is best that the in-car software
communicates with an aggregation service rather than directly with the information services.
You should consider issues such as communication reliability in formulating your answer.

12.12 The development of service-oriented computing has been based on the early specification
and adoption of standards. Discuss the general role of standardisation in supporting and
restricting competition and innovation in the software market.

••••

SE8_C12.qxd 4/4/06 9:06 Page 291

••

Application
architectures

13

Objectives
The objective of this chapter is to introduce architectural models for
specific classes of application software systems. When you have
read this chapter, you will:

■ be aware of two fundamental architectural organisations of
business systems, namely batch and transaction-processing;

■ understand the abstract architecture of information and resource
management systems;

■ understand how command-driven systems, such as editors, can
be structured as event-processing systems;

■ know the structure and organisation of language-processing
systems.

Contents
13.1 Data-processing systems

13.2 Transaction-processing systems

13.3 Event-processing systems

13.4 Language-processing systems

SE8_C13.qxd 4/4/06 9:07 Page 292

Chapter 13 ■ Application architectures 293

As I explained in Chapter 11, you can look at system architectures from a range of
perspectives. So far, the discussions of system architectures in Chapters 11 and 12
have concentrated on architectural perspectives and issues such as control, distri-
bution and system structuring. In this chapter, however, I take an alternative
approach and look at architectures from an application perspective.

Application systems are intended to meet some business or organisational need.
All businesses have much in common—they need to hire people, issue invoices,
keep accounts and so forth—and this is especially true of businesses operating in
the same sector. Therefore, as well as general business functions, all phone com-
panies need systems to connect calls, manage their network, issue bills to customers,
etc. Consequently, the application systems that these businesses use also have much
in common.

Usually, systems of the same type have similar architectures, and the differences
between these systems are in the detailed functionality that is provided. This can
be illustrated by the growth of Enterprise Resource Planning (ERP) systems such
as the SAP/R3 system (Appelrath and Ritter, 2000) and vertical software packages
for particular applications. In these systems, which I discuss briefly in Chapter 18,
a generic system is configured and adapted to create a specific business applica-
tion. For example, a system for supply chain management can be adapted for dif-
ferent types of suppliers, goods and contractual arrangements.

In the discussion of application architectures here, I present generic structural
models of several types of application. I discuss the basic organisation of these appli-
cation types and, where appropriate, break down the high-level architecture to show
sub-systems that are normally included in applications.

As a software designer, you can use these generic application architectures in a
number of ways:

1. As a starting point for the architectural design process If you are unfamiliar
with this type of application, you can base your initial designs on the generic
architectures. Of course, these will have to be specialised for specific systems,
but they are a good starting point for your design.

2. As a design checklist If you have developed a system architectural design, you
can check this against the generic application architecture to see whether you
have missed any important design components.

3. As a way of organising the work of the development team The application archi-
tectures identify stable structural features of the system architectures and, in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different sub-systems within the architecture.

4. As a means of assessing components for reuse If you have components you
might be able to reuse, you can compare these with the generic structures to
see whether reuse is likely in the application that you are developing.

5. As a vocabulary for talking about types of applications If you are discussing
a specific application or trying to compare applications of the same types, then

••

SE8_C13.qxd 4/4/06 9:07 Page 293

294 Chapter 13 ■ Application architectures

you can use the concepts identified in the generic architecture to talk about the
applications.

There are many types of application system and, on the surface, they may seem to
be very different. However, when you examine the architectural organisation of appli-
cations, many of these superficially dissimilar applications have much in common. I
illustrate this here by describing the architectures of four broad types of applica-
tions:

1. Data-processing applications Data-processing applications are applications
that are data-driven. They process data in batches without explicit user inter-
ventions during the processing. The specific actions taken by the application
depend on the data that it is processing. Batch-processing systems are com-
monly used in business applications where similar operations are carried out
on a large amount of data. They handle a wide range of administrative func-
tions such as payroll, billing, accounting, and publicity.

2. Transaction-processing applications Transaction-processing applications are
database-centred applications that process user requests for information and that
update the information in a database. These are the most common type of inter-
active business systems. They are organised in such a way that user actions
can’t interfere with each other and the integrity of the database is maintained.
This class of system includes interactive banking systems, e-commerce systems,
information systems and booking systems.

3. Event-processing systems This is a very large class of application where the
actions of the system depend on interpreting events in the system’s environ-
ment. These events might be the input of a command by a system user or a
change in variables that are monitored by the system. Many PC-based appli-
cations, including games, editing systems such as word processors, spreadsheets,
image editors and presentation systems are event-processing systems. Real-time
systems, discussed in Chapter 15, also fall into this category.

4. Language-processing systems Language-processing systems are systems where
the user’s intentions are expressed in a formal language (such as Java). The
language-processing system processes this language into some internal format
and then interprets this internal representation. The best-known language-pro-
cessing systems are compilers, which translate high-level language programs
to machine code. However, language-processing systems are also used to inter-
pret command languages for databases, information systems and markup lan-
guages such as XML (Harold and Means, 2002), which is extensively used to
describe structured data items.

I have chosen these particular types of systems because they represent the
majority of systems in use today. Business systems are generally either data- or

••••

SE8_C13.qxd 4/4/06 9:07 Page 294

13.1 ■ Data-processing systems 295

transaction-processing systems, and most personal computer software is built around
an event-processing architecture. Real-time systems are also event-processing systems;
I cover these architectures in Chapter 15. All software development relies on language-
processing systems such as compilers.

Batch-processing systems and transaction-processing systems are both database cen-
tric. Because of the central importance of data, it is common for applications of dif-
ferent types to share the same database. For example, a business data-processing system
that prints bank statements uses the same customer account database as a transaction-
processing system that provides web-based access to account information.

Of course, as I discussed in Chapter 11, complex applications rarely follow a sin-
gle, simple architectural model. Rather, their architecture is more often a hybrid, with
different parts of the application structured in different ways. When designing these
systems, you therefore have to consider the architectures of individual sub-systems
as well as how these are integrated within an overall system architecture.

13.1 Data-processing systems

Businesses rely on data-processing systems to support many aspects of their busi-
ness such as paying salaries, calculating and printing invoices, maintaining
accounts and issuing renewals for insurance policies. As the name implies, these
systems focus on data and the databases that they rely on are usually orders of mag-
nitude larger than the systems themselves. Data-processing systems are batch-pro-
cessing systems where data is input and output in batches from a file or database
rather than input from and output to a user terminal. These systems select data from
the input records and, depending on the value of fields in the records, take some
actions specified in the program. They may then write back the result of the com-
putation to the database and format the input and computed output for printing.

The architecture of batch-processing systems has three major components, as illus-
trated in Figure 13.1. An input component collects inputs from one or more
sources; a processing component makes computations using these inputs; and an
output component generates outputs to be written back to the database and printed.
For example, a telephone billing system takes customer records and telephone meter
readings (inputs) from an exchange switch, computes the costs for each customer
(process) and then prints bills (outputs) for each customer.

The input, processing and output components may themselves be further decom-
posed into an input-process-output structure. For example:

1. An input component may read some data (input) from a file or database, check
the validity of that data and correct some errors (process), then queue the valid
data for processing (output).

••••

SE8_C13.qxd 4/4/06 9:07 Page 295

296 Chapter 13 ■ Application architectures

2. A processing component may take a transaction from a queue (input), perform
some computations on the data and create a new data record recording the results
of the computation (process), then queue this new record for printing (output).
Sometimes the processing is done within the system database and sometimes
it is a separate program.

3. An output component may read records from a queue (input), format these accord-
ing to the output form (process), then send them to a printer or write new records
back to the database (output).

The nature of data-processing systems where records or transactions are processed
serially with no need to maintain state across transactions means that these systems
are naturally function-oriented rather than object-oriented. Functions are components
that do not maintain internal state information from one invocation to another. Data-
flow diagrams, introduced in Chapter 8, are a good way to describe the architec-
ture of business data-processing systems.

Data-flow diagrams are a way of representing function-oriented systems where
each round-edged rectangle in the data flow represents a function that implements
some data transformation, and each arrow represents a data item that is processed
by the function. Files or data stores are represented as rectangles. The advantage
of data-flow diagrams is that they show end-to-end processing. That is, you can see
all of the functions that act on data as it moves through the stages of the system.
The fundamental data-flow structure consists of an input function that passes data
to a processing function and then to an output function.

Figure 13.2 illustrates how data-flow diagrams can be used to show a more detailed
view of the architecture of a data-processing system. This figure shows the design
of a salary payment system. In this system, information about employees in the organ-
isation is read into the system, monthly salary and deductions are computed, and

••••

System

Input Process Output
Printer

Database

Figure 13.1 An input-
process-output
model of a data-
processing system

SE8_C13.qxd 4/4/06 9:07 Page 296

13.1 ■ Data-processing systems 297

payments are made. You can see how this system follows the basic input-process-
output structure:

1. The functions on the left of the diagram Read employee record, Read monthly
pay data and Validate employee data input the data for each employee and check
that data.

3. The Compute salary function works out the total gross salary for each
employee and the various deductions that are made from that salary. The net
monthly salary is then computed.

4. The output functions write a series of files that hold details of the deductions
made and the salary to be paid. These files are processed by other programs
once details for all employees have been computed. A payslip for the
employee, recording the net pay and the deductions made, is printed by the
system.

The architectural model of data-processing programs is relatively simple.
However, in those systems the complexity of the application is often reflected in
the data being processed. Designing the system architecture therefore involves think-
ing about the data architecture (Bracket, 1994) as well as the program architecture.
The design of data architectures is outside the scope of this book.

••••

Read employee
record

Read monthly
pay data

Compute
salary

Write tax
transactions

Monthly pay
data

Tax
tables

Tax
transactions

Pension data

Validate
employee data

Write pension
data

Write bank
transaction

Write social
security data

Employee
records

Monthly pay
rates

Bank
transactions

Social security
data

Print payslip
PRINTER

Decoded
employee

record

Pay information

Valid
employee record

Tax deduction + SS
number + tax office

Pension
deduction +
SS number

Empoyee data
+ deductions

Net payment + bank
account info.

Social security
deduction + SS number

Figure 13.2 Data-
flow diagram of a
payroll system

SE8_C13.qxd 4/4/06 9:07 Page 297

298 Chapter 13 ■ Application architectures

13.2 Transaction-processing systems

Transaction-processing systems are designed to process user requests for infor-
mation from a database or requests to update the database (Lewis et al., 2003).
Technically, a database transaction is sequence of operations that is treated as a
single unit (an atomic unit). All of the operations in a transaction have to be com-
pleted before the database changes are made permanent. This means that failure
of operations within the transaction do not lead to inconsistencies in the
database.

An example of a transaction is a customer request to withdraw money from a
bank account using an ATM. This involves getting details of the customer’s
account, checking the balance, modifying the balance by the amount withdrawn and
sending commands to the ATM to deliver the cash. Until all of these steps have
been completed, the transaction is incomplete and the customer accounts database
is not changed.

From a user perspective, a transaction is any coherent sequence of operations
that satisfies a goal, such as ‘find the times of flights from London to Paris’. If the
user transaction does not require the database to be changed then it may not be nec-
essary to package this as a technical database transaction.

Transaction-processing systems are usually interactive systems where users make
asynchronous requests for service. Figure 13.3 illustrates the high-level architectural
structure of these applications. First a user makes a request to the system through
an I/O processing component. The request is processed by some application-specific
logic. A transaction is created and passed to a transaction manager, which is usu-
ally embedded in the database management system. After the transaction manager
has ensured that the transaction is properly completed, it signals to the application
that processing has finished.

The input-process-output structure that we can see in data-processing applica-
tions also applies to many transaction-processing systems. Some of these systems
are interactive versions of batch-processing systems. For example, at one time banks
input all customer transactions off-line then ran these transactions in a batch against
their accounts database every evening. This approach has mostly been replaced by
interactive, transaction-based systems that update accounts in real time.

An example of a transaction-processing system is a banking system that allows
customers to query their accounts and withdraw cash from an ATM. The system is
composed of two cooperating software sub-systems—the ATM software and the
account processing software in the bank’s database server. The input and output

••••

Figure 13.3 The
structure of
transaction-
processing
applications

SE8_C13.qxd 4/4/06 9:07 Page 298

13.2 ■ Transaction-processing systems 299

sub-systems are implemented as software in the ATM, whereas the processing sub-
system is in the bank’s database server. Figure 13.4 shows the architecture of this
system. I have added some detail to the basic input-process-output diagram to show
components that may be involved in the input, processing and output activities. I
have deliberately not suggested how these internal components interact, as the sequence
of operation may differ from one machine to another.

In systems such as a bank customer accounting systems, there may be different
ways to interact with the system. Many customers will interact through ATMs, but
bank staff will use counter terminals to access the system. There may be several
types of ATMs and counter terminals used, and some customers and staff may access
the account data through web browsers.

To simplify the management of different terminal communication protocols, large-
scale transaction-processing systems may include middleware that communicates
with all types of terminal, organises and serialises the data from terminals, and sends
that data for processing. This middleware, which I briefly discussed in Chapter 12,
may be called a teleprocessing monitor or a transaction management system. IBM’s
CICS (Horswill and Miller, 2000) is a very widely used example of such a system.

Figure 13.5 shows another view of the architecture of a customer accounting system
that handles personal account transactions from ATMs and counter terminals in a bank.
The teleprocessing monitor handles the input and serialises transactions, which it con-
verts to database queries. The query processing takes place in the database management
system. Results are passed back to the teleprocessing monitor, which keeps track of ter-
minals making the request. This system then organises the data into a form that can be
handled by the terminal software and returns the results of the transaction to it.

13.2.1 Information and resource management systems

All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled access
to a large base of information, such as a library catalogue, a flight timetable or the

••••

Input Process Output

ATM Database ATM

Get customer
account id

Query account

Print details

Return card

Dispense cash

Update account

Validate card

Select service

Figure 13.4 The
software architecture
of an ATM

SE8_C13.qxd 4/4/06 9:07 Page 299

300 Chapter 13 ■ Application architectures

records of patients in a hospital. The development of the WWW meant that a huge
number of information systems moved from being specialist organisational systems
to universally accessible general-purpose systems.

Figure 13.6 is a very general model of an information system. The system is
modelled using a layered or abstract machine approach (discussed in Section
11.2.3), where the top layer supports the user interface and the bottom layer the
system database. The user communications layer handles all input and output from
the user interface, and the information retrieval layer includes application-specific
logic for accessing and updating the database. As we shall see later, the layers in
this model can map directly onto servers in an Internet-based system.

As an example of an instantiation of this layered model, Figure 13.7 presents
the architecture of the LIBSYS system. Recall that this system allows users to access
documents in remote libraries and download these for printing. I have added detail
to each layer in the model by identifying the components that support user com-
munications and information retrieval and access. You should also notice that the
database is a distributed database. Users actually connect, through the system, to
the databases of the libraries that provide documents.

••••

Serialised
transactions

Teleprocessing
monitor

Accounts
database

ATMs and terminals

Account queries
and updates

Figure 13.5
Middleware for
transaction
management

User interface

User communications

Information retrieval and modification

Transaction management
Database

Figure 13.6 A layered
model of an
information system

SE8_C13.qxd 4/4/06 9:07 Page 300

13.2 ■ Transaction-processing systems 301

The user communication layer in Figure 13.7 includes three major components:

1. The LIBSYS login component identifies and authenticates users. All informa-
tion systems that restrict access to a known set of users need to have user authen-
tication as a fundamental part of their user communication systems. User
authentication can be personal but, in e-commerce systems, may also require
credit card details to be provided.

2. The form and query manager component manages the forms that may be pre-
sented to the user and provides query facilities allowing the user to request infor-
mation from the system. Again, all information systems must include a
component that provides these facilities.

3. The print manager component is specific to LIBSYS. It controls the printing
of documents that, for copyright reasons, may be restricted. For example, some
documents may only be printed once on printers of the registered library.

The information retrieval and modification layer in the LIBSYS system includes
application-specific components that implement the system’s functionality. These
components are:

1. Distributed search This component searches for documents in response to user
queries across all of the libraries that have registered with the system. The list
of known libraries is maintained in the library index.

2. Document retrieval This component retrieves the document or documents that
are required by the user to the server where the LIBSYS system is running.

••••

Web browser interface

Library index

LIBSYS
login

Distributed
search

Document
retrieval

Rights
manger Accounting

Forms and
query manager

Print
Manger

DB1 DB2 DB3 DB4 DBn

Figure 13.7 The
architecture of the
LIBSYS system

SE8_C13.qxd 4/4/06 9:07 Page 301

302 Chapter 13 ■ Application architectures

3. Rights manager This component handles all aspects of digital rights manage-
ment and copyright. It keeps track of who has requested documents and, for
example, ensures that multiple requests for the same document cannot be made
by the same person.

4. Accounting This component logs all requests and, if necessary, handles any charges
that are made by the libraries in the system. It also produces management reports
on the use of the system.

We can see the same, four-layer generic structure in another type of information
system, namely systems that are designed to support resource allocation. Resource
allocation systems manage a fixed amount of some given resource, such as tickets
for a concert or a football game. These are allocated to users who request that resource
from the supplier. Ticketing systems are an obvious example of a resource alloca-
tion system, but a large number of apparently dissimilar programs are also actually
resource allocation systems. Some examples of this class of system are:

1. Timetabling systems that allocate classes to timetable slots. The resource being
allocated here is a time period, and there are usually a large number of con-
straints associated with each demand for the resource.

2. Library systems that manage the lending and withdrawal of books or other items.
In this case, the resources being allocated are the items that may be borrowed.
In this type of system, the resources are not simply allocated but must some-
times be deallocated from the user of the resource.

3. Air traffic management systems where the resource that is being allocated is a
segment of airspace so that separation is maintained between the planes that
are being managed by the system. Again, this involves dynamic allocation and
reallocation of resource, but the resource is a virtual rather than a physical resource.

Resource allocation systems are a very widely used class of application. If we
look at their architecture in detail, we can see how it is aligned with the informa-
tion system model shown in Figure 13.6. The components of a resource allocation
system (shown in Figure 13.8) include:

1. A resource database that holds details of the resources being allocated.
Resources may be added or removed from this database. For example, in a library
system, the resource database includes details of all items that may be borrowed
by users of the library. Normally, this is implemented using a database man-
agement system that includes a transaction-processing system. The database man-
agement system also includes resource-locking facilities so that the same
resource cannot be allocated to users who make simultaneous requests.

2. A rule set that describes the rules of resource allocation. For example, a library
system normally limits who may be allocated a resource (registered library users),

••••

SE8_C13.qxd 4/4/06 9:07 Page 302

13.2 ■ Transaction-processing systems 303

the length of time that a book or other item may be borrowed, the maximum
number of books that may be borrowed, and so on. This is encapsulated in the
resource policy control component.

3. A resource management component that allows the provider of the resources
to add, edit or delete resources from the system.

4. A resource allocation component that updates the resource database when
resources are assigned and that associates these resources with details of the
resource requestor.

5. A user authentication module that allows the system to check that resources
are being allocated to an accredited user. In a library system, this might be a
machine-readable library card; in a ticket allocation system, it could be a credit
card that verifies the user is able to pay for the resource.

6. A query management module that allows users to discover what resources are
available. In a library system, this would typically be based around queries for
particular items; in a ticketing system, it could involve a graphical display show-
ing what tickets are available for particular dates.

7. A resource delivery component that prepares the resources for delivery to the
requestor. In a ticketing system, this might involve preparing an e-mail con-
firmation and sending a request to a ticket printer to print the tickets and the
details of where these should be posted.

8. A user interface component (often a web browser) that is outside the system
and allows the requester of the resource to issue queries and requests for the
resource to be allocated.

This layered architecture can be realised in several ways. Information systems
software can be organised so that each layer is a large-scale component running on

••••

User interface

Transaction management
Resource database

User
authentication

Resource
management

Resource
allocation

Resource policy
control

Resource
delivery

Query
management

Figure 13.8 A layered
model of a resource
allocation system

SE8_C13.qxd 4/4/06 9:07 Page 303

304 Chapter 13 ■ Application architectures

a separate server. Each layer defines its external interfaces and all communication
takes place through these interfaces. Alternatively, if the entire information system
executes on a single computer, then the middle layers are usually implemented as
a single program that communicates with the database through its API. A third alter-
native is to implement finer-grain components as separate web services (discussed
in Chapter 12) and compose these dynamically according to the user’s requests.

Implementations of information and resource management systems based on
Internet protocols are now the norm; the user interface in these systems is imple-
mented using a web browser. The organisation of servers in these systems reflects
the four-layer generic model presented in Figure 13.6. These systems are usually imple-
mented as multi-tier client–server/architectures, as discussed in Chapter 12. The sys-
tem organisation is shown in Figure 13.9. The web server is responsible for all user
communications; the application server is responsible for implementing application-
specific logic as well as information storage and retrieval requests; the database server
moves information to and from the database. Using multiple servers allows high through-
put and makes it possible to handle hundreds of transactions per minute.

E-commerce systems are Internet-based resource management systems that are
designed to accept electronic orders for goods or services and then arrange deliv-
ery of these goods or services to the customer. There is a wide range of these
systems now in use ranging from systems that allow services such as car-hire to
be arranged to systems that support the order of tangible goods such as books or
groceries. In an e-commerce system, the application-specific layer includes addi-
tional functionality supporting a ‘shopping cart’ in which users can place a num-
ber of items in separate transactions, then pay for them all together in a single
transaction.

13.3 Event-processing systems

Event-processing systems respond to events in the system’s environment or user
interface. As I discussed in Chapter 11, the key characteristic of event-processing
systems is that the timing of events is unpredictable and the system must be able
to cope with these events when they occur.

We all use such event-based systems like this on our own computers—word pro-
cessors, presentation systems and games are all driven by events from the user interface.

••••

Web
browser

Web
server

Application
server

Database
server

Figure 13.9 A multi-
tier Internet
transaction-
processing system

SE8_C13.qxd 4/4/06 9:07 Page 304

13.3 ■ Event-processing systems 305

The system detects and interprets events. User interface events represent implicit
commands to the system, which takes some action to obey that command. For example,
if you are using a word processor and you double-click on a word, the double-click
event means ‘select that word’.

Real-time systems, which take action in ‘real time’ in response to some exter-
nal stimulus, are also event-based processing systems. However, for real-time sys-
tems, events are not usually user interface events but events associated with sensors
or actuators in the system. Because of the need for real-time response to unpre-
dictable events, these real-time systems are normally organised as a set of cooper-
ating processes. I cover generic architectures for real-time systems in Chapter 15.

In this section, I focus on describing the generic architecture of editing systems.
Editing systems are programs that run on PCs or workstations and that allow users
to edit documents such as text documents, diagrams or images. Some editors focus
on editing a single type of document, such as images from a digital camera or scan-
ner. Others, including most word processors, are multi-editors and include support
for editing different types including text and diagrams. You can even think of a
spreadsheet as an editing system where you edit boxes on the sheet. Of course, spread-
sheets have additional functionality to carry out computations.

Editing systems have a number of characteristics that distinguish them from other
types of system and that influence their architectural design:

1. Editing systems are mostly single-user systems. They therefore don’t have to
deal with the problems of multiple concurrent access to data and have simpler
data management than transaction-based systems. Even where data are shared,
transaction management is not usually used because transactions take a long
time and alternative methods of maintaining data integrity are used.

2. They have to provide rapid feedback on user actions such as ‘select’ and ‘delete’.
This means they have to operate on representations of data that is held in com-
puter memory rather than on disk. Because the data is in volatile memory, it
can be lost if there is a system fault, so editing systems should make some pro-
vision for error recovery.

3. Editing sessions are normally much longer than sessions involving ordering goods,
or making some other transaction. This again means that there is a greater risk
of loss if problems arise. Therefore, many editing systems include recovery facil-
ities that automatically save work in progress and recover the work for the user
in the event of a system failure.

A generic architecture for an editing system is shown in Figure 13.10 as a set
of interacting objects. The objects in the system are active rather than passive (see
Chapter 14) and can operate concurrently and autonomously. Essentially, screen events
are processed and interpreted as commands. This updates a data structure, which is
then redisplayed on the screen.

The responsibilities of the architectural components shown in Figure 13.10 are:

••••

SE8_C13.qxd 4/4/06 9:07 Page 305

306 Chapter 13 ■ Application architectures

1. Screen This object monitors the screen memory segment and detects events that
occur. These events are then passed to the event-processing object along with
their screen coordinates.

2. Event This object is triggered by an event arriving from Screen. It uses knowl-
edge of what is displayed to interpret this event and to translate this into the
appropriate editing command. This command is then passed to the object
responsible for command interpretation. For very common events, such as mouse
clicks or key presses, the event object can communicate directly with the data
structure. This allows faster updates of that structure.

3. Command This object processes a command from the event object and calls
the appropriate method in the Editor data object to execute the command.

4. Editor data When the appropriate command method in Editor data object is called,
it updates the data structure and calls the Update method in Display to display
the modified data.

••••

File system

Save
Open

Ancillary data

Ancillary
commands

Editor data

Editing
commands

Command

Interpret
Display

Update

Event

Process
Screen

Refresh

Figure 13.10 An
architectural model
of an editing system

SE8_C13.qxd 4/4/06 9:07 Page 306

13.4 ■ Language-processing systems 307

5. Ancillary data As well as the data structure itself, editors manage other data such
as styles and preferences. In this simple architectural model, I have bundled
this together under Ancillary data. Some editor commands, such as a command
to initiate a spelling check, are implemented by a method in this object.

6. File system This object handles all opening and saving of files. These can be
either editor data or ancillary data files. To avoid data loss, many editors have
auto-save facilities that save the data structure automatically. This can then be
retrieved in the event of system failure.

7. Display This object keeps track of the organisation of the screen display. It calls
the Refresh method in Screen when the display has been changed.

Because of the need for a rapid response to user commands, editing systems do
not have a central controller that calls the components to take action. Rather, the
critical components in the system execute concurrently and can communicate
directly (e.g., the event processor can communicate directly with the editor data struc-
ture) so that faster performance can be achieved.

13.4 Language-processing systems

Language-processing systems accept a natural or artificial language as an input and
generate some other representation of that language as an output. In software engi-
neering, the most widely used language-processing systems are compilers that
translate an artificial high-level programming language into machine code, but other
language-processing systems translate an XML data description into commands to
query a database and natural language-processing systems that attempt to translate
one natural language to another.

At the most abstract level, the architecture of a language-processing system is
illustrated in Figure 13.11. The instructions describe what has to be done and are
translated into some internal format by a translator. The instructions correspond to
the machine instructions for an abstract machine. These instructions are then inter-
preted by another component that fetches the instructions for execution and exe-
cutes them using, if necessary, data from the environment. The output of the
process is the result of interpreting the instructions on the input data. Of course, for
many compilers, the interpreter is a hardware unit that processes machine instruc-
tions and the abstract machine is a real processor. However, for languages such as
Java, the interpreter is a software component.

Language-processing systems are used in situations where the easiest way to solve
a problem is to specify that solution as an algorithm or as a description of the sys-
tem data. For example, meta-CASE tools are program generators that are used to
create specific CASE tools to support software engineering methods. Meta-CASE

••••

SE8_C13.qxd 4/4/06 9:07 Page 307

308 Chapter 13 ■ Application architectures

tools include a description of the method components, its rules and so on, written
in a special-purpose language that is parsed and analysed to configure the gener-
ated CASE tool.

Translators in a language-processing system have a generic architecture (Figure
13.12) that includes the following components:

1. A lexical analyser, which takes input language tokens and converts them to an
internal form

2. A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated

3. A syntax analyser, which checks the syntax of the language being translated.
It uses a defined grammar of the language and builds a syntax tree

4. A syntax tree, which is an internal structure representing the program being
compiled

5. A semantic analyser, which uses information from the syntax tree and the sym-
bol table to check the semantic correctness of the input language text

6. A code generator, which ‘walks’ the syntax tree and generates abstract
machine code

Other components might also be included that transform the syntax tree to improve
efficiency and remove redundancy from the generated machine code. In other types
of language-processing systems, such as a natural language translator, the gener-
ated code is actually the input text translated into another language.

The components that make up a language-processing system can be organised
according to different architectural models. As Garlan and Shaw point out (Garlan

••••

Instructions

Data Results

Translator

Interpreter

Abstract m/c
instructions

Check syntax
Check semantics
Generate

Fetch
Execute

Figure 13.11 The
abstract architecture
of a language-
processing system

SE8_C13.qxd 4/4/06 9:07 Page 308

13.4 ■ Language-processing systems 309

and Shaw, 1993), compilers can be implemented using a composite model. A data-
flow architecture may be used with the symbol table acting as a repository for shared
data. The phases of lexical, syntactic and semantic analysis are organised sequen-
tially, as shown in Figure 13.12.

This data-flow model of compilation is still widely used. It is effective in batch
environments where programs are compiled and executed without user interaction.
It is less effective when the compiler is to be integrated with other language-processing
tools such as a structured editing system, an interactive debugger or a program pret-
typrinter. The generic system components can then be organised in a repository-
based model, as shown in Figure 13.13.

This figure illustrates how a language-processing system can be part of an inte-
grated set of programming support tools. In this example, the symbol table and syn-
tax tree act as a central information repository. Tools or tool fragments communicate
through it. Other information that is sometimes embedded in tools, such as the gram-
mar definition and the definition of the output format for the program, have been
taken out of the tools and put into the repository. Therefore, a syntax-directed edi-
tor can check that the syntax of a program is correct as it is being typed, and a pret-
typrinter can create listings of the program in a format that is easy to read.

••••

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

Figure 13.12 A data-
flow model of a
compiler

Syntax
analyser

Lexical
analyser

Semantic
analyser

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimiser

Code
generator

Repository

Figure 13.13 The
repository model of
a language-
processing system

SE8_C13.qxd 4/4/06 9:07 Page 309

310 Chapter 13 ■ Application architectures

F U R T H E R R E A D I N G

The topic of application architectures has been largely neglected; authors of books and articles on
software architecture tend to focus on abstract principles or product line architectures.

Databases and Transaction Processing: An Application-oriented Approach. This is not really a book
on software architecture, but it discusses the principles of transaction-processing and data-centric
applications. (P. M. Lewis, et al., 2003, Addison-Wesley.)

Design and Use of Software Architectures. This book takes a product-line approach to software
architectures and therefore discusses architecture from an application perspective. (J. Bosch, 2000,
Addison-Wesley.)

••••

■ Generic models of application systems architectures help us understand the operation of
applications, compare applications of the same type, validate application system designs
and assess large-scale components for reuse.

■ Many applications either fall into one of four classes of generic application or are
combinations of these generic applications. The four types of generic application covered
here are data-processing systems, transaction-processing systems, event-processing
systems and language-processing systems.

■ Data-processing systems operate in batch mode and generally have an input-process-
output structure. Records are input into the system, the information is processed and
outputs are generated.

■ Transaction-processing systems are interactive systems that allow information in a
database to be remotely accessed and modified by a number of users. Information systems
and resource management systems are examples of transaction-processing systems.

■ Event-processing systems include editing systems and real-time systems. In an editing
system, user interface events are interpreted and an in-store data structure is modified.
Word processors and presentation systems are examples of editing systems.

■ Language-processing systems are used to translate texts from one language into another
and to carry out the instructions specified in the input language. They include a translator
and an abstract machine that executes the generated language.

K E Y P O I N TS

SE8_C13.qxd 4/4/06 9:07 Page 310

Chapter 13 ■ Exercises 311

E X E R C I S E S

13.1 Explain how the generic applications architectures described here can be used to help the
designer make decisions about software reuse.

13.2 Using the four basic application types introduced in this chapter, classify the following
systems and explain your classification:

■ A point-of-sale system in a supermarket

■ A system that sends out reminders that magazine subscriptions are due to be paid

■ A photo album system that provides some facilities for restoring old photographs

■ A system that reads web pages to visually disabled users

■ An interactive game in which characters move around, cross obstacles and collect treasure

■ An inventory control system that keeps track of what items are in stock and automatically
generates orders for new stock when the level falls below a certain value.

13.3 Based on an input-process-output model, expand the Compute salary function in Figure 13.2
and draw a data-flow diagram that shows the computations carried out in that function. You
need the following information to do this:

■ The employee record identifies the grade of an employee. This grade is then used to look
up the table of pay rates.

■ Employees below a particular grade may be paid overtime at the same rate as their normal
hourly pay rate. The extra hours for which they are to be paid are indicated in their employee
record.

■ The amount of tax deducted depends on the employee’s tax code (indicated in the record)
and their annual salary. Monthly deductions for each code and a standard salary are
indicated in the tax tables. These are scaled up or down depending on the relationship
between the actual salary and the standard salary used.

13.4 Explain why transaction management is necessary in systems where user inputs can result in
database changes.

13.5 Using the basic model of an information system as presented in Figure 13.6, show the
components of an information system that allows users to view information about flights
arriving and departing from a particular airport.

13.6 Using the layered architecture shown in Figure 13.8, show the components of a resource
management system that could be used to handle hotel room bookings.

13.7 In an editing system, all user interface events can be translated into implicit or explicit
commands. Explain why, in Figure 13.10, the Event object therefore communicates directly
with the editor data structure as well as the Command object.

13.8 Modify Figure 13.10 to show the generic architecture of a spreadsheet system. Base your
design on the features of any spreadsheet system that you have used.

••••

SE8_C13.qxd 4/4/06 9:07 Page 311

312 Chapter 13 ■ Application architectures

13.9 What is the function of the syntax tree component in a language-processing system?

13.10 Using the generic model of a language-processing system presented here, design the
architecture of a system that accepts natural language commands and translates these into
database queries in a language such as SQL.

••

SE8_C13.qxd 4/4/06 9:07 Page 312

Object-oriented design
14

Objectives
The objective of this chapter is to introduce an approach to software
design where the design is structured as interacting objects. When you
have read this chapter, you will:

■ understand how a software design may be represented as a set of
interacting objects that manage their own state and operations;

■ know the most important activities in a general object-oriented
design process;

■ understand the different models that may be used to document an
object-oriented design;

■ have been introduced to the representation of these models in the
Unified Modeling Language (UML).

Contents
14.1 Objects and object classes

14.2 An object-oriented design process

14.3 Design evolution

SE8_C14.qxd 4/4/06 9:08 Page 313

314 Chapter 14 ■ Object-oriented design

An object-oriented system is made up of interacting objects that maintain their own
local state and provide operations on that state (Figure 14.1). The representation of
the state is private and cannot be accessed directly from outside the object. Object-
oriented design processes involve designing object classes and the relationships between
these classes. These classes define the objects in the system and their interactions.
When the design is realised as an executing program, the objects are created
dynamically from these class definitions.

Object-oriented design is part of object-oriented development where an object-
oriented strategy is used throughout the development process:

• Object-oriented analysis is concerned with developing an object-oriented
model of the application domain. The objects in that model reflect the entities
and operations associated with the problem to be solved.

• Object-oriented design is concerned with developing an object-oriented model
of a software system to implement the identified requirements. The objects in
an object-oriented design are related to the solution to the problem. There may
be close relationships between some problem objects and some solution
objects, but the designer inevitably has to add new objects and to transform
problem objects to implement the solution.

• Object-oriented programming is concerned with realising a software design using
an object-oriented programming language, such as Java. An object-oriented pro-
gramming language provides constructs to define object classes and a run-time
system to create objects from these classes.

The transition between these stages of development should, ideally, be seamless,
with compatible notations used at each stage. Moving to the next stage involves
refining the previous stage by adding detail to existing object classes and devising
new classes to provide additional functionality. As information is concealed within
objects, detailed design decisions about the representation of data can be delayed
until the system is implemented. In some cases, decisions on the distribution of objects
and whether objects can be sequential or concurrent may also be delayed.

This means that software designers can devise designs that can be adapted to
different execution environments. This is exemplified by the Model Driven
Architecture (MDA) approach, which proposes that systems should be explicitly
designed in two levels (Kleppe et al., 2003), an implementation-independent level
and an implementation-dependent level. An abstract model of the system is
designed at the implementation-independent level, and this is mapped to a more detailed
platform-dependent model that can be used as a basis for code generation. At the
time of this writing, the MDA approach is still experimental and it is not clear how
widely it will be adopted.

Object-oriented systems are easier to change than systems developed using other
approaches because the objects are independent. They may be understood and mod-
ified as standalone entities. Changing the implementation of an object or adding
services should not affect other system objects. Because objects are associated with

••••

SE8_C14.qxd 4/4/06 9:08 Page 314

Chapter 14 ■ Object-oriented design 315

things, there is often a clear mapping between real-world entities (such as hardware
components) and their controlling objects in the system. This improves the under-
standability and hence the maintainability of the design.

Objects are, potentially, reusable components because they are independent
encapsulations of state and operations. Designs can be developed using objects that
have been created in previous designs. This reduces design, programming and val-
idation costs. It may also lead to the use of standard objects (hence improving design
understandability) and reduce the risks involved in software development.
However, as I discuss in Chapters 18 and 19, reuse is sometimes best implemented
using collections of objects (components or frameworks) rather than individual objects.

Several object-oriented design methods have been proposed (Coad and
Yourdon, 1990; Robinson, 1992; Jacobson, et al., 1993; Graham, 1994; Booch, 1994).
The UML is a unification of the notations used in these methods. The Rational Unified
Process (RUP), which I discussed in Chapter 4, has been designed to exploit the
models that can be expressed in the UML (Rumbaugh, et al., 1999). I use the UML
throughout the chapter.

As I discuss in Chapter 17, system development based on extensive up-front design
can be criticised because the extensive analysis and design effort is not well suited
to incremental development and delivery. So-called agile methods have been devel-
oped to address this problem, and these drastically reduce or completely eliminate
the object-oriented design activity. My view on this is that extensive, ‘heavyweight’
design is unnecessary for small and medium-sized business systems. However, for
large systems, particularly critical systems, it is essential to ensure that the teams
working on different parts of the system are properly coordinated. For this reason,
I have not used the previous examples of the library or the insulin pump system in
this chapter, as these are relatively small systems. Rather, I use an example that is
part of a much larger system where up-front object-oriented design is more useful.

This view is reflected, to some extent, in the Rational Unified Process that is
geared to the iterative development and incremental delivery of large software sys-
tems. This process is an iterative development process based around use-cases
to express requirements and object-oriented design, with a particular focus on
architecture-centric design.

••••

state o3
o3:C3

state o4

o4: C4

state o1
o1: C1

state o6

o6: C1

state o5

o5:C5

state o2

o2: C3

ops1() ops3 () ops4 ()

ops3 () ops1 () ops5 ()

Figure 14.1 A system
made up of
interacting objects

SE8_C14.qxd 4/4/06 9:08 Page 315

316 Chapter 14 ■ Object-oriented design

The design process that I discuss in Section 14.2 has some things in common with
the RUP but with less emphasis on use-case driven development. The use of use-cases
means that the design is certainly user-centric and is based around user interactions
with the system. However, representing the requirements of stakeholders who are not
direct users of the system as use-cases is difficult. Use-cases certainly have a role in
object-oriented analysis and design, but they need to be supplemented with other tech-
niques to discover indirect and non-functional system requirements.

14.1 Objects and object classes

The terms object and object-oriented are applied to different types of entity, design
methods, systems and programming languages. There is a general acceptance that
an object is an encapsulation of information, and this is reflected in my definition
of an object and an object class:

An object is an entity that has a state and a defined set of operations that
operate on that state. The state is represented as a set of object attributes.
The operations associated with the object provide services to other objects
(clients) that request these services when some computation is required.

Objects are created according to an object class definition. An object class
definition is both a type specification and a template for creating objects. It
includes declarations of all the attributes and operations that should be asso-
ciated with an object of that class.

In the UML, an object class is represented as a named rectangle with two sec-
tions. The object attributes are listed in the top section. The operations that are asso-
ciated with the object are set out in the bottom section. Figure 14.2 illustrates this
notation using an object class that models an employee in an organisation. The UML
uses the term operation to mean the specification of an action; the term method is
used to refer to the implementation of an operation.

The class Employee defines a number of attributes that hold information about
employees including their name and address, social security number, tax code, and
so on. The ellipsis (...) indicates that there are more attributes associated with the
class than are shown. Operations associated with the object are join (called when
an employee joins the organisation), leave (called when an employee leaves the organ-
isation), retire (called when the employee becomes a pensioner of the organisation)
and changeDetails (called when some employee information needs to be modified).

Objects communicate by requesting services (calling methods) from other objects
and, if necessary, by exchanging the information required for service provision. The
copies of information needed to execute the service and the results of service execu-
tion are passed as parameters. Some examples of this style of communication are:

••••

SE8_C14.qxd 4/4/06 9:08 Page 316

14.1 ■ Objects and object classes 317

// Call a method associated with a buffer object that returns the next value
// in the buffer
v = circularBuffer.Get () ;
// Call the method associated with a thermostat object that sets the
// temperature to be maintained
thermostat.setTemp (20) ;

In service-based systems, object communications are implemented directly as XML
text messages that objects exchange. The receiving object parses the message, iden-
tifies the service and the associated data, and carries out the requested service. However,
when the objects coexist in the same program, method calls are implemented as
procedure or function calls in a language such as C.

When service requests are implemented in this way, communication between objects
is synchronous. That is, the calling object waits for the service request to be com-
pleted. However, if objects are implemented as concurrent processes or threads, the
object communication may be asynchronous. The calling object may continue in
operation while the requested service is executing. I explain how objects may be
implemented as concurrent processes later in this section.

As I discussed in Chapter 8, where I described a number of possible object mod-
els, object classes can be arranged in a generalisation or inheritance hierarchy that
shows the relationship between general and more specific object classes. The more
specific object class is completely consistent with its parent class but includes fur-
ther information. In the UML, an arrow that points from a class entity to its parent
class indicates generalisation. In object-oriented programming languages, general-
isation is implemented using inheritance. The child class inherits attributes and oper-
ations from the parent class.

••••

Employee

name: string
address: string
dateOfBirth: date
employeeNo: integer
socialSecurityNo: string
department: dept
manager: employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Figure 14.2 An
employee object

SE8_C14.qxd 4/4/06 9:08 Page 317

318 Chapter 14 ■ Object-oriented design

Figure 14.3 shows an example of an object class hierarchy where different classes
of employee are shown. Classes lower down the hierarchy have the same attributes
and operations as their parent classes but may add new attributes and operations or
modify some of those from their parent classes. This means that there is one-way
interchangability. If the name of a parent class is used in a model, the object in the
system may either be defined as of that class or of any of its descendants.

The class Manager in Figure 14.3 has all of the attributes and operations of the
class Employee but has, in addition, two new attributes that record the budgets con-
trolled by the manager and the date that the manager was appointed to a particular
management role. Similarly, the class Programmer adds new attributes that define
the project that the programmer is working on and the programming language skills
that he or she has. Objects of class Manager or Programmer may therefore be used
anywhere an object of class Employee is required.

Objects that are members of an object class participate in relationships with other
objects. These relationships may be modelled by describing the associations
between the object classes. In the UML, associations are denoted by a line between
the object classes that may optionally be annotated with information about the asso-
ciation. This is illustrated in Figure 14.4, which shows the association between objects
of class Employee and objects of class Department, and between objects of class
Employee and objects of class Manager.

Association is a very general relationship and is often used in the UML to indi-
cate that either an attribute of an object is an associated object or the implementa-
tion of an object method relies on the associated object. However, in principle at

••••

Employee

Programmer

project
progLanguages

Manager

Project
Manager

budgetsControlled

dateAppointed

projects

Dept.
Manager

Strategic
Manager

dept responsibilities

Figure 14.3 A
generalisation
hierarchy

SE8_C14.qxd 4/4/06 9:08 Page 318

14.1 ■ Objects and object classes 319

least, any kind of association is possible. One of the most common associations is
aggregation, which illustrates how objects may be composed of other objects. See
Chapter 8 for a discussion of this type of association.

14.1.1 Concurrent objects

Conceptually, an object requests a service from another object by sending a ‘ser-
vice request’ message to that object. There is no requirement for serial execution
where one object waits for completion of a requested service. Consequently, the
general model of object interaction allows objects to execute concurrently as par-
allel processes. These objects may execute on the same computer or as distributed
objects on different machines.

In practice, most object-oriented programming languages have as their default a
serial execution model where requests for object services are implemented in the
same way as function calls. Therefore, when an object called theList is created from
a normal object class, you write in Java:

theList.append (17)

This calls the append method associated with theList object to add the element
17 to theList, and execution of the calling object is suspended until the append oper-
ation has been completed. However, Java includes a very simple mechanism
(threads) that lets you create objects that execute concurrently. Threads are created
in Java by using the built-in Thread class as a parent class in a class declaration.
Threads must include a method called run, which is started by the Java run-time
system when objects that are defined as threads are created. It is therefore easy to
take an object-oriented design and produce an implementation where the objects
are concurrent processes.

There are two kinds of concurrent object implementation:

1. Servers where the object is realised as a parallel process with methods corre-
sponding to the defined object operations. Methods start up in response to an

••••

Employee Department

Manager

is-member-of

is-managed-by

manages

Figure 14.4 An
association model

SE8_C14.qxd 4/4/06 9:08 Page 319

320 Chapter 14 ■ Object-oriented design

external message and may execute in parallel with methods associated with other
objects. When they have completed their operation, the object suspends itself
and waits for further requests for service.

2. Active objects where the state of the object may be changed by internal oper-
ations executing within the object itself. The process representing the object
continually executes these operations so never suspends itself.

Servers are most useful in a distributed environment where the calling and the
called object may execute on different computers. The response time for the ser-
vice that is requested is unpredictable, so, wherever possible, you should design the
system so that the object that has requested a service does not have to wait for that
service to be completed. They can also be used in a single machine where a ser-
vice takes some time to complete (e.g., printing a document) and several objects
may request the service.

Active objects are used when an object needs to update its own state at speci-
fied intervals. This is common in real-time systems where objects are associated
with hardware devices that collect information about the system’s environment. The
object’s methods allow other objects access to the state information.

Figure 14.5 shows how an active object may be defined and implemented in Java.
The object class represents a transponder on an aircraft. The transponder keeps track
of the aircraft’s position using a satellite navigation system. It can respond to mes-
sages from air traffic control computers. It provides the current aircraft position in
response to a request to the givePosition method. This object is implemented as a
thread where a continuous loop in the run method includes code to compute the air-
craft’s position using signals from satellites.

14.2 An object-oriented design process

In this section, I illustrate the process of object-oriented design by developing an
example design for the control software that is embedded in an automated weather
station. As I discussed in the introduction, there are several methods of object-oriented
design with no definitive ‘best’ method or design process. The process that I cover
here is a general one that incorporates activities common to most OOD processes.

The general process that I use here for object-oriented design has a number of
stages:

1. Understand and define the context and the modes of use of the system.

2. Design the system architecture.

3. Identify the principal objects in the system.

••••

SE8_C14.qxd 4/4/06 9:08 Page 320

14.2 ■ An object-oriented design process 321

4. Develop design models.

5. Specify object interfaces.

I have deliberately not illustrated this as a simple process diagram because that
would imply there was a neat sequence of activities in this process. In fact, all of
the above activities are interleaved and so influence each other. Objects are identi-
fied and the interfaces fully or partially specified as the architecture of the system
is defined. As object models are produced, these individual object definitions may
be refined, which leads to changes to the system architecture.

I discuss these as separate stages in the design process later in this section. However,
you should not assume from this that design is a simple, well-structured process.
In reality, you develop a design by proposing solutions and refining these solutions
as information becomes available. You inevitably have to backtrack and retry when
problems arise. Sometimes you explore options in detail to see if they work; at other
times you ignore details until late in the process.

I illustrate these process activities by developing an example of an object-
oriented design. This example is part of a system for creating weather maps using

••••

class Transponder extends Thread {

Position currentPosition ;
Coords c1, c2 ;
Satellite sat1, sat2 ;
Navigator theNavigator ;

public Position givePosition ()
{

return currentPosition ;
}

public void run ()
{

while (true)
{

c1 = sat1.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

Figure 14.5
Implementation of
an active object
using Java threads

SE8_C14.qxd 4/4/06 9:08 Page 321

322 Chapter 14 ■ Object-oriented design

automatically collected meteorological data. The detailed requirements for such a
weather mapping system would take up many pages. However, an overall system
architecture can be developed from a relatively brief system description:

A weather mapping system is required to generate weather maps on a regu-
lar basis using data collected from remote, unattended weather stations and
other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer system validates the collected data and integrates the data
from different sources. The integrated data is archived and, using data from
this archive and a digitised map database, a set of local weather maps is cre-
ated. Maps may be printed for distribution on a special-purpose map printer
or may be displayed in a number of different formats.

This description shows that part of the overall system is concerned with collecting
data, part with integrating the data from different sources, part with archiving that
data and part with creating weather maps. Figure 14.6 illustrates a possible system
architecture that can be derived from this description. This is a layered architecture
(discussed in Chapter 11) that reflects the stages of processing in the system, namely
data collection, data integration, data archiving and map generation. A layered archi-
tecture is appropriate in this case because each stage relies only on the processing
of the previous stage for its operation.

In Figure 14.6, I have shown the layers and have included the layer name in a
UML package symbol that has been denoted as a sub-system. A UML package rep-

••••

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Data collection layer where objects
are concerned with acquiring data
from remote sources

Data processing layer where objects
are concerned with checking and
integrating the collected data

Data archiving layer where objects
are concerned with storing the data
for future processing

Data display layer where objects are
concerned with preparing and
presenting the data in a human-
readable form

Figure 14.6 Layered
architecture for
weather mapping
system

SE8_C14.qxd 4/4/06 9:08 Page 322

14.2 ■ An object-oriented design process 323

resents a collection of objects and other packages. I have used it here to show that
each layer includes a number of other components.

In Figure 14.7, I have expanded on this abstract architectural model by showing
the components of the sub-systems. These are still abstract and have been derived
from the information in the description of the system. I continue the design example
by focusing on the weather station sub-system that is part of the data collection layer.

14.2.1 System context and models of use

The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external environment.
You need this understanding to help you decide how to provide the required system
functionality and how to structure the system to communicate with its environment.

The system context and the model of system use represent two complementary
models of the relationships between a system and its environment:

1. The system context is a static model that describes the other systems in that
environment.

2. The model of the system use is a dynamic model that describes how the sys-
tem actually interacts with its environment.

The context model of a system may be represented using associations (see Figure
14.4) where a simple block diagram of the overall system architecture is produced.

••••

Data
storage

User
interface

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Weather
station

Satellite

Comms

Balloon

Observer

Map store Data store

Data
storage

Map

User
interface

Map
display

Map
printer

Data
checking

Data
integration

Figure 14.7
Subsystems in the
weather mapping
system

SE8_C14.qxd 4/4/06 9:08 Page 323

324 Chapter 14 ■ Object-oriented design

You then develop this by deriving a sub-system model using UML packages as shown
in Figure 14.7. This model shows that the context of the weather station system is
within a sub-system concerned with data collection. It also shows other sub-sys-
tems that make up the weather mapping system.

When you model the interactions of a system with its environment you should
use an abstract approach that does not include too much detail. The approach that
is proposed in the RUP is to develop a use-case model where each use-case repre-
sents an interaction with the system. In use-case models (also discussed in Chapter
7), each possible interaction is named in an ellipse and the external entity involved
in the interaction is represented by a stick figure. In the case of the weather station
system, this external entity is not a human but is the data-processing system for the
weather data.

The use-case model for the weather station is shown in Figure 14.8. This shows
that weather station interacts with external entities for startup and shutdown, for
reporting the weather data that has been collected, and for instrument testing and
calibration.

Each of these use-cases can be described in structured natural language. This
helps designers identify objects in the system and gives them an understanding
of what the system is intended to do. I use a standard form for this description
that clearly identifies what information is exchanged, how the interaction is ini-
tiated and so on. This is shown in Figure 14.9, which describes the Report use-
case from Figure 14.8.

The use-case description helps to identify objects and operations in the system.
From the description of the Report use-case, it is obvious that objects representing
the instruments that collect weather data will be required, as will an object repre-
senting the summary of the weather data. Operations to request weather data and
to send weather data are required.

••••

Startup

Shutdown

Report

Calibrate

Test

Figure 14.8 Use-
cases for the
weather station

SE8_C14.qxd 4/4/06 9:08 Page 324

14.2 ■ An object-oriented design process 325

14.2.2 Architectural design

Once the interactions between the software system that is being designed and the
system’s environment have been defined, you can use this information as a basis
for designing the system architecture. Of course, you need to combine this with your
general knowledge of the principles of architectural design and with more detailed
domain knowledge.

The automated weather station is a relatively simple system, and its architecture
can again be represented as a layered model. I have illustrated this in Figure 14.10
as three UML packages within the more general Weather station package. Notice
how I have used UML annotations (text in boxes with a folded corner) to provide
additional information here.

The three layers in the weather station software are:

1. The interface layer that is concerned with all communications with other parts
of the system and with providing the external interfaces of the system;

2. The data collection layer that is concerned with managing the collection of data
from the instruments and with summarising the weather data before transmis-
sion to the mapping system;

3. The instruments layer that is an encapsulation of all of the instruments used to
collect raw data about the weather conditions.

••••

System Weather station

Use-case Report

Actors Weather data collection system, Weather station

Data The weather station sends a summary of the weather data that has
been collected from the instruments in the collection period to the
weather data collection system. The data sent are the maximum,
minimum and average ground and air temperatures, the maximum,
minimum and average air pressures, the maximum, minimum and
average wind speeds, the total rainfall, and the wind direction as
sampled at five-minute intervals.

Stimulus The weather data collection system establishes a modem link with
the weather station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system.

Comments Weather stations are usually asked to report once per hour but this
frequency may differ from one station to another and may be
modified in future.

Figure 14.9 Report
use-case description

SE8_C14.qxd 4/4/06 9:08 Page 325

326 Chapter 14 ■ Object-oriented design

In general, you should try to decompose a system so that architectures are as
simple as possible. A good rule of thumb is that there should be no more than seven
fundamental entities included in an architectural model. Each of these entities can
be described separately but, of course, you may choose to reveal the structure of
the entities as I have done in Figure 14.7.

14.2.3 Object identification

By this stage in the design process, you should have some ideas about the essen-
tial objects in the system that you are designing. In the weather station system, it
is clear that the instruments should be objects, and you need at least one object at
each of the architectural levels. This reflects a general principle that objects tend
to emerge during the design process. However, you usually also have to look for
and document other objects that may be relevant.

Although I have headed this section ‘object identification’, in practice this pro-
cess is actually concerned with identifying object classes. The design is described
in terms of these classes. Inevitably, you have to refine the object classes that you
initially identify and revisit this stage of the process as you develop a deeper under-
standing of the design.

There have been various proposals made about how to identify object classes:

1. Use a grammatical analysis of a natural language description of a system. Objects
and attributes are nouns; operations or services are verbs (Abbott, 1983). This
approach has been embodied in the HOOD method for object-oriented design
(Robinson, 1992) that was widely used in the European aerospace industry.

2. Use tangible entities (things) in the application domain such as aircraft, roles
such as manager, events such as request, interactions such as meetings,

••••

Weather station

Manages all
external

communications

Collects and
summarises
weather data

Package of
instruments for raw

data collections

«subsystem»
Data collection

«subsystem»
Instruments

«subsystem»
Interface

Figure 14.10 The
weather station
architecture

SE8_C14.qxd 4/4/06 9:08 Page 326

14.2 ■ An object-oriented design process 327

locations such as offices, organisational units such as companies, and so on (Shlaer
and Mellor, 1988; Coad and Yourdon, 1990; Wirfs-Brock, et al., 1990).
Support this by identifying storage structures (abstract data structures) in the
solution domain that might be required to support these objects.

3. Use a behavioural approach where the designer first understands the overall
behaviour of the system. The various behaviours are assigned to different parts
of the system and an understanding is derived of who initiates and participates
in these behaviours. Participants who play significant roles are recognised as
objects (Rubin and Goldberg, 1992).

4. Use a scenario-based analysis where various scenarios of system use are iden-
tified and analysed in turn. As each scenario is analysed, the team responsible
for the analysis must identify the required objects, attributes and operations. A
method of analysis called CRC cards where analysts and designers take on the
role of objects is effective in supporting this scenario-based approach (Beck
and Cunningham, 1989).

These approaches help you get started with object identification. In practice, you
may have to use several knowledge sources to discover object classes. Object classes,
attributes and operations that are initially identified from the informal system
description can be a starting point for the design. Further information from appli-
cation domain knowledge or scenario analysis may then be used to refine and extend
the initial objects. This information may be collected from requirements documents,
from discussions with users and from an analysis of existing systems.

I have used a hybrid approach here to identify the weather station objects. I don’t
have space to describe all the objects, but I have shown five object classes in Figure
14.11. Ground thermometer, Anemometer and Barometer represent application
domain objects, and WeatherStation and WeatherData have been identified from the
system description and the scenario (use-case) description.

These objects are related to the levels in the system architecture.

1. The WeatherStation object class provides the basic interface of the weather sta-
tion with its environment. Its operations therefore reflect the interactions
shown in Figure 14.8. In this case, I use a single object class to encapsulate all
of these interactions, but in other designs you may chose to design the system
interface as several different classes.

2. The WeatherData object class encapsulates the summarised data from the
instruments in the weather station. Its associated operations are concerned with
collecting and summarising the data that is required.

3. The Ground thermometer, Anemometer and Barometer object classes are
directly related to instruments in the system. They reflect tangible hardware enti-
ties in the system and the operations are concerned with controlling that
hardware.

••••

SE8_C14.qxd 4/4/06 9:08 Page 327

328 Chapter 14 ■ Object-oriented design

At this stage in the design process, you use knowledge of the application domain
to identify further objects and services. We know that weather stations are often
located in remote places and include various instruments that sometimes go wrong.
Instrument failures should be reported automatically. This implies that you need
attributes and operations to check the correct functioning of the instruments.
Obviously, there are many remote weather stations. You need to identify the data
collected from each station so each weather station should have its own identifier.

In this example, I have decided that the objects associated with each instrument
should not be active objects. The collect operation in WeatherData calls on instru-
ment objects to make readings when required. Active objects include their own con-
trol and, in this case, it would mean that each instrument would decide when to
make readings. The disadvantage of this is that, if a decision was made to change
the timing of the data collection or if different weather stations collected data dif-
ferently, then new object classes would have to be introduced. By making the instru-
ment objects make readings on request, any changes to collection strategy can be
easily implemented without changing the objects associated with the instruments.

14.2.4 Design models

Design models show the objects or object classes in a system and, where appro-
priate, the relationships between these entities. Design models essentially are the
design. They are the bridge between the requirements for the system and the sys-
tem implementation. This means that there are conflicting requirements on these
models. They have to be abstract so that unnecessary detail doesn’t hide the

••••

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

test ()
calibrate ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

test ()

Barometer

pressure
height

test ()
calibrate ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarise ()

Figure 14.11
Examples of object
classes in the
weather station
system

SE8_C14.qxd 4/4/06 9:08 Page 328

14.2 ■ An object-oriented design process 329

relationships between them and the system requirements. However, they also have
to include enough detail for programmers to make implementation decisions.

In general, you get around this conflict by developing models at different lev-
els of detail. Where there are close links between requirements engineers, design-
ers and programmers, then abstract models may be all that are required. Specific
design decisions may be made as the system is implemented. When the links between
system specifiers, designers and programmers are indirect (e.g., where a system is
being designed in one part of an organisation but implemented elsewhere), then more
detailed models may be required.

An important step in the design process, therefore, is to decide which design mod-
els that you need and the level of detail of these models. This depends on the type
of system that is being developed. A sequential data processing system will be designed
in a different way from an embedded real-time system, and different design mod-
els will therefore be used. There are very few systems where all models are nec-
essary. Minimising the number of models that are produced reduces the costs of
the design and the time required to complete the design process.

There are two types of design models that should normally be produced to describe
an object-oriented design:

1. Static models describe the static structure of the system using object classes
and their relationships. Important relationships that may be documented at this
stage are generalisation relationships, uses/used-by relationships and composi-
tion relationships.

2. Dynamic models describe the dynamic structure of the system and show the inter-
actions between the system objects (not the object classes). Interactions that may
be documented include the sequence of service requests made by objects and the
way in which the state of the system is related to these object interactions.

The UML provides for 12 different static and dynamic models that may be pro-
duced to document a design. I don’t have space to go into all of these and not all
are appropriate for the weather station example. The models that I discuss in this
section are:

1. Subsystem models that show logical groupings of objects into coherent sub-systems.
These are represented using a form of class diagram where each sub-system is
shown as a package. Subsystem models are static models.

2. Sequence models that show the sequence of object interactions. These are rep-
resented using a UML sequence or a collaboration diagram. Sequence models
are dynamic models.

3. State machine models that show how individual objects change their state in
response to events. These are represented in the UML using statechart diagrams.
State machine models are dynamic models.

••••

SE8_C14.qxd 4/4/06 9:08 Page 329

330 Chapter 14 ■ Object-oriented design

I have already discussed other models that may be developed for object-oriented
design and analysis. Use-case models show interactions with the system (Figure 14.8;
Figures 7.6 and 7.7, Chapter 7); object models describe the object classes (Figure
14.2); generalisation or inheritance models (Figures 8.10, 8.11 and 8.12, Chapter
8) show how classes may be generalisations of other classes; and aggregation mod-
els (Figure 8.13) show how collections of objects are related.

Figure 14.12 shows the objects in the sub-systems in the weather station. I also
show some associations in this model. For example, the CommsController object is
associated with the WeatherStation object, and the WeatherStation object is associ-
ated with the Data collection package. This means that this object is associated with
one or more objects in this package. A package model plus an object class model
should describe the logical groupings in the system.

A sub-system model is a useful static model as it shows how the design may be
organised into logically related groups of objects. I have already used this type of
model in Figure 14.7 to show the sub-systems in the weather mapping system. The
UML packages contain encapsulation constructs and do not reflect directly on enti-
ties in the system that is developed. However, they may be reflected in structuring
constructs such as Java libraries.

Sequence models are dynamic models that document, for each mode of interac-
tion, the sequence of object interactions that take place. Figure 14.13 is an exam-
ple of a sequence model that shows the operations involved in collecting the data
from a weather station. In a sequence model:

••••

«subsystem»
Interface

«subsystem»
Data collection

CommsController

WeatherStation

WeatherData

Instrument
Status

«subsystem»
Instruments

Air
 thermometer

Ground
 thermometer

RainGauge

Barometer

Anemometer

WindVane

Figure 14.12 Weather
station packages

SE8_C14.qxd 4/4/06 9:08 Page 330

14.2 ■ An object-oriented design process 331

1. The objects involved in the interaction are arranged horizontally with a verti-
cal line linked to each object.

2. Time is represented vertically so that time progresses down the dashed verti-
cal lines. Therefore, the sequence of operations can be read easily from the model.

3. Labelled arrows linking the vertical lines represent interactions between
objects. These are not data flows but represent messages or events that are fun-
damental to the interaction.

4. The thin rectangle on the object lifeline represents the time when the object is
the controlling object in the system. An object takes over control at the top of
this rectangle and relinquishes control to another object at the bottom of the
rectangle. If there is a hierarchy of calls, control is not relinquished until the
last return to the initial method call has been completed.

When documenting a design, you should produce a sequence model for each sig-
nificant interaction. If you have developed a use-case model then there should be
a sequence model for each use-case that you have identified.

Figure 14.13 shows the sequence of interactions when the external mapping sys-
tem requests the data from the weather station. You read sequence diagrams from
top to bottom:

1. An object that is an instance of CommsController (:CommsController) receives
a request from its environment to send a weather report. It acknowledges receipt
of this request. The half-arrowhead on the acknowledge message indicates that
the message sender does not expect a reply.

••••

Figure 14.13
Sequence of
operations—data
collection

SE8_C14.qxd 4/4/06 9:08 Page 331

332 Chapter 14 ■ Object-oriented design

2. This object sends a message to an object that is an instance of WeatherStation
to create a weather report. The instance of CommsController then suspends itself
(its control box ends). The style of arrowhead used indicates that the
CommsController object instance and the WeatherStation object instance are
objects that may execute concurrently.

3. The object that is an instance of WeatherStation sends a message to a
WeatherData object to summarise the weather data. In this case, the squared-
off style of arrowhead indicates that the instance of WeatherStation waits for
a reply.

4. This summary is computed and control returns to the WeatherStation object.
The dotted arrow indicates a return of control.

5. This object sends a message to CommsController requesting it to transfer the
data to the remote system. The WeatherStation object then suspends itself.

6. The CommsController object sends the summarised data to the remote system,
receives an acknowledgement, and then suspends itself waiting for the next request.

From the sequence diagram, we can see that the CommsController object and the
WeatherStation object are actually concurrent processes, where execution can be sus-
pended and resumed. Essentially, the CommsController object instance listens for
messages from the external system, decodes these messages and initiates weather
station operations.

Sequence diagrams are used to model the combined behaviour of a group of objects,
but you may also want to summarise the behaviour of a single object in response
to the messages it can process. To do this, you can use a state machine model that
shows how the object instance changes state depending on the messages that it receives.
The UML uses statecharts, initially invented by Harel (Harel, 1987), to describe
state machine models.

Figure 14.14 is a statechart for the WeatherStation object that shows how it responds
to requests for various services.

You can read this diagram as follows:

1. If the object state is Shutdown then it can only respond to a startup() message.
It then moves into a state where it is waiting for further messages. The unla-
belled arrow with the black blob indicates that the Shutdown state is the ini-
tial state.

2. In the Waiting state, the system expects further messages. If a shutdown() mes-
sage is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the Summarising
state. When the summary is complete, the system moves to a Transmitting state
where the information is transmitted through the CommsController. It then
returns to the Waiting state.

••••

SE8_C14.qxd 4/4/06 9:08 Page 332

14.2 ■ An object-oriented design process 333

4. If a calibrate() message is received, the system moves to the Calibrating state, then
the Testing state, and then the Transmitting state, before returning to the Waiting
state. If a test() message is received, the system moves directly to the Testing state.

5. If a signal from the clock is received, the system moves to the Collecting state,
where it is collecting data from the instruments. Each instrument is instructed
in turn to collect its data.

You don’t usually have to draw a statechart for all of the objects that you have
defined. Many of the objects in a system are relatively simple and a state machine
model would not help implementers to understand these objects.

14.2.5 Object interface specification

An important part of any design process is the specification of the interfaces
between the components in the design. You need to specify interfaces so that objects
and sub-systems can be designed in parallel. Once an interface has been specified,
the developers of other objects may assume that interface will be implemented.

You should try to avoid including details of the interface representation in an inter-
face design. The representation should be hidden and object operations provided to
access and update the data. If the representation is hidden, it can be changed without
affecting the objects that use these attributes. This leads to a design that is inherently
more maintainable. For example, an array representation of a stack may be changed
to a list representation without affecting other objects that use the stack. By contrast,
it often makes sense to expose the attributes in a static design model, as this is the
most compact way of illustrating essential characteristics of the objects.

••••

transmission done

calibrate ()

test ()startup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

reportWeather ()

Shutdown Waiting Testing

Transmitting

Collecting

Summarising

Calibrating

Figure 14.14 State
diagram for
WeatherStation

SE8_C14.qxd 4/4/06 9:08 Page 333

334 Chapter 14 ■ Object-oriented design

There is not necessarily a simple 1:1 relationship between objects and interfaces.
The same object may have several interfaces, each of which is a viewpoint on the
methods that it provides. This is supported directly in Java, where interfaces are
declared separately from objects, and objects ‘implement’ interfaces. Equally, a group
of objects may all be accessed through a single interface.

Object interface design is concerned with specifying the detail of the interface
to an object or to a group of objects. This means defining the signatures and seman-
tics of the services that are provided by the object or by a group of objects. Interfaces
can be specified in the UML using the same notation as in a class diagram.
However, there is no attribute section, and the UML stereotype <interface> should
be included in the name part.

An alternative approach, one that I prefer, is to use a programming language to
define the interface. This is illustrated in Figure 14.15, which shows the interface
specification in Java of the weather station. As interfaces become more complex,
this approach becomes more effective because the syntax-checking facilities in the
compiler may be used to discover errors and inconsistencies in the interface
description. The Java description can show that some methods can take different
numbers of parameters. Therefore, the shutdown method can be applied either to
the station as a whole if it has no parameters or to a single instrument.

••••

interface WeatherStation {

public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

Figure 14.15 Java
description of
weather station
interface

SE8_C14.qxd 4/4/06 9:08 Page 334

14.3 ■ Design evolution 335

14.3 Design evolution

After a decision has been made to develop a system such as a weather data col-
lection system, it is inevitable that proposals for system changes will be made. An
important advantage of an object-oriented approach to design is that it simplifies
the problem of making changes to the design. The reason for this is that object state
representation does not influence the design. Changing the internal details of an object
is unlikely to affect any other system objects. Furthermore, because objects are loosely
coupled, it is usually straightforward to introduce new objects without significant
effects on the rest of the system.

To show how an object-oriented approach to design makes change easier,
assume that pollution-monitoring capabilities are to be added to each weather sta-
tion. This involves adding an air quality meter to compute the amount of various
pollutants in the atmosphere. The pollution readings are transmitted at the same time
as the weather data. To modify the design, the following changes must be made:

1. An object class called Air quality should be introduced as part of
WeatherStation at the same level as WeatherData.

2. An operation reportAirQuality should be added to WeatherStation to send the
pollution information to the central computer. The weather station control soft-
ware must be modified so that pollution readings are automatically collected
when requested by the top-level WeatherStation object.

••••

NOData
smokeData
benzeneData

collect ()
summarise ()

Air quality
identifier

reportWeather ()
reportAirQuality ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

Pollution monitoring instruments

NOmeter SmokeMeter

BenzeneMeter

Figure 14.16 New
objects to support
pollution monitoring

SE8_C14.qxd 4/4/06 9:08 Page 335

336 Chapter 14 ■ Object-oriented design

3. Objects representing the types of pollution monitoring instruments should be
added. In this case, levels of nitrous oxide, smoke and benzene can be
measured.

The pollution monitoring objects are encapsulated in a separate package called
Pollution monitoring instruments. This has associations with Air quality and
WeatherStation but not with any of the objects used to collect weather data. Figure
14.16 shows WeatherStation and the new objects added to the system. Apart from
at the highest level of the system (WeatherStation), no software changes are
required in the original objects in the weather station. The addition of pollution data
collection does not affect weather data collection in any way.

••••

■ Object-oriented design is an approach to software design where the fundamental
components in the design represent objects with their own private state as well as
represent operations rather than functions.

■ An object should have constructor and inspection operations allowing its state to be
inspected and modified. The object provides services (operations using state information)
to other objects. Objects are created at run-time using a specification in an object class
definition.

■ Objects may be implemented sequentially or concurrently. A concurrent object may be a
passive object whose state is only changed through its interface or an active object that can
change its own state without outside intervention.

■ The Unified Modeling Language (UML) provides a range of notations that can be used to
document an object-oriented design.

■ The process of object-oriented design includes activities to design the system architecture,
identify objects in the system, describe the design using different object models and
document the object interfaces.

■ A range of different models may be produced during an object-oriented design process.
These include static models (class models, generalisation models, association models) and
dynamic models (sequence models, state machine models).

■ Object interfaces must be defined precisely so that other objects can use them. A
programming language such as Java may be used to document object interfaces.

■ An important advantage of object-oriented design is that it simplifies the evolution of the
system.

K E Y P O I N TS

SE8_C14.qxd 4/4/06 9:08 Page 336

Chapter 14 ■ Exercises 337

F U R T H E R R E A D I N G

Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, 2nd ed. A good introduction to the use of the UML within an object-oriented
design process. Its coverage of design patterns is also relevant reading for Chapter 18. (C. Larman,
2001, Prentice Hall.)

The Unified Modeling Language User Guide. The definitive text on UML and its use for describing
object-oriented designs. There are two associated texts—one is a UML reference manual, the other
proposes an object-oriented development process. (G. Booch, et al., 1999, Addison-Wesley.)

A new standard for UML (UML 2.0) was finalised in mid-2003 but, at the time of this writing, these
books had not been updated to reflect this. I expect that editions incorporating this new standard
will be available in 2004.

There is also an immense amount of introductory and tutorial UML material on the web. I have
included some links in the book’s web pages.

E X E R C I S E S

14.1 Explain why adopting an approach to design that is based on loosely coupled objects that
hide information about their representation should lead to a design that may be readily
modified.

14.2 Using examples, explain the difference between an object and an object class.

14.3 Under what circumstances might you develop a design where objects execute concurrently?

14.4 Using the UML graphical notation for object classes, design the following object classes
identifying attributes and operations. Use your own experience to decide on the attributes
and operations that should be associated with these objects:

■ A telephone

■ A printer for a personal computer

■ A personal stereo system

■ A bank account

■ A library catalogue.

14.5 Develop the design of the weather station in detail by proposing interface descriptions of the
objects shown in Figure 14.11. These may be expressed in Java, in C++ or in the UML.

14.6 Develop the design of the weather station to show the interaction between the data
collection sub-system and the instruments that collect weather data. Use sequence charts to
show this interaction.

••••

SE8_C14.qxd 4/4/06 9:08 Page 337

338 Chapter 14 ■ Object-oriented design

14.7 Identify possible objects in the following systems and develop an object-oriented design for
them. You may make any reasonable assumptions about the systems when deriving the
design.

■ A group diary and time management system is intended to support the timetabling of
meetings and appointments across a group of coworkers. When an appointment is to be
made that involves a number of people, the system finds a common slot in each of their
diaries and arranges the appointment for that time. If no common slots are available, it
interacts with the user to rearrange his or her personal diary to make room for the
appointment.

■ A petrol (gas) station is to be set up for fully automated operation. Drivers swipe their
credit card through a reader connected to the pump; the card is verified by communication
with a credit company computer; and a fuel limit is established. The driver may then take
the fuel required. When fuel delivery is complete and the pump hose is returned to its
holster, the driver’s credit card account is debited with the cost of the fuel taken. The
credit card is returned after debiting. If the card is invalid, the pump returns it before fuel
is dispensed.

14.8 Write precise interface definitions in Java or C++ for the objects you have defined in Exercise
14.7.

14.9 Draw a sequence diagram showing the interactions of objects in a group diary system when a
group of people arrange a meeting.

14.10 Draw a statechart showing the possible state changes in one or more of the objects that you
have defined in Exercise 14.7.

••

SE8_C14.qxd 4/4/06 9:08 Page 338

Real-time
software design

15

Objectives
The objectives of this chapter are to introduce techniques that are used
in the design of real-time systems and to describe some generic real-
time system architectures. When you have read this chapter, you will:

■ understand the concept of a real-time system and why real-time
systems are usually implemented as a set of concurrent processes;

■ have been introduced to a design process for real-time systems;

■ understand the role of a real-time operating system;

■ know the generic process architectures for monitoring and control
systems and data acquisition systems.

Contents
15.1 System design

15.2 Real-time operating systems

15.3 Monitoring and control systems

15.4 Data acquisition systems

SE8_C15.qxd 4/4/06 9:09 Page 339

340 Chapter 15 ■ Real-time software design

Computers are used to control a wide range of systems from simple domestic machines
to entire manufacturing plants. These computers interact directly with hardware devices.
The software in these systems is embedded real-time software that must react to
events generated by the hardware and issue control signals in response to these events.
It is embedded in some larger hardware system and must respond, in real time, to
events from the system’s environment.

Real-time embedded systems are different from other types of software systems.
Their correct functioning is dependent on the system responding to events within a
short time interval. I define a real-time system as follows:

A real-time system is a software system where the correct functioning of the
system depends on the results produced by the system and the time at which
these results are produced. A soft real-time system is a system whose opera-
tion is degraded if results are not produced according to the specified timing
requirements. A hard real-time system is a system whose operation is incor-
rect if results are not produced according to the timing specification.

Timely response is an important factor in all embedded systems but, in some
cases, very fast response is not necessary. For example, the insulin pump system
that I use as an example in several chapters in this book is an embedded system.
However, while it needs to check the glucose level at periodic intervals, it does not
need to respond very quickly to external events. I therefore use different examples
in this chapter to illustrate the fundamentals of real-time systems design.

One way of looking at a real-time system is as a stimulus/response system. Given
a particular input stimulus, the system must produce a corresponding response. You
can therefore define the behaviour of a real-time system by listing the stimuli received
by the system, the associated responses and the time at which the response must be
produced.

Stimuli fall into two classes:

1. Periodic stimuli These occur at predictable time intervals. For example, the sys-
tem may examine a sensor every 50 milliseconds and take action (respond)
depending on that sensor value (the stimulus).

2. Aperiodic stimuli These occur irregularly. They are usually signalled using the
computer’s interrupt mechanism. An example of such a stimulus would be an
interrupt indicating that an I/O transfer was complete and that data was avail-
able in a buffer.

Periodic stimuli in a real-time system are usually generated by sensors associ-
ated with the system. These provide information about the state of the system’s envi-
ronment. The responses are directed to a set of actuators that control some
equipment, such as a pump, that then influences the system’s environment.
Aperiodic stimuli may be generated either by the actuators or by sensors. They often
indicate some exceptional condition, such as a hardware failure, that must be

••••

SE8_C15.qxd 4/4/06 9:09 Page 340

Chapter 15 ■ Real-time software design 341

handled by the system. This sensor-system-actuator model of an embedded real-
time system is illustrated in Figure 15.1.

A real-time system has to respond to stimuli that occur at different times. You
therefore have to organise its architecture so that, as soon as a stimulus is received,
control is transferred to the correct handler. This is impractical in sequential pro-
grams. Consequently, real-time systems are normally designed as a set of concur-
rent, cooperating processes. To support the management of these processes, the
execution platform for most real-time systems includes a real-time operating sys-
tem. The facilities in this operating system are accessed through the run-time sup-
port system for the real-time programming language that is used.

The generality of this stimulus-response model of a real-time system leads to a
generic, abstract architectural model where there are three types of processes. For
each type of sensor, there is a sensor management process; computational processes
compute the required response for the stimuli received by the system; actuator con-
trol processes manage actuator operation. This model allows data to be collected
quickly from the sensor (before the next input becomes available) and allows pro-
cessing and the associated actuator response to be carried out later.

This generic architecture can be instantiated into a number of different applica-
tion architectures that extend the set of architectures discussed in Chapter 13. Real-
time application architectures are instances of event-driven architecture in which
the stimuli, either directly or indirectly, cause events to be generated. In this chap-
ter, I introduce two further application architectures: the architecture for monitor-
ing and control systems (in Section 15.3), and the architecture for data acquisition
systems (in Section 15.4).

Programming languages for real-time systems development have to include
facilities to access the system hardware, and it should be possible to predict the tim-
ing of particular operations in these languages. Hard real-time systems are still some-
times programmed in assembly language so that tight deadlines can be met.
Systems-level languages, such as C, that allow efficient code to be generated are
also widely used.

••••

Real-time
control system

ActuatorActuator ActuatorActuator

SensorSensorSensor SensorSensorSensor
Figure 15.1 General
model of a real-time
system

SE8_C15.qxd 4/4/06 9:09 Page 341

342 Chapter 15 ■ Real-time software design

The advantage of using a low-level systems programming language such as C
is that it allows the development of very efficient programs. However, these lan-
guages do not include constructs to support concurrency or the management of shared
resources. These are implemented through calls to the real-time operating system
that cannot be checked by the compiler, so programming errors are more likely.
Programs are also often more difficult to understand because real-time features are
not explicit in the program.

Over the past few years, there has been extensive work to extend Java for real-
time systems development (Nilsen, 1998; Higuera-Toledano and Issarny, 2000; Hardin,
et al., 2002). This work involves modifying the language to address fundamental
real-time problems:

1. It is not possible to specify the time at which threads should execute.

2. Garbage collection is uncontrollable—it may be started at any time. Therefore,
the timing behaviour of threads is unpredictable.

3. It is not possible to discover the sizes of queue associated with shared
resources.

4. The implementation of the Java Virtual Machine varies from one computer to
another, so the same program can have different timing behaviours.

5. The language does not allow for detailed run-time space or processor analysis.

6. There are no standard ways to access the hardware of the system.

Real-time versions of Java, such as Sun’s J2ME (Java 2 Micro Edition), are now
available. A number of vendors supply implementations of the Java Virtual
Machine adapted for real-time systems development. These developments mean that
Java will be become increasingly used as a real-time programming language.

15.1 System design

As discussed in Chapter 2, part of the system design process involves deciding which
system capabilities are to be implemented in software and which in hardware. For
many real-time systems embedded in consumer products, such as the systems in
cell phones, the costs and power consumption of the hardware are critical. Specific
processors designed to support embedded systems may be used and, for some sys-
tems, special-purpose hardware may have to be designed and built.

This means that a top-down design process—where the design starts with an abstract
model that is decomposed and developed in a series of stages—is impractical for

••••

SE8_C15.qxd 4/4/06 9:09 Page 342

15.1 ■ System design 343

most real-time systems. Low-level decisions on hardware, support software and sys-
tem timing must be considered early in the process. These limit the flexibility of
system designers and may mean that additional software functionality, such as bat-
tery and power management, is required.

Events (the stimuli) rather than objects or functions should be central to the real-
time software design process. There are several interleaved stages in this design process:

1. Identify the stimuli that the system must process and the associated responses.

2. For each stimulus and associated response, identify the timing constraints that
apply to both stimulus and response processing.

3. Choose an execution platform for the system: the hardware and the real-time
operating system to be used. Factors that influence these choices include the
timing constraints on the system, limitations on power available, the experi-
ence of the development team and the price target for the delivered system.

4. Aggregate the stimulus and response processing into a number of concurrent
processes. A good rule of thumb in real-time systems design is to associate a
process with each class of stimulus and response as shown in Figure 15.2.

5. For each stimulus and response, design algorithms to carry out the required com-
putations. Algorithm designs often have to be developed relatively early in the
design process to give an indication of the amount of processing required and
the time required to complete that processing.

6. Design a scheduling system that will ensure that processes are started in time
to meet their deadlines.

The order of these activities in the process depends on the type of system being
developed and its process and platform requirements. In some cases, you may be
able to follow a fairly abstract approach where you start with the stimuli and asso-
ciated processing and decide on the hardware and execution platforms late in the
process. In other cases, the choice of hardware and operating system is made before

••••

Data
processor

Actuator
control

Actuator

Sensor
control

Sensor

Stimulus Response

Figure 15.2
Sensor/actuator
control processes

SE8_C15.qxd 4/4/06 9:09 Page 343

344 Chapter 15 ■ Real-time software design

the software design starts and you have to orient your design around the hardware
capabilities.

Processes in a real-time system have to be coordinated. Process coordination mech-
anisms ensure mutual exclusion to shared resources. When one process is modify-
ing a shared resource, other processes should not be able to change that resource.
Mechanisms for ensuring mutual exclusion include semaphores (Dijkstra, 1968), mon-
itors (Hoare, 1974) and critical regions (Brinch-Hansen, 1973). These mechanisms
are described in most operating system texts (Tanenbaum, 2001; Silberschatz, et
al., 2002).

Once you have chosen the execution platform for the system, designed a pro-
cess architecture, and decided on a scheduling policy, you may need to check that
the system will meet its timing requirements. You can do this through static anal-
ysis of the system using knowledge of the timing behaviour of components or through
simulation. This analysis may reveal that the system will not perform adequately.
The process architecture, the scheduling policy, the execution platform or all of these
may then have to be redesigned to improve the performance of the system.

Timing analysis for real-time systems is difficult. Because aperiodic stimuli are
unpredictable, designers have to make assumptions about the probability of these
stimuli occurring (and therefore requiring service) at any particular time. These assump-
tions may be incorrect, and system performance after delivery may not be adequate.
Cooling’s book (Cooling, 2003) discusses techniques for real-time system perfor-
mance analysis.

Because real-time systems must meet their timing constraints, you may not be
able to use object-oriented development for hard real-time systems. Object-oriented
development involves hiding data representations and accessing attribute values through
operations defined with the object. This means that there is a significant performance
overhead in object-oriented systems because extra code is required to mediate access
to attributes and handle calls to operations. The consequent loss of performance may
make it impossible to meet real-time deadlines.

Timing constraints or other requirements may sometimes mean that it is best to
implement some system functions, such as signal processing, in hardware rather than
in software. Hardware components deliver much better performance than the equiv-
alent software. System-processing bottlenecks can be identified and replaced by hard-
ware, thus avoiding expensive software optimisation.

15.1.1 Real-time system modelling

Real-time systems have to respond to events occurring at irregular intervals. These
events (or stimuli) often cause the system to move to a different state. For this rea-
son, state machine modelling, described in Chapter 8, is often used to model real-
time systems.

State machine models are a good, language-independent way of representing the
design of a real-time system and are therefore an integral part of real-time system

••••

SE8_C15.qxd 4/4/06 9:09 Page 344

15.1 ■ System design 345

design methods (Gomaa, 1993). The UML supports the development of state mod-
els based on Statecharts (Harel, 1987; Harel, 1988). Statecharts structure state models
so that groups of states can be considered a single entity. Douglass discusses the
use of the UML in real-time systems development (Douglass, 1999).

A state model of a system assumes that, at any time, the system is in one of a
number of possible states. When a stimulus is received, this may cause a transition
to a different state. For example, a system controlling a valve may move from a
state ‘Valve open’ to a state ‘Valve closed’ when an operator command (the stim-
ulus) is received.

I have already illustrated this approach to system modelling in Chapter 8 using
the model of a simple microwave oven. Figure 15.3 is another example of a state
machine model that shows the operation of a fuel delivery software system embed-
ded in a petrol (gas) pump. The rounded rectangles represent system states, and the
arrows represent stimuli that force a transition from one state to another. The names
chosen in the state machine diagram are descriptive and the associated information
indicates actions taken by the system actuators or information that is displayed.

The fuel delivery system is designed to allow unattended operation. The buyer
inserts a credit card into a card reader built into the pump. This causes a tran-
sition to a Reading state where the card details are read and the buyer is asked

••••

Figure 15.3 State
machine model of a
petrol (gas) pump

SE8_C15.qxd 4/4/06 9:09 Page 345

346 Chapter 15 ■ Real-time software design

to remove the card. The system moves to a Validating state where the card is
validated. If the card is valid, the system initialises the pump and, when the fuel
hose is removed from its holster, is ready to deliver fuel. Activating the trigger
on the nozzle causes fuel to be pumped; this stops when the trigger is released
(for simplicity, I have ignored the pressure switch that is designed to stop fuel
spillage). After the fuel delivery is complete and the buyer has replaced the hose
in its holster, the system moves to a Paying state where the user’s account is
debited.

15.2 Real-time operating systems

All but the very simplest embedded systems now work in conjunction with a real-
time operating system (RTOS). A real-time operating system manages processes
and resource allocation in a real-time system. It starts and stops processes so that
stimuli can be handled and allocates memory and processor resources. There are
many RTOS products available, from very small, simple systems for consumer devices
to complex systems for cell phones and mobile devices and operating systems spe-
cially designed for process control and telecommunications.

The components of an RTOS (Figure 15.4) depend on the size and complexity
of the real-time system being developed. For all except the simplest systems, they
usually include:

1. A real-time clock This provides information to schedule processes periodically.

2. An interrupt handler This manages aperiodic requests for service.

3. A scheduler This component is responsible for examining the processes that
can be executed and choosing one of these for execution.

4. A resource manager Given a process that is scheduled for execution, the
resource manager allocates appropriate memory and processor resources.

5. A despatcher This component is responsible for starting the execution of a
process.

Real-time operating systems for large systems, such as process control or
telecommunication systems, may have additional facilities, such as disk storage man-
agement and fault management facilities, that detect and report system faults and a
configuration manager that supports the dynamic reconfiguration of real-time appli-
cations.

••••

SE8_C15.qxd 4/4/06 9:09 Page 346

15.2 ■ Real-time operating systems 347

15.2.1 Process management

Real-time systems have to handle external events quickly and, in some cases, meet
deadlines for processing these events. This means that the event-handling processes
must be scheduled for execution in time to detect the event and must be allocated
sufficient processor resources to meet their deadline. The process manager in an
RTOS is responsible for choosing processes for execution, allocating processor and
memory resources, and starting and stopping process execution on a processor.

The process manager has to manage processes with different priorities. For some
stimuli, such as those associated with certain exceptional events, it is essential that their
processing should be completed within the specified time limits. Other processes may
be safely delayed if a more critical process requires service. Consequently, the RTOS
has to be able to manage at least two priority levels for system processes:

1. Interrupt level This is the highest priority level. It is allocated to processes that
need a very fast response. One of these processes will be the real-time clock
process.

2. Clock level This level of priority is allocated to periodic processes.

••••

Process resource
requirements

Scheduler

Scheduling
information

Resource
manager

Despatcher

Real-time
clock

Processes
awaiting
resources

Ready
list

Interrupt
handler

Available
resource

list

Processor
list

Executing process

Ready
processes

Released
resources

Figure 15.4
Components of a
real-time operating
system

SE8_C15.qxd 4/4/06 9:09 Page 347

348 Chapter 15 ■ Real-time software design

There may be a further priority level allocated to background processes (such as
a self-checking process) that do not need to meet real-time deadlines. These pro-
cesses are scheduled for execution when processor capacity is available.

Within each of these priority levels, different classes of process may be allo-
cated different priorities. For example, there may be several interrupt lines. An inter-
rupt from a very fast device may have to pre-empt processing of an interrupt from
a slower device to avoid information loss. The allocation of process priorities so
that all processes are serviced in time usually requires extensive analysis and
simulation.

Periodic processes are processes that must be executed at specified time inter-
vals for data acquisition and actuator control. In most real-time systems, there will
be several types of periodic processes. These will have different periods (the time
between process executions), execution times and deadlines (the time by which pro-
cessing must be complete). Using the timing requirements specified in the applica-
tion program, the RTOS arranges the execution of periodic processes so that they
can all meet their deadlines.

The actions taken by the operating system for periodic process management are
shown in Figure 15.5. The scheduler examines the list of periodic processes and
selects a process to be executed. The choice depends on the process priority, the
process periods, the expected execution times and the deadlines of the ready pro-
cesses. Sometimes, two processes with different deadlines should be executed at
the same clock tick. In such a situation, one process must be delayed so long as its
deadline can still be met.

Processes that have to respond to asynchronous events are usually interrupt-driven.
The computer’s interrupt mechanism causes control to transfer to a predetermined
memory location. This location contains an instruction to jump to a simple and fast
interrupt service routine. The service routine first disables further interrupts to avoid
being interrupted itself. It then discovers the cause of the interrupt and initiates, with
a high priority, a process to handle the stimulus causing the interrupt. In some high-
speed data acquisition systems, the interrupt handler saves the data that the inter-
rupt signalled was available in a buffer for later processing. Interrupts are then enabled
again and control is returned to the operating system.

At any one time, there may be several processes, with different priorities, that
could be executed. The process scheduler implements system-scheduling poli-
cies that determine the order of process execution. There are two basic schedul-
ing strategies:

••••

Resource manager

Allocate memory
and processor

Scheduler

Choose process
for execution

Despatcher

Start execution on an
available processor

Figure 15.5 RTOS
actions required to
start a process

SE8_C15.qxd 4/4/06 9:09 Page 348

15.3 ■ Monitoring and control systems 349

1. Non pre-emptive scheduling Once a process has been scheduled for execution,
it runs to completion or until it is blocked for some reason, such as waiting for
input. This can cause problems, however, when there are processes with dif-
ferent priorities and a high-priority process has to wait for a low-priority pro-
cess to finish.

2. Pre-emptive scheduling The execution of an executing process may be stopped
if a higher-priority process requires service. The higher-priority process pre-
empts the execution of the lower-priority process and is allocated to a
processor.

Within these strategies, different scheduling algorithms have been developed. These
include round-robin scheduling where each process is executed in turn, rate mono-
tonic scheduling where the process with the shortest period is given priority and
shortest deadline first scheduling (Burns and Wellings, 2001).

Information about the process to be executed is passed to the resource manager.
The resource manager allocates memory and, in a multiprocessor system, a pro-
cessor to this process. The process is then placed on the ready list, a list of pro-
cesses that are ready for execution. When a processor finishes executing a process
and becomes available, the dispatcher is invoked. It scans the ready list to find a
process that can be executed on the available processor and starts its execution.

15.3 Monitoring and control systems

Monitoring and control systems are an important class of real-time system. They
check sensors providing information about the system’s environment and take
actions depending on the sensor reading. Monitoring systems take action when some
exceptional sensor value is detected. Control systems continuously control hardware
actuators depending on the value of associated sensors.

The characteristic architecture of monitoring and control systems is shown in Figure
15.6. Each type of sensor being monitored has its own monitoring process, as does
each type of actuator that is being controlled. A monitoring process collects and
integrates the data before passing it to a control process, which makes decisions
based on this data and sends appropriate control commands to the equipment con-
trol processes. In simple systems, the monitoring and control responsibilities may
be integrated into a single process. I have also shown two other processes that may
be included in monitoring and control systems. These are a testing process that can
run hardware test programs and a control panel process that manages the system
control panels or operator console.

••••

SE8_C15.qxd 4/4/06 9:09 Page 349

350 Chapter 15 ■ Real-time software design

To illustrate the design of monitoring and control systems, I use an example of
a burglar alarm system that might be installed in an office building:

A software system is to be implemented to control a burglar alarm system for
installation in commercial buildings. This uses several different types of sensors.
These include movement detectors in individual rooms, window sensors on ground-
floor windows that detect when a window has been broken, and door sensors
that detect corridor doors opening. There are up to 50 window sensors, up to 30
door sensors and up to 200 movement detectors in the system.

When a sensor detects the presence of an intruder, the system automatically
calls the local police and, using a voice synthesiser, reports the location of the
alarm. It switches on lights in the rooms around the active sensor and sets off
an audible alarm. The sensor system is normally powered by the mains but is
equipped with a battery backup. Power loss is detected using a separate power
circuit monitor that monitors the mains voltage. It interrupts the alarm system
when a voltage drop is detected.

This system is a ‘soft’ real-time system that does not have stringent timing require-
ments. The sensors do not need to detect high-speed events, so they need only be
polled twice per second. To make the example easier to understand, I have simpli-
fied the design by leaving out the testing and display processes.

The design process follows the steps discussed in Section 15.1, so you start by iden-
tifying the aperiodic stimuli that the system receives and the associated responses. Because
of the design simplifications that I proposed, stimuli generated by system testing pro-
cedures and external signals to switch it off in the event of a false alarm can be ignored.
This means there are only two classes of stimulus to be processed:

1. Power failure This is generated by the circuit monitor. The required response is
to switch the circuit to backup power by signalling an electronic power-switching
device.

••••

S3

S2

S1

P (S2)

P (S1)

P (S1)P (S1)

Figure 15.6 Generic
architecture for a
monitoring and
control system

SE8_C15.qxd 4/4/06 9:09 Page 350

15.3 ■ Monitoring and control systems 351

2. Intruder alarm This is a stimulus generated by one of the system sensors. The
response to this stimulus is to compute the room number of the active sensor,
set up a call to the police, initiate the voice synthesiser to manage the call, and
switch on the audible intruder alarm and the building lights in the area.

The next step in the design process is to consider the timing constraints associ-
ated with each stimulus and associated response. These timing constraints are
shown in Figure 15.7. You should normally list the timing constraints for each class
of sensor separately, even when, as in this case, they are the same. By handling
them separately, you leave scope for future change and make it easier to compute
the number of times the controlling process has to be executed each second.

Allocation of the system functions to concurrent processes is the next design stage.
There are three types of sensor that must be polled periodically, each with an asso-
ciated process. There is an interrupt-driven system to handle power failure and switch-
ing, a communications system, a voice synthesiser, an audible alarm system and a
light-switching system to switch on lights around the sensor. An independent pro-
cess controls each of these systems. This results in the system architecture shown
in Figure 15.8.

In Figure 15.8, annotated arrows join processes, indicating data flows between
them with the annotation indicating the type of data flow. Not all processes receive
data from other processes. For example, the process responsible for managing a power
failure has no need for data from elsewhere in the system.

••••

Stimulus/Response Timing requirements

Power fail interrupt The switch to backup power must be completed within a
deadline of 50 ms.

Door alarm Each door alarm should be polled twice per second.

Window alarm Each window alarm should be polled twice per second.

Movement detector Each movement detector should be polled twice per
second.

Audible alarm The audible alarm should be switched on within half a
second of an alarm being raised by a sensor.

Lights switch The lights should be switched on within half a second of
an alarm being raised by a sensor.

Communications The call to the police should be started within 2 seconds
of an alarm being raised by a sensor.

Voice synthesiser A synthesised message should be available within 4
seconds of an alarm being raised by a sensor.

Figure 15.7
Stimulus/response
timing requirements

SE8_C15.qxd 4/4/06 9:09 Page 351

352 Chapter 15 ■ Real-time software design

The line associated with each process on the top left is used to indicate how the
process is controlled. The lines on a periodic process are solid lines with the min-
imum number of times a process should be executed per second as an annotation.
Aperiodic processes have dashed lines on their top-left corner, which are annotated
with the event that causes the process to be scheduled.

The number of sensors to be polled and the timing requirements of the system
are used to calculate how often each process has to be scheduled. For example, there
are 30 door sensors that must be checked twice per second. This means that the
associated door sensor process must run 60 times per second (60 Hz). The move-
ment detector process must run 400 times per second because there may be up to
200 movement sensors in the system. The control information on the actuator pro-
cesses (i.e., the audible alarm controller, the lighting controller, etc.) indicates that
they are started by an explicit command from the Alarm system process or by a
Power failure interrupt.

These processes may be implemented in Java using threads. Figure 15.9 shows
the Java code that implements the BuildingMonitor process, which polls the system
sensors. If these signal an intruder, the software activates the associated alarm sys-
tem. I use standard Java here and assume that the timing requirements (included as
comments) can be met. As I discussed earlier, standard Java does not include facil-
ities to allow thread execution frequency to be specified.

••••

Figure 15.8 Process
architecture of the
intruder alarm
system

SE8_C15.qxd 4/4/06 9:09 Page 352

15.3 ■ Monitoring and control systems 353

••••

// See http://www.software-engin.com/ for links to the complete Java code for this
// example

class BuildingMonitor extends Thread {

BuildingSensor win, door, move ;

Siren siren = new Siren () ;
Lights lights = new Lights () ;
Synthesizer synthesizer = new Synthesizer () ;
DoorSensors doors = new DoorSensors (30) ;
WindowSensors windows = new WindowSensors (50) ;
MovementSensors movements = new MovementSensors (200) ;
PowerMonitor pm = new PowerMonitor () ;

BuildingMonitor()
{

// initialise all the sensors and start the processes
siren.start () ; lights.start () ;
synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

{}

{public void run ()
{{

int room = 0 ;
while (true)
{

// poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;
// poll the window sensors at least twice/second (100 Hz)
win = windows.getVal () ;
// poll the door sensors at least twice per second (60 Hz)
door = doors.getVal () ;
if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)

{
// a sensor has indicated an intruder
if (move.sensorVal == 1) room = move.room ;
if (door.sensorVal == 1) room = door.room ;
if (win.sensorVal == 1) room = win.room ;

lights.on (room) ; siren.on () ; synthesizer.on (room) ;
break ;

}
}
lights.shutdown () ; siren.shutdown () ; synthesizer.shutdown () ;
windows.shutdown () ; doors.shutdown () ; movements.shutdown () ;

} // run
} //BuildingMonitor

Figure 15.9 Java
implementation of
the BuildingMonitor
process

SE8_C15.qxd 4/4/06 9:09 Page 353

354 Chapter 15 ■ Real-time software design

Once the system process architecture has been established, the algorithms for
stimulus processing and response generation should be designed. As I discussed in
Section 15.1, this detailed design stage is necessary early in the design process to
ensure that the system can meet its specified timing constraints. If the associated
algorithms are complex, changes to the timing constraints may be required.
However, unless signal processing is required, real-time system algorithms are often
quite simple. They may only require a memory location to be checked, some sim-
ple computations to be carried out or a signal to be despatched. As you can see
from Figure 15.9, the processing required in the burglar alarm system follows this
simple model.

The final step in the design process is to design a scheduling system that ensures
a process will always be scheduled to meet its deadlines. In this example, deadlines
are not tight. Process priorities should be organised so that all sensor-polling pro-
cesses have the same priority. The process for handling a power failure should be
a higher-priority interrupt level process. The priorities of the processes managing
the alarm system should be the same as the sensor processes.

The burglar alarm system is a monitoring system rather than a control system,
as it does not include actuators that are directly affected by sensor values. An exam-
ple of a control system would be a building heating control system. This system
monitors temperature sensors in different rooms in the building and switches a heater
unit off and on depending on the actual temperature and the temperature set on the
room thermostat. The thermostat also controls the switching of the furnace in the
system.

••••

Thermostat
process

Sensor
process

Furnace
control process

Heater control
process

500 Hz

500 Hz

Thermostat process500 Hz

Sensor
values

Switch command
Room number

Figure 15.10 Process
architecture of a
temperature control
system

SE8_C15.qxd 4/4/06 9:09 Page 354

15.4 ■ Data acquisition systems 355

The process architecture of this system is shown in Figure 15.10. It is clear that
its general form is similar to the burglar alarm system. I leave it to you to develop
the design of this system in more detail.

15.4 Data acquisition systems

Data acquisition systems collect data from sensors for subsequent processing and
analysis. These systems are used in circumstances where the sensors are collecting
lots of data from the system’s environment and it isn’t possible or necessary to pro-
cess the data collected in real-time. Data acquisition systems are commonly used
in scientific experiments and process control systems where physical processes, such
as a chemical reaction, happen very quickly.

In data acquisition systems, the sensors may be generating data very quickly, and
the key problem is to ensure that a sensor reading is collected before the sensor value
changes. This leads to a generic architecture, as shown in Figure 15.11. The essential
feature of the architecture of data acquisition systems is that each group of sensors has
three processes associated with it. These are the sensor process that interfaces with the
sensor and converts analogue data to digital values if necessary, a buffer process, and
a process that consumes the data and carries out further processing.

Sensors, of course, can be of different types, and the number of sensors in a group
depends on the rate at which data arrives from the environment. In Figure 15.11, I
have shown two groups of sensors, s1–s3 and s4–s6. I have also shown, on the
right, a further process that displays the sensor data. Most data acquisition systems

••••

Process
data

Sensor data
buffer

Sensor
process

Sensor
identifier and

value

Sensor
identifier and

value

Sensor
identifier and

value
Display

Process
data

Sensor data
buffer

Sensor
process

Sensor
identifier and

value

Sensors (each data flow is a sensor value)

s1

s2

s3

s4

s5

s6

Figure 15.11 The
generic architecture
of data acquisition
systems

SE8_C15.qxd 4/4/06 9:09 Page 355

356 Chapter 15 ■ Real-time software design

include display and reporting processes that aggregate the collected data and carry
out further processing.

As an example of a data acquisition system, consider the system model shown
in Figure 15.12. This represents a system that collects data from sensors monitor-
ing the neutron flux in a nuclear reactor. The sensor data is placed in a buffer from
which it is extracted and processed, and the average flux level is displayed on an
operator’s display.

Each sensor has an associated process that converts the analogue input flux level
into a digital signal. It passes this flux level, with the sensor identifier, to the sensor
data buffer. The process responsible for data processing takes the data from this buffer,
processes it and passes it to a display process for output on an operator console.

In real-time systems that involve data acquisition and processing, the execution
speeds and periods of the acquisition process (the producer) and the processing pro-
cess (the consumer) may be out of step. When significant processing is required,
the data acquisition may go faster than the data processing. If only simple compu-
tations need be carried out, the processing may be faster than the data acquisition.

To smooth out these speed differences, data acquisition systems buffer input data
using a circular buffer. The process producing the data (the producer) adds infor-
mation to this buffer, and the process using the data (the consumer) takes infor-
mation from the buffer (Figure 15.13).

Obviously, mutual exclusion must be implemented to prevent the producer and
consumer processes from accessing the same element in the buffer at the same time.
The system must also ensure that the producer does not try to add information to
a full buffer and the consumer does not take information from an empty buffer.

In Figure 15.14 (p. 358) I show a possible implementation of the data buffer as
a Java object. The values in the buffer are of type SensorRecord, and there are two
operations that are defined—namely, get and put. The get operation takes an item
from the buffer and the put operation adds an item to the buffer. The constructor
for the buffer sets the size when objects of type CircularBuffer are declared.

The synchronized modifier associated with the get and put methods indicates
that these methods should not run concurrently. When one of these methods is invoked,
the run-time system obtains a lock on the object instance to ensure that the other
method can’t change the same entry in the buffer. The wait and notify method invo-
cations are used to ensure that entries can’t be put into a full buffer or taken from
an empty buffer. The wait method causes the invoking thread to suspend itself until

••••

Figure 15.12 Neutron
flux data acquisition

SE8_C15.qxd 4/4/06 9:09 Page 356

Chapter 15 ■ Key Points 357

another thread tells it to stop waiting. It does this by calling the notify method. When
wait is called, the lock on the protected object is released. The notify method wakes
up one of the threads that is waiting and causes it to restart execution.

••••

Consumer
process

Producer
process

Figure 15.13 A ring
buffer for data
acquisition

■ A real-time system is a software system that must respond to events in real time. Its
correctness does not just depend on the results it produces but also on the time when
these results are produced.

■ A general model for real-time systems architecture involves associating a process with each
class of sensor and actuator device. Other coordination processes may also be required.

■ The architectural design of a real-time system usually involves organising the system as a
set of interacting, concurrent processes.

■ A real-time operating system is responsible for process and resource management. It
always includes a scheduler, which is the component responsible for deciding which
process should be scheduled for executing. Scheduling decisions are made using process
priorities.

■ Monitoring and control systems periodically poll a set of sensors that capture information
from the system’s environment. They take actions, depending on the sensor readings, by
issuing commands to actuators.

■ Data acquisition systems are usually organised according to a producer-consumer model.
The producer process puts the data into a circular buffer, where it is consumed by the
consumer process. The buffer is also implemented as a process so that conflicts between
the producer and consumer are eliminated.

K E Y P O I N TS

SE8_C15.qxd 4/4/06 9:09 Page 357

358 Chapter 15 ■ Real-time software design

••••

class CircularBuffer
{

int bufsize ;
SensorRecord [] store ;
int numberOfEntries = 0 ;
int front = 0, back = 0 ;

CircularBuffer (int n) {
bufsize = n ;
store = new SensorRecord [bufsize] ;

} // CircularBuffer

synchronized void put (SensorRecord rec) throws InterruptedException
{

if (numberOfEntries == bufsize)
wait () ;

store [back] = new SensorRecord (rec.sensorId, rec.sensorVal) ;
back = back + 1 ;
if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;

} // put

synchronized SensorRecord get () throws InterruptedException
{

SensorRecord result = new SensorRecord (-1, -1) ;
if (numberOfEntries == 0)

wait () ;
result = store [front] ;
front = front + 1 ;
if (front == bufsize)

front = 0 ;
numberOfEntries = numberOfEntries—1 ;
notify () ;
return result ;

} // get
} // CircularBuffer

Figure 15.14 A Java
implementation of a
ring buffer

SE8_C15.qxd 4/4/06 9:09 Page 358

Chapter 15 ■ Exercises 359

F U R T H E R R E A D I N G

Software Engineering for Real-Time Systems. Written from an engineering rather than a computer
science perspective, this book is a good practical guide to real-time systems engineering. It has
better coverage of hardware issues than Burns and Wellings’ book, so is an excellent complement
to it. (J. Cooling, 2003, Addison- Wesley.)

Real-time Systems and Programming Languages, 3rd edition. An excellent and comprehensive text
that provides broad coverage of all aspects of real-time systems. (A. Burns and A. Wellings, 2001,
Addison-Wesley.)

Doing Hard Time: Developing Real-time Systems with UML, Objects, Frameworks and Patterns. This
book discusses how object-oriented techniques can be used in the design of real-time systems. As
hardware speeds increase, this is becoming an increasingly viable approach to real-time systems
design. (B. P. Douglass, 1999, Addison-Wesley.)

E X E R C I S E S

15.1 Using examples, explain why real-time systems usually have to be implemented using
concurrent processes.

15.2 Explain why an object-oriented approach to software development may not be suitable for
real-time systems.

15.3 Draw state machine models of the control software for the following systems:

■ An automatic washing machine that has different programs for different types of clothes.

■ The software for a compact disk player.

■ A telephone answering machine that records incoming messages and displays the number
of accepted messages on an LED display. The system should allow the telephone owner to
dial in, type a sequence of numbers (identified as tones) and have the recorded messages
replayed over the phone.

■ A vending machine that can dispense coffee with and without milk and sugar. The user
deposits a coin and makes his or her selection by pressing a button on the machine. This
causes a cup with powdered coffee to be output. The user places this cup under a tap,
presses another button and hot water is dispensed.

15.4 Using the real-time system design techniques discussed in this chapter, redesign the weather
station data collection system covered in Chapter 14 as a stimulus-response system.

••••

SE8_C15.qxd 4/4/06 9:09 Page 359

360 Chapter 15 ■ Real-time software design

15.5 Design a process architecture for an environmental monitoring system that collects data from
a set of air quality sensors situated around a city. There are 5000 sensors organised into 100
neighbourhoods. Each sensor must be interrogated four times per second. When more than
30% of the sensors in a particular neighbourhood indicate that the air quality is below an
acceptable level, local warning lights are activated. All sensors return the readings to a
central computer, which generates reports every 15 minutes on the air quality in the city.

15.6 Discuss the strengths and weaknesses of Java as a programming language for real-time
systems. To what extent will the problems of real-time programming on Java disappear when
faster processors are used?

15.7 A train protection system automatically applies the brakes of a train if the speed limit for a
segment of track is exceeded or if the train enters a track segment that is currently signalled
with a red light (i.e., the segment should not be entered). Details are shown in Figure 15.15.
Identify the stimuli that must be processed by the on-board train control system and the
associated responses to these stimuli.

15.8 Suggest a possible process architecture for this system. Document this process architecture
using the notation shown in Figure 15.8, clearly indicating if stimuli are periodic or aperiodic.

••••

• The system acquires information on the speed limit of a segment from a trackside
transmitter, which continually broadcasts the segment identifier and its speed
limit. The same transmitter also broadcasts information on the status of the signal
controlling that track segment. The time required to broadcast track segment and
signal information is 50 milliseconds.

• The train can receive information from the trackside transmitter when it is within
10 m of a transmitter.

• The maximum train speed is 180 kph.

• Sensors on the train provide information about the current train speed (updated
every 250 milliseconds) and the train brake status (updated every 100
milliseconds).

• If the train speed exceeds the current segment speed limit by more than 5 kph, a
warning is sounded in the driver’s cabin. If the train speed exceeds the current
segment speed limit by more than 10 kph, the train’s brakes are automatically
applied until the speed falls to the segment speed limit. Train brakes should be
applied within 100 milliseconds of the time when the excessive train speed has
been detected.

• If the train enters a track segment that is signalled with a red light, the train
protection system applies the train brakes and reduces the speed to zero. Train
brakes should be applied within 100 milliseconds of the time when the red light
signal is received.

• The system continually updates a status display in the driver’s cabin.

Figure 15.15 Train
protection system
description

SE8_C15.qxd 4/4/06 9:09 Page 360

Chapter 15 ■ Exercises 361

15.9 If a periodic process in the on-board train protection system is used to collect data from the
trackside transmitter, how often must it be scheduled to ensure that the system is
guaranteed to collect information from the transmitter? Explain how you arrived at your
answer.

15.10 You are asked to work on a real-time development project for a military application but have
no previous experience of projects in that domain. Discuss what you, as a professional
software engineer, should do before starting work on the project.

••••

SE8_C15.qxd 4/4/06 9:09 Page 361

••

User interface design
16

Objectives
The objective of this chapter is to introduce some aspects of user
interface design that are important for software engineers. When
you have read this chapter, you will:

■ understand a number of user interface design principles;

■ have been introduced to several interaction styles and
understand when these are most appropriate;

■ understand when to use graphical and textual presentation of
information;

■ know what is involved in the principal activities in the user
interface design process;

■ understand usability attributes and have been introduced to
different approaches to interface evaluation.

Contents
16.1 Design issues

16.2 The UI design process

16.3 User analysis

16.4 User interface prototyping

16.5 Interface evaluation

SE8_C16.qxd 4/4/06 9:10 Page 362

Chapter 16 ■ User interface design 363

Computer system design encompasses a spectrum of activities from hardware
design to user interface design. While specialists are often employed for hardware
design and for the graphic design of web pages, only large organisations normally
employ specialist interface designers for their application software. Therefore, soft-
ware engineers must often take responsibility for user interface design as well as
for the design of the software to implement that interface.

Even when software designers and programmers are competent users of inter-
face implementation technologies, such as Java’s Swing classes (Elliott et al., 2002)
or XHTML (Musciano and Kennedy, 2002), the user interfaces they develop are
often unattractive and inappropriate for their target users. I focus, therefore, on the
design process for user interfaces rather than the software that implements these
facilities. Because of space limitations, I consider only graphical user interfaces. I
don’t discuss interfaces that require special (perhaps very simple) displays such as
cell phones, DVD players, televisions, copiers and fax machines. Naturally, I can
only introduce the topic here and I recommend texts such as those by Dix et al.
(Dix, et al., 2004), Weiss (Weiss, 2002) and Shneiderman (Shneiderman, 1998) for
more information on user interface design.

Careful user interface design is an essential part of the overall software design
process. If a software system is to achieve its full potential, it is essential that its
user interface should be designed to match the skills, experience and expectations
of its anticipated users. Good user interface design is critical for system depend-
ability. Many so-called ‘user errors’ are caused by the fact that user interfaces do
not consider the capabilities of real users and their working environment. A poorly
designed user interface means that users will probably be unable to access some of
the system features, will make mistakes and will feel that the system hinders rather
than helps them in achieving whatever they are using the system for.

When making user interface design decisions, you should take into account the
physical and mental capabilities of the people who use software. I don’t have space
to discuss human issues in detail here but important factors that you should con-
sider are:

1. People have a limited short-term memory—we can instantaneously remember
about seven items of information (Miller, 1957). Therefore, if you present users
with too much information at the same time, they may not be able to take it
all in.

2. We all make mistakes, especially when we have to handle too much informa-
tion or are under stress. When systems go wrong and issue warning messages
and alarms, this often puts more stress on users, thus increasing the chances
that they will make operational errors.

3. We have a diverse range of physical capabilities. Some people see and hear
better than others, some people are colour-blind, and some are better than oth-
ers at physical manipulation. You should not design for your own capabilities
and assume that all other users will be able to cope.

••

SE8_C16.qxd 4/4/06 9:10 Page 363

364 Chapter 16 ■ User interface design

4. We have different interaction preferences. Some people like to work with pic-
tures, others with text. Direct manipulation is natural for some people, but oth-
ers prefer a style of interaction that is based on issuing commands to the system.

These human factors are the basis for the design principles shown in Figure 16.1.
These general principles are applicable to all user interface designs and should nor-
mally be instantiated as more detailed design guidelines for specific organisations
or types of system. User interface design principles are covered in more detail by
Dix, et al. (Dix, et al., 2004). Shneiderman (Shneiderman, 1998) gives a longer list
of more specific user interface design guidelines.

The principle of user familiarity suggests that users should not be forced to adapt
to an interface because it is convenient to implement. The interface should use terms
that are familiar to the user, and the objects manipulated by the system should be
directly related to the user’s working environment. For example, if a system is designed
for use by air traffic controllers, the objects manipulated should be aircraft, flight
paths, beacons, and so on. Associated operations might be to increase or reduce air-
craft speed, adjust heading and change height. The underlying implementation of
the interface in terms of files and data structures should be hidden from the end-
user.

The principle of user interface consistency means that system commands and
menus should have the same format, parameters should be passed to all commands
in the same way, and command punctuation should be similar. Consistent interfaces
reduce user learning time. Knowledge learned in one command or application is
therefore applicable in other parts of the system or in related applications.

Interface consistency across applications is also important. As far as possible,
commands with similar meanings in different applications should be expressed in

••••

Principle Description

User familiarity The interface should use terms and concepts drawn from the
experience of the people who will make most use of the system.

Consistency The interface should be consistent in that, wherever possible,
comparable operations should be activated in the same way.

Minimal surprise Users should never be surprised by the behaviour of a system.

Recoverability The interface should include mechanisms to allow users to
recover from errors.

User guidance The interface should provide meaningful feedback when errors
occur and provide context-sensitive user help facilities.

User diversity The interface should provide appropriate interaction facilities for
different types of system users.

Figure 16.1 User
interface design
principles

SE8_C16.qxd 4/4/06 9:10 Page 364

Chapter 16 ■ User interface design 365

the same way. Errors are often caused when the same keyboard command, such as
‘Control-b’ means different things in different systems. For example, in the word
processor that I normally use, ‘Control-b’ means embolden text, but in the graph-
ics program that I use to draw diagrams, ‘Control-b’ means move the selected object
behind another object. I make mistakes when using them together and sometimes
try to embolden text in a diagram using the key combination. I then get confused
when the text disappears behind the enclosing object. You can normally avoid this
kind of error if you follow the command key shortcuts defined by the operating
system that you use.

This level of consistency is low-level. Interface designers should always try to
achieve this in a user interface. Consistency at a higher level is also sometimes desir-
able. For example, it may be appropriate to support the same operations (print, copy,
etc.) on all types of system entities. However, Grudin (Grudin, 1989) points out that
complete consistency is neither possible nor desirable. It may be sensible to imple-
ment deletion from a desktop by dragging entities into a trash can. It would be awk-
ward to delete text in a word processor in this way.

Unfortunately, the principles of user familiarity and user consistency are some-
times conflicting. Ideally, applications with common features should always use the
same commands to access these features. However, this can conflict with user prac-
tice when systems are designed to support a particular type of user, such as graphic
designers. These users may have evolved their own styles of interactions, termi-
nology and operating conventions. These may clash with the interaction ‘standards’
that are appropriate to more general applications such as word processors.

The principle of minimal surprise is appropriate because people get very irri-
tated when a system behaves in an unexpected way. As a system is used, users build
a mental model of how the system works. If an action in one context causes a par-
ticular type of change, it is reasonable to expect that the same action in a different
context will cause a comparable change. If something completely different happens,
the user is both surprised and confused. Interface designers should therefore try to
ensure that comparable actions have comparable effects.

Surprises in user interfaces are often the result of the fact that many interfaces
are moded. This means that there are several modes of working (e.g., viewing mode
and editing mode), and the effect of a command is different depending on the mode.
It is very important that, when designing an interface, you include a visual indica-
tor showing the user the current mode.

The principle of recoverability is important because users inevitably make mis-
takes when using a system. The interface design can minimise these mistakes (e.g.,
using menus means avoids typing mistakes), but mistakes can never be completely
eliminated. Consequently, you should include interface facilities that allow users to
recover from their mistakes. These can be of three kinds:

1. Confirmation of destructive actions If a user specifies an action that is poten-
tially destructive, the system should ask the user to confirm that this is really
what is wanted before destroying any information.

••••

SE8_C16.qxd 4/4/06 9:10 Page 365

366 Chapter 16 ■ User interface design

2. The provision of an undo facility Undo restores the system to a state before the
action occurred. Multiple levels of undo are useful because users don’t always
recognise immediately that a mistake has been made.

3. Checkpointing Checkpointing involves saving the state of a system at periodic inter-
vals and allowing the system to restart from the last checkpoint. Then, when mis-
takes occur, users can go back to a previous state and start again. Many systems
now include checkpointing to cope with system failures but, paradoxically, they
don’t allow system users to use them to recover from their own mistakes.

A related principle is the principle of user assistance. Interfaces should have built-
in user assistance or help facilities. These should be integrated with the system and
should provide different levels of help and advice. Levels should range from basic
information on getting started to a full description of system facilities. Help sys-
tems should be structured so that users are not overwhelmed with information when
they ask for help.

The principle of user diversity recognises that, for many interactive systems, there
may be different types of users. Some will be casual users who interact occasion-
ally with the system while others may be power users who use the system for sev-
eral hours each day. Casual users need interfaces that provide guidance, but power
users require shortcuts so that they can interact as quickly as possible. Furthermore,
users may suffer from disabilities of various types and, if possible, the interface
should be adaptable to cope with these. Therefore, you might include facilities to
display enlarged text, to replace sound with text, to produce very large buttons and
so on. This reflects the notion of Universal Design (UD) (Preiser and Ostoff, 2001),
a design philosophy whose goal is to avoid excluding users because of thoughtless
design choices.

The principle of recognising user diversity can conflict with the other interface
design principles, since some users may prefer very rapid interaction over, for exam-
ple, user interface consistency. Similarly, the level of user guidance required can
be radically different for different users, and it may be impossible to develop sup-
port that is suitable for all types of users. You therefore have to make compromises
to reconcile the needs of these users.

16.1 Design issues

Before going on to discuss the process of user interface design, I discuss some gen-
eral design issues that have to be considered by UI designers. Essentially, the designer
of a user interface to a computer is faced with two key questions:

1. How should the user interact with the computer system?

••••

SE8_C16.qxd 4/4/06 9:10 Page 366

16.1 ■ Design issues 367

2. How should information from the computer system be presented to the user?

A coherent user interface must integrate user interaction and information presen-
tation. This can be difficult because the designer has to find a compromise between
the most appropriate styles of interaction and presentation for the application, the back-
ground and experience of the system users, and the equipment that is available.

16.1.1 User interaction

User interaction means issuing commands and associated data to the computer sys-
tem. On early computers, the only way to do this was through a command-line inter-
face, and a special-purpose language was used to communicate with the machine.
However, this was geared to expert users and a number of approaches have now
evolved that are easier to use. Shneiderman (Shneiderman, 1998) has classified these
forms of interaction into five primary styles:

1. Direct manipulation The user interacts directly with objects on the screen. Direct
manipulation usually involves a pointing device (a mouse, a stylus, a trackball
or, on touch screens, a finger) that indicates the object to be manipulated and
the action, which specifies what should be done with that object. For example,
to delete a file, you may click on an icon representing that file and drag it to
a trash can icon.

2. Menu selection The user selects a command from a list of possibilities (a menu).
The user may also select another screen object by direct manipulation, and the
command operates on that object. In this approach, to delete a file, you would
select the file icon then select the delete command.

3. Form fill-in The user fills in the fields of a form. Some fields may have asso-
ciated menus, and the form may have action ‘buttons’ that, when pressed, cause
some action to be initiated. You would not normally use this approach to imple-
ment the interface to operations such as file deletion. Doing so would involve
filling in the name of the file on the form then ‘pressing’ a delete button.

4. Command language The user issues a special command and associated param-
eters to instruct the system what to do. To delete a file, you would type a delete
command with the filename as a parameter.

5. Natural language The user issues a command in natural language. This is usu-
ally a front end to a command language; the natural language is parsed and
translated to system commands. To delete a file, you might type ‘delete the file
named xxx’.

Each of these styles of interaction has advantages and disadvantages and is best
suited to a particular type of application and user (Shneiderman, 1998). Figure 16.2

••••

SE8_C16.qxd 4/4/06 9:10 Page 367

368 Chapter 16 ■ User interface design

shows the main advantages and disadvantages of these styles and suggests types of
applications where they might be used.

Of course, these interaction styles may be mixed, with several styles used in the
same application. For example, Microsoft Windows supports direct manipulation
of the iconic representation of files and directories, menu-based command selec-
tion, and for commands such as configuration commands, the user must fill in a
special-purpose form that is presented to them.

In principle, it should be possible to separate the interaction style from the under-
lying entities that are manipulated through the user interface. This was the basis of
the Seeheim model (Pfaff and ten Hagen, 1985) of user interface management. In
this model, the presentation of information, the dialogue management and the
application are separate. In reality, this model is more of an ideal than practical,
but it is certainly possible to have separate interfaces for different classes of users
(casual users and experienced users, say) that interact with the same underlying sys-
tem. This is illustrated in Figure 16.3, which shows a command language interface
and a graphical interface to an underlying operating system such as Linux.

Web-based user interfaces are based on the support provided by HTML or XHTML
(the page description languages used for web pages) along with languages such as

••••

Interaction Main Main Application
style advantages disadvantages examples

Direct Fast and intuitive May be hard to Video games
manipulation interaction implement CAD systems

Easy to learn Only suitable where
there is a visual
metaphor for tasks
and objects

Menu selection Avoids user error Slow for experienced Most general-
Little typing users purpose systems
required Can become complex

if many menu options

Form fill-in Simple data entry Takes up a lot of screen Stock control
Easy to learn space Personal loan
Checkable Causes problems where processing

user options do not
match the form fields

Command Powerful and Hard to learn Operating systems
language flexible Poor error management Command and

control systems

Natural Accessible to Requires more typing Information
language casual users Natural language retrieval systems

Easily extended understanding systems
are unreliable

Figure 16.2
Advantages and
disadvantages of
interaction styles

SE8_C16.qxd 4/4/06 9:10 Page 368

16.1 ■ Design issues 369

Java, which can associate programs with components on a page. Because these web-
based interfaces are usually designed for casual users, they mostly use forms-based
interfaces. It is possible to construct direct manipulation interfaces on the web, but
this is a complex programming task. Furthermore, because of the range of experi-
ence of web users and the fact that they come from many different cultures, it is
difficult to establish a user interface metaphor for direct interaction that is univer-
sally acceptable.

To illustrate the design of web-based user interaction, I discuss the approach used
in the LIBSYS system where users can access documents from other libraries. There
are two fundamental operations that need to be supported:

1. Document search where users use the search facilities to find the documents
that they need

2. Document request where users request that the document be delivered to their
local machine or server for printing

The LIBSYS user interface is implemented using a web browser, so, given that
users must supply information to the system such as the document identifier, their
name and their authorisation details, it makes sense to use a forms-based interface.
Figure 16.4 shows a possible interface design for the search component of the system.

In forms-based interfaces, the user supplies all of the information required then
initiates the action by pressing a button. Forms fields can be menus, free-text input
fields or radio buttons. In the LIBSYS example, a user chooses the collection to
search from a menu of collections that can be accessed (‘All’ is the default, mean-
ing search all collections) and types the search phrase into a free-text input field.
The user chooses the field of the library record from a menu (‘Title’ is the default)
and selects a radio button to indicate whether the search terms should be adjacent
in the record.

••••

Linux operating system

X-windows GUI
manager

Graphical user
interface

(Gnome/KDE)

Command
language

interpreter

Unix shell
interface
(ksh/csh)

Figure 16.3 Multiple
user interfaces

SE8_C16.qxd 4/4/06 9:10 Page 369

370 Chapter 16 ■ User interface design

16.1.2 Information presentation

All interactive systems have to provide some way of presenting information to users.
The information presentation may simply be a direct representation of the input
information (e.g., text in a word processor) or it may present the information graph-
ically. A good design guideline is to keep the software required for information
presentation separate from the information itself. Separating the presentation sys-
tem from the data allows us to change the representation on the user’s screen with-
out having to change the underlying computational system. This is illustrated in
Figure 16.5.

The MVC approach (Figure 16.6), first made widely available in Smalltalk
(Goldberg and Robson, 1983), is an effective way to support multiple presentations
of data. Users can interact with each presentation in a style that is appropriate to
the presentation. The data to be displayed is encapsulated in a model object. Each
model object may have a number of separate view objects associated with it where
each view is a different display representation of the model.

Each view has an associated controller object that handles user input and device
interaction. Therefore, a model that represents numeric data may have a view that
represents the data as a histogram and a view that presents the data as a table. The
model may be edited by changing the values in the table or by lengthening or short-
ening the bars in the histogram. I discuss this in more detail in Chapter 18, where
I explain how you can use the Observer pattern to implement the MVC framework.

To find the best presentation of information, you need to know the users’ back-
ground and how they use the system. When you are deciding how to present infor-
mation, you should bear the following questions in mind:

1. Is the user interested in precise information or in the relationships between data
values?

2. How quickly do the information values change? Should the change in a value
be indicated immediately to the user?

••••

Figure 16.4 A forms-
based interface to
the LIBSYS system

SE8_C16.qxd 4/4/06 9:10 Page 370

16.1 ■ Design issues 371

3. Must the user take some action in response to a change in information?

4. Does the user need to interact with the displayed information via a direct manip-
ulation interface?

5. Is the information to be displayed textual or numeric? Are relative values of
information items important?

You should not assume that using graphics makes your display more interesting.
Graphics take up valuable screen space (a major issue with portable devices) and can
take a long time to download if the user is working over a slow, dial-up connection.

Information that does not change during a session may be presented either graph-
ically or as text depending on the application. Textual presentation takes up less
screen space but cannot be read at a glance. You should distinguish information
that does not change from dynamic information by using a different presentation
style. For example, you could present all static information in a particular font or
colour, or you could associate a ‘static information’ icon with it.

You should use text to present information when precise information is required
and the information changes relatively slowly. If the data changes quickly or if the

••••

Information to
be displayed

Presentation
software

Display

Figure 16.5
Information
presentation

Controller state View modification
messages

User
inputs

Model
edits

Model queries
and updates

Controller methods

Model state

Model methods

Controller state

Controller methods

Figure 16.6
The MVC model of
user interaction

SE8_C16.qxd 4/4/06 9:10 Page 371

372 Chapter 16 ■ User interface design

relationships between data rather than the precise data values are significant, then
you should present the information graphically.

For example, consider a system that records and summarises the sales figures
for a company on a monthly basis. Figure 16.7 illustrates how the same informa-
tion can be presented as text or in a graphical form. Managers studying sales fig-
ures are usually more interested in trends or anomalous figures rather than precise
values. Graphical presentation of this information, as a histogram, makes the
anomalous figures in March and May stand out from the others. Figure 16.7 also
illustrates how textual presentation takes less space than a graphical representation
of the same information.

In control rooms or instrument panels such as those on a car dashboard, the infor-
mation that is to be presented represents the state of some other system (e.g., the
altitude of an aircraft) and is changing all the time. A constantly changing digital
display can be confusing and irritating as readers can’t read and assimilate the infor-
mation before it changes. Such dynamically varying numeric information is there-
fore best presented graphically using an analogue representation. The graphical display
can be supplemented if necessary with a precise digital display. Different ways of
presenting dynamic numeric information are shown in Figure 16.8.

Continuous analogue displays give the viewer some sense of relative value. In
Figure 16.9, the values of temperature and pressure are approximately the same.
However, the graphical display shows that temperature is close to its maximum value
whereas pressure has not reached 25% of its maximum. With only a digital value,
the viewer must know the maximum values and mentally compute the relative state
of the reading. The extra thinking time required can lead to human errors in stress-
ful situations when problems occur and operator displays may be showing abnor-
mal readings.

••••

0

1000

2000

3000

4000

Jan Feb Mar April May June

Jan
2842

Feb
2851

Mar
3164

April
2789

May
1273

June
2835

Figure 16.7
Alternative
information
presentations

SE8_C16.qxd 4/4/06 9:10 Page 372

16.1 ■ Design issues 373

When large amounts of information have to be presented, abstract visualisations
that link related data items may be used. This can expose relationships that are not
obvious from the raw data. You should be aware of the possibilities of visualisa-
tion, especially when the system user interface must represent physical entities.
Examples of data visualisations are:

1. Weather information, gathered from a number of sources, is shown as a
weather map with isobars, weather fronts, and so on.

2. The state of a telephone network is displayed graphically as a linked set of nodes
in a network management centre.

3. The state of a chemical plant is visualised by showing pressures and tempera-
tures in a linked set of tanks and pipes.

4. A model of a molecule is displayed and manipulated in three dimensions using
a virtual reality system.

5. A set of web pages is displayed as a hyperbolic tree (Lamping et al., 1995).

Shneiderman (Shneiderman, 1998) offers a good overview of approaches to visu-
alisation as well as identifies classes of visualisation that may be used. These include
visualising data using two- and three-dimensional presentations and as trees or net-
works. Most of these are concerned with the display of large amounts of informa-
tion managed on a computer. However, the most common use of visualisation in
user interfaces is to represent some physical structure such as the molecular struc-
ture of a new drug, the links in a telecommunications network and so on. Three-

••••

1

3

4 2
0 10 20

Dial with needle Pie chart Thermometer Horizontal bar

Figure 16.8 Methods
of presenting
dynamically varying
numeric information

0 100 200 300 400 0 25 50 75 100

Pressure Temperature
Figure 16.9 Graphical
information display
showing relative
values

SE8_C16.qxd 4/4/06 9:10 Page 373

374 Chapter 16 ■ User interface design

dimensional presentations that may use special virtual reality equipment are par-
ticularly effective in product visualisations. Direct manipulation of these visualisa-
tions is a very effective way to interact with the data.

In addition to the style of information presentation, you should think carefully
about how colour is used in the interface. Colour can improve user interfaces by
helping users understand and manage complexity. However, it is easy to misuse
colour and to create user interfaces that are visually unattractive and error-prone.
Shneiderman gives 14 key guidelines for the effective use of colour in user inter-
faces. The most important of these are:

1. Limit the number of colours employed and be conservative how these are used
You should not use more than four or five separate colours in a window and
no more than seven in a system interface. If you use too many, or if they are
too bright, the display may be confusing. Some users may find masses of colour
disturbing and visually tiring. User confusion is also possible if colours are used
inconsistently.

2. Use colour change to show a change in system status If a display changes colour,
this should mean that a significant event has occurred. Thus, in a fuel gauge,
you could use a change of colour to indicate that fuel is running low. Colour
highlighting is particularly important in complex displays where hundreds of
distinct entities may be displayed.

3. Use colour coding to support the task users are trying to perform If they have
to identify anomalous instances, highlight these instances; if similarities are also
to be discovered, highlight these using a different colour.

4. Use colour coding in a thoughtful and consistent way If one part of a system
displays error messages in red (say), all other parts should do likewise. Red
should not be used for anything else. If it is, the user may interpret the red dis-
play as an error message.

5. Be careful about colour pairings Because of the physiology of the eye, people
cannot focus on red and blue simultaneously. Eyestrain is a likely consequence
of a red on blue display. Other colour combinations may also be visually dis-
turbing or difficult to read.

In general, you should use colour for highlighting, but you should not associate
meanings with particular colours. About 10% of men are colour-blind and may mis-
interpret the meaning. Human colour perceptions are different, and there are dif-
ferent conventions in different professions about the meaning of particular colours.
Users with different backgrounds may unconsciously interpret the same colour in
different ways. For example, to a driver, red usually means danger. However, to a
chemist, red means hot.

As well as presenting application information, systems also communicate with
users through messages that give information about errors and the system state. A
user’s first experience of a software system may be when the system presents an

••••

SE8_C16.qxd 4/4/06 9:10 Page 374

16.1 ■ Design issues 375

error message. Inexperienced users may start work, make an initial error and imme-
diately have to understand the resulting error message. This can be difficult enough
for skilled software engineers. It is often impossible for inexperienced or casual sys-
tem users. Factors that you should take into account when designing system mes-
sages are shown in Figure 16.10.

You should anticipate the background and experience of users when designing
error messages. For example, say a system user is a nurse in an intensive-care ward
in a hospital. Patient monitoring is carried out by a computer system. To view a
patient’s current state (heart rate, temperature, etc.), the nurse selects ‘display’ from
a menu and inputs the patient’s name in the box, as shown in Figure 16.11.

In this case, let’s assume that the nurse has misspelled the patient’s name and
has typed ‘MacDonald’ instead of ‘McDonald’. The system generates an error mes-
sage. Error messages should always be polite, concise, consistent and constructive.
They must not be abusive and should not have associated beeps or other noises that
might embarrass the user. Wherever possible, the message should suggest how the
error might be corrected. The error message should be linked to a context-sensitive
online help system.

Figure 16.12 shows examples of good and bad error messages. The left-hand mes-
sage is badly designed. It is negative (it accuses the user of making an error), it is
not tailored to the user’s skill and experience level, and it does not take context

••••

Factor Description

Context Wherever possible, the messages generated by the system should
reflect the current user context. As far as is possible, the system
should be aware of what the user is doing and should generate
messages that are relevant to their current activity.

Experience As users become familiar with a system they become irritated by
long, ‘meaningful’ messages. However, beginners find it difficult
to understand short, terse statements of a problem. You should
provide both types of message and allow the user to control
message conciseness.

Skill level Messages should be tailored to the users’ skills as well as their
experience. Messages for the different classes of users may be
expressed in different ways depending on the terminology that is
familiar to the reader.

Style Messages should be positive rather than negative. They should
use the active rather than the passive mode of address. They
should never be insulting or try to be funny.

Culture Wherever possible, the designer of messages should be familiar
with the culture of the country where the system is sold. There
are distinct cultural differences between Europe, Asia and
America. A suitable message for one culture might be
unacceptable in another.

Figure 16.10 Design
factors in message
wording

SE8_C16.qxd 4/4/06 9:10 Page 375

376 Chapter 16 ■ User interface design

information into account. It does not suggest how the situation might be rectified.
It uses system-specific terms (patient id) rather than user-oriented language. The
right-hand message is better. It is positive, implying that the problem is a system
rather than a user problem. It identifies the problem in the nurse’s terms and offers
an easy way to correct the mistake by pressing a single button. The help system is
available if required.

16.2 The UI design process

User interface (UI) design is an iterative process where users interact with designers
and interface prototypes to decide on the features, organisation and the look and feel
of the system user interface. Sometimes, the interface is separately prototyped in par-
allel with other software engineering activities. More commonly, especially where iter-
ative development is used, the user interface design proceeds incrementally as the software
is developed. In both cases, however, before you start programming, you should have
developed and, ideally, tested some paper-based designs.

The overall UI design process is illustrated in Figure 16.13. There are three core
activities in this process:

••••

Please type the patient name in the box then click on OK

MacDonald, R.

OK Cancel

Patient name

Figure 16.11 An
input text box used
by a nurse

OK Cancel Help RetryPatients Cancel

Error #27

Invalid patient id?
System-oriented error message User-oriented error message

Click on Patients for a list of patients
Click on Retry to re-input the patient's name
Click on Help for more information

R. MacDonald is not a registered patient

Figure 16.12 System
and user-oriented
error messages

SE8_C16.qxd 4/4/06 9:10 Page 376

16.2 ■ The UI design process 377

1. User analysis In the user analysis process, you develop an understanding of
the tasks that users do, their working environment, the other systems that they
use, how they interact with other people in their work and so on. For products
with a diverse range of users, you have to try to develop this understanding
through focus groups, trials with potential users and similar exercises.

2. System prototyping User interface design and development is an iterative pro-
cess. Although users may talk about the facilities they need from an interface,
it is very difficult for them to be specific until they see something tangible.
Therefore, you have to develop prototype systems and expose them to users,
who can then guide the evolution of the interface.

3. Interface evaluation Although you will obviously have discussions with users
during the prototyping process, you should also have a more formalised eval-
uation activity where you collect information about the users’ actual experi-
ence with the interface.

I focus on user analysis and interface evaluation in this section with only a brief
discussion of specific user interface prototyping techniques. I cover more general
issues in prototyping and prototyping techniques in Chapter 17.

The scheduling of UI design within the software process depends, to some extent,
on other activities. As I discuss in Chapter 7, prototyping may be used as part of
the requirements engineering process and, in this case, it makes sense to start the
UI design process at that stage. In iterative processes, discussed in Chapter 17, UI
design is integrated with the software development. Like the software itself, the UI
may have to be refactored and redesigned during development.

••••

Figure 16.13 The UI
design process

SE8_C16.qxd 4/4/06 9:10 Page 377

378 Chapter 16 ■ User interface design

16.3 User analysis

A critical UI design activity is the analyses of the user activities that are to be sup-
ported by the computer system. If you don’t understand what users want to do with
a system, then you have no realistic prospect of designing an effective user inter-
face. To develop this understanding, you may use techniques such as task analysis,
ethnographic studies, user interviews and observations or, commonly, a mixture of
all of these.

A challenge for engineers involved in user analysis is to find a way to describe
user analyses so that they communicate the essence of the tasks to other designers
and to the users themselves. Notations such as UML sequence charts may be able
to describe user interactions and are ideal for communicating with software engi-
neers. However, other users may think of these charts as too technical and will not
try to understand them. Because it is very important to engage users in the design
process, you therefore usually have to develop natural language scenarios to
describe user activities.

Figure 16.14 is an example of a natural language scenario that might have been
developed during the specification and design process for the LIBSYS system. It
describes a situation where LIBSYS does not exist and where a student needs to
retrieve information from another library. From this scenario, the designer can see
a number of requirements:

1. Users might not be aware of appropriate search terms. They may need to access
ways of helping them choose search terms.

2. Users have to be able to select collections to search.

3. Users need to be able to carry out searches and request copies of relevant material.

You should not expect user analysis to generate very specific user interface require-
ments. Normally, the analysis helps you understand the needs and concerns of the

••••

Jane is a religious studies student writing an essay on Indian architecture
and how it has been influenced by religious practices. To help her
understand this, she would like to access pictures of details on notable
buildings but can’t find anything in her local library. She approaches the
subject librarian to discuss her needs and he suggests search terms that
she might use. He also suggests libraries in New Delhi and London that
might have this material, so he and Jane log on to the library catalogues
and search using these terms. They find some source material and place a
request for photocopies of the pictures with architectural details, to be
posted directly to Jane.

Figure 16.14 A library
interaction scenario

SE8_C16.qxd 4/4/06 9:10 Page 378

16.3 ■ User analysis 379

system users. As you become more aware of how they work, their concerns and
their constraints, your design can take these into account. This means that your ini-
tial designs (which you will refine through prototyping anyway) are more likely to
be acceptable to users and so convince them to become engaged in the process of
design refinement.

16.3.1 Analysis techniques

As I suggested in the previous section, there are three basis user analysis techniques:
task analysis, interviewing and questionnaires, and ethnography. Task analysis and inter-
viewing focus on the individual and the individual’s work, whereas ethnography takes
a broader perspective and looks at how people interact with each other, how they arrange
their working environment and how they cooperate to solve problems.

There are various forms of task analysis (Diaper, 1989), but the most commonly
used is Hierarchical Task Analysis (HTA). HTA was originally developed to help
with writing user manuals, but it can also be used to identify what users do to achieve
some goal. In HTA, a high-level task is broken down into subtasks, and plans are
identified that specify what might happen in a specific situation. Starting with a user
goal, you draw a hierarchy showing what has to be done to achieve that goal. Figure

••••

Figure 16.15
Hierarchical task
analysis

SE8_C16.qxd 4/4/06 9:10 Page 379

380 Chapter 16 ■ User interface design

16.15 illustrates this approach using the library scenario introduced in Figure 16.14.
In the HTA notation, a line under a box normally indicates that it will not be decom-
posed into more detailed subtasks.

The advantage of HTA over natural language scenarios is that it forces you to
consider each of the tasks and to decide whether these should be decomposed. With
natural language scenarios, it is easy to miss important tasks. Scenarios also
become long and boring to read if you want to add a lot of detail to them.

The problem with this approach to describing user tasks is that it is best suited
to tasks that are sequential processes. The notation becomes awkward when you try
to model tasks that involve interleaved or concurrent activities or that involve a very
large number of subtasks. Furthermore, HTA does not record why tasks are done
in a particular way or constraints on the user processes. You can get a partial view
of user activities from HTA, but you need additional information to develop a fuller
understanding of the UI design requirements.

Normally, you collect information for HTA through observing and interviewing
users. In this interviewing process, you can collect some of this additional infor-
mation and record it alongside the task analyses. When interviewing to discover
what users actually do, you should design interviews so that users can provide any
information that they (rather than you) feel is relevant. This means you should not
stick rigidly to prepared list of questions. Rather, your questions should be open-
ended and should encourage users to tell you why they do things as well as what
they actually do.

Interviewing, of course, is not just a way of gathering information for task anal-
ysis—it is a general information-gathering technique. You may decide to supple-
ment individual interviews with group interviews or focus groups. The advantage
of using focus groups is that users stimulate each other to provide information and
may end up discussing different ways that they have developed of using systems.

Task analysis focuses on how individuals work but, of course, most work is actu-
ally cooperative. People work together to achieve a goal, and users find it difficult
to discuss how this cooperation actually takes place. Therefore, direct observation
of how users work and use computer-based systems is an important additional tech-
nique of user analysis.

One approach to direct observation that has been used in a wide variety of set-
tings is ethnography (Suchman, 1983; Hughes, et al., 1997; Crabtree, 2003). I dis-
cussed ethnography in Chapter 7 as a technique that supports requirements
engineering. Ethnographers closely observe how people work, how they interact with
others and how features in the workplace are used to support their work. The advan-
tage of ethnography is that the ethnographer can observe intuitive actions and infor-
mal collaborations that can then spark further discussions about the work.

As an example of how ethnography can influence user interface design, Figure
16.16 is a fragment from a report of an ethnographic study on air traffic controllers
in which I was involved (Bentley, et al., 1992). We were interested in the interface
design for a more automated ATC system and we learned two important things from
these observations:

••••

SE8_C16.qxd 4/4/06 9:10 Page 380

16.4 ■ User interface prototyping 381

1. Controllers had to be able to see all flights in a sector (this was why they spread
strips out on the desk). Therefore, we should avoid using scrolling displays where
flights disappeared off the top or bottom of the display.

2. The interface should have some way of telling controllers how many flights
are in adjacent sectors so that controllers can plan their work load.

Checking adjacent sectors was an automatic controller action and it is very likely
that they would not have mentioned this in discussions of the ATC process. It was
only through direct observation that we discovered these important requirements.

None of these user analysis techniques, on their own, give you a complete pic-
ture of what users actually do. They are complementary approaches that you should
use together to help you understand what users do and get insights into what might
be an appropriate user interface design.

16.4 User interface prototyping

Because of the dynamic nature of user interfaces, textual descriptions and diagrams
are not good enough for expressing user interface requirements. Evolutionary or
exploratory prototyping with end-user involvement is the only practical way to design
and develop graphical user interfaces for software systems. Involving the user in
the design and development process is an essential aspect of user-centred design
(Norman and Draper, 1986), a design philosophy for interactive systems.

The aim of prototyping is to allow users to gain direct experience with the inter-
face. Most of us find it difficult to think abstractly about a user interface and to
explain exactly what we want. However, when we are presented with examples, it
is easy to identify the characteristics that we like and dislike.

••••

Air traffic control involves a number of control ‘suites’ where the suites
controlling adjacent sectors of airspace are physically located next to each
other. Flights in a sector are represented by paper strips that are fitted into
wooden racks in an order that reflects their position in the sector. If there
are not enough slots in the rack (i.e. when the airspace is very busy),
controllers spread the strips out on the desk in front of the rack. When we
were observing controllers, we noticed that controllers regularly glanced at
the strip racks in the adjacent sector. We pointed this out to them and
asked them why they did this. They replied that, when the adjacent
controller has strips on his or her desk, then this means that a lot of flights
will be entering their sector. They therefore tried to increase the speed of
aircraft in the sector to ‘clear space’ for the incoming aircraft.

Figure 16.16 A report
of observations of air
traffic control

SE8_C16.qxd 4/4/06 9:10 Page 381

382 Chapter 16 ■ User interface design

Ideally, when you are prototyping a user interface, you should adopt a two-stage
prototyping process:

1. Very early in the process, you should develop paper prototypes—mock-ups of
screen designs—and walk through these with end-users.

2. You then refine your design and develop increasingly sophisticated automated
prototypes, then make them available to users for testing and activity
simulation.

Paper prototyping is a cheap and surprisingly effective approach to prototype devel-
opment (Snyder, 2003). You don’t need to develop any executable software and the
designs don’t have to be drawn to professional standards. You can draw paper ver-
sions of the system screens that users interact with and design a set of scenarios
describing how the system might be used. As a scenario progresses, you sketch the
information that would be displayed and the options available to users.

You then work through these scenarios with users to simulate how the system
might be used. This is an effective way to get users’ initial reactions to an inter-
face design, the information they need from the system and how they would nor-
mally interact with the system.

Alternatively, you can use a storyboarding technique to present the interface design.
A storyboard is a series of sketches that illustrate a sequence of interactions. This
is less hands-on but can be more convenient when presenting the interface propos-
als to groups rather than individuals.

After initial experiments with a paper prototype, you should implement a software
prototype of the interface design. The problem, of course, is that you need to have
some system functionality with which the users can interact. If you are prototyping the
UI very early in the system development process, this may not be available. To get
around this problem, you can use ‘Wizard of Oz’ prototyping (see the web page for
an explanation if you haven’t seen the film). In this approach, users interact with what
appears to be a computer system, but their inputs are actually channelled to a hidden
person who simulates the system’s responses. They can do this directly or by using
some other system to compute the required responses. In this case, you don’t need to
have any executable software apart from the proposed user interface.

Further prototyping experiments may then be carried out using either an evolu-
tionary or a throw-away approach. I discuss these approaches to prototyping in Chapter
17, where I also describe a range of techniques that can be used for prototyping
and rapid application development. There are three approaches that you can use for
user interface prototyping:

1. Script-driven approach If you simply need to explore ideas with users, you can
use a script-driven approach such as you’d find in Macromedia Director. In
this approach, you create screens with visual elements, such as buttons and menus,
and associate a script with these elements. When the user interacts with these

••••

SE8_C16.qxd 4/4/06 9:10 Page 382

16.5 ■ Interface evaluation 383

screens, the script is executed and the next screen is presented, showing them
the results of their actions. There is no application logic involved.

2. Visual programming languages Visual programming languages, such as Visual
Basic, incorporate a powerful development environment, access to a range of
reusable objects and a user-interface development system that allows interfaces
to be created quickly, with components and scripts associated with interface
objects. I describe visual development systems in Chapter 17.

3. Internet-based prototyping These solutions, based on web browsers and lan-
guages such as Java, offer a ready-made user interface. You add functionality
by associating segments of Java programs with the information to be displayed.
These segments (called applets) are executed automatically when the page is
loaded into the browser. This approach is a fast way to develop user interface
prototypes, but there are inherent restrictions imposed by the browser and the
Java security model.

Prototyping is obviously closely associated with interface evaluation. Formal eval-
uation is unlikely to be cost-effective for early prototypes, so what you are trying
to achieve at this stage is a ‘formative evaluation’ where you look for ways in which
the interface can be improved. As the prototype becomes more complete, you can
use systematic evaluation techniques, as discussed in the following section.

16.5 Interface evaluation

Interface evaluation is the process of assessing the usability of an interface and check-
ing that it meets user requirements. Therefore, it should be part of the normal ver-
ification and validation process for software systems. Neilsen (Neilsen, 1993)
includes a good chapter on this topic in his book on usability engineering.

Ideally, an evaluation should be conducted against a usability specification
based on usability attributes, as shown in Figure 16.17. Metrics for these usability
attributes can be devised. For example, in a learnability specification, you might
state that an operator who is familiar with the work supported should be able to use
80% of the system functionality after a three-hour training session. However, it is
more common to specify usability (if it is specified at all) qualitatively rather than
using metrics. You therefore usually have to use your judgement and experience in
interface evaluation.

Systematic evaluation of a user interface design can be an expensive process involv-
ing cognitive scientists and graphics designers. You may have to design and carry
out a statistically significant number of experiments with typical users. You may
need to use specially constructed laboratories fitted with monitoring equipment. A
user interface evaluation of this kind is economically unrealistic for systems devel-
oped by small organisations with limited resources.

••••

SE8_C16.qxd 4/4/06 9:10 Page 383

384 Chapter 16 ■ User interface design

There are a number of simpler, less expensive techniques of user interface eval-
uation that can identify particular user interface design deficiencies:

1. Questionnaires that collect information about what users thought of the inter-
face;

2. Observation of users at work with the system and ‘thinking aloud’ about how
they are trying to use the system to accomplish some task;

3. Video ‘snapshots’ of typical system use;

4. The inclusion in the software of code which collects information about the most-
used facilities and the most common errors.

Surveying users by questionnaire is a relatively cheap way to evaluate an inter-
face. The questions should be precise rather than general. It is no use asking ques-
tions such as ‘Please comment on the usability of the interface’ as the responses
will probably vary so much that you won’t see any common trend. Rather, specific
questions such as ‘Please rate the understandability of the error messages on a scale
from 1 to 5. A rating of 1 means very clear and 5 means incomprehensible’ are bet-
ter. They are both easier to answer and more likely to provide useful information
to improve the interface.

Users should be asked to rate their own experience and background when fill-
ing in the questionnaire. This allows the designer to find out whether users from
any particular background have problems with the interface. Questionnaires can even
be used before any executable system is available if a paper mock-up of the inter-
face is constructed and evaluated.

Observation-based evaluation simply involves watching users as they use a sys-
tem, looking at the facilities used, the errors made and so on. This can be supple-
mented by ‘think aloud’ sessions where users talk about what they are trying to
achieve, how they understand the system and how they are trying to use the sys-
tem to accomplish their objectives.

••••

Attribute Description

Learnability How long does it take a new user to become productive with
the system?

Speed of operation How well does the system response match the user’s work
practice?

Robustness How tolerant is the system of user error?

Recoverability How good is the system at recovering from user errors?

Adaptability How closely is the system tied to a single model of work?

Figure 16.17
Usability attributes

SE8_C16.qxd 4/4/06 9:10 Page 384

Chapter 16 ■ Key Points 385

Relatively low-cost video equipment means that you can record user sessions for
later analysis. Complete video analysis is expensive and requires a specially
equipped evaluation suite with several cameras focused on the user and on the screen.
However, video recording of selected user operations can be helpful in detecting
problems. Other evaluation methods must be used to find out which operations cause
user difficulties.

Analysis of recordings allows the designer to find out whether the interface requires
too much hand movement (a problem with some systems is that users must regu-
larly move their hand from keyboard to mouse) and to see whether unnatural eye
movements are necessary. An interface that requires many shifts of focus may mean
that the user makes more errors and misses parts of the display.

Instrumenting code to collect usage statistics allows interfaces to be improved
in a number of ways. The most common operations can be detected. The interface
can be reorganised so that these are the fastest to select. For example, if pop-up or
pull-down menus are used, the most frequent operations should be at the top of the

••••

■ User interface principles covering user familiarity, consistency, minimal surprise,
recoverability, user guidance and user diversity help guide the design of user interfaces.

■ Styles of interaction with a software system include direct manipulation, menu systems,
form fill-in, command languages and natural language.

■ Graphical information display should be used when it is intended to present trends and
approximate values. Digital display should only be used when precision is required.

■ Colour should be used sparingly and consistently in user interfaces. Designers should take
account of the fact that a significant number of people are colour-blind.

■ The user interface design process includes sub-processes concerned with user analysis,
interface prototyping and interface evaluation.

■ The aim of user analysis is to sensitise designers to the ways in which users actually work.
You should use different techniques—task analysis, interviewing and observation—during
user analysis.

■ User interface prototype development should be a staged process with early prototypes
based on paper versions of the interface that, after initial evaluation and feedback, are used
as a basis for automated prototypes.

■ The goals of user interface evaluation are to obtain feedback on how a UI design can be
improved and to assess whether an interface meets its usability requirements.

K E Y P O I N TS

SE8_C16.qxd 4/4/06 9:10 Page 385

386 Chapter 16 ■ User interface design

menu and destructive operations towards the bottom. Code instrumentation also allows
error-prone commands to be detected and modified.

Finally, it is easy to give users a ‘gripe’ command that they can use to pass mes-
sages to the tool designer. This makes users feel that their views are being consid-
ered. The interface designer and other engineers can gain rapid feedback about
individual problems.

None of these relatively simple approaches to user interface evaluation is fool-
proof and they are unlikely to detect all user interface problems. However, the tech-
niques can be used with a group of volunteers before a system is released without
a large outlay of resources. Many of the worst problems of the user interface design
can then be discovered and corrected.

F U R T H E R R E A D I N G

Human-Computer Interaction, 3rd ed. A good general text whose strengths are a focus on design
issues and cooperative work. (A. Dix, et al., 2004, Prentice Hall.)

Interaction Design. The focus of this book is on designing interaction with computer-based
systems. It presents much of the same material as Human-Computer Interaction but in a quite
different way. Both books are well written and worth reading. (J. Preece, et al., 2002, John Wiley &
Sons.)

‘Usability Engineering’. This special issue of IEEE Software includes a number of articles on
usability that have been written specifically for readers with a software engineering background.
(IEEE Software, 18(1), January 2001.)

E X E R C I S E S

16.1 I suggested in Section 16.1 that the objects manipulated by users should be drawn from their
domain rather than from a computer domain. Suggest appropriate objects for the following
users and systems.

■ A warehouse assistant using an automated parts catalogue

■ An airline pilot using an aircraft safety monitoring system

■ A manager manipulating a financial database

■ A policeman using a patrol car control system

16.2 Suggest situations where it is unwise or impossible to provide a consistent user interface.

••••

SE8_C16.qxd 4/4/06 9:10 Page 386

Chapter 16 ■ Exercises 387

16.3 What factors have to be taken into account in the design of a menu-based interface for ‘walk-
up’ systems such as bank ATMs? Write a critical commentary on the interface of an ATM that
you use.

16.4 Suggest ways in which the user interface to an e-commerce system such as an online
bookstore or music retailer might be adapted for users who have a visual impairment or
problems with muscular control.

16.5 Discuss the advantages of graphical information display and suggest four applications where
it would be more appropriate to use graphical rather than digital displays of numeric
information.

16.6 What are the guidelines that should be followed when using colour in a user interface?
Suggest how colour might be used more effectively in the interface of an application system
that you use.

16.7 Consider the error messages produced by MS-Windows, Linux, Mac OS or some other
operating system. Suggest how these might be improved.

16.8 Write possible interaction scenarios for the following systems:

■ Using a web-based theatre booking service to order theatre tickets and pay for them by
credit card

■ Ordering the same tickets using an interface on a cell phone

■ Using a CASE toolset to create an object model of a software system (see Chapters 8 and
14) and generating code automatically from that model.

16.9 Under what circumstances could you use ‘Wizard of Oz’ prototyping? For what type of
systems is this approach unsuitable?

16.10 Design a questionnaire to gather information about the user interface of some tool (such as a
word processor) with which you are familiar. If possible, distribute this questionnaire to a
number of users and try to evaluate the results. What do these tell you about the user
interface design?

16.11 Discuss whether it is ethical to instrument software to monitor its use without telling end-
users that their work is being monitored.

16.12 What ethical issues might user interface designers face when trying to reconcile the needs of
end-users of a system with the needs of the organisation that is paying for the system to be
developed.

••••

SE8_C16.qxd 4/4/06 9:10 Page 387

••

SE8_C16.qxd 4/4/06 9:10 Page 388

PART 4DEVELOPMENT

SE8_C17.qxd 4/4/06 9:11 Page 389

When software engineering was first established as a discipline, the develop-
ment process for most systems was a process of writing a program based on
a design specification. Imperative programming languages such as C, FORTRAN
or Ada were used. In software engineering texts, the chapters on software devel-
opment mostly focused on good programming practice.

Now there are many different ways to develop software. These include origi-
nal programming in languages such as C++ or Java, scripting, database programming,
program generation from CASE tools, and reuse-based software engineering.
Furthermore, the fact that there is no real distinction between development and
maintenance is finally being recognised, and we are starting to think of develop-
ment as the first stage in a process of program evolution. To reflect these devel-
opments, I have included this new part in the book, focusing on development
techniques. There are five chapters in this part:

1. Chapter 17 is a new chapter describing techniques for rapid software devel-
opment. In today’s business environment means companies need their soft-
ware to be delivered quickly so that they can respond to new challenges
and opportunities. In this chapter, I discuss agile methods of development,
with a particular focus on extreme programming. I also describe environ-
ments for rapid application development and the appropriate use of system
prototyping.

2. The topic of Chapters 18 and 19 is reuse-based software engineering. Over the
past few years, software reuse has become more and more common and reuse-
based development is now a mainstream approach to software engineering.
Chapter 18 presents an overview of software reuse and development with reuse.
Chapter 19 focuses on component-based software engineering, including
component composition and the CBSE process.

3. Chapter 20 continues the discussion of critical systems that runs through the
book. I cover a range of development approaches for achieving system
dependability, including fault avoidance and fault tolerance, and I discuss how
programming constructs and techniques may be used to achieve dependabil-
ity. In the final part of this chapter, I return to the topic of software architec-
tures and describe architectural approaches to fault tolerance.

4. Chapter 21 is concerned with software evolution. Change is inevitable for
all software systems and, rather than consider the change process as a sep-
arate activity, I think it makes sense to consider it as a continuation of the
initial software development. In this chapter, I discuss the inevitability of evo-
lution, software maintenance, evolution processes and decision making for
legacy systems evolution.

SE8_C17.qxd 4/4/06 9:11 Page 390

Rapid software
development

17

Objectives
The objective of this chapter is to describe a number of approaches to
software development that are geared to rapid software delivery. When
you have read the chapter, you will:

■ understand how an iterative, incremental software development
approach leads to faster delivery of more useful software;

■ understand the differences between agile development methods and
software development methods that rely on documented
specifications and designs;

■ know the principles, practices and some of the limitations of
extreme programming;

■ understand how prototyping can be used to help resolve
requirements and design uncertainties when a specification-based
approach to development has to be used.

Contents
17.1 Agile methods

17.2 Extreme programming

17.3 Rapid application development

17.4 Software prototyping

SE8_C17.qxd 4/4/06 9:11 Page 391

•• ••

392 Chapter 17 ■ Rapid software development

Businesses now operate in a global, rapidly changing environment. They have to
respond to new opportunities and markets, changing economic conditions and the
emergence of competing products and services. Software is part of almost all busi-
ness operations so it is essential that new software is developed quickly to take advan-
tage of new opportunities and to respond to competitive pressure. Rapid
development and delivery is therefore now often the most critical requirement for
software systems. In fact, many businesses are willing to trade-off software qual-
ity and compromise on requirements against rapid software delivery.

Because these businesses are operating in a changing environment, it is often
practically impossible to derive a complete set of stable software requirements. The
requirements that are proposed inevitably change because customers find it impos-
sible to predict how a system will affect working practices, how it will interact with
other systems and what user operations should be automated. It may be only after
a system has been delivered and users gain experience with it that the real require-
ments become clear.

Software development processes that are based on completely specifying the require-
ments then designing, building and testing the system are not geared to rapid soft-
ware development. As the requirements change or as requirements problems are
discovered, the system design or implementation has to be reworked and retested.
As a consequence, a conventional waterfall or specification-based process is usu-
ally prolonged and the final software is delivered to the customer long after it was
originally specified.

In a fast-moving business environment, this can cause real problems. By the time
the software is available for use, the original reason for its procurement may have
changed so radically that the software is effectively useless. Therefore, for business
systems in particular, development processes that focus on rapid software develop-
ment and delivery are essential.

Rapid software development processes are designed to produce useful software
quickly. Generally, they are iterative processes where specification, design, devel-
opment and testing are interleaved. The software is not developed and deployed in
its entirety but in a series of increments, with each increment including new sys-
tem functionality. Although there are many approaches to rapid software develop-
ment, they share some fundamental characteristics:

1. The processes of specification, design and implementation are concurrent.
There is no detailed system specification, and design documentation is min-
imised or generated automatically by the programming environment used to imple-
ment the system. The user requirements document defines only the most
important characteristics of the system.

2. The system is developed in a series of increments. End-users and other system
stakeholders are involved in specifying and evaluating each increment. They
may propose changes to the software and new requirements that should be imple-
mented in a later increment of the system.

SE8_C17.qxd 4/4/06 9:11 Page 392

••

Chapter 17 ■ Rapid software development 393

3. System user interfaces are often developed using an interactive development sys-
tem that allows the interface design to be quickly created by drawing and placing
icons on the interface. The system may then generate a web-based interface for a
browser or an interface for a specific platform such as Microsoft Windows.

Incremental development, introduced in Chapter 4, involves producing and
delivering the software in increments rather than in a single package. Each process
iteration produces a new software increment. The two main advantages to adopt-
ing an incremental approach to software development are:

1. Accelerated delivery of customer services Early increments of the system can
deliver high-priority functionality so that customers can get value from the sys-
tem early in its development. Customers can see their requirements in practice
and specify changes to be incorporated in later releases of the system.

2. User engagement with the system Users of the system have to be involved in
the incremental development process because they have to provide feedback to
the development team on delivered increments. Their involvement does not just
mean that the system is more likely to meet their requirements; it also means
that the system end-users have made a commitment to it and are likely to want
to make it work.

A general process model for incremental development is illustrated in Figure 17.1.
Notice that the early stages of this process focus on architectural design. If you do
not consider the architecture at the beginning of the process, the overall structure
of the system is likely to be unstable and to degrade as new increments are released.

Incremental software development, in my view, is a far better approach to devel-
opment for most business, e-commerce and personal systems because it reflects the
fundamental way that we all tend to solve problems. We rarely work out a com-
plete problem solution in advance but move towards a solution in a series of steps,
backtracking when we realise that we have made a mistake.

However, there can be real difficulties with this approach, particularly in large
companies with fairly rigid procedures and in organisations where software devel-
opment is usually outsourced to an external contractor. The major difficulties with
iterative development and incremental delivery are:

1. Management problems Software management structures for large systems are set
up to deal with a software process model that generates regular deliverables to
assess progress. Incrementally developed systems change so quickly that it is not
cost-effective to produce lots of system documentation. Furthermore, incremental
development may sometimes require unfamiliar technologies to be used to ensure
the most rapid delivery of the software. Managers may find it difficult to use exist-
ing staff in incremental development processes because they lack these skills.

••

SE8_C17.qxd 4/4/06 9:11 Page 393

••••

394 Chapter 17 ■ Rapid software development

2. Contractual problems The normal contractual model between a customer and
a software developer is based around a system specification. When there is no
such specification, it may be difficult to design a contract for the system devel-
opment. Customers may be unhappy with a contract that simply pays devel-
opers for the time spent on the project, as this can lead to function creep and
budget overruns; developers are unlikely to accept a fixed-price contract
because they cannot control the changes requested by the end-users.

3. Validation problems In a specification-based process, verification and valida-
tion are geared towards demonstrating that the system meets its specification.
An independent V & V team can start work as soon as the specification is avail-
able and can prepare tests in parallel with the system implementation. Iterative
development processes try to minimise documentation and interleave specifi-
cation and development. Hence, independent validation of incrementally
developed systems is difficult.

4. Maintenance problems Continual change tends to corrupt the structure of any
software system. This means that anyone apart from the original developers may
find the software difficult to understand. One way to reduce this problem is to
use refactoring, where software structures are continually improved during the
development process. I discuss this in Section 17.2, where I cover extreme pro-
gramming. Furthermore, if specialised technology, such as RAD environments
(discussed in Section 17.3), is used to support rapid development, the RAD tech-
nology may become obsolete. Therefore, finding people who have the required
knowledge to maintain the system may be difficult.

Of course, there are some types of systems where incremental development and
delivery is not the best approach. These are very large systems where development
may involve teams working in different locations, some embedded systems where
the software depends on hardware development and some critical systems where
all the requirements must be analysed to check for interactions that may compro-
mise the safety or security of the system.

Validate
increment

Build system
increment

Specify system
increment

Design system
architecture

Define system
deliverables

System
complete?

Integrate
increment

Validate
system

Deliver final
system

YES

NO

Figure 17.1
An iterative
development process

SE8_C17.qxd 4/4/06 9:11 Page 394

••••

Chapter 17 ■ Rapid software development 395

These systems, of course, suffer from the same problems of uncertain and
changing requirements. Therefore, to address these problems and to get some of the
benefits of incremental development, a hybrid process may be used where a sys-
tem prototype is developed iteratively and used as a platform for experiments with
the system requirements and design. With the experience gained from the proto-
type, you can have increased confidence that the requirements meet the real needs
of the system stakeholders.

I use the term prototyping here to mean an iterative process of developing an
experimental system that is not intended for deployment by the customer. A sys-
tem prototype is developed to help the software developer and the customer under-
stand what to implement. However, the term evolutionary prototyping is sometimes
used as a synonym for incremental software development. The prototype is not dis-
carded but evolves to meet the customer’s requirements.

Figure 17.2 shows that incremental development and prototyping have different
objectives:

1. The objective of incremental development is to deliver a working system to
end-users. This means that you should normally start with the user requirements
that are best understood and that have the highest priority. Lower-priority and
vaguer requirements are implemented when and if the users demand them.

2. The objective of throw-away prototyping is to validate or derive the system
requirements. You should start with requirements that are not well understood
because you need to find out more about them. Requirements that are straight-
forward may never need to be prototyped.

Another important distinction between these approaches is in the management
of the quality of the systems. Throw-away prototypes have a very short lifetime. It
must be possible to change them rapidly during development, but long-term main-
tainability is not required. Poor performance and reliability may be acceptable in a
throw-away prototype so long as it helps everyone understand the requirements.

By contrast, incremental development systems where early versions evolve into
the final system should be developed to the same organisational quality standards
as any other software. They should have a robust structure so that they are main-
tainable for many years. They should be reliable and efficient, and they should con-
form to appropriate organisational standards.

Figure 17.2
Incremental
development and
prototyping

SE8_C17.qxd 4/4/06 9:11 Page 395

••

396 Chapter 17 ■ Rapid software development

17.1 Agile methods

In the 1980s and early 1990s, there was a widespread view that the best way to achieve
better software was through careful project planning, formalised quality assurance,
the use of analysis and design methods supported by CASE tools, and controlled and
rigorous software development processes. This view came, essentially, from the soft-
ware engineering community concerned with developing large, long-lived software
systems that were usually made up of a large number of individual programs.

Some or all of these programs were often critical systems, as discussed in Chapter
3. This software was developed by large teams who sometimes worked for differ-
ent companies. They were often geographically dispersed and worked on the soft-
ware for long periods of time. An example of this type of software is the control
systems for a modern aircraft, which might take up to 10 years from initial speci-
fication to deployment. These approaches, some of which I cover in this book, involve
a significant overhead in planning, designing and documenting the system. This over-
head is justified when the work of multiple development teams has to be coordi-
nated, when the system is a critical system and when many different people will be
involved in maintaining the software over its lifetime.

However, when this heavyweight, plan-based development approach was
applied to small and medium-sized business systems, the overhead involved was so
large that it sometimes dominated the software development process. More time was
spent on how the system should be developed than on program development and
testing. As the system requirements changed, rework was essential and, in princi-
ple at least, the specification and design had to change with the program.

Dissatisfaction with these heavyweight approaches led a number of software devel-
opers in the 1990s to propose new agile methods. These allowed the development
team to focus on the software itself rather than on its design and documentation.
Agile methods universally rely on an iterative approach to software specification,
development and delivery, and were designed primarily to support business appli-
cation development where the system requirements usually changed rapidly during
the development process. They are intended to deliver working software quickly to
customers, who can then propose new and changed requirements to be included in
later iterations of the system.

Probably the best-known agile method is extreme programming (Beck, 1999; Beck,
2000), which I describe later in this chapter. However, other agile approaches include
Scrum (Schwaber and Beedle, 2001), Crystal (Cockburn, 2001), Adaptive Software
Development (Highsmith, 2000), DSDM (Stapleton, 1997) and Feature Driven
Development (Palmer and Felsing, 2002). The success of these methods has led to
some integration with more traditional development methods based on system
modelling, resulting in the notion of agile modelling (Ambler and Jeffries, 2002)
and agile instantiations of the Rational Unified Process (Larman, 2002).

Although these agile methods are all based around the notion of incremental devel-
opment and delivery, they propose different processes to achieve this. However, they

••

SE8_C17.qxd 4/4/06 9:11 Page 396

••

17.1 ■ Agile methods 397

share a set of principles and therefore have much in common. These principles are
shown in Figure 17.3.

Supporters of agile methods have been evangelical in promoting their use and
have tended to overlook their shortcomings. This has prompted an equally extreme
response, which, in my view, exaggerates the problems with this approach
(Stephens and Rosenberg, 2003). More reasoned critics such as DeMarco and
Boehm (DeMarco and Boehm, 2002) highlight both the advantages and disadvan-
tages of agile methods. They propose a hybrid approach where agile methods incor-
porate some techniques from plan-based development may be the best way
forward.

In practice, however, the principles underlying agile methods are sometimes dif-
ficult to realise:

1. While the idea of customer involvement in the development process is an attrac-
tive one, its success depends on having a customer who is willing and able to
spend time with the development team and who can represent all system stake-
holders. Frequently, the customer representatives are subject to other pressures
and cannot take full part in the software development.

2. Individual team members may not have suitable personalities for the intense
involvement that is typical of agile methods. They may therefore not interact
well with other team members.

Principle Description

Customer involvement Customers should be closely involved throughout the
development process. Their role is provide and prioritise
new system requirements and to evaluate the iterations
of the system.

Incremental delivery The software is developed in increments with the
customer specifying the requirements to be included in
each increment.

People not process The skills of the development team should be
recognised and exploited. Team members should be left
to develop their own ways of working without
prescriptive processes.

Embrace change Expect the system requirements to change, so design the
system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being
developed and in the development process. Wherever
possible, actively work to eliminate complexity from the
system.

Figure 17.3 The
principles of agile
methods

••

SE8_C17.qxd 4/4/06 9:11 Page 397

••

398 Chapter 17 ■ Rapid software development

3. Prioritising changes can be extremely difficult, especially in systems where there
are many stakeholders. Typically, each stakeholder gives different priorities to
different changes.

4. Maintaining simplicity requires extra work. Under pressure from delivery
schedules, the team members may not have time to carry out desirable system
simplifications.

Another, nontechnical problem, which is a general problem with incremental devel-
opment and delivery, occurs when the system customer uses an outside organisa-
tion for system development. As I discussed in Chapter 6, the software
requirements document is usually part of the contract between the customer and the
supplier. Because incremental specification is inherent in agile methods, writing con-
tracts for this type of development may be difficult.

Consequently, agile methods have to rely on contracts where the customer pays
for the time required for system development rather than the development of a spe-
cific set of requirements. So long as all goes well, this benefits both the customer
and the developer. However, if problems arise there may be difficult disputes over
who is to blame and who should pay for the extra time and resources required to
resolve the problems.

All methods have limits, and agile methods are only suitable for some types of
system development. In my view, they are best suited to the development of small
or medium-sized business systems and personal computer products. They are not
well suited to large-scale systems development with the development teams in dif-
ferent places and where there may be complex interactions with other hardware and
software systems. Nor should agile methods be used for critical systems develop-
ment where a detailed analysis of all of the system requirements is necessary to
understand their safety or security implications.

17.2 Extreme programming

Extreme programming (XP) is perhaps the best known and most widely used of the
agile methods. The name was coined by Beck (Beck, 2000) because the approach
was developed by pushing recognised good practice, such as iterative development,
and customer involvement to ‘extreme’ levels.

In extreme programming, all requirements are expressed as scenarios (called user
stories), which are implemented directly as a series of tasks. Programmers work in
pairs and develop tests for each task before writing the code. All tests must be suc-
cessfully executed when new code is integrated into the system. There is a short
time gap between releases of the system. Figure 17.4 illustrates the XP process to
produce an increment of the system that is being developed.

••

SE8_C17.qxd 4/4/06 9:11 Page 398

••

17.2 ■ Extreme programming 399

Extreme programming involves a number of practices, summarised in Figure 17.5,
that fit into the principles of agile methods:

1. Incremental development is supported through small, frequent releases of the
system and by an approach to requirements description based on customer sto-
ries or scenarios that can be the basis for process planning.

2. Customer involvement is supported through the full-time engagement of the
customer in the development team. The customer representative takes part in
the development and is responsible for defining acceptance tests for the
system.

3. People, not process, are supported through pair programming, collective own-
ership of the system code, and a sustainable development process that does not
involve excessively long working hours.

4. Change is supported through regular system releases, test-first development and
continuous integration.

5. Maintaining simplicity is supported through constant refactoring to improve code
quality and using simple designs that do not anticipate future changes to the
system.

In an XP process, customers are intimately involved in specifying and prioritising
system requirements. The requirements are not specified as lists of required system
functions. Rather, the system customer is part of the development team and discusses
scenarios with other team members. Together, they develop a ‘story card’ that encap-
sulates the customer needs. The development team then aims to implement that sce-
nario in a future release of the software. An example of a story card for the LIBSYS
system, based on a scenario in Chapter 6, is illustrated in Figure 17.6.

Once the story cards have been developed, the development team breaks these
down into tasks and estimates the effort and resources required for implementation.
The customer then prioritises the stories for implementation, choosing those stories
that can be used immediately to deliver useful business support. Of course, as require-

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test software

Figure 17.4 The
extreme programm-
ing release cycle

••

SE8_C17.qxd 4/4/06 9:11 Page 399

••••

400 Chapter 17 ■ Rapid software development

ments change, the unimplemented stories change or may be discarded. If changes
are required for a system that has already been delivered, new story cards are devel-
oped and, again, the customer decides whether these changes should have priority
over new functionality.

Principle or practice Description

Incremental planning Requirements are recorded on Story Cards and the Stories
to be included in a release are determined by the time
available and their relative priority. The developers break
these Stories into development ‘Tasks’. See Figure 17.6
and Figure 17.7.

Small releases The minimal useful set of functionality that provides
business value is developed first. Releases of the system
are frequent and incrementally add functionality to the
first release.

Simple design Enough design is carried out to meet the current
requirements and no more.

Test-first development An automated unit test framework is used to write tests
for a new piece of functionality before that functionality
itself is implemented.

Refactoring All developers are expected to refactor the code
continuously as soon as possible code improvements are
found. This keeps the code simple and maintainable.

Pair programming Developers work in pairs, checking each other’s work and
providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system,
so that no islands of expertise develop and all the
developers own all the code. Anyone can change
anything.

Continuous integration As soon as work on a task is complete it is integrated into
the whole system. After any such integration, all the unit
tests in the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable
as the net effect is often to reduce code quality and
medium-term productivity

On-site customer A representative of the end-user of the system (the
Customer) should be available full time for the use of the
XP team. In an extreme programming process, the
customer is a member of the development team and is
responsible for bringing system requirements to the team
for implementation.

Figure 17.5 Extreme
programming
practices

SE8_C17.qxd 4/4/06 9:11 Page 400

••••

17.2 ■ Extreme programming 401

Extreme programming takes an ‘extreme’ approach to iterative development. New
versions of the software may be built several times per day and increments are deliv-
ered to customers roughly every two weeks. When a programmer builds the sys-
tem to create a new version, he or she must run all existing automated tests as well
as the tests for the new functionality. The new build of the software is accepted
only if all tests execute successfully.

A fundamental precept of traditional software engineering is that you should design
for change. That is, you should anticipate future changes to the software and design
it so that these changes can be easily implemented. Extreme programming, how-
ever, has discarded this principle on the basis that designing for change is often
wasted effort. The changes anticipated often never materialise and completely dif-
ferent change requests are actually made.

The problem with unanticipated change implementation is that it tends to
degrade the software structure, so changes become harder and harder to implement.
Extreme programming tackles this problem by suggesting that the software should
be constantly refactored. This means that the programming team looks for possible
improvements to the software and implements them immediately. Therefore, the
software should always be easy to understand and change as new stories are
implemented.

17.2.1 Testing in XP

As I discussed in the introduction to this chapter, one of the important differences
between iterative development and plan-based development is in the way that the
system is tested. With iterative development, there is no system specification that
can be used by an external testing team to develop system tests. As a consequence,
some approaches to iterative development have a very informal testing process.

First, you select the article that you want from a displayed list. You
then have to tell the system how you will pay for it—this can either
be through a subscription, though a company account or by credit
card.

After this, you get a copyright form from the system to fill in. When
you have submitted this, the article you want is downloaded onto
your computer.

You then choose a printer and a copy of the article is printed. You
tell the system printing has been successful.

If the article is a print-only article, you can't keep the PDF version,
so it is automatically deleted from your computer.

Downloading and printing an article
Figure 17.6 Story
card for document
downloading

SE8_C17.qxd 4/4/06 9:11 Page 401

••

402 Chapter 17 ■ Rapid software development

To avoid some of the problems of testing and system validation, XP places more
emphasis than other agile methods on the testing process. System testing is central
to XP where an approach has been developed that reduces the likelihood that pro-
ducing new system increments will introduce errors into the existing software.

The key features of testing in XP are:

1. Test-first development

2. Incremental test development from scenarios

3. User involvement in the test development and validation

4. The use of automated test harnesses

Test-first development is one of the most important innovations in XP. Writing
tests first implicitly defines both an interface and a specification of behaviour for
the functionality being developed. Problems of requirements and interface misun-
derstandings are reduced. This approach can be adopted in any process where there
is a clear relationship between a system requirement and the code implementing
that requirement. In XP, you can always see this link because the story cards rep-
resenting the requirements are broken down into tasks, and the tasks are the prin-
cipal unit of implementation.

As I have discussed, user requirements in XP are expressed as scenarios or sto-
ries and the user prioritises these for development. The development team assesses
each scenario and breaks it down into tasks. Each task represents a discrete feature
of the system and a unit test can then be designed for that task. For example, some
of the task cards developed from the story card for document downloading (Figure
17.6) are shown in Figure 17.7.

Each task generates one or more unit tests that check the implementation described
in that task. For example, Figure 17.8 is a shortened description of a test case that has
been developed to check that a valid credit card number has been implemented.

The role of the customer in the testing process is to help develop acceptance
tests for the stories that are to be implemented in the next release of the system. As
I discuss in Chapter 23, acceptance testing is the process where the system is tested
using customer data to check that it meets the customer’s real needs. In XP, accep-
tance testing, like development, is incremental. For this particular story, the accep-
tance test would involve making several document selections, paying for them in
different ways and printing them on different printers. In practice, a series of accep-
tance tests rather than a single test would probably be developed.

Test-first development and the use of automated test harnesses are major
strengths of the XP approach. Rather than writing the program code, then writing
the tests of that code, test-first development means that the test is written before
the code. Critically, the test is written as an executable component before the task
is implemented. Once the software has been implemented, the test can be executed
immediately. This testing component should be standalone, should simulate the sub-
mission of input to be tested and should check that the result meets the output spec-

••

SE8_C17.qxd 4/4/06 9:11 Page 402

••

17.2 ■ Extreme programming 403

ification. The automated test harness is a system that submits these automated tests
for execution.

With test-first development, there is always a set of tests that can be quickly and
easily executed. This means that whenever any functionality is added to the sys-
tem, the tests can be run and problems that the new code has introduced can be
caught immediately.

In test-first development, the task implementers have to thoroughly understand
the specification so that they can write the test for the system. This means that ambi-
guities and omissions in the specification have to be clarified before implementa-
tion begins. Furthermore, it also avoids the problem of ‘test-lag’ where, because
the developer of the system works at a faster pace than the tester, the implementa-
tion gets further and further ahead of the testing and there is a tendency to skip
tests so that the schedule can be maintained.

Figure 17.7 Task
cards for document
downloading

Input:
A string representing the credit card number and two integers
representing the month and year when the card expires
Tests:
Check that all bytes in the string are digits
Check that the month lies between 1 and 12 and the
year is greater than or equal to the current year.
Using the first 4 digits of the credit card number,
check that the card issuer is valid by looking up the
card issuer table. Check credit card validity by submitting the
card number and expire date information to the card issuer
Output:
OK or error message indicating that the card is invalid

Test 4: Test credit card validity
Figure 17.8 Test case
description for credit
card validity

••

SE8_C17.qxd 4/4/06 9:11 Page 403

404 Chapter 17 ■ Rapid software development

However, test-first development does not always work as intended.
Programmers prefer programming to testing and sometimes write incomplete tests
that do not check for exceptional situations. Furthermore, some tests can be very
difficult to write. For example, in a complex user interface, it is often difficult to
write unit tests for the code that implements the ‘display logic’ and workflow between
screens. Finally, it is difficult to judge the completeness of a set of tests. Although
you may have a lot of system tests, your test set may not provide complete cover-
age. Crucial parts of the system may not be executed and so remain untested.

Relying on the customer to support acceptance test development is sometimes a
major difficulty in the XP testing process. People adopting the customer role have
very limited available time and may not be able to work full-time with the devel-
opment team. The customer may feel that providing the requirements was enough
of a contribution and be reluctant to get involved in the testing process.

17.2.2 Pair programming

Another innovative practice that has been introduced is that programmers work in
pairs to develop the software. They actually sit together at the same workstation to
develop the software. Development does not always involve the same pair of peo-
ple working together. Rather, the idea is that pairs are created dynamically so that
all team members may work with other members in a programming pair during the
development process.

The use of pair programming has a number of advantages:

1. It supports the idea of common ownership and responsibility for the system.
This reflects Weinberg’s idea of egoless programming (Weinberg, 1971)
where the software is owned by the team as a whole and individuals are not
held responsible for problems with the code. Instead, the team has collective
responsibility for resolving these problems.

2. It acts as an informal review process because each line of code is looked at by
at least two people. Code inspections and reviews (covered in Chapter 22) are
very successful in discovering a high percentage of software errors. However,
they are time consuming to organise and, typically, introduce delays into the
development process. While pair programming is a less formal process that prob-
ably doesn’t find so many errors, it is a much cheaper inspection process than
formal program inspections.

3. It helps support refactoring, which is a process of software improvement. A
principle of XP is that the software should be constantly refactored. That is,
parts of the code should be rewritten to improve their clarity or structure. The
difficulty of implementing this in a normal development environment is that
this is effort that is expended for long-term benefit, and an individual who prac-
tices refactoring may be judged less efficient than one who simply carries on
developing code. Where pair programming and collective ownership are used,

••••

SE8_C17.qxd 4/4/06 9:11 Page 404

17.3 ■ Rapid application development 405

others gain immediately from the refactoring so they are likely to support the
process.

You might think that pair programming is less efficient that individual program-
ming and that a pair of developers would produce half as much code as two individ-
uals working alone. Studies of XP developments, however, do not bear this out.
Development productivity with pair programming seems to be comparable with that
of two people working independently (Williams, et al., 2000). The reasons for this are
that pairs discuss the software before development so probably have fewer false starts
and less rework, and that the number of errors avoided by the informal inspection is
such that less time is spent repairing bugs discovered during the testing process.

17.3 Rapid application development

Although agile methods as an approach to iterative development have received a great
deal of attention in the last few years, business systems have been developed itera-
tively for many years using rapid application development techniques. Rapid appli-
cation development (RAD) techniques evolved from so-called fourth-generation
languages in the 1980s and are used for developing applications that are data-inten-
sive. Consequently, they are usually organised as a set of tools that allow data to
be created, searched, displayed and presented in reports. Figure 17.9 illustrates a
typical organisation for a RAD system.

The tools that are included in a RAD environment are:

1. A database programming language that embeds knowledge of the database struc-
tures and includes fundamental database manipulation operations. SQL (Groff
et al., 2002) is the standard database programming language. The SQL com-
mands may be input directly or generated automatically from forms filled in
by an end-user.

2. An interface generator, which is used to create forms for data input and
display.

3. Links to office applications such as a spreadsheet for the analysis and manip-
ulation of numeric information or a word processor for report template creation.

4. A report generator, which is used to define and create reports from informa-
tion in the database.

RAD systems are successful because, as I explained in Chapter 13, there is a great
deal of commonality across business applications. In essence, these applications are
often concerned with updating a database and producing reports from the informa-

••••

SE8_C17.qxd 4/4/06 9:11 Page 405

••••

406 Chapter 17 ■ Rapid software development

tion in the database. Standard forms are used for input and output. RAD systems
are geared towards producing interactive applications that rely on abstracting infor-
mation from an organisational database, presenting it to end-users on their termi-
nal or workstation, and updating the database with changes made by users.

Many business applications rely on structured forms for input and output, so RAD
environments provide powerful facilities for screen definition and report generation.
Screens are often defined as a series of linked forms (in one application we stud-
ied, there were 137 form definitions) so the screen generation system must provide
for:

1. Interactive form definition where the developer defines the fields to be displayed
and how these are to be organised.

2. Form linking where the developer can specify that particular inputs cause fur-
ther forms to be displayed.

3. Field verification where the developer defines allowed ranges for values input
to form fields.

All RAD environments now support the development of database interfaces based
on web browsers. These allow the database to be accessed from anywhere with a
valid Internet connection. This reduces training and software costs and allows exter-
nal users to have access to a database. However, the inherent limitations of web
browsers and Internet protocols mean that this approach may be unsuitable for sys-
tems where very fast, interactive responses are required.

Most RAD systems now also include visual programming tools that allow the sys-
tem to be developed interactively. Rather than write a sequential program, the sys-
tem developer manipulates graphical icons representing functions, data or user
interface components, and associates processing scripts with these icons. An executable
program is generated automatically from the visual representation of the system.

Visual development systems such as Visual Basic support this approach to
application development. Application programmers build the system interactively
by defining the interface in terms of screens, fields, buttons and menus. These are

DB
programming

language

Interface
generator

Office
systems

Report
generator

Database management system

Rapid application
development environment

Figure 17.9 A rapid
application
development
environment

SE8_C17.qxd 4/4/06 9:11 Page 406

••••

17.3 ■ Rapid application development 407

named and processing scripts are associated with individual parts of the interface
(e.g., a button named Simulate). These scripts may be calls to reusable components,
special-purpose code or a mixture of both.

I illustrate this approach in Figure 17.10, which shows an application screen includ-
ing menus along the top, input fields (the white fields on the left of the display),
output fields (the grey field on the left of the display) and buttons (the rounded rect-
angles on the right of the display). When these entities are positioned on the dis-
play by the visual programming system, the developer defines which reusable
component should be associated with them or writes a program fragment to carry
out the required processing. Figure 17.10 also shows the components that are asso-
ciated with some of the display elements.

Visual Basic is a very sophisticated example of a scripting language
(Ousterhout, 1998). Scripting languages are typeless, high-level languages that are
designed to help you integrate components to create systems. An early example of
a scripting language was the Unix shell (Bourne, 1978; Gordon and Bieman, 1995);
since its development, a number of more powerful scripting languages have been
created (Ousterhout, 1994; Lutz, 1996; Wall, et al., 1996). Scripting languages include
control structures and graphical toolkits, which as Ousterhout (Ousterhout, 1998)
illustrates can radically reduce the time required for system development.

This approach to system development allows for the rapid development of rela-
tively simple applications that can be built by a small team of people. For larger sys-
tems that must be developed by larger teams, this approach is more difficult to organise.
There is no explicit system architecture and there are often complex dependencies
between parts of the system, which can cause difficulties when changes are

File Edit Views Layout Options Help

General
Index

Menu
componentDate component

Range checking
script

Tree display
component

Draw canvas
component

User prompt
component +

script

12th January 2000

3.876

Figure 17.10 Visual
programming with
reuse

SE8_C17.qxd 4/4/06 9:11 Page 407

•• ••

408 Chapter 17 ■ Rapid software development

required. In addition, because scripting languages are limited to a specific set of
interaction objects, implementing nonstandard user interfaces can be difficult.

Visual development is an approach to RAD that relies on integrating fine-grain,
reusable software components. An alternative reuse-based approach reuses ‘com-
ponents’ that are complete application systems. This is sometimes called COTS-
based development, where COTS means ‘Commercial Off-the-Shelf’—the
applications are already available. For example, if a system requires a text-processing
capability, you may use a standard word-processing system such as Microsoft Word.
I discuss COTS-based development from a reuse perspective in Chapter 18.

To illustrate the type of application that might be developed using a COTS-based
approach, consider the process of requirements management discussed in Chapter 7.
A requirements management support system needs a way to capture requirements,
store these requirements, produce reports, discover requirements relationships and man-
age these relationships as traceability tables. In a COTS-based approach, a prototype
could be created by linking a database (to store requirements), a word processor (to
capture requirements and format reports), a spreadsheet (to manage traceability
tables) and specially written code to find relationships between the requirements.

COTS-based development gives the developer access to all of the functionality
of an application. If the application also provides scripting or tailoring facilities (e.g.,
Excel macros) these may be used to develop some application functionality. A com-
pound document metaphor is helpful to understand this approach to application devel-
opment. The data processed by the system may be organised into a compound
document that acts as a container for several objects. These objects contain differ-
ent types of data (such as a table, a diagram, a form) that can be processed by dif-
ferent applications. Objects are linked and typed so that accessing an object results
in the associated application being initiated.

Figure 17.11 illustrates an application system made up of a compound document
that includes text elements, spreadsheet elements and sound files. Text elements are
processed by the word processor, tables by the spreadsheet application and sound
files by an audio player. When a system user accesses an object of a particular type,

Word processor Spreadsheet Audio player

Text 1 Text 2 Text 3

Text 5

Table 1 Sound 1

Text 4Table 2 Sound 2

Compound document
Figure 17.11
Application linking

SE8_C17.qxd 4/4/06 9:11 Page 408

••

17.4 ■ Software prototyping 409

the associated application is called to provide user functionality. For example, when
objects of type sound are accessed, the audio player is called to process them.

The main advantage of this approach is that a lot of application functionality can
be implemented quickly at a very low cost. Users who are already familiar with the
applications making up the system do not have to learn how to use new features.
However, if they do not know how to use the applications, learning may be diffi-
cult, especially as they may be confused by application functionality that isn’t nec-
essary. There may also be performance problems with the application because of
the need to switch from one application system to another. The switching overhead
depends on the operating system support that is provided.

17.4 Software prototyping

As I discussed in the introduction to this chapter, there are some circumstances where,
for practical or contractual reasons, an incremental software delivery process can-
not be used. In those situations, a statement of the system requirements is completed
and is used by the development team as the basis for the system software. As I
explained, you can get some of the benefits of an incremental development process
by creating a prototype of the software. This approach is sometimes called throw-
away prototyping because the prototype is not delivered to the customer or main-
tained by the developer.

A prototype is an initial version of a software system that is used to demonstrate
concepts, try out design options and, generally, to find out more about the problem
and its possible solutions. Rapid, iterative development of the prototype is essen-
tial so that costs are controlled and system stakeholders can experiment with the
prototype early in the software process.

A software prototype can be used in a software development process in several
ways:

1. In the requirements engineering process, a prototype can help with the elicita-
tion and validation of system requirements.

2. In the system design process, a prototype can be used to explore particular soft-
ware solutions and to support user interface design.

3. In the testing process, a prototype can be used to run back-to-back tests with
the system that will be delivered to the customer.

System prototypes allow users to see how well the system supports their work.
They may get new ideas for requirements and find areas of strength and weakness
in the software. They may then propose new system requirements. Furthermore, as
the prototype is developed, it may reveal errors and omissions in the requirements

••

SE8_C17.qxd 4/4/06 9:11 Page 409

••••

410 Chapter 17 ■ Rapid software development

that have been proposed. A function described in a specification may seem useful
and well-defined. However, when that function is combined with other functions,
users often find that their initial view was incorrect or incomplete. The system spec-
ification may then be modified to reflect their changed understanding of the
requirements.

A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a database
design may be prototyped and tested to check that it allows for the most efficient data
access for the most common user queries. Prototyping is also an essential part of the
user interface design process. Because of the dynamic nature of user interfaces, tex-
tual descriptions and diagrams are not good enough for expressing the user interface
requirements. Therefore, rapid prototyping with end-user involvement is the only sen-
sible way to develop graphical user interfaces for software systems.

A major problem in system testing is test validation where you have to check
whether the results of a test are what you expect. When a system prototype is avail-
able, you can reduce the effort involved in result checking by running back-to-back
tests (Figure 17.12). The same test cases are submitted to the prototype and to the
system under test. If both systems give the same result, the test case has probably
not detected a fault. If the results differ, it may mean that there is a system fault
and the reasons for the difference should be investigated.

Finally, as well as supporting software process activities, prototypes can be used
to reduce the time required to develop user documentation and to train users with
the system. A working, albeit limited, system is available quickly to demonstrate
the feasibility and usefulness of the application to management.

In a study of 39 prototyping projects, Gordon and Bieman (Gordon and Bieman,
1995) found that the benefits of using prototyping were:

Figure 17.12 Back-to-
back testing

SE8_C17.qxd 4/4/06 9:11 Page 410

••••

17.4 ■ Software prototyping 411

1. Improved system usability

2. A closer match of the system to users’ needs

3. Improved design quality

4. Improved maintainability

5. Reduced development effort

Their study suggests that the improvements in usability and better user require-
ments that stem from using a prototype do not necessarily mean an overall increase
in system development costs. Prototyping usually increases costs in the early stages
of the software process but reduces costs later in the development process. The main
reason for this is that rework during development is avoided because customers request
fewer system changes. However, Gordon and Bieman found that overall system per-
formance is sometimes degraded if inefficient prototype code is reused.

A process model for prototype development is shown in Figure 17.13. The objec-
tives of prototyping should be made explicit from the start of the process. These
may be to develop a system to prototype the user interface, to develop a system to
validate functional system requirements or to develop a system to demonstrate the
feasibility of the application to management. The same prototype cannot meet all
objectives. If the objectives are left unstated, management or end-users may mis-
understand the function of the prototype. Consequently, they may not get the ben-
efits that they expected from the prototype development.

The next stage in the process to is decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilisation. Error handling and management may be ignored or
may be rudimentary unless the objective of the prototype is to establish a user inter-
face. Standards of reliability and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be made
during this stage for user training, and the prototype objectives should be used to
derive a plan for evaluation. Users need time to become comfortable with a new
system and to settle into a normal pattern of usage. Once they are using the system
normally, they then discover requirements errors and omissions.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

Figure 17.13 The
process of prototype
development

SE8_C17.qxd 4/4/06 9:11 Page 411

•• ••

412 Chapter 17 ■ Rapid software development

A general problem with developing an executable, throw-away prototype is that
the mode of use of the prototype may not correspond with how the final delivered
system is used. The tester of the prototype may not be typical of system users. The
training time during prototype evaluation may be insufficient. If the prototype is
slow, the evaluators may adjust their way of working and avoid those system fea-
tures that have slow response times. When provided with better response in the final
system, they may use it in a different way.

Developers are sometimes pressured by managers to deliver throw-away proto-
types, particularly when there are delays in delivering the final version of the soft-
ware. Rather than face up to delays in the project the manager may believe that
delivering an incomplete or poor quality system is better than nothing. However,
this is usually unwise for the following reasons:

■ As pressure grows for the rapid delivery of software, an iterative approach to software
development is becoming increasingly used as the standard development technique for
small and medium-sized systems, especially in the business domain.

■ Agile methods are iterative development methods that focus on incremental specification,
design and system implementation. They involve the customer directly in the development
process. Reducing development overhead can make faster software development possible.

■ Extreme programming is a well-known agile method that integrates a range of good
programming practices such as systematic testing, continuous software improvement and
customer participation in the development team.

■ A particular strength of extreme programming is the development of automated tests before
a program feature is created. All tests must successfully execute when an increment is
integrated into a system.

■ Rapid application development involves using development environments that include
powerful tools to support system production. These include database programming
languages, form and report generators, and links to office applications.

■ Throw-away prototyping is an iterative development process where a prototype system is
used to explore the requirements and design options. This prototype is not intended for
deployment by the system customer.

■ When implementing a throw-away prototype, you first develop the parts of the system you
understand least; by contrast, in an incremental development approach, you begin by
developing the parts of the system you understand best.

K E Y P O I N TS

SE8_C17.qxd 4/4/06 9:11 Page 412

••

Chapter 17 ■ Further Reading 413

1. It may be impossible to tune the prototype to meet non-functional requirements
that were ignored during prototype development, such as performance, secu-
rity, robustness and reliability.

2. Rapid change during development inevitably means that the prototype is
undocumented. The only design specification is the prototype code. This is not
good enough for long-term maintenance.

3. The changes made during prototype development will probably have degraded
the system structure. The system will be difficult and expensive to maintain.

4. Organisational quality standards are normally relaxed for prototype develop-
ment.

Throw-away prototypes do not have to be executable to be useful in the require-
ments engineering process. As I discuss in Chapter 16, paper-based mock-ups of
the system user interface (Rettig, 1994) can be effective in helping users refine an
interface design and work through usage scenarios. These are very cheap to
develop and can be constructed in a few days. An extension of this technique is a
Wizard of Oz prototype where only the user interface is developed. Users interact
with this interface, but their requests are passed to a person who interprets them
and outputs the appropriate response.

F U R T H E R R E A D I N G

Extreme Programming Explained. This was the first book on XP and is still, perhaps, the most
readable. It explains the approach from the perspective of one its inventors, and his enthusiasm
comes through very clearly. (Kent Beck, 2000, Addison-Wesley.)

‘Get ready for agile methods, with care’. A thoughtful critique of agile methods that discusses their
strengths and weaknesses, written by a vastly experienced software engineer. (B. Boehm, IEEE
Computer, January 2002.)

‘Scripting: Higher-level programming for the 21st century’. An overview of scripting languages by
the inventor of Tcl/Tk, who discusses the advantages of this approach for rapid application
development. (J. K. Ousterhout, IEEE Computer, March 1998.)

DSDM: Dynamic Systems Development Method. A description of an approach to rapid application
development that some people consider to be an early instance of an agile method. (J. Stapleton,
1997, Addison-Wesley.)

••

SE8_C17.qxd 4/4/06 9:11 Page 413

414 Chapter 17 ■ Rapid software development

E X E R C I S E S

17.1 Explain why the rapid delivery and deployment of new systems is often more important to
businesses than the detailed functionality of these systems.

17.2 Explain how the principles underlying agile methods lead to the accelerated development and
deployment of software.

17.3 When would you recommend against the use of an agile method for developing a software
system?

17.4 Extreme programming expresses user requirements as stories, with each story written on a
card. Discuss the advantages and disadvantages of this approach to requirements
description.

17.5 Explain why test-first development helps the programmer develop a better understanding of
the system requirements. What are the potential difficulties with test-first development?

17.6 Suggest four reasons why the productivity rate of programmers working as a pair is roughly
the same as two programmers working individually.

17.7 You have been asked to investigate the feasibility of prototyping in the software development
process in your organisation. Write a report for your manager discussing the classes of
project for which prototyping should be used, and setting out the expected costs and benefits
of prototyping.

17.8 A software manager is involved in the project development of a software design support system
that supports the translation of software requirements to a formal software specification.
Comment on the advantages and disadvantages of the following development strategies:

a. Develop a throw-away prototype, evaluate, it then review the system requirements.
Develop the final system using C.

b. Develop the system from the existing requirements using Java, then modify it to adapt to
any changed user requirements.

c. Develop the system using incremental development with a user involved in the
development team.

17.9 A charity has asked you to prototype a system that keeps track of all donations they have
received. This system has to maintain the names and addresses of donors, their particular
interests, the amount donated and when the donation was made. If the donation is over a
certain amount, the donor may attach conditions to the donation (e.g., it must be spent on a
particular project), and the system must keep track of these and how the donation was spent.
Discuss how you would prototype this system, bearing in mind that the charity has a mixture
of paid workers and volunteers. Many of the volunteers are retirees who have had little or no
computer experience.

17.10 You have developed a throw-away prototype system for a client who is very happy with it.
However, she suggests that there is no need to develop another system but that you should
deliver the prototype, and she offers you an excellent price for the system. You know that
there may be future problems with maintaining the system. Discuss how you might respond
to this customer.

••

SE8_C17.qxd 4/4/06 9:11 Page 414

Software reuse
18

Objectives
The objectives of this chapter are to introduce software reuse and to
explain how reuse contributes to the software development process.
When you have read this chapter, you will:

■ understand the benefits and problems of reusing software when
developing new systems;

■ have learned several ways to implement software reuse;

■ understand concept reuse and how reusable concepts can be
represented as patterns or embedded in program generators;

■ have learned how systems can be developed quickly by composing
large, off-the-shelf applications;

■ have been introduced to software product lines that are made up of
a common core architecture and configurable, reusable components.

Contents
18.1 The reuse landscape

18.2 Design patterns

18.3 Generator-based reuse

18.4 Application frameworks

18.5 Application system reuse

SE8_C18.qxd 4/4/06 9:12 Page 415

••

416 Chapter 18 ■ Software reuse

The design process in most engineering disciplines is based on reuse of existing
systems or components. Mechanical or electrical engineers do not normally spec-
ify a design where every component has to be manufactured specially. They base
their design on components that have been tried and tested in other systems. These
are not just small components such as flanges and valves but include major sub-
systems such as engines, condensers or turbines.

Reuse-based software engineering is a comparable software engineering strategy
where the development process is geared to reusing existing software. Although the
benefits of reuse have been recognised for many years (McIlroy, 1968), it is only
in the past 10 years that there has been a gradual transition from original software
development to reuse-based development. The move to reuse-based development
has been in response to demands for lower software production and maintenance
costs, faster delivery of systems and increased software quality. More and more com-
panies see their software as a valuable asset and are promoting reuse to increase
their return on software investments.

Reuse-based software engineering is an approach to development that tries to
maximise the reuse of existing software. The software units that are reused may be
of radically different sizes. For example:

1. Application system reuse The whole of an application system may be reused
by incorporating it without change into other systems, by configuring the
application for different customers or by developing application families that
have a common architecture but are tailored for specific customers. I cover appli-
cation system reuse in Section 18.5.

2. Component reuse Components of an application ranging in size from sub-systems
to single objects may be reused. For example, a pattern-matching system
developed as part of a text-processing system may be reused in a database man-
agement system. This is covered in Chapter 19.

3. Object and function reuse Software components that implement a single func-
tion, such as a mathematical function or an object class, may be reused. This
form of reuse, based around standard libraries, has been common for the past
40 years. Many libraries of functions and classes for different types of appli-
cation and development platform are available. These can be easily used by
linking them with other application code. In areas such as mathematical algo-
rithms and graphics, where specific expertise is needed to develop objects and
functions, this is a particularly effective approach.

Software systems and components are specific reusable entities, but their specific
nature sometimes means that it is expensive to modify them for a new situation. A
complementary form of reuse is concept reuse where, rather than reuse a component,
the reused entity is more abstract and is designed to be configured and adapted for a
range of situations. Concept reuse can be embodied in approaches such as design pat-
terns, configurable system products and program generators. The reuse process, when
concepts are reused, includes an instantiation activity where the abstract concepts are

••

SE8_C18.qxd 4/4/06 9:12 Page 416

••

Chapter 18 ■ Software reuse 417

••

configured for a specific situation. I cover two of these approaches to concept reuse—
design patterns and program generation—later in this chapter.

An obvious advantage of software reuse is that overall development costs should
be reduced. Fewer software components need be specified, designed, implemented
and validated. However, cost reduction is only one advantage of reuse. In Figure
18.1, I have listed other advantages of reusing software assets.

However, there are also costs and problems associated with reuse (Figure 18.2).
In particular, there is a significant cost associated with understanding whether a com-
ponent is suitable for reuse in a particular situation and in testing that component
to ensure its dependability. These additional costs may inhibit the introduction of
reuse and may mean that the reductions in overall development cost through reuse
may be less than anticipated.

Systematic reuse does not just happen—it must be planned and introduced
through an organisation-wide reuse programme. This has been recognised for many
years in Japan (Matsumoto, 1984), where reuse is an integral part of the Japanese

Benefit Explanation

Increased dependability Reused software, which has been tried and tested in
working systems, should be more dependable than
new software because its design and implementation
faults have already been found and fixed.

Reduced process risk The cost of existing software is already known, while
the costs of development are always a matter of
judgement. This is an important factor for project
management because it reduces the margin of error in
project cost estimation. This is particularly true when
relatively large software components such as sub-
systems are reused.

Effective use of specialists Instead doing the same work over and over, these
application specialists can develop reusable software
that encapsulates their knowledge.

Standards compliance Some standards, such as user interface standards, can
be implemented as a set of standard reusable
components. For example, if menus in a user interface
are implemented using reusable components, all
applications present the same menu formats to users.
The use of standard user interfaces improves
dependability because users are less likely to make
mistakes when presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is
often more important than overall development costs.
Reusing software can speed up system production
because both development and validation time should
be reduced.

Figure 18.1 Benefits
of software reuse

SE8_C18.qxd 4/4/06 9:12 Page 417

••••

418 Chapter 18 ■ Software reuse

‘factory’ approach to software development (Cusamano, 1989). Companies such as
Hewlett-Packard have also been very successful in their reuse programs (Griss and
Wosser, 1995), and their experience has been incorporated in a general book by
Jacobsen et al. (Jacobsen, et al., 1997).

18.1 The reuse landscape

Over the past 20 years, many techniques have been developed to support software
reuse. These exploit the facts that systems in the same application domain are sim-
ilar and have potential for reuse, that reuse is possible at different levels (from sim-
ple functions to complete applications), and that standards for reusable components

Problem Explanation

Increased maintenance If the source code of a reused software system
costs or component is not available then maintenance

costs may be increased because the reused elements
of the system may become increasingly incompatible
with system changes.

Lack of tool support CASE toolsets may not support development with
reuse. It may be difficult or impossible to integrate
these tools with a component library system. The
software process assumed by these tools may not
take reuse into account.

Not-invented-here Some software engineers prefer to rewrite
syndrome components because they believe they can improve

on them. This is partly to do with trust and partly to
do with the fact that writing original software is seen
as more challenging than reusing other people’s
software.

Creating and maintaining Populating a reusable component library and
a component library ensuring the software developers can use this library

can be expensive. Our current techniques for
classifying, cataloguing and retrieving software
components are immature.

Finding, understanding Software components have to be discovered in a
and adapting reusable library, understood and, sometimes, adapted to
components work in a new environment. Engineers must be

reasonably confident of finding a component in the
library before they will make include a component
search as part of their normal development process.

Figure 18.2 Problems
with reuse

SE8_C18.qxd 4/4/06 9:12 Page 418

••••

18.1 ■ The reuse landscape 419

facilitate reuse. Figure 18.3 shows a number of ways to support software reuse, each
of which is briefly described in Figure 18.4.

Given this array of techniques for reuse, the key question is which is the most
appropriate technique to use? Obviously, this depends on the requirements for the
system being developed, the technology and reusable assets available, and the exper-
tise of the development team. Key factors that you should consider when planning
reuse are:

1. The development schedule for the software If the software has to be developed
quickly, you should try to reuse off-the-shelf systems rather than individual com-
ponents. These are large-grain reusable assets. Although the fit to requirements
may be imperfect, this approach minimises the amount of development
required.

2. The expected software lifetime If you are developing a long-lifetime system, you
should focus on the maintainability of the system. In those circumstances, you
should not just think about the immediate possibilities of reuse but also the long-
term implications. You will have to adapt the system to new requirements, which
will probably mean making changes to components and how they are used. If
you do not have access to the source code, you should probably avoid using com-
ponents and systems from external suppliers; you cannot be sure that these sup-
pliers will be able to continue supporting the reused software.

3. The background, skills and experience of the development team All reuse tech-
nologies are fairly complex and you need quite a lot of time to understand and
use them effectively. Therefore, if the development team has skills in a par-
ticular area, this is probably where you should focus.

4. The criticality of the software and its non-functional requirements For a criti-
cal system that has to be certified by an external regulator, you may have to
create a dependability case for the system (discussed in Chapter 24). This is

Figure 18.3 The
reuse landscape

SE8_C18.qxd 4/4/06 9:12 Page 419

•• ••

420 Chapter 18 ■ Software reuse

difficult if you don’t have access to the source code of the software. If your
software has stringent performance requirements, it may be impossible to use
strategies such as reuse through program generators. These systems tend to gen-
erate relatively inefficient code.

5. The application domain In some application domains, such as manufacturing
and medical information systems, there are several generic products that may
be reused by configuring them to a local situation. If you are working in such
a domain, you should always consider these an option.

Approach Description

Design patterns Generic abstractions that occur across applications are
represented as design patterns showing abstract and
concrete objects and interactions.

Component-based Systems are developed by integrating components
development (collections of objects) that conform to component-

model standards. This is covered in Chapter 19.

Application frameworks Collections of abstract and concrete classes can be
adapted and extended to create application systems.

Legacy system wrapping Legacy systems (see Chapter 2) that can be ‘wrapped’
by defining a set of interfaces and providing access to
these legacy systems through these interfaces.

Service-oriented systems Systems are developed by linking shared services,
which may be externally provided.

Application product lines An application type is generalised around a common
architecture so that it can be adapted for different
customers.

COTS integration Systems are developed by integrating existing
application systems.

Configurable vertical A generic system is designed so that it can be
applications configured to the needs of specific system customers.

Program libraries Class and function libraries implementing commonly
used abstractions are available for reuse.

Program generators A generator system embeds knowledge of a particular
type of application and can generate systems or system
fragments in that domain.

Aspect-oriented software Shared components are woven into an application at
development different places when the program is compiled.

Figure 18.4
Approaches that
support software
reuse

SE8_C18.qxd 4/4/06 9:12 Page 420

••

18.2 ■ Design patterns 421

6. The platform on which the system will run Some components models, such as
COM/Active X, are specific to Microsoft platforms. If you are developing on
such a platform, this may be the most appropriate approach. Similarly, generic
application systems may be platform-specific and you may only be able to reuse
these if your system is designed for the same platform.

The range of available reuse techniques is such that, in most situations, there is
the possibility of some software reuse. Whether or not reuse is achieved is often a
managerial rather than a technical issue. Managers may be unwilling to compro-
mise their requirements to allow reusable components to be used, or they may decide
that original component development would help create a software asset base. They
may not understand the risks associated with reuse as well as they understand the
risks of original development. Therefore, although the risks of new software devel-
opment may be higher, some managers may prefer known to unknown risks.

18.2 Design patterns

When you try to reuse executable components, you are inevitably constrained by
detailed design decisions that have been made by the implementers of these com-
ponents. These range from the particular algorithms that have been used to imple-
ment the components to the objects and types in the component interfaces. When
these design decisions conflict with your particular requirements, reusing the com-
ponent is either impossible or introduces inefficiencies into your system.

One way around this is to reuse abstract designs that do not include implemen-
tation detail. You can implement these to fit your specific application requirements.
The first instances of this approach to reuse came in the documentation and publi-
cation of fundamental algorithms (Knuth, 1971) and, later, in the documentation of
abstract data types such as stacks, trees and lists (Booch, 1987). More recently, this
approach to reuse has been embodied in design patterns.

Design patterns were derived from ideas put forward by Christopher Alexander
(Alexander, et al., 1977), who suggested that there were certain patterns of building
design that were common and that were inherently pleasing and effective. The pattern
is a description of the problem and the essence of its solution, so that the solution may
be reused in different settings. The pattern is not a detailed specification. Rather, you
can think of it as a description of accumulated wisdom and experience, a well-tried
solution to a common problem. A quote from the hillside.net web site, which is ded-
icated to maintaining information about patterns, encapsulates their role in reuse:

Patterns and Pattern Languages are ways to describe best practices, good
designs, and capture experience in a way that it is possible for others to reuse
this experience.

••

SE8_C18.qxd 4/4/06 9:12 Page 421

••

422 Chapter 18 ■ Software reuse

Most designers think of design patterns as a way of supporting object-oriented design.
Patterns often rely on object characteristics such as inheritance and polymorphism to
provide generality. However, the general principle of encapsulating experience in a
pattern is one that is equally applicable to all software design approaches.

Gamma et al. (Gamma, et al., 1995) define the four essential elements of design
patterns:

1. A name that is a meaningful reference to the pattern

2. A description of the problem area that explains when the pattern may be applied

3. A solution description of the parts of the design solution, their relationships
and their responsibilities. This is not a concrete design description. It is a tem-
plate for a design solution that can be instantiated in different ways. This is
often expressed graphically and shows the relationships between the objects and
object classes in the solution.

4. A statement of the consequences—the results and trade-offs—of applying the
pattern. This can help designers understand whether a pattern can be effectively
applied in a particular situation.

These essential elements of a pattern description may be decomposed, as shown
in the example in Figure 18.5. For example, Gamma and his co-authors break down
the problem description into motivation (a description of why the pattern is useful)
and applicability (a description of situations where the pattern may be used). Under
the description of the solution, they describe the pattern structure, participants, col-
laborations and implementation.

To illustrate pattern description, I use the Observer pattern, taken from the book
by Gamma et al. This pattern can be used in a variety of situations where different
presentations of an object’s state are required. It separates the object that must be
displayed from the different forms of presentation. This is illustrated in Figure 18.6,
which shows two graphical presentations of the same data set. In my description, I
use the four essential description elements and supplement these with a brief state-
ment of what the pattern can do.

Graphical representations are normally used to illustrate the object classes that
are used in patterns and their relationships. These supplement the pattern descrip-
tion and add detail to the solution description. Figure 18.7 is the representation in
UML of the Observer pattern.

A huge number of published patterns are now available (see the book web pages
for links) covering a range of application domains and languages. The notion of a
pattern as a reusable concept has been developed in a number of areas apart from
software design, including configuration management, user interface design and inter-
action scenarios (Berczuk and Appleton, 2002; Borchers, 2001; Martin, et al., 2001;
Martin, et al., 2002).

The use of patterns is an effective form of reuse. However, I am convinced that
only experienced software engineers who have a deep knowledge of patterns can
use them effectively. These developers can recognise generic situations where a pattern

••

SE8_C18.qxd 4/4/06 9:12 Page 422

••

18.3 ■ Generator-based reuse 423

••

can be applied. Inexperienced programmers, even if they have read the pattern books,
will always find it hard to decide whether they can reuse a pattern or need to develop
a special-purpose solution.

18.3 Generator-based reuse

Concept reuse through patterns relies on describing the concept in an abstract way
and leaving it up to the software developer to create an implementation. An alter-
native approach to this is generator-based reuse (Biggerstaff, 1998). In this
approach, reusable knowledge is captured in a program generator system that can
be programmed by domain experts using either a domain-oriented language or an
interactive CASE tool that supports system generation. The application description
specifies, in an abstract way, which reusable components are to be used, how they

Pattern name: Observer

Description: Separates the display of the state of an object from the object itself
and allows alternative displays to be provided. When the object state changes, all
displays are automatically notified and updated to reflect the change.

Problem description: In many situations, it is necessary to provide multiple displays
of some state information, such as a graphical display and a tabular display. Not all
of these may be known when the information is specified. All alternative
presentations may support interaction and, when the state is changed, all displays
must be updated.

This pattern may be used in all situations where more than one display format for
state information may be required and where it is not necessary for the object that
maintains the state information to know about the specific display formats used.

Solution description: The structure of the pattern is shown in Figure 18.7. This
defines two abstract objects, Subject and Observer, and two concrete objects,
ConcreteSubject and ConcreteObject, which inherit the attributes of the related
abstract objects. The state to be displayed is maintained in ConcreteSubject, which
also inherits operations from Subject allowing it to add and remove Observers and
to issue a notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and
implements the Update () interface of Observer that allows these copies to be kept
in step. The ConcreteObserver automatically displays its state—this is not normally an
interface operation.

Consequences: The subject only knows the abstract Observer and does not know
details of the concrete class. Therefore there is minimal coupling between these
objects. Because of this lack of knowledge, optimisations that enhance display
performance are impractical. Changes to the subject may cause a set of linked
updates to observers to be generated some of which may not be necessary.

Figure 18.5 A
description of the
Observer pattern

SE8_C18.qxd 4/4/06 9:12 Page 423

••••

424 Chapter 18 ■ Software reuse

are to be combined and their parameterisation. Using this information, an opera-
tional software system can be generated (Figure 18.8).

Generator-based reuse takes advantage of the fact that applications in the same
domain, such as business systems, have common architectures and carry out com-
parable functions. For example, as I discussed in Chapter 13, data-processing sys-
tems normally follow an input-process-output model and usually include operations
such as data verification and report generation. Therefore, generic components for
selecting items from a database, checking that these are within range and creating
reports can be created and incorporated in an application generator. To reuse these
components, the programmer simply has to select the data items to be used, the
checks to be applied and the format of reports.

Generator-based reuse has been particularly successful for business application
systems, and there are many different business application generator products avail-
able. These may generate complete applications or may partially automate applica-
tion creation and leave the programmer to fill in specific details. The
generator-based approach to reuse is also used in other areas, including:

Figure 18.6 Multiple
displays

Figure 18.7 The
Observer pattern

SE8_C18.qxd 4/4/06 9:12 Page 424

••••

18.3 ■ Generator-based reuse 425

1. Parser generators for language processing The generator input is a grammar
describing the language to be parsed, and the output is a language parser. This
approach is embodied in systems such as lex and yacc for C and JavaCC, a
compiler for Java.

2. Code generators in CASE tools The input to these generators is a software design
and the output is a program implementing the designed system. These may be
based on UML models and, depending on the information in the UML mod-
els, generate either a complete program or component, or a code skeleton. The
software developer then adds detail to complete the code.

These approaches to generator-based reuse take advantage of the common struc-
ture of applications in these areas. The technique has also been used in more spe-
cific application domains such as command and control systems (O’Connor, et al.,
1994) and scientific instrumentation (Butler, 1994) where libraries of components
have been developed. Domain experts then use a domain-specific language to com-
pose these components and create applications. However, there is a high initial cost
in defining and implementing the domain concepts and composition language. This
has meant that many companies are reluctant to take the risks of adopting this approach.

Generator-based reuse is cost-effective for applications such as business data pro-
cessing. It is much easier for end-users to develop programs using generators com-
pared to other component-based approaches to reuse. Inevitably, however, there are
inefficiencies in generated programs. This means that it may not be possible to use
this approach in systems with high-performance or throughput requirements.

Generative programming is a key component of emerging techniques of software
development that combine program generation with component-based develop-
ment. Czarnecki and Eisenecher’s book (Czarnecki and Eisenecher, 2000)
describes these newer approaches.

The most developed of these approaches is aspect-oriented software development
(AOSD) (Elrad, et al., 2001). Aspect-oriented software development addresses one
of the major problems in software design—the problem of separation of concerns.
Separation of concerns is a basic design principle; you should design your software
so that each unit or component does one thing and one thing only. For example, in
the LIBSYS system, there should be a component concerned with searching for doc-
uments, a component concerned with printing documents, a component concerned
with managing downloads, and so on.

Figure 18.8
Generator-based
reuse

SE8_C18.qxd 4/4/06 9:12 Page 425

••••

426 Chapter 18 ■ Software reuse

However, in many situations, concerns are not associated with clearly defined appli-
cation functions but are cross-cutting—that is, they affect all of the components in the
system. For example, say you want to keep track of the usage of each of the system
modules by each system user. You therefore have a monitoring concern that has to be
associated with all components. This can’t be simply implemented as an object that is
referenced by these components. The specific monitoring that is carried out needs con-
text information from the system function that is being monitored.

In aspect-oriented programming, these cross-cutting concerns are implemented
as aspects and, within the program, you define where an aspect should be associ-
ated. These are called the join points. Aspects are developed separately; then, in a
precompilation step called aspect weaving, they are linked to the join points (Figure
18.9). Aspect weaving is a form of program generation—the output from the
weaver is a program where the aspect code has been integrated. A development of
Java called AspectJ (Kiczales, et al., 2001) is the best-known language for aspect-
oriented development.

AOSD is an important research topic but it has not yet been widely used for
industrial software development. There are problems with this approach—verification
and validation are difficult and we need a better understanding of the relationship
between aspects and non-functional system properties. However, AOSD is rapidly
developing as an important, new software engineering technique. I have therefore
included a chapter on this topic in the new section on Emerging Technologies.

18.4 Application frameworks

The early proponents of object-oriented development suggested that objects were
the most appropriate abstraction for reuse. However, experience has shown that objects
are often too fine-grain and too specialised to a particular application. Instead, it

Figure 18.9 Aspect
weaving

SE8_C18.qxd 4/4/06 9:12 Page 426

••••

18.4 ■ Application frameworks 427

has become clear that object-oriented reuse is best supported in an object-oriented
development process through larger-grain abstractions called frameworks.

A framework (or application framework) is a sub-system design made up of a
collection of abstract and concrete classes and the interface between them (Wirfs-
Brock and Johnson, 1990). Particular details of the application sub-system are imple-
mented by adding components and by providing concrete implementations of
abstract classes in the framework. Frameworks are rarely applications in their own
right. Applications are normally constructed by integrating a number of frameworks.

Fayad and Schmidt (Fayad and Schmidt, 1997) discuss three classes of framework:

1. System infrastructure frameworks These frameworks support the development
of system infrastructures such as communications, user interfaces and compil-
ers (Schmidt, 1997).

2. Middleware integration frameworks These consist of a set of standards and asso-
ciated object classes that support component communication and information
exchange. Examples of this type of framework include CORBA, Microsoft’s
COM+, and Enterprise Java Beans. These frameworks provide support for stan-
dardised component models, as discussed in Chapter 19.

3. Enterprise application frameworks These are concerned with specific applica-
tion domains such as telecommunications or financial systems (Baumer, et al.,
1997). These embed application domain knowledge and support the develop-
ment of end-user applications.

As the name suggests, a framework is a generic structure that can be extended
to create a more specific sub-system or application. It is implemented as a collec-
tion of concrete and abstract object classes. To extend the framework, you may have
to add concrete classes that inherit operations from abstract classes in the frame-
work. In addition, you may have to define callbacks. Callbacks are methods that
are called in response to events recognised by the framework.

One of the best-known and most widely used frameworks for GUI design is the
Model-View-Controller (MVC) framework (Figure 18.10). The MVC framework
was originally proposed in the 1980s as an approach to GUI design that allowed
for multiple presentations of an object and separate styles of interaction with each
of these presentations. The MVC framework supports the presentation of data in
different ways (see Figure 18.6) and separate interaction with each of these pre-
sentations. When the data is modified through one of the presentations, all of the
other presentations are updated.

Frameworks are often instantiations of a number of patterns, as discussed in Section
18.2. For example, the MVC framework includes the Observer pattern that is
described in Figure 18.5, the Strategy pattern that is concerned with updating the
model, the Composite pattern and a number of others that are discussed by Gamma
et al. (Gamma, et al., 1995).

SE8_C18.qxd 4/4/06 9:12 Page 427

•• ••

428 Chapter 18 ■ Software reuse

Applications that are constructed using frameworks can be the basis for further
reuse through the concept of software product lines or application families, as dis-
cussed in Section 18.5.2. Because these applications are constructed using a frame-
work, modifying family members to create new family members is simplified.
However, frameworks are usually more abstract than generic products and thus allow
a wider range of applications to be created.

The fundamental problem with frameworks is their inherent complexity and the
time it takes to learn to use them. Several months may be required to completely
understand a framework, so it is likely that, in large organisations, some software
engineers will become framework specialists. There is no doubt that this is an effec-
tive approach to reuse, but it is very expensive to introduce into software develop-
ment processes.

18.5 Application system reuse

Application system reuse involves reusing entire application systems either by con-
figuring a system for a specific environment or by integrating two or more systems
to create a new application. As I suggested in Section 18.1, application system reuse
is often the most effective reuse technique. It involves the reuse of large-grain assets
that can be quickly configured to create a new system.

In this section, I discuss two types of application reuse: the creation of new sys-
tems by integrating two or more off-the-shelf applications and the development of
product lines. A product line is a set of systems based around a common core archi-
tecture and shared components. The core system is specifically designed to be con-
figured and adapted to suit the specific needs of different system customers.

Controller state View modification
messages

User
inputs

Model
edits

Model queries
and updates

Controller methods

Model state

Model methods

Controller state

Controller methods

Figure 18.10 The
Model-View-
Controller framework

SE8_C18.qxd 4/4/06 9:12 Page 428

••

18.5 ■ Application system reuse 429

18.5.1 COTS product reuse

A commercial-off-the-shelf (COTS) product is a software system that can be used with-
out change by its buyer. Virtually all desktop software and a wide variety of server
products are COTS software. Because this software is designed for general use, it usu-
ally includes many features and functions so has the potential to be reused in differ-
ent applications and environments. Although there can be problems with this approach
to system construction (Tracz, 2001), there is an increasing number of success stories
that demonstrate its viability (Baker, 2002; Balk and Kedia, 2000; Pfarr and Reis, 2002).

Some types of COTS product have been reused for many years. Database systems
are perhaps the best example of this. Very few developers would consider implementing
their own database management system. However, until the mid-1990s, there were only
a few large systems such as database management systems and teleprocessing moni-
tors, that were routinely reused. Most large systems were designed as standalone sys-
tems, and there were often many problems in making these systems work together.

It is now common for large systems to have defined Application Programming
Interfaces (APIs) that allow program access to system functions. This means that
creating large systems such as e-commerce systems by integrating a range of COTS
systems should always be considered as a serious design option. Because of the func-
tionality that these COTS products offer, it is possible to reduce costs and delivery
times by orders of magnitude compared to the development of new software.
Furthermore, risks may be reduced as the product is already available and managers
can see whether it meets their requirements.

To develop systems using COTS products, you have to make a number of design
choices:

1. Which COTS products offer the most appropriate functionality? If you don’t
already have experience with a COTS product, it can be difficult to decide which
product is the most suitable.

2. How will data be exchanged? In general, individual products use unique data
structures and formats, and you have to write adaptors that convert from one
representation to another.

3. What features of a product will actually be used? Most COTS products have
more functionality than you need, and functionality is often duplicated across
different products. You have to decide which features in what product are most
appropriate for your requirements. If possible, you should also deny access to
unused functionality because this can interfere with normal system operation.
The failure of the first flight of the Ariane 5 rocket, discussed in Chapter 19
(Nuseibeh, 1997), was a consequence of failure in unused functionality in a
reused sub-system.

As an illustration of COTS integration, assume that a large organisation wishes
to develop a procurement system that allows staff to place orders from their desk-
top. By introducing this system across the organisation, the company estimates that

••

SE8_C18.qxd 4/4/06 9:12 Page 429

•• ••

430 Chapter 18 ■ Software reuse

it can save $5 million per year. By centralizing buying, the new procurement sys-
tem can ensure that orders are always made from suppliers who offer the best prices
and should reduce the paperwork costs associated with orders. As with manual sys-
tems, this involves choosing the goods available from a supplier, creating an order,
having the order approved, sending the order to a supplier, receiving the goods and
confirming that payment should be made.

The company has an existing ordering system that is used by the procurement
office. This is already integrated with their invoicing and delivery system. To cre-
ate the new ordering system, they integrate the old one with a web-based e-
commerce platform and an electronic mail system that handles communications with
users. The structure of the final procurement system constructed using COTS is shown
in Figure 18.11.

This procurement system is client–server based, and on the client, standard web
browsing and e-mail software are used. These are already integrated by the soft-
ware suppliers. On the server, the e-commerce platform has to integrate with the
existing ordering system through an adaptor. The e-commerce system has its own
format for orders, conformations of delivery, and so forth, which have to be con-
verted into the format used by the ordering system. The e-commerce system has
built-in integration with the e-mail system to send notifications to users, but the order-
ing system was never designed for this. Therefore, another adaptor has to be writ-
ten to convert the notifications into e-mail messages.

In principle, using a large-scale COTS system is the same as using any other
more specific component. You have to understand the system interfaces and use
them exclusively to communicate with the component; you have to trade-off spe-
cific requirements against rapid development and reuse; and you have to design a
system architecture that allows the COTS systems to operate together.

However, the fact that these products are usually large systems in their own right
and are often sold as separate standalone systems introduces additional problems.
Boehm and Abts (Boehm and Abts, 1999) discuss four problems with COTS sys-
tem integration:

Figure 18.11 A
COTS-based
procurement system

SE8_C18.qxd 4/4/06 9:12 Page 430

••

18.5 ■ Application system reuse 431

1. Lack of control over functionality and performance Although the published inter-
face of a product may appear to offer the required facilities, these may not be
properly implemented or may perform poorly. The product may have hidden
operations that interfere with its use in a specific situation. Fixing these prob-
lems may be a priority for the COTS product integrator but may not be of real
concern to the product vendor. Users may simply have to find workarounds to
problems if they wish to reuse the COTS product.

2. Problems with COTS system interoperability It is sometimes difficult to get COTS
products to work together because each product embeds its own assumptions
about how it will be used. Garlan et al. (Garlan, et al., 1995), reporting on their
experience of trying to integrate four COTS products, found that three of these
products were event-based but each used a different model of events and assumed
that it had exclusive access to the event queue. As a consequence, the project
required five times as much effort as originally predicted and the schedule grew
to two years rather than the predicted six months.

3. No control over system evolution Vendors of COTS products make their own
decisions on system changes in response to market pressures. For PC products
in particular, new versions are often produced frequently and may not be com-
patible with all previous versions. New versions may have additional unwanted
functionality, and previous versions may become unavailable and unsupported.

4. Support from COTS vendors The level of support available from COTS ven-
dors varies widely. Because these are off-the-shelf systems, vendor support is
particularly important when problems arise because developers do not have access
to the source code and detailed documentation of the system. While vendors
may commit to providing support, changing market and economic circumstances
may make it difficult for them to deliver this commitment. For example, a COTS
system vendor may decide to discontinue a product because of limited demand
or may be taken over by another company that does not wish to support all of
its current products.

Of course, it is unlikely that all of these problems will arise in every case, but
my guess is that at least one of them should be expected in most COTS integration
projects. Consequently, the cost and schedule benefits from COTS reuse are likely
to be less than they might first appear.

Furthermore, Boehm and Abts reckon that, in many cases, the cost of system
maintenance and evolution may be greater when COTS products are used. All of
the above difficulties are lifecycle problems; they don’t just affect the initial devel-
opment of the system. The further removed from the original system developers the
people involved in the system maintenance become, the more likely it is that real
difficulties will arise with the integrated COTS products.

In spite of these problems, the benefits of COTS product reuse are potentially
large because these systems offer so much functionality to the reuser. Months and
sometimes years of implementation effort can be saved if an existing system is reused

••

SE8_C18.qxd 4/4/06 9:12 Page 431

••

432 Chapter 18 ■ Software reuse

and system development times drastically reduced. For example, the procurement
system that I described in Figure 18.11 was implemented and deployed in a very
large company in nine months rather than the three years that they originally esti-
mated for a new system. If rapid system delivery is essential and you have some
requirements flexibility, then COTS product integration is often the most effective
reuse strategy to adopt.

18.5.2 Software product lines

One of the most effective approaches to reuse is creating software product lines or appli-
cation families. A product line is a set of applications with a common application-specific
architecture, as discussed in Chapter 13. Each specific application is specialised in
some way. The common core of the application family is reused each time a new
application is required. The new development may involve specific component con-
figuration, implementing additional components and adapting some of the compo-
nents to meet new demands.

Various types of specialisation of a software product line may be developed:

1. Platform specialisation Versions of the application are developed for different
platforms. For example, versions of the application may exist for Windows, Solaris
and Linux platforms. In this case, the functionality of the application is nor-
mally unchanged; only those components that interface with the hardware and
operating system are modified.

2. Environment specialisation Versions of the application are created to handle
particular operating environments and peripheral devices. For example, a sys-
tem for the emergency services may exist in different versions depending on
the type of radio system used. In this case, the system components are changed
to reflect the functionality of the communications equipment used.

3. Functional specialisation Versions of the application are created for specific
customers who have different requirements. For example, a library automation
system may be modified depending on whether it is used in a public library, a
reference library or a university library. In this case, components that imple-
ment functionality may be modified and new components added to the system.

4. Process specialisation The system is adapted to cope with specific business pro-
cesses. For example, an ordering system may be adapted to cope with a cen-
tralised ordering process in one company and a distributed process in another.

Software product lines are designed to be reconfigured. This reconfiguration may
involve adding or removing components from the system, defining parameters and
constraints for system components, and including knowledge of business processes.
Software product lines can be configured at two points in the development process:

••

SE8_C18.qxd 4/4/06 9:12 Page 432

••

18.5 ■ Application system reuse 433

••

• Deployment-time configuration where a generic system is designed for con-
figuration by a customer or consultants working with the customer. Knowledge
of the customer’s specific requirements and the system’s operating environment
is embedded in a set of configuration files that are used by the generic system.

• Design-time configuration where the organisation that is developing the soft-
ware modifies a common product line core by developing, selecting or adapt-
ing components to create a new system for a customer.

Deployment-time configuration is the approach used in vertical software pack-
ages that are designed for a specific application such as a hospital information man-
agement system. It is also used in Enterprise Resource Planning (ERP) systems
(O’Leary, 2000) such as those produced by SAP and BEA. These are large-scale,
integrated systems designed to support business processes such as ordering and invoic-
ing, inventory management and manufacturing scheduling. The configuration pro-
cess for these systems involves gathering detailed information about the customer’s
business and business processes and then embedding this information in a config-
uration database. This often requires detailed knowledge of configuration notations
and tools and is usually carried out by consultants working alongside system cus-
tomers. Figure 18.12 illustrates the organisation of an ERP system.

The generic ERP system includes a large number of modules that may be com-
posed in different ways to create a specific system. The configuration process involves
choosing which modules are to be included, configuring these individual modules,
defining business processes and business rules, and defining the structure and
organisation of the system database.

ERP systems are perhaps the most widespread example of software reuse. The
majority of large companies use these systems to support some or all of their func-
tions. However, there is the obvious limitation that the functionality of the system
is restricted to the functionality of the generic core. Furthermore, a company’s processes

Figure 18.12
Configuration of an
ERP system

SE8_C18.qxd 4/4/06 9:12 Page 433

••

434 Chapter 18 ■ Software reuse

and operations have to be expressed in the system configuration language, and there
may be a mismatch between the concepts in the business and the concepts supported
in the configuration language. For example, in an ERP system that was sold to a
university, the concept of a customer had to be defined. This caused real problems
because universities have multiple types of customer (students, research-funding agen-
cies, educational charities, etc.) and none of these are comparable to a commercial
customer. A serious mismatch between the business model used by the system and
that of the customer makes it highly probable that the ERP system will not meet
the customer’s real needs (Scott, 1999).

The alternative approach to application family reuse is configuration by the sys-
tem supplier before delivery to the customer. The supplier starts with a generic sys-
tem and then, by modifying and extending modules in this system, creates a
specific system that delivers the required customer functionality. This approach usu-
ally involves changing and extending the source code of the core system so greater
flexibility is possible than with deployment-time configuration.

Software product lines usually emerge from existing applications. That is, an organ-
isation develops an application and, when a new application is required, uses this as a
basis for the new application. Further demands for new applications cause the process
to continue. However, because change tends to corrupt application structure, at some
stage a specific decision to design a generic product line is made. This design is based
on reusing the knowledge gained from developing the initial set of applications.

You can think of software product lines as instantiations and specialisations of
more general application architectures, as discussed in Chapter 13. An application
architecture is very general; software product lines specialise the architecture for a
specific type of application. For example, consider a product line system that is
designed to handle vehicle despatching for emergency services. Operators of this
system take calls about incidents, find the appropriate vehicle to respond to the incident

••

Figure 18.13 The
architecture of a
resource allocation
system

SE8_C18.qxd 4/4/06 9:12 Page 434

••

18.5 ■ Application system reuse 435

••

and despatch the vehicle to the incident site. The developers of such a system may
market versions of this for police, fire and ambulance services.

This vehicle-despatching system is an example of a resource management sys-
tem whose application architecture is shown in Figure 18.13. You can see how this
four-layer structure is instantiated in Figure 18.14, which shows the modules that
might be included in a vehicle-despatching system product line. The components
at each level in the product line system are:

1. At the user interface level, there are components providing an operator display
interface and an interface with the communications systems used.

2. At the I/O management level (level 2), there are components that handle oper-
ator authentication, generate reports of incidents and vehicles despatched, sup-
port map output and route planning, and provide a mechanism for operators to
query the system databases.

3. At the resource management level (level 3), there are components that allow
vehicles to be located and despatched, components to update the status of vehi-
cles and equipment, and a component to log details of incidents.

4. At the database level, as well as the usual transaction management support, there
are separate databases of vehicles, equipment and maps.

To create a specific version of this system, you may have to modify individual
components. For example, the police have a large number of vehicles but a small
number of vehicle types, whereas the fire service has many types of specialised vehi-
cles, so a different vehicle database structure may need to be incorporated into the
system.

Figure 18.14 The
product line
architecture of a
vehicle-dispatching
system

SE8_C18.qxd 4/4/06 9:12 Page 435

••••

436 Chapter 18 ■ Software reuse

Figure 18.15 shows the steps involved in adapting an application family to cre-
ate a new application. The steps involved in this general process are:

1. Elicit stakeholder requirements You may start with a normal requirements engi-
neering process. However, because a system already exists, you will need to
demonstrate and have stakeholders experiment with that system, expressing their
requirements as modifications to the functions provided.

2. Choose closest-fit family member The requirements are analysed and the fam-
ily member that is the closest fit is chosen for modification. This need not be
the system that was demonstrated.

3. Renegotiate requirements As more details of required changes emerge and the
project is planned, there may be some requirements renegotiation to minimise
the changes that are needed.

4. Adapt existing system New modules are developed for the existing system, and
existing system modules are adapted to meet the new requirements.

5. Deliver new family member The new instance of the product line is delivered
to the customer. At this stage, you should document its key features so that it
may be used as a basis for other system developments in the future.

When you create a new member of an application family, you may have to find
a compromise between reusing as much of the generic application as possible and
satisfying detailed stakeholder requirements. The more detailed the system require-
ments, the less likely it is that the existing components will meet these requirements.
However, if stakeholders are willing to be flexible and to limit the system modifi-
cations that are required, you can usually deliver the system more quickly and at a
lower cost.

In general, developing applications by adapting a generic version of the appli-
cation means that a very high proportion of the application code is reused.
Furthermore, application experience is often transferable from one system to
another, so that when software engineers join a development team, their learning
process is shortened. Testing is simplified because tests for large parts of the appli-
cation may also be reused, reducing the overall application development time.

Elicit
stakeholder

requirements

Choose
closest-fit

family member
Deliver new

family member

Renegotiate
requirements

Adapt existing
system

Figure 18.15
Product instance
development

SE8_C18.qxd 4/4/06 9:12 Page 436

••••

Chapter 18 ■ Further Reading 437

F U R T H E R R E A D I N G

Reuse-based Software Engineering. A comprehensive discussion of different approaches to
software reuse. The authors cover technical reuse issues and managing reuse processes. (H. Mili,
et al., 2002, John Wiley & Sons.)

‘A Lifecycle Process for the effective reuse of commercial off-the-shelf software’. This is a good
general introduction, covering the advantages and disadvantages of using COTS in software
engineering. (C. L. Braun, Proc. Symposium on Software Reusability, Los Angeles, 1999. ACM Press.
Available from the ACM Digital Library.)

■ The advantages of software reuse are lower costs, faster software development and lower
risks. System dependability is increased and specialists can be used more effectively by
concentrating their expertise on the design of reusable components.

■ Design patterns are high-level abstractions that document successful design solutions. They
are fundamental to design reuse in object-oriented development. A pattern description
should include a pattern name, a problem and solution description, and a statement of the
results and trade-offs of using the pattern.

■ Program generators are an alternative approach to concept reuse where the reusable
concepts are embedded in a generator system. The designer specifies the abstractions
required using a domain-specific language, and an executable program is generated.

■ Applications frameworks are collections of concrete and abstract objects that are designed
to be reused through specialisation and the addition of new objects.

■ COTS product reuse is concerned with the reuse of large-scale, off-the-shelf systems. These
provide a lot of functionality, and their reuse can radically reduce costs and development time.

■ Potential problems with COTS-based reuse include lack of control over functionality and
performance, lack of control over system evolution, the need for support from external
vendors and difficulties in ensuring that systems can interoperate.

■ Enterprise Resource Planning systems are very widely used. Specific ERP systems are
created by configuring a generic system at deployment time with information about the
customer’s business.

■ Software product lines are related applications that are developed from one or more base
applications. A generic system is adapted and specialised to meet specific requirements for
functionality, target platform or operational configuration.

K E Y P O I N TS

SE8_C18.qxd 4/4/06 9:12 Page 437

438 Chapter 18 ■ Software reuse

Design Patterns: Elements of Reusable Object-oriented Software. This is the original software
patterns handbook that introduced software patterns to a wide community. (E. Gamma, et al., 1995,
Addison-Wesley.)

‘Aspect-oriented programming’. This special issue of the CACM has a number of articles on aspect-
oriented software development. It is an excellent starting point for reading on this topic. (Comm.
ACM, 44(10), October 2001.)

E X E R C I S E S

18.1 What are the major technical and nontechnical factors that hinder software reuse? Do you
reuse much software, and if not, why?

18.2 Suggest why the savings in cost from reusing existing software is not simply proportional to
the size of the components that are reused.

18.3 Give four circumstances where you might recommend against software reuse.

18.4 Why are patterns an effective form of design reuse? What are the disadvantages to this
approach to reuse?

18.5 Apart from the application domains discussed here, suggest two other domains where
generator-based reuse could be successful. Explain why you think that this approach to reuse
will be cost-effective in these domains.

18.6 Explain why adaptors are usually needed when systems are constructed by integrating COTS
products.

18.7 Identify six possible risks that can arise when systems are constructed using COTS. What
steps can a company take to reduce these risks?

18.8 Using a general information system architecture (discussed in Chapter 13) as a starting point,
design an application family of library information systems that could be used in book, film,
music and newspaper cutting libraries.

18.9 Using the example of the weather station system described in Chapter 14, suggest an
architecture for a family of applications that are concerned with remote monitoring and data
collection.

18.10 The reuse of software raises a number of copyright and intellectual property issues. If a
customer pays a software contractor to develop a system, who has the right to reuse the
developed code? Does the software contractor have the right to use that code as a basis for a
generic component? What payment mechanisms might be used to reimburse providers of
reusable components? Discuss these and other ethical issues associated with the reuse of
software.

••

SE8_C18.qxd 4/4/06 9:12 Page 438

Component-based
software engineering

19

Objectives
The objective of this chapter is to describe a software development
process based on the composition of reusable, standardised
components. When you have read this chapter, you will:

■ know that component-based software engineering is concerned with
developing standardised components based on a component model
and composing these into application systems;

■ understand what is meant by a component and a component model;

■ know the principal activities in the CBSE process and understand
why you have to make requirements compromises so that
components can be reused;

■ understand some of the difficulties and problems that arise during
the process of component composition.

Contents
19.1 Components and component models

19.2 The CBSE process

19.3 Component composition

SE8_C19.qxd 4/4/06 9:13 Page 439

••••

440 Chapter 19 ■ Component-based software engineering

As I suggested in Chapter 18, reuse-based software engineering is becoming the
main development approach for business and commercial systems. The entities that
are reused range from fine-grain functions to entire application systems. However,
until relatively recently, it was difficult to reuse medium-grain program components.
Medium-grain components are significantly larger than individual objects or pro-
cedures, with more functionality, but they are smaller and more specific than appli-
cation systems. Fortunately, developments in standardisation promoted by major
software vendors now mean that components can interoperate within a framework
such as CORBA. This has opened up opportunities for systematic reuse through
component-based software engineering.

Component-based software engineering (CBSE) emerged in the late 1990s as a
reuse-based approach to software systems development. Its creation was motivated
by designers’ frustration that object-oriented development had not led to extensive
reuse, as originally suggested. Single object classes were too detailed and specific,
and often had to be bound with an application at compile-time. You had to have
detailed knowledge of the classes to use them, which usually meant that you had
to have the component source code. This made marketing objects as reusable com-
ponents difficult. In spite of early optimistic predictions, no significant market for
individual objects has ever developed.

CBSE is the process of defining, implementing and integrating or composing loosely
coupled independent components into systems. It has become as an important soft-
ware development approach because software systems are becoming larger and more
complex and customers are demanding more dependable software that is developed
more quickly. The only way that we can cope with complexity and deliver better
software more quickly is to reuse rather than re-implement software components.

The essentials of component-based software engineering are:

1. Independent components that are completely specified by their interfaces.
There should be a clear separation between the component interface and its imple-
mentation so that one implementation of a component can be replaced by another
without changing the system.

2. Component standards that facilitate the integration of components. These stan-
dards are embodied in a component model and define, at the very minimum, how
component interfaces should be specified and how components communicate. Some
models define interfaces that should be implemented by all conformant compo-
nents. If components conform to standards, then their operation is independent
of their programming language. Components written in different languages can
be integrated into the same system.

3. Middleware that provides software support for component integration. To make
independent, distributed components work together, you need middleware sup-
port that handles component communications. Middleware such as CORBA
(Pope, 1998), discussed in Chapter 12, handles low-level level issues efficiently
and allows you to focus on application-related problems. In addition, middleware

SE8_C19.qxd 4/4/06 9:13 Page 440

••••

to implement a component model may provide support for resource allocation,
transaction management, security and concurrency.

4. A development process that is geared to component-based software engineer-
ing. If you try to add a component-based approach to a development process
that is geared to original software production, you will find that the assump-
tions inherent in the process limit the potential of CBSE. I discuss CBSE devel-
opment processes in Section 19.2.

Component-based development is being increasingly adopted as a mainstream
approach to software engineering even if reusable components are not available.
Underlying CBSE are sound design principles that support the construction of under-
standable and maintainable software. Components are independent so they do not
interfere with each other’s operation. Implementation details are hidden, so the com-
ponent’s implementation can be changed without affecting the rest of the system.
The components communicate through well-defined interfaces, so if these interfaces
are maintained, one component can be replaced by another that provides additional
or enhanced functionality. In addition, component infrastructures provide high-level
platforms that reduce the costs of application development.

Although CBSE is developing rapidly into a mainstream approach to software
development, a number of problems remain:

1. Component trustworthiness Components are black-box program units, and the
source code of the component may not be available to component users. In such
cases, how does a user know that a component is to be trusted? The compo-
nent may have undocumented failure modes that compromise the system
where the component is used. Its non-functional behaviour may not be as expected
and, most seriously, the black-box component could be a Trojan horse that con-
ceals malicious code that breaches system security.

2. Component certification Closely related to trustworthiness is the issue of cer-
tification. It has been proposed that independent assessors should certify com-
ponents to assure users that the components could be trusted. However, it is
not clear how this can be made to work. Who would pay for certification, who
would be responsible if the component did not operate as certified, and how
could the certifiers limit their liability? In my view, the only viable solution is
to certify that components conform to a formal specification. However, the indus-
try does not appear to be willing to pay for this.

3. Emergent property prediction As I discussed in Chapter 2, all systems have
emergent properties, and trying to predict and control these emergent proper-
ties is important in the system development process. Because components are
opaque, predicting their emergent properties is particularly difficult.
Consequently, you may find that when components are integrated, the result-
ing system has undesirable properties that limit its use.

Chapter 19 ■ Component-based software engineering 441

SE8_C19.qxd 4/4/06 9:13 Page 441

••••

442 Chapter 19 ■ Component-based software engineering

4. Requirements trade-offs You usually have to make trade-offs between ideal
requirements and available components in the system specification and design
process. At the moment, making these trade-offs is an intuitive process. We
need a more structured, systematic trade-off analysis method to help designers
select and configure components.

The main use of CBSE so far has been to build enterprise information systems,
such as e-commerce systems. The components that are reused are internally devel-
oped or are procured from known, trusted suppliers. Although some vendors sell
components online, most companies are still reluctant to trust externally procured,
binary components. It is unlikely that the complete vision of CBSE with specialised
component suppliers will be realised until these major problems have been solved.

19.1 Components and component models

There is general agreement in the community that a component is an indepen-
dent software unit that can be composed with other components to create a soft-
ware system. Beyond that, however, different people have proposed definitions of
a software component. Councill and Heineman (Councill and Heineman, 2001) define
a component as:

a software element that conforms to a component model and can be inde-
pendently deployed and composed without modification according to a com-
position standard.

This definition is essentially based on standards—a software unit that conforms
to these standards is a component. Szyperski (Szyperski, 2002), however, does not
mention standards in his definition of a component but focuses instead on the key
characteristics of components:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.

Szyperski also states that a component has no externally observable state. This
means that copies of components are indistinguishable. However, some component
models, such as the Enterprise Java Beans model, allow stateful components, so
these clearly do not correspond with Szyperski’s definition of a component. While
stateless components are certainly simpler to use, I think that CBSE should accom-
modate both stateless and stateful components.

SE8_C19.qxd 4/4/06 9:13 Page 442

••••

What these definitions have in common is that they agree that components are
independent and that they are the fundamental unit of composition in a system. In
my view, a complete definition of a component can be derived from both of these
proposals. Figure 19.1 shows what I consider to be the essential characteristics of
a component as used in CBSE.

These formal component definitions are rather abstract and do not really give you
a clear picture of what a component does. One of the most useful ways to consider a
component is as a standalone service provider. When a system needs some service, it
calls on a component to provide that service without caring about where that compo-
nent is executing or the programming language used to develop the component. For
example, a component in a library system might provide a search service that allows
users to search different library catalogues; a component that converts from one graph-
ical format to another (e.g., TIFF to JPEG) provides a data-conversion service.

Viewing a component as a service provider emphasises two critical characteris-
tics of a reusable component:

1. The component is an independent executable entity. Source code is not avail-
able, so the component does not have to be compiled before it is used with
other system components.

Component
characteristic Description

Standardised Component standardisation means that a component used in a
CBSE process has to conform to some standardised component
model. This model may define component interfaces, component
metadata, documentation, composition and deployment.

Independent A component should be independent—it should be possible to
compose and deploy it without having to use other specific
components. In situations where the component needs externally
provided services, these should be explicitly set out in a ‘requires’
interface specification.

Composable For a component to be composable, all external interactions
must take place through publicly defined interfaces. In addition, it
must provide external access to information about itself, such as
its methods and attributes.

Deployable To be deployable, a component has to be self-contained and
must be able to operate as a standalone entity on a component
platform that implements the component model. This usually
means that the component is binary and does not have to be
compiled before it is deployed.

Documented Components have to be fully documented so that potential users
can decide whether or not the components meet their needs.
The syntax and, ideally, the semantics of all component interfaces
have to be specified.

Figure 19.1
Component
characteristics

19.1 ■ Components and component models 443

SE8_C19.qxd 4/4/06 9:13 Page 443

••••

444 Chapter 19 ■ Component-based software engineering

2. The services offered by a component are made available through an interface,
and all interactions are through that interface. The component interface is expressed
in terms of parameterised operations and its internal state is never exposed.

Components are defined by their interfaces and, in the most general cases, can
be thought of as having two related interfaces, as shown in Figure 19.2.

1. A provides interface defines the services provided by the component. The pro-
vides interface, essentially, is the component API. It defines the methods that
can be called by a user of the component. Provides interfaces are indicated by
a circle at the end of a line from the component icon.

2. A requires interface specifies what services must be provided by other com-
ponents in the system. If these are not available, then the component will not
work. This does not compromise the independence or deployability of the com-
ponent because it is not required that a specific component should be used to
provide the services. Requires interfaces are indicated by a semi-circle at the
end of a line from the component icon. Notice that provides and required inter-
face icons can fit together like a ball and socket.

For example, Figure 19.3 shows a model of a component that has been designed
to collect and collate information from an array of sensors. It runs autonomously to
collect data over a period of time and, on request, provides collated data to a calling
component. The provides interface includes methods to add, remove, start, stop and
test sensors. It also includes reporting methods (report and listAll) that report the data
collected and the sensor configuration. Although I have not shown this here, these meth-
ods naturally have associated parameters specifying the sensor locations and so on.

The collector component requires that sensors provide a management interface
and a data interface. These have parameters that specify the operation and the data
to be collected. I have deliberately designed the required interface so that it does not
include specific operations such as Test. The more abstract requires interface allows
the collector component to be used with sensors with different interfaces. An adap-
tor component is used as an interface between the collector and the hardware-specific
sensor interface.

Object classes have associated methods that are clearly similar to the methods
defined in component interfaces. What, then, is the distinction between components
and objects? Components are usually developed using an object-oriented approach,
but they differ from objects in a number of important ways:

Figure 19.2
Component
interfaces

SE8_C19.qxd 4/4/06 9:13 Page 444

••••

1. Components are deployable entities That is, they are not compiled into an appli-
cation program but are installed directly on an execution platform. The methods
and attributes defined in their interfaces can then be accessed by other components.

2. Components do not define types A class definition defines an abstract data type
and objects are instances of that type. A component is an instance, not a tem-
plate that is used to define an instance.

3. Component implementations are opaque Components are, in principle at least,
completely defined by their interface specification. The implementation is hid-
den from component users. Components are often delivered as binary units so
the buyer of the component does not have access to the implementation.

4. Components are language-independent Object classes have to follow the rules
of a particular object-oriented programming language and, generally, can only
interoperate with other classes in that language. Although components are usu-
ally implemented using object-oriented languages such as Java, you can imple-
ment them in non-object-oriented programming languages.

5. Components are standardised Unlike object classes that you can implement in
any way, components must conform to some component model that constrains
their implementation.

19.1.1 Component models

A component model is a definition of standards for component implementation, doc-
umentation and deployment. These standards are for component developers to
ensure that components can interoperate. They are also for providers of component
execution infrastructures who provide middleware to support component operation.
Many component models have been proposed, but the most important models are
the CORBA component model from the OMG, Sun’s Enterprise Java Beans model
and Microsoft’s COM+ model (Blevins, 2001; Ewald, 2001; Wang, et al., 2001).

The specific infrastructure technologies such as COM+ and EJB that are used in
CBSE are very complex. Consequently, it is difficult to describe these technologies

Figure 19.3 A model
of a data collector
component

19.1 ■ Components and component models 445

SE8_C19.qxd 4/4/06 9:13 Page 445

••••

446 Chapter 19 ■ Component-based software engineering

without going into a lot of implementation detail about the assumptions that under-
lie each approach and the interfaces that are used. Rather than go into this detail
here, I focus on the fundamental elements of component models.

The basic elements of an ideal component model are discussed by Weinreich
and Sametinger (Weinreich and Sametinger, 2001). I summarise these model ele-
ments in Figure 19.4. This diagram shows that the elements in a component model
can be classified as elements relating to the component interfaces, elements relat-
ing to information that you need to use the component in a program and elements
concerned with component deployment.

The defining elements of a component are its interfaces. The component model
specifies how the interfaces should be defined and the elements, such as operation
names, parameters and exceptions, that should be included in an interface defini-
tion. The model should also specify the language used to define the interfaces (the
IDL). In CORBA and COM+, this is a specific interface definition language; EJB
is Java-specific so Java is used as the IDL. Some component models require spe-
cific interfaces that must be defined by a component. These are used to compose
the component with the component model infrastructure that provides standardised
services such as security and transaction management.

In order for components to be distributed and accessed remotely, they need to have
a unique name or handle associated with them. In COM+, this is a unique 128-bit iden-
tifier. In the CORBA component model and in EJB, it is a hierarchical name with the
root based on an Internet domain name. Component metadata is data about the com-
ponent itself, such as information about its interfaces and attributes. The metadata is
important so that users of the component can find out what services are provided and
required. Component model implementations normally include specific ways (such as
the use of a reflection interface in Java) to access this component metadata.

Components are generic entities and, when deployed, they have to be cus-
tomised to their particular application environment. For example, the Data collec-
tor component shown in Figure 19.3 might be customised with the maximum number
of sensors in a sensor array. The component model should therefore specify how
the binary components can be configured for a particular deployment environment.

Figure 19.4 Basic
elements of a
component model

SE8_C19.qxd 4/4/06 9:13 Page 446

••••

An important part of a component model is a definition of how components should
be packaged for deployment as independent, executable entities. Because compo-
nents are independent entities, they have to be packaged with everything that is not
provided by the component infrastructure or not defined in a requires interface.
Deployment information includes information about the contents of a package and
its binary organisation.

Inevitably, as new requirements emerge, components will have to be changed or
replaced. The component model should therefore include rules governing when and
how component replacement is allowed. Finally, the component model should
define the component documentation that should be produced. This is used to find
the component and to decide whether it is appropriate.

Component models are not just standards; they are also the basis for system mid-
dleware that provides support for executing components. Weinreich and
Sametinger (Weinreich and Sametinger, 2001) use the analogy of an operating sys-
tem to explain component models. An operating system provides a set of generic
services that can be used by applications. A component model implementation pro-
vides comparable shared services for components. Figure 19.5 shows some of the
services that may be provided by an implementation of a component model.

The services provided by a component model implementation fall into two
categories:

1. Platform services These fundamental services enable components to commu-
nicate with each other. CORBA is an example of a component model platform.
I have described the platform services in Chapter 12.

2. Horizontal services These application-independent services are likely to be used
by many different components. The availability of these services reduces the
costs of component development and means that potential component incom-
patibilities can be avoided.

To make use of the services provided by a component model infrastructure, com-
ponents are deployed in a predefined, standardised container. A container is a set
of interfaces used to access the implementations of the support services. Including
the component in the container automatically provides service access. The compo-
nent interfaces themselves are not accessed directly by other components; they are
accessed through the container.

19.1.2 Component development for reuse

The long-term vision of CBSE is that there will be component suppliers whose busi-
ness is based on the development and sale of reusable components. As I have said,
the problems of trust mean that an open market for components has not yet devel-
oped, and most components that are reused are developed within a company. The

19.1 ■ Components and component models 447

SE8_C19.qxd 4/4/06 9:13 Page 447

••••

448 Chapter 19 ■ Component-based software engineering

reusable components are not developed specially but are based on existing compo-
nents that have already been implemented and used in application systems.

Generally, internally developed components are not immediately reusable. They include
application-specific features and interfaces that are unlikely to be required in other appli-
cations. Therefore, you have to adapt and extend these components to create a more
generic and hence more reusable version. Obviously, this has an associated cost. You
have to decide, first, whether a component is likely to be reused and second, whether
the cost savings of reuse justify the costs of making the component reusable.

To answer the first of these questions, you have to decide whether the compo-
nent implements one or more stable domain abstractions. Stable domain abstrac-
tions are fundamental concepts in the application domain that change slowly. For
example, in a banking system, domain abstractions might include accounts, account
holders and statements. In a hospital management system, domain abstractions might
include patients, treatments and nurses. These domain abstractions are sometimes
called business objects. If the component is an implementation of a commonly used
business object or group of related objects, it can probably be reused.

To answer the question about the cost-effectiveness, you have to assess the costs
of changes that are required to make the component reusable. These costs are the
costs of component documentation, of component validation and of making the com-
ponent more generic. Changes that you may make to a component to make it more
reusable include:

• Removing application-specific methods

• Changing names to make them more general

• Adding methods to provide more complete functional coverage

• Making exception handling consistent for all methods

• adding a ‘configuration’ interface to allow the component to be adapted to dif-
ferent situations of use

• Integrating required components to increase independence.

Figure 19.5 Services
provided by a
component model

SE8_C19.qxd 4/4/06 9:13 Page 448

••••

The problem of exception handling is a particularly difficult one. In principle,
all exceptions should be part of the component interface. Components should not
handle exceptions themselves, because each application will have its own require-
ments for exception handling. Rather, the component should define what exceptions
can arise and should publish these as part of the interface. For example, a simple
component implementing a stack data structure should detect and publish stack over-
flow and stack underflow exceptions. In practice, however, a component may pro-
vide some local exception handling, and changing this may have serious
implications for the functionality of the component.

Mili et al. (Mili, et al., 2002) discuss ways of estimating the costs of making a
component reusable and estimating the returns from that investment. The benefits
of reusing rather than redeveloping a component are not simply productivity gains.
They also include quality gains, because a reused component should be more
dependable, and time-to-market gains. These are the increased returns that accrue
from deploying the software more quickly. Mili et al. present various formulae for
estimating these gains, as does the COCOMO model discussed in Chapter 26 (Boehm,
et al., 2000). However, the parameters of these formulae are difficult to estimate
accurately, and the formulae must be adapted to local circumstances. I suspect that
these factors mean very few software project managers would be willing to trust
them.

Obviously, whether a component is reusable depends on its application domain
and functionality. As you add generality to a component, you increase its reusabil-
ity. However, this normally means that the component has more operations and is
more complex, which makes the component harder to understand and use.

There is an inevitable trade-off between the reusability and the usability of a com-
ponent. Making the component reusable involves providing a set of generic inter-
faces with operations that cater to all ways in which the component could be used.
Making the component usable means providing a simple, minimal interface that is
easy to understand. Reusability adds complexity and hence reduces component under-
standability. It is therefore more difficult to decide when and how to reuse that com-
ponent. When designing a reusable component, you must find a compromise
between generality and understandability.

Another important source of components is existing legacy systems. As I dis-
cussed in Chapter 2, these are systems that fulfil an important business function but
are written using obsolete software technologies. Because of this, it may be diffi-
cult to use them with new systems. However, if you convert these old systems to
components, their functionality can be reused in new applications.

Of course, these legacy systems do not normally have clearly defined requires
and provides interfaces. To make these components reusable, you have to conduct
a wrapper that defines the component interfaces. The wrapper hides the complex-
ity of the underlying code and provides an interface for external components to access
services that are provided. Naturally, this wrapper is a fairly complex piece of soft-
ware as it has to access the legacy system functionality. However, the cost of wrap-
per development is often much less than the cost of re-implementing the legacy system.

19.1 ■ Components and component models 449

SE8_C19.qxd 4/4/06 9:13 Page 449

••••

450 Chapter 19 ■ Component-based software engineering

19.2 The CBSE process

I suggested in the introduction that the successful reuse of components requires a
development process tailored to CBSE. The structure of such a process was dis-
cussed in Chapter 4; Figure 19.6 shows the principal sub-activities within a CBSE
process. Some of the activities within this process, such as the initial discovery of
user requirements, are carried out in the same way as in other software processes.
However, the essential differences between this process and software processes based
on original software development are:

1. The user requirements are initially developed in outline rather than in detail,
and stakeholders are encouraged to be as flexible as possible in defining their
requirements. The reason for this is that very specific requirements limit the
number of components that might meet these requirements. Unlike incremen-
tal development, however, you need a complete set of requirements so that you
can identify as many components as possible for reuse.

2. Requirements are refined and modified early in the process depending on the
components available. If the user requirements cannot be satisfied from avail-
able components, you should discuss the related requirements that can be sup-
ported. Users may be willing to change their minds if this means cheaper or
quicker system delivery.

3. There is a further component search and design refinement activity after the
system architecture has been designed. Some apparently usable components may
turn out to be unsuitable or do not work properly with other chosen compo-
nents. Although not shown in Figure 19.6, this implies that further requirements
changes may be necessary.

2. Development is a composition process where the discovered components are inte-
grated. This involves integrating the components with the component model infras-
tructure and, often, developing ‘glue code’ to reconcile the interfaces of

Figure 19.6 The
CBSE process

SE8_C19.qxd 4/4/06 9:13 Page 450

••••

incompatible components. Of course, additional functionality may be required
over and above that provided by usable components. Naturally, you should develop
this as components that can be reused in future systems.

The architectural design stage is particularly important. During the architectural design,
you may finally decide on a component model, although, for many systems, this deci-
sion will be made before the search for components begins. As covered in Chapters
11 through 13, you also establish the high-level organisation of the system and make
decisions about system distribution and control. Jacobsen et al. (Jacobsen, et al., 1997)
have found that defining a robust architecture is critical for successful reuse.

One activity that is unique to the CBSE process is component identification. This
involves a number of sub-activities, as shown in Figure 19.7. There are two stages
in the CBSE process where you have to identify components for possible use in the
system. In the early stage, your focus should be on search and selection. You need
to convince yourself that there are components available to meet your requirements.
Obviously, you should do some initial checking that the component is suitable but
detailed testing may not be required. In the later stage, after the system architecture
has been designed, you should spend more time on component validation. You need
to be confident that the identified components are really suited to your application;
if not, then you have to repeat the search and selection processes.

The first stage in identifying components is to look for components that are avail-
able locally or from trusted suppliers. The vision of advocates of CBSE such as
Szyperski (Szyperski, 2002) is that there should be a viable component marketplace
where external vendors compete to provide components. At the time of this writ-
ing, this has not emerged to any significant extent. The main reason for this is that
users of external components face risks that these components will not work as adver-
tised. If this is the case, the costs of reuse exceed the benefits, and few project man-
agers believe that the risks are worth taking. Another important reason why
component markets have not developed is that many components are in specialised
application domains. There is not a sufficiently large market in these domains for
external component suppliers to establish a viable, long-term business.

As a consequence, component search is often confined to a software develop-
ment organisation. Software development companies can build their own database
of reusable components without the risks inherent in using components from exter-
nal suppliers.

Once the component search process has identified candidate components, specific
components from this list have to be selected. In some cases, this will be a straight-
forward task. Components on the list will map directly onto the user requirements,
and there will not be competing components that match these requirements. In other

Figure 19.7 The
component
identification process

19.2 ■ The CBSE process 451

SE8_C19.qxd 4/4/06 9:13 Page 451

••

452 Chapter 19 ■ Component-based software engineering

cases, however, the selection process is much more complex. There will not be a
clean mapping of requirements to components, and you will find that several com-
ponents have to be used to meet a specific requirement or group of requirements.
Unfortunately, it is likely that different requirements will require different groups
of components, so you have to decide which component compositions provide the
best coverage of the requirements.

Once you have selected components for possible inclusion in a system, you should
validate them to check that they behave as advertised. The extent of the validation required
depends on the source of the components. If you are using a component that has been
developed by a known and trusted source, you may decide that separate component
testing is unnecessary and you test the component when it is integrated with other com-
ponents. On the other hand, if you are using a component from an unknown source,
you should always check and test that component before including it in your system.

Component validation involves developing a set of test cases for the component
(or, possibly, extending test cases supplied with the component) and developing a test
harness to run the component tests. The major problem with component validation is
that the component specification may not be sufficiently detailed to allow you to develop
a complete set of component tests. Components are usually specified informally, with
the only formal documentation being their interface specification. This may not
include enough information for you to develop a complete set of tests that would con-
vince you that the component’s advertised interface is what you require.

A further validation problem, which may arise at this stage, is that the component
may have features that could interfere with your use of the component. Reusable com-
ponents will often have more functionality than you need. You can simply ignore the
unwanted functionality, but it can sometimes interfere with other components or with
the system as a whole. In some cases, the unwanted functionality can even cause seri-
ous system failures. Figure 19.8 briefly describes a situation where unnecessary func-
tionality in a reused system caused a catastrophic software failure.

The problem in the Ariane 5 launcher arose because the assumptions made about
the software for Ariane 4 were invalid for Ariane 5. This is a general problem with
reusable components. They are originally implemented for an application environ-
ment and, naturally, embed assumptions about that environment. These assumptions
are rarely documented so, when the component is reused, it is impossible to derive
tests to check whether the assumptions are still valid.

19.3 Component composition

Component composition is the process of assembling components to create a sys-
tem. If we assume a situation where reusable components are available, then most
systems will be constructed by composing these reusable components with each other,
with specially written components and with the component support infrastructure

••

SE8_C19.qxd 4/4/06 9:13 Page 452

••••

provided by the model framework. As I discussed in Section 19.1, this infrastruc-
ture provides facilities to support component communication and horizontal services
such as user interface services, transaction management, concurrency and security.
The ways in which components are integrated with this infrastructure are documented
for each component model and are not discussed in this section.

Composition is not a simple operation; there are a number of types (Figure 19.9):

1. Sequential composition This occurs when, in the composite component, the con-
stituent components are executed in sequence. It corresponds to situation (a) in
Figure 19.9, where the provides interfaces of each component are composed.
Some extra code is required to make the link between the components.

2. Hierarchical composition This occurs when one component calls directly on
the services provided by another component. It corresponds to a situation
where the provides interface of one component is composed with the requires
interface of another component. This is situation (b) in Figure 19.9.

3. Additive composition This occurs when the interfaces of two or more compo-
nents are put together (added) to create a new component. The interfaces of
the composite component are created by putting together all of the interfaces
of the constituent components, with duplicate operations removed if necessary.
This corresponds to situation (c) in Figure 19.9.

The Ariane 5 launcher failure

While developing the Ariane 5 space launcher, the designers decided to
reuse the inertial reference software that had performed successfully in the
Ariane 4 launcher. The inertial reference software maintains the stability of
the rocket. They decided to reuse this without change (as you would do
with components), although it included additional functionality over and
above that required in Ariane 5.

In the first launch of Ariane 5, the inertial navigation software failed after
37 seconds and the rocket could not be controlled. Ground controllers
instructed the launcher to self-destruct and the rocket payload was
destroyed. A subsequent enquiry found that the cause of the problem was
an unhandled exception when a conversion of a fixed-point number to an
integer resulted in a numeric overflow. This caused the run-time system to
shut down the inertial reference system and launcher stability could not be
maintained. The fault had never occurred in Ariane 4 because it had less
powerful engines and the value that was converted could not be large
enough for the conversion to overflow.

The fault occurred in code that was not required for Ariane 5. The
validation tests for the reused software were based on Ariane 5
requirements. Because there were no requirements for the function that
failed, no tests were developed. Consequently, the problem with the
software was never discovered during launch simulation tests.

Figure 19.8 A
component
validation failure

19.3 ■ Component composition 453

SE8_C19.qxd 4/4/06 9:13 Page 453

••••

454 Chapter 19 ■ Component-based software engineering

You might use all the forms of component composition when creating a system.
In all cases, you may have to write ‘glue code’ that links the components. For exam-
ple, for sequential composition, the output of component A typically becomes the
input to component B. You need intermediate statements that call component A,
collect the result and then call component B with that result as a parameter.

When you write components especially for composition, you design the inter-
faces of these components so that they are compatible. You can therefore easily
compose these components into a single unit. However, when components are devel-
oped independently for reuse, you will often be faced with interface incompatibil-
ities where the interfaces of the components that you wish to compose are not the
same. Three types of incompatibility can occur:

1. Parameter incompatibility The operations on each side of the interface have
the same name but their parameter types or the number of parameters are dif-
ferent.

2. Operation incompatibility The names of the operations in the provides and requires
interfaces are different.

3. Operation incompleteness The provides interface of a component is a subset
of the requires interface of another component or vice versa.

In all cases, you tackle the problem of incompatibility by writing an adaptor com-
ponent that reconciles the interfaces of the two components being reused. When you
know the interfaces of the components that you want to use, you write an adaptor
component that converts one interface to another. The precise form of the adaptor
depends on the type of composition. Sometimes, as in the next example, the adaptor
simply takes a result from one component and converts it into a form where it can
be used as an input to another. In other cases, the adaptor may be called by compo-
nent A, and itself calls component B. This latter situation would arise if A and B were
compatible but the number of parameters in their interfaces was different.

Figure 19.9 Types of
component
composition

SE8_C19.qxd 4/4/06 9:13 Page 454

••••

To illustrate adaptors, consider the components shown in Figure 19.10. These
might be part of a system used by the emergency services. When the emergency
operator takes a call, the phone number is input to the addressFinder component to
locate the address. Then, using the mapper component, they print a map to be sent
to the vehicle despatched to the emergency. In fact, the components would have
more complex interfaces than those shown here, but the simplified version illus-
trates the concept of an adaptor.

The first component, addressFinder, finds the address that matches a phone num-
ber. It can also return the owner of the property associated with the phone number and
the type of property. The mapper component takes a post code (in the United States,
a standard ZIP code with the additional four digits identifying property location) and
displays or prints a street map of the area around that code at a specified scale.

These components are composable in principle because the property location
includes the post or ZIP code. However, you have to write an adaptor component
called postCodeStripper that takes the location data from addressFinder and strips
out the post code. This post code is then used as an input to mapper, and the street
map is displayed at a scale of 1:10,000. The following code illustrates the sequence
of calls that is required to implement this:

address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper.displayMap(postCode, 10000) ;

Another case in which an adaptor component may be used is where one com-
ponent wishes to make use of another, but there is an incompatibility between the
provides and requires interfaces of these components. I have illustrated this in Figure
19.11, where the data collector component is connected to a sensor component using
an adaptor. It reconciles the requires interfaces of the data collection component
with the provides interfaces of the sensor component. The data collection compo-
nent was designed with a generic requires mechanism that was not based on a specific

Figure 19.10
Incompatible
components

19.3 ■ Component composition 455

SE8_C19.qxd 4/4/06 9:13 Page 455

••••

456 Chapter 19 ■ Component-based software engineering

sensor interface. I anticipated that an adaptor would always be used to connect the
data collector to a specific sensor interface.

The discussion of component composition assumes you can tell from the com-
ponent documentation whether interfaces are compatible. Of course, the interface
definition includes the operation name and parameter types, so you can make some
assessment of the compatibility from this. However, you depend on the compo-
nent documentation to decide whether the interfaces are semantically compatible.

For example, consider the composition shown in Figure 19.12. These compo-
nents are used to implement a system that downloads images from a digital cam-
era and stores them in a photograph library. The system user can provide additional
information to describe and catalogue the photograph. To avoid clutter, I have not
shown all interface methods here but simply show the methods that are needed to
illustrate the component documentation problem. The methods in the interface of
Photo Library are:

public void addItem (Identifier pid ; Photograph p; CatalogEntry photodesc) ;
public Photograph retrieve (Identifier pid) ;
public CatalogEntry catEntry (Identifier pid) ;

Assume that the documentation for the addItem method in Photo Library is:

This method adds a photograph to the library and associates the photograph
identifier and catalogue descriptor with the photograph.

This description appears to be comprehensive, but consider the following
questions:

What happens if the photograph identifier is already associated with a pho-
tograph in the library?

Is the photograph descriptor associated with the catalogue entry as well as the
photograph? That is, if I delete the photograph, do I also delete the catalogue
information?

Figure 19.11 Adaptor
for the data collector
component

SE8_C19.qxd 4/4/06 9:13 Page 456

••••

There is not enough information in the informal description of addItem to
answer these questions. Of course, it is possible to add more information to the nat-
ural language description of the method, but, in general, the best way to resolve
ambiguities is to use a formal language to describe the interface. In Chapter 10, I
suggested that interface description was one area where formal specifications are
most useful. The specification shown in Figure 19.13 is part of the description of
the interface of Photo Library that adds information to the informal description.

The specification in Figure 19.13 uses pre- and post-conditions, and I have used
a notation based on the object constraint language (OCL) that is part of the UML
(Warmer and Kleppe, 1998). OCL is designed to describe constraints in UML object
models; it allows you to express predicates that must always be true, that must be
true before a method has executed, and that must be true after a method has exe-
cuted. These are invariants, pre-conditions and post-conditions. To access the value
of a variable before an operation, you add @pre after its name. Therefore:

age = age@pre + 1

means that the value of age after an operation is one more than it was before
that operation.

OCL-based approaches are being increasingly used to add semantic information
to UML models. The general approach has been derived from Meyer’s Design by
Contract approach (Meyer, 1992), in which the interfaces and obligations of com-
municating objects are formally specified and enforced by the run-time system. Meyer
suggests that using Design by Contract is essential if we are to develop trusted com-
ponents (Meyer, 2003).

Figure 19.13 includes a specification for the addItem and the delete methods in
Photo Library. The method being specified is indicated by the keyword context and
the pre- and post-conditions by the keywords pre and post. The pre-conditions for
addItem state that:

• There must not be a photograph in the library with the same identifier as the
photograph to be entered.

• The library must exist—assume that creating a library adds a single item to it
so that the size of a library is always greater than zero.

Figure 19.12 Photo
Library composition

19.3 ■ Component composition 457

SE8_C19.qxd 4/4/06 9:13 Page 457

••••

458 Chapter 19 ■ Component-based software engineering

The post-conditions for addItem state that:

• The size of the library has increased by 1 (so only a single entry has been made).

• If you retrieve using the same identifier, then you get back the photograph that
you added.

• If you look up the catalogue using that identifier, you get back the catalogue
entry that you made.

The specification of delete provides further information. The pre-condition
states that to delete an item, it must be in the library and, after deletion, the photo
can no longer be retrieved and the size of the library is reduced by 1. However,
delete does not delete the catalogue entry—you can still retrieve it after the photo
has been deleted. The reason for this is that you may wish to maintain information
in the catalogue about why a photo was deleted, its new location, and so on.

When you create a system by composing components, you may find that there
are potential conflicts between functional and non-functional requirements, the
need to deliver a system as quickly as possible, and the need to create a system that
can evolve as requirements change. The decisions where you may have to make
trade-offs are:

— The context keyword names the component to which the conditions apply
context addItem

— The preconditions specify what must be true before execution of addItem
pre: PhotoLibrary.libSize() > 0

PhotoLibrary.retrieve(pid) = null

— The postconditions specify what is true after execution
post: libSize () = libSize()@pre + 1

PhotoLibrary.retrieve(pid) = p
PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary.retrieve(pid) ≠ null ;

post: PhotoLibrary.retrieve(pid) = null
PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
PhotoLibrary.libSize() = libSize()@pre[em]1

Figure 19.13 Formal
description of the
Photo Library
interface

SE8_C19.qxd 4/4/06 9:13 Page 458

••••

1. What composition of components is most effective in delivering the functional
requirements for the system?

2. What composition of the components will allow adaptations for future changes
to the requirements?

3. What will be the emergent properties of the composed system? These emer-
gent properties are properties such as performance and dependability. You can
only assess these once the complete system is implemented.

Unfortunately, there are many situations where the solutions to the composition
problems are mutually conflicting. For example, consider a situation such as that
illustrated in Figure 19.14, where a system can be created through two alternative
compositions. The system is a data collection and reporting system where data is
collected from different sources, stored in a database, and a different report sum-
marising that data is produced.

The advantages of composition (a) are that reporting and data management are
separate, so there is more flexibility for future change. The data management sys-
tem could be replaced and, if reports are required that the current reporting com-
ponent cannot produce, that component can also be replaced. In composition (b), a
database component with built-in reporting facilities (e.g., Microsoft Access) is used.
The advantages of composition (b) are that there are fewer components, so this will
probably be faster because there are no component communication overheads.
Furthermore, data integrity rules that apply to the database will also apply to
reports. These reports will not be able to combine data in incorrect ways. In com-
position (a), there are no such constraints, so errors in reports are more likely.

In general, a good composition principle to follow is the principle of separation
of concerns. That is, you should try to design your system in such a way that each
component has a clearly defined role and that, ideally, these roles should not over-
lap. However, it may be cheaper to buy one multifunctional component rather than
two or three separate components. Furthermore, there may be dependability or per-
formance penalties when multiple components are used.

Figure 19.14 Data
collection and report
generation
components

19.3 ■ Component composition 459

SE8_C19.qxd 4/4/06 9:13 Page 459

••••

460 Chapter 19 ■ Component-based software engineering

F U R T H E R R E A D I N G

Component-based Software Engineering: Putting the Pieces Together. This book is a collection of
papers from various authors on different aspects of CBSE. Like all collections, it is rather mixed,
but it has better coverage of general issues of software engineering with components than
Szyperski’s book. (G. T. Heineman and W. T. Councill, 2001, Addison-Wesley.)

Component Software: Beyond Object-Oriented Programming, 2nd ed. This updated edition of the
first book on CBSE covers technical and nontechnical issues in CBSE. It includes more detail on
specific technologies than Heineman and Councill’s book and a thorough discussion of market
issues. (C. Szyperski, 2002, Addison-Wesley.)

■ Component-based software engineering is a reuse-based approach to defining,
implementing and composing loosely coupled independent components into systems.

■ A component is a software unit whose functionality and dependencies are completely
defined by a set of public interfaces. Components can be combined with other components
without reference to their implementation and can be deployed as an executable unit.

■ A component model defines a set of standards for components, including interface
standards, usage standards and deployment standards. The implementation of the
component model provides a set of horizontal services that may be used by all
components.

■ During the CBSE process, you have to interleave the processes of requirements engineering
and system design. You have to trade-off desirable requirements against the services that
are available from existing reusable components.

■ Component composition is the process of ‘wiring’ components together to create a system.
Types of composition include sequential composition, hierarchical composition and additive
composition.

■ When composing reusable components that have not been written for your application, you
normally need to write adaptors or ‘glue code’ to reconcile the different component
interfaces.

■ When choosing compositions, you have to consider the required functionality of the system,
the non-functional requirements and the ease with which one component can be replaced
by another when the system is changed.

K E Y P O I N TS

SE8_C19.qxd 4/4/06 9:13 Page 460

••••

‘Specification, implementation and deployment of components’. A good introduction to the
fundamentals of CBSE. The same issue of the CACM includes articles on components and
component-based development. (I. Crnkovic, et al., Comm. ACM, 45(10), October 2002.)

E X E R C I S E S

19.1 Why is it important that all component interactions are defined through requires and provides
interfaces?

19.2 The principle of component independence means that it ought to be possible to replace one
component with another that is implemented in a completely different way. Using an
example, discuss how such component replacement might have undesired consequences and
may lead to system failure.

19.3 What are the fundamental differences between components and web services (see Chapter
12).

19.4 Why is it important that components should be based on a standard component model?

19.5 Using an example of a component that implements an abstract data type such as a stack or a
list, show why it is usually necessary to extend and adapt components for reuse.

19.6 Explain why it is very difficult to validate a reusable component without the component
source code. In what ways would a formal component specification simplify the problems of
validation?

19.7 Design a reusable component that implements the search feature of the LIBSYS system
discussed in previous chapters. This is not a simple keyword search of web pages. You have
to be able to search the catalogues of several libraries, as specified by the user.

19.8 Using examples, illustrate the different types of adaptors needed to support sequential
composition, hierarchical composition and additive composition.

19.9 Design the interfaces of components that might be used in a system in an emergency control
room. You should design interfaces for a call-logging component that records calls made, and
a vehicle-discovery component that, given a post code and an incident type, finds the nearest
suitable vehicle to be despatched to the incident.

19.10 It has been suggested that an independent certification authority should be established.
Vendors would submit their components to this authority, which would validate that the
component was trustworthy. What would be the advantages and disadvantages of such a
certification authority?

Chapter 19 ■ Exercises 461

SE8_C19.qxd 4/4/06 9:13 Page 461

••

Critical systems
development

Objectives
The objective of this chapter is to introduce implementation
techniques that are used in the development of critical systems.
When you have read this chapter, you will:

■ understand how fault avoidance and fault tolerance contribute to
the development of dependable systems;

■ know the characteristics of and activities in dependable software
processes;

■ have been introduced to programming techniques for fault
avoidance;

■ understand the stages involved in implementing fault tolerance
and the ways in which diversity and redundancy are used in
fault-tolerant architectures.

Contents
20.1 Dependable processes

20.2 Dependable programming

20.3 Fault tolerance

20.4 Fault-tolerant architectures

20

SE8_C20.qxd 4/4/06 9:14 Page 462

Chapter 20 ■ Critical systems development 463

••

Improved software engineering techniques, better programming languages and bet-
ter quality management have led to significant improvements in dependability for
most software. However, critical systems, such as those that control unattended machin-
ery, medical systems, telecommunications switches or aircraft engines need higher
levels of dependability. In these cases, special development techniques may be used
to ensure that the system is safe, secure and reliable.

There are three complementary approaches to developing dependable software:

1. Fault avoidance The design and implementation process for the system should
use approaches to software development that help avoid programming errors
and so minimise the number of faults in a program.

2. Fault detection The verification and validation processes are designed to dis-
cover and remove faults in a program before it is deployed for operational use.

3. Fault tolerance The system is designed so that faults or unexpected system
behaviour during execution are detected and managed in such a way that sys-
tem failure does not occur.

This chapter focuses on processes and techniques that support fault avoidance
and fault tolerance. Fault detection is a major topic in its own right and is covered
in Part 5. I discuss static techniques for fault detection in Chapter 22, program test-
ing in Chapter 23 and verification and validation techniques that are specific to crit-
ical systems in Chapter 24.

Fundamental to the achievement of dependability in any system are the basic
notions of redundancy and diversity. Diversity and redundancy are everyday cop-
ing strategies for avoiding failure. If you are investing in the stock market, you
should not place all your investments in a single company because you could
lose everything if the company fails (diversity). People keep spare batteries and
light bulbs in their homes so that they can recover quickly from failures (redun-
dancy). We all should back up our computers regularly in case of disk failure
(redundancy) and, to secure our homes, we often have more than one type of
lock on the door (diversity).

Critical systems may include components that replicate the functionality of other
components (redundancy) or additional checking code that is not strictly necessary
for the system to function (redundancy). Faults can therefore be detected before they
cause failures, and the system may be able to continue operating if individual com-
ponents fail. If the redundant components are not the same as other components
(diversity), a common failure in the same, replicated component will not result in
a complete system failure.

In systems where availability is a critical requirement, redundant servers are nor-
mally made available. These automatically come into operation if a designated server
fails. Sometimes, to ensure that attacks on the system cannot exploit a common vul-
nerability, these servers may be of different types and may run different operating
systems. Using different operating systems is one example of software diversity and

SE8_C20.qxd 4/4/06 9:14 Page 463

••

464 Chapter 20 ■ Critical systems development

redundancy. In other cases, as I discuss later, diversity and redundancy may be built
into the software by including redundant software components that have been
deliberately programmed using different techniques.

Diversity and redundancy are also used to achieve dependable processes. As well
as testing a program, you may use program inspections and static analysis as fault-
finding techniques. These validation techniques are complementary: One can find
faults that are missed by the other. Furthermore, the same process activity (e.g., a
program inspection) may be carried out by several team members—people tackle
tasks in different ways depending on their personality, experience and education,
so this kind of redundancy provides a diverse perspective on the system.

Unfortunately, adding diversity and redundancy to systems makes them more com-
plex, and thus harder to understand. It is therefore more likely that programmers
will make errors and less likely that people checking the program will find errors.
As a consequence, some people think that it is best to avoid redundancy and diver-
sity in software, to design the system to be as simple as possible and to have extremely
rigorous verification and validation procedures (Parnas, et al., 1990). Both
approaches are used in commercial, safety-critical systems. The Airbus 340 flight
control system is diverse and redundant (Storey, 1996), whereas the flight control
system on the Boeing 777 is based on a single version of the software.

A goal of software engineering research has been to develop tools, techniques
and methods that lead to the production of fault-free software. Fault-free software
is software that conforms exactly to its specification. This does not, however, mean
that the software will never fail. There may be errors in the specification that are
reflected in the software, or the users may misunderstand or misuse the software
system. However, eliminating software faults certainly has a huge impact on the
number of system failures.

For small and medium-sized systems, our software engineering techniques are
such that it is probably possible to develop fault-free software. To achieve this goal,
you need to use a range of software engineering techniques:

1. Dependable software processes The use of a dependable software process (dis-
cussed in Section 20.1) with appropriate verification and validation activities
is essential if the number of faults in a program is to be minimised, and those
that do slip through are to be detected.

2. Quality management The organisation developing the system must have a cul-
ture in which quality drives the software process. The culture should encour-
age programmers to write bug-free programs. Design and development
standards should be established, and procedures should be in place to check
that these have been followed.

3. Formal specification There must be a precise (preferably formal) system spec-
ification that defines the system to be implemented. Many design and programming
mistakes are a result of misinterpretation of an ambiguous or poorly worded
specification.

••

SE8_C20.qxd 4/4/06 9:14 Page 464

••

4. Static verification Static verification techniques, such as the use of static anal-
ysers, can find anomalous program features that could be faults. Formal veri-
fication, based on the system specification, may also be used.

5. Strong typing A strongly typed programming language such as Java or Ada must
be used for development. If the language has strong typing, the language com-
piler can detect many programming errors before they can be introduced into
the delivered program.

6. Safe programming Some programming language constructs are more complex
and error-prone than others, and you are more likely to make mistakes if you
use them. Safe programming means avoiding or at least minimising the use of
these constructs.

7. Protected information An approach to software design and implementation based
on information hiding and encapsulation should be used. Object-oriented lan-
guages such as Java obviously satisfy this condition. The development of pro-
grams that are designed for readability and understandability should be
encouraged.

I have discussed several of these techniques in other chapters of this book. In
this chapter, I concentrate on describing dependable software processes and pro-
gramming techniques that contribute to fault avoidance.

However, there are hardly any situations where it is economically practical to
deploy all these techniques to create fault-free software. The cost of finding and
removing remaining faults rises exponentially as faults in the program are discov-
ered and removed (Figure 20.1). As the software becomes more reliable, you need
to spend more and more time and effort to find fewer and fewer faults. At some
stage, the costs of this additional effort become unjustifiable.

Figure 20.1 The
increasing costs of
residual fault
removal

••

Chapter 20 ■ Critical systems development 465

SE8_C20.qxd 4/4/06 9:14 Page 465

••

Process
characteristic Description

Documentable The process should have a defined process model that sets out
the activities in the process and the documentation that is to be
produced during these activities.

Standardised A comprehensive set of software development standards that
define how the software is to be produced and documented
should be available.

Auditable The process should be understandable by people apart from
process participants who can check that process standards are
being followed and make suggestions for process improvement.

Diverse The process should include redundant and diverse verification
and validation activities.

Robust The process should be able to recover from failures of individual
process activities.

Figure 20.2
Characteristics of
dependable
processes

466 Chapter 20 ■ Critical systems development

As a result, software development companies accept that their software will always
contain some residual faults. The level of faults depends on the type of system. Shrink-
wrapped products have a relatively high level of faults (although they are much bet-
ter than they were 10 years ago), whereas critical systems usually have a much lower
fault density.

The rationale for accepting faults is that, if and when the system fails, it is cheaper
to pay for the consequences of failure than it would be to discover and remove the
faults before system delivery. However, as discussed in Chapter 3, the decision to
release faulty software is not simply economic. The social and political acceptabil-
ity of system failure must also be taken into account.

20.1 Dependable processes

Dependable software processes are processes that are geared to fault avoidance and
fault detection. Dependable processes are well defined and repeatable, and include
a spectrum of verification and validation activities. A well-defined process is a pro-
cess that has been standardised and documented. A repeatable process is one that
does not rely on individual interpretation and judgement. Irrespective of the people
involved in the process, the organisation can be confident that the process will be
successful. I discuss the importance of processes in achieving software quality and
process improvement in Chapter 28. The essential characteristics of dependable pro-
cesses are shown in Figure 20.2.

••

SE8_C20.qxd 4/4/06 9:14 Page 466

••

A dependable process should always include well-planned, comprehensive ver-
ification and validation activities whose aim is to ensure residual faults in the soft-
ware are discovered before it is deployed. Process activities that are geared to fault
avoidance and fault detection include:

1. Requirements inspections As I discussed in Chapter 7, these are intended to
discover problems with the system specification. A high proportion of faults in
delivered software result from requirements errors. If these can be discovered
and eliminated from the specification, then this class of faults will be minimised.

2. Requirements management Requirements management, discussed in Chapter 7,
is concerned with keeping track of changes to requirements and tracing these
through to the design and implementation. Many errors in delivered systems
are a result of failing to ensure that a requirements change has actually been
included in the design and implementation of the system.

3. Model checking Model checking involves CASE tools automatically analysing
system models to ensure internal and external consistency. Internal consistency
means that a single model is consistent; external consistency means that differ-
ent models of the system (e.g. a state model and an object model) are consistent.

4. Design and code inspections As I discuss in Chapter 22, design and code inspec-
tions are often based on checklists of common faults and are intended to dis-
cover and remove these faults before system testing.

5. Static analysis Static analysis is an automated technique of program analysis
where the program is analysed in detail to find potentially erroneous conditions.
I discuss this in Chapter 22.

6. Test planning and management A comprehensive set of tests for the system
should be designed and the testing process carefully managed to ensure com-
plete test coverage and traceability between the system tests and the system
requirements and design. I discuss testing in Chapter 23.

A possible source of error in critical systems is to include the wrong component
or the wrong version of a component in a system. To avoid this, you need to use
strict configuration management. Configuration management is concerned with
managing software change and keeping track of the versions of a system and its
components. I cover this topic in Chapter 29.

20.2 Dependable programming

Dependable programming involves using programming constructs and techniques
that contribute to fault avoidance and fault tolerance. Faults in programs arise because

••

20.2 ■ Dependable programming 467

SE8_C20.qxd 4/4/06 9:14 Page 467

••

468 Chapter 20 ■ Critical systems development

programmers make mistakes. While some mistakes are due to misunderstanding the
specification, others arise from over-complex programs or the use of inherently error-
prone constructs. To achieve dependability, therefore, you should design for sim-
plicity, protect information from unauthorised access and minimise the use of
potentially unsafe programming constructs.

Programming techniques for fault tolerance rely on the fact that there is a distinc-
tion between faults and failures. A failure is something that is observable to the users
of a system, whereas a fault is an internal system characteristic. If a fault arises in an
executing program, you may be able to tolerate it by detecting it and taking recovery
action before it results in a system failure. In this section, I discuss the use of excep-
tion handling constructs to make programs more fault tolerant and easier to understand.

20.2.1 Protected information

A security principle that is adopted by military organisations is the ‘need to know’
principle. Only those individuals who need to know a particular piece of informa-
tion in order to carry out their duties are given that information. Information that
is not directly relevant to their work is withheld.

When programming, you should adopt an analogous principle to control access
to system data. Program components should only be allowed access to data that they
need for their implementation. You can protect other data by using the scope rules
of the programming language to hide it from other parts of the program. If you hide
information, it cannot be corrupted by program components that are not supposed
to use it. If the interface remains the same, the data representation may be changed
without affecting other components in the system.

Protecting information is much simpler in Java than in older programming lan-
guages such as C or Pascal. Because these languages do not have encapsulation con-
structs such as object classes, details of the implementation of data structures
cannot be protected. Other parts of the program can access the structure directly,
which can lead to unexpected side effects when changes are made.

It is generally good practice when programming in an object-oriented language
to provide methods that access and update attribute values rather than allow other
objects to access these attributes directly. This means that you can change the rep-
resentation of the attribute without worrying about how other objects use the
attribute. It is particularly important that you use this approach for data structures
and other complex attributes.

Java’s interface definition construct makes it possible to use this approach and
to declare the interface to an object without reference to its implementation. This
is illustrated in Figure 20.3. Users of objects of type Queue can put objects onto
the queue, remove them from the queue and query the size of the queue. However,
in the class that implements this interface, the actual implementation of the queue
should be concealed by declaring the attributes and methods to be private to that
object class. Separating interfaces and their implementation is an essential part of
component-based software engineering.

••

SE8_C20.qxd 4/4/06 9:14 Page 468

••

A related type of information protection is illustrated in Figure 20.4. In situations
where a limited set of values may be assigned to some variable, these values should
be declared as constants. Language such as C++ support enumerated types, but in Java
this must be implemented by associating these constraints with the class declaration.

For example, consider a signalling system, implemented in Java, that supports
red, amber and green lights. A Signal type should be defined that includes constant
declarations reflecting these colours. It is therefore possible to refer to Signal.red,
Signal.green and so on. This avoids the accidental assignment of incorrect values
to variables of type Signal. You are therefore protecting variables of type Signal from
incorrect assignments and, at the same time, hiding the representation of red, amber
and green. You can change these constant values later without having to make any
other program changes.

20.2.2 Safe programming

Faults in programs, and therefore many program failures, are usually a consequence
of human error. Programmers make mistakes because they lose track of all of the
relationships between the state variables. They write program statements that result
in unexpected behaviour and system state changes. People will always make mis-
takes, but it became clear in the late 1960s that some approaches to programming
were more error-prone than others.

interface Queue {

public void put (Object o) ;
public void remove (Object o) ;
public int size () ;

} //Queue

Figure 20.3 A Queue
specification using a
Java interface
declaration

class Signal {

static public final int red = 1 ;
static public final int amber = 2 ;
static public final int green = 3 ;

public int sigState ;
}

Figure 20.4 A Signal
declaration in Java
that hides the type
representation

••

20.2 ■ Dependable programming 469

SE8_C20.qxd 4/4/06 9:14 Page 469

••

470 Chapter 20 ■ Critical systems development

Dijkstra (Dijkstra, 1968) recognised that the goto statement or unconditional branch
was an inherently error-prone programming construct. It made it difficult to localise
state changes. This observation led to the development of structured programming.
Structured programming is programming without goto statements, using only while
loops and if-statements as control constructs and designing using a top-down
approach. Structured programming was an important milestone in the development
of software engineering because it was the first step away from an undisciplined
approach to software development.

Other programming language constructs and programming techniques are also
inherently error-prone. Faults are less likely to be introduced into programs if you
avoid these or, at least, use them as little as possible. Potentially error-prone con-
structs include:

1. Floating-point numbers Floating-point numbers are inherently imprecise. This
is a particular problem when they are compared because representation impre-
cision may lead to invalid comparisons. For example, 3.00000000 may some-
times be represented as 2.99999999 and sometimes as 3.00000001. A
comparison would show these to be unequal. Fixed-point numbers where a num-
ber is represented to a given number of decimal places are safer because exact
comparisons are possible.

2. Pointers Pointers are low-level constructs that hold addresses that refer directly
to areas of the machine memory. Errors in their use can be devastating,
because they allow aliasing (discussed later in this list) and because they make
bound checking of arrays and other structures harder to implement.

3. Dynamic memory allocation Program memory may be allocated at run-time rather
than at compile-time. The danger with this is that the memory may not be de-
allocated, so eventually the system runs out of available memory. This can be
a very difficult error to detect because the system may run successfully for a
long time before the problem occurs.

4. Parallelism Parallelism is dangerous because of the difficulties of predicting
the subtle effects of timing interactions between parallel processes. Timing prob-
lems cannot usually be detected by program inspection, and the peculiar com-
bination of circumstances that cause a timing problem may not occur during
system testing. Parallelism may be unavoidable, but its use should be carefully
controlled to minimise interprocess dependencies. Programming language
facilities such as Java threads help manage parallelism so that some program-
ming errors can be avoided.

5. Recursion Recursion is when a procedure or method calls itself or calls another
procedure that then calls the original calling procedure. Its use can result in
concise programs but it can be difficult to follow the logic of recursive pro-
grams. Programming errors are therefore more difficult to detect. Recursion errors
may result in the allocation of all the system’s memory as temporary stack vari-
ables are created.

••

SE8_C20.qxd 4/4/06 9:14 Page 470

••

6. Interrupts These are a means of forcing control to transfer to a section of code
irrespective of the code currently executing. The dangers of this are obvious:
The interrupt may cause a critical operation to be terminated.

7. Inheritance The problem with inheritance in object-oriented programming is
that the code associated with an object is not all in one place. This makes it
more difficult to understand the behaviour of the object. Hence, it is more likely
that programming errors will be missed. Furthermore, inheritance when com-
bined with dynamic binding can cause timing problems at run-time. At differ-
ent times, different instances of a specific method could be called and different
amounts of time will be spent searching for the correct method instance.

8. Aliasing This occurs when more than one name is used to refer to the same
entity in a program. It is easy for program readers to miss statements that change
the entity when they have several names to consider.

9. Unbounded arrays In languages such as C, arrays are simply ways of access-
ing memory, and you can make assignments beyond the end of an array. The
run-time system does not check that assignments actually refer to elements in
the array. Buffer overflow, where an attacker deliberately constructs a program
to write memory beyond the end of a buffer that is implemented as an array,
is a known security vulnerability.

10. Default input processing Some systems provide a default for input processing
irrespective of the input that is presented to the system. This is a security loop-
hole that an attacker may exploit by presenting the program with unexpected
inputs that are not rejected by the system.

Some standards for safety-critical systems development completely prohibit the
use of these constructs. However, this extreme position is not normally practical.
All of these constructs and techniques are useful, but they must be used with care.
Wherever possible, their potentially dangerous effects should be controlled by
using them within abstract data types or objects. These act as natural ‘firewalls’
limiting the damage caused if errors occur.

The designers of Java have recognised some of the problems of error-prone con-
structs. The language does not include goto statements, it has built-in garbage col-
lection so has no need of dynamic memory allocation, and it does not support pointers
or unbounded arrays. However, Java’s numeric representation is such that overflow
is not detected by the run-time system, and failures due to floating-point errors are
still possible.

20.2.3 Exception handling

During program execution, errors or unexpected events inevitably occur. These may
arise because of a program fault or may be a result of unpredictable external cir-
cumstances. An error or an unexpected event that occurs during the execution of a

••

20.2 ■ Dependable programming 471

SE8_C20.qxd 4/4/06 9:14 Page 471

••

472 Chapter 20 ■ Critical systems development

program is called an exception. Exceptions may be caused by hardware or software
conditions. Examples of exceptions might be a system power failure, an attempt to
access non-existent data, and numeric overflow or underflow.

When an exception occurs, it must be managed by the system. This can be done
within the program itself or may involve transferring control to a system exception-
handling mechanism. Typically, the system’s exception management mechanism sim-
ply reports the error and shuts down execution. Therefore, to ensure that program
exceptions do not cause system failure, you should define an exception handler for
all possible exceptions that may arise and make sure that all exceptions are explic-
itly handled.

In programming languages such as C, if-statements must be used to detect the
exception and to transfer control to the exception-handling code. This means that
you have to explicitly check for exceptions wherever in the program they may occur.
However, this adds complexity and so increases the chances that you will make mis-
takes and that the exception will not be correctly handled.

Some programming languages, such as Java, C++ and Ada, include constructs
that support exception handling so that you do not need extra conditional statements
to check for exceptions. Rather, the programming language includes a special built-
in type (often called Exception) and different exceptions may be declared to be of
this type. When an exceptional situation occurs, the exception is signalled and the
language run-time system transfers control to an exception handler. This is a code
section that states exception names and appropriate actions to handle each
exception.

In Java, new types of exception may be declared by extending the built-in Exception
class. Exceptions are signalled in Java using a throw statement. The handler of an
exception is indicated by the keyword catch, which is followed by a block of code
that can handle the exception.

Figure 20.5 illustrates the use of exceptions in Java. This example, part of the
software for the insulin pump introduced in Chapter 3, is a sensor controller that
reads a blood glucose value from a sensor. The first declaration in Figure 20.5 shows
how exceptions in Java are declared. The built-in object class called Exception is
extended, and the constructor method defines the code to be implemented when the
exception is thrown. In this case, an alarm is activated.

The Sensor class provides a single method, called readVal, that includes a throw
statement in its declaration. This means that a SensorFailureException may be
thrown from within the method, but that the calling method is expected to provide
a handler for SensorFailureException. It is usually best for exceptions to be handled
by the calling method because that method knows what it intended to do with the
result of the called method. However, as I show later, there are some situations where
exceptions are locally handled to ensure that the result of a method call is always
valid.

The try keyword indicates that an exception may be thrown in the following block
of code. The exception SensorFailureException is thrown if a value of less than zero
is returned when the sensor is checked. DeviceIO.readInteger can throw an exception
called deviceIOException, so a handler for this must also be included following the

••

SE8_C20.qxd 4/4/06 9:14 Page 472

••

catch keyword. In this case, the handler simply throws a sensor failure exception
to indicate that the calling object should handle the exception.

Exception handling can also be used to simplify programs and make them eas-
ier to read and understand. This reduces the probability of programmer error and
increases the chances that program inspectors will find any problems that exist. You
use exception handling to separate error-handling code from code that handles nor-
mal processing. You can therefore read and understand each of these code sections
in isolation.

I have illustrated this in Figure 20.6. This Java class is an implementation of a
temperature controller on a food freezer. The required temperature may be set between
-18 and -40 degrees Celsius. Frozen food may start to defrost and bacteria become
active at temperatures over -18 degrees. The control system maintains this temper-
ature by switching a refrigerant pump on and off according to the value of a tem-
perature sensor. If the required temperature cannot be maintained, the controller sets
off an alarm.

In the Java implementation, the temperature of the freezer is discovered by inter-
rogating an object called tempSensor, and the required temperature is discovered

class SensorFailureException extends Exception {

SensorFailureException (String msg) {
super (msg) ;
Alarm.activate (msg) ;

}
} // SensorFailureException

class Sensor {

int readVal () throws SensorFailureException {

try {
int theValue = DeviceIO.readInteger () ;
if (theValue < 0)

throw new SensorFailureException (“Sensor failure”) ;
return theValue ;

}
catch (deviceIOException e)

{
throw new SensorFailureException (“ Sensor read error “) ;

}
} // readVal

} // Sensor

Figure 20.5
Exceptions to handle
failure in the insulin
pump

••

20.2 ■ Dependable programming 473

SE8_C20.qxd 4/4/06 9:14 Page 473

••••

474 Chapter 20 ■ Critical systems development

by inspecting an object called tempDial. A pump object (Pump) responds to sig-
nals to switch its state. Once the pump has been switched on, the system waits for
some time (by calling Thread.sleep) for the temperature to fall. If it has not fallen
sufficiently, an exception called FreezerTooHotException is thrown.

class FreezerController {

Sensor tempSensor = new Sensor () ;
Dial tempDial = new Dial () ;
float freezerTemp = tempSensor.readVal () ;
final float dangerTemp = (float) -18.0 ;
final long coolingTime = (long) 200000.0 ;

public void run () throws InterruptedException {
try {

Pump.switchIt (Pump.on) ;
do {

if (freezerTemp > tempDial.setting ())
if (Pump.status == Pump.off)
{

Pump.switchIt (Pump.on) ;
Thread.sleep (coolingTime) ;

}
else

if (Pump.status == Pump.on)
Pump.switchIt (Pump.off) ;

if (freezerTemp > dangerTemp)
throw new FreezerTooHotException () ;

freezerTemp = tempSensor.readVal () ;

} while (true) ;

} // try block
catch (FreezerTooHotException f)
{ Alarm.activate () ; }
catch (InterruptedException e)
{

System.out.println (“Thread exception”) ;
throw new InterruptedException () ;

}

} //run
} // FreezerController

Figure 20.6
Exceptions in a
freezer temperature
controller

SE8_C20.qxd 4/4/06 9:14 Page 474

••••

The exception handler (located at the end of the code) catches this exception and
activates the Alarm object. A handler is also included for the built-in exception
InterruptedException, which can be thrown by Thread.sleep. This logs the excep-
tion, then re-throws it for handling by the main method.

20.3 Fault tolerance

A fault-tolerant system can continue in operation after some system faults have
occurred. The fault-tolerance mechanisms in the system ensure that these system
faults do not cause system failure. You may need fault tolerance in situations where
system failure could cause a catastrophic accident or where a loss of system oper-
ation would cause large economic losses. For example, the computers in an aircraft
must carry on working until the aircraft has landed; the computers in an air traffic
control system must be continuously available while planes are in the air.

There are four aspects to fault-tolerance:

1. Fault detection The system must detect a fault that could lead to a system fail-
ure. Generally, this involves checking that the system state is consistent.

2. Damage assessment The parts of the system state that have been affected by
the fault must be detected.

3. Fault recovery The system must restore its state to a known ‘safe’ state. This
may be achieved by correcting the damaged state (forward error recovery) or
by restoring the system to a known ‘safe’ state (backward error recovery).

4. Fault repair This involves modifying the system so that the fault does not recur.
However, many software faults manifest themselves as transient states. They
are due to a peculiar combination of system inputs. No repair is necessary and
normal processing can resume immediately after fault recovery.

You might think that fault-tolerance facilities are unnecessary in systems that
have been developed using techniques that avoid the introduction of faults. If there
are no faults in the system, there would not seem to be any chance of system fail-
ure. However, ‘fault-free’ does not mean ‘failure-free’. It can only mean that the
program corresponds to its specification. The specification may contain errors or
omissions and may be based on incorrect assumptions about the system’s environ-
ment. And, of course, we can never conclusively demonstrate that a system is com-
pletely fault-free. In systems that have the highest reliability and availability
requirements, you need to use the redundant and diverse approaches of fault avoid-
ance and fault tolerance.

20.3 ■ Fault tolerance 475

SE8_C20.qxd 4/4/06 9:14 Page 475

••••

476 Chapter 20 ■ Critical systems development

20.3.1 Fault detection and damage assessment

The first stage of fault tolerance is to detect that a fault (an erroneous system state)
either has occurred or will occur unless some action is taken immediately. To do this,
you need to know when the value of a state variable is illegal or when relationships
between state variables are not maintained. Therefore, you need to define state con-
straints that define the conditions that must always hold for all legal states. If these
predicates are false, then a fault has occurred. Some examples of state constraints that
apply to the insulin pump software are shown in Figure 20.7. I have deliberately not
written these as Java assert statements for reasons that I explain later.

There are two types of fault detection that you can use:

1. Preventative fault detection In this case, the fault detection mechanism is ini-
tiated before a state change is committed. If a potentially erroneous state is
detected, then the state change is not made.

2. Retrospective fault detection In this case, the fault detection mechanism is ini-
tiated after the system state has been changed to check whether a fault has
occurred. If a fault is discovered, an exception is signalled and a repair mech-
anism is used to recover from the fault.

You can use preventative fault detection when the state constraints that have been
defined apply only to individual state variables. For example, you can use this approach
when the value of a state variable must fall within a defined range. Preventative
fault detection avoids the overhead of damage repair, as the system state will always
be valid—although not necessarily correct. However, the system must have a
mechanism for continuing operation in the presence of an incorrect state if a sys-
tem failure is to be avoided.

In Java, the safest way to implement preventative fault detection is to explicitly
check for faults and use the exception-handling mechanism in the language to sig-
nal that an erroneous system state has been detected. This is illustrated in Figure
20.8. This is an implementation of a class where the values of instances of the class

// The dose of insulin to be delivered must always be greater
// than zero and less that some defined maximum single dose

insulin_dose >= 0 & insulin_dose <= insulin_reservoir_contents

// The total amount of insulin delivered in a day must be less
// than or equal to a defined daily maximum dose

cumulative_dose <= maximum_daily_dose

Figure 20.7 State
constraints that apply
in the insulin pump

SE8_C20.qxd 4/4/06 9:14 Page 476

••••

are restricted to positive, even numbers. If an attempt is made to assign a number
that is odd or less than 0, then an exception is thrown.

In Java 1.4, an assertion facility was introduced where state constraints could be
defined in an assert statement. Therefore, to specify that a number should be pos-
itive and even, you would write:

assert n >= 0 & n%2 == 0: "Value must be positive and even"

The run-time system checks that the condition holds and, if not, raises an error
and causes the associated message to be printed.

class PositiveEvenInteger {

int val = 0 ;

PositiveEvenInteger (int n) throws NumericException
{

if (n < 0 | n%2 == 1)
throw new NumericException () ;

else
val = n ;

}// PositiveEvenInteger

public void assign (int n) throws NumericException
{

if (n < 0 | n%2 == 1)
throw new NumericException ();

else
val = n ;

} // assign

int toInteger ()
{

return val ;
} //to Integer

boolean equals (PositiveEvenInteger n)
{

return (val == n.val) ;
} // equals

} //PositiveEven

Figure 20.8
PositiveEven number
class in Java

20.3 ■ Fault tolerance 477

SE8_C20.qxd 4/4/06 9:14 Page 477

••

478 Chapter 20 ■ Critical systems development

However, Java’s assertion facility was really designed to help discover state incon-
sistencies during development and debugging rather than to support fault-tolerant pro-
gramming. It is possible to switch assertion checking on and off, so you cannot rely
on assertions always being checked. Furthermore, it is not possible to associate a
specific type of exception with each assertion, so you cannot identify individual asser-
tion failure. This was a deliberate design decision—the designers did not intend that
it should be possible to take recovery action after an assertion failure.

Preventative fault detection is possible when you know the range of values that
may be assigned to a state variable. However, when a valid value depends on the
value assigned to other values in the state, preventative fault detection may be impos-
sible. For example, say your program reads three values, A, B and C, in that order.
The state constraint is:

A < B & B < C

You cannot apply preventative fault detection when reading the value of A because
you don’t know what the value of B and C will be. Similarly, when reading B, you
can’t check that it is less than C. You therefore need to use retrospective fault detec-
tion, checking the state constraint after all of the values have been read. If the con-
straint is false, then you may take some action to restore consistency to the system.

One way to implement retrospective fault detection in Java is to associate a check-
ing function with an object. This function can be called after state changes have
been made to ensure that the state constraints hold. You can call these when nec-
essary—the state may not need to be checked after every change has been made.
The following interface can be used for checking functions:

interface CheckableObject {
public boolean check () ;

}

Objects to be checked are instantiations of an object class that implements this
interface, so each object has an associated check function. Each object class imple-
ments its own checking function that defines the particular constraints that apply to
objects of that class. When the state as a whole is checked, dynamic binding is used
to ensure that the check function appropriate for the class of object being checked
is applied. We can see an example of this in Figure 20.9, where the check function
checks that the elements of an array satisfy some constraint.

Retrospective fault detection, which uses state constraints that apply to more than
one state variable, is illustrated in Figure 20.10. In this example, the fault detection
check is applied to consecutive elements of an array and checks that the array is
ordered.

Damage assessment involves analysing the system state to estimate the extent
of the state corruption. Damage assessment is needed when you can’t avoid mak-
ing a state change or when a fault is caused by an invalid sequence of individually
correct state changes.

••

SE8_C20.qxd 4/4/06 9:14 Page 478

••

The role of the damage assessment procedures is not to recover from the fault
but to assess what parts of the state space have been affected by the fault. Damage
can only be assessed if it is possible to apply some ‘validity function’ that checks
whether the state is consistent. If inconsistencies are found, these are highlighted
or signalled in some way.

Figure 20.9 shows one way of implementing damage assessment in Java. The data
structure called RobustArray is a collection of objects of type CheckableObject. The

class RobustArray {

// Checks that all the objects in an array of objects
// conform to some defined constraint

boolean [] checkState ;
CheckableObject [] theRobustArray ;

RobustArray (CheckableObject [] theArray)
{

checkState = new boolean [theArray.length] ;
theRobustArray = theArray ;

} //RobustArray

public void assessDamage () throws ArrayDamagedException
{

boolean hasBeenDamaged = false ;

for (int i= 0; i <this.theRobustArray.length ; i ++)
{

if (! theRobustArray [i].check ())
{

checkState [i] = true ;
hasBeenDamaged = true ;

}
else

checkState [i] = false ;
}
if (hasBeenDamaged)

throw new ArrayDamagedException () ;
} //assessDamage

} // RobustArray

Figure 20.9 An array
class with damage
assessment

••

20.3 ■ Fault tolerance 479

SE8_C20.qxd 4/4/06 9:14 Page 479

••

480 Chapter 20 ■ Critical systems development

class that implements the CheckableObject type must include a method called check
that can test whether the value of the object satisfies some constraint. This checking
method is associated with this object rather than with the RobustArray object because
the details of the check depend on the use of the type CheckableObject.

The assessDamage method in the RobustArray class examines every element of
the array and checks that its state is correct. If one or more elements of the array
do not meet the state constraints defined in the check function, then the elements
that are damaged are recorded in the checkState array. An exception called
ArrayDamagedException is then thrown. A handler for this exception that manages
the damage must be included in the calling method. This can use the information
in checkState to decide what to do.

Other fault detection and damage assessment techniques depend on the system
state representation and on the type of application. These damage assessment tech-
niques include:

1. The use of coding checks and checksums in data communications and check
digits in numeric data

2. The use of redundant links in data structures that contain pointers

3. The use of watchdog timers in concurrent systems

Coding checks (Fujiwara and Pradhan, 1990) can be used when data is
exchanged where a checksum is associated with numeric data. A checksum is a unique
value that is computed by applying some mathematical function to data. This
checksum is computed by the sender, which applies the checksum function to the
data and appends that function value to the data to be transferred. The receiver applies
the same function to the data and compares the computed value to the appended
checksum. As the functions are the same, if these values differ, then the data itself
must have changed. This technique can be used to detect security intrusions as well
as deliberate and accidental corruption of data.

When linked data structures are used, the representation can be made redundant
by including backward references. That is, for every reference from A to B, there
exists a comparable reference from B to A. You can also count the number of ele-
ments in the structure. Checking can determine whether backward and forward ref-
erences are consistent (they should refer to each other) and whether the stored size
and the computed structure size are the same.

When processes must react within a specific time period, a watchdog timer may
be installed. A watchdog timer is a timer that must be reset by the executing pro-
cess after its action is complete. It is started at the same time as a process, and it
times the process execution. A controller may interrogate it at regular intervals. If,
for some reason, the process fails to terminate, the watchdog timer is not reset. The
controller can therefore detect that a problem has arisen and take action to force
process termination.

••

SE8_C20.qxd 4/4/06 9:14 Page 480

••

20.3.2 Fault recovery and repair

Fault recovery is the process of modifying the state space of the system so that the
effects of the fault are eliminated or reduced. The system can continue to operate,
perhaps in some degraded form. Forward recovery involves trying to correct the dam-
aged system state and to create the intended state. Backward recovery restores the
system state to a known ‘correct’ state.

Forward error recovery is only possible in situations where the state information
includes built-in redundancy. There are two general situations (both discussed in
the previous section) where this error recovery technique can be applied:

1. When coded data is corrupted The use of coding techniques that add redun-
dancy to the data allows errors to be corrected as well as detected.

2. When linked structures are corrupted When forward and backward pointers are
included in the data structure, the structure can be recreated—if enough point-
ers remain uncorrupted. This technique is frequently used for file system and
database repair.

Backward error recovery is a simpler technique that restores the state to a known
safe state after an error has been detected. Most database systems include backward
error recovery. When a user initiates a database computation, a transaction is initi-
ated. Changes made during that transaction are not immediately incorporated in the
database. The database is only updated after the transaction is finished and no prob-
lems are detected. If the transaction fails, the database is not updated.

Transactions allow error recovery because they do not commit changes to the
database until they have completed. However, they do not permit recovery from
state changes that are valid but incorrect. Checkpointing is a technique that can recover
from this situation. The system state is duplicated periodically. When a problem is
discovered, a correct state may be restored from one of these copies.

As an example of how backward recovery can be implemented using checkpointing,
consider the Java class SafeSort shown in Figure 20.10, which includes code for
error detection and backward recovery.

The method creates a checkpoint by copying the array before the sort operation. In
this example, I use a bubble sort for simplicity, but obviously any sorting algorithm
may be used. If there is an error in the sorting algorithm and the array is not properly
sorted, this is detected by explicit checks on the order of the elements in the array. If
the array is not properly sorted, a SortError exception is thrown. The exception handler
does not try to repair the problem, but restores the original value of the array and rethrows
SortError to indicate to the calling method that the sort has not been successful. It is
then the calling method’s responsibility to decide how to continue execution.

As I suggested earlier, many software faults are transient, and no explicit repair is
required to correct the conditions that caused these faults. They disappear in a subse-
quent execution of the system. Where this is not the case, it may be possible to take
some repair actions. The most common software repair action is to re-initialise the system,

••

20.3 ■ Fault tolerance 481

SE8_C20.qxd 4/4/06 9:14 Page 481

••••

482 Chapter 20 ■ Critical systems development

resetting the state to its initial, safe values (Huang and Kintala, 1993). This can some-
times be done without stopping the system if initialisation is fast and service requests
can be delayed. Other repair alternatives, such as dynamic reconfiguration, are nor-
mally only possible when you have made explicit provision, for this in the system design.

20.4 Fault-tolerant architectures

In many systems, it is possible to implement software fault tolerance by explicitly
including checks and recovery actions in the software. This is called defensive pro-
gramming. However, this approach cannot cope effectively with system faults that

class SafeSort {

static void sort (int [] intarray, int order) throws SortError
{

int [] copy = new int [intarray.length];

// copy the input array

for (int i = 0; i < intarray.length ; i++)
copy [i] = intarray [i] ;

try {
Sort.bubblesort (intarray, intarray.length, order) ;
if (order == Sort.ascending)

for (int i = 0; i <= intarray.length-2 ; i++)
if (intarray [i] > intarray [i+1])

throw new SortError () ;
else

for (int i = 0; i <= intarray.length-2 ; i++)
if (intarray [i+1] > intarray [i])

throw new SortError () ;
} // try block

catch (SortError e)
{

for (int i = 0; i < intarray.length ; i++)
intarray [i] = copy [i] ;

throw new SortError (“Array not sorted”) ;
} //catch

} // sort
} // SafeSort

Figure 20.10 Safe
sort procedure with
backward error
recovery

SE8_C20.qxd 4/4/06 9:14 Page 482

••••

arise from interactions between the hardware and the software. Furthermore, mis-
understandings of the requirements may mean that both the system code and the
associated defence are incorrect.

For the most critical systems, particularly those with stringent availability
requirements, a specific system architecture designed to support fault tolerance may
be required. Examples of systems that use this approach to fault tolerance are sys-
tems in aircraft that must be in operation throughout the duration of the flight, telecom-
munication systems, and critical command and control systems. Pullum (Pullum,
2001) describes different types of fault-tolerant architecture that have been proposed.

There has been a need for many years to build fault-tolerant hardware. The most
commonly used hardware fault-tolerant technique is based around the notion of triple-
modular redundancy (TMR). The hardware unit is replicated three (or sometimes
more) times. The output from each unit is passed to an output comparator that is
usually implemented as a voting system. If one of the units fails and does not pro-
duce the same output as the other units, its output is ignored. A fault manager may
try to repair the faulty unit automatically, but, if this is impossible, the system is
automatically reconfigured to take the unit out of service. The system then contin-
ues to function with two working units (Figure 20.11).

This approach to fault tolerance relies on most hardware failures being the result
of component failure rather than design faults. The components are therefore likely
to fail independently. It assumes that, when fully operational, all hardware units per-
form to specification. There is therefore a low probability of simultaneous compo-
nent failure in all hardware units.

Of course, the components could all have a common design fault and thus all
produce the same (wrong) answer. Using hardware units that have a common spec-
ification, but which are designed and built by different manufacturers, reduces the
chances of such a common mode failure. It is assumed that the probability of dif-
ferent teams making the same design or manufacturing error is small.

If the availability and reliability requirements for a system are such that you need
to use fault-tolerant hardware, then you may also need fault-tolerant software. There
are two related approaches to the provision of software fault tolerance (Figures 20.12
and 20.13). Both of these techniques have been derived from the hardware model
where redundant components (or perhaps redundant systems) are included and faulty
components may be taken out of service.

A2

A1

A3

Output
comparator

Figure 20.11 Triple-
modular redundancy
to cope with
hardware failure

20.4 ■ Fault-tolerant architectures 483

SE8_C20.qxd 4/4/06 9:14 Page 483

••••

484 Chapter 20 ■ Critical systems development

The two approaches to software fault tolerance are:

1. N-version programming Using a common specification, the software system is
implemented in a number of versions by a number of teams. These versions
are executed in parallel on separate computers. Their outputs are compared using
a voting system, and inconsistent outputs or outputs that are not produced in
time are rejected. At least three versions of the system should be available so
that two versions should be consistent in the event of a single failure. This is
the most commonly used approach to software fault tolerance. It has been used
in railway signalling systems, in aircraft systems and in reactor protection sys-
tems. Avizienis (Avizienis, 1985; Avizienis, 1995) describes this approach.

2. Recovery blocks In this approach, each program component includes a test to check
that the component has executed successfully. It also includes alternative code that
allows the system to back up and repeat the computation if the test detects a fail-
ure. The implementations are deliberately different interpretations of the same spec-
ification. They are executed in sequence rather than in parallel, so replicated hardware
is not required. In N-version programming, the implementations may be different

Version 2

Version 1

Version 3

Output
comparator

N-versions

Agreed
result

Fault
manager

Input

Figure 20.12
N-version
programming

Acceptance
test

Algorithm 2

Algorithm 1

Algorithm 3

Recovery blocks

Test for
success

Re-test

Retry

Re-test

Try algorithm
1

Continue execution if
acceptance test succeeds
Signal exception if all
algorithms fail

Acceptance test
fails – retry

Figure 20.13
Recovery blocks

SE8_C20.qxd 4/4/06 9:14 Page 484

••••

but it is not uncommon for two or more development teams to chose the same
algorithms to implement the specification. Randell (Randell, 1975) and Randell
and Xu (Randell and Xu, 1995) describe the recovery block method.

The provision of software fault tolerance requires the software to be executed
under the control of a fault-tolerant controller that will ensure that the steps
involved in tolerating a fault are executed. This controller examines the outputs and
compares them. If they differ, some recovery actions may be initiated. Laprie et al.
(Laprie, et al., 1995) describe fault-tolerant systems architectures.

Both of these approaches to fault tolerance make use of design and implemen-
tation diversity. When diverse approaches are used to implement the same specifi-
cation, it is a reasonable assumption that the different versions of the software will
not include the same faults, so common failures are unlikely. Diversity can be achieved
in a number of ways:

1. By including requirements that different approaches to design should be used.
For example, one team may be required to produce an object-oriented design
and another team may produce a function-oriented design.

2. By requiring that the implementations should be written in different program-
ming languages. For example, in a three-version system, Ada, C++ and Java
could be used to write the software versions.

3. By requiring the use of different tools and development environments for the
system.

4. By explicitly requiring different algorithms to be used in some parts of the imple-
mentation. However, this limits the freedom of the design team and may be
difficult to reconcile with system performance requirements.

Each development team should work with a system specification—the V-spec—
that has been derived from the system requirements specification (Avizienis, 1995).
As well as specifying the functionality of the system, the V-spec should define where
system outputs for comparison should be generated. The development teams for each
version should work in isolation to reduce the likelihood of them developing com-
mon misunderstanding about the system.

Design diversity certainly increases the overall reliability of the system.
However, a number of experiments have suggested that the assumption that inde-
pendent design teams do not make the same mistakes may not always be valid (Knight
and Leveson, 1986; Brilliant, et al., 1990; Leveson, 1995). Development teams may
make the same mistakes because of common misinterpretations of the specification
or because they independently arrive at the same algorithms to solve the problem.
Recovery blocks reduce the probability of common errors because different algo-
rithms are explicitly used for each recovery block.

The weakness of both approaches to fault tolerance is that they are based on the
assumption that the specification is correct. They do not tolerate specification

20.4 ■ Fault-tolerant architectures 485

SE8_C20.qxd 4/4/06 9:14 Page 485

••••

486 Chapter 20 ■ Critical systems development

errors. In many cases, however, the specification is incorrect or incomplete, so the
system behaves in an unexpected way. One way to reduce the possibility of com-
mon specification errors is to develop the V-specs for the system independently and
to define the specifications in different languages. One development team might work
from a formal specification, another from a state-based system model and the third
from a natural language specification. This helps avoid some errors of specification
interpretation, but does not get round the problem of specification errors.

F U R T H E R R E A D I N G

Software Fault Tolerance Techniques and Implementation. A comprehensive discussion of
techniques to achieve software fault tolerance and fault-tolerant architectures. The book also
covers general issues of software dependability. (L. L. Pullum, 2001, Artech House.)

■ Dependability in a program can be achieved by avoiding the introduction of faults, by detecting
and removing faults before system deployment and by including fault tolerance facilities that
allow the system to remain operational after a fault has caused a system failure.

■ The use of redundancy and diversity in both software processes and software systems is
essential to the development of dependable systems.

■ The use of a well-defined, repeatable process is important if faults in a system are to be
minimised. The process should include verification and validation activities at all stages,
from requirements definition through system implementation.

■ Some programming constructs and techniques, such as goto statements, pointers,
recursion, inheritance and floating-point numbers, are inherently error-prone. These should
not be used when developing dependable systems.

■ Exceptions are used to support error management in dependable systems. All exceptions
should be explicitly handled in a dependable system.

■ The four aspects of program fault tolerance are failure detection, damage assessment, fault
recovery and fault repair.

■ N-version programming and recovery blocks are alternative approaches to fault-tolerant
architectures where redundant copies of the hardware and software are maintained. Both
rely on design diversity and the use of a fault-tolerance controller to coordinate the
execution of redundant program units.

K E Y P O I N TS

SE8_C20.qxd 4/4/06 9:14 Page 486

••••

Handbook of Software Reliability Engineering. This collection includes several articles discussing
recovery blocks and N-version programming. It also includes a good article on fault-tolerant system
architectures. (M. R. Lyu (ed.), 1996, McGraw-Hill.)

E X E R C I S E S

20.1 Give four reasons why it is hardly ever cost-effective for companies to ensure that their
software is free of faults.

20.2 Give two examples of diverse, redundant activities that might be incorporated into
dependable processes.

20.3 Explain why inheritance is a potentially error-prone construct and why its use should be
minimised when developing critical systems in an object-oriented language.

20.4 Discuss the problems of developing and maintaining ‘nonstop’ systems such as telephone
exchange software. How might exceptions be used in the development of such systems?

20.5 Explain why you should explicitly handle all exceptions in a fault-tolerant system.

20.6 Briefly describe forward and backward fault recovery strategies. Why is backward fault
recovery used more often than forward error recovery? Give two examples of classes of
systems where backward error recovery might be used.

20.7 What is essential for forward error recovery to be implemented in a fault-tolerant system? Is
forward error recovery possible in interactive systems?

20.8 Design an abstract data type or object class called RobustList that implements forward error
recovery in a linked list. You should include operations to check the list for corruption and to
re-build the list if corruption has occurred. Assume that you can check corruption by
maintaining forward and backward references to and from adjacent members of the list.

20.9 Suggest circumstances where it is appropriate to use a fault-tolerant architecture when
implementing a software-based control system and explain why this approach is required.

20.10 It has been suggested that the control software for a radiation therapy machine (used to treat
patients with cancer) should be implemented using N-version programming. Comment on
whether you think this is a good suggestion.

20.11 Give two reasons why all the system versions in an N-version system may fail in a similar
way.

20.12 Using the techniques discussed here to produce safe software obviously involves
considerable extra costs. What extra costs can be justified if 100 lives would be saved over
the 15-year lifetime of a system? Would the same costs be justified if 10 lives were saved?
How much is a life worth? Do the earning capabilities of the people affected make a
difference to this judgement?

Chapter 20 ■ Exercises 487

SE8_C20.qxd 4/4/06 9:14 Page 487

••

Software evolution

Objectives
The objectives of this chapter are to introduce software evolution
and to describe a number of ways to modify software. When you
have read this chapter, you will:

■ understand that change is inevitable if software systems are to
remain useful and that software development and software
evolution may be integrated in a spiral model;

■ have learned about different types of software maintenance and
the factors that affect maintenance costs;

■ be aware of the processes involved in software evolution,
including the process of software re-engineering;

■ understand how legacy systems can be assessed to decide
whether they should be scrapped, maintained, re-engineered or
replaced.

Contents
21.1 Program evolution dynamics

21.2 Software maintenance

21.3 Evolution processes

21.4 Legacy system evolution

21

SE8_C21.qxd 4/4/06 9:15 Page 488

Chapter 21 ■ Software evolution 489

After systems have been deployed, they inevitably have to change if they are to
remain useful. Once software is put into use, new requirements emerge and exist-
ing requirements change. Business changes often generate new requirements for exist-
ing software. Parts of the software may have to be modified to correct errors that
are found in operation, to adapt it for a new platform and to improve its perfor-
mance or other non-functional characteristics. Software development, therefore, does
not stop when a system is delivered but continues throughout the lifetime of the
system.

Software evolution is important because organisations are now completely
dependent on their software systems and have invested millions of dollars in these
systems. Their systems are critical business assets and they must invest in system
change to maintain the value of these assets. The majority of the software budget
in large companies is therefore devoted to maintaining existing systems, and we
should not be surprised by figures such as those by Erlikh (Erlikh, 2000) that sug-
gest that 90% of software costs are evolution costs. There is quite a lot of uncer-
tainty in this percentage, however, as people mean different things when they refer
to evolution or maintenance costs.

As I discuss later, post-deployment changes are not simply concerned with repair-
ing faults in the software. The majority of changes are a consequence of new require-
ments that are generated in response to changing business and user needs.
Consequently, you can think of software engineering as a spiral process with
requirements, design, implementation and testing going on throughout the lifetime
of the system. This is illustrated in Figure 21.1. You start by creating Release 1 of
the system. Once delivered, changes are proposed and the development of Release
2 starts almost immediately. In fact, the need for evolution may become obvious
even before the system is deployed so that later releases of the software may be
under development before the initial version has been released.

This is an idealised model of software evolution that can be applied in situations
where a single organisation is responsible for both the initial software development
and the evolution of the software. Most generic software products are developed
using this approach. However, custom software may be developed externally but
the evolution may be the responsibility of the customer’s software development staff.
Alternatively, the software user might issue a separate contract to an external com-
pany for system support and evolution.

In this case, there are often discontinuities in the spiral process. Requirements
and design documents may not be passed from one company to another. Companies
may merge or reorganise and inherit software from other companies, and then find
that this has to be changed. When the transition from development to evolution is
not seamless, the process of changing the software after delivery is often called soft-
ware maintenance. As I discuss later in this chapter, maintenance involves extra
process activities, such as program understanding, in addition to the normal activ-
ities of software development.

••

SE8_C21.qxd 4/4/06 9:15 Page 489

••••

490 Chapter 21 ■ Software evolution

21.1 Program evolution dynamics

Program evolution dynamics is the study of system change. The majority of work
in this area has been carried out by Lehman and Belady, initially in the 1970s and
1980s (Lehman and Belady, 1985). The work continued in the 1990s as Lehman
and others investigated the significance of feedback in evolution processes
(Lehman, 1996; Lehman, et al., 1998; Lehman, et al., 2001). From these studies,
they proposed a set of laws (Lehman’s laws) concerning system change. They claim
these laws (hypotheses, really) are invariant and widely applicable. Lehman and Belady
examined the growth and evolution of a number of large software systems. The pro-
posed laws, shown in Figure 21.2, were derived from these measurements.

The first law states that system maintenance is an inevitable process. As the sys-
tem’s environment changes, new requirements emerge and the system must be mod-
ified. When the modified system is re-introduced to the environment, this promotes
more environmental changes, so the evolution process recycles.

The second law states that, as a system is changed, its structure is degraded. The
only way to avoid this happening is to invest in preventative maintenance where
you spend time improving the software structure without adding to its functional-
ity. Obviously, this means additional costs, over and above those of implementing
required system changes.

The third law is, perhaps, the most interesting and the most contentious of Lehman’s
laws. It suggests that large systems have a dynamic of their own that is established
at an early stage in the development process. This determines the gross trends of
the system maintenance process and limits the number of possible system changes.

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

etc.

Figure 21.1 A spiral
model of
development and
evolution

SE8_C21.qxd 4/4/06 9:15 Page 490

••••

Lehman and Belady suggest that this law is a consequence of structural factors that
influence and constrain system change, as well as organisational factors that affect
the evolution process.

Once a system exceeds some minimal size it becomes more difficult to change.
Because it is large and complex, the system is hard to understand, and program-
mers are more likely to make errors and introduce faults into the system. Therefore,
making small changes avoids reducing the dependability of the system. A large change
will probably introduce many new faults that will limit the useful change delivered
in the new version of the system.

Large systems are usually produced by large organisations, which have internal
bureaucracies that set the change budget for each system and control the decision-
making process. Organisations have to make decisions on the risks and value of the
changes and the costs involved. Such decisions take time to make. During that time,
other, higher-priority system changes may be proposed. It may be necessary to shelve

Law Description

Continuing change A program that is used in a real-world environment
necessarily must change or become progressively less
useful in that environment.

Increasing complexity As an evolving program changes, its structure tends to
become more complex. Extra resources must be devoted
to preserving and simplifying the structure.

Large program Program evolution is a self-regulating process. System
evolution attributes such as size, time between releases and the

number of reported errors is approximately invariant for
each system release.

Organisational stability Over a program’s lifetime, its rate of development is
approximately constant and independent of the resources
devoted to system development.

Conservation of Over the lifetime of a system, the incremental change in
familiarity each release is approximately constant.

Continuing growth The functionality offered by systems has to continually
increase to maintain user satisfaction.

Declining quality The quality of systems will appear to be declining unless
they are adapted to changes in their operational
environment.

Feedback system Evolution processes incorporate multi-agent, multi-loop
feedback systems and you have to treat them as feedback
systems to achieve significant product improvement.

Figure 21.2 Lehman’s
laws

21.1 ■ Program evolution dynamics 491

SE8_C21.qxd 4/4/06 9:15 Page 491

••••

492 Chapter 21 ■ Software evolution

the original changes until a later date. The organisation’s decision-making processes
therefore govern the rate of change of the system.

Lehman’s fourth law suggests that most large programming projects work in what
he terms a saturated state. That is, a change to resources or staffing has impercep-
tible effects on the long-term evolution of the system. This is consistent with the
third law, which suggests that program evolution is largely independent of man-
agement decisions. This law confirms that large software development teams are
often unproductive because communication overheads dominate the work of the team.

Lehman’s fifth law is concerned with the change increments in each system release.
Adding new functionality to a system inevitably introduces new system faults. The
more functionality added in each release, the more faults there will be. Therefore,
a large increment in functionality in one system release means that this will have
to be followed by a further release where the new system faults are repaired. Relatively
little new functionality will be included in this release. The law suggests that you
should not budget for large functionality increments in each release without taking
into account the need for fault repair.

The first five laws were in Lehman’s initial proposals; the remaining laws were
added after further work. The sixth and seventh laws are similar and essentially say
that users of software will become increasingly unhappy with it unless it is main-
tained and new functionality is added to it. The final law reflects the most recent
work on feedback processes, although it is not yet clear how this can be applied in
practical software development.

Lehman’s observations seem generally sensible. They should be taken into
account when planning the maintenance process. It may be that business consider-
ations require them to be ignored at any one time. For example, for marketing rea-
sons, it may necessary to make several major system changes in a single release.
The probable consequences of this are that one or more releases devoted to error
repair are likely to be required.

It may appear that the radical differences that are obvious between releases of
program products violate Lehman’s laws. For example, Microsoft Word has been
transformed from a simple word processor that operated in 256K of memory to a
gigantic, feature-laden system. It now needs many megabytes of memory and a fast
processor to operate. Its evolution seems to contradict the fourth and fifth of
Lehman’s laws. However, I suspect that this program is not really a sequence of
revisions of a common core program. Rather, the name has been retained for mar-
keting reasons, but the program itself has been rewritten and re-structured more than
once since it was originally released.

21.2 Software maintenance

Software maintenance is the general process of changing a system after it has been
delivered. The term is usually applied to custom software where separate development

SE8_C21.qxd 4/4/06 9:15 Page 492

••••

groups are involved before and after delivery. The changes made to the software
may be simple changes to correct coding errors, more extensive changes to correct
design errors or significant enhancements to correct specification errors or accom-
modate new requirements. Changes are implemented by modifying existing system
components and, where necessary, by adding new components to the system.

There are three different types of software maintenance:

1. Maintenance to repair software faults Coding errors are usually relatively cheap
to correct; design errors are more expensive as they may involve rewriting sev-
eral program components. Requirements errors are the most expensive to
repair because of the extensive system redesign that may be necessary.

2. Maintenance to adapt the software to a different operating environment This
type of maintenance is required when some aspect of the system’s environment
such as the hardware, the platform operating system or other support software
changes. The application system must be modified to adapt it to cope with these
environmental changes.

3. Maintenance to add to or modify the system’s functionality This type of main-
tenance is necessary when the system requirements change in response to organ-
isational or business change. The scale of the changes required to the software
is often much greater than for the other types of maintenance.

In practice, there isn’t a clear-cut distinction between these types of maintenance.
When you adapt the system to a new environment, you may add functionality to
take advantage of new environmental features. Software faults are often exposed
because users use the system in unanticipated ways. Changing the system to
accommodate their way of working is the best way to fix these faults.

These types of maintenance are generally recognised, but different people some-
times give them different names. Corrective maintenance is universally used to refer
to maintenance for fault repair. However, adaptive maintenance sometimes means
adapting to a new environment and can mean adapting the software to new require-
ments. Perfective maintenance can mean perfecting the software by implementing
new requirements; in other cases it means maintaining the functionality of the sys-
tem but improving its structure and its performance. Because of this naming uncer-
tainty, I have avoided the use of all of these terms in this chapter.

Surveys by Lientz and Swanson (Lientz and Swanson, 1980) and Nosek and Palvia
(Nosek and Palvia, 1990) suggest that about 65% of maintenance is concerned with
implementing new requirements, 18% with changing the system to adapt it to a new
operating environment and 17% to correcting system faults (Figure 21.3). For cus-
tom systems, this distribution of costs is still roughly correct. The important point
is not the specific percentages but the fact that repairing system faults is not the
most expensive maintenance activity. Evolving the system to cope with new envi-
ronments and new or changed requirements consumes most maintenance effort.

Maintenance costs as a proportion of development costs vary from one applica-
tion domain to another. Guimaraes (Guimaraes, 1983) suggests that the maintenance

21.2 ■ Software maintenance 493

SE8_C21.qxd 4/4/06 9:15 Page 493

••••

494 Chapter 21 ■ Software evolution

costs for business application systems are broadly comparable with system devel-
opment costs. For embedded real-time systems, maintenance costs may be up to
four times higher than development costs. The high reliability and performance require-
ments of these systems often mean that modules have to be tightly linked and hence
difficult to change.

It is usually cost-effective to invest effort in designing and implementing a sys-
tem to reduce maintenance costs. Adding new functionality after delivery is expen-
sive because you have to spend time understanding the system and analysing the
impact of the proposed changes. Therefore, work done during development to make
the software easier to understand and change is likely to reduce maintenance costs.
Good software engineering techniques such as precise specification, the use of object-
oriented development and configuration management contribute to maintenance cost
reduction.

Figure 21.4 shows how overall lifetime costs may decrease as more effort is
expended during system development to produce a maintainable system. Because
of the potential reduction in costs of understanding, analysis and testing, there is a
significant multiplier effect when the system is developed for maintainability. For
System 1, extra development costs of $25,000 are invested in making the system
more maintainable. This results in a savings of $100,000 in maintenance costs over
the lifetime of the system. This assumes that a percentage increase in development
costs results in a comparable percentage decrease in overall system costs.

One important reason why maintenance costs are high is that it is more expen-
sive to add functionality after a system is in operation than it is to implement the
same functionality during development. The key factors that distinguish develop-
ment and maintenance, and which lead to higher maintenance costs, are:

1. Team stability After a system has been delivered, it is normal for the develop-
ment team to be broken up and people work on new projects. The new team

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Software
adaptation

(18%)

Figure 21.3
Maintenance effort
distribution

SE8_C21.qxd 4/4/06 9:15 Page 494

••••

or the individuals responsible for system maintenance do not understand the
system or the background to system design decisions. A lot of the effort dur-
ing the maintenance process is taken up with understanding the existing sys-
tem before implementing changes to it.

2. Contractual responsibility The contract to maintain a system is usually sepa-
rate from the system development contract. The maintenance contract may be
given to a different company rather than the original system developer. This
factor, along with the lack of team stability, means that there is no incentive
for a development team to write the software so that it is easy to change. If a
development team can cut corners to save effort during development, it is worth-
while for them to do so even if it means increasing maintenance costs.

3. Staff skills Maintenance staff are often relatively inexperienced and unfamiliar
with the application domain. Maintenance has a poor image among software
engineers. It is seen as a less skilled process than system development and is
often allocated to the most junior staff. Furthermore, old systems may be writ-
ten in obsolete programming languages. The maintenance staff may not have
much experience of development in these languages and must learn these lan-
guages to maintain the system.

4. Program age and structure As programs age, their structure tends to be degraded
by change, so they become harder to understand and modify. Some systems have
been developed without modern software engineering techniques. They may
never have been well structured and were perhaps optimised for efficiency rather
than understandability. System documentation may be lost or inconsistent. Old sys-
tems may not have been subject to configuration management, so time is often
wasted finding the right versions of system components to change.

The first three of these problems stem from the fact that many organisations still
consider development and maintenance to be separate activities. Maintenance is seen
as a second-class activity, and there is no incentive to spend money during devel-
opment to reduce the costs of system change. The only long-term solution to this
problem is to accept that systems rarely have a defined lifetime but continue in use,

0 50 100 150 200 250 300 350 400 450 500

System 1

System 2

Development costs Maintenance costs

$

Figure 21.4
Development and
maintenance costs

21.2 ■ Software maintenance 495

SE8_C21.qxd 4/4/06 9:15 Page 495

••

496 Chapter 21 ■ Software evolution

in some form, for an indefinite period. As I suggested in the introduction, you should
think of systems as evolving throughout their lifetime through a continual devel-
opment process.

The fourth issue, the problem of degraded system structure, is in some ways the
easiest problem to address. Software re-engineering techniques (briefly described
later in this chapter) may be applied to improve the system structure and under-
standability. Architectural transformations can adapt the system to new hardware.
Preventative maintenance work (essentially incremental re-engineering) can be sup-
ported to improve the system and make it easier to change.

21.2.1 Maintenance prediction

Managers hate surprises, especially if these result in unexpectedly high costs. You
should therefore try to predict what system changes are likely and what parts of the
system are likely to be the most difficult to maintain. You should also try to esti-
mate the overall maintenance costs for a system in a given time period. Figure 21.5
illustrates these predictions and associated questions.

These predictions are obviously closely related:

1. Whether a system change should be accepted depends, to some extent, on the
maintainability of the system components affected by that change.

2. Implementing system changes tends to degrade the system structure and hence
reduce its maintainability.

3. Maintenance costs depend on the number of changes, and the costs of change
implementation depend on the maintainability of system components.

Predicting the number of change requests for a system requires an understand-
ing of the relationship between the system and its external environment. Some sys-
tems have a very complex relationship with their external environment and changes
to that environment inevitably result in changes to the system. To evaluate the rela-
tionships between a system and its environment, you should assess:

1. The number and complexity of system interfaces The larger the number of inter-
faces and the more complex they are, the more likely it is that demands for
change will be made.

2. The number of inherently volatile system requirements As I discussed in
Chapter 7, requirements that reflect organisational policies and procedures are
likely to be more volatile than requirements that are based on stable domain
characteristics.

3. The business processes in which the system is used As business processes evolve,
they generate system change requests. The more business processes that use a
system, the more the demands for system change.

••

SE8_C21.qxd 4/4/06 9:15 Page 496

••

To predict system maintainability, you need to understand the number and the
types of relationship between the system components as well as the inherent com-
plexity of these components. There have been various studies of the different types
of complexity in a system (McCabe, 1976; Halstead, 1977) and of the relationships
between complexity and maintainability (Kafura and Reddy, 1987; Banker, et al.,
1993). It is not surprising that these studies have found that the more complex a
system or component, the more expensive it is to maintain.

Complexity measurements have been found to be particularly useful in identifying
individual program components that are likely to be particularly expensive to main-
tain. Kafura and Reddy (Kafura and Reddy, 1987) examined a number of system com-
ponents and found that maintenance effort tended to be focused on a small number of
complex components. They suggest that, to reduce maintenance costs, you should replace
particularly complex system components with simpler alternatives.

After a system has been put into service, you may be able to use process data
to help predict maintainability. Examples of process metrics that can be used for
assessing maintainability are:

1. Number of requests for corrective maintenance An increase in the number of
failure reports may indicate that more errors are being introduced into the pro-
gram than are being repaired during the maintenance process. This may indi-
cate a decline in maintainability.

2. Average time required for impact analysis This reflects the number of program
components that are affected by the change request. If this time increases, it implies
that more and more components are affected and maintainability is decreasing.

3. Average time taken to implement a change request This is not the same as the
time for impact analysis although it may correlate with it. This is the amount

Predicting
maintainability

Predicting system
changes

Predicting
maintenance

costs

What will be the lifetime
maintenance costs of this

system?

What will be the costs of
maintaining this system

over the next year?

What parts of the system
will be the most expensive

to maintain?

How many change
requests can be

expected?

What parts of the system are
most likely to be affected by

change requests?

Figure 21.5
Maintenance
prediction

••

21.2 ■ Software maintenance 497

SE8_C21.qxd 4/4/06 9:15 Page 497

••

498 Chapter 21 ■ Software evolution

of time that you need to actually modify the system and its documentation, after
you have assessed which components are affected. An increase in the time needed
to implement a change may indicate a decline in maintainability.

4. Number of outstanding change requests An increase in this number over time
may imply a decline in maintainability.

You use predicted information about change requests and about system main-
tainability to predict maintenance costs. Most managers combine this information
with intuition and experience to estimate costs. The COCOMO 2 model of cost esti-
mation (Boehm, et al., 2000), discussed in Chapter 26, suggests that an estimate for
software maintenance effort can be based on the effort to understand existing code
and the effort to develop the new code.

21.3 Evolution processes

Software evolution processes vary considerably depending on the type of software
being maintained, the development processes used in an organisation and the peo-
ple involved in the process. In some organisations, evolution may be an informal
process where change requests mostly come from conversations between the sys-
tem users and developers. In other companies, it is a formalised process with struc-
tured documentation produced at each stage in the process.

System change proposals are the driver for system evolution in all organisations.
These change proposals may involve existing requirements that have not been imple-
mented in the released system, requests for new requirements and bug repairs from
system stakeholders, and new ideas and proposals for software improvement from
the system development team. As illustrated in Figure 21.6, the processes of change
identification and system evolution are cyclical and continue throughout the life-
time of a system.

The evolution process includes the fundamental activities of change analysis, release
planning, system implementation and releasing a system to customers. The cost and impact
of these changes are assessed to see how much of the system is affected by the change
and how much it might cost to implement the change. If the proposed changes are accepted,
a new release of the system is planned. During release planning, all proposed changes
(fault repair, adaptation and new functionality) are considered. A decision is then made
on which changes to implement in the next version of the system. The changes are imple-
mented and validated, and a new version of the system is released. The process then
iterates with a new set of changes proposed for the next release. Figure 21.7, adapted
from Arthur (Arthur, 1988), shows an overview of this process.

The process of change implementation is, essentially, an iteration of the devel-
opment process where the revisions to the system are designed, implemented and

••

SE8_C21.qxd 4/4/06 9:15 Page 498

••

tested. However, a critical difference is that the initial stage of change implemen-
tation is program understanding. During this phase, you have to understand how
the program is structured and how it delivers its functionality. When implementing
a change, you use this understanding to make sure that the implemented change
does not adversely affect the existing system.

Ideally, the change implementation stage of this process should modify the sys-
tem specification, design and implementation to reflect the changes to the system
(Figure 21.8). New requirements that reflect the system changes are proposed, anal-
ysed and validated. System components are redesigned and implemented and the
system is re-tested. If appropriate, prototyping of the proposed changes may be car-
ried out as part of the change analysis process.

As you change software, you develop succeeding releases of the system. These
are composed from versions of the system’s components. You have to keep track
of these versions to ensure that you use the right versions of components in each
system release. Configuration management is covered in Chapter 29.

During the evolution process, the requirements are analysed in detail and, fre-
quently, implications of the changes emerge that were not apparent in the earlier

Figure 21.6 Change
identification and
evolution processes

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancement

Fault repair

Figure 21.7 The
system evolution
process

••

21.3 ■ Evolution processes 499

SE8_C21.qxd 4/4/06 9:15 Page 499

••••

500 Chapter 21 ■ Software evolution

change analysis process. This means that the proposed changes may be modified
and further customer discussions may be required before they are implemented.

Change requests sometimes relate to system problems that have to be tackled
very urgently. These urgent changes can arise for three reasons:

1. If a serious system fault occurs that has to be repaired to allow normal opera-
tion to continue

2. If changes to the system’s operating environment have unexpected effects that
disrupt normal operation

3. If there are unanticipated changes to the business running the system, such as
the emergence of new competitors or the introduction of new legislation

In these cases, the need to make the change quickly means that you may not be
able to follow the formal change analysis process. Rather than modify the requirements
and design, you make an emergency fix to the program to solve the immediate prob-
lem (Figure 21.9). However, the danger is that the requirements, the software design
and the code gradually become inconsistent. While you may intend to document the
change in the requirements and design, additional emergency fixes to the software may
then be needed. These take priority over documentation. Eventually, the original
change is forgotten and the system documentation and code never become consistent.

A further problem with emergency system repairs is that they have to be com-
pleted as quickly as possible. You chose a quick and workable solution rather than
the best solution as far as system structure is concerned. This accelerates the pro-
cess of software ageing so that future changes become progressively more difficult
and maintenance costs increase.

Ideally, when emergency code repairs are made, the change request should remain
outstanding after the code faults have been fixed. It can then be re-implemented
more carefully after further analysis. Of course, the code of the repair may be reused.
An alternative, better solution to the problem may be discovered when more time
is available for analysis. In practice, however, it is almost inevitable that these changes
will have a low priority and, after further system changes are made, it is unrealis-
tic to re-do the emergency repairs.

Requirements
updating

Software
development

Requirements
analysis

Proposed
changes

Figure 21.8 Change
implementation

Modify
source code

Deliver modified
system

Analyse
source code

Change
requests

Figure 21.9 The
emergency repair
process

SE8_C21.qxd 4/4/06 9:15 Page 500

••••

21.3.1 System re-engineering

As discussed in the previous section, the process of system evolution involves under-
standing the program that has to be changed, then implementing these changes.
However, many systems, especially older legacy systems (discussed in Chapter 2),
are difficult to understand and change. The programs may have been originally
optimised for performance or space utilisation at the expense of understandability,
or, over time, the initial program structure may have been corrupted by a series of
changes.

To simplify the problems of changing its legacy systems, a company may decide
to re-engineer these systems to improve their structure and understandability.
Software re-engineering is concerned with re-implementing legacy systems to
make them more maintainable. Re-engineering may involve re-documenting the sys-
tem, organising and restructuring the system, translating the system to a more mod-
ern programming language, and modifying and updating the structure and values
of the system’s data. The functionality of the software is not changed and, normally,
the system architecture also remains the same.

Re-engineering a software system has two key advantages over more radical
approaches to system evolution:

1. Reduced risk There is a high risk in re-developing business-critical software.
Errors may be made in the system specification, or there may be development
problems. Delays in introducing the new software may mean that business is
lost and extra costs are incurred. For example, in 1999 a large US food com-
pany encountered delays in introducing a new ordering system, which led to
delays in delivering $100 million worth of goods during a peak sales season.

2. Reduced cost The cost of re-engineering is significantly less than the cost of
developing new software. Ulrich (Ulrich, 1990) quotes an example of a com-
mercial system where the re-implementation costs were estimated at $50 mil-
lion. The system, was successfully re-engineered for $12 million. I suspect
that, with modern software technology, the relative cost of re-implementa-
tion is probably less than this but will still considerably exceed the costs of
re-engineering.

21.3 ■ Evolution processes 501

Understanding and
transformation

Existing
software system

Re-engineered
system

Design and
implementation

System
specification

New
system

Software re-engineering

Forward engineering

Figure 21.10 Forward
engineering and
re-engineering

SE8_C21.qxd 4/4/06 9:15 Page 501

••••

502 Chapter 21 ■ Software evolution

The critical distinction between re-engineering and new software development
is the starting point for the development. Rather than starting with a written spec-
ification, the old system acts as a specification for the new system. Chikofsky and
Cross (Chikofsky and Cross, 1990) call conventional development forward engi-
neering to distinguish it from software re-engineering. This distinction is illustrated
in Figure 21.10. Forward engineering starts with a system specification and
involves the design and implementation of a new system. Re-engineering starts with
an existing system and the development process for the replacement is based on
understanding and transforming the original system.

Figure 21.11 illustrates the re-engineering process. The input to the process is a
legacy program and the output is a structured, modularised version of the same
program. During program re-engineering, the data for the system may also be re-
engineered. The activities in this re-engineering process are:

1. Source code translation The program is converted from an old programming lan-
guage to a more modern version of the same language or to a different language.

2. Reverse engineering The program is analysed and information extracted from
it. This helps to document its organisation and functionality.

2. Program structure improvement The control structure of the program is anal-
ysed and modified to make it easier to read and understand.

3. Program modularisation Related parts of the program are grouped together and,
where appropriate, redundancy is removed. In some cases, this stage may involve
architectural transformation where a centralised system intended for a single
computer is modified to run on a distributed platform.

4. Data re-engineering The data processed by the program is changed to reflect
program changes.

Reverse
engineering

Program
documentation

Data
re-engineering

Original data

Program
structure

improvement

Program
modularisation

Structured
program

Re-engineered
data

Modularised
program

Original
program

Source code
translation

Figure 21.11 The re-
engineering process

SE8_C21.qxd 4/4/06 9:15 Page 502

••••

System re-engineering may not necessarily require all of the steps in Figure 21.11.
Source code translation may not be needed if the programming language used to develop
the system is still supported by the compiler supplier. If the re-engineering relies
completely on automated tools, then recovering documentation through reverse engi-
neering may be unnecessary. Data re-engineering is only required if the data struc-
tures in the program change during system re-engineering. However, software
re-engineering always involves some program re-structuring.

To make the re-engineered system interoperate with the new software, you may
have to develop adaptor components, as discussed in Chapter 19. These hide the
original interfaces of the software system and present new, better-structured inter-
faces that can be used by other components. This process of legacy system wrap-
ping is an important technique for developing large-scale reusable components.

The costs of re-engineering obviously depend on the extent of the work that is
carried out. There is a spectrum of possible approaches to re-engineering, as shown
in Figure 21.12. Costs increase from left to right so that source code translation is
the cheapest option. Re-engineering as part of architectural migration is the most
expensive.

Apart from the extent of the re-engineering, the principal factors that affect re-
engineering costs are:

1. The quality of the software to be re-engineered The lower the quality of the soft-
ware and its associated documentation (if any), the higher the re-engineering costs.

2. The tool support available for re-engineering It is not normally cost-effective
to re-engineer a software system unless you can use CASE tools to automate
most of the program changes.

3. The extent of data conversion required If re-engineering requires large volumes
of data to be converted, the process cost increases significantly.

4. The availability of expert staff If the staff responsible for maintaining the sys-
tem cannot be involved in the re-engineering process, the costs will increase
because system re-engineers will have to spend a great deal of time understanding
the system.

Automated restructuring
with manual changes

Automated source
code conversion

Restructuring plus
architectural changes

Automated program
restructuring

Program and data
restructuring

Increased cost

Figure 21.12
Re-engineering
approaches

21.3 ■ Evolution processes 503

SE8_C21.qxd 4/4/06 9:15 Page 503

••

504 Chapter 21 ■ Software evolution

The main disadvantage of software re-engineering is that there are practical lim-
its to the extent that a system can be improved by re-engineering. It isn’t possible,
for example, to convert a system written using a functional approach to an object-
oriented system. Major architectural changes or radical re-organisation of the sys-
tem data management cannot be carried out automatically, so they incur high
additional costs. Although re-engineering can improve maintainability, the re-engi-
neered system will probably not be as maintainable as a new system developed using
modern software engineering methods.

21.4 Legacy system evolution

For new software systems developed using modern software engineering processes
such as iterative development and CBSE, it is possible to plan how to integrate sys-
tem development and evolution. More and more companies are starting to under-
stand that the system development process is a whole life-cycle process and that an
artificial separation between software development and software maintenance is unhelp-
ful. However, there are still many legacy systems that are critical business systems.
These have to be extended and adapted to changing e-business practices.

Organisations that have a limited budget for maintaining and upgrading their legacy
systems have to decide how to get the best return on their investment. This means
that they have to make a realistic assessment of their legacy systems and then decide
what is the most appropriate strategy for evolving these systems. There are four
strategic options:

1. Scrap the system completely This option should be chosen when the system is
not making an effective contribution to business processes. This occurs when
business processes have changed since the system was installed and are no longer
completely dependent on the system. This situation is most common when main-
frame terminals have been replaced by PCs, and off-the-shelf software on these
machines has been adapted to provide much of the computer support that the
business process needs.

2. Leave the system unchanged and continue with regular maintenance This
option should be chosen when the system is still required but is fairly stable
and the system users make relatively few change requests.

3. Re-engineer the system to improve its maintainability This option should be
chosen when the system quality has been degraded by regular change and where
regular change to the system is still required. As I discussed, this process may
include developing new interface components so that the original system can
work with other, newer systems.

••

SE8_C21.qxd 4/4/06 9:15 Page 504

••

4. Replace all or part of the system with a new system This option should be cho-
sen when other factors such as new hardware mean that the old system cannot
continue in operation or where off-the-shelf systems would allow the new sys-
tem to be developed at a reasonable cost. In many cases, an evolutionary replace-
ment strategy can be adopted where major system components are replaced by
off-the-shelf systems with other components reused wherever possible.

Naturally, these options are not exclusive, so when a system is composed of sev-
eral programs, different options may be applied to different parts of the system.

When you are assessing a legacy system, you have to look at it from both a busi-
ness perspective and a technical perspective (Warren, 1998). From a business per-
spective, you have to decide whether the business really needs the system. From a
technical perspective, you have to assess the quality of the application software and
the system’s support software and hardware. You then use a combination of the
business value and the system quality to inform your decision on what to do with
the legacy system.

To illustrate, let’s assume that an organisation has 10 legacy systems. The qual-
ity and the business value of each of these systems is assessed and compared with
others by plotting it on a chart showing relative business value and system quality.
This is illustrated in Figure 21.13.

From Figure 21.13, you can see that there are four clusters of systems:

1. Low quality, low business value Keeping these systems in operation will be
expensive and the rate of the return to the business will be fairly small. These
systems should be scrapped.

2. Low quality, high business value These systems are making an important busi-
ness contribution so they cannot be scrapped. However, their low quality means
that it is expensive to maintain them. These systems should be re-engineered to
improve their quality or replaced, if a suitable off-the-shelf system is available.

3. High quality, low business value These are systems that don’t contribute much
to the business but that may not be very expensive to maintain. It is not worth
replacing these systems so normal system maintenance may be continued so
long as no expensive changes are required and the system hardware is opera-
tional. If expensive changes become necessary, they should be scrapped.

4. High quality, high business value These systems have to be kept in operation,
but their high quality means that you don’t have to invest in transformation or
system replacement. Normal system maintenance should be continued.

To assess the business value of a system, you have to identify system stakeholders,
such as end-users of the system and their managers, and ask a series of questions
about the system. There are four basic issues that you have to discuss:

••

21.4 ■ Legacy system evolution 505

SE8_C21.qxd 4/4/06 9:15 Page 505

••••

506 Chapter 21 ■ Software evolution

1. The use of the system If systems are only used occasionally or by a small num-
ber of people, they may have a low business value. A legacy system may have
been developed to meet a business need that has either changed or that can now
be met more effectively in other ways.

2. The business processes that are supported When a system is introduced, busi-
ness processes to exploit that system may be designed. However, changing these
processes may be impossible because the legacy system can’t be adapted.
Therefore, a system may have a low business value because new processes can’t
be introduced.

3. The system dependability System dependability is not only a technical problem
but also a business problem. If a system is not dependable and the problems
directly affect the business customers or mean that people in the business are
diverted from other tasks to solve these problems, the system has a low busi-
ness value.

4. The system outputs The key issue here is the importance of the system outputs
to the successful functioning of the business. If the business depends on these
outputs, then the system has a high business value. Conversely, if these out-
puts can be easily generated in some other way or if the system produces out-
puts that are rarely used, then its business value may be low.

For example, let’s assume that a company provides a travel ordering system where
the staff responsible for arranging travel can place orders with an approved travel
agent. Tickets are then delivered and the company is invoiced for these. However,
a business value assessment may reveal that this system is only used for a fairly
small percentage of travel orders placed. People making travel arrangements find

1
2

3 4
5

6
7

8
9

10

System quality

B
us

in
es

s
va

lu
e

High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

Figure 21.13 Legacy
system assessment

SE8_C21.qxd 4/4/06 9:15 Page 506

••••

it cheaper and more convenient to deal directly with travel suppliers through their
web sites. This system may still be used, but there is no real point in keeping it.
The same functionality is available from external systems.

Conversely, say a company has developed a system that keeps track of all pre-
vious customer orders and automatically generates reminders for customers to re-
order goods. This results in a large number of repeat orders and keeps customers
satisfied because they feel that their supplier is aware of their needs. The outputs
from such a system are very important to the business, this system therefore has a
high business value.

To assess a software system from a technical perspective, you need to consider
both the application system itself and the environment in which the system oper-
ates. The environment includes the hardware and all associated support software,
such as compilers and linkers, that is required to maintain the system. The envi-
ronment is important because many system changes result from changes to the envi-
ronment, such as upgrades to the hardware or operating system.

If possible, in the process of environmental assessment, you should make mea-
surements of the system and its maintenance processes. Examples of data that may
be useful include the costs of maintaining the system hardware and support soft-

21.4 ■ Legacy system evolution 507

Factor Questions

Supplier stability Is the supplier is still in existence? Is the supplier financially
stable and likely to continue in existence? If the supplier is no
longer in business, does someone else maintain the systems?

Failure rate Does the hardware have a high rate of reported failures? Does
the support software crash and force system restarts?

Age How old is the hardware and software? The older the hardware
and support software, the more obsolete it will be. It may still
function correctly but there could be significant economic and
business benefits to moving to more modern systems.

Performance Is the performance of the system adequate? Do performance
problems have a significant effect on system users?

Support What local support is required by the hardware and software? If
requirements there are high costs associated with this support, it may be

worth considering system replacement.

Maintenance What are the costs of hardware maintenance and support
costs software licences? Older hardware may have higher

maintenance costs than modern systems. Support software may
have high annual licensing costs.

Interoperability Are there problems interfacing the system to other systems?
Can compilers, for example, be used with current versions of
the operating system? Is hardware emulation required?

Figure 21.14 Factors
used in environment
assessment

SE8_C21.qxd 4/4/06 9:15 Page 507

••••

508 Chapter 21 ■ Software evolution

ware, the number of hardware faults that occur over some time period and the fre-
quency of patches and fixes applied to the system support software.

Factors that you should consider during the environment assessment are shown
in Figure 21.14. Notice that these are not all technical characteristics of the envi-
ronment. You also have to consider the reliability of the suppliers of the hardware
and support software. If these suppliers are no longer in business, there may not be
maintenance support for their systems.

To assess the technical quality of an application system, you have to assess a
range of factors (Figure 21.15) that are primarily related to the system dependabil-
ity, the difficulties of maintaining the system and the system documentation. You
may also collect quantitative system data that will help you judge the quality of the
system. Examples of quantitative data that might be collected are:

1. The number of system change requests System changes tend to corrupt the sys-
tem structure and make further changes more difficult. The higher this value,
the lower the quality of the system.

Factor Questions

Understandability How difficult is it to understand the source code of the current
system? How complex are the control structures that are used?
Do variables have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation
complete, consistent and current?

Data Is there an explicit data model for the system? To what extent
is data duplicated across files? Is the data used by the system
up-to-date and consistent?

Performance Is the performance of the application adequate? Do perfor-
mance problems have a significant effect on system users?

Programming Are modern compilers available for the programming language
language used to develop the system? Is the programming language still

used for new system development?

Configuration Are all versions of all parts of the system managed by a config-
management uration management system? Is there an explicit description of

the versions of components that are used in the current system?

Test data Does test data for the system exist? Is there a record of
regression tests carried out when new features have been
added to the system?

Personnel skills Are there people available who have the skills to maintain the
application? Are there only a limited number of people who
understand the system?

Figure 21.15 Factors
used in application
assessment

SE8_C21.qxd 4/4/06 9:15 Page 508

••••

2. The number of user interfaces This is an important factor in forms-based sys-
tems where each form can be considered as a separate user interface. The more
interfaces, the more likely that there will be inconsistencies and redundancies
in these interfaces.

3. The volume of data used by the system The higher the volume of data (num-
ber of files, size of database, etc.), the more complex the system.

Although this data is often useful, collecting it can be very expensive and there-
fore impractical. Furthermore, there are no absolute values that may be used. The
age and size of the system have to be taken into account when making quality judge-
ments based on measurements.

Ideally, objective assessment should be used to inform decisions about what to do
with a legacy system. However, in many cases, these decisions are not really objec-
tive but are based on organisational or political considerations. For example, if two
businesses merge, the most politically powerful partner will usually keep its systems
and scrap the other systems. If senior management in an organisation decide to move
to a new hardware platform, then this may require applications to be replaced. If there
is no budget available for system transformation in a particular year, then system main-
tenance may be continued even although this will result in higher long-term costs.

■ Software development and evolution should be a single, integrated, iterative process that
can be represented using a spiral model.

■ Lehman’s laws, such as the notion that change is continuous, describe a number of insights
derived from long-term studies of system evolution.

■ There are three types of software maintenance: bug fixing, modifying the software to work
in a new environment, and implementing new or changed requirements.

■ For custom systems, the costs of software maintenance generally exceed the software
development costs.

■ The process of software evolution is driven by requests for changes and includes change
impact analysis, release planning and change implementation.

■ Software re-engineering is concerned with re-structuring and re-documenting software to
make it more understandable and easier to change.

■ The business value of a legacy system and the quality of the application software and its
environment should be assessed to determine whether the system should be replaced,
transformed or maintained.

K E Y P O I N TS

Chapter 21 ■ Key Points 509

SE8_C21.qxd 4/4/06 9:15 Page 509

••

510 Chapter 21 ■ Software evolution

F U R T H E R R E A D I N G

Modernizing Legacy Systems: Software Technologies, Engineering Processes, and Business
Practices. This excellent book covers general issues of software maintenance and evolution as well
as legacy system migration. The book is based on a large case study of the transformation of a
COBOL system to a Java-based client-server system. (R. C. Seacord, et al., 2003, Addison-Wesley.)

The Renaissance of Legacy Systems. This book is mostly concerned with a method for evolving
legacy systems. However, it includes a good general discussion of these systems, case studies that
illustrate legacy system structures and a chapter on system assessment. (I. Warren, 1998,
Springer.)

E X E R C I S E S

21.1 Explain why a software system that is used in a real-world environment must change or
become progressively less useful.

21.2 Explain the rationale underlying Lehman’s laws. Under what circumstances might the laws
break down?

21.3 Briefly describe the three types of software maintenance. Why is it sometimes difficult to
distinguish between them?

21.4 As a software project manager in a company that specialises in the development of software
for the offshore oil industry, you have been given the task of discovering the factors that
affect the maintainability of the systems developed by your company. Suggest how you might
set up a programme to analyse the maintenance process and discover appropriate
maintainability metrics for your company.

21.5 From Figure 21.7, you can see that impact analysis is an important sub-process in the
software evolution process. Using a diagram, suggest what activities might be involved in
change impact analysis.

21.6 What are the principal factors that affect the costs of system re-engineering?

21.7 What are the essential conditions for software re-engineering to be successful?

21.8 Under what circumstances might an organisation decide to scrap a system when the system
assessment suggests that it is of high quality and high business value.

21.9 What are the strategic options for legacy system evolution? When would you normally replace
all or part of a system rather than continue maintenance of the software (with or without re-
engineering)?

21.10 Explain why problems with support software might mean that an organisation has to replace
its legacy systems.

21.11 Do software engineers have a professional responsibility to produce code that can be readily
evolved even if this is not explicitly requested by their employer?

••

SE8_C21.qxd 4/4/06 9:15 Page 510

••

21.12 The management of an organisation has asked you to carry out a system assessment and
suggested that they would like the results of that assessment to show that the system is
obsolete and that it should be replaced by a new system. This will mean that a number of
system maintainers will lose their jobs. Your assessment actually shows that the system is
well maintained and is of high quality and high business value. How would you report these
results to the management of the organisation?

••

Chapter 21 ■ Exercises 511

SE8_C21.qxd 4/4/06 9:15 Page 511

••

SE8_C21.qxd 4/4/06 9:15 Page 512

5VERIFIC ATION
AND
VALIDATION

PART

SE8_C22.qxd 4/4/06 9:16 Page 513

Testing a program is the most common way of checking that it meets its spec-
ification and does what the customer wants. However, testing is only one of a
range of verification and validation techniques. Some of these techniques, such
as program inspections, have been used for almost thirty years but have still
not become part of mainstream software engineering.
In this part of the book, I cover approaches to verifying that software meets its
specification and validating that it also meets the needs of the software cus-
tomer. This part of the book has three chapters that are each concerned with
different aspects of verification and validation:

1. Chapter 22 is a general look at approaches to program verification and val-
idation. I explain the distinction between verification and validation, and the
V & V planning process. I then go on to describe static techniques of sys-
tem verification. These are techniques where you check the source code of
the program rather than test it. I discuss program inspections, the use of
automated static analysis and, finally, the role of formal methods in the ver-
ification process.

2. Program testing is the topic of Chapter 23. I explain how testing is usually
carried out at different levels and explain the differences between compo-
nent testing and system testing. Using simple examples, I introduce a num-
ber of techniques that you can use to design test cases for programs and,
finally, briefly discuss test automation. Test automation is the use of soft-
ware tools to help reduce the time and effort involved in testing processes.

3. Chapter 24 looks at the more specialised topic of critical systems validation.
For critical systems, you may have to prove to a customer or external regu-
lator that the system meets its specification and dependability requirements.
I describe approaches to reliability, safety and security assessment and
explain how evidence about the system V & V processes may be used in
the development of a system dependability case.

SE8_C22.qxd 4/4/06 9:16 Page 514

Verification and
validation

22

Objectives
The objective of this chapter is to introduce software verification and
validation with a particular focus on static verification techniques. When
you have read this chapter, you will:

■ understand the distinctions between software verification and
software validation;

■ have been introduced to program inspections as a method of
discovering defects in programs;

■ understand what automated static analysis is and how it is used in
verification and validation;

■ understand how static verification is used in the Cleanroom
development process.

Contents
22.1 Planning verification and validation

22.2 Software inspections

22.3 Automated static analysis

22.4 Verification and formal methods

SE8_C22.qxd 4/4/06 9:16 Page 515

516 Chapter 22 ■ Verification and validation

During and after the implementation process, the program being developed must be
checked to ensure that it meets its specification and delivers the functionality
expected by the people paying for the software. Verification and validation (V &V)
is the name given to these checking and analysis processes. Verification and activ-
ities take place at each stage of the software process. V & V starts with require-
ments reviews and continues through design reviews and code inspections to
product testing.

Verification and validation are not the same thing, although they are often con-
fused. Boehm (Boehm, 1979) succinctly expressed the difference between them:

• ‘Validation: Are we building the right product?’

• ‘Verification: Are we building the product right?’

These definitions tell us that the role of verification involves checking that the
software conforms to its specification. You should check that it meets its specified
functional and non-functional requirements. Validation, however, is a more general
process. The aim of validation is to ensure that the software system meets the cus-
tomer’s expectations. It goes beyond checking that the system conforms to its spec-
ification to showing that the software does what the customer expects it to do. As
I discussed in Part 2, software system specifications do not always reflect the real
wishes or needs of users and system owners.

The ultimate goal of the verification and validation process is to establish con-
fidence that the software system is ‘fit for purpose’. This means that the system
must be good enough for its intended use. The level of required confidence depends
on the system’s purpose, the expectations of the system users and the current mar-
keting environment for the system:

1. Software function The level of confidence required depends on how critical the
software is to an organisation. For example, the level of confidence required
for software that is used to control a safety-critical system is very much higher
than that required for a prototype software system that has been developed to
demonstrate some new ideas.

2. User expectations It is a sad reflection on the software industry that many users
have low expectations of their software and are not surprised when it fails dur-
ing use. They are willing to accept these system failures when the benefits of
use outweigh the disadvantages. However, user tolerance of system failures has
been decreasing since the 1990s. It is now less acceptable to deliver unreliable
systems, so software companies must devote more effort to verification and
validation.

3. Marketing environment When a system is marketed, the sellers of the system must
take into account competing programs, the price those customers are willing to
pay for a system and the required schedule for delivering that system. Where a
company has few competitors, it may decide to release a program before it has

••••

SE8_C22.qxd 4/4/06 9:16 Page 516

Chapter 22 ■ Verification and validation 517

been fully tested and debugged because they want to be the first into the mar-
ket. Where customers are not willing to pay high prices for software, they may
be willing to tolerate more software faults. All of these factors must be consid-
ered when deciding how much effort should be spent on the V & V process.

Within the V & V process, there are two complementary approaches to system
checking and analysis:

1. Software inspections or peer reviews analyse and check system representations
such as the requirements document, design diagrams and the program source
code. You can use inspections at all stages of the process. Inspections may be
supplemented by some automatic analysis of the source text of a system or asso-
ciated documents. Software inspections and automated analyses are static V &
V techniques, as you don’t need to run the software on a computer.

2. Software testing involves running an implementation of the software with test
data. You examine the outputs of the software and its operational behaviour to
check that it is performing as required. Testing is a dynamic technique of ver-
ification and validation.

Figure 22.1 shows that software inspections and testing play complementary roles
in the software process. The arrows indicate the stages in the process where the tech-
niques may be used. Therefore, you can use software inspections at all stages of the
software process. Starting with the requirements, any readable representations of the
software can be inspected. As I have discussed, requirements and design reviews are
the main techniques used for error detection in the specification and design.

You can only test a system when a prototype or an executable version of the
program is available. An advantage of incremental development is that a testable
version of the system is available at a fairly early stage in the development pro-
cess. Functionality can be tested as it is added to the system so you don’t have to
have a complete implementation before testing begins.

••••

Formal
specification

High-level
design

Requirements
specification

Detailed
design

Program

Prototype Program
testing

Software
inspections

Figure 22.1 Static
and dynamic
verification and
validation

SE8_C22.qxd 4/4/06 9:16 Page 517

518 Chapter 22 ■ Verification and validation

Inspection techniques include program inspections, automated source code anal-
ysis and formal verification. However, static techniques can only check the corre-
spondence between a program and its specification (verification); they cannot
demonstrate that the software is operationally useful. You also can’t use static tech-
niques to check emergent properties of the software such as its performance and
reliability.

Although software inspections are now widely used, program testing will always
be the main software verification and validation technique. Testing involves exer-
cising the program using data like the real data processed by the program. You dis-
cover program defects or inadequacies by examining the outputs of the program
and looking for anomalies. There are two distinct types of testing that may be used
at different stages in the software process:

1. Validation testing is intended to show that the software is what the customer
wants—that it meets its requirements. As part of validation testing, you may
use statistical testing to test the program’s performance and reliability, and to
check how it works under operational conditions. I discuss statistical testing
and reliability estimation in Chapter 24.

2. Defect testing is intended to reveal defects in the system rather than to simu-
late its operational use. The goal of defect testing is to find inconsistencies between
a program and its specification. I cover defect testing in Chapter 23.

Of course, there is no hard-and-fast boundary between these approaches to test-
ing. During validation testing, you will find defects in the system; during defect
testing, some of the tests will show that the program meets its requirements.

The processes of V & V and debugging are normally interleaved. As you dis-
cover faults in the program that you are testing, you have to change the program
to correct these faults. However, testing (or, more generally verification and vali-
dation) and debugging have different goals:

1. Verification and validation processes are intended to establish the existence of
defects in a software system.

2. Debugging is a process (Figure 22.2) that locates and corrects these defects.

There is no simple method for program debugging. Skilled debuggers look for
patterns in the test output where the defect is exhibited and use their knowledge of
the type of defect, the output pattern, the programming language and the program-
ming process to locate the defect. When you are debugging, you can use your knowl-
edge of common programmer errors (such as failing to increment a counter) and
match these against the observed patterns. You should also look for characteristic
programming language errors, such as pointer misdirection in C.

Locating the faults in a program is not always a simple process, since the fault
may not be close to the point where the program failed. To locate a program fault,

••••

SE8_C22.qxd 4/4/06 9:16 Page 518

22.1 ■ Planning verification and validation 519

you may have to design additional tests that reproduce the original fault and that
pinpoint its location in the program. You may have to trace the program manually,
line by line. Debugging tools that collect information about the program’s execu-
tion may also help you locate the source of a problem.

Interactive debugging tools are generally part of a set of language support tools
that are integrated with a compilation system. They provide a specialised run-time
environment for the program that allows access to the compiler symbol table and,
from there, to the values of program variables. You can control execution by ‘step-
ping’ through the program statement by statement. After each statement has been
executed, you can examine the values of variables and so discover the location of
the fault.

After a defect in the program has been discovered, you have to correct it and
revalidate the system. This may involve re-inspecting the program or regression test-
ing where existing tests are executed again. Regression testing is used to check that
the changes made to a program have not introduced new faults. Experience has shown
that a high proportion of fault ‘repairs’ are either incomplete or introduce new faults
into the program.

In principle, you should repeat all tests after every defect repair; in practice, this
is usually too expensive. As part of the test plan, you should identify dependencies
between components and the tests associated with each component. That is, there
should be traceability from the test cases to the components that are tested. If this
traceability is documented, you may then run a subset of the system test cases to
check the modified component and its dependents.

22.1 Planning verification and validation

Verification and validation is an expensive process. For some systems, such as real-
time systems with complex non-functional constraints, more than half the system
development budget may be spent on V & V. Careful planning is needed to get the
most out of inspections and testing and to control the costs of the verification and
validation process.

••••

Locate
error

Design
error repair

Repair
error

Retest
program

Test
results

Specification
Test

cases

Figure 22.2 The
debugging process

SE8_C22.qxd 4/4/06 9:16 Page 519

520 Chapter 22 ■ Verification and validation

You should start planning system validation and verification early in the devel-
opment process. The software development process model shown in Figure 22.3 is
sometimes called the V-model (turn Figure 22.3 on end to see the V). It is an instan-
tiation of the generic waterfall model (see Chapter 4) and shows that test plans should
be derived from the system specification and design. This model also breaks down
system V & V into a number of stages. Each stage is driven by tests that have been
defined to check the conformance of the program with its design and specification.

As part of the V & V planning process, you should decide on the balance between
static and dynamic approaches to verification and validation, draw up standards and
procedures for software inspections and testing, establish checklists to drive pro-
gram inspections (see Section 22.3) and define the software test plan.

The relative effort devoted to inspections and testing depends on the type of sys-
tem being developed and the organisational expertise with program inspection. As
a general rule, the more critical a system, the more effort should be devoted to static
verification techniques.

Test planning is concerned with establishing standards for the testing process,
not just with describing product tests. As well as helping managers allocate
resources and estimate testing schedules, test plans are intended for software engi-
neers involved in designing and carrying out system tests. They help technical staff
get an overall picture of the system tests and place their own work in this context.
A good description of test plans and their relation to more general quality plans is
given in Frewin and Hatton (Frewin and Hatton, 1986). Humphrey (Humphrey, 1989)
and Kit (Kit, 1995) also include discussions on test planning.

The major components of a test plan for a large and complex system are shown
in Figure 22.4. As well as setting out the testing schedule and procedures, the test
plan defines the hardware and software resources that are required. This is useful
for system managers who are responsible for ensuring that these resources are avail-
able to the testing team. Test plans should normally include significant amounts of
contingency so that slippages in design and implementation can be accommodated
and staff redeployed to other activities.

••••

System
specification

System
design

Detailed
design

Module and
unit code
and test

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service
Acceptance

test
System

integration test
Sub-system

integration test

Requirements
specification

Figure 22.3 Test
plans as a link
between develop-
ment and testing

SE8_C22.qxd 4/4/06 9:16 Page 520

22.2 ■ Software inspections 521

For smaller systems, a less formal test plan may be used, but there is still a need
for a formal document to support the planning of the testing process. For some agile
processes such as extreme programming, testing is inseparable from development. Like
other planning activities, test planning is also incremental. In XP, the customer is ulti-
mately responsible for deciding how much effort should be devoted to system testing.

Test plans are not a static documents but evolve during the development pro-
cess. Test plans change because of delays at other stages in the development pro-
cess. If part of a system is incomplete, the system as a whole cannot be tested. You
then have to revise the test plan to redeploy the testers to some other activity and
bring them back when the software is once again available.

22.2 Software inspections

Software inspection is a static V & V process in which a software system is reviewed
to find errors, omissions and anomalies. Generally, inspections focus on source code,

••••

The testing process
A description of the major phases of the testing process. These might be as
described earlier in this chapter.

Requirements traceability
Users are most interested in the system meeting its requirements and testing should
be planned so that all requirements are individually tested.

Tested items
The products of the software process that are to be tested should be specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule is, obviously,
linked to the more general project development schedule.

Test recording procedures
It is not enough simply to run tests; the results of the tests must be systematically
recorded. It must be possible to audit the testing process to check that it has been
carried out correctly.

Hardware and software requirements
This section should set out the software tools required and estimated hardware
utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should be anticipated
in this section.

Figure 22.4 The
structure of a
software test plan

SE8_C22.qxd 4/4/06 9:16 Page 521

522 Chapter 22 ■ Verification and validation

but any readable representation of the software such as its requirements or a design
model can be inspected. When you inspect a system, you use knowledge of the sys-
tem, its application domain and the programming language or design model to dis-
cover errors.

There are three major advantages of inspection over testing:

1. During testing, errors can mask (hide) other errors. Once one error is discovered,
you can never be sure if other output anomalies are due to a new error or are side
effects of the original error. Because inspection is a static process, you don’t have
to be concerned with interactions between errors. Consequently, a single inspec-
tion session can discover many errors in a system.

2. Incomplete versions of a system can be inspected without additional costs. If
a program is incomplete, then you need to develop specialised test harnesses
to test the parts that are available. This obviously adds to the system develop-
ment costs.

3. As well as searching for program defects, an inspection can also consider broader
quality attributes of a program such as compliance with standards, portability
and maintainability. You can look for inefficiencies, inappropriate algorithms
and poor programming style that could make the system difficult to maintain
and update.

Inspections are an old idea. There have been several studies and experiments
that have demonstrated that inspections are more effective for defect discovery than
program testing. Fagan (Fagan, 1986) reported that more than 60% of the errors in
a program can be detected using informal program inspections. Mills et al. (Mills,
et al., 1987) suggest that a more formal approach to inspection based on correct-
ness arguments can detect more than 90% of the errors in a program. This tech-
nique is used in the Cleanroom process described in Section 22.4. Selby and Basili
(Selby, et al., 1987) empirically compared the effectiveness of inspections and test-
ing. They found that static code reviewing was more effective and less expensive
than defect testing in discovering program faults. Gilb and Graham (Gilb and Graham,
1993) have also found this to be true.

Reviews and testing each have advantages and disadvantages and should be used
together in the verification and validation process. Indeed, Gilb and Graham sug-
gest that one of the most effective uses of reviews is to review the test cases for a
system. Reviews can discover problems with these tests and can help design more
effective ways to test the system. You can start system V & V with inspections
early in the development process, but once a system is integrated, you need testing
to check its emergent properties and that the system’s functionality is what the owner
of the system really wants.

In spite of the success of inspections, it has proven to be difficult to introduce
formal inspections into many software development organisations. Software engi-
neers with experience of program testing are sometimes reluctant to accept that

••••

SE8_C22.qxd 4/4/06 9:16 Page 522

22.2 ■ Software inspections 523

inspections can be more effective for defect detection than testing. Managers may
be suspicious because inspections require additional costs during design and devel-
opment. They may not wish to take the risk that there will be no corresponding sav-
ings during program testing.

There is no doubt that inspections ‘front-load’ software V & V costs and result
in cost savings only after the development teams become experienced in their use.
Furthermore, there are the practical problems of arranging inspections: Inspections
take time to arrange and appear to slow down the development process. It is diffi-
cult to convince a hard-pressed manager that this time can be made up later because
less time will be spent on program debugging.

22.2.1 The program inspection process

Program inspections are reviews whose objective is program defect detection. The
notion of a formalised inspection process was first developed at IBM in the 1970s
(Fagan, 1976; Fagan, 1986). It is now a fairly widely used method of program ver-
ification, especially in critical systems engineering. From Fagan’s original method,
a number of alternative approaches to inspection have been developed (Gilb and
Graham, 1993). These are all based on a team with members from different back-
grounds making a careful, line-by-line review of the program source code.

The key difference between program inspections and other types of quality review
is that the specific goal of inspections is to find program defects rather than to con-
sider broader design issues. Defects may be logical errors, anomalies in the code
that might indicate an erroneous condition or noncompliance with organisational or
project standards. By contrast, other types of review may be more concerned with
schedule, costs, progress against defined milestones or assessing whether the soft-
ware is likely to meet organisational goals.

The program inspection is a formal process that is carried out by a team of at
least four people. Team members systematically analyse the code and point out pos-
sible defects. In Fagan’s original proposals, he suggested roles such as author, reader,
tester and moderator. The reader reads the code aloud to the inspection team, the
tester inspects the code from a testing perspective and the moderator organises the
process.

As organisations have gained experience with inspection, other proposals for team
roles have emerged. In a discussion of how inspection was successfully introduced
in Hewlett-Packard’s development process, Grady and Van Slack (Grady and Van
Slack, 1994) suggest six roles, as shown in Figure 22.5. They do not think that read-
ing the program aloud is necessary. The same person can take more than one role
so the team size may vary from one inspection to another. Gilb and Graham sug-
gest that inspectors should be selected to reflect different viewpoints such as test-
ing, end-user and quality management.

The activities in the inspection process are shown in Figure 22.6. Before a pro-
gram inspection process begins, it is essential that:

••••

SE8_C22.qxd 4/4/06 9:16 Page 523

524 Chapter 22 ■ Verification and validation

1. You have a precise specification of the code to be inspected. It is impossible
to inspect a component at the level of detail required to detect defects without
a complete specification.

2. The inspection team members are familiar with the organisational standards.

3. An up-to-date, compilable version of the code has been distributed to all team
members. There is no point in inspecting code that is ‘almost complete’ even
if a delay causes schedule disruption.

The inspection team moderator is responsible for inspection planning. This
involves selecting an inspection team, organising a meeting room and ensuring that
the material to be inspected and its specifications are complete. The program to be
inspected is presented to the inspection team during the overview stage when the
author of the code describes what the program is intended to do. This is followed
by a period of individual preparation. Each inspection team member studies the spec-
ification and the program and looks for defects in the code.

The inspection itself should be fairly short (no more than two hours) and should
focus on defect detection, standards conformance and poor-quality programming.
The inspection team should not suggest how these defects should be corrected nor
should it recommend changes to other components.

Following the inspection, the program’s author should make changes to it to cor-
rect the identified problems. In the follow-up stage, the moderator should decide
whether a reinspection of the code is required. He or she may decide that a com-
plete reinspection is not required and that the defects have been successfully fixed.
The program is then approved by the moderator for release.

••••

Role Description

Author or owner The programmer or designer responsible for producing the
program or document. Responsible for fixing defects
discovered during the inspection process.

Inspector Finds errors, omissions and inconsistencies in programs and
documents. May also identify broader issues that are outside
the scope of the inspection team.

Reader Presents the code or document at an inspection meeting.

Scribe Records the results of the inspection meeting.

Chairman or Manages the process and facilitates the inspection. Reports
moderator process results to the chief moderator.

Chief moderator Responsible for inspection process improvements, checklist
updating, standards development, etc.

Figure 22.5 Roles in
the inspection
process

SE8_C22.qxd 4/4/06 9:16 Page 524

22.2 ■ Software inspections 525

During an inspection, a checklist of common programmer errors is often used
to focus the discussion. This checklist can be based on checklist examples from
books or from knowledge of defects that are common in a particular application
domain. You need different checklists for different programming languages
because each language has its own characteristic errors. Humphrey (Humphrey,
1989), in a comprehensive discussion of inspections, gives a number of examples
of inspection checklists.

This checklist varies according to programming language because of the differ-
ent levels of checking provided by the language compiler. For example, a Java com-
piler checks that functions have the correct number of parameters, a C compiler
does not. Possible checks that might be made during the inspection process are shown
in Figure 22.7. Gilb and Graham (Gilb and Graham, 1993) emphasise that each organ-
isation should develop its own inspection checklist based on local standards and
practices. Checklists should be regularly updated as new types of defects are found.

The time needed for an inspection and the amount of code that can be covered
depends on the experience of the inspection team, the programming language and
the application domain. Both Fagan at IBM and Barnard and Price (Barnard and
Price, 1994), who assessed the inspection process for telecommunications software,
came to similar conclusions:

1. About 500 source code statements per hour can be presented during the
overview stage.

2. During individual preparation, about 125 source code statements per hour can
be examined.

3. From 90 to 125 statements per hour can be inspected during the inspection meet-
ing.

With four people involved in an inspection team, the cost of inspecting 100 lines
of code is roughly equivalent to one person-day of effort. This assumes that the
inspection itself takes about an hour and that each team member spends one to two
hours preparing for the inspection. Testing costs vary widely and depend on the
number of faults in the program. However, the effort required for the program inspec-
tion is probably less than half the effort that would be required for equivalent defect
testing.

••••

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

Figure 22.6 The
inspection process

SE8_C22.qxd 4/4/06 9:16 Page 525

526 Chapter 22 ■ Verification and validation

Some organisations (Gilb and Graham, 1993) have now abandoned component
testing in favour of inspections. They have found that program inspections are so
effective at finding errors that the costs of component testing are not justifiable.
These organisations found that inspections of components, combined with system
testing, were the most cost-effective V & V strategy. As I discuss later in the chap-
ter, this approach is used in the Cleanroom software development process.

The introduction of inspections has implications for project management.
Sensitive management is important if inspections are to be accepted by software
development teams. Program inspection is a public process of error detection com-
pared with the more private component testing process. Inevitably, mistakes that
are made by individuals are revealed to the whole programming team. Inspection

••••

Fault class Inspection check

Data faults Are all program variables initialised before their values are
used?
Have all constants been named?
Should the upper bound of arrays be equal to the size of the
array or Size -1?
If character strings are used, is a delimiter explicitly assigned?
Is there any possibility of buffer overflow?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?
If a break is required after each case in case statements, has
it been included?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?
Can unexpected inputs cause corruption?

Interface faults Do all function and method calls have the correct number of
parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the same
model of the shared memory structure?

Storage If a linked structure is modified, have all links been correctly
management faults reassigned?

If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer required?

Exception Have all possible error conditions been taken into account?
management faults

Figure 22.7
Inspection checks

SE8_C22.qxd 4/4/06 9:16 Page 526

22.3 ■ Automated static analysis 527

team leaders must be trained to manage the process carefully and to develop a cul-
ture that provides support without blame when errors are discovered.

As an organisation gains experience of the inspection process, it can use the results
of inspections to help with process improvement. Inspections are an ideal way to
collect data on the type of defects that occur. The inspection team and the authors
of the code that was inspected can suggest reasons why these defects were intro-
duced. Wherever possible, the process should then be modified to eliminate the rea-
sons for defects so they can be avoided in future systems.

22.3 Automated static analysis

Inspections are one form of static analysis—you examine the program without exe-
cuting it. As I discussed, inspections are often driven by checklists of errors and
heuristics that identify common errors in different programming languages. For some
errors and heuristics, it is possible to automate the process of checking programs
against this list, which has resulted in the development of automated static analy-
sers for different programming languages.

Static analysers are software tools that scan the source text of a program and detect
possible faults and anomalies. They parse the program text and thus recognise the
types of statements in the program. They can then detect whether statements are well
formed, make inferences about the control flow in the program and, in many cases,
compute the set of all possible values for program data. They complement the error-
detection facilities provided by the language compiler. They can be used as part of
the inspection process or as a separate V & V process activity.

The intention of automatic static analysis is to draw an inspector’s attention to
anomalies in the program, such as variables that are used without initialisation, vari-
ables that are unused or data whose value could go out of range. Some of the checks
that can be detected by static analysis are shown in Figure 22.8. Anomalies are often
a result of programming errors or omissions, so they highlight things that could go
wrong when the program is executed. However, you should understand that these
anomalies are not necessarily program faults. They may be deliberate or may have
no adverse consequences.

The stages involved in static analysis include:

1. Control flow analysis This stage identifies and highlights loops with multiple
exit or entry points and unreachable code. Unreachable code is code that is sur-
rounded by unconditional goto statements or that is in a branch of a conditional
statement where the guarding condition can never be true.

2. Data use analysis This stage highlights how variables in the program are used.
It detects variables that are used without previous initialisation, variables that

••••

SE8_C22.qxd 4/4/06 9:16 Page 527

528 Chapter 22 ■ Verification and validation

are written twice without an intervening assignment and variables that are declared
but never used. Data use analysis also discovers ineffective tests where the test
condition is redundant. Redundant conditions are conditions that are either always
true or always false.

3. Interface analysis This analysis checks the consistency of routine and proce-
dure declarations and their use. It is unnecessary if a strongly typed language
such as Java is used for implementation as the compiler carries out these checks.
Interface analysis can detect type errors in weakly typed languages like FOR-
TRAN and C. Interface analysis can also detect functions and procedures that
are declared and never called or function results that are never used.

4. Information flow analysis This phase of the analysis identifies the dependen-
cies between input and output variables. While it does not detect anomalies, it
shows how the value of each program variable is derived from other variable
values. With this information, a code inspection should be able to find values
that have been wrongly computed. Information flow analysis can also show the
conditions that affect a variable’s value.

5. Path analysis This phase of semantic analysis identifies all possible paths through
the program and sets out the statements executed in that path. It essentially unrav-
els the program’s control and allows each possible predicate to be analysed
individually.

••••

Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used between
assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management Unassigned pointers
faults Pointer arithmetic

Figure 22.8
Automated static
analysis checks

SE8_C22.qxd 4/4/06 9:16 Page 528

22.3 ■ Automated static analysis 529

Static analysers are particularly valuable when a programming language such as
C is used. C does not have strict type rules, and the checking that the C compiler
can do is limited. Therefore, it is easy for programmers to make mistakes, and the
static analysis tool can automatically discover some of the resulting program faults.
This is particularly important when C (and to a lesser extent, C++) is used for crit-
ical systems development. In this case, static analysis can discover a large number
of potential errors and can significantly reduce testing costs.

There is no doubt that, for languages such as C, static analysis is an effective tech-
nique for discovering program errors. It compensates for weaknesses in the program-
ming language design. However, the designers of modern programming languages such
as Java have removed some error-prone language features. All variables must be ini-
tialised, there are no goto statements so unreachable code is less likely to be created
accidentally, and storage management is automatic. This approach of error avoidance
rather than error detection is more effective in improving program reliability. Although
static analysers for Java are available, they are not widely used. It is not clear whether
the number of errors detected justifies the time required to analyse their output.

Therefore, to illustrate static analysis I use a small C program rather than a Java
program. Unix and Linux systems include a static analyser called LINT for C pro-
grams. LINT provides static checking, which is equivalent to that provided by the
compiler in a strongly typed language such as Java. An example of the output pro-
duced by LINT is shown in Figure 22.9. In this transcript of a Unix terminal ses-
sion, commands are shown in italics. The first command (line 138) lists the
(nonsensical) program. It defines a function with one parameter, called printarray,
and then calls this function with three parameters. Variables i and c are declared
but are never assigned values. The value returned by the function is never used.

The line numbered 139 shows the C compilation of this program with no errors
reported by the C compiler. This is followed by a call of the LINT static analyser,
which detects and reports program errors.

The static analyser shows that the variables c and i have been used but not ini-
tialised, and that printarray has been called with a different number of arguments
than are declared. It also identifies the inconsistent use of the first argument in print-
array and the fact that the function value is never used.

Tool-based analysis cannot replace inspections, as there are some types of error
that static analysers cannot detect. For example, they can detect uninitialised vari-
ables, but they cannot detect initialisations that are incorrect. In weakly typed lan-
guages such as C, static analysers can detect functions that have the wrong numbers
and types of arguments, but they cannot detect situations where an incorrect argu-
ment of the correct type has been passed to a function.

To address some of these problems, static analysers such as LCLint (Orcero, 2000;
Evans and Larochelle, 2002) support the use of annotations where users define con-
straints as stylised comments in the program. These constraints allow a program-
mer to specify that variables in a function should not be changed, the global
variables used, and so on. The static analyser can then check the program against
these constraints and highlight code sections that appear to be incorrect.

••••

SE8_C22.qxd 4/4/06 9:16 Page 529

530 Chapter 22 ■ Verification and validation

22.4 Verification and formal methods

Formal methods of software development are based on mathematical representa-
tions of the software, usually as a formal specification. These formal methods are
mainly concerned with a mathematical analysis of the specification; with transforming
the specification to a more detailed, semantically equivalent representation; or with
formally verifying that one representation of the system is semantically equivalent
to another representation.

You can think of the use of formal methods as the ultimate static verification
technique. They require very detailed analyses of the system specification and the
program, and their use is often time consuming and expensive. Consequently, the
use of formal methods is mostly confined to safety- and security-critical software
development processes. The use of formal mathematical specification and associ-
ated verification was mandated in UK defence standards for safety-critical software
(MOD, 1995).

Formal methods may be used at different stages in the V & V process:

••••

138% more lint_ex.c

#include <stdio.h>
printarray (Anarray)
int Anarray;
{
printf(“%d”,Anarray);
}
main ()
{
int Anarray[5]; int i; char c;
printarray (Anarray, i, c);
printarray (Anarray) ;
}

139% cc lint_ex.c
140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11)
printf returns value which is always ignored

Figure 22.9 LINT
static analysis

SE8_C22.qxd 4/4/06 9:16 Page 530

22.4 ■ Verification and formal methods 531

1. A formal specification of the system may be developed and mathematically anal-
ysed for inconsistency. This technique is effective in discovering specification
errors and omissions, as discussed in Chapter 10.

2. You can formally verify, using mathematical arguments, that the code of a soft-
ware system is consistent with its specification. This requires a formal speci-
fication and is effective in discovering programming and some design errors.
A transformational development process where a formal specification is trans-
formed through a series of more detailed representations or a Cleanroom pro-
cess may be used to support the formal verification process.

The argument for the use of formal specification and associated program verifi-
cation is that formal specification forces a detailed analysis of the specification. It
may reveal potential inconsistencies or omissions that might not otherwise be dis-
covered until the system is operational. Formal verification demonstrates that the
developed program meets its specification so implementation errors do not com-
promise dependability.

The argument against the use of formal specification is that it requires specialised
notations. These can only be used by specially trained staff and cannot be under-
stood by domain experts. Hence, problems with the system requirements can be con-
cealed by formality. Software engineers cannot recognise potential difficulties with
the requirements because they don’t understand the domain; domain experts can-
not find these problems because they don’t understand the specification. Although
the specification may be mathematically consistent, it may not specify the system
properties that are really required.

Verifying a nontrivial software system takes a great deal of time and requires
specialised tools such as theorem provers and mathematical expertise. It is there-
fore an extremely expensive process and, as the system size increases, the costs of
formal verification increase disproportionately. Many people therefore think that for-
mal verification is not cost-effective. The same level of confidence in the system
can be achieved more cheaply by using other validation techniques such as inspec-
tions and system testing.

It is sometimes claimed that the use of formal methods for system development
leads to more reliable and safer systems. There is no doubt that a formal system
specification is less likely to contain anomalies that must be resolved by the sys-
tem designer. However, formal specification and proof do not guarantee that the
software will be reliable in practical use. The reasons for this are:

1. The specification may not reflect the real requirements of system users. Lutz
(Lutz, 1993) discovered that many failures experienced by users were a con-
sequence of specification errors and omissions that could not be detected by
formal system specification. Furthermore, system users rarely understand for-
mal notations so they cannot read the formal specification directly to find errors
and omissions.

••••

SE8_C22.qxd 4/4/06 9:16 Page 531

532 Chapter 22 ■ Verification and validation

2. The proof may contain errors. Program proofs are large and complex, so, like
large and complex programs, they usually contain errors.

3. The proof may assume a usage pattern which is incorrect. If the system is not
used as anticipated, the proof may be invalid.

In spite of their disadvantages, my view (discussed in Chapter 10) is that formal
methods have an important role to play in the development of critical software sys-
tems. Formal specifications are very effective in discovering specification problems
that are the most common causes of system failure. Formal verification increases
confidence in the most critical components of these systems. The use of formal
approaches is increasing as procurers demand it and as more and more engineers
become familiar with these techniques.

22.4.1 Cleanroom software development

Formal methods have been integrated with a number of software development pro-
cesses. In the B method (Wordsworth, 1996) a formal specification is transformed
through a series of correctness-preserving transformations to a program. SDL
(Mitschele-Thiel, 2001) is used for telecommunications systems development and
VDM (Jones, 1986) and Z (Spivey, 1992) have been used in waterfall-type processes.
Another well-documented approach that uses formal methods is the Cleanroom devel-
opment process. Cleanroom software development (Mills, et al., 1987; Cobb and Mills,
1990; Linger, 1994; Prowell, et al., 1999) is a software development philosophy that
uses formal methods to support rigorous software inspection.

A model of the Cleanroom process is shown in Figure 22.10. The objective of
this approach to software development is zero-defect software. The name
‘Cleanroom’ was derived by analogy with semiconductor fabrication units where
defects are avoided by manufacturing in an ultra-clean atmosphere. Cleanroom devel-
opment is particularly relevant to this chapter because it has replaced the unit test-
ing of system components by inspections to check the consistency of these
components with their specifications.

The Cleanroom approach to software development is based on five key strategies:

1. Formal specification The software to be developed is formally specified. A state-
transition model that shows system responses to stimuli is used to express the
specification.

2. Incremental development The software is partitioned into increments that are
developed and validated separately using the Cleanroom process. These incre-
ments are specified, with customer input, at an early stage in the process.

3. Structured programming Only a limited number of control and data abstraction
constructs are used. The program development process is a process of stepwise

••••

SE8_C22.qxd 4/4/06 9:16 Page 532

22.4 ■ Verification and formal methods 533

refinement of the specification. A limited number of constructs are used and the
aim is to systematically transform the specification to create the program code.

4. Static verification The developed software is statically verified using rigorous
software inspections. There is no unit or module testing process for code
components.

5. Statistical testing of the system The integrated software increment is tested sta-
tistically, as discussed in Chapter 24, to determine its reliability. These statis-
tical tests are based on an operational profile, which is developed in parallel
with the system specification as shown in Figure 22.10.

There are three teams involved when the Cleanroom process is used for large
system development:

1. The specification team This group is responsible for developing and maintain-
ing the system specification. This team produces customer-oriented specifica-
tions (the user requirements definition) and mathematical specifications for
verification. In some cases, when the specification is complete, the specifica-
tion team also takes responsibility for development.

2. The development team This team has the responsibility of developing and ver-
ifying the software. The software is not executed during the development pro-
cess. A structured, formal approach to verification based on inspection of code
supplemented with correctness arguments is used.

3. The certification team This team is responsible for developing a set of statis-
tical tests to exercise the software after it has been developed. These tests are
based on the formal specification. Test case development is carried out in par-
allel with software development. The test cases are used to certify the software
reliability. Reliability growth models (Chapter 24) may be used to decide when
to stop testing.

••••

Construct
structured
program

Define
software

increments

Formally
verify
code

Integrate
increment

Formally
specify
system

Develop
operational

profile
Design

statistical
tests

Test
integrated

system

Error rework

Figure 22.10 The
Cleanroom develop-
ment process

SE8_C22.qxd 4/4/06 9:16 Page 533

534 Chapter 22 ■ Verification and validation

Use of the Cleanroom approach has generally led to software with very few errors.
Cobb and Mills discuss several successful Cleanroom development projects that had
a uniformly low failure rate in delivered systems (Cobb and Mills, 1990). The costs
of these projects were comparable with other projects that used conventional devel-
opment techniques.

The approach to incremental development in the Cleanroom process is to deliver
critical customer functionality in early increments. Less important system functions
are included in later increments. The customer therefore has the opportunity to try
these critical increments before the whole system has been delivered. If require-
ments problems are discovered, the customer feeds back this information to the devel-
opment team and requests a new release of the increment.

As with extreme programming, this means that the most important customer func-
tions receive the most validation. As new increments are developed, they are com-
bined with the existing increments and the integrated system is tested. Therefore,
existing increments are retested with new test cases as new system increments are
added.

Rigorous program inspection is a fundamental part of the Cleanroom process. A
state model of the system is produced as a system specification. This is refined through
a series of more detailed system models to an executable program. The approach
used for development is based on well-defined transformations that attempt to pre-
serve the correctness at each transformation to a more detailed representation. At
each stage, the new representation is inspected, and mathematically rigorous argu-
ments are developed that demonstrate that the output of the transformation is con-
sistent with its input.

The mathematical arguments used in the Cleanroom process are not, however,
formal proofs of correctness. Formal mathematical proofs that a program is correct
with respect to its specification are too expensive to develop. They depend on using
knowledge of the formal semantics of the programming language to construct theo-
ries that relate the program and its formal specification. These theories must then be
proven mathematically, often with the assistance of large and complex theorem-prover
programs. Because of their high cost and the specialist skills that are needed, proofs
are usually developed only for the most safety- or security-critical applications.

Inspection and formal analysis has been found to be very effective in the
Cleanroom process. The vast majority of defects are discovered before execution
and are not introduced into the developed software. Linger (Linger, 1994) reports
that, on average, only 2.3 defects per thousand lines of source code were discov-
ered during testing for Cleanroom projects. Overall development costs are not increased
because less effort is required to test and repair the developed software.

Selby et al., (Selby, et al., 1987), using students as developers, carried out an
experiment that compared Cleanroom development with conventional techniques.
They found that most teams could successfully use the Cleanroom method. The pro-
grams produced were of higher quality than those developed using traditional tech-
niques—the source code had more comments and a simpler structure. More of the
Cleanroom teams met the development schedule.

••••

SE8_C22.qxd 4/4/06 9:16 Page 534

Chapter 22 ■ Further Reading 535

Cleanroom development works when practised by skilled and committed engineers.
Reports of the success of the Cleanroom approach in industry have mostly, though not
exclusively, come from people already committed to it. We don’t know whether this
process can be transferred effectively to other types of software development organi-
sations. These organisations may have less committed and less skilled engineers.
Transferring the Cleanroom approach or, indeed, any other approach where formal
methods are used, to less technically advanced organisations still remains a challenge.

F U R T H E R R E A D I N G

Software Quality Assurance: From Theory to Implementation. This book provides good general
background reading on verification and validation, with a particularly good chapter on reviews and
inspections. (D. Galin, 2004, Addison-Wesley.)

••••

■ Verification and validation are not the same thing. Verification is intended to show that a
program meets its specification. Validation is intended to show that the program does what
the user requires.

■ Test plans should include a description of the items to be tested, the testing schedule, the
procedures for managing the testing process, the hardware and software requirements, and
any testing problems that are likely to arise.

■ Static verification techniques involve examination and analysis of the program source code
to detect errors. They should be used with program testing as part of the V & V process.

■ Program inspections are effective in finding program errors. The aim of an inspection is to
locate faults. A fault checklist should drive the inspection process.

■ In a program inspection, a small team systematically checks the code. Team members
include a team leader or moderator, the author of the code, a reader who presents the code
during the inspection and a tester who considers the code from a testing perspective.

■ Static analysers are software tools that process a program source code and draw attention
to anomalies such as unused code sections and uninitialised variables. These anomalies
may be the result of faults in the code.

■ Cleanroom software development relies on static techniques for program verification and
statistical testing for system reliability certification. It has been successful in producing
systems that have a high level of reliability.

K E Y P O I N TS

SE8_C22.qxd 4/4/06 9:16 Page 535

536 Chapter 22 ■ Verification and validation

‘Software inspection’. A special issue of a journal that contains a number of articles on program
inspection, including a discussion on using this technique with object-oriented development. (IEEE
Software, 20(4), July/August 2003.)

‘Software debugging, testing and verification’. This is a general article on verification and validation
and one of the few articles that addresses both testing and static verification techniques. (B.
Hailpern and P. Santhanam, IBM Systems Journal, 41(1), January 2002.)

Cleanroom Software Engineering: Technology and Process. A good book on the Cleanroom
approach that has sections on the basics of the technique, the process and a practical case study.
(S. J. Powell, et al., 1999, Addison-Wesley.)

E X E R C I S E S

22.1 Discuss the differences between verification and validation, and explain why validation is a
particularly difficult process.

22.2 Explain why it is not necessary for a program to be completely free of defects before it is
delivered to its customers. To what extent can testing be used to validate that the program is
fit for its purpose?

22.3 The test plan in Figure 22.4 has been designed for custom systems that have a separate
requirements document. Suggest how the test plan structure might be modified for testing
shrink-wrapped software products.

22.4 Explain why program inspections are an effective technique for discovering errors in a
program. What types of error are unlikely to be discovered through inspections?

22.5 Suggest why an organisation with a competitive, elitist culture would probably find it difficult
to introduce program inspections as a V & V technique.

22.6 Using your knowledge of Java, C++, C or some other programming language, derive a
checklist of common errors (not syntax errors) that could not be detected by a compiler but
that might be detected in a program inspection.

22.7 Produce a list of conditions that could be detected by a static analyser for Java, C++ or
another programming language that you use. Comment on this list compared to the list given
in Figure 22.7.

22.8 Explain why it may be cost-effective to use formal methods in the development of safety-
critical software systems. Why do you think that some developers of this type of system are
against the use of formal methods?

22.9 A manager decides to use the reports of program inspections as an input to the staff
appraisal process. These reports show who made and who discovered program errors. Is this
ethical managerial behaviour? Would it be ethical if the staff were informed in advance that
this would happen? What difference might it make to the inspection process?

22.10 One approach that is commonly adopted to system testing is to test the system until the
testing budget is exhausted and then deliver the system to customers. Discuss the ethics of
this approach.

••

SE8_C22.qxd 4/4/06 9:16 Page 536

Software testing
23

Objectives
The objective of this chapter is to describe the processes of software
testing and introduce a range of testing techniques. When you have
read the chapter, you will:

■ understand the distinctions between validation testing and defect
testing;

■ understand the principles of system testing and component testing;

■ understand three strategies that may be used to generate system
test cases;

■ understand the essential characteristics of software tools that
support test automation.

Contents
23.1 System testing

23.2 Component testing

23.3 Test case design

23.4 Test automation

SE8_C23.qxd 4/4/06 9:17 Page 537

538 Chapter 23 ■ Software testing

In Chapter 4, I discussed a general testing process that started with the testing of
individual program units such as functions or objects. These were then integrated
into sub-systems and systems, and the interactions of these units were tested.
Finally, after delivery of the system, the customer may carry out a series of accep-
tance tests to check that the system performs as specified.

This model of the testing process is appropriate for large system development—
but for smaller systems, or for systems that are developed through scripting or reuse,
there are often fewer distinct stages in the process. A more abstract view of soft-
ware testing is shown in Figure 23.1. The two fundamental testing activities are
component testing—testing the parts of the system—and system testing—testing the
system as a whole.

The aim of the component testing stage is to discover defects by testing indi-
vidual program components. These components may be functions, objects or
reusable components as described in Chapter 19. During system testing, these com-
ponents are integrated to form sub-systems or the complete system. At this stage,
system testing should focus on establishing that the system meets its functional and
non-functional requirements, and does not behave in unexpected ways. Inevitably,
defects in components that have been missed during earlier testing are discovered
during system testing.

As I explained in Chapter 22, the software testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software meets its
requirements. For custom software, this means that there should be at least one
test for every requirement in the user and system requirements documents. For
generic software products, it means that there should be tests for all of the sys-
tem features that will be incorporated in the product release. As discussed in
Chapter 4, some systems may have an explicit acceptance testing phase where
the customer formally checks that the delivered system conforms to its speci-
fication.

2. To discover faults or defects in the software where the behaviour of the soft-
ware is incorrect, undesirable or does not conform to its specification. Defect
testing is concerned with rooting out all kinds of undesirable system behaviour,
such as system crashes, unwanted interactions with other systems, incorrect com-
putations and data corruption.

The first goal leads to validation testing, where you expect the system to per-
form correctly using a given set of test cases that reflect the system’s expected use.
The second goal leads to defect testing, where the test cases are designed to expose

••••

Component
testing

System
testing

Software developer Independent testing team

Figure 23.1 Testing
phases

SE8_C23.qxd 4/4/06 9:17 Page 538

Chapter 23 ■ Software testing 539

defects. The test cases can be deliberately obscure and need not reflect how the sys-
tem is normally used. For validation testing, a successful test is one where the sys-
tem performs correctly. For defect testing, a successful test is one that exposes a
defect that causes the system to perform incorrectly.

Testing cannot demonstrate that the software is free of defects or that it will behave
as specified in every circumstance. It is always possible that a test that you have
overlooked could discover further problems with the system. As Edsger Dijkstra, a
leading early figure in the development of software engineering, eloquently stated
(Dijkstra, et al., 1972), ‘Testing can only show the presence of errors, not their absence.’

Overall, therefore, the goal of software testing is to convince system developers
and customers that the software is good enough for operational use. Testing is a
process intended to build confidence in the software.

A general model of the testing process is shown in Figure 23.2. Test cases are
specifications of the inputs to the test and the expected output from the system plus
a statement of what is being tested. Test data are the inputs that have been devised
to test the system. Test data can sometimes be generated automatically. Automatic
test case generation is impossible. The output of the tests can only be predicted by
people who understand what the system should do.

Exhaustive testing, where every possible program execution sequence is tested,
is impossible. Testing, therefore, has to be based on a subset of possible test cases.
Ideally, software companies should have policies for choosing this subset rather than
leave this to the development team. These policies might be based on general test-
ing policies, such as a policy that all program statements should be executed at least
once. Alternatively, the testing policies may be based on experience of system usage
and may focus on testing the features of the operational system. For example:

1. All system functions that are accessed through menus should be tested.

2. Combinations of functions (e.g., text formatting) that are accessed through the
same menu must be tested.

3. Where user input is provided, all functions must be tested with both correct
and incorrect input.

It is clear from experience with major software products such as word proces-
sors or spreadsheets that comparable guidelines are normally used during product
testing. When features of the software are used in isolation, they normally work.

••••

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

Figure 23.2 A model
of the software
testing process

SE8_C23.qxd 4/4/06 9:17 Page 539

540 Chapter 23 ■ Software testing

Problems arise, as Whittaker explains (Whittaker, 2002), when combinations of fea-
tures have not been tested together. He gives the example of how, in a commonly
used word processor, using footnotes with multicolumn layout causes incorrect lay-
out of the text.

As part of the V & V planning process, managers have to make decisions on
who should be responsible for the different stages of testing. For most systems, pro-
grammers take responsibility for testing the components that they have developed.
Once this is completed, the work is handed over to an integration team, which inte-
grates the modules from different developers, builds the software and tests the sys-
tem as a whole. For critical systems, a more formal process may be used where
independent testers are responsible for all stages of the testing process. In critical
system testing, the tests are developed separately and detailed records are maintained
of the test results.

Component testing by developers is usually based on an intuitive understanding
of how the components should operate. System testing, however, has to be based
on a written system specification. This can be a detailed system requirements spec-
ification, as discussed in Chapter 6, or it can be a higher-level user-oriented spec-
ification of the features that should be implemented in the system. A separate team
is normally responsible for system testing. As discussed in Chapter 4, the system
testing team works from the user and system requirements documents to develop
system-testing plans (see Figure 4.10).

Most discussions of testing start with component testing and then move on to sys-
tem testing. I have deliberately reversed the order of discussion in this chapter
because more and more software development involves integrating reusable compo-
nents and configuring and adapting existing software to meet specific requirements.
All testing in such cases is system testing, and there is no separate component test-
ing process.

23.1 System testing

System testing involves integrating two or more components that implement sys-
tem functions or features and then testing this integrated system. In an iterative devel-
opment process, system testing is concerned with testing an increment to be
delivered to the customer; in a waterfall process, system testing is concerned with
testing the entire system.

For most complex systems, there are two distinct phases to system testing:

1. Integration testing, where the test team have access to the source code of the
system. When a problem is discovered, the integration team tries to find the
source of the problem and identify the components that have to be debugged.
Integration testing is mostly concerned with finding defects in the system.

••••

SE8_C23.qxd 4/4/06 9:17 Page 540

23.1 ■ System testing 541

2. Release testing, where a version of the system that could be released to users
is tested. Here, the test team is concerned with validating that the system meets
its requirements and with ensuring that the system is dependable. Release test-
ing is usually ‘black-box’ testing where the test team is simply concerned with
demonstrating that the system does or does not work properly. Problems are
reported to the development team whose job is to debug the program. Where
customers are involved in release testing, this is sometimes called acceptance
testing. If the release is good enough, the customer may then accept it for use.

Fundamentally, you can think of integration testing as the testing of incomplete
systems composed of clusters or groupings of system components. Release testing
is concerned with testing the system release that is intended for delivery to cus-
tomers. Naturally, these overlap, especially when incremental development is used
and the system to be released is incomplete. Generally, the priority in integration
testing is to discover defects in the system and the priority in system testing, is to
validate that the system meets its requirements. However, in practice, there is some
validation testing and some defect testing during both of these processes.

23.1.1 Integration testing

The process of system integration involves building a system from its components
(see Chapter 29) and testing the resultant system for problems that arise from com-
ponent interactions. The components that are integrated may be off-the-shelf com-
ponents, reusable components that have been adapted for a particular system or newly
developed components. For many large systems, all three types of components are
likely to be used. Integration testing checks that these components actually work
together, are called correctly and transfer the right data at the right time across their
interfaces.

System integration involves identifying clusters of components that deliver some
system functionality and integrating these by adding code that makes them work together.
Sometimes, the overall skeleton of the system is developed first, and components are
added to it. This is called top-down integration. Alternatively, you may first integrate
infrastructure components that provide common services, such as network and
database access, then add the functional components. This is bottom-up integration.
In practice, for many systems, the integration strategy is a mixture of these, with both
infrastructure components and functional components added in increments. In both
top-down and bottom-up integration, you usually have to develop additional code to
simulate other components and allow the system to execute.

A major problem that arises during integration testing is localising errors. There
are complex interactions between the system components and, when an anomalous
output is discovered, you may find it hard to identify where the error occurred. To
make it easier to locate errors, you should always use an incremental approach to
system integration and testing. Initially, you should integrate a minimal system

••••

SE8_C23.qxd 4/4/06 9:17 Page 541

542 Chapter 23 ■ Software testing

configuration and test this system. You then add components to this minimal con-
figuration and test after each added increment.

In the example shown in Figure 23.3, A, B, C and D are components and T1 to
T5 are related sets of tests of the features incorporated in the system. T1, T2 and
T3 are first run on a system composed of component A and component B (the min-
imal system). If these reveal defects, they are corrected. Component C is integrated
and T1, T2 and T3 are repeated to ensure that there have not been unexpected inter-
actions with A and B. If problems arise in these tests, this probably means that they
are due to interactions with the new component. The source of the problem is localised,
thus simplifying defect location and repair. Test set T4 is also run on the system.
Finally, component D is integrated and tested using existing and new tests (T5).

When planning integration, you have to decide the order of integration of com-
ponents. In a process such as XP, the customer is involved in the development pro-
cess and decides which functionality should be included in each system increment.
Therefore, system integration is driven by customer priorities. In other approaches
to development when off-the-shelf components and specially developed components
are integrated, the customer may not be involved and the integration team decides
on the integration priorities.

In such cases, a good rule of thumb is to integrate the components that imple-
ment the most frequently used functionality first. This means that the components
that are most used receive the most testing. For example, in the library system, LIB-
SYS, you should start by integrating the search facility so that, in a minimal sys-
tem, users can search for documents that they need. You should then add the
functionality to allow users to download a document, then progressively add the
components that implement other system features.

Of course, reality is rarely as simple as this model suggests. The implementa-
tion of system features may be spread across a number of components. To test a

••••

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence 1 Test sequence 2 Test sequence 3

Figure 23.3
Incremental
integration testing

SE8_C23.qxd 4/4/06 9:17 Page 542

23.1 ■ System testing 543

new feature, you may have to integrate several different components. The testing
may reveal errors in the interactions between these individual components and other
parts of the system. Repairing errors may be difficult because a group of compo-
nents that implement the system feature may have to be changed. Furthermore, inte-
grating and testing a new component can change the pattern of already tested
component interactions. Errors may be revealed that were not exposed in the tests
of the simpler configuration.

These problems mean that when a new increment is integrated, it is important
to rerun the tests for previous increments as well as the new tests that are required
to verify the new system functionality. Rerunning an existing set of tests is called
regression testing. If regression testing exposes problems, then you have to check
whether these are problems in the previous increment that the new increment has
exposed or whether these are due to the added increment of functionality.

Regression testing is clearly an expensive process and is impractical without some
automated support. In extreme programming, as discussed in Chapter 17, all tests
are written as executable code where the test input and the expected outputs are
specified and automatically checked. When used with an automated testing frame-
work such as JUnit (Massol and Husted, 2003), this means that tests can be auto-
matically rerun. It is a basic principle of extreme programming that the complete
test set is executed whenever new code is integrated and that this new code is not
accepted until all tests run successfully.

23.1.2 Release testing

Release testing is the process of testing a release of the system that will be dis-
tributed to customers. The primary goal of this process is to increase the supplier’s
confidence that the system meets its requirements. If so, it can be released as a prod-
uct or delivered to the customer. To demonstrate that the system meets its require-
ments, you have to show that it delivers the specified functionality, performance
and dependability, and that it does not fail during normal use.

Release testing is usually a black-box testing process where the tests are derived
from the system specification. The system is treated as a black box whose
behaviour can only be determined by studying its inputs and the related outputs.
Another name for this is functional testing because the tester is only concerned with
the functionality and not the implementation of the software.

Figure 23.4 illustrates the model of a system that is assumed in black-box test-
ing. The tester presents inputs to the component or the system and examines the
corresponding outputs. If the outputs are not those predicted (i.e., if the outputs are
in set Oe) then the test has detected a problem with the software.

When testing system releases, you should try to ‘break’ the software by choos-
ing test cases that are in the set Ie in Figure 23.4. That is, your aim should be to
select inputs that have a high probability of generating system failures (outputs in
set Oe). You use previous experience of what are likely to be successful defect tests
and testing guidelines to help you make your choice.

••••

SE8_C23.qxd 4/4/06 9:17 Page 543

544 Chapter 23 ■ Software testing

Authors such as Whittaker (Whittaker, 2002) have encapsulated their testing expe-
rience in a set of guidelines that increase the probability that the defect tests will
be successful. Some examples of these guidelines are:

1. Choose inputs that force the system to generate all error messages.

2. Design inputs that cause input buffers to overflow.

3. Repeat the same input or series of inputs numerous times.

4. Force invalid outputs to be generated.

5. Force computation results to be too large or too small.

To validate that the system meets its requirements, the best approach to use is
scenario-based testing, where you devise a number of scenarios and develop test
cases from these scenarios. For example, the following scenario might describe how
the library system LIBSYS, discussed in previous chapters, might be used:

A student in Scotland studying American history has been asked to write a
paper on ‘Frontier mentality in the American West from 1840 to 1880’. To
do this, she needs to find sources from a range of libraries. She logs on to
the LIBSYS system and uses the search facility to discover whether she can
access original documents from that time. She discovers sources in various
US university libraries and downloads copies of some of these. However, for
one document, she needs to have confirmation from her university that she is
a genuine student and that use is for non-commercial purposes. The student

••••

IeInput test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

Figure 23.4 Black-
box testing

SE8_C23.qxd 4/4/06 9:17 Page 544

23.1 ■ System testing 545

then uses the facility in LIBSYS that can request such permission and regis-
ters her request. If granted, the document will be downloaded to the regis-
tered library’s server and printed for her. She receives a message from
LIBSYS telling her that she will receive an e-mail message when the printed
document is available for collection.

From this scenario, it is possible to device a number of tests that can be applied
to the proposed release of LIBSYS:

1. Test the login mechanism using correct and incorrect logins to check that valid
users are accepted and invalid users are rejected.

2. Test the search facility using queries against known sources to check that the
search mechanism is actually finding documents.

3. Test the system presentation facility to check that information about documents
is displayed properly.

4. Test the mechanism to request permission for downloading.

5. Test the e-mail response indicating that the downloaded document is available.

For each of these tests, you should design a set of tests that include valid and
invalid inputs and that generate valid and invalid outputs. You should also organ-
ise scenario-based testing so that the most likely scenarios are tested first, and unusual
or exceptional scenarios considered later, so your efforts are devoted to those parts
of the system that receive the most use.

If you have used use-cases to describe the system requirements, these use-cases
and associated sequence diagrams can be a basis for system testing. The use-cases
and sequence charts can be used during both integration and release testing. To illus-
trate this, I use an example from the weather station system described in Chapter 14.

Figure 23.5 shows the sequence of operations in the weather station when it responds
to a request to collect data for the mapping system. You can use this diagram to
identify operations that will be tested and to help design the test cases to execute
the tests. Therefore issuing a request for a report will result in the execution of the
following thread of methods:

CommsController:request → WeatherStation:report → WeatherData:summarise

The sequence diagram can also be used to identify inputs and outputs that have
to be created for the test:

1. An input of a request for a report should have an associated acknowledgement
and a report should ultimately be returned from the request. During the test-
ing, you should create summarised data that can be used to check that the report
is correctly organised.

••••

SE8_C23.qxd 4/4/06 9:17 Page 545

546 Chapter 23 ■ Software testing

2. An input request for a report to WeatherStation results in a summarised report
being generated. You can test this in isolation by creating raw data corresponding
to the summary that you have prepared for the test of CommsController and
checking that the WeatherStation object correctly produces this summary.

3. This raw data is also used to test the WeatherData object.

Of course, I have simplified the sequence diagram in Figure 23.5 so that it does
not show exceptions. A complete scenario test must also take these into account
and ensure that objects correctly handle exceptions.

23.1.3 Performance testing

Once a system has been completely integrated, it is possible to test the system for
emergent properties (see Chapter 2) such as performance and reliability.
Performance tests have to be designed to ensure that the system can process its intended
load. This usually involves planning a series of tests where the load is steadily increased
until the system performance becomes unacceptable.

As with other types of testing, performance testing is concerned both with
demonstrating that the system meets its requirements and discovering problems and
defects in the system. To test whether performance requirements are being
achieved, you may have to construct an operational profile. An operational profile
is a set of tests that reflect the actual mix of work that will be handled by the sys-
tem. Therefore, if 90% of the transactions in a system are of type A, 5% of type B
and the remainder of types C, D, and E, then you have to design the operational

••••

:CommsController

request (report)

acknowledge ()
report ()

summarise ()

reply (report)

acknowledge ()

send (report)

:WeatherStation :WeatherData
Figure 23.5 Collect
weather data
sequence chart

SE8_C23.qxd 4/4/06 9:17 Page 546

23.2 ■ Component testing 547

profile so that the vast majority of tests are of type A. Otherwise, you will not get
an accurate test of the operational performance of the system. I discuss operational
profiles and their use in reliability testing in Chapter 24.

This approach, of course, is not necessarily the best approach for defect testing.
As I discuss later, experience has shown that an effective way to discover defects
is to design tests around the limits of the system. In performance testing, this means
stressing the system (hence the name stress testing) by making demands that are
outside the design limits of the software.

For example, a transaction processing system may be designed to process up to
300 transactions per second; an operating system may be designed to handle up to
1,000 separate terminals. Stress testing continues these tests beyond the maximum
design load of the system until the system fails. This type of testing has two functions:

1. It tests the failure behaviour of the system. Circumstances may arise through
an unexpected combination of events where the load placed on the system exceeds
the maximum anticipated load. In these circumstances, it is important that sys-
tem failure should not cause data corruption or unexpected loss of user ser-
vices. Stress testing checks that overloading the system causes it to ‘fail-soft’
rather than collapse under its load.

2. It stresses the system and may cause defects to come to light that would not
normally be discovered. Although it can be argued that these defects are
unlikely to cause system failures in normal usage, there may be unusual com-
binations of normal circumstances that the stress testing replicates.

Stress testing is particularly relevant to distributed systems based on a network
of processors. These systems often exhibit severe degradation when they are heav-
ily loaded. The network becomes swamped with coordination data that the differ-
ent processes must exchange, so the processes become slower and slower as they
wait for the required data from other processes.

23.2 Component testing

Component testing (sometimes called unit testing) is the process of testing individual
components in the system. This is a defect testing process so its goal is to expose
faults in these components. As I discussed in the introduction, for most systems,
the developers of components are responsible for component testing.

There are different types of component that may be tested at this stage:

1. Individual functions or methods within an object

2. Object classes that have several attributes and methods

••••

SE8_C23.qxd 4/4/06 9:17 Page 547

548 Chapter 23 ■ Software testing

3. Composite components made up of several different objects or functions.
These composite components have a defined interface that is used to access
their functionality.

Individual functions or methods are the simplest type of component and your
tests are a set of calls to these routines with different input parameters. You can
use the approaches to test case design, discussed in the next section, to design the
function or method tests.

When you are testing object classes, you should design your tests to provide cov-
erage of all of the features of the object. Therefore, object class testing should include:

1. The testing in isolation of all operations associated with the object

2. The setting and interrogation of all attributes associated with the object

3. The exercise of the object in all possible states. This means that all events that
cause a state change in the object should be simulated.

Consider, for example, the weather station from Chapter 14 whose interface is
shown in Figure 23.6. It has only a single attribute, which is its identifier. This is
a constant that is set when the weather station is installed. You therefore only need
a test that checks whether it has been set up. You need to define test cases for
reportWeather, calibrate, test, startup and shutdown. Ideally, you should test meth-
ods in isolation but, in some cases, some test sequences are necessary. For exam-
ple, to test shutdown you need to have executed the startup method.

To test the states of the weather station, you use a state model as shown in Figure
14.14. Using this model, you can identify sequences of state transitions that have
to be tested and define event sequences to force these transitions. In principle, you
should test every possible state transition sequence, although in practice this may
be too expensive. Examples of state sequences that should be tested in the weather
station include:

Shutdown → Waiting → Shutdown
Waiting → Calibrating → Testing → Transmitting → Waiting
Waiting → Collecting → Waiting → Summarising → Transmitting → Waiting

••••

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation
Figure 23.6 The
weather station
object interface

SE8_C23.qxd 4/4/06 9:17 Page 548

23.2 ■ Component testing 549

If you use inheritance, this makes it more difficult to design object class tests.
Where a superclass provides operations that are inherited by a number of subclasses,
all of these subclasses should be tested with all inherited operations. The reason for
this is that the inherited operation may make assumptions about other operations
and attributes, which these may have been changed when inherited. Equally, when
a superclass operation is overridden then the overwriting operation must be tested.

The notion of equivalence classes, discussed in Section 23.3.2, may also be applied
to object classes. Tests that fall into the same equivalence class might be those that
use the same attributes of the objects. Therefore, equivalence classes should be iden-
tified that initialise, access and update all object class attributes.

23.2.1 Interface testing

Many components in a system are not simple functions or objects but are compos-
ite components that are made up of several interacting objects. As I discussed in
Chapter 19, which covered component-based software engineering, you access the
functionality of these components through their defined interface. Testing these com-
posite components then is primarily concerned with testing that the component inter-
face behaves according to its specification.

Figure 23.7 illustrates this process of interface testing. Assume that components
A, B and C have been integrated to create a larger component or sub-system. The
test cases are not applied to the individual components but to the interface of the
composite component created by combining these components.

Interface testing is particularly important for object-oriented and component-based
development. Objects and components are defined by their interfaces and may be
reused in combination with other components in different systems. Interface errors
in the composite component cannot be detected by testing the individual objects or

••••

C

Test
cases

A B

Figure 23.7 Interface
testing

SE8_C23.qxd 4/4/06 9:17 Page 549

550 Chapter 23 ■ Software testing

components. Errors in the composite component may arise because of interactions
between its parts.

There are different types of interfaces between program components and, con-
sequently, different types of interface errors that can occur:

1. Parameter interfaces These are interfaces where data or sometimes function
references are passed from one component to another.

2. Shared memory interfaces These are interfaces where a block of memory is
shared between components. Data is placed in the memory by one sub-system
and retrieved from there by other sub-systems.

3. Procedural interfaces These are interfaces where one component encapsulates
a set of procedures that can be called by other components. Objects and
reusable components have this form of interface.

4. Message passing interfaces These are interfaces where one component
requests a service from another component by passing a message to it. A return
message includes the results of executing the service. Some object-oriented sys-
tems have this form of interface, as do client-server systems.

Interface errors are one of the most common forms of error in complex systems
(Lutz, 1993). These errors fall into three classes:

1. Interface misuse A calling component calls some other component and makes
an error in the use of its interface. This type of error is particularly common
with parameter interfaces where parameters may be of the wrong type, may be
passed in the wrong order or the wrong number of parameters may be passed.

2. Interface misunderstanding A calling component misunderstands the specifi-
cation of the interface of the called component and makes assumptions about
the behaviour of the called component. The called component does not behave
as expected and this causes unexpected behaviour in the calling component.
For example, a binary search routine may be called with an unordered array to
be searched. The search would then fail.

3. Timing errors These occur in real-time systems that use a shared memory or
a message-passing interface. The producer of data and the consumer of data
may operate at different speeds. Unless particular care is taken in the interface
design, the consumer can access out-of-date information because the producer
of the information has not updated the shared interface information.

Testing for interface defects is difficult because some interface faults may only
manifest themselves under unusual conditions. For example, say an object imple-
ments a queue as a fixed-length data structure. A calling object may assume that
the queue is implemented as an infinite data structure and may not check for queue
overflow when an item is entered. This condition can only be detected during testing

••••

SE8_C23.qxd 4/4/06 9:17 Page 550

23.3 ■ Test case design 551

by designing test cases that force the queue to overflow and cause that overflow to
corrupt the object behaviour in some detectable way.

A further problem may arise because of interactions between faults in different
modules or objects. Faults in one object may only be detected when some other
object behaves in an unexpected way. For example, an object may call some other
object to receive some service and may assume that the response is correct. If there
has been a misunderstanding about the value computed, the returned value may be
valid but incorrect. This will only manifest itself when some later computation goes
wrong.

Some general guidelines for interface testing are:

1. Examine the code to be tested and explicitly list each call to an external com-
ponent. Design a set of tests where the values of the parameters to the exter-
nal components are at the extreme ends of their ranges. These extreme values
are most likely to reveal interface inconsistencies.

2. Where pointers are passed across an interface, always test the interface with
null pointer parameters.

3. Where a component is called through a procedural interface, design tests that
should cause the component to fail. Differing failure assumptions are one of
the most common specification misunderstandings.

4. Use stress testing, as discussed in the previous section, in message-passing sys-
tems. Design tests that generate many more messages than are likely to occur
in practice. Timing problems may be revealed in this way.

5. Where several components interact through shared memory, design tests that
vary the order in which these components are activated. These tests may reveal
implicit assumptions made by the programmer about the order in which the shared
data is produced and consumed.

Static validation techniques are often more cost-effective than testing for discovering
interface errors. A strongly typed language such as Java allows many interface errors
to be trapped by the compiler. Where a weaker language, such as C, is used, a static
analyser such as LINT (see Chapter 22) can detect interface errors. Program inspec-
tions can concentrate on component interfaces and questions about the assumed inter-
face behaviour asked during the inspection process.

23.3 Test case design

Test case design is a part of system and component testing where you design the
test cases (inputs and predicted outputs) that test the system. The goal of the test

••••

SE8_C23.qxd 4/4/06 9:17 Page 551

552 Chapter 23 ■ Software testing

case design process is to create a set of test cases that are effective in discovering
program defects and showing that the system meets its requirements.

To design a test case, you select a feature of the system or component that you
are testing. You then select a set of inputs that execute that feature, document the
expected outputs or output ranges and, where possible, design an automated check
that tests that the actual and expected outputs are the same.

There are various approaches that you can take to test case design:

1. Requirements-based testing where test cases are designed to test the system
requirements. This is mostly used at the system-testing stage as system require-
ments are usually implemented by several components. For each requirement, you
identify test cases that can demonstrate that the system meets that requirement.

2. Partition testing where you identify input and output partitions and design tests
so that the system executes inputs from all partitions and generates outputs in
all partitions. Partitions are groups of data that have common characteristics
such as all negative numbers, all names less than 30 characters, all events aris-
ing from choosing items on a menu, and so on.

3. Structural testing where you use knowledge of the program’s structure to design
tests that exercise all parts of the program. Essentially, when testing a program,
you should try to execute each statement at least once. Structural testing helps
identify test cases that can make this possible.

In general, when designing test cases, you should start with the highest-level tests
from the requirements then progressively add more detailed tests using partition and
structural testing.

23.3.1 Requirements-based testing

A general principle of requirements engineering, discussed in Chapter 6, is that require-
ments should be testable. That is, the requirement should be written in such a way
that a test can be designed so that an observer can check that the requirement has
been satisfied. Requirements-based testing, therefore, is a systematic approach to
test case design where you consider each requirement and derive a set of tests for
it. Requirements-based testing is validation rather than defect testing—you are try-
ing to demonstrate that the system has properly implemented its requirements.

For example, consider the requirements for the LIBSYS system introduced in
Chapter 6.

1. The user shall be able to search either all of the initial set of databases or select
a subset from it.

2. The system shall provide appropriate viewers for the user to read documents
in the document store.

••••

SE8_C23.qxd 4/4/06 9:17 Page 552

23.3 ■ Test case design 553

3. Every order shall be allocated a unique identifier (ORDER_ID) that the user
shall be able to copy to the account’s permanent storage area.

Possible tests for the first of these requirements, assuming that a search function
has been tested, are:

• Initiate user searches for items that are known to be present and known not to
be present, where the set of databases includes one database.

• Initiate user searches for items that are known to be present and known not to
be present, where the set of databases includes two databases.

• Initiate user searches for items that are known to be present and known not to
be present where the set of databases includes more than two databases.

• Select one database from the set of databases and initiate user searches for items
that are known to be present and known not to be present.

• Select more than one database from the set of databases and initiate searches
for items that are known to be present and known not to be present.

You can see from this that testing a requirement does not mean just writing a
single test. You normally have to write several tests to ensure that you have cov-
erage of the requirement.

Tests for the other requirements in the LIBSYS system can be developed in the
same way. For the second requirement, you would write tests that delivered docu-
ments of all types that could be processed by the system and check that these are
properly displayed. The third requirement is simpler. To test this, you simulate plac-
ing several orders and then check that the order identifier is present in the user con-
firmation and is unique in each case.

23.3.2 Partition testing

The input data and output results of a program usually fall into a number of dif-
ferent classes that have common characteristics such as positive numbers, negative
numbers and menu selections. Programs normally behave in a comparable way for
all members of a class. That is, if you test a program that does some computation
and requires two positive numbers, then you would expect the program to behave
in the same way for all positive numbers.

Because of this equivalent behaviour, these classes are sometimes called equiv-
alence partitions or domains (Bezier, 1990). One systematic approach to test case
design is based on identifying all partitions for a system or component. Test cases
are designed so that the inputs or outputs lie within these partitions. Partition test-
ing can be used to design test cases for both systems and components.

In Figure 23.8, each equivalence partition is shown as an ellipse. Input equiva-
lence partitions are sets of data where all of the set members should be processed

••••

SE8_C23.qxd 4/4/06 9:17 Page 553

554 Chapter 23 ■ Software testing

in an equivalent way. Output equivalence partitions are program outputs that have
common characteristics, so they can be considered as a distinct class. You also iden-
tify partitions where the inputs are outside the other partitions that you have cho-
sen. These test whether the program handles invalid input correctly. Valid and invalid
inputs also form equivalence partitions.

Once you have identified a set of partitions, you can chose test cases from each
of these partitions. A good rule of thumb for test case selection is to choose test
cases on the boundaries of the partitions plus cases close to the mid-point of the
partition. The rationale for this is that designers and programmers tend to consider
typical values of inputs when developing a system. You test these by choosing the
mid-point of the partition. Boundary values are often atypical (e.g., zero may
behave differently from other nonnegative numbers) so are overlooked by devel-
opers. Program failures often occur when processing these atypical values.

You identify partitions by using the program specification or user documenta-
tion and, from experience, where you predict the classes of input value that are likely
to detect errors. For example, say a program specification states that the program
accepts 4 to 8 inputs that are five-digit integers greater than 10,000. Figure 23.9
shows the partitions for this situation and possible test input values.

To illustrate the derivation of test cases, I use the specification of a search com-
ponent, shown in Figure 23.10. This component searches a sequence of elements
for a given element (the key). It returns the position of that element in the sequence.
I have specified this in an abstract way by defining pre-conditions, which are true
before the component is called, and post-conditions, which are true after execution.

••••

System

Outputs

Invalid inputs Valid inputs

Figure 23.8
Equivalence
partitioning

SE8_C23.qxd 4/4/06 9:17 Page 554

23.3 ■ Test case design 555

The pre-condition states that the search routine will only work with sequences that
are not empty. The post-condition states that the variable Found is set if the key
element is in the sequence. The position of the key element is the index L. The index
value is undefined if the element is not in the sequence.

From this specification, you can see two equivalence partitions:

1. Inputs where the key element is a member of the sequence (Found = true)

2. Inputs where the key element is not a sequence member (Found = false)

When you are testing programs with sequences, arrays or lists, there are a num-
ber of guidelines that are often useful in designing test cases:

••••

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Figure 23.9
Equivalence
partitions

procedure Search (Key : ELEM ; T: SEQ of ELEM ;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
— the sequence has at least one element
T’FIRST <= T’LAST

Post-condition
— the element is found and is referenced by L
(Found and T (L) = Key)

or
— the element is not in the sequence
(not Found and
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

Figure 23.10 The
specification of a
search routine

SE8_C23.qxd 4/4/06 9:17 Page 555

556 Chapter 23 ■ Software testing

1. Test software with sequences that have only a single value. Programmers nat-
urally think of sequences as made up of several values, and sometimes they
embed this assumption in their programs. Consequently, the program may not
work properly when presented with a single-value sequence.

2. Use different sequences of different sizes in different tests. This decreases the
chances that a program with defects will accidentally produce a correct output
because of some accidental characteristics of the input.

3. Derive tests so that the first, middle and last elements of the sequence are accessed.
This approach reveals problems at partition boundaries.

From these guidelines, two more equivalence partitions can be identified:

1. The input sequence has a single value.

2. The number of elements in the input sequence is greater than 1.

You then identify further partitions by combining these partitions—for example,
the partition where the number of elements in the sequence is greater than 1 and
the element is not in the sequence. Figure 23.11 shows the partitions that I have
identified to test the search component.

A set of possible test cases based on these partitions is also shown in Figure
23.11. If the key element is not in the sequence, the value of L is undefined (‘??’).
The guideline that different sequences of different sizes should be used has been
applied in these test cases.

The set of input values used to test the search routine is not exhaustive. The rou-
tine may fail if the input sequence happens to include the elements 1, 2, 3 and 4.

••••

Sequence Element

Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)

17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

Figure 23.11
Equivalence
partitions for search
routine

SE8_C23.qxd 4/4/06 9:17 Page 556

23.3 ■ Test case design 557

However, it is reasonable to assume that if the test fails to detect defects when one
member of a class is processed, no other members of that class will identify defects.
Of course, defects may still exist. Some equivalence partitions may not have been
identified, errors may have been made in equivalence partition identification or the
test data may have been incorrectly prepared.

23.3.3 Structural testing

Structural testing (Figure 23.12) is an approach to test case design where the tests
are derived from knowledge of the software’s structure and implementation. This
approach is sometimes called ‘white-box’, ‘glass-box’ testing, or ‘’clear-box’ test-
ing to distinguish it from black-box testing.

Understanding the algorithm used in a component can help you identify further
partitions and test cases. To illustrate this, I have implemented the search routine
specification (Figure 23.10) as a binary search routine (Figure 23.14). Of course,
this has stricter pre-conditions. The sequence is implemented as an array that array
must be ordered and the value of the lower bound of the array must be less than
the value of the upper bound.

By examining the code of the search routine, you can see that binary searching
involves splitting the search space into three parts. Each of these parts makes up
an equivalence partition (Figure 23.13). You then design test cases where the key
lies at the boundaries of each of these partitions.

••••

Component
code

Test
outputs

Test data

DerivesTests

Figure 23.12
Structural testing

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundariesFigure 23.13 Binary
search equivalence
classes

SE8_C23.qxd 4/4/06 9:17 Page 557

558 Chapter 23 ■ Software testing

This leads to a revised set of test cases for the search routine, as shown in Figure
23.15. Notice that I have modified the input array so that it is arranged in ascend-
ing order and have added further tests where the key element is adjacent to the mid-
point of the array.

••••

class BinSearch {

// This is an encapsulation of a binary search function that takes an array of
// ordered objects and a key and returns an object with 2 attributes namely
// index - the value of the array index
// found - a boolean indicating whether or not the key is in the array
// An object is returned because it is not possible in Java to pass basic types
by
// reference to a function and so return two values
// the key is -1 if the element is not found

public static void search (int key, int [] elemArray, Result r)
{

1. int bottom = 0 ;
2. int top = elemArray.length - 1 ;

int mid ;
3. r.found = false ;
4. r.index = -1 ;
5. while (bottom <= top)

{
6. mid = (top + bottom) / 2 ;
7. if (elemArray [mid] == key)

{
8. r.index = mid ;
9. r.found = true ;
10. return ;

} // if part
else
{

11. if (elemArray [mid] < key)
12. bottom = mid + 1 ;

else
13. top = mid - 1 ;

}
} //while loop

14. } // search
} //BinSearch

Figure 23.14 Java
implementation of a
binary search routine

SE8_C23.qxd 4/4/06 9:17 Page 558

23.3 ■ Test case design 559

23.3.4 Path testing

Path testing is a structural testing strategy whose objective is to exercise every inde-
pendent execution path through a component or program. If every independent path
is executed, then all statements in the component must have been executed at least
once. Furthermore, all conditional statements are tested for both true and false cases.
In an object-oriented development process, path testing may be used when testing
methods associated with objects.

The number of paths through a program is usually proportional to its size. As mod-
ules are integrated into systems, it becomes unfeasible to use structural testing tech-
niques. Path testing techniques are therefore mostly used during component testing.

Path testing does not test all possible combinations of all paths through the pro-
gram. For any components apart from very trivial ones without loops, this is an
impossible objective. There are an infinite number of possible path combinations
in programs with loops. Even when all program statements have been executed at
least once, program defects may still show up when particular paths are combined.

The starting point for path testing is a program flow graph. This is a skeletal
model of all paths through the program. A flow graph consists of nodes represent-
ing decisions and edges showing flow of control. The flow graph is constructed by
replacing program control statements by equivalent diagrams. If there are no goto
statements in a program, it is a simple process to derive its flow graph. Each branch
in a conditional statement (if-then-else or case) is shown as a separate path. An arrow
looping back to the condition node denotes a loop. I have drawn the flow graph for
the binary search method in Figure 23.16. To make the correspondence between
this and the program in Figure 23.14 more obvious, I have shown each statement
as a separate node where the node number corresponds to the line number in the
program.

The objective of path testing is to ensure that each independent path through the
program is executed at least once. An independent program path is one that tra-
verses at least one new edge in the flow graph. In program terms, this means exer-
cising one or more new conditions. Both the true and false branches of all
conditions must be executed.

••••

Figure 23.15 Test
cases for search
routine

Input array (T) Key (Key) Output (Found, L)

17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

SE8_C23.qxd 4/4/06 9:17 Page 559

560 Chapter 23 ■ Software testing

The flow graph for the binary search procedure is shown in Figure 23.16 where
each node represents a line in the program with an executable statement. By trac-
ing the flow, therefore, you can see that the paths through the binary search flow
graph are:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
1, 2, 3, 4, 5, 14
1, 2, 3, 4, 5, 6, 7, 11, 12, 5, ...
1, 2, 3, 4, 6, 7, 2, 11, 13, 5, ...

If all of these paths are executed, we can be sure that every statement in the
method has been executed at least once and that every branch has been exercised
for true and false conditions.

••••

Figure 23.16 Flow
graph for a binary
search routine

SE8_C23.qxd 4/4/06 9:17 Page 560

23.4 ■ Test automation 561

You can find the number of independent paths in a program by computing the
cyclomatic complexity (McCabe, 1976) of the program flow graph. For programs
without goto statements, the value of the cyclomatic complexity is one more than
the number of conditions in the program. A simple condition is logical expression
without ‘and’ or ‘or’ connectors. If the program includes compound conditions, which
are logical expressions including ‘and’ or ‘or’ connectors, then you count the num-
ber of simple conditions in the compound conditions when calculating the cyclo-
matic complexity.

Therefore, if there are six if-statements and a while loop and all conditional expres-
sions are simple, the cyclomatic complexity is 8. If one conditional expression is a
compound expression such as ‘if A and B or C’, then you count this as three sim-
ple conditions. The cyclomatic complexity is therefore 10. The cyclomatic complexity
of the binary search algorithm (Figure 23.14) is 4 because there are three simple
conditions at lines 5, 7 and 11.

After discovering the number of independent paths through the code by com-
puting the cyclomatic complexity, you next design test cases to execute each of these
paths. The minimum number of test cases that you need to test all program paths
is equal to the cyclomatic complexity.

Test case design is straightforward in the case of the binary search routine. However,
when programs have a complex branching structure, it may be difficult to predict
how any particular test case will be processed. In these cases, a dynamic program
analyser can be used to discover the program’s execution profile.

Dynamic program analysers are testing tools that work in conjunction with com-
pilers. During compilation, these analysers add extra instructions to the generated
code. These count the number of times each program statement has been executed.
After the program has been run, an execution profile can be printed. This shows
which parts of the program have and have not been executed using particular test
cases. This execution profile therefore reveals untested program sections.

23.4 Test automation

Testing is an expensive and laborious phase of the software process. As a result,
testing tools were among the first software tools to be developed. These tools now
offer a range of facilities and their use can significantly reduce the costs of testing.

I have already discussed one approach to test automation (Mosley and Posey,
2002) where a testing framework such as JUnit (Massol and Husted, 2003) is used
for regression testing. JUnit is a set of Java classes that the user extends to create
an automated testing environment. Each individual test is implemented as an
object and a test runner runs all of the tests. The tests themselves should be writ-
ten in such a way that they indicate whether the tested system has behaved as expected.

••••

SE8_C23.qxd 4/4/06 9:17 Page 561

562 Chapter 23 ■ Software testing

A software testing workbench is an integrated set of tools to support the testing
process. In addition to testing frameworks that support automated test execution, a
workbench may include tools to simulate other parts of the system and to generate
system test data. Figure 23.17 shows some of the tools that might be included in
such a testing workbench:

1. Test manager Manages the running of program tests. The test manager keeps
track of test data, expected results and program facilities tested. Test automa-
tion frameworks such as JUnit are examples of test managers.

2. Test data generator Generates test data for the program to be tested. This may
be accomplished by selecting data from a database or by using patterns to gen-
erate random data of the correct form.

3. Oracle Generates predictions of expected test results. Oracles may either be
previous program versions or prototype systems. Back-to-back testing (discussed
in Chapter 17) involves running the oracle and the program to be tested in par-
allel. Differences in their outputs are highlighted.

4. File comparator Compares the results of program tests with previous test results
and reports differences between them. Comparators are used in regression test-
ing where the results of executing different versions are compared. Where auto-
mated tests are used, this may be called from within the tests themselves.

5. Report generator Provides report definition and generation facilities for test results.

••••

Dynamic
analyser

Program
being tested

Test results
Test

predictions

File
comparator

Execution
report

Simulator

Source
code

Test
manager

Test data Oracle

Test data
generator

Specification

Report
generator

Test results
report

Figure 23.17 A
testing workbench

SE8_C23.qxd 4/4/06 9:17 Page 562

Chapter 23 ■ Key Points 563

6. Dynamic analyser Adds code to a program to count the number of times each
statement has been executed. After testing, an execution profile is generated
showing how often each program statement has been executed.

7. Simulator Different kinds of simulators may be provided. Target simulators sim-
ulate the machine on which the program is to execute. User interface simula-
tors are script-driven programs that simulate multiple simultaneous user
interactions. Using simulators for I/O means that the timing of transaction
sequences is repeatable.

When used for large system testing, tools have to be configured and adapted for
the specific system that is being tested. For example:

••••

■ Testing can only show the presence of errors in a program. It cannot demonstrate that there
are no remaining faults.

■ Component testing is the responsibility of the component developer. A separate testing
team usually carries out system testing.

■ Integration testing is the initial system testing activity where you test integrated
components for defects. Release testing is concerned with testing customer releases and
should validate that the system to be released meets its requirements.

■ When testing systems, you should try to ‘break’ the system by using experience and
guidelines to choose types of test cases that have been effective in discovering defects in
other systems.

■ Interface testing is intended to discover defects in the interfaces of composite components.
Interface defects may arise because of errors made in reading the specification,
specification misunderstandings or errors or invalid timing assumptions.

■ Equivalence partitioning is a way of deriving test cases. It depends on finding partitions in
the input and output data sets and exercising the program with values from these
partitions. Often, the value that is most likely to lead to a successful test is a value at the
boundary of a partition.

■ Structural testing relies on analysing a program to determine paths through it and using
this analysis to assist with the selection of test cases.

■ Test automation reduces the costs of testing by supporting the testing process with a range
of software tools.

K E Y P O I N TS

SE8_C23.qxd 4/4/06 9:17 Page 563

564 Chapter 23 ■ Software testing

1. New tools may have to be added to test specific application characteristics, and
some existing testing tools may not be required.

2. Scripts may have to be written for user interface simulators and patterns
defined for test data generators. Report formats may also have to be defined.

3. Sets of expected test results may have to be prepared manually if no previous
program versions are available to serve as an oracle.

4. Special-purpose file comparators may have to be written that include knowl-
edge of the structure of the test results on file.

A significant amount of effort and time is usually needed to create a compre-
hensive testing workbench. Complete test workbenches, as shown in Figure 23.17,
are therefore only used when large systems are being developed. For these systems,
the overall testing costs may be up to 50% of the total development costs, so it is
cost-effective to invest on high-quality CASE tool support for testing. However,
because different types of systems require different types of testing support, off-
the-shelf testing tools may not be available. Rankin (Rankin, 2002) discusses such
a situation in IBM and describes the design of the testing support system that they
developed for an e-business server.

F U R T H E R R E A D I N G

How to Break Software: A Practical Guide to Testing. This is a practical rather than theoretical book
on software testing where the author presents a set of experience-based guidelines on designing
tests that are likely to be effective in discovering system faults. (J. A. Whittaker, 2002, Addison-
Wesley.)

‘Software Testing and Verification’. This special issue of the IBM Systems Journal includes a
number of papers on testing, including a good overview, papers on test metrics and test
automation. (IBM Systems Journal, 41(1), January 2002.)

Testing Object-oriented Systems: Models, Patterns and Tools. This immense book provides
complete coverage of object-oriented testing. Its length means that this shouldn’t be the first thing
that you read on object-oriented testing (most books on object-oriented development have a
testing chapter) but it is clearly the definitive book on object-oriented testing. (R. V. Binder, 1999,
Addison-Wesley.)

‘How to design practical test cases’. A how-to article on test case design by an author from a
Japanese company that has a very good reputation for delivering software with very few faults.
(T. Yamaura, IEEE Software, 15(6), November 1998.)

••••

SE8_C23.qxd 4/4/06 9:17 Page 564

Chapter 23 ■ Exercises 565

E X E R C I S E S

23.1 Explain why testing can only detect the presence of errors, not their absence.

23.2 Compare top-down and bottom-up integration and testing by discussing their advantages and
disadvantages for architectural testing, demonstrating a version of the system to users and
for the practical implementation and observation of tests. Explain why most large system
integration, in practice, has to use a mixture of top-down and bottom-up approaches.

23.3 What is regression testing? Explain how the use of automated tests and a testing framework
such as JUnit simplifies regression testing.

23.4 Write a scenario that could be used as the basis for deriving tests for the weather station
system that was used as an example in Chapter 14.

23.5 Using the sequence diagram in Figure 8.14 as a scenario, propose tests for the issue of
electronic items in the LIBSYS system.

23.6 What are the problems in developing performance tests for a distributed database system
such as the LIBSYS system?

23.7 Explain why interface testing is necessary even when individual components have been
extensively validated through component testing and program inspections.

23.8 Using the approach discussed here for object testing, design test cases to test the states of
the microwave oven whose state model is defined in Figure 8.5.

23.9 You have been asked to test a method called catWhiteSpace in a Paragraph object that, within
the paragraph, replaces sequences of blank characters with a single blank character. Identify
testing partitions for this example and derive a set of tests for the catWhiteSpace method.

23.10 Give three situations where the testing of all independent paths through a program may not
detect program errors.

••••

SE8_C23.qxd 4/4/06 9:17 Page 565

••

Critical systems
validation

24

Objectives
The objective of this chapter is to discuss verification and validation
techniques that are used in the development of critical systems.
When you have read this chapter, you will:

■ understand how the reliability of a software system can be
measured and how reliability growth models can be used to
predict when a required level of reliability will be achieved;

■ understand the principles of safety arguments and how these
may be used along with other V & V methods in system safety
assurance;

■ understand the problems of assuring the security of a system;

■ have been introduced to safety cases that present arguments
and evidence of system safety.

Contents
24.1 Reliability validation

24.2 Safety assurance

24.3 Security assessment

24.4 Safety and dependability cases

SE8_C24.qxd 4/4/06 9:18 Page 566

Chapter 24 ■ Critical systems validation 567

The verification and validation of a critical system has, obviously, much in com-
mon with the validation of any other system. The V & V processes should demon-
strate that the system meets its specification, and that the system services and behaviour
support the customer’s requirements. However, for critical systems, where a high
level of dependability is required, additional testing and analysis are required to pro-
duce evidence that the system is trustworthy. There are two reasons why you should
do this:

1. Costs of failure The costs and consequences of critical systems failure are poten-
tially much greater than for noncritical systems. You lower the risks of system
failure by spending more on system verification and validation. It is usually
cheaper to find and remove faults before the system is delivered than to pay
for the consequent costs of accidents or disruptions to system service.

2. Validation of dependability attributes You may have to make a formal case to
customers that the system meets its specified dependability requirements
(availability, reliability, safety and security). Assessing these dependability
characteristics requires specific V & V activities discussed later in this chap-
ter. In some cases, external regulators such as national aviation authorities may
have to certify that the system is safe before it can be deployed. To obtain this
certification, you may have to design and carry out special V & V procedures
that collect evidence about the system’s dependability.

For these reasons, the costs of V & V for critical systems are usually much higher
than for other classes of system. It is normal for V & V to take up more than 50%
of the total development costs for critical software systems. This cost is, of course,
justified, if an expensive system failure is avoided. For example, in 1996 a mission-
critical software system on the Ariane 5 rocket failed and several satellites were
destroyed. The losses were in the hundreds of millions of dollars. The subsequent
enquiry discovered that deficiencies in system V & V were partly responsible for
this failure.

Although the critical systems validation process mostly focuses on validating the
system, related activities should verify that defined system development processes
have been followed. As I discuss in Chapters 27 and 28, system quality is affected
by the quality of processes used to develop the system. In short, good processes
lead to good systems. Therefore, to produce dependable systems, you need to be
confident that a sound development process has been followed.

This process assurance is an inherent part of the ISO 9000 standards for quality
management, discussed briefly in Chapter 27. These standards require documenta-
tion of the processes that are used and associated activities that ensure that these
processes have been followed. This normally requires the generation of process records,
such as signed forms, that certify the completion of process activities and product
quality checks. ISO 9000 standards specify what tangible process outputs should
be produced and who is responsible for producing them. In Section 24.2.2, I give
an example of a process record for a hazard analysis process.

••

SE8_C24.qxd 4/4/06 9:18 Page 567

568 Chapter 24 ■ Critical systems validation

24.1 Reliability validation

As I explained in Chapter 9, a number of metrics have been developed to specify
a system’s reliability requirements. To validate that the system meets these require-
ments, you have to measure the reliability of the system as seen by a typical sys-
tem user.

The process of measuring the reliability of a system is illustrated in Figure 24.1.
This process involves four stages:

1. You start by studying existing systems of the same type to establish an oper-
ational profile. An operational profile identifies classes of system inputs and
the probability that these inputs will occur in normal use.

2. You then construct a set of test data that reflect the operational profile. This
means that you create test data with the same probability distribution as the
test data for the systems that you have studied. Normally, you use a test data
generator to support this process.

3. You test the system using these data and the count the number and type of fail-
ures that occur. The times of these failures are also logged. As discussed in
Chapter 9, the time units that you choose should be appropriate for the relia-
bility metric used.

4. After you have observed a statistically significant number of failures, you can
compute the software reliability and work out the appropriate reliability met-
ric value.

This approach is sometimes called statistical testing. The aim of statistical test-
ing is to assess system reliability. This contrasts with defect testing, discussed in
Chapter 23, where the aim is to discover system faults. Prowell et al. (Prowell, et
al., 1999) give a good description of statistical testing in their book on Cleanroom
software engineering.

This conceptually attractive approach to reliability measurement is not easy to
apply in practice. The principal difficulties that arise are due to:

••••

Compute
observed
reliability

Apply tests to
system

Prepare test
data set

Identify
operational

profiles

Figure 24.1 The
reliability
measurement
process

SE8_C24.qxd 4/4/06 9:18 Page 568

24.1 ■ Reliability validation 569

1. Operational profile uncertainty The operational profiles based on experience
with other systems may not be an accurate reflection of the real use of the system.

2. High costs of test data generation It can be very expensive to generate the large
volume of data required in an operational profile unless the process can be totally
automated.

3. Statistical uncertainty when high reliability is specified You have to generate
a statistically significant number of failures to allow accurate reliability mea-
surements. When the software is already reliable, relatively few failures occur
and it is difficult to generate new failures.

Developing an accurate operational profile is certainly possible for some types
of systems, such as telecommunication systems, that have a standardised pattern of
use. For other system types, however, there are many different users who each have
their own ways of using the system. As I discussed in Chapter 3, different users
can get quite different impressions of reliability because they use the system in dif-
ferent ways.

By far the best way to generate the large data set required for reliability measure-
ment is to use a test data generator that can be set up to automatically generate inputs
matching the operational profile. However, it is not usually possible to automate the
production of all test data for interactive systems because the inputs are often a response
to system outputs. Data sets for these systems have to be generated manually, with
correspondingly higher costs. Even where complete automation is possible, writing com-
mands for the test data generator may take a significant amount of time.

Statistical uncertainty is a general problem in measuring the reliability of a sys-
tem. To make an accurate prediction of reliability, you need to do more than sim-
ply cause a single system failure. You have to generate a reasonably large,
statistically significant number of failures to be confident that your reliability mea-
surement is accurate. The better you get at minimising the number of faults in a
system, the harder it becomes to measure the effectiveness of fault minimisation
techniques. If very high levels of reliability are specified, it is often impractical to
generate enough system failures to check these specifications.

24.1.1 Operational profiles

The operational profile of the software reflects how it will be used in practice. It
consists of a specification of classes of input and the probability of their occurrence.
When a new software system replaces an existing manual or automated system, it
is reasonably easy to assess the probable pattern of usage of the new software. It
should correspond to the existing usage, with some allowance made for the new
functionality that is (presumably) included in the new software. For example, an
operational profile can be specified for telecommunication switching systems
because telecommunication companies know the call patterns that these systems have
to handle.

••••

SE8_C24.qxd 4/4/06 9:18 Page 569

570 Chapter 24 ■ Critical systems validation

Typically, the operational profile is such that the inputs that have the highest
probability of being generated fall into a small number of classes, as shown on the
left of Figure 24.2. There is an extremely large number of classes where inputs are
highly improbable but not impossible. These are shown on the right of Figure 24.2.
The ellipsis (...) means that there are many more of these unusual inputs than are
shown.

Musa (Musa, 1993; Musa, 1998) suggests guidelines for the development of oper-
ational profiles. He worked in telecommunication systems engineering, and there
is a long history of collecting usage data in that domain. Consequently, the process
of operational profile development is relatively straightforward. For a system that
required about 15 person-years of development effort, an operational profile was
developed in about 1 person-month. In other cases, operational profile generation
took longer (2–3 person-years), but the cost was spread over a number of system
releases. Musa reckons that his company (a telecommunications company) had at
least a 10-fold return on the investment required to develop an operational profile.

However, when a software system is new and innovative, it is difficult to antic-
ipate how it will be used and, therefore, to generate an accurate operational profile.
Many different users with different expectations, backgrounds and experience may
use the new system. There is no historical usage database. These users may make
use of systems in ways that were not anticipated by the system developers.

The problem is further compounded because operational profiles may change
as the system is used. As users learn about a new system and become more con-
fident with it, they often use it in more sophisticated ways. Because of these dif-
ficulties, Hamlet (Hamlet, 1992) suggests that it is often impossible to develop a
trustworthy operational profile. If you are not sure that your operational profile is
correct, then you cannot be confident about the accuracy of your reliability
measurements.

••••

. . .

N
um

be
r

of
 in

pu
ts

Input classes

Figure 24.2 An
operational profile

SE8_C24.qxd 4/4/06 9:18 Page 570

24.1 ■ Reliability validation 571

24.1.2 Reliability prediction

During software validation, managers have to assign effort to system testing. As
testing is very expensive, it is important to stop testing as soon as possible and not
‘over-test’ the system. Testing can stop when the required level of system reliabil-
ity has been achieved. Sometimes, of course, reliability predictions may reveal that
the required level of reliability will never be achieved. In this case, the manager
must make difficult decisions about rewriting parts of the software or renegotiating
the system contract.

A reliability growth model is a model of how the system reliability changes over
time during the testing process. As system failures are discovered, the underlying
faults causing these failures are repaired so that the reliability of the system should
improve during system testing and debugging. To predict reliability, the conceptual
reliability growth model must then be translated into a mathematical model. I do
not go into this level of detail here but simply discuss the principle of reliability
growth.

There are various reliability growth models that have been derived from relia-
bility experiments in a number of different application domains. As Kan (Kan, 2003)
discusses, most of these models are exponential, with reliability increasing quickly
as defects are discovered and removed (see Figure 24.5). The increase then tails off
and reaches a plateau as fewer and fewer defects are discovered and removed in
the later stages of testing.

The simplest model that illustrates the concept of reliability growth is a step func-
tion model (Jelinski and Moranda, 1972). The reliability increases by a constant
increment each time a fault (or a set of faults) is discovered and repaired (Figure
24.3) and a new version of the software is created. This model assumes that soft-

••••

Re
lia

bi
lit

y
(R

O
C

O
F)

t1 t2 t3 t4 t5
Time

Figure 24.3 Equal-
step function model
of reliability growth

SE8_C24.qxd 4/4/06 9:18 Page 571

572 Chapter 24 ■ Critical systems validation

ware repairs are always correctly implemented so that the number of software faults
and associated failures decreases in each new version of the system. As repairs are
made, the rate of occurrence of software failures (ROCOF) should therefore
decrease, as shown in Figure 24.3. Note that the time periods on the horizontal axis
reflect the time between releases of the system for testing so they are normally of
unequal length.

In practice, however, software faults are not always fixed during debugging, and
when you change a program, you sometimes introduce new faults into it. The prob-
ability of occurrence of these faults may be higher than the occurrence probability
of the fault that has been repaired. Therefore, the system reliability may sometimes
worsen in a new release rather than improve.

The simple equal-step reliability growth model also assumes that all faults con-
tribute equally to reliability and that each fault repair contributes the same amount
of reliability growth. However, not all faults are equally probable. Repairing the
most common faults contributes more to reliability growth than does repairing faults
that occur only occasionally. You are also likely to find these probable faults early
in the testing process, so reliability may increase more than when later, less prob-
able, faults are discovered.

Later models, such as that suggested by Littlewood and Verrall (Littlewood and
Verrall, 1973) take these problems into account by introducing a random element
into the reliability growth improvement effected by a software repair. Thus, each
repair does not result in an equal amount of reliability improvement but varies depend-
ing on the random perturbation (Figure 24.4).

Littlewood and Verrall’s model allows for negative reliability growth when a soft-
ware repair introduces further errors. It also models the fact that as faults are repaired,
the average improvement in reliability per repair decreases. The reason for this is
that the most probable faults are likely to be discovered early in the testing pro-
cess. Repairing these contributes most to reliability growth.

••••

t1 t2 t3 t4 t5
Time

Note different reliability
improvements

Fault repair adds new fault
and decreases reliability
(increases ROCOF)

Re
lia

bi
lit

y
(R

O
C

O
F)

Figure 24.4 Random-
step function model
of reliability growth

SE8_C24.qxd 4/4/06 9:18 Page 572

24.1 ■ Reliability validation 573

The above models are discrete models that reflect incremental reliability growth.
When a new version of the software with repaired faults is delivered for testing, it
should have a lower rate of failure occurrence than the previous version. However,
to predict the reliability that will be achieved after a given amount of testing, con-
tinuous mathematical models are needed. Many models, derived from different appli-
cation domains, have been proposed and compared (Littlewood, 1990).

Simplistically, you can predict reliability by matching the measured reliability
data to a known reliability model. You then extrapolate the model to the required
level of reliability and observe when the required level of reliability will be reached
(Figure 24.5). Therefore, testing and debugging must continue until that time.

Predicting system reliability from a reliability growth model has two main
benefits:

1. Planning of testing Given the current testing schedule, you can predict when
testing will be completed. If this is after the planned delivery date for the sys-
tem, then you may have to deploy additional resources for testing and debug-
ging to accelerate the rate of reliability growth.

2. Customer negotiations Sometimes the reliability model shows that the growth of
reliability is very slow and that a disproportionate amount of testing effort is required
for relatively little benefit. It may be worth renegotiating the reliability require-
ments with the customer. Alternatively, it may be that the model predicts that the
required reliability will probably never be reached. In this case, you will have to
renegotiate the reliability requirements with the customer for the system.

••••

Re
lia

bi
lit

y

Required
reliability

= Measured reliability

Fitted reliability
model curve

Estimated
time of reliability

achievement

Time

Figure 24.5 Reliability
prediction

SE8_C24.qxd 4/4/06 9:18 Page 573

574 Chapter 24 ■ Critical systems validation

I have simplified reliability growth modelling here to give you a basic under-
standing of the concept. If you wish to use these models, you have to go into much
more depth and develop an understanding of the mathematics underlying these mod-
els and their practical problems. Littlewood and Musa (Littlewood, 1990; Abdel-
Ghaly, et al., 1986; Musa, 1998) have written extensively on reliability growth models
and Kan (Kan, 2003) has an excellent summary in his book. Various authors have
described their practical experience of the use of reliability growth models (Ehrlich,
et al., 1993; Schneidewind and Keller, 1992; Sheldon, et al., 1992).

24.2 Safety assurance

The processes of safety assurance and reliability validation have different objec-
tives. You can specify reliability quantitatively using some metric and then mea-
sure the reliability of the completed system. Within the limits of the measurement
process, you know whether the required level of reliability has been achieved. Safety,
however, cannot be meaningfully specified in a quantitative way and so cannot be
measured when a system is tested.

Safety assurance is therefore concerned with establishing a confidence level in
the system that might vary from ‘very low’ to ‘very high’. This is a matter for pro-
fessional judgement based on a body of evidence about the system, its environment
and its development processes. In many cases, this confidence is partly based on
the experience of the organisation developing the system. If a company has previ-
ously developed a number of control systems that have operated safely, then it is
reasonable to assume that they will continue to develop safe systems of this type.

However, such an assessment must be backed up by tangible evidence from the
system design, the results of system V& V, and the system development processes
that have been used. For some systems, this tangible evidence is assembled in a
safety case (see Section 24.4) that allows an external regulator to come to a con-
clusion of the developer’s confidence in the system’s safety is justified.

The V & V processes for safety-critical systems have much in common with the
comparable processes of any other systems with high reliability requirements.
There must be extensive testing to discover as many defects as possible, and where
appropriate, statistical testing may be used to assess the system reliability.
However, because of the ultra-low failure rates required in many safety-critical sys-
tems, statistical testing cannot always provide a quantitative estimate of the system
reliability. The tests simply provide some evidence, which is used with other evi-
dence such as the results of reviews and static checking (see Chapter 22), to make
a judgement about the system safety.

Extensive reviews are essential during a safety-oriented development process to
expose the software to people who will look at it from different perspectives. Parnas

••••

SE8_C24.qxd 4/4/06 9:18 Page 574

24.2 ■ Safety assurance 575

et al. (Parnas, et al., 1990) suggest five types of review that should be mandatory
for safety-critical systems:

1. review for correct intended function;

2. review for maintainable, understandable structure;

3. review to verify that the algorithm and data structure design are consistent with
the specified behaviour;

4. review the consistency of the code and the algorithm and data structure design;

5. review the adequacy of the system test cases.

An assumption that underlies work in system safety is that the number of sys-
tem faults that can lead to safety-critical hazards is significantly less than the total
number of faults that may exist in the system. Safety assurance can concentrate on
these faults with hazard potential. If it can be demonstrated that these faults cannot
occur or, if they do, the associated hazard will not result in an accident, then the
system is safe. This is the basis of safety arguments that I discuss in the next section.

24.2.1 Safety arguments

Proofs of program correctness, as discussed in Chapter 22, have been proposed as
a software verification technique for more than 30 years. Formal program proofs
can certainly be constructed for small systems. However, the practical difficulties
of proving that a system meets its specifications are so great that few organisations
consider correctness proofs to be a cost. Nevertheless, for some critical applications,
it may be economical to develop correctness proofs to increase confidence that the
system meets its safety or security requirements. This is particularly the case where
safety-critical functionality can be isolated in a fairly small sub-system that can be
formally specified.

Although it may not be cost-effective to develop correctness proofs for most sys-
tems, it is sometimes possible to develop simpler safety arguments that demonstrate
that the program meets its safety obligations. In a safety argument, it is not neces-
sary to prove that the program’s functionality is as specified. It is only necessary
to demonstrate that program execution cannot result in an unsafe state.

The most effective technique for demonstrating the safety of a system is proof
by contradiction. You start by assuming that an unsafe state, which was identified
by the system hazard analysis, can be reached by executing the program. You write
a predicate that defines this unsafe state. You then systematically analyse the code
and show that, for all program paths leading to that state, the terminating condition
of these paths contradicts the unsafe state predicate. If this is the case, the initial
assumption of an unsafe state is incorrect. If you then repeat this for all identified
hazards, then the software is safe.

••••

SE8_C24.qxd 4/4/06 9:18 Page 575

576 Chapter 24 ■ Critical systems validation

As an example, consider the code in Figure 24.6, which might be part of the
implementation of the insulin delivery system. Developing a safety argument for
this code involves demonstrating that the dose of insulin administered is never greater
than some maximum level that is established for each individual diabetic.
Therefore, it is not necessary to prove that the system delivers the correct dose, merely
that it never delivers an overdose to the patient.

To construct the safety argument, you identify the pre-condition for the unsafe
state which, in this case, is that currentDose > maxDose. You then demonstrate that
all program paths lead to a contradiction of this unsafe assertion. If this is the case,
the unsafe condition cannot be true. Therefore, the system is safe. You can struc-
ture and present the safety arguments graphically as shown in Figure 24.7.

Safety arguments, such as that shown in Figure 24.7, are much shorter than for-
mal system verifications. You first identify all possible paths that lead to the poten-
tially unsafe state. You work backwards from this unsafe state and consider the last
assignment to all state variables on each path leading to it. You can ignore previous

••••

— The insulin dose to be delivered is a function of
— blood sugar level, the previous dose delivered and
— the time of delivery of the previous dose

currentDose = computeInsulin () ;

// Safety check—adjust currentDose if necessary

// if-statement 1

if (previousDose == 0)
{

if (currentDose > 16)
currentDose = 16 ;

}
else

if (currentDose > (previousDose * 2))
currentDose = previousDose * 2 ;

// if-statement 2

if (currentDose < minimumDose)
currentDose = 0 ;

else if (currentDose > maxDose)
currentDose = maxDose ;

administerInsulin (currentDose) ;

Figure 24.6 Insulin
delivery code

SE8_C24.qxd 4/4/06 9:18 Page 576

24.2 ■ Safety assurance 577

computations (such as if-statement 1 in Figure 24.7) in the safety argument. In this
example, all you need be concerned with are the set of possible values of
currentDose immediately before the administerInsulin method is executed.

In the safety argument shown in Figure 24.7, there are three possible program
paths that lead to the call to the administerInsulin method. We wish to demonstrate
that the amount of insulin delivered never exceeds maxDose. All possible program
paths to administerInsulin are considered:

••••

currentDose = 0

currentDose = 0

if statement 2
then branch

executed

currentDose =
maxDose

currentDose =
maxDose

if statement 2
else branch
executed

if statement 2
not executed

currentDose >= minimumDose and
currentDose <= maxDose

or

currentDose >
maxDose

administerInsulin

Contradiction

Contradiction Contradiction

Pre-condition
for unsafe state

Overdose
administered

assign assign

Figure 24.7 Informal
safety argument
based on
demonstrating
contradictions

SE8_C24.qxd 4/4/06 9:18 Page 577

578 Chapter 24 ■ Critical systems validation

1. Neither branch of if-statement 2 is executed. This can only happen if
currentDose is either greater than or equal to minimumDose and less than or
equal to maxDose.

2. The then-branch of if-statement 2 is executed. In this case, the assignment set-
ting currentDose to zero is executed. Therefore, its post-condition is
currentDose = 0.

3. The else-if-branch of if-statement 2 is executed. In this case, the assignment
setting currentDose to maxDose is executed. Therefore, its post-condition is
currentDose = maxDose.

In all three cases, the post-conditions contradict the unsafe pre-condition that the
dose administered is greater than maxDose, so the system is safe.

24.2.2 Process assurance

I have already discussed the importance of assuring the quality of the system devel-
opment process in the introduction to this chapter. This is important for all critical
systems but it is particularly important for safety-critical systems. There are two
reasons for this:

1. Accidents are rare events in critical systems and it may be practically impos-
sible to simulate them during the testing of a system. You can’t rely on exten-
sive testing to replicate the conditions that can lead to an accident.

2. Safety requirements, as I discussed in Chapter 9, are sometimes ‘shall not’ require-
ments that exclude unsafe system behaviour. It is impossible to demonstrate
conclusively through testing and other validation activities that these require-
ments have been met.

The life-cycle model for safety-critical systems development (Chapter 9, Figure
9.7) makes it clear that explicit attention should be paid to safety during all stages
of the software process. This means that specific safety assurance activities must
be included in the process. These include:

1. The creation of a hazard-logging and monitoring system that traces hazards from
preliminary hazard analysis through to testing and system validation.

2. The appointment of project safety engineers who have explicit responsibility
for the safety aspects of the system.

3. The extensive use of safety reviews throughout the development process.

4. The creation of a safety certification system whereby the safety of critical com-
ponents is formally certified.

5. The use of a very detailed configuration management system (see Chapter 29),
which is used to track all safety-related documentation and keep it in step with

••••

SE8_C24.qxd 4/4/06 9:18 Page 578

24.2 ■ Safety assurance 579

the associated technical documentation. There is little point in having stringent
validation procedures if a failure of configuration management means that the
wrong system is delivered to the customer.

To illustrate safety assurance, I use the hazard analysis process that is an essen-
tial part of safety-critical systems development. Hazard analysis is concerned with
identifying hazards, their probability, and the probability that these hazards will lead
to an accident. If the development process includes clear traceability from hazard
identification through to the system itself, then an argument can be made why these
hazards will not result in accidents. This may be supplemented by safety arguments,
as discussed in Section 24.2.1. Where external certification is required before a sys-
tem is used (e.g., in an aircraft), it is usually a condition of certification that this
traceability can be demonstrated.

The central safety document is the hazard log, where hazards identified during
the specification process are documented and traced. This hazard log is then used
at each stage of the software development process to assess how that development
stage has taken the hazards into account. A simplified example of a hazard log entry
for the insulin delivery system is shown in Figure 24.8. This form documents the
process of hazard analysis and shows design requirements that have been generated
during this process. These design requirements are intended to ensure that the con-
trol system can never deliver an insulin overdose to a user of the insulin pump.

••••

Hazard Log Page 4: Printed 20.02.2003
System: Insulin Pump System File: InsulinPump/Safety/HazardLog
Safety Engineer: James Brown Log version: 1/3
Identified Hazard Insulin overdose delivered to patient
Identified by Jane Williams
Criticality class 1
Identified risk High
Fault tree identified YES Date 24.01.99 Location Hazard Log, Page 5
Fault tree creators Jane Williams and Bill Smith
Fault tree checked YES Date 28.01.99 Checker James Brown

System safety design requirements

1. The system shall include self-testing software that will test the sensor system, the
clock and the insulin delivery system.

2. The self-checking software shall be executed once per minute.
3. In the event of the self-checking software discovering a fault in any of the system

components, an audible warning shall be issued and the pump display should
indicate the name of the component where the fault has been discovered. The
delivery of insulin should be suspended.

4. The system shall incorporate an override system that allows the system user to
modify the computed dose of insulin that is to be delivered by the system.

5. The amount of override should be limited to be no greater than a pre-set value
that is set when the system is configured by medical staff.

Figure 24.8 A
simplified hazard log
page

SE8_C24.qxd 4/4/06 9:18 Page 579

580 Chapter 24 ■ Critical systems validation

As shown in Figure 24.8, individuals who have safety responsibilities should be
explicitly identified. Safety-critical systems development projects should always appoint
a project safety engineer who is not be involved in the system development. The
engineer’s responsibility is to ensure that appropriate safety checks have been made
and documented. The system may also require an independent safety assessor to be
appointed from an outside organisation, who reports directly to the client on safety
matters.

In some domains, system engineers who have safety responsibilities must be cer-
tified. In the UK, this means that they have to have been accepted as a member of
one of the engineering institutes (civil, electrical, mechanical, etc.) and have to be
chartered engineers. Inexperienced, poorly qualified engineers may not take
responsibility for safety.

This does not currently apply to software engineers, although there has been exten-
sive discussion on the licensing of software engineers in several states in the United
States (Knight and Leveson, 2002; Bagert, 2002). However, future process standards
for safety-critical software development may require that project safety engineers
should be formally certified engineers with a defined minimum level of training.

24.2.3 Run-time safety checking

I described defensive programming in Chapter 20, where you add redundant state-
ments to a program to monitor its operation and check for possible system faults.
The same technique can be used for the dynamic monitoring of safety-critical sys-
tems. Checking code can be added to the system that checks a safety constraint. It
throws an exception if that constraint is violated. The safety constraints that should
always hold at particular points in a program may be expressed as assertions. Assertions
are predicates that describe conditions that must hold before the following state-
ment can be executed. In safety-critical systems, the assertions should be generated
from the safety specification. They are intended to assure safe behaviour rather than
behaviour that conforms to the specification.

Assertions can be particularly valuable in assuring the safety of communications
between components of the system. For example, in the insulin delivery system,
the dose of insulin administered involves generating signals to the insulin pump to
deliver a specified number of insulin increments (Figure 24.9). The number of insulin
increments associated with the allowed maximum insulin dose can be pre-computed
and included as an assertion in the system.

If there has been an error in the computation of currentDose, which is the state
variable that holds the amount of insulin to be delivered, or if this value has been
corrupted in some way, then this will be trapped at this stage. An excessive dose
of insulin will not be delivered, as the check in the method ensures that the pump
will not deliver more than maxDose.

From the safety assertions that are included as program comments, code to check
these assertions can be generated. You can see this in Figure 24.9, where the if-statement
after the assert comment checks the assertion. In principle, much of this code

••••

SE8_C24.qxd 4/4/06 9:18 Page 580

24.3 ■ Security assessment 581

generation could be automated using an assertion preprocessor. However, these tools
usually have to be specially written and assertion code is normally generated by hand.

24.3 Security assessment

The assessment of system security is becoming increasingly important as more and
more critical systems are Internet-enabled and can be accessed by anyone with a
network connection. There are daily stories of attacks on web-based systems, and
viruses and worms are regularly distributed using Internet protocols.

All of this means that the verification and validation processes for web-based
systems must focus on security assessment, where the ability of the system to resist
different types of attack is tested. However, as Anderson explains (Anderson,
2001), this type of security assessment is very difficult to carry out. Consequently,
systems are often deployed with security loopholes that attackers use to gain access
to or damage these systems.

Fundamentally, the reason why security is so difficult to assess is that security
requirements, like some safety requirements, are ‘shall not’ requirements. That is,
they specify what should not happen rather than system functionality or required
behaviour. It is not usually possible to define this unwanted behaviour as simple
constraints that may be checked by the system.

••••

static void administerInsulin () throws SafetyException {

int maxIncrements = InsulinPump.maxDose / 8 ;
int increments = InsulinPump.currentDose / 8 ;

// assert currentDose <= InsulinPump.maxDose

if (InsulinPump.currentDose > InsulinPump.maxDose)
throw new SafetyException (Pump.doseHigh);

else
for (int i=1; i<= increments; i++)
{

generateSignal () ;
if (i > maxIncrements)

throw new SafetyException (Pump.incorrectIncrements);
} // for loop

} //administerInsulin

Figure 24.9 Insulin
administration with
run-time checking

SE8_C24.qxd 4/4/06 9:18 Page 581

582 Chapter 24 ■ Critical systems validation

If resources are available, you can always demonstrate that a system meets its func-
tional requirements. However, it is impossible to prove that a system does not do some-
thing, so, irrespective of the amount of testing, security vulnerabilities may remain in
a system after it has been deployed. Even in systems that have been in use for many
years, an ingenious attacker can discover a new form of attack and penetrate what was
thought to be a secure system. For example, the RSA algorithm for data encryption
that was thought, for many years, to be secure was cracked in 1999.

There are four complementary approaches to security checking:

1. Experience-based validation In this case, the system is analysed against types
of attack that are known to the validation team. This type of validation is usu-
ally carried out in conjunction with tool-based validation. Checklists of known
security problems (Figure 24.10) may be created to assist with the process. This
approach may use all system documentation and could be part of other system
reviews that check for errors and omissions.

2. Tool-based validation In this case, various security tools such as password check-
ers are used to analyse the system. Password checkers detect insecure passwords
such as common names or strings of consecutive letters. This is really an exten-
sion of experience-based validation, where the experience is embodied in the
tools used.

3. Tiger teams In this case, a team is set up and given the objective of breaching
the system security. They simulate attacks on the system and use their inge-
nuity to discover new ways to compromise the system security. This approach
can be very effective, especially if team members have previous experience with
breaking into systems.

4. Formal verification A system can be verified against a formal security specifica-
tion. However, as in other areas, formal verification for security is not widely used.

••••

Security checklist
1. Do all files that are created in the application have appropriate access

permissions? The wrong access permissions may lead to these files
being accessed by unauthorised users.

2. Does the system automatically terminate user sessions after a period of
inactivity? Sessions that are left active may allow unauthorised access
through an unattended computer.

3. If the system is written in a programming language without array bound
checking, are there situations where buffer overflow may be exploited?
Buffer overflow may allow attackers to send code strings to the system
and then execute them.

4. If passwords are set, does the system check that passwords are ‘strong’?
Strong passwords consist of mixed letters, numbers and punctuation,
and are not normal dictionary entries. They are more difficult to break
than simple passwords.

Figure 24.10
Examples of entries
in a security checklist

SE8_C24.qxd 4/4/06 9:18 Page 582

24.4 ■ Safety and dependability cases 583

It is very difficult for end-users of a system to verify its security. Consequently,
as discussed by Gollmann (Gollmann, 1999), bodies in North America and in Europe
have established sets of security evaluation criteria that can be checked by specialised
evaluators. Software product suppliers can submit their products for evaluation and
certification against these criteria.

Therefore, if you have a requirement for a particular level of security, you can choose
a product that has been validated to that level. However, many products are not secu-
rity-certified or their certification applies only to individual products. When the certi-
fied system is used in conjunction with other uncertified systems, such as locally developed
software, the security level of the overall system cannot be assessed.

24.4 Safety and dependability cases

Safety cases and, more generically, dependability cases are structured documents
setting out detailed arguments and evidence that a system is safe or that a required
level of dependability has been achieved. For many types of critical systems, the
production of a safety case is a legal requirement, and the case must satisfy some
certification body before the system can be deployed.

Regulators are created by government to ensure that private industry does not
profit by failing to following national standards for safety, security, and so on. There
are regulators in many different industries. For example, airlines are regulated by
national aviation authorities such as the FAA (in the US) and the CAA (in the UK).
Railway regulators exist to ensure the safety of railways, and nuclear regulators must
certify the safety of a nuclear plant before it can go on line. In the banking sector,
national banks serve as regulators, establishing procedures and practices to reduce
the probability of fraud and to protect banking customers from risky banking prac-
tices. As software systems have become increasingly important in the critical
infrastructure of countries, these regulators have become more and more concerned
with safety and dependability cases for software systems.

The role of a regulator is to check that a completed system is as safe as practi-
cable, so they are mainly involved when a development project is complete.
However, regulators and developers rarely work in isolation; they communicate with
the development team to establish what has to be included in the safety case. The
regulator and developers jointly examine processes and procedures to make sure
that these are being enacted and documented to the regulator’s satisfaction.

Of course, software itself is not dangerous. It is only when it is embedded in a
large, computer-based or socio-technical system that software failures can result in
failures of other equipment or processes that can cause injury or death. Therefore,
a software safety case is always part of a wider system safety case that demonstrates
the safety of the overall system. When constructing a software safety case, you have
to relate software failures to wider system failures and demonstrate that either these

••••

SE8_C24.qxd 4/4/06 9:18 Page 583

584 Chapter 24 ■ Critical systems validation

software failures will not occur or that they will not be propagated in such a way
that dangerous system failures may occur.

A safety case is a set of documents that include a description of the system, that
has to be certified, information about the processes used to develop the system and,
critically, logical arguments that demonstrate that the system is likely to be safe.
More succinctly, Bishop and Bloomfield (Bishop and Bloomfield, 1998; Bishop and
Bloomfield, 1995) define a safety case as:

A documented body of evidence that provides a convincing and valid argument
that a system is adequately safe for a given application in a given environment.

The organisation and contents of a safety case depends on the type of system
that is to be certified and its context of operation. Figure 24.11 shows one possible
organisation for a software safety case.

A key component of a safety case is a set of logical arguments for system safety.
These may be absolute arguments (event X will or will not happen) or probabilistic
arguments (the probability of event X is 0.Y); when combined, these should demon-
strate safety. As shown in Figure 24.12, an argument is a relationship between what

••••

Component Description

System description An overview of the system and a description of its critical
components

Safety requirements The safety requirements abstracted from the system
requirements specification

Hazard and risk Documents describing the hazards and risks that have
analysis been identified and the measures taken to reduce risk

Design analysis A set of structured arguments that justify why the design is
safe

Verification and A description of the V & V procedures used and, where
validation appropriate, the test plans for the system

Review reports Records of all design and safety reviews

Team competences Evidence of the competence of all of the team involved in
safety-related systems development and validation

Process QA Records of the quality assurance processes carried out
during system development

Change management Records of all changes proposed, actions taken and, where
processes appropriate, justification of the safety of these changes

Associated safety References to other safety cases that may impact on this
cases safety case

Figure 24.11
Components of a
software safety case

SE8_C24.qxd 4/4/06 9:18 Page 584

24.4 ■ Safety and dependability cases 585

is thought to be the case (a claim) and a body of evidence that has been collected. The
argument essentially explains why the claim (which is generally that something is safe)
can be inferred from the available evidence. Naturally, given the multilevel nature of
systems, claims are organised in a hierarchy. To demonstrate that a high-level claim
is valid, you first have to work through the arguments for lower-level claims. Figure
24.13 shows part of this claim hierarchy for the insulin pump.

As a medical device, the insulin pump system may have to be externally certi-
fied. For example, in the UK, the Medical Devices Directorate have to issue a safety
certificate for any medical device that is sold in the UK Various arguments may
have to be produced to demonstrate the safety of this system. For example, the fol-
lowing argument could be part of a safety case for the insulin pump.

Claim: The maximum single dose computed by the insulin pump will
not exceed maxDose.

Evidence: Safety argument for insulin pump (Figure 24.7)

Evidence: Test data sets for insulin pump

Evidence: Static analysis report for insulin pump software

Argument: The safety argument presented shows that the maximum dose
of insulin that can be computed is equal to maxDose.

In 400 tests, the value of Dose was correctly computed and never
exceeded maxDose.

The static analysis of the control software revealed no anomalies.

Overall, it is reasonable to assume that the claim is justified.

Of course, this is a very simplified argument, and in a real safety case detailed
references to the evidence would be presented. Because of their detailed nature, safety
cases are therefore very long and complex documents. Various software tools are
available to help with their construction, and I have included links to these tools in
the book’s web pages.

••••

<< ARGUMENT >> CLAIM

EVIDENCE

EVIDENCE

EVIDENCE

Figure 24.12 The
structure of an
argument

SE8_C24.qxd 4/4/06 9:18 Page 585

586 Chapter 24 ■ Critical systems validation

••••

The maximum single
dose computed by
the pump software
will not exceed
maxDose

maxDose is set up
correctly when th e
pump is configured

maxDose is a saf e
dose for the user of
the insulin pump

The insulin pump
will not deliver a
single dose of insulin
that is unsafe

In normal
operation, the
maximum dose
computed will not
exceed maxDose

If the software fails,
the maximum dose
computed will not
exceed maxDose

Figure 24.13 The
claim hierarchy in
the insulin pump
safety case

■ Statistical testing is used to estimate software reliability. It relies on testing the system
with a test data set that reflects the operational profile of the software. Test data may be
generated automatically.

■ Reliability growth models display the change in reliability as faults are removed from
software during the testing process. Reliability models can be used to predict when the
required reliability will be achieved.

■ Safety proofs are an effective product safety assurance technique. They show that an
identified hazardous condition can never occur. They are usually simpler than proving that a
program meets its specification.

■ It is important to have a well-defined, certified process for safety-critical systems
development. The process must include the identification and monitoring of potential
hazards.

■ Security validation may be carried out using experience-based analysis, tool-based analysis,
or ‘tiger teams’ that simulate attacks on the system.

■ Safety cases collect all of the evidence that demonstrates a system is safe. These safety
cases are required when an external regulator must certify the system before it is used.

K E Y P O I N TS

SE8_C24.qxd 4/4/06 9:18 Page 586

Chapter 24 ■ Exercises 587

F U R T H E R R E A D I N G

‘Best practices in code inspection for safety-critical software’. This practical paper presents a
checklist of guidelines for inspecting and reviewing safety-critical software. (J. R. de Almeida,
et al., IEEE Software, 20(3), May/June 2003.)

‘Statically scanning Java code: Finding security vulnerabilities’. This is a good paper on avoiding
security vulnerabilities in general. It discusses how these vulnerabilities arise and how they can be
detected using a static analyser. (J. Viega, et al., IEEE Software, 17(5), September/October 2000.)

Software Reliability Engineering: More Reliable Software, Faster Development and Testing. This is
probably the definitive book on the use of operational profiles and reliability models for reliability
assessment. It includes details of experiences with statistical testing. (J. D. Musa, 1998, McGraw-Hill.)

Safety-critical Computer Systems. This excellent textbook includes a particularly good chapter on
the place of formal methods in the development of safety-critical systems. (N. Storey, 1996,
Addison-Wesley.)

Safeware: System Safety and Computers. This includes a good chapter on the validation of safety-
critical systems with more detail than I have given here on the use of safety arguments based
around fault trees. (N. Leveson, 1995, Addison-Wesley.)

E X E R C I S E S

24.1 Describe how you would go about validating the reliability specification for a supermarket
system that you specified in Exercise 9.8. Your answer should include a description of any
validation tools that might be used.

24.2 Explain why it is practically impossible to validate reliability specifications when these are
expressed in terms of a very small number of failures over the total lifetime of a system.

24.3 Using the literature as background information, write a report for management (who have no
previous experience in this area) on the use of reliability growth models.

24.4 Is it ethical for an engineer to agree to deliver a software system with known faults to a
customer? Does it make any difference if the customer is told of the existence of these faults
in advance? Would it be reasonable to make claims about the reliability of the software in
such circumstances?

24.5 Explain why ensuring system reliability is not a guarantee of system safety.

24.6 The door lock control mechanism in a nuclear waste storage facility is designed for safe
operation. It ensures that entry to the storeroom is only permitted when radiation shields are
in place or when the radiation level in the room falls below some given value (dangerLevel).
That is:

(i) If remotely controlled radiation shields are in place within a room, the door may be
opened by an authorised operator.

••••

SE8_C24.qxd 4/4/06 9:18 Page 587

588 Chapter 24 ■ Critical systems validation

(ii) If the radiation level in a room is below a specified value, the door may be opened by an
authorised operator.

(iii) An authorised operator is identified by the input of an authorised door entry code.

The Java code shown in Figure 24.14 controls the door-locking mechanism. Note that the safe
state is that entry should not be permitted. Develop a safety argument that shows that this
code is potentially unsafe. Modify the code to make it safe.

24.7 Using the specification for the dosage computation given in Chapter 10 (Figure 10.11), write
the Java method computeInsulin as used in Figure 24.6. Construct an informal safety
argument that this code is safe.

24.8 Suggest how you would go about validating a password protection system for an application
that you have developed. Explain the function of any tools that you think may be useful.

24.9 Why is it necessary to include details of system changes in a software safety case?

24.10 List four types of systems that would require system software safety cases.

24.11 Assume you were part of a team that developed software for a chemical plant, which failed in
some way, causing a serious pollution incident. Your boss is interviewed on television and states
that the validation process is comprehensive and that there are no faults in the software. She
asserts that the problems must be due to poor operational procedures. A newspaper approaches
you for your opinion. Discuss how you should handle such an interview.

24.12 What are the arguments for and against the licensing of software engineers?

••

1 entryCode = lock.getEntryCode () ;
2 if (entryCode == lock.authorisedCode)
3 {
4 shieldStatus = Shield.getStatus ();
5 radiationLevel = RadSensor.get ();
6 if (radiationLevel < dangerLevel)
7 state = safe;
8 else
9 state = unsafe;
10 if (shieldStatus == Shield.inPlace())
11 state = safe;
12 if (state == safe)
13 {
14 Door.locked = false ;
15 Door.unlock ();
16 }
17 else
18 {
19 Door.lock ();
20 Door.locked := true ;
21 }
22 }

Figure 24.14 Door
lock controller

SE8_C24.qxd 4/4/06 9:18 Page 588

6MANAGEMENT
PART

SE8_C25.qxd 4/4/06 9:19 Page 589

It is sometimes suggested that the key difference between software engineers
and other programmers is that software engineering is a managed process. By
this, I mean that the software development takes place within an organisation
and is subject to a range of schedule, budget and organisational constraints.
You can contrast this with open-source development, which is largely a vol-
untary activity. Open-source developers make their own decisions on when and
how they work on the software, and the quality of their work illustrates that
successful software development does not have to be strictly managed.
However, most software projects can’t be developed using an open source
approach—that development model is only suitable for infrastructure systems
such as operating systems, web servers, compilers, etc. More specialised appli-
cation development is always a managed process. The chapters in this part of
the book extend the introductory management chapter in the Overview
(Chapter 5) and discuss a number of management topics:

1. Chapter 25 is concerned with people management. This is not a technical
topic so it is not normally covered in software engineering textbooks.
However, in my experience, people management is the critical management
activity in software development projects. My aim here is to introduce the
issues and problems of people management; I cover selecting and motivat-
ing staff, managing project groups and, finally, the SEI’s people capability matu-
rity model.

2. In Chapter 26 I focus on software cost estimation. I discuss software pro-
ductivity and a range of software cost estimation techniques. There is a lot
of uncertainty in this area and some people believe that the best way to
tackle this is through algorithmic cost modelling. I cover the COCOMO II model
here, but as this is a very comprehensive model, I can only give a brief intro-
duction to its fundamental features.

3. Chapters 27 and 28 are concerned with issues of quality management. Quality
management is concerned with processes and techniques for ensuring and
improving the quality of software and Chapter 27 introduces the topic. Chapter
28 backs this up with a discussion of software process improvement—how
can processes be changed so that both product and process attributes are
improved.

4. Finally, Chapter 29 discusses configuration management. This is an issue that
is important for all large systems that are developed by teams. However, the
need for configuration management is not always obvious to students who
have only been concerned with personal software development so I introduce
the various aspects of this topic here including configuration planning, version
management, system building and change management.

SE8_C25.qxd 4/4/06 9:19 Page 590

Managing people
25

Objectives
The objective of this chapter is to discuss the importance of people in
the software engineering process. When you have read the chapter, you
will:

■ understand some of the issues involved in selecting and retaining
staff in a software development organisation;

■ understand factors that influence individual motivation and their
implications for software project managers;

■ understand key issues of team working, including team composition,
team cohesiveness, team communications and team organisation;

■ be aware of the structure of the People Capability Maturity Model—a
model that is a framework for enhancing the capabilities of software
engineers in an organisation.

Contents
25.1 Selecting staff

25.2 Motivating people

25.3 Managing groups

25.4 The People Capability Maturity Model

SE8_C25.qxd 4/4/06 9:19 Page 591

592 Chapter 25 ■ Managing people

The people working in a software organisation are its greatest assets. They repre-
sent intellectual capital, and it is up to software managers to ensure that the organ-
isation gets the best possible return on its investment in people. In successful companies
and economies, this is achieved when people are respected by the organisation. They
should have a level of responsibility and reward that reflects their skills.

Effective management is therefore about managing the people in an organisa-
tion. Project managers have to solve technical and nontechnical problems by using
the people in their team in the most effective way possible. They have to motivate
people, plan and organise their work and ensure that the work is being done prop-
erly. Poor management of people is one of the most significant contributors to pro-
ject failure.

Unfortunately, poor leadership is all too common in the software industry.
Managers fail to take into account the limitations of individuals and impose unre-
alistic deadlines on project teams. They equate management with meetings yet fail
to allow people in these meetings to contribute to the project. They may accept new
requirements without proper analysis of what this means for the project team. They
sometimes see their role as one of exploiting their staff rather than working with
them to identify how their work can contribute to both organisational and personal
goals.

There are, in my view, four critical factors in people management:

1. Consistency People in a project team should all be treated in a comparable way.
While no one expects all rewards to be identical, people should not feel that
their contribution to the organisation is undervalued.

2. Respect Different people have different skills and managers should respect these
differences. All members of the team should be given an opportunity to make
a contribution. In some cases, of course, you will find that people simply don’t
fit into a team and cannot continue, but it is important not to jump to conclu-
sions about this.

3. Inclusion People contribute effectively when they feel that others listen to them
and take account of their proposals. It is important to develop a working envi-
ronment where all views, even those of the most junior staff, are considered.

4. Honesty As a manager, you should always be honest about what is going well
and what is going badly in the team. You should also be honest about your
level of technical knowledge and be willing to defer to staff with more knowl-
edge when necessary. If you are less than honest, you will eventually be found
out and will lose the respect of the group.

My aim in this chapter is to introduce some of the issues that software engineer-
ing managers may have to face and to provide background information that helps you
understand these issues. Management, in my view, is something that can only be learned
through experience, so the role of a book is to help you learn from previous experi-
ence. You will not become a good manager of people simply by reading this chapter.

••••

SE8_C25.qxd 4/4/06 9:19 Page 592

25.1 ■ Selecting staff 593

However, I hope the material here will help you understand the problems that man-
agers face when dealing with teams of technically talented individuals.

25.1 Selecting staff

One of the most important project management tasks is team selection. In excep-
tional cases, project managers can appoint the people who are best suited to the job
irrespective of their other responsibilities or budget considerations. More often, how-
ever, project managers do not have a free choice of staff. They may have to use
whoever is available in an organisation, they may have to find people very quickly
and they may have a limited budget. Budget limitations may constrain the number
of expensive experienced engineers available to work on the project.

The decision on who to appoint to a project is usually made using three types
of information:

1. Information provided by candidates about their background and experience (their
résumé or CV). This is usually the most reliable evidence that you have avail-
able to judge whether candidates are likely to be suitable.

2. Information gained by interviewing candidates. Interviews can give you a good
impression of whether a candidate is a good communicator and whether he or
she has good social skills. However, tests have shown that interviewers are liable
to accept or reject candidates on the basis of rapid subjective judgements.
Consequently, interviews are not a reliable method for making judgements of
technical capabilities.

3. Recommendations from people who have worked with the candidates. This can
be effective when you know the people making the recommendation.
Otherwise, the recommendations cannot be trusted and, in my view, are of lit-
tle use in making decisions about staff.

Figure 25.1 presents a short case study of issues that can arise when appointing
staff. Some characteristic lessons from this case study are:

1. If you are looking for people with specific skills from inside the company, the
manager of the project where they are already working may not wish to lose
them. Sometimes, you have to accept that people will only be able to work for
part of the time on your project.

2. Skills such as user interface design and hardware interfacing are in short sup-
ply. You may not have a wide choice of applicants for these posts, especially
if the company is not located near other software industries.

••••

SE8_C25.qxd 4/4/06 9:19 Page 593

594 Chapter 25 ■ Managing people

3. Recent graduates may not have the specific skills you need but they are nor-
mally enthusiastic and may have been exposed to up-to-date technology.

4. It doesn’t always make sense to employ the most technically proficient person for
a technical development job. In this job, interaction with elderly users may be required
and Alice decides that Carol is likely to be more sympathetic to their problems.

••••

Case study 1: Choosing team members
Alice is a software project manager working in a company that develops alarm systems.
This company wishes to enter the growing market of assistive technology to help elderly
and disabled people live independently. Alice has been asked to lead a team of 6 devel-
opers than can develop new products based around the company’s alarm technology.
Her first role is to select team members either from software engineers already in the
company or from outside.

To help select a team, Alice first assesses the skills that she will need: These are:

• Experience with existing alarm technology, as it is reused.
• User interface design experience because the users are untrained and may be

disabled and hence need facilities such as variable font sizes, etc.
• Ideally, someone who has experience of designing assistive technology systems.

Otherwise, someone with experience of interfacing to hardware units as all sys-
tems being developed involve some hardware control.

• General-purpose development skills.

The next stage is to try and find people from within the company with the necessary
skills. However, the company has expanded significantly and has few staff available.
The best that Alice can negotiate is to have help from an alarm expert (Fred) for 2
days/week. She therefore decides to advertise for new project staff, listing the
attributes that she’d like:

• Programming experience in C. She has decided to develop all the assistive tech-
nology control software in C.

• Experience in user interface design. A UI designer is essential but there may not
be a need for a full-time appointment.

• Experience in hardware interfacing with C and using remote development sys-
tems. All the devices used have complex hardware interfaces.

• Experience of working with hardware engineers. At times, it will be necessary to
build completely new hardware.

• A sympathetic personality so that they can relate to and work with elderly peo-
ple who are providing requirements for and are testing the system.

Alice gets 30 responses to the advert and, from the applicants, is able to identify suit-
able candidates with hardware interfacing (Dorothy) and user interface design experi-
ence (Ed). She also decides to hire two new graduates (Brian and Bob) who have some
C programming experience but who will essentially have to be trained in the company.
All that remains then is to appoint a more senior programmer to join the development
team and Alice has two choices. Carol has several years C programming experience
and has recently taken a short career break to have children. Dave has a comparable
amount of programming experience and is a programming enthusiast. He spends most
of his spare time working on open source development projects and has encyclopaedic
knowledge of C and C++.

After interviewing both Carol and Dave, Alice decides to offer the job to Carol although
Dave has deeper programming knowledge.

Figure 25.1 Staff
selection

SE8_C25.qxd 4/4/06 9:19 Page 594

25.1 ■ Selecting staff 595

If you have some choice of staff, the factors that may influence your decision
are shown in Figure 25.2. The most important factors vary depending on the appli-
cation domain, the type of project and the skills of other members of the project
team.

As a project manager, you may be faced with problems finding people with appro-
priate skills and experience. You may have to build your team using relatively inex-
perienced engineers. This may lead to problems because the team members don’t
understand the application domain or the technology. However, in a long-term

••••

Factor Explanation

Application domain For a project to develop a successful system, the developers
experience must understand the application domain. It is essential that

some members of a development team have some domain
experience.

Platform experience This may be significant if low-level programming is involved.
Otherwise, this is not usually a critical attribute.

Programming
language experience This is normally only significant for short-duration projects

where there is not enough time to learn a new language.
While learning a language itself is not difficult, it takes
several months to become proficient in using the associated
libraries and components.

Problem solving This is very important for software engineers who constantly
ability have to solve technical problems. However, it is almost

impossible to judge without knowing the work of the
potential team member.

Educational This may provide an indicator of what the candidate knows
background and his or her ability to learn. This factor becomes

increasingly irrelevant as engineers gain experience across a
range of projects.

Communication Project staff must be able to communicate orally and in
ability writing with other engineers, managers and customers.

Adaptability Adaptability may be judged by looking at the experience that
candidates have had. This is an important attribute, as it
indicates an ability to learn.

Attitude Project staff should have a positive attitude toward their
work and should be willing to learn new skills. This is an
important attribute but often very difficult to assess.

Personality This is an important attribute but difficult to assess.
Candidates must be reasonably compatible with other team
members. No particular type of personality is more or less
suited to software engineering.

Figure 25.2 Factors
governing staff
selection

SE8_C25.qxd 4/4/06 9:19 Page 595

596 Chapter 25 ■ Managing people

project, understanding of concepts and the application domain is more important than
specific knowledge, particularly of programming languages and methods. Therefore,
unless you need specific knowledge of a programming language for a short-term assign-
ment, it is best to select staff who have problem-solving or domain experience. It is
relatively easy to learn a new language but much more difficult to develop deeper
conceptual knowledge required for complex problem solving.

Some companies test candidate team members. These include programming apti-
tude tests and psychometric tests that rely on candidates completing a number of
small exercises in a relatively short time. Psychometric tests are intended to pro-
duce a psychological profile of the candidate indicating attitude and suitability for
certain types of task. Some managers consider these tests to be useless; others think
they provide helpful information for staff selection. I doubt whether aptitude tests
provide useful information about problem-solving ability. Solving complex software
problems is a long-term, iterative process. I don’t believe that the skills needed for
complex problem solving are comparable to the skills needed to complete simple
aptitude test puzzles.

A lack of experienced technical people may be a result of organisational policy
where technically skilled staff quickly reach a career plateau. To progress further,
they have to become managers, and this promotion inevitably means that useful tech-
nical skills are lost. To avoid this skill leakage, some large companies have devel-
oped parallel technical and managerial career structures of equal worth.
Experienced technical people are rewarded at the same level as managers. As an
individual’s career develops, he or she may specialise in either technical or man-
agerial activities and move between them without losing status or salary.

25.2 Motivating people

One of the roles of project managers is to motivate the people who work for them.
Motivation means organising the work and the working environment so that peo-
ple are stimulated to work as effectively as possible. If people are not motivated,
they will not be interested in the work they are doing. They will work slowly, be
more likely to make mistakes and will not contribute to the broader goals of the
team or the organisation.

Maslow (Maslow 1954) suggests that people are motivated by satisfying their
needs and that needs are arranged in a series of levels, as shown in Figure 25.3.
The lower levels of this hierarchy represent fundamental needs for food, sleep, and
so on, as well as the need to feel secure in an environment. Social needs are con-
cerned with the need to feel part of a social grouping. Esteem needs are the need
to feel respected by others, and self-realisation needs are concerned with personal
development. Human priorities are to satisfy lower-level needs such as hunger before
the more abstract, higher-level needs.

••••

SE8_C25.qxd 4/4/06 9:19 Page 596

25.2 ■ Motivating people 597

People working in software development organisations are not usually hungry
or thirsty and generally do not feel physically threatened by their environment.
Therefore, ensuring the satisfaction of social, esteem and self-realisation needs is
most significant from a management point of view.

1. To satisfy social needs, you need to give people time to meet their co-workers
and to provide places for them to meet. This is relatively easy when all of the
members of a development team work in the same place but, increasingly, team
members are not located in the same building or even the same town or state.
They may work for different organisations or from home most of the time.
Electronic communications such as e-mail and teleconferencing may be used
to support this remote working. However, my experience with electronic com-
munications is that they do not really satisfy social needs. If your team is dis-
tributed, you should arrange periodic face-to-face meetings so that people
experience direct interaction with other members of the team. Through this direct
interaction, people become part of a social group and may be motivated by the
goals and priorities of that group.

2. To satisfy esteem needs, you need to show people that they are valued by the
organisation. Public recognition of achievements is a simple yet effective way
of doing this. Obviously, people must also feel that they are paid at a level that
reflects their skills and experience.

3. Finally, to satisfy self-realisation needs, you need to give people responsibil-
ity for their work, assign them demanding (but not impossible) tasks and pro-
vide a training programme where people can develop their skills.

In Figure 25.4, I illustrate a problem of motivation that managers often have to
face. In this example, a competent group member loses interest in the work and in
the group as a whole. The quality of her work falls and becomes unacceptable. This
situation has to be dealt with quickly. If you don’t sort out the problem, the other
group members will become dissatisfied and feel that they are doing an unfair share
of the work.

••••

Physiological needs

Safety needs

Social needs

Esteem needs

Self-
realisation needs

Figure 25.3 Human
needs hierarchy

SE8_C25.qxd 4/4/06 9:19 Page 597

598 Chapter 25 ■ Managing people

In this example, Alice tries to find out if Dorothy’s personal circumstances could
be the problem. Personal difficulties commonly affect motivation because people
cannot concentrate on their work. You may have to give people time and support
to resolve these issues, although you also have to make it clear that the people con-
cerned still have a responsibility to their employer.

In fact, Dorothy’s motivation problem is one that arises frequently when pro-
jects develop in an unanticipated direction. People who expected to do one type of
work may end up doing something completely different. This becomes a problem
when people want to develop their skills in some way that is different from that
taken by the project. In those circumstances, you may decide that the team mem-
ber should leave the team and find opportunities elsewhere. In this circumstance,
however, Alice decides to try to convince Dorothy that broadening her experience
is a positive career step. She gives Dorothy more design autonomy and organises
training courses in software engineering that will provide her with more opportu-
nities after her current project has finished.

The principal problem with Maslow’s model of motivation is that it takes an exclu-
sively personal viewpoint on motivation. It does not take adequate account of the
fact that people feel themselves to be part of an organisation, a professional group
and, usually, some culture. This is not simply a question of satisfying social
needs—people can be motivated through helping a group achieve shared goals.

Being a member of a cohesive group is highly motivating to most people. People
with fulfilling jobs often like to go to work because they are motivated by the peo-
ple they work with and by the work that they do. Therefore, as well as thinking

••••

Case study 2: Motivation
Alice’s assistive technology project starts well. Good working relationships develop
within the team and creative new ideas are developed. The company decides to
develop a peer-to-peer messaging system using digital televisions linked to the alarm
network for communications. However, some months into the project, Alice notices
that Dorothy, the hardware design expert, starts coming into work late, the quality of
her work deteriorates and, increasingly, she does not appear to be communicating
with other members of the team.

Alice talks about the problem informally with other team members to try to find
out if Dorothy’s personal circumstances have changed and if this might be affecting
her work. They don’t know of anything, so Alice decides to talk with Dorothy to try
to understand the problem.

After some initial denials that there is a problem, Dorothy admits that she has
lost interest in the job. She expected she would be able to develop and use her
hardware interfacing skills. However, because of the product direction that has been
chosen, she has little opportunity for this. Basically, she is working as a C
programmer with other team members. While she admits that the work is
challenging, she is concerned that she is not developing her interfacing skills. She is
worried that finding a job that involves hardware interfacing will be difficult after this
project. Because she does not want to upset the team by revealing that she is
thinking about the next project, she has decided that it is best to minimise
conversation with them.

Figure 25.4
Individual motivation

SE8_C25.qxd 4/4/06 9:19 Page 598

25.3 ■ Managing groups 599

about individual motivation, you also have to think about how the group as a whole
can be motivated to achieve the organisation’s goals. I discuss group management
issues in the next section.

In a psychological study of motivation, Bass and Dunteman (Bass and
Dunteman, 1963) classified professionals into three types:

1. Task-oriented people are motivated by the work they do. In software engineering,
they are technicians who are motivated by the intellectual challenge of soft-
ware development.

2. Self-oriented people are principally motivated by personal success and recog-
nition. They are interested in software development as a means of achieving
their own goals. This does not mean that these people are selfish and think only
of their own concerns. Rather, they often have longer-term goals such as career
progression, that motivate them. They wish to be successful in their work to
help realise these goals.

3. Interaction-oriented people are motivated by the presence and actions of
coworkers. As software development becomes more user-centered, interaction-
oriented individuals are becoming more involved in software engineering.

Interaction-oriented personalities usually like to work as part of a group,
whereas task-oriented and self-oriented people often prefer to work alone. Women
are more likely to be interaction-oriented than men. They are often more effective
communicators. I discuss the mix of these different personality types in groups in
Section 25.3.2.

Each individual’s motivation is made up of elements of each class but one type
of motivation is usually dominant at any one time. However, personalities are not
static and individuals can change. For example, technical people who feel they are
not being properly rewarded can become self-oriented and put personal interests before
technical concerns.

25.3 Managing Groups

Most professional software is developed by project teams ranging in size from two
to several hundred people. However, as it is clearly impossible for all these people
to work together on a single problem, these large teams are usually split into a num-
ber of groups. Each group is responsible for part of the overall system. As a gen-
eral rule, software engineering project groups should normally have no more than
eight or ten members. When small groups are used, communication problems are
reduced. The whole group can get round a table for a meeting and can meet in each
other’s offices.

••••

SE8_C25.qxd 4/4/06 9:19 Page 599

600 Chapter 25 ■ Managing people

Putting together a group that works effectively is therefore a critical manage-
ment task. It is obviously important that the group should have the right balance of
technical skills, experience and personalities. However, successful groups are more
than simply a collection of individuals with the right balance of skills. A good group
has a team spirit so that the people involved are motivated by the success of the
group as well as by their own personal goals.

There are a number of factors that influence group working:

1. Group composition Is there the right balance of skills, experience and person-
alities in the team?

2. Group cohesiveness Does the group think of itself as a team rather than as a
collection of individuals who are working together?

3. Group communications Do the members of the group communicate effectively
with each other?

4. Group organisation Is the team organised in such a way that everyone feels
valued and is satisfied with his or her role in the group?

25.3.1 Group composition

As I discussed in Section 25.2, many software engineers are motivated primarily
by their work. Software development groups, therefore, are often composed of peo-
ple who have their own ideas about how technical problems should be solved. This
is borne out by regularly reported problems of interface standards being ignored,
systems being redesigned as they are coded, unnecessary system embellishments
and so on. You should try, if possible, to select group members so that these kinds
of problems are avoided.

A group that has complementary personalities may work better than a group
selected solely on technical ability. People who are motivated by the work are likely
to be the strongest technically. People who are self-oriented will probably be best
at pushing the work forward to finish the job. People who are interaction-oriented
help facilitate communications within the group. I think that it is particularly
important to have interaction-oriented people in a group. They like to talk to peo-
ple and can detect tensions and disagreements at an early stage, before they have
a serious impact on the group.

In the case study example shown in Figure 25.5, I have shown how Alice, the
project manager, has tried to create a group with complementary personalities. This
particular group has a good mix of interaction and task-oriented people, but I have
already discussed in Figure 25.4 how Dorothy’s self-oriented personality can cause
problems. Fred’s part-time role in the group as a domain expert might also be a
problem here. He is mostly interested in technical challenges, so he may not inter-
act well with other group members. The fact that he is not always part of the team
means that he may not relate well to the team’s goals.

••••

SE8_C25.qxd 4/4/06 9:19 Page 600

25.3 ■ Managing groups 601

It is sometimes impossible to choose a group with complementary personalities.
In this case, the project manager has to control the group so that individual goals
do not transcend organisational and group objectives. This control is easier to achieve
if all group members participate in each stage of the project. Individual initiative
is most likely when group members are given instructions without being aware of
the part that their task plays in the overall project.

For example, say an engineer is given a program design for coding and notices
possible design improvements. If he implements these improvements without
understanding the rationale for the original design, they might have adverse impli-
cations for other parts of the system. If all the members of the group are involved
in the design from the start, they will understand why design decisions have been
made. They may identify with these decisions rather than oppose them.

The group leader has an important role. He or she may be responsible for pro-
viding technical direction and project administration. Group leaders must keep track
of the day-to-day work of their group, ensure that people are working effectively
and work closely with project managers on project planning.

Leaders are normally appointed and report to the overall project manager.
However, the appointed leader may not be the real leader of the group as far as
technical matters are concerned. The group members may look to another group
member for leadership. He or she may be the most technically competent engineer
or may be a better motivator than the appointed group leader.

Sometimes, it is effective to separate technical leadership and project administra-
tion. People who are technically competent are not always the best administrators. Being
given an administrative role can reduce their overall value to the group. It is best to
support them with an administrator who can relieve them of day-to-day tasks.

Imposing an unwanted leader on a group is likely to cause tensions. The team
members will not respect the leader and may reject group loyalty in favour of individual

••••

Case study 3: Group composition
In creating a group for assistive technology development, Alice is aware of the
importance of selecting members with complementary personalities. When
interviewing people, she tried to assess whether they were task-oriented, self-
oriented or interaction-oriented. She felt that she was primarily a self-oriented type
as she felt that this project was a way in which she would be noticed by senior
management and promoted. She therefore looked for one or perhaps two
interaction-oriented personalities and wanted to task-oriented individuals to complete
the team. The final assessment that she arrived at was:

Alice—self-oriented
Brian—task-oriented
Bob—task-oriented
Carol—interaction-oriented
Dorothy—self-oriented
Ed—interaction-oriented
Fred—task-oriented

Figure 25.5 Group
composition

SE8_C25.qxd 4/4/06 9:19 Page 601

602 Chapter 25 ■ Managing people

goals. This is a particular problem in a fast-changing field such as software engi-
neering, where new members may be more up-to-date and better educated than expe-
rienced group leaders. Some people with experience may resent the imposition of
a young leader with new ideas.

25.3.2 Group cohesiveness

In a cohesive group, members think of the group as more important than the indi-
vidual in it. Members of a well-led, cohesive group are loyal to the group. They
identify with group goals and with other group members. They attempt to protect
the group, as an entity, from outside interference. This makes the group robust and
able to cope with problems and unexpected situations. The group can cope with
change by providing mutual support and help.

The advantages of a cohesive group are:

1. A group quality standard can be developed Because this standard is established
by consensus, it is more likely to be observed than external standards imposed
on the group.

2. Group members work closely together People in the group learn from each other.
Inhibitions caused by ignorance are minimised as mutual learning is encouraged.

2. Group members can get to know each other’s work Continuity can be main-
tained if a group member leaves. Others in the group can take over critical tasks
and ensure that the project is not unduly disrupted.

3. Egoless programming can be practised Programs are regarded as group prop-
erty rather than personal property.

Egoless programming (Weinberg, 1971) is a style of group working where
designs, programs and other documents are considered to be the common property
of the group rather than the individual who wrote them. In a culture of egoless pro-
gramming, people are more likely to offer their work for inspection by other group
members, to accept criticism and to work with the group to improve the program.
Group cohesiveness is improved because all members feel that they have a shared
responsibility for the software. The idea of egoless programming is fundamental to
extreme programming (Beck, 2000), discussed in Chapter 17. In extreme program-
ming, constant improvement of the code in the system, irrespective of who wrote
that code, is one of the basic tenets.

As well as improving the quality of designs, programs and documents, egoless pro-
gramming also improves communications within the group. It encourages uninhib-
ited discussion without regard to status, experience or gender. Individual members
actively cooperate with other group members throughout the course of the project.
This draws the members of the group together and makes them feel part of a team.

••••

SE8_C25.qxd 4/4/06 9:19 Page 602

25.3 ■ Managing groups 603

Group cohesiveness depends on many factors, including the organisational cul-
ture and the personalities in the group. Managers can encourage cohesiveness in a
number of ways: They may organise social events for group members and their fam-
ilies; they may try to establish a sense of group identity by naming the group and
establishing a group identity and territory; or they may get involved in explicit group-
building activities such as sports and games.

One of the most effective ways to promote cohesion is to be inclusive and ensure
that group members are treated as responsible and trustworthy and are given access to
information. Often, managers feel that they cannot reveal certain information to every-
one in the group. This invariably creates a climate of mistrust. Simple information exchange
is a cheap and efficient way of making people feel that they are part of a team.

We see an example of this in the case study fragment shown in Figure 25.6. Alice
arranges regular informal meetings where she tells the other group members what
is going on. She makes a point of involving people in the product development by
asking them to come up with new ideas derived from their own family experiences.
The ‘away days’ are also good ways of promoting cohesion—people relax together
while they help each other learn about new technologies.

Strong, cohesive groups, however, can sometimes suffer from two problems:

1. Irrational resistance to a leadership change If the leader of a cohesive group
has to be replaced by someone outside of the group, the group members may
band together against the new leader. Group members may spend time resist-
ing changes proposed by the new group leader with a consequent loss of pro-
ductivity. Whenever possible, new leaders are therefore best appointed from
within the group.

2. Groupthink Groupthink (Janis, 1972) is when the critical abilities of group mem-
bers are eroded by group loyalties. Consideration of alternatives is replaced by

••••

Case study 4: Team spirit
Alice, an experienced project manager, understands the importance of creating a
cohesive group. As the product development is new, she takes the opportunity of
involving all group members in the product specification and design by getting them
to discuss possible technology with elderly members of their families and to bring
family members to the weekly group lunch. The group lunch is an opportunity for all
team members to meet informally, talk around issues of concern and get to know
each other.

At the lunch Alice tells the group members what she knows about organisational
news, policies, strategies and so forth. Each team member then briefly summarises
what they have been doing and the group discusses a general topic such as new
product ideas from elderly relatives.

Every few months, Alice organises an ‘away day’ for the group where the team
spend two days on ‘technology updating’. Each team member prepares an update
on a relevant technology and presents it to the group. This is an off-site meeting in a
good hotel and plenty time is scheduled for discussion and social interaction.

Figure 25.6 Group
cohesion

SE8_C25.qxd 4/4/06 9:19 Page 603

604 Chapter 25 ■ Managing people

loyalty to group norms and decisions. Any proposal favoured by the majority
of the group may be adopted without proper consideration of alternatives.

To avoid groupthink, you should organise formal sessions in which group mem-
bers are encouraged to question decisions that have been made. Outside experts may
be introduced to review the group’s decisions. People who are naturally argumen-
tative, questioning and disrespectful of the status quo may be appointed as discus-
sion leaders. They act as a devil’s advocate, constantly questioning group decisions
and thus forcing other group members to think about and evaluate their activities.

25.3.3 Group communications

Good communication between members of a software development group is essential.
The group members must exchange information on the status of their work, the design
decisions that have been made and changes to previous decisions that are necessary.
Good communication also strengthens group cohesiveness as group members come to
understand the motivations, strengths and weaknesses of other people in the group.

Some key factors that influence the effectiveness of communication are:

1. Group size As a group increases in size, ensuring that all members communi-
cate effectively with each other becomes more difficult. The number of one-
way communication links is n * (n – 1), where n is the group size, so, with a
group of seven or eight members, it is quite possible that some people will rarely
communicate. Status differences between group members means that commu-
nications are often one-way. Higher-status members tend to dominate commu-
nications with lower-status members, who are often reluctant to start a
conversation or make critical remarks.

2. Group structure People in informally structured groups communicate more effec-
tively than people in groups with a formal, hierarchical structure. In hierarchi-
cal groups, communications tend to flow up and down the hierarchy. People at
the same level may not talk to each other. This is a particular problem in a
large project with several development groups. When people working on dif-
ferent sub-systems communicate only through their managers, the project may
suffer delays and misunderstandings.

3. Group composition People with the same personality types may clash and com-
munications may be inhibited. Communication is also usually better in mixed-
sex groups (Marshall and Heslin, 1975) than in single-sex groups. Women tend
to be more interaction-oriented than men and may act as interaction controllers
and facilitators for the group.

4. The physical work environment The organisation of the workplace is a major
factor in facilitating or inhibiting communications. I discuss this later in
Section 25.3.5.

••••

SE8_C25.qxd 4/4/06 9:19 Page 604

25.3 ■ Managing groups 605

25.3.4 Group organisation

Small programming groups are usually organised in a fairly informal way. The group
leader gets involved in the software development with the other group members. A
technical leader may emerge who effectively controls software production. In an
informal group, the work to be carried out is discussed by the group as a whole,
and tasks are allocated according to ability and experience. More senior group mem-
bers may be responsible for the architectural design. However, detailed design and
implementation is the responsibility of the team member who is allocated to a par-
ticular task.

Informal groups can be very successful, particularly when the majority of group
members are experienced and competent. Such a group makes decisions by con-
sensus, which improves group spirit, cohesiveness and performance. If a group is
composed mostly of inexperienced or incompetent members, informality can be a
hindrance because no definite authority exists to direct the work, causing a lack of
coordination between group members and, possibly, eventual project failure.

An interesting organisational variant of democratic group organisation is
described by Beck in his book on extreme programming (Beck, 2000). In this
approach, many decisions that are usually seen as management decisions, such as
decisions on schedule, are devolved to group members. Programmers work
together in pairs to develop code and take joint responsibility for the programs
that are developed.

As I discuss in Chapter 26, individual ability has the most significant influ-
ence on programmer productivity. The best programmers may be up to 25 times
as productive as the worst programmers. It therefore makes sense to use the best
people in the most effective way and to provide them with as much support as
possible.

To make the most effective use of highly skilled programmers, Baker (Baker,
1972) and others (Aron, 1974; Brooks, 1975) suggest that teams should be built
around an individual, highly skilled chief programmer. The underlying principle
of the chief programmer team is that skilled and experienced staff should be respon-
sible for all software development. They should not be concerned with routine mat-
ters and should have good technical and administrative support for their work. They
should focus on the software to be developed and should not get involved in exter-
nal meetings.

But the chief programmer team organisation has serious problems because it is
over-dependent on the chief programmer and their assistant. Other team members,
who are not given sufficient responsibility, become unmotivated because they feel
their skills are underused.

However, the general principle of augmenting a programming team with spe-
cialists is a good one. When choosing team members, you can focus on people who
have generic skills such as communication and problem solving, and then bring in
experts as required during the project. Using experts as required also means that
relatively inexperienced developers have opportunities to learn and develop their
expertise as the project progresses.

••••

SE8_C25.qxd 4/4/06 9:19 Page 605

606 Chapter 25 ■ Managing people

25.3.5 Working environments

The workplace has important effects on people’s performance and their job satis-
faction. Psychological experiments have shown that behaviour is affected by room
size, furniture, equipment, temperature, humidity, brightness and quality of light,
noise and the degree of privacy available. Group behaviour is affected by archi-
tectural organisation and telecommunication facilities. Communications within a group
are affected by the building architecture and the structure of the workspace.

There is a real and significant cost in failing to provide good working conditions.
When people are unhappy about their working conditions, staff turnover increases.
More costs must therefore be expended on recruitment and training. Software pro-
jects may be delayed because of lack of qualified staff (DeMarco and Lister, 1999).

Software development staff often work in large, open-plan office areas, some-
times with cubicles, and only senior management have individual offices. McCue
(McCue, 1978) carried out a study that showed the open-plan architecture favoured
by many organisations was neither popular nor productive. The most important envi-
ronmental factors identified in that design study were:

1. Privacy Programmers require an area where they can concentrate and work with-
out interruption.

2. Outside awareness People prefer to work in natural light and with a view of
the outside environment.

3. Personalisation Individuals adopt different working practices and have differ-
ent opinions on decor. The ability to rearrange the workplace to suit working
practices and to personalise that environment is important.

In short, people like individual offices that they can organise to their taste and
needs. Individual offices mean less disruption and fewer interruptions than open-
plan workspaces. In open-plan offices, people are denied privacy and a quiet work-
ing environment. They are limited in the ways that they can personalise their own
workspace. Concentration can be difficult and performance is degraded.

Providing individual offices for software engineering staff can make a signifi-
cant difference to productivity. DeMarco and Lister (DeMarco and Lister, 1985)
compared the productivity of programmers in different types of workplace. They
found that factors such as a private workspace and the ability to cut off interrup-
tions had a significant effect. Programmers who had good working conditions were
more than twice as productive than equally skilled programmers who had to work
in poorer conditions.

Development groups need areas where all members of the group can get
together and discuss their project, both formally and informally. Meeting rooms must
be able to accommodate the whole group in privacy. Individual privacy require-
ments and group communication requirements seem to be exclusive objectives. McCue
suggested grouping individual offices round larger group meeting rooms (Figure 25.7)
was the best way to reconcile these conflicting requirements.

••••

SE8_C25.qxd 4/4/06 9:19 Page 606

25.5 ■ The People Capability Maturity Model 607

A similar model is suggested by Beck in his description of an environment for
extreme programming. However, he suggests retaining an open-plan area with all
programming activities taking place in the communal area and individual cubicles
for the group members when they wish to work alone. Clearly, the key requirement
is to provide both individual and group space so that people can work alone or as
a group when necessary.

Facilitating communications by providing communal meeting areas helps peo-
ple solve their problems and exchange information in an informal but effective way.
Weinberg (Weinberg, 1971) cites an anecdotal example of how an organisation wanted
to stop programmers wasting time talking to each other around a coffee machine.
They removed the machine, then immediately had a dramatic increase in requests
for formal programming assistance. As well as gossiping around the machine, peo-
ple were solving each other’s problems. This illustrates that companies need infor-
mal meeting places as well as formal conference rooms.

The case study in Figure 25.8 illustrates that you often have to work within the
constraints of existing buildings. You can’t necessarily adapt these or have as much
space as you would like. In this example, Alice has used a single office as a space
for concentrated work and confined development work, where people will be dis-
cussing what to do, to a single room. Shared desks are increasingly common for
team members who are not always working in the office. As each member of the
team have a laptop, they can work anywhere—at their desk, in the quiet room or
in the shared social spaces in the building.

25.4 The People Capability Maturity Model

The Software Engineering Institute (SEI) in the United States is engaged in a long-
term programme of software process improvement. Part of this programme is the

••••

Office

Office

Office

Office

Office

Office

Office

OfficeCommunal
area

Meeting
room

Window

Shared
documentation

Figure 25.7 Office
and meeting room
grouping

SE8_C25.qxd 4/4/06 9:19 Page 607

608 Chapter 25 ■ Managing people

Capability Maturity Model (CMM) for software processes, which I discuss in
Chapter 28. This is concerned with best practice in software engineering. To sup-
port this model, they have also proposed a People Capability Maturity Model (P-
CMM) (Curtis, et al., 2001). The P-CMM can be used as a framework for
improving the way in which an organisation manages its human assets.

Like the CMM, the P-CMM is a five-level model, as shown in Figure 25.9. The
five levels are:

1. Initial Ad hoc, informal people management practices

2. Repeatable Establishment of policies for developing the capability of the staff

3. Defined Standardisation of best people management practice across the organ-
isation

4. Managed Quantitative goals for people management

5. Optimizing Continuous focus on improving individual competence and work-
force motivation

Curtis et al. (Curtis, et al., 2001) state that the strategic objectives of the P-CMM
are:

1. To improve the capability of software organisations by increasing the capabil-
ity of their workforce

2. To ensure that software development capability is an attribute of the organisa-
tion rather than of a few individuals

••••

Case study 5: Office organisation
Alice understands the importance of working environments but her company is
based in a 1970s building that can’t be adapted to an ideal structure. She is
assigned three offices for her team—a small, separate individual office and two
adjacent larger offices that can each hold four desks. Two team members (Carol and
Brian) often work from home and Fred, the alarm expert, only works with the team
two days per week. The team has access to a meeting room shared by other groups,
and each floor in the building has a coffee space for informal interaction.

Rather than use the small office as her personal office, as intended by
management, Alice decides that this should be a quiet ‘thinking’ space that can be
used by any team member who needs to work without distraction. She sets up one
of the offices as a development office with tables for hardware and paper prototypes
of user interfaces. This room also has a desk that is mostly used by Fred when he is
working with the team but is also shared by Carol and Brian when they are working
in the office. Alice shares the other office with Bob, Dorothy and Ed. The building
has a wireless network and all team members have laptops.

Figure 25.8 Office
organisation

SE8_C25.qxd 4/4/06 9:19 Page 608

25.5 ■ The People Capability Maturity Model 609

3. To align the motivation of individuals with that of the organisation

4. To retain valuable human assets (i.e., people with critical knowledge and
skills) within the organisation.

The P-CMM is a practical tool for improving the management of people in an
organisation because it provides a framework for motivating, recognising, standar-
dising and improving good practice. However, like all capability models created by
the SEI, it is designed for large rather than small companies. It reinforces the need
to recognise the importance of people as individuals and to develop their capabili-
ties. Of course, the complete application of this model is very expensive and prob-
ably unnecessary for most organisations. However, it is a helpful guide that can
lead to significant improvements in the capability of organisations to produce high-
quality software.

••••

Continuous workforce innovation
Coaching
Personal competency development

Organisational performance alignment
Organisational competency management
Team-based practices
Team building
Mentoring

Managed

Optimizing

Participatory culture
Competency-based practices
Career development
Competency development
Workforce planning
Knowledge and skills analysis

Compensation
Training
Performance management
Staffing
Communication
Work environment

Initial

Repeatable

Defined

Continuously improve methods
for developing personal and
organisational competence

Quantitatively manage
organisational growth in
workforce capabilities and
establish competency-based
teams

Identify primary
competencies and
align workforce
activities with them

Instill basic
discipline into
workforce
activities

Figure 25.9 The
People Capability
Maturity Model

SE8_C25.qxd 4/4/06 9:19 Page 609

610 Chapter 25 ■ Managing people

F U R T H E R R E A D I N G

A Handbook of Software and Systems Engineering: Empirical Observations, Laws and Theories.
This book is concerned with empirical findings, hypotheses and theories that are relevant to
software engineering. Chapter 10 covers user skills, motivation and satisfaction, and discusses
theories from psychology that back up the material in this chapter. (A. Andres and D. Rombach,
2003, Addison-Wesley)

Software Management, 6th ed. This is an IEEE tutorial text that has several articles about managing
and motivating people. (D. J. Reifer, 2002, Wiley-IEEE Press.)

The People Capability Maturity Model: Guidelines for Improving the Workforce. This book is a
comprehensive description of the P-CMM, including guidance on improving individual capability,
developing a strong organisational culture, measuring performance and creating a flexible
workforce. (B. Curtis, et al., 2001, Addison-Wesley.)

Peopleware: Productive Projects and Teams, 2nd ed. This is a classic book on the importance of
treating people properly when managing software projects. It’s easy to read and one of the few
books that recognises the importance of the place where people work. Strongly recommended. (T.
DeMarco and T. Lister, 1999, Dorset House.)

••••

■ Selecting staff to work on a project is an important task for project managers. Factors that
might be used to select staff include application domain experience, adaptability and
personality.

■ People are motivated by interaction with other people, by the recognition of management
and their peers, and by being given opportunities for personal development.

■ Software development groups should be small and cohesive. Group leaders should be
technically competent and should have administrative and technical support.

■ Communications within a group are influenced by factors such as the status of group
members, the size of the group, the gender composition of the group, personalities and
available communication channels.

■ Working environments for teams should include spaces where the team can interact and
where individual team members can quietly concentrate on their work.

■ The People Capability Maturity Model provides a framework and associated advice for
improving the capabilities of people in an organisation and improving the organisation’s
capability to gain benefits from its human assets.

K E Y P O I N TS

SE8_C25.qxd 4/4/06 9:19 Page 610

Chapter 25 ■ Exercises 611

E X E R C I S E S

25.1 Explain why consistency, respect, inclusion and honesty are factors that contribute to
effective people management.

25.2 What factors should be taken into account when selecting staff to work on a software
development project? Giving reasons for your answer, suggest which of these would be most
important in choosing staff for an embedded real-time systems development project to
develop a controller for an eye surgery machine.

25.3 Develop the case study example on motivation in Figure 25.4 to include general activities that
Alice could introduce to ensure that other members of the team remain motivated.

25.4 Explain why keeping all members of a group informed about progress and technical decisions
in a project can improve group cohesiveness.

25.5 Explain what you understand by groupthink. Describe the dangers of this phenomenon and
explain how it might be avoided.

25.6 What problems do you think might arise in extreme programming teams where many
management decisions are devolved to the team members themselves?

25.7 Why are open-plan and communal offices sometimes less suitable for software development
than individual offices? Under what circumstances do you think that open-plan environments
might be better?

25.8 Why is the P-CMM an effective framework for improving the management of people in an
organisation? Suggest how it may have to be modified if it is to be used in small companies.

25.9 Should managers become friendly and mix socially with more junior members of their group?

25.10 Is it ethical to provide the answers that you think the tester wants rather than saying what
you really feel when taking psychological or aptitude tests?

••••

SE8_C25.qxd 4/4/06 9:19 Page 611

••

Software cost
estimation

26

Objectives
The objective of this chapter is to introduce techniques for
estimating the cost and effort required for software production.
When you have read this chapter, you will:

■ understand the fundamentals of software costing and reasons
why the price of the software may not be directly related to its
development cost;

■ have been introduced to three metrics that are used for software
productivity assessment;

■ appreciate why a range of techniques should be used when
estimating software costs and schedule;

■ understand the principles of the COCOMO II model for
algorithmic cost estimation.

Contents
26.1 Software productivity

26.2 Estimation techniques

26.3 Algorithmic cost modelling

26.4 Project duration and staffing

SE8_C26.qxd 4/4/06 9:20 Page 612

Chapter 26 ■ Software cost estimation 613

In Chapter 5, I introduced the project planning process where the work in a project
is split into a number of separate activities. This earlier discussion of project plan-
ning concentrated on ways to represent these activities, their dependencies and the
allocation of people to carry out these tasks. In this chapter, I turn to the problem
of associating estimates of effort and time with the project activities. Estimation
involves answering the following questions:

1. How much effort is required to complete each activity?

2. How much calendar time is needed to complete each activity?

3. What is the total cost of each activity?

Project cost estimation and project scheduling are normally carried out together.
The costs of development are primarily the costs of the effort involved, so the effort
computation is used in both the cost and the schedule estimate. However, you may
have to do some cost estimation before detailed schedules are drawn up. These ini-
tial estimates may be used to establish a budget for the project or to set a price for
the software for a customer.

There are three parameters involved in computing the total cost of a software
development project:

• Hardware and software costs including maintenance

• Travel and training costs

• Effort costs (the costs of paying software engineers).

For most projects, the dominant cost is the effort cost. Computers that are power-
ful enough for software development are relatively cheap. Although extensive travel
costs may be needed when a project is developed at different sites, the travel costs are
usually a small fraction of the effort costs. Furthermore, using electronic communica-
tions systems such as e-mail, shared web sites and videoconferencing can significantly
reduce the travel required. Electronic conferencing also means that travelling time is
reduced and time can be used more productively in software development. In one pro-
ject where I worked, making every other meeting a videoconference rather than a face-
to-face meeting reduced travel costs and time by almost 50%.

Effort costs are not just the salaries of the software engineers who are involved
in the project. Organisations compute effort costs in terms of overhead costs where
they take the total cost of running the organisation and divide this by the number
of productive staff. Therefore, the following costs are all part of the total effort cost:

1. Costs of providing, heating and lighting office space

2. Costs of support staff such as accountants, administrators, system managers,
cleaners and technicians

3. Costs of networking and communications

••

SE8_C26.qxd 4/4/06 9:20 Page 613

614 Chapter 26 ■ Software cost estimation

4. Costs of central facilities such as a library or recreational facilities

5. Costs of Social Security and employee benefits such as pensions and health
insurance.

This overhead factor is usually at least twice the software engineer’s salary, depend-
ing on the size of the organisation and its associated overheads. Therefore, if a com-
pany pays a software engineer $90,000 per year, its total costs are at least $180,000
per year or $15,000 per month.

Once a project is underway, project managers should regularly update their cost
and schedule estimates. This helps with the planning process and the effective use
of resources. If actual expenditure is significantly greater than the estimates, then
the project manager must take some action. This may involve applying for addi-
tional resources for the project or modifying the work to be done.

Software costing should be carried out objectively with the aim of accurately pre-
dicting the cost of developing the software. If the project cost has been computed as
part of a project bid to a customer, a decision then has to be made about the price quoted
to the customer. Classically, price is simply cost plus profit. However, the relationship
between the project cost and the price to the customer is not usually so simple.

Software pricing must take into account broader organisational, economic, polit-
ical and business considerations, such as those shown in Figure 26.1. Therefore,
there may not be a simple relationship between the price to the customer for the
software and the development costs. Because of the organisational considerations
involved, project pricing should involve senior management (i.e., those who can
make strategic decisions), as well as software project managers.

For example, say a small oil services software company employs 10 engineers
at the beginning of a year, but only has contracts in place that require 5 members
of the development staff. However, it is bidding for a very large contract with a
major oil company that requires 30 person years of effort over 2 years. The project
will not start up for at least 12 months but, if granted, it will transform the finances
of the small company. The oil services company gets an opportunity to bid on a
project that requires 6 people and has to be completed in 10 months. The costs (includ-
ing overheads of this project) are estimated at $1.2 million. However, to improve
its competitive position, the oil services company bids a price to the customer of
$0.8 million. This means that, although it loses money on this contract, it can retain
specialist staff for more profitable future projects.

26.1 Software productivity

You can measure productivity in a manufacturing system by counting the number
of units that are produced and dividing this by the number of person-hours required

••••

SE8_C26.qxd 4/4/06 9:20 Page 614

26.1 ■ Software productivity 615

to produce them. However, for any software problem, there are many different solu-
tions, each of which has different attributes. One solution may execute more effi-
ciently while another may be more readable and easier to maintain. When solutions
with different attributes are produced, comparing their production rates is not really
meaningful.

Nevertheless, as a project manager, you may be faced with the problem of esti-
mating the productivity of software engineers. You may need these productivity esti-
mates to help define the project cost or schedule, to inform investment decisions or
to assess whether process or technology improvements are effective.

Productivity estimates are usually based on measuring attributes of the software
and dividing this by the total effort required for development. There are two types
of metric that have been used:

1. Size-related metrics These are related to the size of some output from an activ-
ity. The most commonly used size-related metric is lines of delivered source
code. Other metrics that may be used are the number of delivered object code
instructions or the number of pages of system documentation.

2. Function-related metrics These are related to the overall functionality of the
delivered software. Productivity is expressed in terms of the amount of useful

••••

Factor Description

Market opportunity A development organisation may quote a low price
because it wishes to move into a new segment of the
software market. Accepting a low profit on one project
may give the organisation the opportunity to make a
greater profit later. The experience gained may also help it
develop new products.

Cost estimate If an organisation is unsure of its cost estimate, it may
uncertainty increase its price by some contingency over and above its

normal profit.

Contractual terms A customer may be willing to allow the developer to
retain ownership of the source code and reuse it in other
projects. The price charged may then be less than if the
software source code is handed over to the customer.

Requirements volatility If the requirements are likely to change, an organisation
may lower its price to win a contract. After the contract is
awarded, high prices can be charged for changes to the
requirements.

Financial health Developers in financial difficulty may lower their price to
gain a contract. It is better to make a smaller than normal
profit or break even than to go out of business.

Figure 26.1 Factors
affecting software
pricing

SE8_C26.qxd 4/4/06 9:20 Page 615

616 Chapter 26 ■ Software cost estimation

functionality produced in some given time. Function points and object points
are the best-known metrics of this type.

Lines of source code per programmer-month (LOC/pm) is a widely used soft-
ware productivity metric. You can compute LOC/pm by counting the total number
of lines of source code that are delivered, then divide the count by the total time in
programmer-months required to complete the project. This time therefore includes
the time required for all other activities (requirements, design, coding, testing and
documentation) involved in software development.

This approach was first developed when most programming was in FORTRAN,
assembly language or COBOL. Then, programs were typed on cards, with one state-
ment on each card. The number of lines of code was easy to count: It corresponded
to the number of cards in the program deck. However, programs in languages such
as Java or C++ consist of declarations, executable statements and commentary. They
may include macro instructions that expand to several lines of code. There may be
more than one statement per line. There is not, therefore, a simple relationship between
program statements and lines on a listing.

Comparing productivity across programming languages can also give mislead-
ing impressions of programmer productivity. The more expressive the programming
language, the lower the apparent productivity. This anomaly arises because all soft-
ware development activities are considered together when computing the develop-
ment time, but the LOC metric applies only to the programming process. Therefore,
if one language requires more lines than another to implement the same function-
ality, productivity estimates will be anomalous.

For example, consider an embedded real-time system that might be coded in 5,000
lines of assembly code or 1,500 lines of C. The development time for the various
phases is shown in Figure 26.2. The assembler programmer has a productivity of
714 lines/month and the high-level language programmer less than half of this—
300 lines/month. Yet the development costs for the system developed in C are lower
and it is delivered earlier.

An alternative to using code size as the estimated product attribute is to use some
measure of the functionality of the code. This avoids the above anomaly, as func-
tionality is independent of implementation language. MacDonell (MacDonell,
1994) briefly describes and compares several function-based measures. The best known
of these measures is the function-point count. This was proposed by Albrecht (Albrecht,
1979) and refined by Albrecht and Gaffney (Albrecht and Gaffney, 1983). Garmus
and Herron (Garmus and Herron, 2000) describe the practical use of function points
in software projects.

Productivity is expressed as the number of function points that are implemented
per person-month. A function point is not a single characteristic but is computed
by combining several different measurements or estimates. You compute the total
number of function points in a program by measuring or estimating the following
program features:

••••

SE8_C26.qxd 4/4/06 9:20 Page 616

26.1 ■ Software productivity 617

• external inputs and outputs;

• user interactions;

• external interfaces;

• files used by the system.

Obviously, some inputs and outputs, interactions. and so on are more complex
than others and take longer to implement. The function-point metric takes this into
account by multiplying the initial function-point estimate by a complexity-weight-
ing factor. You should assess each of these features for complexity and then assign
the weighting factor that varies from 3 (for simple external inputs) to 15 for com-
plex internal files. Either the weighting values proposed by Albrecht or values based
on local experience may be used.

You can then compute the so-called unadjusted function-point count (UFC) by
multiplying each initial count by the estimated weight and summing all values.

UFC = �(number of elements of given type) � (weight)

You then modify this unadjusted function-point count by additional complexity
factors that are related to the complexity of the system as a whole. This takes into
account the degree of distributed processing, the amount of reuse, the performance,
and so on. The unadjusted function-point count is multiplied by these project com-
plexity factors to produce a final function-point count for the overall system.

Symons (Symons, 1988) notes that the subjective nature of complexity estimates
means that the function-point count in a program depends on the estimator. Different
people have different notions of complexity. There are therefore wide variations in
function-point count depending on the estimator’s judgement and the type of system
being developed. Furthermore, function points are biased towards data-processing
systems that are dominated by input and output operations. It is harder to estimate
function-point counts for event-driven systems. For this reason, some people think
that function points are not a very useful way to measure software productivity (Furey
and Kitchenham, 1997; Armour, 2002). However, users of function points argue that,

••••

Analysis Design Coding Testing Documentation

Assembly code 3 weeks 5 weeks 8 weeks 10 weeks 2 weeks
High-level language 3 weeks 5 weeks 4 weeks 6 weeks 2 weeks

Size Effort Productivity

Assembly code 5000 lines 28 weeks 714 lines/month
High-level language 1500 lines 20 weeks 300 lines/month

Figure 26.2 System
development times

SE8_C26.qxd 4/4/06 9:20 Page 617

618 Chapter 26 ■ Software cost estimation

in spite of their flaws, they are effective in practical situations (Banker, et al., 1993;
Garmus and Herron, 2000).

Object points (Banker, et al., 1994) are an alternative to function points. They
can be used with languages such as database programming languages or scripting
languages. Object points are not object classes that may be produced when an object-
oriented approach is taken to software development. Rather, the number of object
points in a program is a weighted estimate of:

1. The number of separate screens that are displayed Simple screens count as 1
object point, moderately complex screens count as 2, and very complex screens
count as 3 object points.

2. The number of reports that are produced For simple reports, count 2 object
points, for moderately complex reports, count 5, and for reports that are likely
to be difficult to produce, count 8 object points.

3. The number of modules in imperative programming languages such as Java or
C++ that must be developed to supplement the database programming code
Each of these modules counts as 10 object points.

Object points are used in the COCOMO II estimation model (where they are called
application points) that I cover later in this chapter. The advantage of object points
over function points is that they are easier to estimate from a high-level software
specification. Object points are only concerned with screens, reports and modules
in conventional programming languages. They are not concerned with implemen-
tation details, and the complexity factor estimation is much simpler.

If function points or object points are used, they can be estimated at an early
stage in the development process before decisions that affect the program size have
been made. Estimates of these parameters can be made as soon as the external inter-
actions of the system have been designed. At this stage, it is very difficult to pro-
duce an accurate estimate of the size of a program in lines of source code.

Function-point and object-point counts can be used in conjunction with lines of
code-estimation models. The final code size is calculated from the number of func-
tion points. Using historical data analysis, the average number of lines of code, AVC,
in a particular language required to implement a function point can be estimated.
Values of AVC vary from 200 to 300 LOC/FP in assembly language to 2 to 40
LOC/FP for a database programming language such as SQL. The estimated code
size for a new application is then computed as follows:

Code size = AVC � Number of function points

The programming productivity of individuals working in an organisation is
affected by a number of factors. Some of the most important of these are summarised
in Figure 26.3. However, individual differences in ability are usually more signif-
icant than any of these factors. In an early assessment of productivity, Sackman et
al. (Sackman, et al., 1968) found that some programmers were more than 10 times

••••

SE8_C26.qxd 4/4/06 9:20 Page 618

26.1 ■ Software productivity 619

more productive than others. My experience is that this is still true. Large teams
are likely to have a mix of abilities and experience and so will have ‘average’ pro-
ductivity. In small teams, however, overall productivity is mostly dependent on indi-
vidual aptitudes and abilities.

Software development productivity varies dramatically across application
domains and organisations. For large, complex, embedded systems, productivity has
been estimated to be as low as 30 LOC/pm. For straightforward, well-understood
application systems, written in a language such as Java, it may be as high as 900
LOC/pm. When measured in terms of object points, Boehm et al. (Boehm, et al.,
1995) suggest that productivity varies from 4 object points per month to 50 per month,
depending on the type of application, tool support and developer capability.

The problem with measures that rely on the amount produced in a given time
period is that they take no account of quality characteristics such as reliability and
maintainability. They imply that more always means better. Beck (Beck, 2000), in
his discussion of extreme programming, makes an excellent point about estimation.
If your approach is based on continuous code simplification and improvement, then
counting lines of code doesn’t mean much.

These measures also do not take into account the possibility of reusing the soft-
ware produced, using code generators and other tools that help create the software.
What we really want to estimate is the cost of deriving a particular system with
given functionality, quality, performance, maintainability, and so on. This is only
indirectly related to tangible measures such as the system size.

As a manager, you should not use productivity measurements to make hasty judge-
ments about the abilities of the engineers on your team. If you do, engineers may
compromise on quality in order to become more ‘productive’. It may be the case

••••

Factor Description

Application domain Knowledge of the application domain is essential for
experience effective software development. Engineers who already

understand a domain are likely to be the most productive.

Process quality The development process used can have a significant effect
on productivity. This is covered in Chapter 28.

Project size The larger a project, the more time required for team
communications. Less time is available for development so
individual productivity is reduced.

Technology support Good support technology such as CASE tools and
configuration management systems can improve
productivity.

Working environment As I discussed in Chapter 25, a quiet working environment
with private work areas contributes to improved
productivity.

Figure 26.3 Factors
affecting software
engineering
productivity

SE8_C26.qxd 4/4/06 9:20 Page 619

620 Chapter 26 ■ Software cost estimation

that the ‘less-productive’ programmer produces more reliable code—code that is
easier to understand and cheaper to maintain. You should always, therefore, think
of productivity measures as providing partial information about programmer pro-
ductivity. You also need to consider other information about the quality of the pro-
grams that are produced.

26.2 Estimation techniques

There is no simple way to make an accurate estimate of the effort required to develop
a software system. You may have to make initial estimates on the basis of a high-
level user requirements definition. The software may have to run on unfamiliar com-
puters or use new development technology. The people involved in the project and
their skills will probably not be known. All of these mean that it is impossible to
estimate system development costs accurately at an early stage in a project.

Furthermore, there is a fundamental difficulty in assessing the accuracy of dif-
ferent approaches to cost-estimation techniques. Project cost estimates are often self-
fulfilling. The estimate is used to define the project budget, and the product is adjusted
so that the budget figure is realised. I do not know of any controlled experiments
with project costing where the estimated costs were not used to bias the experi-
ment. A controlled experiment would not reveal the cost estimate to the project man-
ager. The actual costs would then be compared with the estimated project costs.
However, such an experiment is probably impossible because of the high costs involved
and the number of variables that cannot be controlled.

Nevertheless, organisations need to make software effort and cost estimates. To
do so, one or more of the techniques described in Figure 26.4 may be used (Boehm,
1981). All of these techniques rely on experience-based judgements by project man-
agers who use their knowledge of previous projects to arrive at an estimate of the
resources required for the project. However, there may be important differences
between past and future projects. Many new development methods and techniques
have been introduced in the last 10 years. Some examples of the changes that may
affect estimates based on experience include:

1. Distributed object systems rather than mainframe-based systems

2. Use of web services

3. Use of ERP or database-centred systems

4. Use of off-the-shelf software rather than original system development

5. Development for and with reuse rather than new development of all parts of a
system

••••

SE8_C26.qxd 4/4/06 9:20 Page 620

26.2 ■ Estimation techniques 621

6. Development using scripting languages such as TCL or Perl (Ousterhout, 1998)

7. The use of CASE tools and program generators rather than unsupported soft-
ware development.

If project managers have not worked with these techniques, their previous expe-
rience may not help them estimate software project costs. This makes it more dif-
ficult for them to produce accurate costs and schedule estimates.

You can tackle the approaches to cost estimation shown in Figure 26.4 using
either a top-down or a bottom-up approach. A top-down approach starts at the sys-
tem level. You start by examining the overall functionality of the product and how
that functionality is provided by interacting sub-functions. The costs of system-level
activities such as integration, configuration management and documentation are taken
into account.

The bottom-up approach, by contrast, starts at the component level. The system
is decomposed into components, and you estimate the effort required to develop
each of these components. You then add these component costs to compute the effort
required for the whole system development.

••••

Technique Description

Algorithmic cost A model is developed using historical cost information that
modelling relates some software metric (usually its size) to the project

cost. An estimate is made of that metric and the model
predicts the effort required.

Expert judgement Several experts on the proposed software development
techniques and the application domain are consulted. They
each estimate the project cost. These estimates are compared
and discussed. The estimation process iterates until an agreed
estimate is reached.

Estimation by This technique is applicable when other projects in the same
analogy application domain have been completed. The cost of a new

project is estimated by analogy with these completed projects.
Myers (Myers, 1989) gives a very clear description of this
approach.

Parkinson’s Law Parkinson’s Law states that work expands to fill the time
available. The cost is determined by available resources rather
than by objective assessment. If the software has to be
delivered in 12 months and 5 people are available, the effort
required is estimated to be 60 person-months.

Pricing to win The software cost is estimated to be whatever the customer
has available to spend on the project. The estimated effort
depends on the customer’s budget and not on the software
functionality.

Figure 26.4 Cost-
estimation
techniques

SE8_C26.qxd 4/4/06 9:20 Page 621

622 Chapter 26 ■ Software cost estimation

The disadvantages of the top-down approach are the advantages of the bottom-up
approach and vice versa. Top-down estimation can underestimate the costs of solv-
ing difficult technical problems associated with specific components such as inter-
faces to nonstandard hardware. There is no detailed justification of the estimate that
is produced. By contrast, bottom-up estimation produces such a justification and con-
siders each component. However, this approach is more likely to underestimate the
costs of system activities such as integration. Bottom-up estimation is also more expen-
sive. There must be an initial system design to identify the components to be costed.

Each estimation technique has its own strengths and weaknesses. Each uses dif-
ferent information about the project and the development team, so if you use a sin-
gle model and this information is not accurate, your final estimate will be wrong.
For large projects, therefore, you should use several cost estimation techniques and
compare their results. If these predict radically different costs, you probably do not
have enough information about the product or the development process. You
should look for more information about the product, process or team and repeat the
costing process until the estimates converge.

These estimation techniques are applicable where a requirements document for
the system has been produced. This should define all users and system requirements.
You can therefore make a reasonable estimate of the system functionality that is to
be developed. In general, large systems engineering projects will have such a
requirements document.

However, in many cases, the costs of many projects must be estimated using
only incomplete user requirements for the system. This means that the estimators
have very little information with which to work. Requirements analysis and speci-
fication is expensive, and the managers in a company may need an initial cost esti-
mate for the system before they can have a budget approved to develop more detailed
requirements or a system prototype.

Under these circumstances, “pricing to win” is a commonly used strategy. The
notion of pricing to win may seem unethical and unbusinesslike. However, it does
have some advantages. A project cost is agreed on the basis of an outline proposal.
Negotiations then take place between client and customer to establish the detailed
project specification. This specification is constrained by the agreed cost. The
buyer and seller must agree on what is acceptable system functionality. The fixed
factor in many projects is not the project requirements but the cost. The require-
ments may be changed so that the cost is not exceeded.

For example, say a company is bidding for a contract to develop a new fuel deliv-
ery system for an oil company that schedules deliveries of fuel to its service sta-
tions. There is no detailed requirements document for this system so the developers
estimate that a price of $900,000 is likely to be competitive and within the oil com-
pany’s budget. After they are granted the contract, they negotiate the detailed require-
ments of the system so that basic functionality is delivered; then they estimate the
additional costs for other requirements. The oil company does not necessarily lose
here because it has awarded the contract to a company that it can trust. The addi-
tional requirements may be funded from a future budget, so that the oil company’s
budgeting is not disrupted by a very high initial software cost.

••••

SE8_C26.qxd 4/4/06 9:20 Page 622

26.3 ■ Algorithmic cost modelling 623

26.3 Algorithmic cost modelling

Algorithmic cost modelling uses a mathematical formula to predict project costs based
on estimates of the project size, the number of software engineers, and other pro-
cess and product factors. An algorithmic cost model can be built by analysing the
costs and attributes of completed projects and finding the closest fit formula to actual
experience.

Algorithmic cost models are primarily used to make estimates of software devel-
opment costs, but Boehm (Boehm, et al., 2000) discusses a range of other uses for
algorithmic cost estimates, including estimates for investors in software companies,
estimates of alternative strategies to help assess risks, and estimates to inform deci-
sions about reuse, redevelopment or outsourcing.

In its most general form, an algorithmic cost estimate for software cost can be
expressed as:

Effort = A � SizeB � M

A is a constant factor that depends on local organisational practices and the type
of software that is developed. Size may be either an assessment of the code size of
the software or a functionality estimate expressed in function or object points. The
value of exponent B usually lies between 1 and 1.5. M is a multiplier made by com-
bining process, product and development attributes, such as the dependability
requirements for the software and the experience of the development team

Most algorithmic estimation models have an exponential component (B in the above
equation) that is associated with the size estimate. This reflects the fact that costs do
not normally increase linearly with project size. As the size of the software increases,
extra costs are incurred because of the communication overhead of larger teams, more
complex configuration management, more difficult system integration, and so on.
Therefore, the larger the system, the larger the value of this exponent.

Unfortunately, all algorithmic models suffer from the same fundamental
difficulties:

1. It is often difficult to estimate Size at an early stage in a project when only a
specification is available. Function-point and object-point estimates are easier
to produce than estimates of code size but are often still inaccurate.

2. The estimates of the factors contributing to B and M are subjective. Estimates
vary from one person to another, depending on their background and experi-
ence with the type of system that is being developed.

The number of lines of source code in the delivered system is the basic metric
used in many algorithmic cost models. Size estimation may involve estimation by
analogy with other projects, estimation by converting function or object points to

••••

SE8_C26.qxd 4/4/06 9:20 Page 623

624 Chapter 26 ■ Software cost estimation

code size, estimation by ranking the sizes of system components and using a known
reference component to estimate the component size, or it may simply be a ques-
tion of engineering judgement.

Accurate code size estimation is difficult at an early stage in a project because
the code size is affected by design decisions that have not yet been made. For exam-
ple, an application that requires complex data management may either use a com-
mercial database or implement its own data-management system. If a commercial
database is used, the code size will be smaller but additional effort may be needed
to overcome the performance limitations of the commercial product.

The programming language used for system development also affects the num-
ber of lines of code to be developed. A language such as Java might mean that more
lines of code are necessary than if C (say) were used. However, this extra code allows
more compile-time checking so validation costs are likely to be reduced. How should
this be taken into account? Furthermore, it may be possible to reuse a significant
amount of code from previous projects and the size estimate has to be adjusted to
take this into account.

If you use an algorithmic cost estimation model, you should develop a range of
estimates (worst, expected and best) rather than a single estimate and apply the cost-
ing formula to all of them. Estimates are most likely to be accurate when you under-
stand the type of software that is being developed, when you have calibrated the
costing model using local data, and when programming language and hardware choices
are predefined.

The accuracy of the estimates produced by an algorithmic model depends on the
system information that is available. As the software process proceeds, more infor-
mation becomes available so estimates become more and more accurate. If the ini-
tial estimate of effort required is x months of effort, this range may be from 0.25x
to 4x when the system is first proposed. This narrows during the development pro-
cess, as shown in Figure 26.5. This figure, adapted from Boehm’s paper (Boehm,
et al., 1995), reflects experience of a large number of software development pro-
jects. Of course, just before the system is delivered, a very accurate estimate can
be made.

26.3.1 The COCOMO model

A number of algorithmic models have been proposed as the basis for estimating the
effort, schedule and costs of a software project. These are conceptually similar but
use different parameter values. The model that I discuss here is the COCOMO model.
The COCOMO model is an empirical model that was derived by collecting data from
a large number of software projects. These data were analysed to discover formulae
that were the best fit to the observations. These formulae link the size of the system
and product, project and team factors to the effort to develop the system.

I have chosen to use the COCOMO model for several reasons:

••••

SE8_C26.qxd 4/4/06 9:20 Page 624

26.3 ■ Algorithmic cost modelling 625

1. It is well documented, available in the public domain and supported by public
domain and commercial tools.

2. It has been widely used and evaluated in a range of organisations.

3. It has a long pedigree from its first instantiation in 1981 (Boehm, 1981), through
a refinement tailored to Ada software development (Boehm and Royce,
1989), to its most recent version, COCOMO II, published in 2000 (Boehm,
et al., 2000).

The COCOMO models are comprehensive, with a large number of parameters
that can each take a range of values. They are so complex that I cannot give a com-
plete description here. Rather, I simply discuss their essential characteristics to give
you a basic understanding of algorithmic cost models.

The first version of the COCOMO model (COCOMO 81) was a three-level model
where the levels corresponded to the detail of the analysis of the cost estimate. The
first level (basic) provided an initial rough estimate; the second level modified this
using a number of project and process multipliers; and the most detailed level pro-
duced estimates for different phases of the project. Figure 26.6 shows the basic
COCOMO formula for different types of projects. The multiplier M reflects prod-
uct, project and team characteristics.

COCOMO 81 assumed that the software would be developed according to a water-
fall process (see Chapter 4) using standard imperative programming languages such
as C or FORTRAN. However, there have been radical changes to software devel-
opment since this initial version was proposed. Prototyping and incremental devel-
opment are commonly used process models. Software is now often developed by

••••

x

2x

4x

0.5x

0.25x

Feasibility Requirements Design Code Delivery

Figure 26.5 Estimate
uncertainty

SE8_C26.qxd 4/4/06 9:20 Page 625

626 Chapter 26 ■ Software cost estimation

assembling reusable components with off-the-shelf systems and ‘gluing’ them
together with scripting language. Data-intensive systems are developed using a database
programming language such as SQL and a commercial database management sys-
tem. Existing software is re-engineered to create new software. CASE tool support
for most software process activities is now available.

To take these changes into account, the COCOMO II model recognises differ-
ent approaches to software development such as prototyping, development by com-
ponent composition and use of database programming. COCOMO II supports a spiral
model of development (see Chapter 4) and embeds several sub-models that produce
increasingly detailed estimates. These can be used in successive rounds of the devel-
opment spiral. Figure 26.7 shows COCOMO II sub-models and where they are used.

The sub-models that are part of the COCOMO II model are:

1. An application-composition model This assumes that systems are created from
reusable components, scripting or database programming. It is designed to make
estimates of prototype development. Software size estimates are based on
application points, and a simple size/productivity formula is used to estimate
the effort required. Application points are the same as object points discussed
in Section 26.1, but the name was changed to avoid confusion with objects in
object-oriented development.

2. An early design model This model is used during early stages of the system
design after the requirements have been established. Estimates are based on func-
tion points, which are then converted to number of lines of source code. The
formula follows the standard form discussed above with a simplified set of seven
multipliers.

3. A reuse model This model is used to compute the effort required to integrate
reusable components and/or program code that is automatically generated by
design or program translation tools. It is usually used in conjunction with the
post-architecture model.

4. A post-architecture model Once the system architecture has been designed, a
more accurate estimate of the software size can be made. Again this model uses

••••

Project
complexity Formula Description

Simple PM = 2.4 (KDSI)1.05 � M Well-understood applications developed by small teams

Moderate PM = 3.0 (KDSI)1.12 � M More complex projects where team members may have
limited experience of related systems

Embedded PM = 3.6 (KDSI)1.20 � M Complex projects where the software is part of a strongly
coupled complex of hardware, software, regulations and
operational procedures

Figure 26.6 The basic
COCOMO 81 model

SE8_C26.qxd 4/4/06 9:20 Page 626

26.3 ■ Algorithmic cost modelling 627

the standard formula for cost estimation discussed above. However, it includes
a more extensive set of 17 multipliers reflecting personnel capability and prod-
uct and project characteristics.

Of course, in large systems, different parts may be developed using different tech-
nologies, and you may not have to estimate all parts of the system to the same level
of accuracy. In such cases, you can use the appropriate sub-model for each part of
the system and combine the results to create a composite estimate.

The application-composition model

The application-composition model was introduced into COCOMO II to support the
estimation of effort required for prototyping projects and for projects where the soft-
ware is developed by composing existing components. It is based on an estimate
of weighted application points (object points) divided by a standard estimate of
application-point productivity. The estimate is then adjusted according to the diffi-
culty of developing each object point (Boehm, et al., 2000). Programmer produc-
tivity also depends on the developer’s experience and capability as well as the
capabilities of the CASE tools used to support development. Figure 26.8 shows the
levels of object-point productivity suggested by the model developers (Boehm, et
al., 1995).

Application composition usually involves significant software reuse, and some
of the total number of application points in the system may be implemented with
reusable components. Consequently, you have to adjust the estimate based on the

••••

Figure 26.7 The
COCOMO II models

SE8_C26.qxd 4/4/06 9:20 Page 627

628 Chapter 26 ■ Software cost estimation

total number of application points to take into account the percentage of reuse expected.
Therefore, the final formula for effort computation for system prototypes is:

PM = (NAP � (1 � %reuse/100)) / PROD

PM is the effort estimate in person-months. NAP is the total number of applica-
tion points in the delivered system. %reuse is an estimate of the amount of reused
code in the development. PROD is the object-point productivity as shown in Figure
26.8. The model simplistically assumes that there is no additional effort involved
in reuse.

The early design model

This model is used once user requirements have been agreed and initial stages of
the system design process are underway. However, you don’t need a detailed archi-
tectural design to make these initial estimates. Your goal at this stage should be to
make an approximate estimate without undue effort. Consequently, you make var-
ious simplifying assumptions, such as that the effort involved in integrating
reusable code is zero. Early design estimates are most useful for option exploration
where you need to compare different ways of implementing the user requirements.

The estimates produced at this stage are based on the standard formula for algo-
rithmic models, namely:

Effort = A � SizeB � M

Based on his own large data set, Boehm proposes that the coefficient A should
be 2.94. The size of the system is expressed in KSLOC, which is the number of
thousands of lines of source code. You calculate KSLOC by estimating the num-
ber of function points in the software. You then use standard tables that relate soft-
ware size to function points for different programming languages to compute an
initial estimate of the system size in KSLOC.

The exponent B reflects the increased effort required as the size of the project
increases. This is not fixed for different types of systems, as in COCOMO 81, but
can vary from 1.1 to 1.24 depending on the novelty of the project, the development
flexibility, the risk resolution processes used, the cohesion of the development team
and the process maturity level (see Chapter 28) of the organisation. I discuss how

••••

Developer’s experience Very low Low Nominal High Very high
and capability

CASE maturity and capability Very low Low Nominal High Very high

PROD (NOP/month) 4 7 13 25 50

Figure 26.8 Object-
point productivity

SE8_C26.qxd 4/4/06 9:20 Page 628

26.3 ■ Algorithmic cost modelling 629

the value of this exponent is calculated using these parameters in the description of
the COCOMO II post-architecture model.

The multiplier M in COCOMO II is based on a simplified set of seven project
and process characteristics that influence the estimate. These can increase or
decrease the effort required. These characteristics used in the early design model
are product reliability and complexity (RCPX), reuse required (RUSE), platform dif-
ficulty (PDIF), personnel capability (PERS), personnel experience (PREX), schedule
(SCED) and support facilities (FCIL). You estimate values for these attributes using
a six-point scale where 1 corresponds to very low values for these multipliers and
6 corresponds to very high values.

This results in an effort computation as follows:

PM = 2.94 � SizeB � M

where:

M = PERS � RCPX � RUSE � PDIF � PREX � FCIL � SCED

The reuse model

As I have discussed in Chapters 18 and 19, software reuse is now common, and
most large systems include a significant percentage of code that is reused from pre-
vious developments. The reuse model is used to estimate the effort required to inte-
grate reusable or generated code.

COCOMO II considers reused code to be of two types. Black-box code is code
that can be reused without understanding the code or making changes to it. The
development effort for black-box code is taken to be zero. Code that has to be adapted
to integrate it with new code or other reused components is called white-box code.
Some development effort is required to reuse this because it has to be understood
and modified before it can work correctly in the system.

In addition, many systems include automatically generated code from program
translators that generate code from system models. This is a form of reuse where
standard templates are embedded in the generator. The system model is analysed,
and code based on these standard templates with additional details from the system
model is generated. The COCOMO II reuse model includes a separate model to
estimate the costs associated with this generated code.

For code that is automatically generated, the model estimates the number of per-
son months required to integrate this code. The formula for effort estimation is:

PMAuto = (ASLOC � AT/100) / ATPROD // Estimate for generated code

AT is the percentage of adapted code that is automatically generated and ATPROD
is the productivity of engineers in integrating such code. Boehm et al. (Boehm, et
al., 2000) have measured ATPROD to be about 2,400 source statements per month.
Therefore, if there is a total of 20,000 lines of white-box reused code in a system

••••

SE8_C26.qxd 4/4/06 9:20 Page 629

630 Chapter 26 ■ Software cost estimation

and 30% of this is automatically generated, then the effort required to integrate this
generated code is:

(20,000 � 30/100) / 2400 = 2.5 person months //Generated code example

The other component of the reuse model is used when a system includes some
new code and some reused white-box components that have to be integrated. In this
case, the reuse model does not compute the effort directly. Rather, based on the
number of lines of code that are reused, it calculates a figure that represents the
equivalent number of lines of new code.

Therefore, if 30,000 lines of code are to be reused, the new equivalent size esti-
mate might be 6,000. Essentially, reusing 30,000 lines of code is taken to be equiv-
alent to writing 6,000 lines of new code. This calculated figure is added to the number
of lines of new code to be developed in the COCOMO II post-architecture model.

The estimates in this reuse model are:

ASLOC—the number of lines of code in the components that have to be adapted;
ESLOC—the equivalent number of lines of new source code.

The formula used to compute ESLOC takes into account the effort required for
software understanding, for making changes to the reused code and for making changes
to the system to integrate that code. It also takes into account the amount of code
that is automatically generated where the development effort is calculated, as
explained earlier in this section.

The following formula is used to calculate the number of equivalent lines of source
code:

ESLOC = ASLOC � (1 � AT/100) � AAM

ASLOC is reduced according to the percentage of automatically generated code.
AAM is the Adaptation Adjustment Multiplier, which takes into account the effort
required to reuse code. Simplistically, AAM is the sum of three components:

1. An adaptation component (referred to as AAF) that represents the costs of mak-
ing changes to the reused code. This includes components that take into
account design, code and integration changes.

2. An understanding component (referred to as SU) that represents the costs of
understanding the code to be reused and the familiarity of the engineer with
the code. SU ranges from 50 for complex unstructured code to 10 for well-writ-
ten, object-oriented code.

3. An assessment factor (referred to as AA) that represents the costs of reuse decision-
making. That is, some analysis is always required to decide whether code can
be reused, and this is included in the cost as AA. AA varies from 0 to 8 depend-
ing on the amount of analysis effort required.

••••

SE8_C26.qxd 4/4/06 9:20 Page 630

26.3 ■ Algorithmic cost modelling 631

The reuse model is a nonlinear model. Some effort is required if reuse is con-
sidered to make an assessment of whether reuse is possible. Furthermore, as more
and more reuse is contemplated, the costs per code unit reused drop as the fixed
understanding and assessment costs are spread across more lines of code.

The post-architecture level

The post-architecture model is the most detailed of the COCOMO II models. It is
used once an initial architectural design for the system is available so the sub-system
structure is known.

The estimates produced at the post-architecture level are based on the same basic
formula (PM � A � SizeB � M) used in the early design estimates. However, the
size estimate for the software should be more accurate by this stage in the estima-
tion process. In addition, a much more extensive set of product, process and organ-
isational attributes (17 rather than 7) are used to refine the initial effort
computation. It is possible to use more attributes at this stage because you have
more information about the software to be developed and the development process.

The estimate of the code size in the post-architecture model is computed using
three components:

1. An estimate of the total number of lines of new code to be developed

2. An estimate of the equivalent number of source lines of code (ESLOC) calcu-
lated using the reuse model

3. An estimate of the number of lines of code that have to be modified because
of changes to the requirements.

These three estimates are added to give the total code size in KSLOC that you
use in the effort computation formula. The final component in the estimate—the
number of lines of modified code—reflects the fact that software requirements always
change. The system programs have to reflect these requirements changes so addi-
tional code has to be developed. Of course, estimating the number of lines of code
that will change is not easy, and there will often be even more uncertainty in this
figure than in development estimates.

The exponent term (B) in the effort computation formula had three possible val-
ues in COCOMO 1. These were related to the levels of project complexity. As pro-
jects become more complex, the effects of increasing system size become more
significant. However, good organisational practices and procedures can control this
‘diseconomy of scale’. This is recognised in COCOMO II, where the range of val-
ues for the exponent B is continuous rather than discrete. The exponent is based on
five scale factors, as shown in Figure 26.9. These factors are rated on a six-point
scale from Very low to Extra high (5 to 0). You should then add the ratings, divide
them by 100 and add the result to 1.01 to get the exponent that should be used.

To illustrate this, imagine that an organisation is taking on a project in a domain
where it has little previous experience. The project client has not defined the

••••

SE8_C26.qxd 4/4/06 9:20 Page 631

632 Chapter 26 ■ Software cost estimation

process to be used and has not allowed time in the project schedule for significant
risk analysis. A new development team must be put together to implement this sys-
tem. The organisation has recently put a process improvement programme in place
and has been rated as a Level 2 organisation according to the CMM model (see
Chapter 28). Possible values for the ratings used in exponent calculation are:

• Precedentedness This is a new project for the organisation—rated Low (4)

• Development flexibility No client involvement—rated Very high (1)

• Architecture/risk resolution No risk analysis carried out—rated Very low (5)

• Team cohesion New team so no information—rated Nominal (3)

• Process maturity Some process control in place—rated Nominal (3)

The sum of these values is 16, so you calculate the exponent by adding 0.16 to
1.01, getting a value of 1.17.

The attributes (Figure 26.10) that are used to adjust the initial estimates and cre-
ate multiplier M in the post-architecture model fall into four classes:

1. Product attributes are concerned with required characteristics of the software
product being developed.

2. Computer attributes are constraints imposed on the software by the hardware
platform.

••••

Scale factor Explanation

Precedentedness Reflects the previous experience of the organisation with this
type of project. Very low means no previous experience; Extra
high means that the organisation is completely familiar with
this application domain.

Development Reflects the degree of flexibility in the development process.
flexibility Very low means a prescribed process is used; Extra high

means that the client sets only general goals.

Architecture/risk Reflects the extent of risk analysis carried out. Very low
resolution means little analysis; Extra high means a complete and

thorough risk analysis.

Team cohesion Reflects how well the development team know each other
and work together. Very low means very difficult interactions;
Extra high means an integrated and effective team with no
communication problems.

Process maturity Reflects the process maturity of the organisation. The
computation of this value depends on the CMM Maturity
Questionnaire, but an estimate can be achieved by subtracting
the CMM process maturity level from 5.

Figure 26.9 Scale
factors used in the
COCOMO II
exponent
computation

SE8_C26.qxd 4/4/06 9:20 Page 632

26.3 ■ Algorithmic cost modelling 633

3. Personnel attributes are multipliers that take the experience and capabilities of
the people working on the project into account.

4. Project attributes are concerned with the particular characteristics of the soft-
ware development project.

Figure 26.11 shows how these cost drivers influence effort estimates. I have taken
a value for the exponent of 1.17 as discussed in the above example and assumed
that RELY, CPLX, STOR, TOOL and SCED are the key cost drivers in the project. All
of the other cost drivers have a nominal value of 1, so they do not affect the com-
putation of the effort.

••••

Attribute Type Description

RELY Product Required system reliability

CPLX Product Complexity of system modules

DOCU Product Extent of documentation required

DATA Product Size of database used

RUSE Product Required percentage of reusable components

TIME Computer Execution time constraint

PVOL Computer Volatility of development platform

STOR Computer Memory constraints

ACAP Personnel Capability of project analysts

PCON Personnel Personnel continuity

PCAP Personnel Programmer capability

PEXP Personnel Programmer experience in project domain

AEXP Personnel Analyst experience in project domain

LTEX Personnel Language and tool experience

TOOL Project Use of software tools

SCED Project Development schedule compression

SITE Project Extent of multisite working and quality of inter-site
communications

Figure 26.10 Project
cost drivers

SE8_C26.qxd 4/4/06 9:20 Page 633

634 Chapter 26 ■ Software cost estimation

In Figure 26.11, I have assigned maximum and minimum values to the key cost
drivers to show how they influence the effort estimate. The values taken are those
from the COCOMO II reference manual (Boehm, 1997). You can see that high
values for the cost drivers lead to an effort estimate that is more than three times
the initial estimate, whereas low values reduce the estimate to about one third of the
original. This highlights the vast differences between different types of project and
the difficulties of transferring experience from one application domain to another.

This formulae proposed by the developers of the COCOMO II model reflects
their experience and data, but it is an extremely complex model to understand and
use. There are many attributes and considerable scope for uncertainty in estimating
their values. In principle, each user of the model should calibrate the model and the
attribute values according to its own historical project data, as this will reflect local
circumstances that affect the model.

In practice, however, few organisations have collected enough data from past
projects in a form that supports model calibration. Practical use of COCOMO II
therefore has to start with the published values for the model parameters, and it is
impossible for a user to know how closely these relate to their own situation. This
means that the practical use of the COCOMO model is limited. Very large organ-
isations may have the resources to employ a cost-modelling expert to adapt and use
the COCOMO II models. However, for the majority of companies, the cost of cal-
ibrating and learning to use an algorithmic model such as the COCOMO model is
so high that they are unlikely to introduce this approach.

26.3.2 Algorithmic cost models in project planning

One of the most valuable uses of algorithmic cost modelling is to compare differ-
ent ways of investing money to reduce project costs. This is particularly important

••••

Exponent value 1.17
System size (including factors for reuse and 128,000 DSI
requirements volatility)
Initial COCOMO estimate without cost drivers 730 person-months

Reliability Very high, multiplier = 1.39
Complexity Very high, multiplier = 1.3
Memory constraint High, multiplier = 1.21
Tool use Low, multiplier = 1.12
Schedule Accelerated, multiplier = 1.29
Adjusted COCOMO estimate 2306 person-months

Reliability Very low, multiplier = 0.75
Complexity Very low, multiplier = 0.75
Memory constraint None, multiplier = 1
Tool use Very high, multiplier = 0.72
Schedule Normal, multiplier = 1
Adjusted COCOMO estimate 295 person-months

Figure 26.11 The
effect of cost drivers
on effort estimates

SE8_C26.qxd 4/4/06 9:20 Page 634

26.3 ■ Algorithmic cost modelling 635

where you have to make hardware/software cost trade-offs and where you may have
to recruit new staff with specific project skills. The algorithmic code model helps
you assess the risks of each option. Applying the cost model reveals the financial
exposure that is associated with different management decisions.

Consider an embedded system to control an experiment that is to be launched
into space. Spaceborne experiments have to be very reliable and are subject to strin-
gent weight limits. The number of chips on a circuit board may have to be min-
imised. In terms of the COCOMO model, the multipliers based on computer
constraints and reliability are greater than 1.

There are three components to be taken into account in costing this project:

1. The cost of the target hardware to execute the system

2. The cost of the platform (computer plus software) to develop the system

3. The cost of the effort required to develop the software.

Figure 26.13 shows some possible options for this project. These include spend-
ing more on target hardware to reduce software costs or investing in better devel-
opment tools.

Additional hardware costs may be acceptable because the system is a specialised
system that does not have to be mass-produced. If hardware is embedded in con-
sumer products, however, investing in target hardware to reduce software costs
increases the unit cost of the product, irrespective of the number sold, which is usu-
ally undesirable.

Figure 26.13 shows the hardware, software and total costs for the options A–F
shown in Figure 26.12. Applying the COCOMO II model without cost drivers pre-
dicts an effort of 45 person-months to develop an embedded software system for
this application. The average cost for one person-month of effort is $15,000.

The relevant multipliers are based on storage and execution time constraints (TIME
and STOR), the availability of tool support (cross-compilers, etc.) for the develop-
ment system (TOOL), and development team’s experience platform experience
(LTEX). In all options, the reliability multiplier (RELY) is 1.39, indicating that sig-
nificant extra effort is needed to develop a reliable system.

The software cost (SC) is computed as follows:

SC = Effort estimate � RELY � TIME � STOR � TOOL � EXP � $15,000

Option A represents the cost of building the system with existing support and
staff. It represents a baseline for comparison. All other options involve either more
hardware expenditure or the recruitment (with associated costs and risks) of new
staff. Option B shows that upgrading hardware does not necessarily reduce costs.
The staff lack experience with the new hardware so the increase in the experi-
ence multiplier negates the reduction in the STOR and TIME multipliers. It is actu-
ally more cost-effective to upgrade memory rather than the whole computer
configuration.

••••

SE8_C26.qxd 4/4/06 9:20 Page 635

636 Chapter 26 ■ Software cost estimation

Option D appears to offer the lowest costs for all basic estimates. No additional
hardware expenditure is involved but new staff must be recruited onto the project.
If these are already available in the company, this is probably the best option to
choose. If not, they must be recruited externally, which involves significant costs
and risks. These may mean that the cost advantages of this option are much less
significant than suggested by Figure 26.13. Option C offers a saving of almost $50,000
with virtually no associated risk. Conservative project managers would probably select
this option rather than the riskier Option D.

The comparisons show the importance of staff experience as a multiplier. If good
quality people with the right experience are recruited, this can significantly reduce
project costs. This is consistent with the discussion of productivity factors in

••••

A. Use existing hardware,
development system and

development team

D. More
experienced staff

F. Staff with
hardware experience

E. New development
system

Hardware cost increase
Experience decrease

B. Processor and
memory upgrade

Hardware cost increase
Experience decrease

C. Memory
upgrade only

Hardware cost
increase

Figure 26.12
Management options

Option RELY STOR TIME TOOLS LTEX Total Software Hardware Total
effort cost cost cost

A 1.39 1.06 1.11 0.86 1 63 949393 100000 1049393

B 1.39 1 1 1.12 1.22 88 1313550 120000 1402025

C 1.39 1 1.11 0.86 1 60 895653 105000 1000653

D 1.39 1.06 1.11 0.86 0.84 51 769008 100000 897490

EX 1.39 1 1 0.72 1.22 56 844425 220000 1044159

F 1.39 1 1 1.12 0.84 57 851180 120000 1002706

Figure 26.13 Cost of
Management options

SE8_C26.qxd 4/4/06 9:20 Page 636

26.4 ■ Project duration and staffing 637

Section 26.1. It also reveals that investment in new hardware and tools may not be
cost-effective. Some engineers may prefer this option because it gives them an oppor-
tunity to learn about and work with new systems. However, the loss of experience
is a more significant effect on the system cost than the savings that arise from using
the new hardware system.

26.4 Project duration and staffing

As well as estimating the effort required to develop a software system and the over-
all project costs, project managers must also estimate how long the software will
take to develop and when staff will be needed to work on the project. The devel-
opment time for the project is called the project schedule. Increasingly, organisa-
tions are demanding shorter development schedules so that their products can be
brought to market before their competitor’s.

The relationship between the number of staff working on a project, the total effort
required and the development time is not linear. As the number of staff increases,
more effort may be needed. The reason for this is that people spend more time com-
municating and defining interfaces between the parts of the system developed by
other people. Doubling the number of staff (for example) therefore does not mean
that the duration of the project will be halved.

The COCOMO model includes a formula to estimate the calendar time (TDEV)
required to complete a project. The time computation formula is the same for all
COCOMO levels:

TDEV = 3 � (PM)(0.33+0.2*(B-1.01))

PM is the effort computation and B is the exponent computed, as discussed above
(B is 1 for the early prototyping model). This computation predicts the nominal sched-
ule for the project.

However, the predicted project schedule and the schedule required by the pro-
ject plan are not necessarily the same thing. The planned schedule may be shorter
or longer than the nominal predicted schedule. However, there is obviously a limit
to the extent of schedule changes, and the COCOMO II model predicts this:

TDEV = 3 � (PM)(0.33+0.2*(B-1.01)) � SCEDPercentage/100

SCEDPercentage is the percentage increase or decrease in the nominal schedule.
If the predicted figure then differs significantly from the planned schedule, it sug-
gests that there is a high risk of problems delivering the software as planned.

To illustrate the COCOMO development schedule computation, assume that 60
months of effort are estimated to develop a software system (Option C in Figure

••••

SE8_C26.qxd 4/4/06 9:20 Page 637

638 Chapter 26 ■ Software cost estimation

26.12). Assume that the value of exponent B is 1.17. From the schedule equation,
the time required to complete the project is:

TDEV = 3 � (60)0.36 = 13 months

In this case, there is no schedule compression or expansion, so the last term in
the formula has no effect on the computation.

An interesting implication of the COCOMO model is that the time required to
complete the project is a function of the total effort required for the project. It does
not depend on the number of software engineers working on the project. This con-
firms the notion that adding more people to a project that is behind schedule is unlikely
to help that schedule to be regained. Myers (Myers, 1989) discusses the problems
of schedule acceleration. He suggests that projects are likely to run into significant
problems if they try to develop software without allowing sufficient calendar time.

••••

■ There is not necessarily a simple relationship between the price charged for a system and
its development costs. Organisational factors may mean that the price charged is increased
to compensate for increased risk or decreased to gain competitive advantage.

■ Factors that affect software productivity include individual aptitude (the dominant factor),
domain experience, the development process, the size of the project, tool support and the
working environment.

■ Software is often priced to gain a contract, and the functionality of the system is then
adjusted to meet the estimated price.

■ There are various techniques of software cost estimation. In preparing an estimate, several
different techniques should be used. If the estimates diverge widely, this means that
inadequate estimating information is available.

■ The COCOMO II costing model is a well-developed algorithmic cost model that takes
project, product, hardware and personnel attributes into account when formulating a cost
estimate. It also includes a means of estimating development schedules.

■ Algorithmic cost models can be used to support quantitative option analysis. They allow the
cost of various options to be computed and, even with errors, the options can be compared
on an objective basis.

■ The time required to complete a project is not simply proportional to the number of people
working on the project. Adding more people to a late project can increase rather than
decrease the time required to finish the project.

K E Y P O I N TS

SE8_C26.qxd 4/4/06 9:20 Page 638

Chapter 26 ■ Exercises 639

Dividing the effort required on a project by the development schedule does not
give a useful indication of the number of people required for the project team.
Generally, only a small number of people are needed at the start of a project to
carry out the initial design. The team then builds up to a peak during the develop-
ment and testing of the system, and finally the team size declines as the system is
prepared for deployment. A very rapid buildup of project staff has been shown to
correlate with project schedule slippage. Project managers should therefore avoid
adding too many staff to a project early in its lifetime.

The effort build-up can be modelled by what is called a Rayleigh curve
(Londeix, 1987) and Putnam’s estimation model (Putnam, 1978), which incorpo-
rates a model of project staffing based around these curves. Putnam’s model also
includes development time as a key factor. As development time is reduced, the
effort required to develop the system grows exponentially.

F U R T H E R R E A D I N G

‘Ten unmyths of project estimation’. A pragmatic article that discusses the practical difficulties of
project estimation and challenges some fundamental assumptions in this area. (P. Armour, Comm.
ACM, 45(11), November 2002.)

Software Cost Estimation with COCOMO II. This is the definitive book on the COCOMO II model. It
provides a complete description of the model with many examples and includes software that
implements the model. It’s extremely detailed and not light reading. Boehm’s paper below is, in my
view, an easier introduction to the model. (B. Boehm, et al., 2000, Prentice Hall.)

Software Project Management: Readings and Cases. A selection of papers and case studies on
software project management that is particularly strong in its coverage of algorithmic cost
modelling. (C. F. Kemerer (ed.), 1997, Irwin.)

‘Cost models for future software life cycle processes: COCOMO II’. An introduction to the COCOMO II
cost estimation model that includes rationale for the formulae used. Easier to read than the definitive
book. (B. Boehm et al., Annals of Software Engineering, 1, Balzer Science Publishers, 1995.)

E X E R C I S E S

26.1 Under what circumstance might a company charge a much higher price for a software system
than that suggested by the cost estimate plus a normal profit margin?

26.2 Describe two metrics that have been used to measure programmer productivity. Comment
briefly on the advantages and disadvantages of each of these metrics.

••••

SE8_C26.qxd 4/4/06 9:20 Page 639

640 Chapter 26 ■ Software cost estimation

26.3 In the development of large, embedded real-time systems, suggest five factors that are likely
to have a significant effect on the productivity of the software development team.

26.4 Cost estimates are inherently risky irrespective of the estimation technique used. Suggest
four ways in which the risk in a cost estimate can be reduced.

26.5 Why should several estimation techniques be used to produce a cost estimate for a large,
complex software system?

26.6 A software manager is in charge of the development of a safety-critical software system that
is designed to control a radiotherapy machine to treat patients suffering from cancer. This
system is embedded in the machine and must run on a special-purpose processor with a
fixed amount of memory (8 Mbytes). The machine communicates with a patient database
system to obtain the details of the patient and, after treatment, automatically records the
radiation dose delivered and other treatment details in the database.

The COCOMO method is used to estimate the effort required to develop this system and an
estimate of 26 person-months is computed. All cost driver multipliers were set to 1 when
making this estimate.

Explain why this estimate should be adjusted to take project, personnel, product and
organisational factors into account. Suggest four factors that might have significant effects on
the initial COCOMO estimate and propose possible values for these factors. Justify why you
have included each factor.

26.7 Give three reasons why algorithmic cost estimates prepared in different organisations are not
directly comparable

26.8 Explain how the algorithmic approach to cost estimation may be used by project managers
for option analysis. Suggest a situation where managers may choose an approach that is not
based on the lowest project cost.

26.9 Some very large software projects involve writing millions of lines of code. Suggest how
useful the cost estimation models are likely to be for such systems. Why might the
assumptions on which they are based be invalid for very large software systems?

26.10 Is it ethical for a company to quote a low price for a software contract knowing that the
requirements are ambiguous and that they can charge a high price for subsequent changes
requested by the customer?

26.11 Should measured productivity be used by managers during the staff appraisal process? What
safeguards are necessary to ensure that quality is not affected by this?

••

SE8_C26.qxd 4/4/06 9:20 Page 640

Quality management
27

Objectives
The objectives of this chapter are to introduce software quality
management and software measurement. When you have read this
chapter, you will:

■ understand the quality management process and the central process
activities of quality assurance, quality planning and quality control;

■ understand the importance of standards in the quality management
process;

■ understand what software metrics are and the differences between
predictor metrics and control metrics;

■ understand how measurement may be helpful in assessing some
software quality attributes;

■ be aware of the current limitations of software measurement.

Contents
27.1 Process and product quality

27.2 Quality assurance and standards

27.3 Quality planning

27.4 Quality control

27.5 Software measurement and metrics

SE8_C27.qxd 4/4/06 9:21 Page 641

642 Chapter 27 ■ Quality management

The quality of software has improved significantly over the past 15 years. One rea-
son for this is that companies have adopted new techniques and technology such
as the use of object-oriented development and associated CASE support. In addi-
tion, however, there has been a greater awareness of the importance of software
quality management and the adoption of quality management techniques from man-
ufacturing in the software industry.

However, software quality is a complex concept that is not directly comparable
with quality in manufacturing. In manufacturing, the notion of quality has been that
the developed product should meet its specification (Crosby, 1979). In an ideal world
this definition should apply to all products but, for software systems, there are prob-
lems with this:

1. The specification should be oriented towards the characteristics of the product
that the customer wants. However, the development organisation may also have
requirements (such as maintainability requirements) that are not included in the
specification.

2. We do not know how to specify certain quality characteristics (e.g., maintain-
ability) in an unambiguous way.

3. As I discussed in Part 1, which covered requirements engineering, it is very
difficult to write complete software specifications. Therefore, although a soft-
ware product may conform to its specification, users may not consider it to be
a high-quality product because it does not meet their expectations.

You have to recognise the problems with existing software specifications and
therefore design quality procedures that do not rely on having a perfect specifica-
tion. In particular, software attributes such as maintainability, security or efficiency
cannot be specified explicitly. However, they have a large effect on the perceived
quality of the system. I discuss these attributes in Section 27.3.

Some people think that quality can be achieved by defining standards, and organ-
isational quality procedures that check that these standards are followed by the soft-
ware development team. Their argument is that standards should encapsulate good
practice; following this good practice inevitably leads to high-quality products. In
practice, however, I think that there is much more to quality management than stan-
dards and the associated bureaucracy to ensure that these have been followed.

Good quality managers aim to develop a ‘quality culture’ where everyone
responsible for product development is committed to achieving a high level of prod-
uct quality. They encourage teams to take responsibility for the quality of their work
and to develop new approaches to quality improvement. While standards and pro-
cedures are the basis of quality management, experienced quality managers recog-
nise that there are intangible aspects to software quality (elegance, readability, etc.)
that cannot be embodied in standards. They support people who are interested in
these intangible aspects of quality and encourage professional behaviour in all team
members.

••••

SE8_C27.qxd 4/4/06 9:21 Page 642

Chapter 27 ■ Quality management 643

Formalised quality management is particularly important for teams that are devel-
oping large and complex systems. The quality documentation is a record of what has
been done by each sub-group in the project. It helps people check that important tasks
have not been forgotten or that one part of the team has not made incorrect assump-
tions about what other teams have done. The quality documentation is also a means
of communication over the lifetime of a system. It allows the groups responsible for
system evolution to trace what the development team have done.

For smaller systems, quality management is still important but a more informal
approach can be adopted. Not as much paperwork is needed because a small devel-
opment team can communicate informally. The key quality issue for small systems
development is establishing a quality culture and ensuring that all team members
have a positive approach to software quality.

Software quality management for large systems can be structured into three main
activities:

1. Quality assurance The establishment of a framework of organisational proce-
dures and standards that lead to high-quality software

2. Quality planning The selection of appropriate procedures and standards from
this framework, adapted for a specific software project

3. Quality control The definition and enactment of processes that ensure the soft-
ware development team have followed project quality procedures and standards

Quality management provides an independent check on the software develop-
ment process. The quality management process checks the project deliverables to
ensure that they are consistent with organisational standards and goals (Figure 27.1).
The quality assurance team should be independent from the development team so
that they can take an objective view of the software. They report problems and dif-
ficulties to senior management in the organisation.

An independent team should be responsible for quality management and should report
to management above the project manager level. The quality management team should
not be associated with any particular development group but should take organisation-

••••

Software development
process

Quality management
process

D1 D2 D3 D4 D5

Standards and
procedures

Quality
plan

Quality review reports

Figure 27.1 Quality
management
and software
development

SE8_C27.qxd 4/4/06 9:21 Page 643

644 Chapter 27 ■ Quality management

wide responsibility for quality management. The reason for this is that project man-
agers have to maintain the project budget and schedule. If problems arise, they may
be tempted to compromise on product quality so that they meet their schedule. An inde-
pendent quality management team ensures that the organisational goals of quality are
not compromised by short-term budget and schedule considerations.

27.1 Process and product quality

A fundamental assumption of quality management is that the quality of the devel-
opment process directly affects the quality of delivered products. This assumption
comes from manufacturing systems where product quality is intimately related to
the production process. In an automated manufacturing system, the process
involves configuring, setting up and operating the machines involved in the pro-
cess. Once the machines are operating correctly, product quality naturally follows.
You measure the quality of the product and change the process until you achieve
the quality level that you need. Figure 27.2 illustrates this process-based approach
to achieving product quality.

There is a clear link between process and product quality in manufacturing because
the process is relatively easy to standardise and monitor. Once manufacturing sys-
tems are calibrated, they can be run again and again to output high-quality prod-
ucts. However, software is not manufactured but is designed. Software
development is a creative rather than a mechanical process, so the influence of indi-
vidual skills and experience is significant. External factors, such as the novelty of
an application or commercial pressure for an early product release, also affect prod-
uct quality irrespective of the process used.

In software development, therefore, the relationship between process quality and
product quality is more complex. It is difficult to measure software quality
attributes, such as maintainability, even after using the software for a long period.
Consequently, it is hard to tell how process characteristics influence these
attributes. Furthermore, because of the role of design and creativity in the software
process, you can’t predict how process changes will influence the quality of the product.

••••

Define process
Develop
product

Assess product
quality

Standardise
process

Improve
process

Quality
OK

No Yes

Figure 27.2 Process-
based quality

SE8_C27.qxd 4/4/06 9:21 Page 644

27.2 ■ Quality assurance and standards 645

However, experience has shown that process quality has a significant influence on
the quality of the software. Process quality management and improvement can cer-
tainly lead to fewer defects in delivered software.

Process quality management involves:

1. Defining process standards such as how and when reviews should be conducted

2. Monitoring the development process to ensure that the standards are being
followed

3. Reporting the software process to project management and to the buyer of the
software

One problem with process-based quality assurance is that the quality assurance
(QA) team may insist that standard processes should be used irrespective of the type
of software that is being developed. For example, process quality standards for crit-
ical systems may specify that specification must be complete and approved before
implementation can begin. However, some critical systems may require prototyp-
ing where programs are implemented without a complete specification. I have expe-
rienced situations where the quality management team suggests that this
prototyping should not be carried out because the prototype quality cannot be mon-
itored. In such situations, senior management have to intervene to ensure that the
quality process supports rather than hinders product development.

27.2 Quality assurance and standards

Quality assurance is the process of defining how software quality can be achieved
and how the development organisation knows that the software has the required level
of quality. As I have suggested, the QA process is primarily concerned with defin-
ing or selecting standards that should be applied to the software development pro-
cess or software product. As part of the QA process, you may select and procure
tools and methods to support these standards.

The two types of standards that may be established as part of the quality assur-
ance process are:

1. Product standards These standards apply to the software product being devel-
oped. They include document standards, such as the structure of requirements
documents; documentation standards, such as a standard comment header for
an object class definition; and coding standards that define how a programming
language should be used.

2. Process standards These standards define the processes that should be followed
during software development. They may include definitions of specification,

••••

SE8_C27.qxd 4/4/06 9:21 Page 645

646 Chapter 27 ■ Quality management

design and validation processes and a description of the documents that should
be written in the course of these processes.

As I suggested in Section 27.1, there is a close link between product and pro-
cess standards. Product standards apply to the output of the software process and,
in many cases, process standards include specific process activities that ensure that
product standards are followed.

Software standards are important for several reasons:

1. They are based on knowledge about the best or most appropriate practice for
the company. This knowledge is often only acquired after a great deal of trial
and error. Building it into a standard helps the company avoid repeating past
mistakes. Standards capture wisdom that is of value to the organisation.

2. They provide a framework for implementing the quality assurance process. Given
that standards encapsulate best practice, quality assurance involves ensuring that
appropriate standards have been selected and are used.

3. They assist in continuity where work carried out by one person is taken up and
continued by another. Standards ensure that all engineers within an organisa-
tion adopt the same practices. Consequently, learning effort when starting new
work is reduced.

The development of software engineering project standards is a difficult and time-
consuming process. National and international bodies such as the US DoD, ANSI,
BSI, NATO and the IEEE have been active in the production of standards. These
are general standards that can be applied across a range of projects. Bodies such as
NATO and other defence organisations may require that their own standards are
followed in software contracts.

National and international standards have been developed covering software engi-
neering terminology, programming languages such as Java and C++, notations such
as charting symbols, procedures for deriving and writing software requirements, qual-
ity assurance procedures, and software verification and validation processes (IEEE,
2003).

Quality assurance teams that are developing standards for a company should nor-
mally base their organisational standards on national and international standards.
Using these standards as a starting point, the quality assurance team should draw
up a standards ‘handbook’. This should define the standards that are needed by their
organisation. Examples of standards that might be included in such a handbook are
shown in Figure 27.3.

Software engineers sometimes consider standards to be bureaucratic and irrele-
vant to the technical activity of software development. This is particularly likely
when the standards require tedious form filling and work recording. Although they
usually agree about the general need for standards, engineers often find good rea-
sons why standards are not necessarily appropriate to their particular project.

••••

SE8_C27.qxd 4/4/06 9:21 Page 646

27.2 ■ Quality assurance and standards 647

To avoid these problems, quality managers who set the standards need to be ade-
quately resourced and should take the following steps:

1. Involve software engineers in the selection of product standards. They should
understand why standards have been designed and so are more likely to be com-
mitted to these standards. The standards document should not simply state a
standard to be followed but should include a rationale of why particular stan-
dardisation decisions have been made.

2. Review and modify standards regularly to reflect changing technologies. Once
standards are developed, they tend to be enshrined in a company standards hand-
book, and management is often reluctant to change them. A standards hand-
book is essential but it should evolve to reflect changing circumstances and
technology.

3. Provide software tools to support standards wherever possible. Clerical stan-
dards are the cause of many complaints because of the tedious work involved
in implementing them. If tool support is available, you don’t need much extra
effort to follow the software development standards.

Process standards may cause difficulties if an impractical process is imposed on
the development team. Different types of software need different development pro-
cesses. There is no point in prescribing a particular way of working if it is inap-
propriate for a project or project team. Each project manager should therefore have
the authority to modify process standards according to individual circumstances.
However, standards that relate to product quality and the post-delivery process should
be changed only after careful consideration.

The project manager and the quality manager can avoid the problems of inap-
propriate standards by careful quality planning early in the project. They should decide
which of the standards in the handbook should be used without change, which should
be modified and which should be ignored. New standards may have to be created

••••

Product standards Process standards

Design review form Design review conduct

Requirements document structure Submission of documents to CM

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

Figure 27.3 Product
and process
standards

SE8_C27.qxd 4/4/06 9:21 Page 647

648 Chapter 27 ■ Quality management

in response to a particular project requirement. For example, standards for formal
specifications may be required if these have not been used in previous projects. As
the team gains experience with them, you should plan to modify and extend these
new standards.

27.2.1 ISO 9000

An international set of standards that can be used in the development of a quality
management system in all industries is called ISO 9000. ISO 9000 standards can
be applied to a range of organisations from manufacturing to service industries. ISO
9001 is the most general of these standards and applies to organisations concerned
with the quality process in organisations that design, develop and maintain prod-
ucts. A supporting document (ISO 9000-3) interprets ISO 9001 for software devel-
opment. Several books describing the ISO 9001 standard are available (Johnson,
1993; Oskarsson and Glass, 1995; Peach, 1996; Bamford and Deibler, 2003).

The ISO 9001 standard isn’t specifically aimed at software development but sets
out general principles that can be applied to software. The ISO 9001 standard describes
various aspects of the quality process and lays out the organisational standards and
procedures that a company should define. These should be documented in an
organisational quality manual. The process definition should include descriptions
of the documentation required to demonstrate that the defined processes have been
followed during product development.

The ISO 9001 standard does not define the quality processes that should be used.
In fact, it does not constrain the processes used in any organisation in any way.
This allows flexibility across industrial sectors and means that small companies can

••••

Management responsibility Quality system

Control of nonconforming products Design control

Handling, storage, packaging and delivery Purchasing

Purchaser-supplied products Product identification and traceability

Process control Inspection and testing

Inspection and test equipment Inspection and test status

Contract review Corrective action

Document control Quality records

Internal quality audits Training

Servicing Statistical techniques

Figure 27.4 Areas
covered by the ISO
9001 model for
quality assurance

SE8_C27.qxd 4/4/06 9:21 Page 648

27.2 ■ Quality assurance and standards 649

have fairly unbureaucratic processes and still be ISO 9000 compliant. However, this
flexibility means that you cannot make any assumptions about the similarity or dif-
ferences between the processes in ISO 9000 compliant companies.

Figure 27.4 shows the areas covered in ISO 9001. I do not have space here to
discuss this standard in any depth. Ince (Ince, 1994) and Oskarsson and Glass
(Oskarsson and Glass, 1995) give more detailed accounts of how the standard can be
used to develop software quality management processes. The relationships between
ISO 9000, the quality manual and individual project quality plans are shown in Figure
27.5. I have derived this figure from a model given in Ince’s book (Ince, 1994).

The quality assurance procedures in an organisation are documented in a qual-
ity manual that defines the quality process. In some countries, accreditation author-
ities certify that the quality process as expressed in the quality manual conforms to
the ISO 9001 standard. Increasingly, customers look for ISO 9000 certification in
a supplier as an indicator of how seriously that supplier takes quality.

Some people think that ISO 9000 certification means that the quality of the soft-
ware produced by certified companies will be better than that from uncertified com-
panies. This is certainly not the case. The ISO 9000 standard is simply concerned with
the definition of processes to be used in a company and associated documentation as
control processes that can explicitly show that these processes have been followed.
It is not concerned with ensuring that these processes reflect best practice, or with
product quality.

Therefore, a company could define product-testing procedures (say) that led to
incomplete software testing. So long as these procedures were followed and docu-
mented, the company would be following the ISO 9001 standard. While this situ-
ation is unlikely, there is no doubt that some company standards are fairly weak
and make little contribution to real software quality.

••••

Project 1
quality plan

Project 2
quality plan

Project 3
quality plan

Project quality
management

Organisation
quality manual

ISO 9000
quality models

Organisation
quality process

is used to develop instantiated as

instantiated as

documents

Supports

Figure 27.5
ISO 9000 and quality
management

SE8_C27.qxd 4/4/06 9:21 Page 649

650 Chapter 27 ■ Quality management

27.2.2 Documentation standards

Documentation standards in a software project are important because documents are
the only tangible way of representing the software and the software process.
Standardised documents have a consistent appearance, structure and quality, and should
therefore be easier to read and understand.

There are three types of documentation standards:

1. Documentation process standards These standards define the process that
should be followed for document production.

2. Document standards These standards govern the structure and presentation of
documents.

3. Document interchange standards These standards ensure that all electronic copies
of documents are compatible.

Documentation process standards define the process used to produce documents.
This means that you set out the procedures involved in document development and
the software tools used for document production. You should also define checking
and refinement procedures to ensure that high-quality documents are produced.

Document process quality standards must be flexible and able to cope with all
types of documents. For working papers or electronic memos, there is no need for
explicit quality checking. However, for formal documents—that is, those that will
be used for further development or released to customers—you should use a for-
mal quality process. Figure 27.6 is a model of one possible documentation process.

Drafting, checking, revising and redrafting is an iterative process. It should con-
tinue until a document of acceptable quality is produced. The acceptable quality
level depends on the document type and the potential readers of the document.

Document standards should apply to all documents produced during a software
development project. Documents should have a consistent style and appearance,
and documents of the same type should have a consistent structure. Although doc-
ument standards should be adapted to the needs of a specific project, it is good
practice for the same ‘house style’ to be used in all of the documents produced by
an organisation.

Examples of document standards that may be developed are:

1. Document identification standards As large system development projects may
produce thousands of documents, each document should be uniquely identified.
For formal documents, this identifier may be the formal identifier defined by
the configuration manager. For informal documents, the project manager may
define the form of the document.

2. Document structure standards Each class of document produced during a soft-
ware project should follow some standard structure. Structure standards should
define the sections to be included and should specify the conventions used for

••••

SE8_C27.qxd 4/4/06 9:21 Page 650

27.2 ■ Quality assurance and standards 651

page numbering, page header and footer information, and section and sub-section
numbering.

3. Document presentation standards Document presentation standards define a ‘house
style’ for documents and contribute significantly to document consistency. They
include the definition of fonts and styles used in the document, the use of logos
and company names, the use of colour to highlight document structure, and
so on.

4. Document update standards As a document evolves to reflect changes in the sys-
tem, a consistent way of indicating document changes should be used. You can
use cover colour to indicate document version and change bars in the margin to
indicate modified or added paragraphs. However, I advise against the use of change
tracking as supported in some commonly used word processors. If there are more
than two authors, I find change tracking becomes confusing rather than helpful.

Document interchange standards are important as electronic copies of documents
are interchanged. The use of interchange standards allows documents to be trans-
ferred electronically and re-created in their original form.

Assuming that the use of standard tools is mandated in the process standards,
interchange standards define the conventions for using these tools. Examples of inter-
change standards include the use of a standard style sheet if a word processor is
used or limitations on the use of document macros to avoid possible virus infec-
tion. Interchange standards may also limit the fonts and text styles used because of
differing printer and display capabilities.

••••

Create
initial draft

Review
draft

Incorporate
review

comments

Re-draft
document

Proofread
text

Produce
final draft

Check
final draft

Layout
text

Review
layout

Produce
print masters

Print
copies

Stage 1:
Creation

Stage 2:
Polishing

Stage 3:
Production

Approved document

Approved document

Figure 27.6 A
document
production process
including quality
checks

SE8_C27.qxd 4/4/06 9:21 Page 651

652 Chapter 27 ■ Quality management

27.3 Quality planning

Quality planning is the process of developing a quality plan for a project. The qual-
ity plan should set out the desired software qualities and describe how these are to
be assessed. It therefore defines what ‘high quality’ software actually means.
Without this definition, engineers may make different and sometimes conflicting
assumptions about which product attributes should be optimised.

The quality plan should select those organisational standards that are appropri-
ate to a particular product and development process. New standards may have to
be defined if the project uses new methods and tools. Humphrey (Humphrey, 1989),
in his classic book on software management, suggests an outline structure for a qual-
ity plan. This includes:

1. Product introduction A description of the product, its intended market and the
quality expectations for the product.

2. Product plans The critical release dates and responsibilities for the product along
with plans for distribution and product servicing.

3. Process descriptions The development and service processes that should be used
for product development and management.

4. Quality goals The quality goals and plans for the product including an identi-
fication and justification of critical product quality attributes.

5. Risks and risk management The key risks that might affect product quality and
the actions to address these risks.

Quality plans obviously differ in detail depending on the size and the type of
system that is being developed. However, when writing quality plans, you should
try to keep them as short as possible. If the document is too long, people will not
read it, which will defeat the purpose of producing the quality plan.

There is a wide range of potential software quality attributes (Figure 27.7) that
you should consider during the quality-planning process. In general, it is not pos-
sible for any system to be optimised for all of these attributes. In the quality plan,
you should therefore define the most important quality attributes for the software
that is being developed. It may be that efficiency is critical and other factors have
to be sacrificed to achieve this. If you have stated this in the quality plan, the engi-
neers working on the development can cooperate to achieve this. The plan should
also include a definition of the quality assessment process. This should be a stan-
dard way of assessing whether some quality, such as maintainability or robustness,
is present in the product.

••••

SE8_C27.qxd 4/4/06 9:21 Page 652

27.4 ■ Quality control 653

27.4 Quality control

Quality control involves monitoring the software development process to ensure that
quality assurance procedures and standards are being followed. As I discussed ear-
lier in the chapter (see Figure 27.1), the deliverables from the software process are
checked against the defined project standards in the quality control process.

There are two complementary approaches that may be used to check the qual-
ity of project deliverables:

1. Quality reviews where the software, its documentation and the processes used
to produce that software are reviewed by a group of people. The review is respon-
sible for checking that the project standards have been followed and that soft-
ware and documents conform to these standards. Deviations from the standards
are noted and the project manager is alerted to them.

2. Automated software assessment where the software and the documents that are
produced are processed by some program and compared to the standards that apply
to that particular development project. This automated assessment may involve
measuring some software attributes and comparing these measurements with
some desirable level. I discuss software measurement and metrics in Section 27.5.

27.4.1 Quality reviews

Reviews are the most widely used method of validating the quality of a process or
product. They involve a group of people examining part or all of a software pro-
cess, system, or its associated documentation to discover potential problems. The
conclusions of the review are formally recorded and passed to the author or who-
ever is responsible for correcting the discovered problems.

Figure 27.8 briefly describes several types of review, including reviews for qual-
ity management. Program inspections have already been covered in Chapter 22.

••••

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity Learnability

Figure 27.7 Software
quality attributes

SE8_C27.qxd 4/4/06 9:21 Page 653

654 Chapter 27 ■ Quality management

Progress reviews are part of the management process as discussed in Chapter 5.
The review processes have a lot in common; I already described the process of set-
ting up a review in Chapter 22.

The remit of the review team is to detect errors and inconsistencies and point
them out to the designer or document author. Reviews are document-based but are
not limited to specifications, designs or code. Documents such as process models,
test plans, configuration management procedures, process standards and user man-
uals may all be reviewed.

The review team should have a core of three to four people who are selected as
principal reviewers. One member should be a senior designer who can take the respon-
sibility for making significant technical decisions. The principal reviewers may invite
other project members, such as the designers of related sub-systems, to contribute
to the review. They may not be involved in reviewing the whole document. Rather,
they concentrate on those parts that affect their work. Alternatively, the review team
may circulate the document being reviewed and ask for written comments from a
broad spectrum of project members.

Documents to be reviewed must be distributed well in advance of the review to
allow reviewers time to read and understand them. Although this delay can disrupt
the development process, reviewing is ineffective if the review team have not prop-
erly understood the documents before the review takes place.

The review itself should be relatively short (two hours at most). The author of
the document being reviewed should ‘walk through’ the document with the review
team. One team member should chair the review and another should formally record
all review decisions and actions to be taken. During the review, the chair is respon-
sible for ensuring that all written comments are considered. The review chair
should sign a record of comments and actions agreed upon during the review. This
record is then filed as part of the formal project documentation. If only minor prob-
lems are discovered, a further review may be unnecessary. The chairman is respon-

••••

Review type Principal purpose

Design or program To detect detailed errors in the requirements, design or
inspections code. A checklist of possible errors should drive the

review.

Progress reviews To provide information for management about the overall
progress of the project. This is both a process and a
product review and is concerned with costs, plans and
schedules.

Quality reviews To carry out a technical analysis of product components or
documentation to find mismatches between the
specification and the component design, code or
documentation and to ensure that defined quality
standards have been followed.

Figure 27.8 Types of
review

SE8_C27.qxd 4/4/06 9:21 Page 654

27.5 ■ Software measurement and metrics 655

sible for ensuring that the required changes are made. If major changes are neces-
sary, a follow-on review may be arranged.

27.5 Software measurement and metrics

Quality reviews are expensive and time-consuming and inevitably delay the com-
pletion of a software system. Ideally, it would be possible to accelerate the review
process by using tools to process the software design or program and make some
automated assessments of the software quality. These assessments could check that
the software had reached the required quality threshold and, where this has not been
achieved, highlight areas of the software where the review should focus.

Software measurement is concerned with deriving a numeric value for some attribute
of a software product or a software process. By comparing these values to each
other and to standards that apply across an organisation, you may be able to draw
conclusions about the quality of software or software processes. For example, say
an organisation plans to introduce a new software-testing tool. Before introducing
the tool, you record the number of software defects discovered in a given time; after
introducing the tool, you repeat this process. If more defects have been found in
the same amount of time after introducing the tool, then you may decide that it pro-
vides useful support for the software validation process.

There are two ways in which software product measurements may be used:

1. To make general predictions about a system. By measuring the characteristics
of system components and then aggregating these measurements, you can
derive a general estimate of some system attribute such as the number of faults
in the system.

2. To identify anomalous components. Measurements can identify individual
components whose characteristics deviate from some norm. For example, you
can measure components to discover those with the highest complexity and,
assuming these are likely to have more errors, concentrate on these components
during the review process.

A software metric is any type of measurement that relates to a software system,
process or related documentation. Examples are measures of the size of a product in
lines of code; the Fog index (Gunning, 1962), which is a measure of the readability
of a passage of written text; the number of reported faults in a delivered software prod-
uct; and the number of person-days required to develop a system component.

A number of large companies such as Hewlett-Packard (Grady, 1993), AT&T
(Barnard and Price, 1994) and Nokia (Kilpi, 2001) have introduced metrics programmes
and are using collected metrics in their quality management processes. Most of the
focus has been on collecting metrics on program defects and the verification and validation

••••

SE8_C27.qxd 4/4/06 9:21 Page 655

656 Chapter 27 ■ Quality management

processes. Offen and Jeffrey (Offen and Jeffrey, 1997) and Hall and Fenton (Hall and
Fenton, 1997) discuss the introduction of metrics programmes in industry. The ami
(application of metrics in industry) handbook (Pulford, et al., 1996) gives detailed advice
on measurement and using measurement for process improvement.

However, most companies still do not use systematic software measurement to
assess software quality. One reason is that, in many companies, the software pro-
cesses are poorly defined and controlled, and are not sufficiently mature to make
use of measurements. Another reason is that there are no standards for metrics and
hence there is limited tool support for data collection and analysis. Most compa-
nies will not be prepared to introduce measurement until these standards and tools
are available.

Software metrics may be either control metrics or predictor metrics. Both con-
trol and predictor metrics may influence management decision making as shown in
Figure 27.9. Control metrics are usually associated with software processes; pre-
dictor metrics are associated with software products. Examples of control or pro-
cess metrics are the average effort and time required to repair reported defects.
Examples of predictor metrics are the complexity of a module, the average length
of identifiers in a program, and the number of attributes and operations associated
with objects in a design. In this chapter, because I concentrate on measurement to
predict software product quality, I focus on predictor metrics. I discuss control met-
rics in the Chapter 28.

It is often impossible to measure software quality attributes directly. Quality
attributes such as maintainability, understandability and usability are external
attributes that relate to how developers and users see the software. They are
affected by many factors and there is no simple way to measure them. Rather, you
have to measure some internal attribute of the software (such as its size) and assume
that a relationship exists between what you can measure and what you really want
to know. Ideally, there should be a clear and validated relationship between the inter-
nal and the external software attributes.

••••

Management
decisions

Control
measurements

Software
process

Predictor
measurements

Software
product

Figure 27.9 Predictor
and control
measurements

SE8_C27.qxd 4/4/06 9:21 Page 656

27.5 ■ Software measurement and metrics 657

Figure 27.10 shows some external quality attributes that might be of interest and
internal attributes that might be related to them. The diagram suggests that there
may be relationships between external and internal attributes, but it does not say
what that relationship is. If the measure of the internal attribute is to be a useful
predictor of the external software characteristic, three conditions must hold
(Kitchenham, 1990):

1. The internal attribute must be measured accurately.

2. A relationship must exist between what we can measure and the external
behavioural attribute in which we are interested.

3. This relationship is understood, has been validated and can be expressed in terms
of a formula or model.

Model formulation involves identifying the functional form of the model (lin-
ear, exponential, etc.) by analysis of collected data, identifying the parameters that
are to be included in the model and calibrating these using existing data. Such model
development, if it is to be trusted, requires significant experience in statistical tech-
niques and, ideally, someone with statistical knowledge and experience should define
the model to be used.

27.5.1 The measurement process

A software measurement process that may be part of a quality control process is
shown in Figure 27.11. Each of the components of the system is analysed sepa-
rately, and the values of the metric compared both with each other and, perhaps,
with historical measurement data collected on previous projects. Anomalous

••••

Reliability

Number of procedure
parameters

Cyclomatic complexity

Program size in lines
of code

Number of error
messages

Length of user manual

Maintainability

Usability

Portability

Figure 27.10
Relationships
between internal and
external software
attributes

SE8_C27.qxd 4/4/06 9:21 Page 657

658 Chapter 27 ■ Quality management

measurements should be used to focus the quality assurance effort on components
that may have quality problems.

The key stages in this process are:

1. Choose measurements to be made The questions that the measurement is
intended to answer should be formulated and the measurements required to answer
these questions defined. Measurements that are not directly relevant to these
questions need not be collected. Basili’s GQM (Goal-Question-Metric)
paradigm (Basili and Rombach, 1988), discussed in the next chapter, is a good
approach to use when deciding what data is to be collected.

2. Select components to be assessed It may not be necessary or desirable to assess
metric values for all of the components in a software system. In some cases,
you can select a representative selection of components for measurement. In
others, components that are particularly critical, such as core components that
are in almost constant use, should be assessed.

3. Measure component characteristics The selected components are measured and
the associated metric values computed. This normally involves processing the
component representation (design, code, etc.) using an automated data collec-
tion tool. This tool may be specially written or may already be incorporated in
CASE tools that are used in an organisation.

4. Identify anomalous measurements Once the component measurements have been
made, you should compare them to each other and to previous measurements
that have been recorded in a measurement database. You should look for unusu-
ally high or low values for each metric, as these suggest that there could be
problems with the component exhibiting these values.

5. Analyse anomalous components Once components that have anomalous values
for particular metrics have been identified, you should examine these compo-
nents to decide whether the anomalous metric values mean that the quality of
the component is compromised. An anomalous metric value for complexity (say)
does not necessarily mean a poor quality component. There may be some other

••••

Select
components to

be assessed

Choose
measurements

to be made

Measure
component

characteristics

Identify
anomalous

measurements

Analyse
anomalous

components

Figure 27.11 The
process of product
measurement

SE8_C27.qxd 4/4/06 9:21 Page 658

27.5 ■ Software measurement and metrics 659

reason for the high value and it may not mean that there are component qual-
ity problems.

You should always maintain collected data as an organisational resource and keep
historical records of all projects even when data has not been used during a partic-
ular project. Once a sufficiently large measurement database has been established,
you can then make comparisons across projects and refine specific metrics to help
gather the information that the company needs for quality improvement.

27.5.2 Product metrics

Product metrics are concerned with characteristics of the software itself.
Unfortunately, the software characteristics that can be easily measured, such as size
and cyclomatic complexity, do not have a clear and consistent relationship with qual-
ity attributes such as understandability and maintainability. The relationships vary
depending on the development processes and technology and the type of system
that is being developed. To discover and validate the relationships between exter-
nal and internal attributes, you need to collect a large amount of data from exist-
ing systems. You can then use this to discover how the software product attributes
are related to the external qualities in which you are interested.

Product metrics fall into two classes:

1. Dynamic metrics that are collected by measurements made of a program in
execution

2. Static metrics that are collected by measurements made of representations of
the system such as the design, program or documentation

These types of metrics are related to different quality attributes. Dynamic metrics
help to assess the efficiency and the reliability of a program. Static metrics help to
assess the complexity, understandability and maintainability of a software system.

Dynamic metrics are usually fairly closely related to software quality attributes.
It is fairly easy to measure the execution time required for particular functions and
to assess the time required to start up a system. These relate directly to the sys-
tem’s efficiency. Similarly, the number of system failures and the type of failure
can be logged and related directly to the reliability of the software as discussed in
Chapter 24.

Static metrics, on the other hand, have an indirect relationship with quality attributes.
A large number of these metrics have been proposed, and many experiments have
tried to derive and validate the relationships between these metrics and system com-
plexity, understandability and maintainability. Figure 27.12 describes several static
product metrics that have been used for quality assessment. Of these, program or
component length and control complexity seem to be the most reliable predictors
of understandability, system complexity and maintainability.

••••

SE8_C27.qxd 4/4/06 9:21 Page 659

660 Chapter 27 ■ Quality management

The metrics in Figure 27.12 are generic but more specific object-oriented met-
rics have also been proposed (Figure 27.13). The best-known object-oriented met-
rics were proposed by Chidamber and Kemerer (Chidamber and Kemerer, 1994)
and there are some tools available to collect these metrics. Some of these metrics
have been derived from the older metrics shown in Figure 27.12 but others are unique
to object-oriented systems. El-Amam (El-Amam, 2001), in an excellent review of
object-oriented metrics, discusses some of these studies and concludes that we do
not yet have sufficient evidence to understand how object-oriented metrics relate to
external software qualities.

The specific metrics that are relevant depend on the project, the goals of the qual-
ity management team and the type of software that is being developed. All of the
metrics shown in Figures 27.12 and 27.13 may be useful in some situations.
Equally, however, there will be other situations where they are inappropriate. When

••••

Software metric Description

Fan-in/Fan-out Fan-in is a measure of the number of functions or methods
that call some other function or method (say X). Fan-out is
the number of functions that are called by function X. A high
value for fan-in means that X is tightly coupled to the rest of
the design and changes to X will have extensive knock-on
effects. A high value for fan-out suggests that the overall
complexity of X may be high because of the complexity of
the control logic needed to coordinate the called
components.

Length of code This is a measure of the size of a program. Generally, the
larger the size of the code of a component, the more
complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most
reliable metrics for predicting error-proneness in components.

Cyclomatic This is a measure of the control complexity of a program.
complexity This control complexity may be related to program

understandability. I discuss how to compute cyclomatic
complexity in Chapter 22.

Length of This is a measure of the average length of distinct identifiers
identifiers in a program. The longer the identifiers, the more likely they

are to be meaningful and hence the more understandable
the program.

Depth of This is a measure of the depth of nesting of if-statements in
conditional nesting a program. Deeply nested if statements are hard to

understand and are potentially error-prone.

Fog index This is a measure of the average length of words and
sentences in documents. The higher the value for the Fog
index, the more difficult the document is to understand.

Figure 27.12 Static
software product
metrics

SE8_C27.qxd 4/4/06 9:21 Page 660

27.5 ■ Software measurement and metrics 661

introducing software measurement as part of the quality management process,
organisations have to experiment to discover the most appropriate metrics for their
needs.

27.5.3 Analysis of measurements

One of the problems with collecting quantitative data about software and software
projects is understanding what that data really means. It is easy to misinterpret data
and make inferences that are incorrect. Measurements must be carefully analysed
to understand what they really mean.

To illustrate how collected data can be interpreted in different ways, consider
the following scenario. To make this easier to understand, I have used a process
rather than a product metric, but the essential message is the same; the reasons for
change may often be difficult to understand.

A manager decides to monitor the number of change requests submitted by
customers based on an assumption that there is a relationship between these

••••

Object-oriented metric Description

Depth of inheritance tree This represents the number of discrete levels in the
inheritance tree where sub-classes inherit attributes and
operations (methods) from super-classes. The deeper
the inheritance tree, the more complex the design.
Many object classes may have to be understood to
understand the object classes at the leaves of the tree.

Method fan-in/fan-out This is directly related to fan-in and fan-out, as
described in Figure 27.12, and means essentially the
same thing. However, it may be appropriate to make a
distinction between calls from other methods within the
object and calls from external methods.

Weighted methods This is the number of methods included in a class,
per class weighted by the complexity of each method. Therefore,

a simple method may have a complexity of 1 and a
large and complex method may have a much higher
value. The larger the value for this metric, the more
complex the object class. Complex objects are more
likely to be more difficult to understand. They may not
be logically cohesive so cannot be reused effectively as
super-classes in an inheritance tree.

Number of overriding This is the number of operations in a super-class that are
operations overridden in a sub-class. A high value for this metric

indicates that the super-class used may not be an
appropriate parent for the sub-class.

Figure 27.13 Object-
oriented metrics

SE8_C27.qxd 4/4/06 9:21 Page 661

662 Chapter 27 ■ Quality management

change requests and product usability and suitability. The higher the number
of change requests, the less the software meets the needs of the customer.

Processing change requests and changing the software is expensive. The
organisation therefore decides to modify its process to increase customer sat-
isfaction and, at the same time, reduce the costs of change. The intent is that
the process changes will result in better products and fewer change requests.

Process changes are initiated to increase customer involvement in the soft-
ware design process. Beta testing of all products is introduced and customer-
requested modifications are incorporated in the delivered product. New
versions of products, developed with this modified process, are delivered. In
some cases, the number of change requests is reduced; in others, it is
increased. The manager is baffled and cannot assess the effects of the pro-
cess changes on the product quality.

To understand why this kind of thing can happen, you have to understand why
change requests are made. One reason is that the delivered software does not do
what customers want it to do. Another possibility is that the software is very good
and is widely and heavily used, sometimes for purposes for which it was not orig-
inally designed. Because there are so many people using it, it is natural that more
change requests are generated.

A third possibility is that the company producing the software is responsive to
customers’ change requests. Customers are therefore satisfied with the service they
receive. They generate a lot of change requests because they know that these requests
will be taken seriously. Their suggestions will probably be incorporated in later ver-
sions of the software.

The number of change requests might decrease because the process changes have
been effective and have made the software more usable and suitable. Alternatively,
the number might decrease because the product has lost market share to a rival prod-
uct. There are consequently fewer product users. The number of change requests
might increase because there are more users, because the beta-testing process has
convinced users that the company is willing to make changes, or because the beta-
test sites were not typical of most usage of the program.

To analyse the change request data, you do not simply need to know the num-
ber of change requests. You need to know who made the request, how they use the
software and why the request was made. You need to know whether there are exter-
nal factors such as modifications to the change request procedure or market
changes that might have an effect. With this information, it is then possible to find
out whether the process changes have been effective in increasing product quality.

This illustrates that interpreting quantitative data about a product or a process
is subjective. Processes and products that are being measured are not insulated from
their environment, and changes to that environment may make comparisons of data
invalid. Quantitative data about human activities cannot always be taken at face
value. Underlying reasons that might account for the measured value have to be
investigated.

••••

SE8_C27.qxd 4/4/06 9:21 Page 662

Chapter 27 ■ Further Reading 663

F U R T H E R R E A D I N G

Software Quality Assurance: From Theory to Implementation. An excellent, up-to-date look at the
principles and practice of software quality assurance. It includes a discussion of standards such as
ISO 9001. (D. Galin, 2004, Addison-Wesley.)

Metrics and Models for Software Quality Engineering, 2nd ed. This is a very comprehensive
discussion of software metrics covering process, product and object-oriented metrics. It also
includes some background on the mathematics required to develop and understand models based
on software measurement. (S. H. Kan, 2003, Addison-Wesley.)

‘Making sense of measurement for small organisations’. This is an interesting article about the
practical application of metrics. It makes the point that all uses of metrics have to take their
context into account. (K. Kautz, IEEE Software, March/April 1999.)

••••

■ Software quality management is concerned with ensuring that software has a low number
of defects and that it reaches the required standards of maintainability, reliability,
portability and so on. Quality management activities include quality assurance that sets the
standards for software development, quality planning, and quality control that checks the
software against the defined standards.

■ You should document a set of quality assurance procedures in an organisational quality
manual. This may be based on the generic model for a quality manual suggested in the ISO
9000 standards.

■ Software standards are important to quality assurance as they represent an identification of
‘best practice’. The quality control process is concerned with checking that the software
process and the software being developed conform to these standards.

■ Reviews of the software process deliverables involve a team of people who check that
quality standards are being followed. Reviews are the most widely used technique for
assessing quality.

■ Software measurement can be used to gather quantitative data about software and the
software process. You may be able to use the values of the software metrics that are
collected to make inferences about product and process quality.

■ Product quality metrics are particularly valuable for highlighting anomalous components
that may have quality problems. These components should then be analysed in more detail.

■ There are no standardised and universally applicable software metrics. Organisations must
select metrics and analyse measurements based on local knowledge and circumstances.

K E Y P O I N TS

SE8_C27.qxd 4/4/06 9:21 Page 663

664 Chapter 27 ■ Quality management

A Quantitative Approach to Software Management: The ami Handbook. This is an excellent how-to
guide introducing a measurement programme and using the results for process improvement.
Unfortunately, it is now out of print, but it should be available in good libraries. (K. Pulford, et al.,
1996, Addison-Wesley.)

E X E R C I S E S

27.1 Explain why a high-quality software process should lead to high-quality software products.
Discuss possible problems with this system of quality management.

27.2 Explain how standards may be used to capture organisational wisdom about effective
methods of software development. Suggest four types of knowledge that might be captured
in organisational standards.

27.3 Discuss the assessment of software quality according to the quality attributes shown in
Figure 27.7. You should consider each attribute in turn and explain how it might be assessed

27.4 Design an electronic form that may be used to record review comments and that could be
used to electronically mail comments to reviewers.

27.5 Briefly describe possible standards that might be used for:

■ The use of control constructs in C, C++ or Java

■ Reports which might be submitted for a term project in a university

■ The process of making and approving changes to a program (see Chapter 29)

■ The process of purchasing and installing a new computer.

27.6 Assume you work for an organisation that develops database products for microcomputer
systems. This organisation is interested in quantifying its software development. Write a
report suggesting appropriate metrics and suggest how these can be collected.

27.7 Explain why design metrics are, by themselves, an inadequate method of predicting design
quality.

27.8 Consult the literature and find other design quality metrics that have been suggested apart
from those discussed here. Consider these metrics in detail and assess whether they are
likely to be of real value.

27.9 Explain why it is difficult to validate the relationships between internal product attributes
such as cyclomatic complexity and external attributes such as maintainability.

27.10 Suggest how automated software measurement could be used to support extreme
programming (discussed in Chapter 17).

27.11 Do software standards stifle technological innovation?

27.12 A colleague who is a very good programmer produces software with a low number of defects
but she consistently ignores organisational quality standards. How should the managers in
the organisation react to this behaviour?

••

SE8_C27.qxd 4/4/06 9:21 Page 664

Process improvement
28

Objectives
The objective of this chapter is to explain how software processes can
be improved to produce better software. When you have read this
chapter, you will:

■ understand the principles of software process improvement and why
process improvement is worthwhile;

■ understand how software process factors influence software quality
and the productivity of software developers;

■ be able to develop simple models of software processes;

■ understand the notions of process capability and process maturity
and the general form of the CMMI model for process improvement.

Contents
28.1 Process and product quality

28.2 Process classification

28.3 Process measurement

28.4 Process analysis and modelling

28.5 Process change

28.6 The CMMI process improvement framework

SE8_C28.qxd 4/4/06 9:22 Page 665

666 Chapter 28 ■ Process improvement

As I discussed in Chapter 27, there is a close link between the quality of a devel-
opment process and the quality of the products developed using that process.
Consequently, many software engineering companies have turned to software pro-
cess improvement as a way of enhancing the quality of their software. Process
improvement means understanding existing processes and changing these processes
to increase product quality and/or reduce costs and development time. Most of
the literature on process improvement has focused on perfecting processes to improve
product quality and, in particular, to reduce the number of defects in delivered
software. Once this has been achieved, the principal goals might be cost or sched-
ule reductions.

Software processes are inherently complex and involve a very large number of
activities. Like products, processes also have attributes or characteristics as shown
in Figure 28.1. It is not possible to make process improvements that optimise all
process attributes simultaneously. For example, if your aim is to have a rapid devel-
opment process, then you may have to reduce the process visibility. Making a pro-
cess visible means producing documents at regular intervals. This, inevitably, slows
down the process.

Process improvement does not simply mean adopting particular methods or tools
or using some model of a process that has been used elsewhere. Although organi-
sations that develop the same type of software clearly have much in common, there
are always local organisational factors, procedures and standards that influence the
process. You will rarely be successful in introducing process improvements if you
simply attempt to change the process to one that is used somewhere else. You should
always look on process improvement as specific to an organisation or a part of a
larger organisation.

Process improvement is a cyclical activity, as shown in Figure 28.2. It involves
three principal stages:

1. Process measurement Attributes of the current project or the product are mea-
sured. The aim is to improve the measures according to the goals of the organ-
isation involved in process improvement.

2. Process analysis The current process is assessed, and process weaknesses and
bottlenecks are identified. Process models that describe the process are usually
developed during this stage.

3. Process change Changes to the process that have been identified during anal-
ysis are introduced.

I cover each of these activities in separate sections later in this chapter. Each
stage of the process may last several months; process improvement is a long-term
activity. It is also a continuous activity as, whatever new processes are introduced,
the business environment will change and these processes will themselves have to
evolve to take these changes into account.

••••

SE8_C28.qxd 4/4/06 9:22 Page 666

28.1 ■ Process and product quality 667

28.1 Process and product quality

Process improvement is based on the assumption that the quality of the product devel-
opment process is critical to product quality. The notion of process improvement

••••

Process characteristic Description

Understandability To what extent is the process explicitly defined and how
easy is it to understand the process definition?

Visibility Do the process activities culminate in clear results so that
the progress of the process is externally visible?

Supportability To what extent can CASE tools be used to support the
process activities?

Acceptability Is the defined process acceptable to and usable by the
engineers responsible for producing the software
product?

Reliability Is the process designed in such a way that process errors
are avoided or trapped before they result in product
errors?

Robustness Can the process continue in spite of unexpected
problems?

Maintainability Can the process evolve to reflect changing organisational
requirements or identified process improvements?

Rapidity How fast can the process of delivering a system from a
given specification be completed?

Figure 28.1 Process
characteristics

Analyse

Measure

Change

Figure 28.2 The
process improvement
cycle

SE8_C28.qxd 4/4/06 9:22 Page 667

668 Chapter 28 ■ Process improvement

is the brainchild of American engineer W. E. Deming, who worked with Japanese
industry after World War II to improve quality. Japanese industry has been com-
mitted to continuous process improvement for many years, which has led to the
acknowledged high quality of Japanese manufactured goods.

Deming (and others) introduced the idea of statistical quality control. This is based
on measuring the number of product defects and relating these defects to the pro-
cess. The aim is to reduce the number of product defects by improving the process
until it is repeatable. That is, the results of the process are predictable and the num-
ber of defects reduced. The process is then standardised and a further improvement
cycle begins.

Humphrey, in his seminal book on process management (Humphrey, 1988)
argues that the same techniques can be applied to software engineering. He states:

W. E. Deming, in his work with the Japanese industry after World War II,
applied the concepts of statistical process control to industry. While there are
important differences, these concepts are just as applicable to software as they
are to automobiles, cameras, wristwatches and steel.

While there are clearly similarities, I do not agree with Humphrey that results from
manufacturing engineering can be transferred directly to software engineering. Where
manufacturing is involved, the process/product relationship is very obvious.
Improving a process so that defects are avoided will lead to better products. This link
is less obvious when the product is intangible and dependent, to some extent, on intel-
lectual processes that cannot be automated. Software quality is not dependent on a
manufacturing process but on a design process where individual human capabilities
are significant. In some classes of product, the process used is the most significant
determinant of product quality. However, for innovative applications in particular, the
people involved in the process may be more important than the process used.

For software products, or any other intellectual products such as books or films
where the quality of the product depends on its design, four main factors affect prod-
uct quality. These are shown in Figure 28.3.

The influence of each of these factors depends on the size and type of the project.
For very large systems that include separate sub-systems, developed by teams who
may be working in different locations, the principal factor that affects product qual-
ity is the software process. The major problems with large projects are integration,
project management and communications. There is usually a mix of abilities and expe-
rience in the team members and, because the development process usually takes place
over a number of years, the development team is volatile. It may change completely
over the lifetime of the project. Therefore, particularly skilled or talented individuals
don’t usually have a dominant effect over the lifetime of the project.

For small projects, however, where there are only a few team members, the qual-
ity of the development team is more important than the development process used.
If the team has a high level of ability and experience, the quality of the product is
likely to be high. If the team is inexperienced and unskilled, a good process may
limit the damage but will not, in itself, lead to high-quality software.

••••

SE8_C28.qxd 4/4/06 9:22 Page 668

28.2 ■ Process classification 669

Where teams are small, good development technology is particularly important.
The small team cannot devote a lot of time to tedious administrative procedures.
The team members spend much of their time designing and programming the sys-
tem, so good tools can significantly affect their productivity. For large projects, a
basic level of development technology is essential for information management.
Paradoxically, sophisticated CASE tools are often less important in large projects.
Team members spend a smaller proportion of their time in development activities
and more time communicating and understanding other parts of the system. This is
the dominant factor affecting their productivity. Development tools make no dif-
ference to this.

The base of the rectangle in Figure 28.3 is absolutely critical. If a project, irre-
spective of size, is under-budgeted or planned with an unrealistic delivery sched-
ule, the product quality will be affected. A good process requires resources for its
effective implementation. If these resources are insufficient, the process cannot work
effectively. If resources are inadequate, only excellent people can save a project.
Even then, if the deficit is too great, the product quality will be degraded.

All too often, the real cause of software quality problems is not poor manage-
ment, inadequate processes or poor quality training. Rather, it is the fact that organ-
isations must compete to survive. To gain a contract, a company may underestimate
the effort required or promise rapid delivery of a system. In an attempt to meet these
commitments, the company may have to sacrifice software quality.

28.2 Process classification

Software processes can be observed in all organisations, from one-person compa-
nies to large multinationals. These processes are of different types depending on
the degree of formality of the process, the types of products developed, the size of
the organisation, and so on. There are four classes of software processes:

••••

Product
quality

Development
technology

Cost, time and
schedule

Process
quality

People
quality

Figure 28.3 Principal
software product
quality factors

SE8_C28.qxd 4/4/06 9:22 Page 669

670 Chapter 28 ■ Process improvement

1. Informal processes When there is no strictly defined process model, the devel-
opment team chooses the process that they will use. Informal processes may
use formal procedures such as configuration management, but the procedures
and the relationships between procedures are defined as required by the devel-
opment team.

2. Managed processes A defined process model is used to drive the development
process. The process model defines the procedures, their scheduling and the
relationships between the procedures.

3. Methodical processes When some defined development method or methods (such
as systematic methods for object-oriented design) are used, these processes ben-
efit from CASE tool support for design and analysis processes.

4. Improving processes Processes that have inherent improvement objectives have
a specific budget for improvements and procedures for introducing such
improvements. As part of this, quantitative process measurement may be
introduced.

These classifications obviously overlap, and a process may fall into several classes.
For example, the process may be informal in that it is chosen by the development
team. The team may choose to use a particular design method. They may also have
a process-improvement capability. In this case, the process would be classified as
informal, methodical and improving.

These classifications are useful because they serve as a basis for multidimen-
sional process improvement. They help organisations choose an appropriate pro-
cess for their unique product development requirements. Figure 28.4 shows
different types of product and the type of process that might be used for their devel-
opment. Improving processes are not shown on this diagram because any type of
process can be an improving process.

••••

Prototypes
Short-lifetime systems
4GL business systems
Small/medium-sized

systems

Informal
process

Large systems
Long-lifetime products

Managed
process

Well-understood
application domains

Re-engineered systems

Methodical
process

Figure 28.4 Process
applicability

SE8_C28.qxd 4/4/06 9:22 Page 670

28.2 ■ Process classification 671

The classes of system shown on the right in Figure 28.4 may overlap. Therefore,
small systems that are re-engineered may be developed using a methodical process.
Large systems always need a managed process. However, design methods are not
suited to all types of applications, and large systems in particular may include sub-
systems of different types. Rather than force a single method on the designers, these
systems may be developed using a managed process that is not based on any par-
ticular method.

Process classification provides a basis for choosing the right process for the prod-
uct that is being developed. For example, a program that will support a transition
from one type of computer system to another has a relatively short lifetime. Its devel-
opment does not require the standards and management procedures that are appro-
priate for software that will be used for many years.

Process classification recognises that the process affects product quality. It does
not assume, however, that the process is always the dominant factor. It provides a
basis for improving many types of processes. Different types of process improve-
ment may be applied to the different types of process. For example, the improve-
ments to methodical processes might be based on better method training, better
integration of requirements and design, improved CASE tools and so on.

Most software processes now have some CASE tool support, so they are sup-
ported processes. Analysis and design workbenches are used to support methodi-
cal processes. However, processes may have other kinds of tool support (for
example, prototyping tools, testing tools) irrespective of whether a structured
design method is used.

The tool support that can be effective in supporting processes depends on the
process classification. For example, generic tools such as prototyping languages,
compilers, debuggers and word processors can be used in informal processes.
However, informal processes rarely use more specialised tools in a consistent way.
Figure 28.5 shows that a spectrum of tools can be used in software development.
The effectiveness of particular tools depends on the type of process used.

Analysis and design CASE tools are only likely to be cost effective with a method-
ical process. Specialised tools provide specific support for individual process activ-
ities. For example, a team involved in multisite development may create a display
tool that shows the work going on at each site. Sometimes, these specialised tools
may be developed specially to improve the process.

••••

Informal
process

Managed
process

Methodical
process

Improving
process

Specialised
tools

Analysis and
design

workbenches

Project
management

tools

Configuration
management

tools

Generic
tools

Figure 28.5 Process
tool support

SE8_C28.qxd 4/4/06 9:22 Page 671

672 Chapter 28 ■ Process improvement

28.3 Process measurement

Process measurements are quantitative data about the software process. Humphrey
(Humphrey, 1989), in his book on process improvement, argues that the measure-
ment of process and product attributes is essential for process improvement. He also
suggests that measurement has an important role to play in small-scale, personal
process improvement (Humphrey, 1995). Process measurements can be used to assess
whether the efficiency of a process has been improved. For example, the effort and
time devoted to testing can be monitored. Effective improvements to the testing pro-
cess should reduce the effort, testing time or both. However, process measurements
on their own cannot be used to determine whether product quality has improved.
Product quality data (see Chapter 27) should also be collected and related to the
process activities.

Three classes of process metric can be collected:

1. The time taken for a particular process to be completed This can be the total
time devoted to the process, calendar time, the time spent on the process by
particular engineers and so on.

2. The resources required for a particular process The resources might include
total effort in person-days, travel costs and computer resources.

3. The number of occurrences of a particular event Examples of events that might
be monitored include the number of defects discovered during code inspection,
the number of requirements changes requested and the average number of lines
of code modified in response to a requirements change.

The first two types of measurement can be used to discover whether process changes
have improved the efficiency of a process. Say there are fixed points in a software
development process such as the acceptance of requirements, the completion of archi-
tectural design or the completion of test data generation. You may be able to mea-
sure the time and effort required to move from one of these fixed points to another.
After changes have been introduced, measurements of system attributes can show
whether the process changes have actually been beneficial in reducing the time or
effort required.

Measurements of the number of events that occur can have a more direct bear-
ing on software quality. For example, increasing the number of defects discovered
by changing the program inspection process will probably be reflected in improved
product quality. However, this has to be confirmed by subsequent product mea-
surements.

The fundamental difficulty in process measurement is knowing what to measure.
Basili and Rombach (Basili and Rombach, 1988) have proposed what they call the
GQM (Goal-Question-Metric) paradigm. This is used to help decide what

••••

SE8_C28.qxd 4/4/06 9:22 Page 672

28.4 ■ Process analysis and modelling 673

measurements should be taken and how they should be used. This approach relies
on the identification of:

1. Goals What the organisation is trying to achieve. Examples of goals might be
improved programmer productivity, shorter product development time and
increased product reliability.

2. Questions These are refinements of goals where specific areas of uncertainty
related to the goals are identified. Normally, a goal will have a number of asso-
ciated questions that need to be answered. Examples of questions related to the
above goals are:

• How can the number of debugged lines of code be increased?

• How can the time required to finalise product requirements be reduced?

• How can more effective reliability assessments be made?

3. Metrics These are the measurements that need to be collected to help answer
the questions and to confirm whether process improvements have achieved the
desired goal. In the above examples, measurements that might be made include
the productivity of individual programmers in lines of code and their level of
experience, the number of formal communications between client and contractor
for each requirements change and the number of tests required to cause prod-
uct failure.

The advantage of this approach applied to process improvement is that it sepa-
rates organisational concerns (the goals) from specific process concerns (the ques-
tions). It focuses data collection and suggests that collected data should be analysed
in different ways depending on the question it is intended to answer. Basili and Green
(Basili and Green, 1993) describe how this approach has been used in a long-term,
measurement-based process improvement programme.

The GQM approach has been developed and combined with the SEI’s capa-
bility maturity model (Paulk, et al., 1995) in the ami method (Pulford, et al., 1996)
of software process improvement. The developers of the ami method propose a
staged approach to process improvement where measurement is introduced when
an organisation has introduced some discipline into its processes. It provides guide-
lines and practical advice on implementing measurement-based process
improvement.

28.4 Process analysis and modelling

Process analysis and modelling involve studying existing processes and developing
an abstract model of these processes that captures their key characteristics. These

••••

SE8_C28.qxd 4/4/06 9:22 Page 673

674 Chapter 28 ■ Process improvement

models help you understand the process and communicate that understanding to oth-
ers. Throughout the book, I have used process model fragments to discuss specific
activities such as requirements engineering and software design. I have suggested,
in Figure 28.2, that process analysis follows process measurement. This is a sim-
plification because, in reality, these activities are intertwined. You need to carry out
some analysis to know what to measure, and, when making measurements, you
inevitably develop a deeper understanding of the process being measured.

Process analysis is concerned with studying existing processes in order to under-
stand the relationships between the parts of the process. The initial stages of pro-
cess analysis are qualitative: The analyst is simply trying to discover the key features
of the model. Later stages may be quantitative and make use of collected process
measurements. After the analysis is complete, you should describe and document
the process using a software process model (Huff, 1996).

The starting point for process analysis should be whatever ‘formal’ process model
is used. Many organisations have such a formal model, which may be imposed on
them by the software customer. This standard defines the critical activities and life-
cycle deliverables that must be produced.

Formal models can serve as a useful starting point for process analysis.
However, they rarely include enough detail or reflect the real activities of software
development. Formal process models are fairly abstract and define only the princi-
pal process activities and deliverables. It is usually necessary to ‘look inside’ the
model to find the real process. Furthermore, the actual process often differs signif-
icantly from the formal model, although the specified deliverables will usually be
produced.

Techniques of process analysis include:

1. Questionnaires and interviews The engineers working on a project are ques-
tioned about what actually goes on. The answers to a formal questionnaire are
refined during personal interviews with those involved in the process. The dis-
cussion can be structured around a version of the process model that is refined
as new information becomes available.

2. Ethnographic studies As discussed in Chapter 7, ethnographic studies may be
used to understand the nature of software development as a human activity.
Such analysis reveals subtleties and complexities that may not be discovered
using other techniques.

Each of these approaches has advantages and disadvantages. Questionnaire-based
analysis can be carried out fairly quickly once the right questions have been identi-
fied. However, if the questions are badly worded or inappropriate, you will end up
with an incomplete or inaccurate model of the process. Furthermore, questionnaire-
based analysis may appear to be like assessment. The engineers being questioned
may give the answers that they think you want to hear rather than the truth about
the process used.

••••

SE8_C28.qxd 4/4/06 9:22 Page 674

28.4 ■ Process analysis and modelling 675

Interviews with the people involved in the process are more open ended than ques-
tionnaires. You start with a prepared script of questions but adapt these according to
the responses that you get from different people. If you give participants an oppor-
tunity to discuss issues more widely, you may find that the process participants talk
about process problems, the ways that the process is changed in practice, etc.

Ethnographic analysis is more likely to discover the true process used. However,
it is a prolonged activity that can last several months. It relies on external obser-
vation of the process as it is being enacted. To do a complete analysis, you have
to be involved from the initial stages of a project through to product delivery and
maintenance. For large projects, this could take several years, so it is clearly
impractical in those situations. Ethnographic analysis, therefore, is most useful when
an in-depth understanding of process fragments is required. You carry out a
smaller-scale study focusing on process details.

Process models are simplified views of software processes that show the activ-
ities and outputs of the process. The process models used in this book present a
high-level view of the processes concerned. At this abstract level, these processes
are the same in many organisations. However, these generic models have different
instantiations in different companies depending on the type of software being
developed and the organisational environment. Detailed process models are not usu-
ally the same across organisations.

Abstract or generic process models are a useful basis for discussing processes.
However, they do not include enough information for process analysis and
improvement. Process improvement needs information about activities, deliverables,
people, communications, schedules and other organisational processes that affect
the software development process. Figure 28.6 explains what might be included in
a detailed process model.

You should record the timing of and the dependencies between activities, deliv-
erables and communications in the process model. Sometimes activities can be car-
ried out in parallel and other times they must occur in sequence. They may be
interleaved so that the same person is involved in several activities. Deliverables
may be dependent on other deliverables or on communications between engineers
working on the process.

In the examples of process models in this book, I show the approximate
sequence of activities from left to right. Activities that may be carried out in par-
allel are, as far as possible, aligned vertically.

Detailed process models are extremely complex. For example, consider the pro-
cess fragments shown in Figures 28.7 and 28.8. These describe the process of test-
ing a single module in a large system that uses a strictly controlled configuration
management process (see Chapter 29). The software being tested and the test data
are under configuration control. Figure 28.7 shows the role responsible for the test-
ing process, process inputs and outputs, and pre- and post-conditions.

Figure 28.8 shows the decomposed process ‘test module’ as a number of sepa-
rate activities. This fragment shows only the activities in the relatively simple activ-
ity of module testing. Four streams of activities are concerned with preparing test
data, writing a test harness for the module, running the tests and reporting on the

••••

SE8_C28.qxd 4/4/06 9:22 Page 675

676 Chapter 28 ■ Process improvement

tests. The activities in the preparation streams would normally be interleaved.
Obviously, the preparation activities precede the execution and reporting activities.

I have left out information on process pre- and post-conditions and process inputs
and outputs in this diagram because this information would make the model more
complex and difficult to understand. Rather than trying to get all information into

••••

Process model element Description

Activity (shown as a An activity has a clearly defined objective, entry and
round-edged rectangle exit conditions. Examples of activities are preparing a
with no drop shadow) set of test data to test a module, coding a function or

a module and proofreading a document. Generally, an
activity is atomic; that is, it is the responsibility of one
person or group. It is not decomposed into sub-
activities.

Process (shown as a A process is a coherent set of activities whose
round-edged rectangle objective is generally agreed within an organisation.
with drop shadow) Examples of processes are requirements analysis,

architectural design and test planning.

Deliverable (shown as A deliverable is a tangible output of an activity that is
a rectangle with drop predicted in a project plan.
shadow)

Condition (shown as A condition is either a pre-condition that must hold
a parallelogram) before a process or activity can start or a post-

condition that holds after a process or activity has
finished.

Role (shown as a circle A role is a bounded area of responsibility. Examples of
with drop shadow) roles might be configuration manager, test engineer

and software designer. One person may have several
roles and a single role may be associated with several
different people.

Exception (not shown in An exception is a description of how to modify the
examples here but may process if some anticipated or unanticipated event
be represented as a occurs. Exceptions are often undefined, and it is left to
double-edged box) the ingenuity of the project managers and engineers to

handle the exception.

Communication (shown Communication is an interchange of information
as an arrow) between people or between people and supporting

computer systems. Communications may be informal
or formal. Formal communications might be the
approval of a deliverable by a project manager;
informal communications might be the interchange of
e-mail to resolve ambiguities in a document.

Figure 28.6 Elements
of a process model

SE8_C28.qxd 4/4/06 9:22 Page 676

28.4 ■ Process analysis and modelling 677

a single model, you may need to make several models at different levels of
abstraction. These should be related using common elements such as activities or
deliverables. Some models should be primarily concerned with process activities,
others with control information that drives the process execution.

••••

Test
module

Signed-off test
record

Module test
data

Module
specification

Module compiles
without syntax

errors

All defined tests
run on module

Test
engineer

Pre-condition

Input
Process

Role

Post-condition

Outputs
Responsible

for

Figure 28.7 The
module testing
process

TEST DATA PREPARATION

TEST EXECUTION

TEST REPORTING

MODULE TEST HARNESS PREPARATION

Read module
specification

Incorporate module
with test harness

Prepare test data
according to
specification

Submit test data
for review Review test data

Checkout module
from configuration

management system

Read and understand
module interface

Prepare test harness
for module

Compile test
harness

Run approved tests
on module

Record test results
for regression tests

Write report on module
testing including details
of discovered problems

Submit report
for approval

Submit test
results to CM

Figure 28.8 The
activities involved in
module testing

SE8_C28.qxd 4/4/06 9:22 Page 677

678 Chapter 28 ■ Process improvement

28.4.1 Process exceptions

Software processes are very complex entities. While there may be a defined process
model in an organisation, this can only ever represent the ideal situation where the devel-
opment team is not faced with any unanticipated problems. In reality, unanticipated prob-
lems are a fact of everyday life for project managers. The ‘ideal’ process model must
be modified dynamically as solutions to these problems are found. Examples of the
kinds of exceptions that a project manager may have to deal with include:

1. Several key people becoming ill at the same time just before a critical project
review

2. A serious breach in computer security that means all external communications
are out of action for several hours

3. An organisational reorganisation that means that managers have to spend much
of their time working on organisational matters rather than on project management

4. An unanticipated request to write proposals for new projects that means effort
must be transferred from the project to a proposal.

In general, the effect of an exception is that, somehow, the resources, budgets
or schedules of a project are changed. It is difficult to predict all exceptions in advance
and to incorporate them into a formal process model. You therefore often have to
work out how to handle exceptions and then dynamically change the ‘standard’ pro-
cess to cope with these unexpected circumstances. Process models therefore are
inevitably incomplete, and the process manager is responsible for dealing with excep-
tions and adapting the process as required.

28.5 Process change

Process change involves making modifications to the existing process. You may do
this by introducing new practices, methods or tools, by changing the ordering of
process activities, by introducing or removing deliverables from the process, or by
introducing new roles and responsibilities. You should set goals for process
improvement such as ‘reduce the number of defects discovered during integration
testing by 25%’. These goals should drive the process changes and, after the
changes have been implemented, be used to measure progress.

There are five key stages in the process change process (Figure 28.9):

1. Improvement identification This stage is concerned with using the results of the
process analysis to identify quality, schedule or cost bottlenecks where process
factors might adversely influence the product quality. Process improvement

••••

SE8_C28.qxd 4/4/06 9:22 Page 678

28.5 ■ Process change 679

should focus on loosening these bottlenecks by proposing new procedures, meth-
ods and tools to address the problems.

2. Improvement prioritisation This stage is concerned with assessing the possible
changes and prioritising them for implementation. When many possible
changes have been identified, it is usually impossible to introduce them all at
once; you have to decide which are most important. You may make these deci-
sions based on the need to improve specific process areas, the costs of intro-
ducing the change, the impact of the change on the organisation and other factors.

3. Process change introduction Process change introduction means putting new
procedures, methods and tools into place, and integrating them with other pro-
cess activities. You must allow enough time to introduce changes and to ensure
that these changes are compatible with other process activities and with organ-
isational procedures and standards.

4. Process change training Without training, it is not possible to gain the full ben-
efits from process changes. Process managers and software engineers may sim-
ply refuse to accept the new process. All too often, process changes have been
imposed without adequate training, and the effects of these changes have been
to degrade rather than improve product quality.

5. Change tuning Proposed process changes will never be completely effective as
soon as they are introduced. You need a tuning phase where minor problems
are discovered, and modifications to the process are proposed and are intro-
duced. This tuning phase should last for several months until the development
engineers are happy with the new process.

Once a change has been introduced, the improvement process can iterate with
further analysis used to identify process problems, propose improvements, and so
on. It is impractical to introduce too many changes at the same time. Apart from
the problems of training that this causes, introducing too many changes makes it
impossible to assess the effect of each change on the process.

••••

Process
model

Process change
plan

Training
plan

Feedback on
improvements

Revised process
model

Identify
improvements

Prioritise
improvements

Tune
process changes

Introduce
process change

Train
engineers

Figure 28.9 The
process change
process

SE8_C28.qxd 4/4/06 9:22 Page 679

680 Chapter 28 ■ Process improvement

As a manager, you have to be sensitive to the feelings of the people in your team
when introducing process change. Business process re-engineering (Hammer, 1990;
Ould, 1995), a fashion of the 1990s that involved making radical process changes,
was largely unsuccessful because it failed to take the legitimate concerns of the peo-
ple involved into account. People felt that their expertise was being ignored and
their jobs changed without consultation. They actively resisted the changes and ensured
that the changes would not work.

There is no question that some people feel threatened by change and concerned
that they may lose their job or be unable to cope with new ways of working. You
have to involve the team all the way through the change process, understand their
doubts and involve them in planning the new process. By making them stakehold-
ers in the process change, it is much more likely that they will wish to make it work.

28.6 The CMMI process improvement framework

The Software Engineering Institute (SEI) was established to improve the capabili-
ties of the US software industry. In the mid-1980s, the SEI initiated a study of ways
of assessing the capabilities of software contractors. The outcome of this capabil-
ity assessment was the SEI Software Capability Maturity Model (CMM) (Paulk, et
al., 1993) (Paulk, et al., 1995). This has been tremendously influential in convinc-
ing the software engineering community to take process improvement seriously. The
Software CMM was followed by a range of other capability maturity models, includ-
ing the People Capability Maturity Model (P-CMM) (Curtis, et al., 2001), discussed
in Chapter 25.

Other organisations have developed comparable process maturity models. The
SPICE approach to capability assessment and process improvement (Paulk and Konrad
1994) is more flexible than the SEI model. It includes maturity levels comparable
with the SEI levels but also identifies processes, such as customer-supplier processes,
that cut across these levels. As the level of maturity increases, the performance of
these key processes must improve.

The Bootstrap project had the goal of extending and adapting the SEI maturity
model to make it applicable across a wider range of companies. The Bootstrap model
(Haase, et al., 1994; Kuvaja, et al., 1994) uses the SEI’s maturity levels but also
proposes:

1. Guidelines for a company-wide quality system to support process improvement

2. An important distinction between organisation, methodology and technology

3. A base process model (based on the model used in the European Space
Agency) that may be adopted.

••••

SE8_C28.qxd 4/4/06 9:22 Page 680

28.6 ■ The CMMI process improvement framework 681

In an attempt to integrate the plethora of models that have been developed (includ-
ing its own models), the SEI embarked on a new programme to develop an inte-
grated capability model (CMMI). This supersedes the Software and Systems
Engineering CMMs and integrates other engineering models. It has two instantia-
tions, staged and continuous, and addresses some of the reported weaknesses in the
Software CMM.

The CMMI model (Ahern, et al., 2001) is intended to be a framework for pro-
cess improvement that has broad applicability across a range of companies. Its staged
version is compatible with the Software CMM and allows an organisation’s system
development and management processes to be assessed and assigned a maturity level
from 1 to 5. Its continuous version allows for a finer-grain classification and rates
24 process areas (see Figure 28.10) on a scale from 1 to 6.

The model is very complex (more than 1,000 pages of description), so I have
radically simplified it for discussion here:

1. Process areas The CMMI identifies 24 process areas that are relevant to soft-
ware process capability and improvement. These are organised into four
groups in the continuous CMMI model. These groups and related process areas
are listed in Figure 28.10.

2. Goals Goals are abstract descriptions of a desirable state that should be
attained by an organisation. The CMMI has specific goals that are associated
with each process area and that define the desirable state for that area. It also
defines generic goals that are associated with the institutionalisation of good
practice. Figure 28.11 shows some specific and generic goals in the CMMI.

3. Practices Practices in the CMMI are descriptions of ways to achieving a goal.
Up to seven specific and generic practices may be associated with each goal
within each process area. Examples of recommended practices are shown in
Figure 28.12. However, the CMMI recognises that it is the goal rather than the
way that goal is reached that is important. Organisations may use any appro-
priate practices to achieve any of the CMMI goals—they do not have to take
the CMMI recommendations.

Generic goals and practices are not technical but are associated with the institu-
tionalisation of good practice. What this means depends on the maturity of the organ-
isation. Therefore, for a young organisation at an early stage of maturity development,
institutionalisation may mean following established plans and processes. However, for
an organisation with more mature, advanced processes, institutionalisation may mean
controlling the process using statistical and other quantitative techniques.

A CMMI assessment involves examining the processes in an organisation and
rating these on a six-point scale that relates to the level of maturity in each process
area. The six-point scale assigns a level to a process as follows:

••••

SE8_C28.qxd 4/4/06 9:22 Page 681

682 Chapter 28 ■ Process improvement

••••

Category Process area

Process management Organisational process definition
Organisational process focus
Organisational training
Organisational process performance
Organisational innovation and deployment

Project management Project planning
Project monitoring and control
Supplier agreement management
Integrated project management
Risk management
Integrated teaming
Quantitative project management

Engineering Requirements management
Requirements development
Technical solution
Product integration
Verification
Validation

Support Configuration management
Process and product quality management
Measurement and analysis
Decision analysis and resolution
Organisational environment for integration
Causal analysis and resolution

Figure 28.10 Process
areas in the CMMI

Goal Process area

Corrective actions are managed to closure when the Specific goal in project
project’s performance or results deviate significantly monitoring and control
from the plan.

Actual performance and progress of the project is Specific goal in project
monitored against the project plan. monitoring and control

The requirements are analysed and validated, and Specific goal in
a definition of the required functionality is developed. requirements

development

Root causes of defects and other problems are Specific goal in causal
systematically determined. analysis and resolution

The process is institutionalised as a defined process. Generic goal

Figure 28.11
Examples of goals in
the CMMI

SE8_C28.qxd 4/4/06 9:22 Page 682

28.6 ■ The CMMI process improvement framework 683

1. Not performed One or more of the specific goals associated with the process
area is not satisfied.

2. Performed The goals associated with the process area are satisfied, and for all
processes the scope of the work to be performed is explicitly set out and com-
municated to the team members.

3. Managed At this level, the goals associated with the process area are met and
organisational policies are in place that define when each process should be
used. There must be documented plans, and resource management and process
monitoring procedures must be in place across the institution.

4. Defined This level focuses on organisational standardisation and deployment
of processes. Each project in an organisation has a managed process that is tai-
lored from a defined set of organisational processes. Process assets and pro-
cess measurements must be collected and used for future process
improvements.

5. Quantitatively managed At this level, there is an organisational responsibility to
use statistical and other quantitative methods to control sub-processes. That is, col-
lected process and product measurements must be used in process management.

••••

Practice Associated goal

Analyse derived requirements to The requirements are analysed and
ensure that they are necessary and validated, and a definition of the
sufficient. required functionality is developed.

Validate requirements to ensure that
the resulting product will perform as
intended in the user’s environment using
multiple techniques as appropriate.

Select the defects and other problems Root causes of defects and other
for analysis. problems are systematically

determined.

Perform causal analysis of selected
defects and other problems and
propose actions to address them.

Establish and maintain an organisational The process is institutionalised as a
policy for planning and performing the defined process.
requirements development process.

Assign responsibility and authority for
performing the process, developing the
work products and providing the services
of the requirements development process.

Figure 28.12
Practices and
associated goals in
the CMMI

SE8_C28.qxd 4/4/06 9:22 Page 683

684 Chapter 28 ■ Process improvement

6. Optimizing At this highest level, the organisation must use the process and prod-
uct measurements to drive process improvement. Trends must be analysed and
the processes adapted to changing business needs.

Of course, this description of the capability levels is simplified, but you can gen-
erally think of the levels as progressive, with explicit process descriptions at the
lowest levels, through process standardisation to process change and improvement
driven by measurements of the process and the software.

28.6.1 The staged CMMI model

The staged CMMI model is comparable with the Software CMM in that it provides
a means to assess an organisation’s process capability at one of five levels. It pre-
scribes the goals that should be achieved at each of these levels. Process improve-
ment is achieved by implementing practices at each level, moving from the lower
to the higher levels in the model. The five levels in the staged CMMI model are
shown in Figure 28.13.

Each maturity level has an associated set of process areas and generic goals. For
example, the process areas as defined in the model associated with the second level
(the managed level) are:

1. Requirements management Manage the requirements of the project’s products
and product components, and identify inconsistencies between those require-
ments and the project’s plans and work products.

2. Project planning Establish and maintain plans that define project activities.

3. Project monitoring and control Provide understanding into the project’s
progress so that appropriate corrective actions can be taken when the project’s
performance deviates significantly from the plan.

4. Supplier agreement management Manage the acquisition of products and ser-
vices from suppliers external to the project for which a formal agreement exists.

5. Measurement and analysis Develop and sustain a measurement capability that
is used to support management information needs.

6. Process and product quality assurance Provide staff and management with objec-
tive insight into the processes and associated work products.

7. Configuration management Establish and maintain the integrity of work prod-
ucts using configuration identification, configuration control, configuration sta-
tus accounting and configuration audits.

As well as these specific practices, organisations operating at the second level
in the CMMI model should have achieved the generic goal of institutionalising each
of the processes as a managed process. Examples of institutional practices

••••

SE8_C28.qxd 4/4/06 9:22 Page 684

28.6 ■ The CMMI process improvement framework 685

associated with project planning that lead to the project-planning process being a
managed process are:

• Establish and maintain an organisational policy for planning and performing
the project planning process.

• Provide adequate resources for performing the project management process, devel-
oping the work products and providing the services of the process.

• Monitor and control the project-planning process against the plan and take appro-
priate corrective action.

• Review the activities, status and results of the project-planning process with
high-level management and resolve issues.

The advantage of the staged CMMI, apart from its compatibility with the
Software CMM, is that it defines a clear improvement pathway for organisations.
They move from the second to the third level, and so on. Its disadvantage is that it
may be more appropriate to introduce goals and practices at higher levels before
lower-level practices. When an organisation does this, a maturity assessment will
give a misleading picture of its capability.

28.6.2 The continuous CMMI model

Continuous maturity models do not classify an organisation according to discrete
levels. Rather, they are finer-grained models that consider individual or groups of
practices and assess the use of each practice. The maturity assessment is not, there-

••••

Level 3
Defined

Level 2
Managed

Level 1
Initial

Level 4
Quantitatively

managed

Level 5
Optimizing

Figure 28.13 The
CMMI staged model

SE8_C28.qxd 4/4/06 9:22 Page 685

686 Chapter 28 ■ Process improvement

fore, a single value but a set of values showing the organisation’s maturity for each
process or process group.

The continuous CMMI rates each process area as shown in Figure 28.10 and
assigns a capability assessment level from 1 to 6 (as just described) to each pro-
cess area.

Normally, organisations operate at different maturity levels for different process
areas. Consequently, the result of a continuous CMMI assessment is a capability
profile showing each process area and its associated capability assessment. A frag-
ment of a capability profile that shows processes at different capability levels is
shown in Figure 28.14. Organisations may develop actual and target capability pro-
files where the target profile reflects the capability level for that process area that
they would like to reach.

The principal advantage of the continuous model is that organisations can pick
and chose processes to improve according to their own needs and requirements. In
my experience, different types of organisations have different requirements for pro-
cess improvement. For example, a company that develops software for the
aerospace industry may focus on improvements in system specification, configura-
tion management and validation, whereas a web development company may be more
concerned with customer-facing processes. The staged model requires companies
to focus on the different stages in turn. By contrast, the continuous CMMI allows
more discretion and flexibility while retaining the CMMI support.

••••

Figure 28.14 A
process capability
profile

SE8_C28.qxd 4/4/06 9:22 Page 686

Chapter 28 ■ Further Reading 687

F U R T H E R R E A D I N G

CMMI Distilled. The only concise summary of the CMMI approach at the time of this writing. It is
easier to read if you already understand the Software CMM, as it lacks general introductory
material on process improvement. (D. M. Ahern, et al., 2001, Addison-Wesley.)

‘Can you trust software capability evaluations’. This article takes a sceptical look at the subject of
capability evaluation and discusses why these evaluations may not give a true picture of an
organisation’s maturity. (E. O’Connell and H. Saiedian, IEEE Computer, 33(2), February 2000.)

Trends in Software: Software Process Modelling and Technology. This book includes a good selection
of overview papers that cover aspects of software processes, including process modelling, process
support and the use of the CMM. (A. Fuggetta and A. Wolf (eds.), 1996, John Wiley & Sons.)

••••

■ Process improvement involves process analysis, standardisation, measurement and change.
Training is essential if process improvement is to be effective.

■ Processes can be classified as informal, managed, methodical and improving. This
classification can be used to identify process tool support.

■ The process improvement cycle involves process measurement, process analysis, and
modelling and process change.

■ Measurement should be used to answer specific questions about the software process
used. These questions should be based on organisational improvement goals.

■ Three types of process metrics used in the measurement process are time metrics, resource
utilisation metrics and event metrics.

■ Process models include descriptions of activities, sub-processes, roles, exceptions,
communications, deliverables and other processes.

■ The CMMI process maturity model is an integrated process improvement model that
supports both staged and continuous process improvement.

■ Process improvement in the CMMI model is based on reaching a set of goals related to
good software engineering practice and describing, standardising and controlling the
practices used to achieve these goals. The CMMI model includes recommended practices
that may be used, but these are not obligatory.

K E Y P O I N TS

SE8_C28.qxd 4/4/06 9:22 Page 687

688 Chapter 28 ■ Process improvement

Managing the Software Process. A classic text on software process improvement that first
publicised the notion of a structured approach to process improvement. Although this book is more
than 15 years old, the advice in this book is still very relevant, especially for very large software
projects. (W. S. Humphrey, 1988, Addison-Wesley.)

E X E R C I S E S

28.1 Suggest process models for the following processes:

■ Lighting a wood fire

■ Cooking a three-course meal (you chose the menu)

■ Writing a small (50-line) program.

28.2 Under what circumstances is product quality likely to be determined by the quality of the
development team? Give examples of the types of software product that are particularly
dependent on individual talent and ability.

28.3 Explain why a methodical process is not necessarily a managed process as defined in
Section 28.2.

28.4 Suggest three specialised software tools that might be developed to support a process
improvement programme in an organisation.

28.5 Assume that the goal of process improvement in an organisation is to increase the number of
reusable components that are produced during development. Suggest three questions in the
GQM paradigm that this might lead to.

28.6 Describe three types of software process metric that may be collected as part of a process
improvement process. Give one example of each type of metric.

28.7 Design a process for assessing and prioritising process change proposals. Document this
process as a process model showing the roles involved in this process.

28.8 Give two advantages and two disadvantages of the approach to process assessment and
improvement that is embodied in the process improvement frameworks such as the CMMI.

28.9 Under what circumstances would you recommend the use of the staged representation of the
CMMI?

28.10 What is the difference between generic and specific goals in the CMMI?

28.11 What are the advantages and disadvantages of using a goal-based rather than a practice-
based maturity model?

28.12 Are process improvement programmes, which involve measuring the work of people in the
process and changing the process, inherently dehumanising? What resistance to a process
improvement programme might arise?

••

SE8_C28.qxd 4/4/06 9:22 Page 688

Configuration
management

29

Objectives
The objective of this chapter is to introduce the process of managing
the code and documentation of an evolving software system. When you
have read this chapter, you will:

■ understand why software configuration management is required for
complex software systems;

■ have been introduced to four fundamental configuration
management activities—configuration management planning, change
management, version and release management, and system
building;

■ understand how CASE tools for configuration management are used
to support configuration management processes.

Contents
29.1 Configuration management planning

29.2 Change management

29.3 Version and release management

29.4 System building

29.5 CASE tools for configuration management

SE8_C29.qxd 4/4/06 9:23 Page 689

690 Chapter 29 ■ Configuration management

Configuration management (CM) is the development and use of standards and pro-
cedures for managing an evolving software system. As I discussed in Chapter 7,
system requirements always change during development and use, and you have to
incorporate these requirements into new versions of the system. You need to man-
age evolving systems because it is easy to lose track of what changes have been
incorporated into what system version. Versions incorporate proposals for change,
corrections of faults and adaptations for different hardware and operating systems.
There may be several versions under development and in use at the same time. If
you don’t have effective configuration management procedures in place, you may
waste effort modifying the wrong version of a system, deliver the wrong version
of a system to customers or lose track of where the software source code is stored.

Configuration management procedures define how to record and process proposed
system changes, how to relate these to system components and the methods used
to identify different versions of the system. Configuration management tools are
used to store versions of system components, build systems from these components
and track the releases of system versions to customers.

Configuration management is sometimes considered to be part of software qual-
ity management (covered in Chapter 27), with the same manager sharing quality
management and configuration management responsibilities. The software is ini-
tially released by the development team for quality assurance. The QA team checks
that the system is of acceptable quality. It then becomes a controlled system, which
means that changes to the system have to be agreed on and recorded before they
are implemented. Controlled systems are sometimes called baselines because they
are a starting point for further, controlled evolution.

There are many reasons why systems exist in different configurations.
Configurations may be produced for different computers, for different operating sys-
tems, incorporating client-specific functions and so on (Figure 29.1). Configuration
managers are responsible for keeping track of the differences between software ver-
sions, for ensuring that new versions are derived in a controlled way and for releas-
ing new versions to the right customers at the right time.

The definition and use of configuration management standards is essential for
quality certification in both the ISO 9000 and the CMM and CMMI standards (Paulk,
et al., 1995; Ahern, et al., 2001; Peach, 1996). An example of such a standard is
IEEE 828-1998, which is a standard for configuration management plans. Within
a company, these standards should be incorporated into the quality handbook or con-
figuration management guide. Of course, the generic external standards may be used
as a basis for more detailed organisational standards that are tailored to a specific
environment.

In a traditional software development process based on the ‘waterfall’ model (see
Chapter 4), software is delivered to the configuration management team after devel-
opment is complete and the individual software components have been tested. This
team then takes over the responsibility for building the complete system and for man-
aging system testing. Faults that are discovered during system testing are passed back
to the development team for repair. After the faults have been repaired, the devel-
opment team delivers a new version of the repaired component to the quality

••••

SE8_C29.qxd 4/4/06 9:23 Page 690

Chapter 29 ■ Configuration management 691

assurance team. If the quality is acceptable, this then may become the new base-
line for further system development.

This model, where the CM team controls the system integration and testing pro-
cesses, has influenced the development of configuration management standards. Most
CM standards have an embedded assumption that a waterfall model will be used
for system development (Bersoff and Davis, 1991). This means that the standards
have to be adapted to modern software development approaches based on incre-
mental specification and development. Hass (Hass, 2003) discusses some of these
adaptations for software development processes such as agile development.

To cater for incremental development, some organisations have developed a mod-
ified approach to configuration management that supports concurrent development
and system testing. This approach relies on a very frequent (at least daily) build of
the whole system from its components:

1. The development organisation sets a delivery time (say 2 p.m.) for system com-
ponents. If developers have new versions of the components that they are writ-
ing, they must deliver them by that time. Components may be incomplete but
should provide some basic functionality that can be tested.

2. A new version of the system is built from these components by compiling and
linking them to form a complete system.

3. This system is then delivered to the testing team, which carries out a set of pre-
defined system tests. At the same time, the developers are still working on their
components, adding to the functionality and repairing faults discovered in pre-
vious tests.

4. Faults that are discovered during system testing are documented and returned
to the system developers. They repair these faults in a subsequent version of
the component.

The advantages of using daily builds of software are that the chances of finding
problems stemming from component interactions early in the process are increased.
Furthermore, daily building encourages thorough unit testing of components.

••••

Figure 29.1 System
families

SE8_C29.qxd 4/4/06 9:23 Page 691

692 Chapter 29 ■ Configuration management

Psychologically, developers are put under pressure not to ‘break the build’, that is,
deliver versions of components that cause the whole system to fail. They are there-
fore reluctant to deliver new component versions that have not been properly
tested. Less system testing time is spent discovering and coping with software faults
that should have been found during unit testing.

The successful use of daily builds requires a very stringent change management
process to keep track of the problems that have been discovered and repaired. It
also leads to a very large number of system and component versions that must be
managed. Good configuration management is therefore essential for this approach
to be successful.

Configuration management in agile and rapid development approaches cannot
be based around rigid procedures and paperwork. While these may be necessary for
large, complex projects, they slow down the development process. Careful record-
keeping is essential for large, complex systems developed across several sites, but
it is unnecessary for small projects. In these projects, all team members work together
in the same room, and the overhead involved in record keeping slows down the
development process. However, this does not mean that CM should be completely
abandoned when rapid development is required. Rather, agile processes use simple
CM tools, such as version management and system-building tools, that enforce some
control. All team members have to learn to use these tools and conform to the dis-
ciplines that they impose.

29.1 Configuration management planning

A configuration management plan describes the standards and procedures that
should be used for configuration management. The starting point for developing the
plan should be a set of configuration management standards, and these should be
adapted to fit the requirements and constraints of each specific project. The CM
plan should be organised into a number of sections that:

1. Define what is to be managed (the configuration items) and the scheme that
you should use to identify these entities.

2. Set out who is responsible for the configuration management procedures and
for submitting controlled entities to the configuration management team.

3. Define the configuration management policies that all team members must use
for change control and version management.

4. Specify the tools that you should use for configuration management and the
processes for using these tools.

••••

SE8_C29.qxd 4/4/06 9:23 Page 692

29.1 ■ Configuration management planning 693

5. Describe the structure of the configuration database that is used to record con-
figuration information and the information that should be maintained in that
database (the configuration records).

You may also include other information in the CM plan such as the manage-
ment of software from external suppliers and the auditing procedures for the CM
process in the CM plan.

An important part of the CM plan is the definition of responsibilities. The plan
should define who is responsible for the delivery of each document or software com-
ponent to quality assurance and configuration management. It may also define the
reviewers of each document. The person responsible for document delivery need
not be the same as the person responsible for producing the document. To simplify
interfaces, project managers or team leaders are often responsible for all of the doc-
uments produced by their team.

29.1.1 Configuration item identification

In a large software system, there may be thousands of source code modules, test
scripts, design documents and so on. These are produced by different people and,
when created, may be assigned similar or identical names. To keep track of all this
information so that the right file can be found when it is needed, you need a con-
sistent identification scheme for all items in the configuration management system.

During the configuration management planning process, you decide exactly
which items (or classes of items) are to be controlled. Documents or groups of related
documents under configuration control are formal documents or configuration
items. Project plans, specifications, designs, programs and test data suites are nor-
mally maintained as configuration items. All documents that may be useful for future
system evolution should be controlled by the configuration management system.

However, this does not mean that every document or file produced must be placed
under configuration control. Documents such as technical working documents that
present a snapshot of ideas for further development, minutes of group meetings,
outline plans and proposals, and so on may not have long-term relevance and are
not needed for future maintenance of the system.

The configuration item identification scheme must assign a unique name to all
documents under configuration control. This name may reflect the type of item, the
part of the system that it applies to, the creator of the item and so on. In your nam-
ing scheme, you may wish to reflect relationships between items by ensuring that
related documents have a common root to their name. Therefore, you might define
a hierarchical naming scheme with names such as:

PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE/CODE

PCL-TOOLS/EDIT/HELP/QUERY/HELPFRAMES/FR-1

••••

SE8_C29.qxd 4/4/06 9:23 Page 693

694 Chapter 29 ■ Configuration management

The initial part of the name is the project name, PCL-TOOLS. In this project,
there are a number of separate tools being developed, so the tool name (EDIT) is
used as the next part of the name. Each tool includes differently named modules
whose name makes up the next component of the item identifier (FORMS, HELP).
This decomposition process continues until the base-level formal documents are ref-
erenced (Figure 29.2). The leaves of the documentation hierarchy are the formal con-
figuration items. Figure 29.2 shows that three formal items are required for each code
component: an object description (OBJECTS), the source code of the component
(CODE) and a set of tests for that component (TESTS). Items such as help frames
are also managed and have different names (FR-1, in the preceding example).

Hierarchical naming schemes are simple and easily understood, and sometimes
they can map to the directory structures used to store project files. However, they
reflect the structure of the project where the software was developed. The config-
uration item names associate components with a particular project and so may reduce
the opportunities for reuse. It can be very hard to find related components (e.g., all
components developed by the same programmer) where the relationship is not reflected
in the item-naming scheme.

29.1.2 The configuration database

The configuration database is used to record all relevant information about system
configurations and configuration items. You use the CM database to help assess the
impact of system changes and to generate reports for management about the CM
process. As part of the CM planning process, you should define the CM database

••••

PCL-TOOLS

EDIT

STRUCTURES

BIND

FORM

COMPILE MAKE-GEN

HELP

DISPLAY QUERY

AST-INTERFACEFORM-SPECS FORM-IO

CODEOBJECTS TESTS

Figure 29.2 A
configuration
hierarchy used to
assign item
identifiers

SE8_C29.qxd 4/4/06 9:23 Page 694

29.2 ■ Change management 695

schema, the forms to collect information to be recorded in the database and proce-
dures for recording and retrieving project information.

A configuration database does not just include information about configuration items.
It may also record information about users of components, system customers, execu-
tion platforms, proposed changes and so forth. It should be able to provide answers
to a variety of queries about system configurations. Typical queries might be:

1. Which customers have taken delivery of a particular version of the system?

2. What hardware and operating system configuration is required to run a given
system version?

3. How many versions of a system have been created and what were their cre-
ation dates?

4. What versions of a system might be affected if a particular component is changed?

5. How many change requests are outstanding on a particular version?

6. How many reported faults exist in a particular version?

Ideally, the configuration database should be integrated with the version man-
agement system that is used to store and manage the formal project documents. This
approach, supported by some integrated CASE tools, makes it possible to link changes
directly with the documents and components affected by the change. Links between
documents (such as design documents) and program code may be maintained so
that you can find everything that you have to modify when a change is proposed.

However, integrated CASE tools for configuration management are expensive.
Many companies do not use them but maintain their configuration database sepa-
rate from their version control systems. They store configuration items as files in
a directory structure or in a version management system such as CVS (Berliner,
1990), discussed later in this chapter.

The configuration database stores information about the configuration items and
references their names in the version management system or filestore. While this
is a relatively cheap and flexible approach, the problem with it is that configura-
tion items may be changed without going through the configuration database.
Therefore, you can’t be completely sure that the configuration database is an up-
to-date description of the state of the system.

29.2 Change management

Change is a fact of life for large software systems. As I have discussed in earlier
chapters, organisational needs and requirements change during the lifetime of a system.

••••

SE8_C29.qxd 4/4/06 9:23 Page 695

696 Chapter 29 ■ Configuration management

This means that you have to make corresponding changes to the software system.
To ensure that the changes are applied to the system in a controlled way, you need
a set of tool-supported, change management procedures.

Change management procedures are concerned with analysing the costs and ben-
efits of proposed changes, approving those changes that are worthwhile and track-
ing which components of the system have been changed. The change management
process (Figure 29.3) should come into effect when the software or associated doc-
umentation is baselined by the configuration management team.

The first stage in the change management process is to complete a change request
form (CRF) describing the change required to the system. As well as recording the
change required, the CRF records the recommendations regarding the change, the
estimated costs of the change and the dates when the change was requested,
approved, implemented and validated. The CRF may also include a section where
an analyst outlines how the change is to be implemented.

An example of a partially completed change request form is shown in Figure
29.4. The change request form is usually defined during the CM planning process.
This is an example of a CRF that might be used in a large complex systems engi-
neering project. For smaller projects, I recommend that change requests should be
formally recorded, but the CRF should focus on describing the change required with
less focus on implementation issues. The engineer making the change decides how
to implement that change in these situations.

Once a change request form has been submitted, it should be registered in the
configuration database. The change request is then analysed to check that the
change requested is necessary. Some change requests may be due to misunderstandings

••••

Request change by completing a change request form
Analyze change request
if change is valid then

Assess how change might be implemented
Assess change cost
Record change request in database
Submit request to change control board
if change is accepted then

repeat
make changes to software
record changes and link to associated change request
submit changed software for quality approval

until software quality is adequate
create new system version

else
reject change request

else
reject change request

Figure 29.3 The
change management
process

SE8_C29.qxd 4/4/06 9:23 Page 696

29.2 ■ Change management 697

rather than system faults and no system change is necessary. Others may refer to
already known faults. If the analysis discovers that a change request is invalid, dupli-
cated or has already been considered, the change is rejected. You should tell the
person who submitted the change request why it has been rejected.

For valid changes, the next stage of the process is change assessment and cost-
ing. The impact of the change on the rest of the system must be checked. This involves
identifying all of the components affected by the change using information from
the configuration database and the source code of the software. If making the change
means that further changes elsewhere in the system are needed, this clearly
increases the cost of change implementation. Next, the required changes to the sys-
tem modules are assessed. Finally, the cost of making the change is estimated, tak-
ing into account the costs of changing related components.

A change control board (CCB) should review and approve all change requests unless
the changes simply involve correcting minor errors on screen displays, web pages or
in documents. The CCB considers the impact of the change from a strategic and organ-
isational rather than a technical point of view. The board should decide whether the
change is economically justified and should prioritise the changes that have been accepted.

The term change control board implies a rather grand group that makes change
decisions. Such formally structured CCBs, including senior client and contractor staff,
are a requirement of military projects. However, for small or medium-sized projects,
the CCB may simply consist of a project manager plus one or two engineers who are

••••

Change Request Form

Project: Proteus/PCL-Tools Number: 23/02
Change requester: I. Sommerville Date: 1/12/02
Requested change: When a component is selected from the structure, display the
name of the file where it is stored.

Change analyser: G. Dean Analysis date: 10/12/02
Components affected: Display-Icon.Select, Display-Icon.Display

Associated components: FileTable

Change assessment: Relatively simple to implement as a file name table is
available. Requires the design and implementation of a display field. No changes to
associated components are required.

Change priority: Low
Change implementation:
Estimated effort: 0.5 days
Date to CCB: 15/12/02 CCB decision date: 1/2/03
CCB decision: Accept change. Change to be implemented in Release 2.1.
Change implementor: Date of change:
Date submitted to QA: QA decision:
Date submitted to CM:
Comments

Figure 29.4 A
partially completed
change request form

SE8_C29.qxd 4/4/06 9:23 Page 697

698 Chapter 29 ■ Configuration management

not directly involved in the software development. In some cases, the CCB may be a
single change reviewer who gives advice on whether changes are justifiable.

Change management for generic, shrink-wrapped software products rather than
systems that are tailored for a specific customer has to be handled in a slightly dif-
ferent way. In these systems, the customer is not directly involved so the relevance
of the change to the customer’s business is not an issue. Change requests in these
products are usually associated with bugs in the system that have been discovered
during system testing or by customers after the software has been released.
Customers may use a web page or e-mail to report bugs. A bug management team
then checks that the bug reports are valid and translates them into formal system
change requests. As with other types of systems, changes have to be prioritised for
implementation and bugs may not be repaired if the repair costs are too high.

During development, when new versions of the system are created through daily
(or more frequent) system builds, a simpler change management process is used.
Problems and changes must still be recorded, but changes that affect only individ-
ual components and modules need not be independently assessed. They are passed
directly to the system developer. The system developer either accepts them or makes
a case why they are not required. Changes that affect system modules produced by
different development teams, however, should be assessed by a change control author-
ity who prioritises them for implementation.

In some agile methods, such as extreme programming, customers are directly
involved in deciding whether a change should be implemented. When they propose
a change to the system requirements, they work with the team to assess the impact
of that change and then decide whether the change should take priority over the
features planned for the next increment of the system. However, changes that involve
software improvement are left to the discretion of the programmers working on the
system. Refactoring, where the software is continually improved, is not seen as an
overhead but rather as a necessary part of the development process.

As software components are changed, a record of the changes made to each com-
ponent should be maintained. This is sometimes called the derivation history of a
component. A good way to keep the derivation history is in a standardised com-
ment at the beginning of the component source code (see Figure 29.5). This com-
ment should reference the change request that triggered the software change. You
can then write simple scripts that scan all components and process the derivation
histories to produce component change reports. A similar approach can be used for
web pages. For published documents, records of changes incorporated in each ver-
sion are usually maintained in a separate page at the front of the document.

29.3 Version and release management

The processes involved in version and release management are concerned with iden-
tifying and keeping track of the versions of a system. Version managers devise

••••

SE8_C29.qxd 4/4/06 9:23 Page 698

29.3 ■ Version and release management 699

procedures to ensure that versions of a system may be retrieved when required and
are not accidentally changed by the development team. For products, version man-
agers work with marketing staff and, for custom systems with customers, to plan
when new releases of a system should be created and distributed for deployment.

A system version is an instance of a system that differs, in some way, from other
instances. Versions of the system may have different functionality, enhanced per-
formance or repaired software faults. Some versions may be functionally equiva-
lent but designed for different hardware or software configurations. Versions with
only small differences are sometimes called variants.

A system release is a version that is distributed to customers. Each system release
should either include new functionality or should be intended for a different hard-
ware platform. There are normally many more versions of a system than releases.
Versions are created within an organisation for internal development or testing and
are not intended for release to customers

As I discuss in Section 29.5, CASE tools are now always used to support version
management. These tools manage the storage of each version of the software and con-
trol access to system components. Components must be checked out from the system
for editing. Re-entering (checking in) the component creates a new version, and an
identifier is assigned by the version management system. While tools obviously dif-
fer significantly in the features offered and their user interfaces, the general princi-
ples of version management covered here are the basis for all support tools.

29.3.1 Version identification

To create a particular version of a system, you have to specify the versions of the
system components that should be included in it. In a large software system, there
are hundreds of software components, each of which may exist in several different

••••

// BANKSEC project (IST 6087)
//
// BANKSEC-TOOLS/AUTH/RBAC/USER_ROLE
//
// Object: currentRole
// Author: N. Perwaiz
// Creation date: 10th November 2002
//
// (c) Lancaster University 2002
//
// Modification history
// Version Modifier Date Change Reason
// 1.0 J. Jones 1/12/2002 Add header Submitted to CM
// 1.1 N. Perwaiz 9/4/2003 New field Change req. R07/02

Figure 29.5
Component header
information

SE8_C29.qxd 4/4/06 9:23 Page 699

700 Chapter 29 ■ Configuration management

versions. There must therefore be an unambiguous way to identify each component
version to ensure that the right components are included in the system. However,
you cannot use the configuration item name for version identification because there
may be several versions of each identified configuration item.

Instead, three basic techniques are used for component version identification:

1. Version numbering The component is given an explicit, unique version num-
ber. This is the most commonly used identification scheme.

2. Attribute-based identification Each component has a name (such as the con-
figuration item name, which is not unique across versions) and an associated
set of attributes for each version (Estublier and Casallas, 1994). Components
are therefore identified by specifying their name and attribute values.

3. Change-oriented identification Each component is named as in attribute-based
identification but is also associated with one or more change requests (Munch,
et al., 1993). That is, it is assumed that each version of the component has been
created in response to one or more change requests. The component version is
identified by the set of change requests that apply to the component.

Version numbering

In a simple version-numbering scheme, a version number is added to the compo-
nent or system name. Therefore, you might refer to Solaris 4.3 (version 4.3 of the
Solaris system) and version 1.4 of component getToken. If the first version is called
1.0, subsequent versions are 1.1, 1.2, and so on. At some stage, a new release is
created (release 2.0) and the process starts again at version 2.1. The scheme is lin-
ear, based on the assumption that system versions are created in sequence. Most
version management tools (see Section 29.5) such as RCS (Tichy, 1985) and CVS
(Berliner, 1990) support this approach to version identification.

I illustrate this approach and the derivation of a number of different system ver-
sions in Figure 29.6. The arrows in this diagram point from the source version to
the new version created from that source. Notice that the derivation of versions is
not necessarily linear and versions with consecutive version numbers may be pro-
duced from different baselines. For example, in Figure 29.6, version 2.2 is created
from version 1.2 rather than from version 2.1. In principle, any existing version may
be used as the starting point for a new version of the system.

This scheme is simple, but you need to maintain a lot of extra information to
keep track of the differences between versions and the relationships between sys-
tem change proposals and versions. For example, versions 1.1 and 1.2 of a system
might differ because version 1.2 has been produced using a different graphics library.
The name tells you nothing about the version or why it was created. Consequently,
you need to keep records in the configuration database that describe each version
and why it was produced. You may also need to explicitly link change requests to
the different versions of each component.

••••

SE8_C29.qxd 4/4/06 9:23 Page 700

29.3 ■ Version and release management 701

Attribute-based identification

A fundamental problem with explicit version naming schemes is that they do not
reflect the many attributes that may be used to identify versions. Examples of these
identifying attributes are:

• Customer

• Development language

• Development status

• Hardware platform

• Creation date

If each version is identified by a unique set of attributes, it is easy to add new ver-
sions that are derived from any of the existing versions. These are identified using a
unique set of attribute values. They share most of these values with their parent ver-
sion so relationships between versions are maintained. You can retrieve specific ver-
sions by specifying the attribute values required. Functions on attributes support queries
such as ‘the most recently created version’ or ‘the version created between given dates’.

For example, the version of the software system AC3D developed in Java for
Windows XP in January 2003 would be identified:

AC3D (language = Java, platform = XP, date = Jan2003)

Using a general specification of the components in AC3D, the version manage-
ment tool selects the versions of components that have the attributes ‘Java’, ‘XP’
and ‘Jan2003’.

Attribute-based identification may be implemented directly by the version man-
agement system, with component attributes maintained in a system database.
Alternatively, the attribute identification system may be built as a layer on top of
a hidden version-numbering scheme. The configuration database then maintains the
links between identifying attributes and underlying system and component versions.

••••

V1.0 V1.1 V1.2 V2.0 V2.1 V2.2

V1.1b V1.1.1

V1.1a

Figure 29.6 Version
derivation structure

SE8_C29.qxd 4/4/06 9:23 Page 701

702 Chapter 29 ■ Configuration management

Change-oriented identification

Attribute-based identification of system versions removes some of the version
retrieval problems of simple version numbering schemes. However, to retrieve a
version, you still have to know its associated attributes. Furthermore, you still need
to use a separate change management system to discover the relationships between
versions and changes.

Change-oriented identification is used to identify system versions rather than com-
ponents. The version identifiers of individual components are hidden from users of
the CM system. Each system change that has been implemented has an associated
change set that describes the requested changes made to the different system com-
ponents. Change sets may be applied in sequence so that, in principle at least, the
version may incorporate an arbitrary set of changes. For example, the set of
changes to a system that were made to adapt it for Linux rather than Solaris could
be applied, followed by the changes required to incorporate a new system database.
Equally, the Linux/Solaris changes could be followed by changes that converted
the user interface language from English to Italian.

In practice, of course, it isn’t possible to apply arbitrary sets of changes to a sys-
tem. The change sets may be incompatible so that applying change set A followed
by change set D may create an invalid system. Furthermore, change sets may con-
flict in that different changes affect the same code of the system. If the code has
been changed by change set A, then change set D may no longer work. To address
these difficulties, version management tools that support change-oriented identifi-
cation allow system consistency rules to be specified. These limit the ways in which
change sets may be combined.

29.3.2 Release management

A system release is a version of the system that is distributed to customers. System
release managers are responsible for deciding when the system can be released to
customers, managing the process of creating the release and the distribution media,
and documenting the release to ensure that it may be re-created exactly as distributed
if this is necessary.

A system release is not just the executable code of the system. The release may
also include:

1. Configuration files defining how the release should be configured for particu-
lar installations

2. Data files that are needed for successful system operation

3. An installation program that is used to help install the system on target
hardware

4. Electronic and paper documentation describing the system

••••

SE8_C29.qxd 4/4/06 9:23 Page 702

29.3 ■ Version and release management 703

5. Packaging and associated publicity that have been designed for that release.

Release managers cannot assume that customers will always install new system
releases. Some system users may be happy with an existing system. They may con-
sider it not worth the cost of changing to a new release. New releases of the sys-
tem cannot, therefore, rely on the installation of previous releases. To illustrate this
problem, consider the following scenario:

1. Release 1 of a system is distributed and put into use.

2. Release 2 requires the installation of new data files, but some customers do not
need the facilities of release 2 so remain with release 1.

3. Release 3 requires the data files installed in release 2 and has no new data files
of its own.

The software distributor cannot assume that the files required for release 3 have
already been installed in all sites. Some sites may go directly from release 1 to release
3, skipping release 2. Some sites may have modified the data files associated with
release 2 to reflect local circumstances. Therefore, the data files must be distributed
and installed with release 3 of the system.

Release decision making

Preparing and distributing a system release is an expensive process, particularly for
mass-market software products. If releases are too frequent, customers may not upgrade
to the new release, especially if it is not free. If system releases are infrequent, mar-
ket share may be lost as customers move to alternative systems. This, of course,
does not apply to custom software developed specially for an organisation. For cus-
tom software, infrequent releases may mean increasing divergence between the soft-
ware and the business processes that it is designed to support.

The various technical and organisational factors that you should take into
account when deciding to create a new system release are shown in Figure 29.7.

Release creation

Release creation is the process of creating a collection of files and documentation
that includes all of the components of the system release. The executable code of
the programs and all associated data files must be collected and identified.
Configuration descriptions may have to be written for different hardware and oper-
ating systems and instructions prepared for customers who need to configure their
own systems. If machine-readable manuals are distributed, electronic copies must
be stored with the software. Scripts for the installation program may have to be
written. Finally, when all information is available, the release directory is handed
over for distribution.

••••

SE8_C29.qxd 4/4/06 9:23 Page 703

704 Chapter 29 ■ Configuration management

The normal distribution medium for system releases is now optical disks (CD-
ROM or DVD) that can store from 600 Mbytes to 4 Gbytes of data. In addition,
software may be released online, allowing customers to download it from the Internet,
although many people find it takes too long to download large files and prefer CD-
ROM distribution.

There are very high marketing and packaging costs associated with distributing
new releases of software products, so product vendors usually create new releases
only for new platforms or to add significant new functionality. They then charge
users for this new software. When problems are discovered in an existing release,
the vendors usually make patches to repair the existing software available on a web
site for downloading by customers.

Apart from the costs of finding and downloading the new release, the problem
is that many customers may never discover the existence of these repairs or may
not have the technical knowledge to install them. They may instead continue using
their existing, faulty system with the consequent risks to their business. In some
situations, where the patch is designed to repair security loopholes, the risks of fail-
ing to install the patch can mean that the business is susceptible to external attacks.

••••

Factor Description

Technical quality of If serious system faults are reported which affect the way in
the system which many customers use the system, it may be necessary

to issue a fault repair release. However, minor system faults
may be repaired by issuing patches (often distributed over
the Internet) that can be applied to the current release of
the system.

Platform changes You may have to create a new release of a software
application when a new version of the operating system
platform is released.

Lehman’s fifth law This suggests that the increment of functionality that is
(see Chapter 21) included in each release is approximately constant.

Therefore, a system release with significant new functionality
may have to be followed by a repair release.

Competition A new system release may be necessary because a
competing product is available.

Marketing The marketing department of an organisation may have
requirements made a commitment for releases to be available at a

particular date.

Customer change For customised systems, customers may have made and paid
proposals for a specific set of system change proposals, and they

expect a system release as soon as these have been
implemented.

Figure 29.7 Factors
influencing system
release strategy

SE8_C29.qxd 4/4/06 9:23 Page 704

29.4 ■ System building 705

Release documentation

When a system release is produced, it must be documented to ensure that it can be
re-created exactly in the future. This is particularly important for customised, long-
lifetime embedded systems such as those controlling complex machines. Customers
may use a single release of these systems for many years and may require specific
changes to a particular software release long after its original release date.

To document a release, you have to record the specific versions of the source
code components that were used to create the executable code. You must keep copies
of the source and executable code and all data and configuration files. You should
also record the versions of the operating system, libraries, compilers and other tools
used to build the software. These may be required to build exactly the same sys-
tem at some later date. This may mean that you have to store copies of the plat-
form software and the tools used to create the system in the version management
system along with the source code of the target system.

29.4 System building

System building is the process of compiling and linking software components into
a program that executes on a particular target configuration. When you are build-
ing a system from its components, you have to think about the following questions:

1. Have all the components that make up a system been included in the build instruc-
tions?

2. Has the appropriate version of each required component been included in the
build instructions?

3. Are all required data files available?

4. If data files are referenced within a component, is the name used the same as
the name of the data file on the target machine?

5. Is the appropriate version of the compiler and other required tools available?
Current versions of software tools may be incompatible with the older versions
used to develop the system.

Nowadays, software configuration management tools or, sometimes, the pro-
gramming environment are used to automate the system-building process. The CM
team writes a build script that defines the dependencies between the system compo-
nents. This script also defines the tools used to compile and link the system compo-
nents. The system-building tool interprets the build script and calls other programs as
required to build the executable system from its components. This is illustrated in

••••

SE8_C29.qxd 4/4/06 9:23 Page 705

706 Chapter 29 ■ Configuration management

Figure 29.8. In some programming environments (such as Java development envi-
ronments), the build script is created automatically by parsing the source code and
discovering which components are called. Of course, in this situation, the name of
the stored component has to be the same as the name of the program component.

Dependencies between components are specified in the build script. This pro-
vides information so that the system-building tool can decide when the source code
of components must be recompiled and when existing object code can be reused.
In many tools, these build-script dependencies are often specified as dependencies
between the physical files in which the source code and object code of components
are stored. However, when there are multiple source code files representing multi-
ple versions of components, it may be difficult to tell which source files were used
to derive object-code components. This confusion is particularly likely when the
correspondence between source and object code files relies on them having the same
name but a different suffix (e.g., .c and .o). This problem can only be solved when
the version management and system-building tools are integrated.

29.5 CASE tools for configuration management

Configuration management processes are usually standardised and involve the
application of predefined procedures. They require careful management of very large
amounts of data, and attention to detail is essential. When a system is being built
from component versions, a single configuration management mistake can mean that
the software will not work properly. Consequently, CASE tool support is essential
for configuration management, and, since the 1970s, many software tools covering
different areas of configuration management have been produced.

These tools can be combined to create a configuration management workbench
to support all CM activities. There are two types of CM workbench:

1. Open workbenches Tools for each stage in the CM process are integrated through
standard organisational procedures for using these tools. There are many commercial

••••

Figure 29.8 System
building

SE8_C29.qxd 4/4/06 9:23 Page 706

29.5 ■ CASE tools for configuration management 707

and open-source CM tools available for specific purposes. Change management
can be supported by bug-tracking tools such as Bugzilla, version management by
using tools such as RCS (Tichy, 1985) or CVS (Berliner, 1990), and system build-
ing by using tools such as make (Feldman, 1979; Oram and Talbott, 1991) or imake
(DuBois, 1996). These are all open-source tools that are freely available.

2. Integrated workbenches These workbenches provide integrated facilities for ver-
sion management, system building and change tracking. For example,
Rational’s Unified Change Management process relies on an integrated CM work-
bench incorporating ClearCase (White, 2000) for system building and version
management and ClearQuest for change tracking. The advantages of integrated
CM workbenches are that data exchange is simplified, and the workbench includes
an integrated CM database. Integrated SCM workbenches have been derived
from earlier systems such as Lifespan (Whitgift, 1991) for change management
and DSEE (Leblang and Chase, 1987) for version management and system build-
ing. However, integrated CM workbenches are complex and expensive, and many
organisations prefer to use cheaper and simpler individual tool support.

Many large systems are developed at different sites, and these need SCM tools
that support multisite working with multiple data stores for configuration items. While
most SCM tools are designed for single site working, some tools, such as CVS,
have facilities for multisite support (Vesperman, 2003).

29.5.1 Support for change management

Each person involved in the change management process is responsible for some
activity. They complete this activity, then pass on the forms and associated con-
figuration items to someone else. The procedural nature of this process means that
a change process model can be designed and integrated with a version management
system. This model may then be interpreted so that the right documents are passed
to the right people at the right time.

There are several change management tools available, from relatively simple, open-
source tools such as Bugzilla to comprehensive integrated systems such as Rational
ClearQuest. These tools provide some or all of the following facilities to support
the process:

1. A form editor that allows change proposal forms to be created and completed
by people making change requests.

2. A workflow system that allows the CM team to define who must process the
change request form and the order of processing. This system will also auto-
matically pass forms to the right people at the right time and inform the rele-
vant team members of the progress of the change. E-mail is used to provide
progress updates for those involved in the process.

••••

SE8_C29.qxd 4/4/06 9:23 Page 707

708 Chapter 29 ■ Configuration management

3. A change database that is used to manage all change proposals and that may
be linked to a version management system. Database query facilities allow the
CM team to find specific change proposals.

4. A change-reporting system that generates management reports on the status of
change requests that have been submitted.

29.5.2 Support for version management

Version management involves managing large amounts of information and ensuring
that system changes are recorded and controlled. Version management tools control a
repository of configuration items where the contents of that repository are immutable
(i.e., cannot be changed). To work on a configuration item, you must check it out of
the repository into a working directory. After you have made the changes to the soft-
ware, you check it back into the repository and a new version is automatically created.

All version management systems provide a comparable basic set of capabilities
although some have more sophisticated facilities than others. Examples of these capa-
bilities are:

1. Version and release identification Managed versions are assigned identifiers
when they are submitted to the system. Different systems support the different
types of version identification discussed in Section 29.3.1.

2. Storage management To reduce the storage space required by multiple versions
that are largely the same, version management systems provide storage man-
agement facilities so that versions are described by their differences from some
master version. Differences between versions are represented as a delta, which
encapsulates the instructions required to recreate the associated system version.
This is illustrated in Figure 29.9, which shows how backward deltas may be
applied to the latest version of a system to re-create earlier system versions.
The latest version is version 1.3. To create version 1.2, you apply the change
delta that re-creates that version.

3. Change history recording All of the changes made to the code of a system or
component are recorded and listed. In some systems, these changes may be used
to select a particular system version.

4. Independent development Multiple versions of a system can be developed in
parallel and each version may be changed independently. For example, release
1 can be modified after development of release 2 is in progress by adding new
level-1 deltas. The version management system keeps track of components that
have been checked out for editing and ensures that changes made to the same
component by different developers do not interfere. Some systems allow only
one instance of a component to be checked out for editing; others resolve poten-
tial clashes when the edited components are checked back into the system.

••••

SE8_C29.qxd 4/4/06 9:23 Page 708

29.5 ■ CASE tools for configuration management 709

5. Project support The system can support multiple projects as well as multiple
files. In project support systems, such as CVS, it is possible to check in and
check out all of the files associated with a project rather than having to work
with one file at a time.

29.5.3 Support for system building

System building is a computationally intensive process. Compiling and linking all
of the components of a large system can take several hours. There may be hundreds
of files involved, with the consequent possibility of human error if these are com-
piled and linked manually. System-building tools automate the build process to reduce
the potential for human error and, where possible, minimise the time required for
system building.

System-building tools may be standalone, such as derivatives of the Unix make
utility (Oram and Talbott, 1991), or may be integrated with version management
tools. Facilities provided by system-building CASE tools may include:

1. A dependency specification language and associated interpreter Component
dependencies may be described and recompilation minimised. I explain this in
more detail later in this section.

2. Tool selection and instantiation support The compilers and other processing
tools that are used to process the source code files may be specified and instan-
tiated as required.

3. Distributed compilation Some system builders, especially those that are part of
integrated CM systems, support distributed network compilation. Rather than
all compilations being carried out on a single machine, the system builder looks
for idle processors on the network and sets off a number of parallel compila-
tions. This significantly reduces the time required to build a system.

4. Derived object management Derived objects are objects created from other source
objects. Derived object management links the source code and the derived objects
and rederives only an object when this is required by source code changes.

••••

Version
1.0

Version
1.1

Version
1.2

Version
1.3

D1 D2 D3

Creation date

Figure 29.9 Delta-
based versioning

SE8_C29.qxd 4/4/06 9:23 Page 709

710 Chapter 29 ■ Configuration management

Managing derived objects and minimising recompilation is best explained using a
simple example. Consider a situation where a compiler program called comp is created
out of four object modules named scan.o, syn.o, sem.o and cgen.o. Each object mod-
ule is created from a source code module with corresponding names (scan.c, syn.c, sem.c
and cgen.c). A file of variable and constant declarations called defs.h is shared by scan.c,
syn.c and sem.c (Figure 29.10). In Figure 29.10, the arrows mean ‘depends on’—the
entity at the base of the arrow depends on the entity at its head. Therefore, comp depends
on scan.o, syn.o, sem.o and cgen.o, scan.o depends on scan.c, and so on.

If scan.c is changed, the system-building tool can detect that the derived object
scan.o must be re-created. It does this by comparing the modification times of scan.o
and scan.c and detects that scan.c has been modified after scan.o. It then calls the
C compiler to compile scan.c to create a new derived object, scan.o.

The build tool then uses the dependency link between comp and scan.o to detect
that comp must be recreated by linking scan.o, syn.o, sem.o and cgen.o. The sys-
tem can detect that the other object code components are unchanged, so recompi-
lation of their source code is not required.

Most system-building tools use the file modification date as the key attribute in
deciding whether recompilation is required. If a source code file is modified after
its corresponding object code file, then the object code file is re-created.
Essentially, there can only ever be one version of the object code corresponding to
the most recently changed source code component. When a new version of a source
code component is re-created, the object code for the previous version is lost.

However, some tools use a more sophisticated approach to derived object man-
agement. They tag derived objects with the version identifier of the source code
used to generate these objects. Within the limits of storage capacity, they maintain
all derived objects. Therefore, it is usually possible to recover the object code of
all versions of source code components without recompilation.

••••

Figure 29.10
Component
dependencies

SE8_C29.qxd 4/4/06 9:23 Page 710

Chapter 29 ■ Further Reading 711

F U R T H E R R E A D I N G

Configuration Management Principles and Practice. This very comprehensive book covers standards
and traditional approaches to CM as well as CM approaches that are more appropriate to modern
processes such as agile software development. (A.M.J. Hass, 2002, Addison-Wesley.)

‘A layered architecture for uniform version management’. This paper discusses the different
approaches to software version management and proposes a basic model that can accommodate
all of them. It includes a particularly good survey of background work in this area. (B. Westfechel,
et al., IEEE Transactions on Software Engineering, 27 (12), December 2001.)

‘Software configuration management: A roadmap’. This overview paper discusses the evolution of

••••

■ Configuration management is the management of system change. When a system is
maintained, the role of the CM team is to ensure that changes are incorporated in a
controlled way.

■ In a large project, a formal document-naming scheme should be established and used as a
basis for keeping track of the versions of all project documents.

■ The CM team should be supported by a configuration database that records information
about system changes and change requests that are outstanding. Projects should have
some formal means of requesting system changes.

■ When setting up a configuration management scheme, a consistent scheme of version
identification should be established. Versions may be identified by version number, by an
associated set of attributes or by the proposed system changes that they implement.

■ System releases include executable code, data files, configuration files and documentation.
Release management involves making decisions on system release dates, preparing all
information for distribution and documenting each system release.

■ System building is the process of assembling system components into an executable
program to run on some target computer system.

■ CASE tools are available to support all configuration management activities. These include
tools such as CVS to manage system versions, tools to support change management and
system-building tools.

■ CASE tools for CM may be standalone tools supporting change management, version
management and system building, or may be integrated workbenches that provide a single
interface to all CM support.

K E Y P O I N TS

SE8_C29.qxd 4/4/06 9:23 Page 711

712 Chapter 29 ■ Configuration management

SCM and identifies research challenges that remain in this area. (J. Estublier, Proc. Int. Conf. on
Software Engineering, 2000. IEEE Press.)

Trends in Software: Configuration Management. This is a collection of papers on aspects of
configuration management, by authors who are active researchers and practitioners in this field.
It’s a good introduction for students and practitioners who are interested in advanced CM topics.
Most of these problems have not yet been solved. (W. Tichy (ed.), 1995, John Wiley & Sons.)

E X E R C I S E S

29.1 Explain why you should not use the title of a document to identify the document in a
configuration management system. Suggest a standard for a document identification scheme
that may be used for all projects in an organisation.

29.2 Using an object-oriented approach (see Chapter 8), design a model of a configuration
database that records information about system components, versions, releases and changes.
Some requirements for the data model are as follows:

• It should be possible to retrieve all versions or a single identified version of a
component.

• It should be possible to retrieve the ‘latest’ version of a component.

• It should be possible to find out which change requests have been implemented by a
particular version of a system.

• It should be possible to discover which versions of components are included in a specified
version of a system.

• It should be possible to retrieve a particular release of a system according to either the
release date or the customers to whom the release was delivered.

29.3 Using a data-flow diagram, describe a change management procedure that might be used in a
large organisation concerned with developing software for external clients. Changes may be
suggested either from external or internal sources.

29.4 How does the use of a project-based configuration management system such as CVS simplify
the version management process?

29.5 Explain why an attribute-based version identification system makes it easier to discover all of
the components making up a specific version of a system.

29.6 Describe the difficulties that may arise when building a system from its components. What
particular problems might occur when a system is built on a host computer for some target
machine?

29.7 With reference to system building, explain why you may sometimes have to maintain
obsolete computers on which large software systems were developed.

••••

SE8_C29.qxd 4/4/06 9:23 Page 712

Chapter 29 ■ Exercises 713

29.8 A common problem with system building occurs when physical file names are incorporated in
system code and the file structure implied in these names differs from that of the target
machine. Write a set of programmer’s guidelines that help avoid this and other system-
building problems that you can think of.

29.9 Describe five factors that should be taken into account by engineers during the process of
building a release of a large software system.

29.10 Describe two ways in which system-building tools can optimise the process of building a
version of a system from its components.

••••

SE8_C29.qxd 4/4/06 9:23 Page 713

••

SE8_C29.qxd 4/4/06 9:23 Page 714

7EMERGING
TECHNOLOGIE S

PART

SE8_C30.qxd 4/4/06 10:52 Page 715

••

While the fundamentals of software engineering are fairly stable, the
technologies that support the software engineering process are subject to
continual change. There are a host of different approaches that have been
developed in research labs that are starting to make the transition to prac-
tical use. In this section, I discuss three of the approaches that I think are
particularly important. I believe that they may profoundly influence software
engineering in future.

These three approaches are at different stages of development. Security
engineering, the topic of Chapter 30, is already being used in practical
systems development. Service-oriented software engineering is still at an
early stage of development but there is incredible investment behind this
approach by all major companies. It will therefore certainly become an import-
ant software development technology in the near future. Aspect-oriented
software development is less mature but includes exciting ideas that may
have a fundamental impact on the way that software is organised.

The chapters in this part of the book are:

1. Chapter 30 is concerned with security engineering. I have included this
chapter because, sadly, the threat to systems through malicious attacks
by criminals and vandals is increasing all the time. The chapter extends
the material on critical systems engineering which is a pervasive theme of
the rest of the book. In this chapter, I discuss fundamental security con-
cepts, a risk-driven approach to deriving security requirements, I suggest
design guidelines for secure systems and introduce the important notion
of designing for system survivability.

2. The topic of Chapter 31 is service-oriented software engineering. This
extends the discussion of service-oriented architectures in Chapter 12.
I introduce the notion of a service as a reusable component and discuss
the process of designing and implementing services (service engineering).
I then go on to explain how software can be developed using services
as fundamental building blocks.

3. Chapter 32 covers aspect-oriented software development. This is a new
approach to software development that explicitly focuses on supporting
the separation of concerns. As this approach is still experimental, I focus
on introducing the concepts and on describing how an aspect-oriented
perspective may be adopted at all stages of the software process. I also
discuss an important barrier to the widespread adoption of aspect-
oriented development, namely, the difficulties of systematically testing
aspect-oriented programs.

SE8_C30.qxd 4/4/06 10:52 Page 716

Security engineering
30

Objectives
The objective of this chapter is to introduce issues that have to be
considered in the specification and design of secure software. When
you have read this chapter, you will:

■ understand the significance of security risk management and how
security requirements can be derived from a risk analysis;

■ be aware of how security considerations should influence the design
of system architectures and good design practice for secure systems
development;

■ understand the notion of system survivability and why survivability
analysis is important for complex software systems.

Contents
30.1 Security concepts

30.2 Security risk management

30.3 Design for security

30.4 System survivability

SE8_C30.qxd 4/4/06 10:52 Page 717

718 Chapter 30 ■ Security engineering

The widespread use of the Internet in the 1990s introduced a new challenge for soft-
ware engineers—designing and implementing systems that were secure. As more
and more systems were connected to the Internet, a variety of different external attacks
were devised to threaten these systems. The problems of producing dependable sys-
tems were hugely increased. Systems engineers had to consider threats from malicious
and technically skilled attackers as well as problems resulting from accidental mis-
takes in the development process.

It is now essential to design systems to withstand external attacks and to recover
from these attacks. Without security precautions, it is almost inevitable that attackers
will compromise a networked system. They may misuse the system hardware, steal
confidential data or disrupt the services offered by the system. System security
engineering is therefore an increasingly important aspect of the systems engineer-
ing process.

Security engineering is concerned with how to develop and maintain systems that
can resist malicious attacks intended to damage a computer-based system or its data.
Security engineering is part of the more general field of computer security. This has
become a priority for businesses and individuals as more and more criminals try to
exploit networked systems for illegal purposes. Software engineers should be aware
of the security threats faced by systems and ways in which these threats can be
neutralised.

My intention in this chapter is to introduce security engineering to software
engineers, with a focus on specifying and designing application security. I intro-
duce concepts and principles that support the software engineering of secure systems.
I do not attempt to summarise computer security as a whole and so do not cover
topics such as encryption, access control and authentication mechanisms. These are
described in detail in more general texts on computer security (Anderson, 2001;
Pfleeger and Pfleeger, 2003; Bishop, 2005).

This chapter adds to the discussion of security topics that are covered in other
chapters. You should read the material here in conjunction with:

• section 3.5, which discusses security as a dependability property;

• section 9.3, which discusses security specification;

• section 24.3, which discusses security assessment.

When you consider security issues, you have to consider both the application
software (the control system, the information system, etc.) and the infrastructure
on which this system is built (Figure 30.1). The infrastructure for complex applica-
tions includes an operating system platform, such as Linux or Windows, other generic
applications that run on that system, such as web browsers and e-mail clients, a
database management system, middleware that supports distributed computing and
database access and libraries of reusable components that are used by the applica-
tion software. In fact, the majority of attacks focus on system infrastructures because
the components (e.g. web browsers) are well known and widely available.

In practice, there is an important distinction between application security and infra-
structure security:

••••

SE8_C30.qxd 4/4/06 10:52 Page 718

Chapter 30 ■ Security engineering 719

1. Application security is a software engineering problem where software engineers
should ensure that the system is designed to resist attacks.

2. Infrastructure security is a systems management problem where system
managers should ensure that the infrastructure is configured to resist attacks.
System managers have to set up the infrastructure to make the most effective
use of whatever infrastructure security features are available. They also have
to repair infrastructure security vulnerabilities that have come to light as the
software is used.

Security management is not a single task but includes a range of activities such
as user and permission management, system software deployment and maintenance
and attack monitoring, detection and recovery:

1. User and permission management includes adding and removing users from the
system, ensuring that appropriate user authentication mechanisms are in place
and setting up the permissions in the system so that users only have access to
the resources that they need.

2. System software deployment and maintenance includes installing system
software and middleware and configuring these properly so that security
vulnerabilities are avoided. It also involves updating this software regularly
with new versions or patches that repair security problems that have been
discovered.

3. Attack monitoring, detection and recovery includes activities which monitor the
system for unauthorised access, detect and put in place strategies for resisting
attacks and backup activities so that normal operation can be resumed after an
external attack.

Security management is vitally important for the maintenance of secure systems.
However, the key issues for software engineers are not the management processes
but how to design support for security management into their application systems.
I discuss design for system management in section 30.3.3.

••••

Figure 30.1 System
layers where
security may be
compromised

SE8_C30.qxd 4/4/06 10:52 Page 719

720 Chapter 30 ■ Security engineering

30.1 Security concepts

In Chapter 3, I introduced some basic security concepts and terminology. Figure 30.2,
a slightly modified version of Figure 3.9, is a reminder of some of these basic con-
cepts. To help you understand these concepts, consider the following scenario.

A hospital information system maintains personal information on patients with
mental health problems and their treatments. As mental health issues are
particularly sensitive, it is essential that patient confidentiality be maintained.
This system has to be accessible from different hospitals and clinics so it has
been set up so that users access the system through a web browser. Hospital
staff must log on to this system using a username and password. The system
requires passwords to be at least eight letters long but allows any password
to be set without further checking.

A criminal is told that a well-paid sports star is receiving treatment for mental
health problems. He would like to gain illegal access to information in this
system so that he can blackmail the star. By posing as a concerned relative
and talking with the nurses in the mental health clinic, he discovers how to
access the system. By checking name badges, he discovers the names of some
of the people allowed access. He then attempts to log on to the system by
using these names and systematically guessing possible passwords.

••••

Term Description

Asset A system resource that has a value and has to be protected.

Exposure The possible loss or harm that could result from a successful attack.
This can be loss or damage to data or can be a loss of time and
effort if recovery is necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to
cause loss or harm.

Attack An exploitation of a system’s vulnerability. Generally, this is from
outside the system and is a deliberate attempt to cause some
damage.

Threats Circumstances that have potential to cause loss or harm. You can
think of these as a system vulnerability that is subjected to an
attack.

Control A protective measure that reduces a system’s vulnerability.
Encryption would be an example of a control that reduced a
vulnerability of a weak access control system.

Figure 30.2 Security
concepts

SE8_C30.qxd 4/4/06 10:52 Page 720

30.1 ■ Security concepts 721

Figure 30.3 takes the security concepts described in Figure 30.2 and shows how
they relate to this scenario from the hospital information system.

Security threats fall into three principal categories:

1. Threats to the confidentiality of the system and its data. These can disclose
information to people or programs that are not authorised to have access to that
information.

2. Threats to the integrity of the system and its data. These threats can damage
or corrupt the software or its data.

3. Threats to the availability of the system and its data. These threats can restrict
access to the software or its data for authorised users.

These threats are, of course, inter-dependent. If an attack makes the system
unavailable, then you will not be able to update information that changes with
time. This means that the integrity of the system may be compromised. If an
attack succeeds and the integrity of the system is compromised, then it may have
to be taken down to repair the problem. Therefore, the availability of the system is
reduced.

The controls that you might put in place to enhance system security also fall into
three classes:

1. Controls that are intended to ensure that attacks are unsuccessful. The strategy
here is to design the system so that security problems are avoided. For example,
sensitive military systems are not connected to public networks so that external
access is impossible. You should also think of encryption as a control based
on avoidance. Any unauthorised access to encrypted data means that it cannot

••••

Term Description

Asset The records of each patient that is receiving or has received treatment.

Exposure Potential financial loss from future patients who do not seek
treatment because they do not trust the clinic to maintain their data.
Financial loss from legal action by the sports star. Loss of reputation.

Vulnerability A weak password system which makes it easy for users to set
guessable passwords. User ids that are the same as names.

Attack An impersonation of an authorised user.

Threat An unauthorised user will gain access to the system by guessing the
credentials (login name and password) of an authorised user.

Control A password checking system that disallows passwords that are set
by users which are proper names or words that are normally
included in a dictionary.

Figure 30.3 Security
concept examples

SE8_C30.qxd 4/4/06 10:52 Page 721

722 Chapter 30 ■ Security engineering

be read by the attacker. In practice, it is very expensive and time consuming
to crack strong encryption.

2. Controls that are intended to detect and repel attacks. These controls involve
including functionality in a system that monitors its operation and checks for
unusual patterns of activity. If these are detected, then action may be taken, such
as shutting down parts of the system, restricting access to certain users, etc.

3. Controls that support recovery from problems. These can range from automated
backup strategies and information ‘mirroring’ through to insurance policies that
cover the costs associated with a successful attack on the system.

Security engineering is part of the more general process of dependability engineer-
ing. It therefore has much in common with safety and reliability engineering. Basic
strategies rely on avoidance of problems, detection of problems and recovery from
problems that have occurred. Good systems do not rely on a single strategy but use
a judicious mixture of all of them to achieve security goals.

30.2 Security risk management

Security risk assessment and management are essential for effective security engineer-
ing. Risk management is concerned with assessing the possible losses that might
ensue from attacks on assets in the system and balancing these losses against the
costs of security procedures that may reduce these losses. Credit card companies
do this all the time. It is relatively easy to introduce new technology to reduce credit
card fraud but the cost of this would be more than covering the losses to credit card
users. As costs drop and attacks increase, this balance may change. For example,
credit card companies are now encoding information on an on-card chip instead of
a magnetic strip. This makes card copying much more difficult.

Risk management is a business issue rather than a technical issue, so software
engineers should not decide what controls should be included in a system. It is up to
senior management to decide whether or not to accept the cost of security or to accept
the exposure that results from the lack of security procedures. However, the role
of software engineers is to provide informed technical guidance and judgements
on security issues. They are, therefore, essential participants in the risk manage-
ment process.

A critical input to the risk assessment and management process is the organisa-
tional security policy. An organisational security policy applies to all systems and
should set out what should and what should not be allowed. For example, one aspect
of a military security policy may state ‘Readers may only examine documents whose
classification is the same as or below the reader’s vetting level’. This means that if a
reader has been vetted to a ‘secret’ level, they may access documents that are classed
as ‘secret’, ‘confidential’ or ‘open’ but not documents classed as ‘top secret’.

••••

SE8_C30.qxd 4/4/06 10:52 Page 722

30.2 ■ Security risk management 723

The security policy sets out conditions that should always be maintained by a
security system and so helps identify threats that might arise. Risks are anything
that could threaten business security. In principle, as discussed by Bishop (2005),
security policies can be stated formally and various automated checks made against
them. In practice, they are normally informal documents that define what is and
what is not allowed.

Risk assessment starts before the decision to acquire the system has been made
and should continue throughout the system development process. An important con-
sideration is the amount of information that you have available about the system so
risk assessment is a staged process:

1. Preliminary risk assessment At this stage, decisions on the detailed system require-
ments, the system design or the implementation technology have not been made.
The aim of this assessment process is, firstly, to assess whether or not the
benefits of developing the system justify the associated risks and then to derive
specific security requirements for the system to be implemented. You do not
have information about potential vulnerabilities in the system or the controls
that are included in reused system components or middleware.

2. Life cycle risk assessment This risk assessment takes place during the system
development life cycle and is informed by the technical system design and
implementation decisions. It informs the process of security requirements
engineering. Known and potential vulnerabilities are identified and this knowl-
edge is used to inform decision-making about the system functionality and how
it is to be implemented, tested and deployed.

While the details of these processes vary radically from one organisation to
another, there are fundamental activities that are common to all of them. I discuss
these activities in the following two sections.

30.2.1 Preliminary risk assessment

The objective of preliminary risk assessment is to derive the security requirements
for the whole system, not just the software. These influence the choice of the system
platform and middleware and serve as a basis for developing more detailed soft-
ware functional requirements.

The essential stages of preliminary risk assessment (Figure 30.4) are:

1. Asset identification where the system assets that may require protection are
identified. The system itself or particular system functions may be identified
as assets as well as the data associated with the system.

2. Asset value assessment where you estimate the value of the identified assets.

3. Exposure assessment where you assess the potential losses associated with each
asset.

••••

SE8_C30.qxd 4/4/06 10:52 Page 723

724 Chapter 30 ■ Security engineering

4. Threat identification where you identify the threats to system assets.

5. Probability assessment where you estimate the probability of each threat.

6. Control identification where you propose the controls that might be put in place
to protect an asset.

7. Feasibility assessment where you assess the technical feasibility and the costs
of the proposed controls.

8. Security requirements definition where the exposure, threats and control assess-
ments are used to derive a set of system security requirements. These may be
requirements for the system infrastructure or the application system.

To illustrate this process, consider the hospital information system for mental
healthcare that I introduced earlier in this chapter. I do not have space to discuss a
complete risk assessment here but rather draw on this system as a source of examples.
I have shown these as a fragment of a report (Figures 30.5 and 30.6) that might be
generated from the preliminary risk assessment process. This preliminary risk analysis
report is an input to the security requirements definition process.

Some examples of security requirements that might be derived from the risk
analysis for the hospital information system are:

1. Patient information must be downloaded, at the start of a clinic session, from
the database to a secure area on the system client that is used by clinical staff.

2. Patient information must not be maintained on system clients after a clinic session
has finished.

3. A log on a separate computer from the database server must be maintained of
all changes made to the system database.

The first two of these requirements are related—patient information is downloaded
to a local machine so that consultations may continue if the patient database server

••••

Figure 30.4
Preliminary risk
assessment

SE8_C30.qxd 4/4/06 10:52 Page 724

30.2 ■ Security risk management 725

is attacked. On the other hand, this information must be deleted so that later users
of the client computer cannot access the information. The third requirement is a
recovery and auditing requirement. It means that changes can be recovered by replay-
ing the change log and, in addition, that who has made what changes can be traced.

30.2.2 Life cycle risk assessment

The important distinction between life cycle risk assessment and preliminary risk
assessment is that, in life cycle risk assessment, knowledge of the system architec-
ture and data organisation is available. Procurement decisions have been made so the
system platform and middleware have been chosen. A development strategy, such
as ‘configure a generic application’, may have been chosen.

••••

Asset

The information
system

The patient
database

An individual
patient record

Figure 30.5 Asset
analysis in a
preliminary risk
assessment report

Value

High. Required to support
all clinical consultations.
Potentially safety critical.

High. Required to support
all clinical consultations.
Potentially safety critical.

Normally low although
may be high for specific
high-profile patients

Exposure

High. Financial loss as clinics may
have to be cancelled. Costs of
restoring system. Possible patient
harm if treatment cannot be
prescribed.

High. Financial loss as clinics may
have to be cancelled. Costs of
restoring system. Possible patient
harm if treatment cannot be
prescribed.

Low direct losses but possible
loss of reputation.

Threat

Unauthorised
user gains
access as system
manager and
makes system
unavailable

Unauthorised
user gains access
as system user
and accesses
confidential
information

Figure 30.6 Threat
and control analysis
in a preliminary risk
assessment report

Probability

Low

High

Control

Only allow system
management from
specific locations
which are physically
secure.

Require all users
to authenticate
themselves using
biometric mechanism.

Log all changes to
patient information to
track system usage.

Feasibility

Low cost of implementation
but care must be taken
with key distribution and
to ensure that keys are
available in the event of
an emergency.

Technically feasible but
high cost solution. Possible
user resistance.

Simple and transparent to
implement and also
supports recovery.

SE8_C30.qxd 4/4/06 10:52 Page 725

726 Chapter 30 ■ Security engineering

This means that you have much more detailed information about what needs to
be protected and you will know something about the vulnerabilities in the system.
Some of these vulnerabilities will be inherent in the design choices made (e.g. a
vulnerability in any password-based system is that an authorised user reveals their
password to an unauthorised user) but you may have to make assumptions about
other possible vulnerabilities.

Security risk assessment should be part of all life cycle activities from require-
ments engineering to system deployment. The process followed is similar to the
preliminary risk assessment process with the addition of activities concerned with
vulnerability identification and assessment. Vulnerability assessment identifies the
assets that are likely to be affected by that vulnerability and relates these vulner-
abilities to possible system attacks. The outcome of the risk assessment is a set of
engineering decisions that affect the system design or implementation or limit the
way in which it is used.

To illustrate this, let us assume that the healthcare provider has decided to build
their mental health patient information management system using an off-the-shelf
information system for maintaining patient records. This system has to be con-
figured for each type of clinic where it is used. This decision has been made because
it appears to offer the most extensive functionality for the lowest development cost
and fastest deployment time.

When you base an application on an existing system, you have to accept the design
decisions made by the developers of that system. Let us assume that some of these
design decisions are:

1. System users are authenticated using a login name/password combination. No
other authentication method is supported.

2. The system architecture is client–server with clients accessing data through a
standard web browser on a client PC.

3. Information is presented to users as an editable web form. They can change
information in place and upload the revised information to the server.

None of these are inherently bad decisions but a life cycle risk analysis reveals
that they have associated vulnerabilities. Examples of possible vulnerabilities are
shown in Figure 30.7.

Once vulnerabilities have been identified, you then have to make a decision on
what steps that you can take to reduce the associated risks. This will often involve
making decisions about additional system security requirements or the operational
process of using the system. I do not have space here to discuss all the require-
ments that might be proposed to address the inherent vulnerabilities but some
examples of requirements might be:

1. A password checker program shall be made available and shall be run daily.
User passwords that appear in the system dictionary shall be identified and reported
to system administrators.

••••

SE8_C30.qxd 4/4/06 10:52 Page 726

30.3 ■ Design for security 727

2. Access to the system shall only be allowed to client computers that have been
approved and registered with the system administrators.

3. All client computers shall only have a single web browser installed as approved
by system administrators.

As an off-the-shelf system is used, it is not possible to include a password checker
in the system to ensure that users do not set easily guessable passwords. However,
the first of these requirements means that vulnerable passwords can be identified
reasonably quickly and action taken to ensure that users change their password.
The second and third requirements mean that users will always access the system
through the same browser. You can decide what is the most secure browser when
the system is deployed. Browser security updates are simplified because there is no
need to cater for different systems.

30.3 Design for security

As I have discussed in Chapter 3, security is an emergent property of a system. It is
therefore not something that can be added to the system but has to be designed into
the system before it is implemented. It is also, of course, an implementation issue

••••

Figure 30.7
Vulnerabilities
associated with
technology choices

SE8_C30.qxd 4/4/06 10:52 Page 727

728 Chapter 30 ■ Security engineering

as security vulnerabilities can be introduced when the software is programmed. How-
ever, it is possible to make a good design insecure if the implementation is flawed;
it is impossible to make a poor design secure at the implementation stage.

In this section, I focus primarily on issues of system design, because this topic
is not given the attention it deserves in computer security books. Security issues
are, obviously, also important at other stages of the software process:

1. I have covered different types of security requirements in Chapter 9 and have
explained how risk analysis may be used to derive requirements earlier in this
chapter in section 30.2. I recommend Firesmith’s article (Firesmith, 2003) as
an excellent introduction to security requirements engineering.

2. Implementation issues and mistakes have a major impact on security but these
are often dependent on the specific technology used. I recommend Viega and
McGraw’s book (Viega and McGraw, 2002) as a good introduction to pro-
gramming for security.

3. I briefly discuss security validation in Chapter 24. I discuss static analysis as
a verification technique in Chapter 22. This is a particularly useful technique
for discovering implementation vulnerabilities (Chess and McGraw, 2004;
Livshits and Lam, 2005; Evans and Larochelle, 2002; Larus, et al., 2004).
For advice on security testing, I recommend Whittaker and Thompson’s book
(Whittaker and Thompson, 2004).

In this section, I focus on a number of general, application-independent issues
relevant to secure systems design:

1. Architectural design—how do architectural design decisions affect the security
of a system?

2. Good practice—what is accepted good practice when designing secure systems?

3. Design for deployment—what support should be designed into systems to avoid
the introduction of vulnerabilities when a system is deployed for use?

Of course, these are not the only design issues that are important for security.
Every application is different and security design also has to take into account the
purpose, criticality and operational environment of the application. However, I do
not have space here to cover these application-specific design issues.

30.3.1 Architectural design

As I have discussed in Chapter 11, the choice of software architecture can have pro-
found effects on the emergent properties of a system. If an inappropriate architecture
is used, it may be practically impossible to maintain the confidentiality and integrity
of information in the system or to guarantee a required level of system availability.

••••

SE8_C30.qxd 4/4/06 10:52 Page 728

30.3 ■ Design for security 729

In designing a system architecture that maintains security, you need to consider
two fundamental issues:

1. Protection—how should the system be organised so that critical assets can be
protected against external attack?

2. Distribution—how should system assets be distributed so that the effects of a
successful attack are minimised?

These issues are potentially conflicting. If you put all your assets in one place, then
you can build layers of protection around them. However, if that protection fails,
then all your assets are compromised. On the other hand, if you distribute assets,
they are more expensive to protect and the chances are greater that the protection
will be breached. However, if this happens, you do not suffer a total loss.

To provide protection in a system, you normally use a layered architecture with
the critical protected assets at the lowest level in the system and with various layers
of protection around them. Figure 30.8 illustrates this for a patient record system
where the critical assets to be protected are the records of individual patients.

In order to access and modify patient records, an attacker has to penetrate three
system layers:

1. Platform-level protection The top level controls access to the platform on which
the patient record system runs. This usually involves a user signing-on to a
particular computer. The platform will also normally include support for main-
taining the integrity of files on the system.

••••

Figure 30.8
A layered protection
architecture

SE8_C30.qxd 4/4/06 10:52 Page 729

730 Chapter 30 ■ Security engineering

2. Application-level protection The next protection level is built into the applica-
tion itself. It involves a user accessing the application, being authenticated and
authorised to take actions such as view or modify data. Application-specific
integrity management support may be available.

3. Record-level protection This level is invoked when access to specific records
is required and involves checking that a user is authorised to carry out the requested
operations on that record. Protection at this level might also involve encryp-
tion to ensure that records cannot be browsed using a file browser. Integrity
checking using, for example, cryptographic checksums can detect changes that
have been made outside the normal record update mechanisms.

The number of protection layers that you need in any particular application depends
on the criticality of the data. Not all applications need protection at the record level
and coarser-grain access control is more commonly used. To achieve security, you
should not allow the same user credentials to be used at each level. If you have a
password-based system, then the application password should be different from both
the system password and the record-level password.

If protection of data is a critical requirement, then a client–server architecture
should be used, with the protection mechanisms built into the server. However, if
the protection is compromised, then the losses associated with an attack are likely
to be high, as are the costs of recovery (e.g. all user credentials may have to be
reissued). The system is vulnerable to denial of service attacks, which overload the
server and make it impossible for anyone to access the system database.

If you think that denial of service attacks are a major risk, you may decide to
use a distributed object architecture for the application. In this situation, illustrated
in Figure 30.9, the system’s assets are distributed across a number of different plat-
forms, with separate protection mechanisms used for each of these. An attack on
one node might mean that some assets are unavailable but it would still be possible
to provide some system services. Data can be replicated across the nodes in the
system so that recovery from attacks is simplified.

Figure 30.9 shows the architecture of a banking system for trading in stocks and
funds on the New York, London, Frankfurt and Hong Kong markets. The system
is distributed so that data about each market are maintained separately. Assets
required to support the critical activity of equity trading (user accounts and prices)
are replicated and available on all nodes If a node of the system is attacked and
becomes unavailable, the critical activity of equity trading can still be supported.

A problem that can arise when designing a secure system is that the architectural
style that is most appropriate for providing security may conflict with other applica-
tion requirements. For example, say an application has an absolute requirement to
maintain the confidentiality of a large database and a requirement for very fast access
to that data. Satisfying these, in the same architecture, can be difficult. A high level
of protection suggests that layers of protection are required. This has an inevitable
performance overhead, thus slowing down access to the data. If an alternative style
is used, then implementing protection and guaranteeing confidentiality may be more

••••

SE8_C30.qxd 4/4/06 10:52 Page 730

30.3 ■ Design for security 731

difficult and expensive. In such a situation, you have to discuss the inherent con-
flicts with the system client and agree on how these are to be resolved.

30.3.2 Design guidelines

There are no hard and fast rules about how to achieve system security. Different
types of system require different technical measures to achieve a level of security
that is acceptable to the system owner. The attitudes and requirements of different
groups of users profoundly affect what is and is not acceptable. For example, in a
bank, users are likely to accept a higher level of security and hence more intrusive
security procedures than in a university.

However, there are general guidelines that have wide applicability when design-
ing system security solutions and which encapsulate good design practice for
secure systems. I think that general design guidelines for security, such as those
discussed here, have two principal uses:

1. As a means of raising awareness of security issues in a software engineer-
ing team. Software engineers often focus on short-term goals of getting the

••••

Figure 30.9
Distributed assets in
an equity trading
system

SE8_C30.qxd 4/4/06 10:52 Page 731

732 Chapter 30 ■ Security engineering

software working and delivered to customers. It is easy for them to overlook
security issues. Knowledge of these guidelines can mean that security issues
are considered when software design decisions are made.

2. As a basis for a review checklist that can be used in the system validation pro-
cess. From the high-level guidelines discussed here, more specific questions can
be derived that explore how security has been engineered into a system.

The 10 guidelines that I discuss here, summarised in Figure 30.10, have been
derived from a range of different sources (Schneier, 2000; Viega and McGraw, 2002;
Wheeler, 2003). I have focused here on guidelines that are particularly applicable
to the software specification and design processes. More general principles, such
as ‘Secure the weakest link in a system’, ‘Keep it simple’, and ‘Avoid security through
obscurity’ are also important but are less directly relevant to engineering decision-
making.

Guideline 1: Base security decisions on an explicit security policy

A security policy is a high-level statement that sets out fundamental security con-
ditions for an organisation. It defines the ‘what’ of security rather than the ‘how’.
The policy should not define mechanisms used to provide and enforce security.
In principle, all aspects of the security policy should be reflected in the system
requirements. In practice, especially if a rapid application development process is
used, this is unlikely to happen. Designers, therefore, should consult the security
policy as it provides a framework for making and evaluating design decisions.

For example, say you are designing an access control system for the mental
healthcare patient information systems introduced earlier in the chapter. The
hospital security policy may state that only accredited clinical staff may modify
electronic patient records. Your system therefore has to include mechanisms that
check the accreditation of anyone attempting to modify the system and that reject
modifications from people who are not accredited.

••••

Guideline
1 Base security decisions on an explicit security policy
2 Avoid a single point of failure
3 Fail securely
4 Balance security and usability
5 Be aware of the possibility of social engineering
6 Use redundancy and diversity to reduce risk
7 Validate all inputs
8 Compartmentalise your assets
9 Design for deployment
10 Design for recoverability

Figure 30.10 Design
guidelines for secure
systems engineering

SE8_C30.qxd 4/4/06 10:52 Page 732

30.3 ■ Design for security 733

Guideline 2: Avoid a single point of failure

In any critical system, it is good design practice to try to avoid a single point of
failure. This means that a single failure in part of the system should not result in
an overall systems failure. In security terms, this means that you should not rely
on a single mechanism to ensure security but you should employ several different
techniques. This is sometimes called ‘defence in depth’.

For example, if you use a password to authenticate users to a system, you might
also include a challenge/response authentication mechanism where users have to pre-
register questions and answers with the system. After password authentication, they
must then answer questions correctly before being allowed access. To protect the
integrity of data in a system, you might keep a log of all changes made to the data
so that, in the event of a failure, you can replay the log to recreate the data set. You
might also make a copy of all data that is modified before the change is made.

Guideline 3: Fail securely

System failures of some kind are inevitable in all systems and, in the same way
that safety-critical systems should always fail-safe, security critical systems should
always ‘fail-secure’. You should not have fallback procedures that are used when
the system fails that are less secure than the system itself. Nor should system failure
mean that an attacker can access data that would not normally be allowed.

For example, in the patient information system, I suggested a requirement that
patient data should be downloaded to a system client at the beginning of a clinic
session. This speeds up access and means that access is possible if the server is
unavailable. Normally, the server deletes this data at the end of the clinic session.
However, if the server has failed, then there is the possibility that the information
will be maintained on the client. A fail-secure approach in those circumstances might
be to encrypt the patient data on the client. If this data was not deleted, it could not
then be read by unauthorised people.

Guideline 4: Balance security and usability

The demands of security and usability are often contradictory. To make a sys-
tem secure, you have to introduce a number of checks that ensure that users are
authorised to use the system and checks that ensure they are acting in accordance
with security policies. All of these inevitably make demands on users—they may
have to remember login names and passwords, only use the system from certain
computers, etc. These mean that it takes users more time to get started with the
system and use it effectively. As you add security features to a system, it is inevit-
able that it will become less usable.

There comes a point where it is counter-productive to keep on adding new
security features at the expense of usability. For example, if you require users to
input multiple passwords or to change their passwords to impossible to remember
character strings at frequent intervals, they will simply write down these passwords.

••••

SE8_C30.qxd 4/4/06 10:52 Page 733

734 Chapter 30 ■ Security engineering

An attacker (especially an insider) may then be able to find the passwords and gain
access to the system.

Guideline 5: Be aware of the possibility of social engineering

Social engineering means finding ways of fooling accredited system users into reveal-
ing secret information. These approaches take advantage of people’s willingness to
help and their trust in authority in an organisation. For example, a junior employee
may be contacted by someone pretending to be a senior manager who claims to be
unable to access a system. If they ask for security details, the junior may be very
reluctant to refuse this request. However, by revealing their security details, they
make it easy for some unauthorised person to access the system.

From a design point of view, countering social engineering is difficult. If secur-
ity is absolutely critical, you should not rely on user authentication mechanisms that
rely on login names and passwords but should use stronger authentication techniques
such as digital certificates. Logging mechanisms which track both the location and
the identity of users and log analysis programs may also be helpful as they allow
security breaches to be detected.

Guideline 6: Use redundancy and diversity to reduce risk

Redundancy means that you maintain more than one version of software or data
in a system. Diversity, when applied to software, means that different versions
should not be based on the same platform or use the same technologies. Therefore,
a platform or technology vulnerability will not affect all versions and so lead to a
common failure.

I have already discussed examples of redundancy—maintaining patient information
on both the server and the client in the mental healthcare system and the distributed
equity trading system in Figure 30.9. In the patient records system, you could use
diverse operating systems on the client and the server (say Linux on the server,
Windows on the client) so ensuring that an attack based on an operating system
vulnerability would not affect the server and the client at the same time.

Guideline 7: Validate all inputs

A common attack on a system involves providing the system with unexpected inputs
that cause it to behave in an unanticipated way. These may simply cause a system
crash resulting in a loss of service or the inputs could be made up of malicious code
that is interpreted by the system. Buffer overflow vulnerabilities, first demonstrated
in the Internet worm (Spafford, 1989) and commonly used by attackers (Berghel,
2001) may be triggered using long input strings. So-called ‘SQL poisoning’ where
a malicious user inputs an SQL fragment that is interpreted by a server is another
fairly common attack.

You can avoid many of these problems if you design input validation into your
system. Essentially, you should never accept any input without applying some checks

••••

SE8_C30.qxd 4/4/06 10:52 Page 734

30.3 ■ Design for security 735

to it. As part of the requirements, you should define the checks that should be applied.
You should use knowledge of the input to define these checks. For example, if a
surname is to be input, you might check that there are no embedded spaces and
that the only punctuation used is a hyphen. You might also check the number of
characters input and reject inputs that are obviously too long. For example, no one
has a surname with more than 70 characters and no addresses are more than 100
characters long. As I discuss in Chapter 16, if you use menus to present allowed
inputs, you avoid some of the problems of input validation.

Guideline 8: Compartmentalise your assets

Compartmentalising means that you should not provide all or nothing access to
information in a system. Rather, you should organise the information in a system
so that users only have access to the information that they need rather than to all
of the information in a system. This means that the effects of an attack may be con-
tained. Some information may be lost or damaged but it is unlikely that all of the
information in the system will be affected.

For example, in the patient information system, you should design the system
so that, at any one clinic, the clinic staff normally only have access to the records
of patients that have an appointment at that clinic. They should not normally
have access to all patients in the system. Having said this, you also may have to
have mechanisms in the system to grant unexpected access—say to a patient who
is seriously ill and requires urgent treatment without an appointment. In those
circumstances, you might use some alternative secure mechanism to override the
compartmentalisation in the system.

Guideline 9: Design for deployment

Many security problems arise because the system is not configured correctly when
it is deployed in its operational environment. You should therefore always design
your system so that facilities are included to simplify deployment and to check for
potential configuration errors and omissions in the deployed system. This is such
an important topic that I cover it in section 30.3.3.

Guideline 10: Design for recoverability

Irrespective of how much effort you put into maintaining systems security, you should
always design your system with the assumption that a security failure can occur.
Therefore, you should think about how to recover from possible failures and restore
the system to a secure operational state.

For example, say some unauthorised person from outside the hospital had gained
access to the patient records system and you did not know how they had obtained
a valid login/password combination. You need, therefore, to change the password
details of all accredited users and to make sure that the unauthorised person does
not have access to the password changing mechanism. You therefore have to design

••••

SE8_C30.qxd 4/4/06 10:52 Page 735

736 Chapter 30 ■ Security engineering

your system to deny access to everyone until they have changed their password and
to authenticate real users in spite of the fact that passwords may not be secure. One
way of doing this is to use a challenge/response mechanism, where users have to
answer questions for which they have pre-registered answers. This is invoked only
when passwords are changed.

30.3.3 Design for deployment

The deployment of a system involves configuring the software to operate in an
operational environment, installing the system on the computers in that environ-
ment and then configuring the installed system for these computers (Figure 30.11).
Configuration may be as simple as setting up some built-in parameters in the soft-
ware to reflect user preferences or as complex as defining business models and rules
that govern the execution of the software.

It is at this stage of the software process that vulnerabilities in the software are
often accidentally introduced. For example, software often has to be configured with
a list of allowed users and, when delivered, this list simply consists of a generic
administrator login such as ‘admin’ and a default password, such as ‘password’.
This makes it easy for an administrator to set up the system. Their first action should
be to introduce a new login name and password and to delete the generic login name.
However, it is easy to forget to do this. An attacker who knows of the default login
may be able to gain privileged access to the system.

Configuration and deployment are often seen as system administration issues and
so outside the scope of software engineering processes. Certainly, good manage-
ment practice can avoid many security problems that arise from configuration and
deployment mistakes. However, software designers have the responsibility to ‘design
for deployment’. You should always provide built-in support for deployment that
reduces the probability that system administrators (or users) will make mistakes when
configuring the software.

I recommend four ways in which you can incorporate deployment support in a
system:

1. Include support for viewing and analysing configurations You should always
include facilities in a system that allows administrators or permitted users to
examine the current configuration of the system. This facility is, surprisingly,

••••

Figure 30.11
Software deployment

SE8_C30.qxd 4/4/06 10:52 Page 736

30.4 ■ System survivability 737

lacking from most software systems and users are frustrated by the difficulties
of finding configuration settings. For example, if you use versions of Microsoft
Word available in 2005, you will know that it is impossible to see or print
the settings of all of your preferences on a single screen. If an administrator
can get a complete picture of a configuration, they are more likely to spot errors
and omissions. Ideally, a configuration display should also highlight aspects
of the configuration that are potentially unsafe—for example, if a password has
not been set up.

2. Minimise default privileges You should design software so that the default
configuration of the system provides minimum, essential privileges. Therefore,
the damage that any attacker can do can be limited. For example, the default
system administrator authentication should only allow access to a program that
allows an administrator to set up new credentials. It should not allow access to
any other system facilities. Once the new credentials have been set up, the default
login and password should be deleted automatically.

3. Localise configuration settings When designing system configuration support,
you should ensure that everything in a configuration that pertains to the same
part of a system is set up in the same place. To use the Microsoft Word
example again, in the version of Word that I use, I can set up some security
information, such as a password to control access to the document using the
Preferences/Security menu but other information is set up in the Tools/Protect
Document menu. If configuration information is not localised, it is easy to
forget to set it up or, in some cases, not even be aware that some security
facilities are included in the system.

4. Provide easy ways to fix security vulnerabilities You should include straight-
forward mechanisms for updating the system to repair security vulnerabilities
that have been discovered. These could include automatic checking for security
updates and downloading of these updates as soon as they are available. You
should also consider how to update perhaps hundreds of PCs on which your
system is installed.

30.4 System survivability

So far, I have discussed security engineering from the perspective of an applica-
tion that is under development. The system procurer and developer have control
over all aspects of the system that might be attacked. In reality, as I suggested in
Figure 30.1, modern distributed systems inevitably rely on COTS and reusable com-
ponents which have been developed separately. Their security characteristics may
be external web services and network infrastructures that are outside the control of
the application.

••••

SE8_C30.qxd 4/4/06 10:52 Page 737

738 Chapter 30 ■ Security engineering

This means that, irrespective of how much attention is paid to security, it can-
not be guaranteed that a system will be able to resist external attacks. Consequently,
for complex networked systems, you should assume that penetration is possible
and that the integrity of the system cannot be guaranteed. You should therefore
think about how to make the system resilient so that it survives to deliver essential
services to users.

Survivability (Westmark, 2004) is an emergent property of a system as a whole
rather than a property of individual components, which may not themselves be
survivable. The survivability of a system reflects its ability to continue to deliver
essential business- or mission-critical services to legitimate users while it is under
attack or after part of the system has been damaged as a consequence of either an
attack or a system failure.

Work on system survivability was prompted by the fact that our economic and
social lives are dependent on a computer-controlled critical infrastructure. This
includes the infrastructure for delivering utilities (power, water, gas, etc.) and, equally
critically, the infrastructure for delivering and managing information (telephones,
Internet, postal service, etc.). However, survivability is not simply a critical infra-
structure issue. Any organisation that relies on critical networked computer systems
should be concerned with how its business would be affected if their systems did
not survive a malicious attack or catastrophic system failure. Therefore, for business-
critical systems, survivability analysis and design should be part of the security
engineering process.

Maintaining the availability of critical services is the essence of survivability.
This means that you have to know:

• which system services are the most critical for a business;

• how these services might be compromised;

• what is the minimal quality of service that must be maintained;

• how these services can be protected;

• how you can recover quickly if the services become unavailable.

For example, in a system that handles ambulance despatching in response to
emergency calls, the critical services are those concerned with taking calls and
despatching ambulances to the medical emergency. Other services such as call
logging, and ambulance location management are less critical either because they
do not require real-time processing or because alternative mechanisms may be used.
For example, to find an ambulance’s location you can call the ambulance crew and
ask them where they are.

Ellison and colleagues (Ellison, et al., 1999; Ellison, et al., 1999a; Ellison, et al.,
2002) have designed a method of analysis called Survivable Systems Analysis.
This is used to assess vulnerabilities in systems and to support the design of sys-
tem architectures and features that promote system survivability. They argue that
achieving survivability depends on three complementary strategies:

••••

SE8_C30.qxd 4/4/06 10:52 Page 738

30.4 ■ System survivability 739

1. Resistance—avoiding problems by building capabilities into the system to
repel attacks. For example, a system may use digital certificates to authenticate
users, thus making it more difficult for unauthorised users to gain access.

2. Recognition—detecting problems by building capabilities into the system to detect
attacks and failures and assess the resultant damage. For example, checksums
may be associated with critical data so that corruptions to that data can be detected.

3. Recovery—tolerating problems by building capabilities into the system to
deliver essential services whilst under attack and to recover full functionality
after an attack. For example, fault tolerance mechanisms using diverse imple-
mentations of the same functionality may be included to cope with a loss of
service from one part of the system.

Survivable systems analysis is a four-stage process (Figure 30.12) that analyses
the current or proposed system requirements and architecture, identifies critical
services, attack scenarios and system ‘soft spots’ and proposes changes to improve
the survivability of a system. The key activities in each of these stages are:

1. System understanding For an existing or proposed system, review the goals of
the system (sometimes called the mission objectives), the system requirements
and the system architecture.

2. Critical service identification The services that must be maintained and the
components that are required to maintain these services are identified.

3. Attack simulation Scenarios or use-cases for possible attacks are identified along
with the system components that would be affected by these attacks.

4. Survivability analysis Components that are both essential and compromisable
by an attack are identified and survivability strategies based on resistance,
recognition and recovery are identified.

Ellison and his colleagues present an excellent case study of the method based
on a system to support mental health treatment (Ellison, et al., 1999). I use the equity

••••

Figure 30.12 Stages
in survivability
analysis

SE8_C30.qxd 4/4/06 10:52 Page 739

740 Chapter 30 ■ Security engineering

trading system, shown in Figure 30.9, to illustrate some of the features of surviv-
ability analysis.

As you can see from Figure 30.9, this system has already made some provision
for survivability. User accounts and equity prices are replicated across servers so
that orders can be placed if the local server is unavailable. Let us assume that the
capability for authorised users to place orders for stock is the key service that must
be maintained. To ensure that users trust the system, it is essential that integrity is
maintained. Orders must be accurate and reflect the actual sales or purchases made
by a system user.

To maintain this ordering service, there are three components of the system that
are used:

1. User authentication This allows authorised users to log on to the system.

2. Price quotation This allows the buying and selling price of a stock to be quoted.

3. Order placement This allows buy and sell orders at a given price to be made.

These components obviously make use of essential data assets such as user accounts
and an order transaction database.

There are several different types of attack on this system that might be made.
Let us consider two possibilities here:

1. A malicious user has a grudge against an accredited system user. He gains access
to the system using their credentials. Malicious orders are placed, stock is bought
and sold, so that the authorised user is caused problems.

2. An unauthorised user corrupts the database of transactions by gaining permis-
sion to issue SQL commands directly. Reconciliation of sales and purchases is
therefore impossible.

••••

Attack

Unauthorised
user places
malicious orders

Corruption of
transactions
database

Resistance

Require a dealing
password that is
different from the
login password to
place orders.

Require privileged
users to be authorised
using a stronger
authentication
mechanism, such as
digital certificates.

Recognition

Send copy of order by email to
authorised user with contact
phone number (so that they can
detect malicious orders)
Maintain user’s order history
and check for unusual trading
patterns.

Maintain read-only copies of
transactions for an office on an
international server. Periodically
compare transactions to check
for corruption.
Maintain cryptographic checksum
with all transaction records to
detect corruption.

Recovery

Provide mechanism to
automatically ‘undo’ trades
and restore user accounts.
Refund users for losses that
are due to malicious trading.
Insure against consequential
losses.

Recover database from
backup copies.
Provide a mechanism to
replay trades from a specified
time to recreate transactions
database.

Figure 30.13
Survivability analysis
in an equity trading
system

SE8_C30.qxd 4/4/06 10:52 Page 740

Chapter 30 ■ Key Points 741

Figure 30.13 shows examples of resistance, recognition and recovery strategies
that might be used to help counter these attacks.

Adding survivability, of course, costs money. Companies may be reluctant to
invest in survivability if they have never suffered a serious attack or associated loss.
However, just as it is best to buy good locks and an alarm before rather than after
your house is burgled, it is best to invest in survivability before rather than after a
successful attack. Survivability analysis is not yet part of most software engineering
processes but, as more and more systems become business-critical, such analyses
are likely to become more widely used.

••••

■ Security engineering focuses on how to develop and maintain software systems that
can resist malicious attacks that are intended to damage a computer-based system or
its data.

■ Security threats can be threats to the confidentiality, integrity or availability of a system or
its data.

■ Security risk management involves assessing the losses that might ensue from attacks on
a system and deriving security requirements that are aimed at eliminating or reducing
these losses.

■ Design for security involves designing a secure system architecture, following good practice
for secure systems design and including functionality to minimise the possibility of
introducing security vulnerabilities when the system is deployed.

■ Key issues when designing a secure systems architecture include organising the system
structure to protect key assets and distributing the system assets to minimise the losses
from a successful attack.

■ General security design guidelines sensitise system designers to security issues that they
may not have considered. They provide a basis for creating security review checklists.

■ To support secure deployment you should provide a way of displaying and analysing
system configurations, localise configuration settings so that important configurations
are not forgotten, minimise default privileges assigned to system users and provide ways
to repair security vulnerabilities.

■ System survivability reflects the ability of a system to continue to deliver essential business
or mission-critical services to legitimate users whilst it is under attack or after part of the
system has been damaged.

K E Y P O I N TS

SE8_C30.qxd 4/4/06 10:52 Page 741

742 Chapter 30 ■ Security engineering

F U R T H E R R E A D I N G

Security Engineering: A Guide to Building Dependable Distributed Systems. This is a thorough and
comprehensive discussion of the problems of building secure systems. The focus is on systems
rather than software engineering with extensive coverage of hardware and networking. Excellent
examples drawn from real system failures. (R. Anderson, John Wiley & Sons, 2001.)

Building Secure Software: How to Avoid Security Problems the Right Way. A good practical book
covering security from a programming perspective. (J. Viega and G. McGraw, Addison-Wesley,
2002.)

‘Survivable network system analysis: a case study’. An excellent paper that introduces the notion
of system survivability and uses a case study of a mental health record treatment system to
illustrate the application of a survivability method. (R. J. Ellison, R. C. Linger, T. Longstaff and
N. R. Mead, IEEE Software, 16 (4), July/August 1999.)

E X E R C I S E S

30.1 Explain the important differences between application security engineering and infrastructure
security engineering.

30.2 LIBSYS is a system for document distribution that has been discussed in earlier chapters.
For the LIBSYS system, suggest an example of an asset, exposure, vulnerability, attack,
threat and control.

30.3 Explain why there is a need for both preliminary risk assessment and life cycle risk
assessment during the development of a system.

30.4 Using your answers to question 2 about the LIBSYS system, assess the risks associated with
that system and propose 2 system requirements that might reduce these risks.

30.5 Explain, using an analogy drawn from outside of software engineering, why a layered
approach to asset protection should be used.

30.6 Explain why it is important to use diverse technologies to support distributed systems in
situations where system availability is critical.

30.7 What is social engineering? Why is it difficult to protect against it in large organisations?

30.8 For any off-the-shelf software system that you use (e.g. Microsoft Word), analyse the
configuration facilities included and discuss any problems that you find.

30.9 Explain how the complementary strategies of resistance, recognition and recovery may be
used to enhance the survivability of a system.

30.10 For the equity trading system discussed in section 30.4 and illustrated in Figure 30.9,
suggest two further plausible attacks on the system and propose possible strategies to
counter these attacks.

••

SE8_C30.qxd 4/4/06 10:52 Page 742

Service-oriented
software engineering

31

Objectives
The objective of this chapter is to introduce service-oriented software
engineering, an increasingly important approach to business application
development. When you have read this chapter, you will:

■ understand the basic notions of a web service and web service
standards and how these can support inter-organisational
computing;

■ understand the service engineering process that is intended to
produce reusable web services;

■ have been introduced to the notion of service composition as a
means of service-oriented application development;

■ understand how business process models may be used as a basis
for the design of service-oriented systems.

Contents
31.1 Services as reusable components

31.2 Service engineering

31.3 Software development with services

SE8_C31.qxd 4/4/06 9:25 Page 743

744 Chapter 31 ■ Service-oriented software engineering

In Chapter 12, I introduced the notion of service-oriented architectures as a
means of facilitating inter-organisational computing. Essentially, service-oriented
architectures (SOA) are a way of developing distributed systems where the com-
ponents of these systems are stand-alone services. These services may execute on
geographically distributed computers. Standard protocols have been designed to
support service communication and information exchange. Consequently, services
are platform and implementation-language independent. Software systems can be
constructed using services from different providers with seamless interaction between
these services.

Figure 31.1 illustrates how web services are used. Service providers design and
implement services and specify these services in a language called WSDL (discussed
later). They also publish information about these services in a generally accessible
registry using a publication standard called UDDI. Service requestors (sometimes
called service clients), who wish to make use of a service, search the UDDI registry
to discover the specification of that service and to locate the service provider. They
can then bind their application to that specific service and communicate with it,
usually using a protocol called SOAP.

Service-oriented architecture is now generally recognised as a significant develop-
ment, particularly for business application systems. It allows flexibility as services
can be provided locally or outsourced to external providers. Services may be imple-
mented in any programming language. By wrapping legacy systems (see Chapter 21)
as services, companies can preserve their investment in valuable software and make
this available to a wider range of applications. SOA allows different platforms and
implementation technologies that may be used in different parts of a company to
inter-operate. Most importantly, perhaps, building applications based on services allows
companies and other organisations to cooperate and to make use of each other’s
business functions. Thus, systems that involve extensive information exchange across
company boundaries, such as supply chain systems, where one company orders goods
from another, can easily be automated.

Perhaps the key reason for the success of service-oriented architectures is the
fact that, from the outset, there has been an active standardisation process working
alongside technical developments. All of the major hardware and software com-
panies are committed to these standards. As a result, service-oriented architectures

••••

Figure 31.1
Service-oriented
architecture

SE8_C31.qxd 4/4/06 9:25 Page 744

Chapter 31 ■ Service-oriented software engineering 745

have not suffered from the incompatibilities that normally arise with technical
innovations, where different suppliers maintain their proprietary version of the tech-
nology. Hence, problems, such as the multiple incompatible component models in
CBSE that I discussed in Chapter 19, have not arisen in service-oriented system
development.

Figure 31.2 shows the stack of key standards that have been established to
support web services. In principle, a service-oriented approach may be applied in
situations where other protocols are used; in practice, web services are dominant. Web
services do not depend on any particular transport protocol for information exchange
although, in practice, the HTTP and HTTPS protocols are commonly used.

Web service protocols cover all aspects of service-oriented architectures from the
basic mechanisms for service information exchange (SOAP) to programming lan-
guage standards (WS-BPEL). These standards are all based on XML, a human and
machine-readable notation that allows the definition of structured data where text is
tagged with a meaningful identifier. XML has a range of supporting technologies,
such as XSD for schema definition, which are used to extend and manipulate XML
descriptions. Erl (Erl, 2004) provides a good summary of XML technologies and
their role in web services.

Briefly, the key standards for web service-oriented architectures are:

1. SOAP This is a message interchange standard that supports the communication
between services. It defines the essential and optional components of messages
passed between services.

2. WSDL The Web Service Definition Language (WSDL) standard defines the way
in which service providers should define the interface to these services. Essen-
tially, it allows the interface of a service (the service operations, parameters and
their types) and its bindings to be defined in a standard way.

3. UDDI The UDDI (Universal Description, Discovery and Integration) standard
defines the components of a service specification that may be used to discover
the existence of a service. These include information about the service provider,
the services provided, the location of the service description (usually expressed

••••

Figure 31.2 Web
service standards

SE8_C31.qxd 4/4/06 9:25 Page 745

746 Chapter 31 ■ Service-oriented software engineering

in WSDL) and information about business relationships. UDDI registries enable
potential users of a service to discover what services are available.

4. WS-BPEL This standard is a standard for a workflow language that is used
to define process programs involving several different services. I discuss the
notion of process programs in section 31.3.

These principal standards are supported by a range of supporting standards
that focus on more specialised aspects of SOA. There are a very large number of
supporting standards because they are intended to support SOA in different types
of application. Some examples of these standards include:

1. WS-Reliable Messaging is a standard for message exchange that ensures mess-
ages will be delivered once and once only.

2. WS-Security is a set of standards supporting web service security including
standards that specify the definition of security policies and standards that
cover the use of digital signatures.

3. WS-Addressing defines how address information should be represented in a SOAP
message.

4. WS-Transactions defines how transactions across distributed services should be
coordinated.

Web service standards are a huge topic and I do not have space to discuss them
in detail here. I recommend Erl’s books (Erl, 2004; Erl, 2005) for an overview of
these standards. Their detailed descriptions are also available as public documents
on the Web.

As I discuss in the following section, a service can be considered simply as a
reusable abstraction and hence this chapter complements Chapters 18 and 19 that
discuss issues of software reuse. There are therefore two themes to the chapter:

1. Service engineering. This concerns the development of dependable, reusable
services. Essentially, the concern is software development for reuse.

2. Software development with services. This concerns the development of
dependable software systems that use services either on their own or in con-
junction with other types of component. Essentially, the concern is software
development with reuse.

Service-oriented architectures and service-oriented software engineering are,
currently, a ‘hot topic’. There is an enormous amount of business interest in adopt-
ing a service-oriented approach to software development but, at the time of writing,
practical experience with service-oriented system is limited. Hot topics always
generate ambitious visions and often promise more than they finally deliver. For
example, in their book on SOA, Newcomer and Lomow (2005) state:

••••

SE8_C31.qxd 4/4/06 9:25 Page 746

31.1 ■ Services as reusable components 747

Driven by the convergence of key technologies and the universal adoption
of Web services, the service-oriented enterprise promises to significantly
improve corporate agility, speed time-to-market for new products and services,
reduce IT costs and improve operational efficiency.

I believe that service-oriented software engineering is as important a develop-
ment as object-oriented software engineering. However, the reality is that it will take
many years to realise these benefits and for the vision of SOA to become a reality.
Because service-oriented software development is so new, we do not yet have well-
established software engineering methods for this type of system. I therefore focus
here on general issues of designing and implementing services and building systems
using service composition.

31.1 Services as reusable components

In Chapter 19, I introduced component-based software engineering (CBSE) where
software systems are constructed by composing software components that are based
on some standard component model. Services are a natural development of soft-
ware components where the component model is, in essence, the set of standards
associated with web services. A service can therefore be defined as:

A loosely coupled, reusable software component that encapsulates discrete
functionality, which may be distributed and programmatically accessed. A web
service is a service that is accessed using standard Internet and XML-based
protocols.

A critical distinction between a service and a software component as defined in
CBSE is that services should be independent and loosely coupled. That is, they should
always operate in the same way, irrespective of their execution environment. Their
interface is a ‘provides’ interface that provides access to the service functionality.
Services are intended to be independent and usable in different contexts. Therefore,
they do not have a ‘requires’ interface that, in CBSE, defines the other system com-
ponents that must be present.

Services may also be distributed over the Internet. They communicate by
exchanging messages, expressed in XML, and these messages are distributed using
standard Internet transport protocols such as HTTP and TCP/IP. A service defines
what it needs from another service by setting out its requirements in a message
and sending it to that service. The receiving service parses the message, carries out
the computation and, on completion, sends a message to the requesting service. This
service then parses the reply to extract the required information. Unlike software
components, services do not ‘call’ methods associated with other services.

••••

SE8_C31.qxd 4/4/06 9:25 Page 747

748 Chapter 31 ■ Service-oriented software engineering

To illustrate the difference between communication using method calls and com-
munication using message passing, consider a situation where you are ordering a
meal in a restaurant. When you have a conversation with the waiter, you are involved
in a series of synchronous interactions that define your order. This is comparable to
components interacting in a software system, where one component calls methods
from other components. The waiter writes down your order along with the order
of the other people with you, then passes this message, which includes details of
everything that has been ordered, to the kitchen to prepare the food. Essentially,
the waiter service is passing a message to the kitchen service defining the food
to be prepared.

I have illustrated this in Figure 31.3, which shows the synchronous ordering pro-
cess, and in Figure 31.4, which shows a hypothetical XML message, which I hope
is self-explanatory, that defines an order made by the table of three people. The
difference is clear—the waiter takes the order as a series of interactions, with each
interaction defining part of the order. However, the waiter has a single interaction
with the kitchen where the message passed defines the complete order.

When you intend to use a web service, you need to know where the service is
located (its URI) and the details of its interface. These are described in a service
description expressed in an XML-based language called WSDL (Web Service
Description Language). The WSDL specification defines three things about a
Web service. It defines what the service does, how it communicates and where
to find it:

1. The ‘what’ part of a WSDL document, called an interface, specifies what
operations the service supports, and defines the format of the messages that
are sent and received by the service.

••••

Figure 31.3
Synchronous
interaction when
ordering a meal

SE8_C31.qxd 4/4/06 9:25 Page 748

31.1 ■ Services as reusable components 749

2. The ‘how’ part of a WSDL document, called a binding, maps the abstract inter-
face to a concrete set of protocols. The binding specifies the technical details
of how to communicate with a Web service.

3. The ‘where’ part of a WSDL document, called (confusingly) a service,
describes where to locate a specific Web service implementation.

The WSDL conceptual model (Figure 31.5) shows all the parts of a service descrip-
tion. Each of these is expressed in XML and may be provided in separate files. These
parts are:

1. An introductory part which, usually, defines the XML namespaces used and
which may include a documentation section providing additional information
about the service.

2. An optional description of the types used in the messages exchanged by the
service.

3. A description of the service interface, i.e. the operations that it provides.

4. A description of the input and output messages processed by the service.

••••

Figure 31.5
Organisation of a
WSDL specification

<starter>
<dish name = “soup” type = “tomato” / >
<dish name = “soup” type = “fish” / >
<dish name = “pigeon salad” / >

</starter>
<main course>

<dish name = “steak” type = “sirloin” cooking = “medium” / >
<dish name = “steak” type = “fillet” cooking = “rare” / >
<dish name = “sea bass”>

</main>
<accompaniment>

<dish name = “french fries” portions = “2” / >
<dish name = “salad” portions = “1” / >

</accompaniment>

Figure 31.4
A restaurant order
expressed as an XML
message

SE8_C31.qxd 4/4/06 9:25 Page 749

750 Chapter 31 ■ Service-oriented software engineering

5. A description of the binding used by the service, i.e. the messaging protocol
that will be used to send and receive messages. The default is SOAP but other
bindings may also be specified. The binding sets out how the input and output
messages associated with the service should be packaged into a message, and
specifies the communication protocols used. The binding may also specify how
supporting information, such as security credentials or transaction identifiers,
is included.

6. An endpoint specification which is the physical location of the service, expressed
as a Uniform Resource Identifier (URI)—the address of a resource that can be
accessed over the Internet.

Complete service descriptions, written in XML, are long, detailed and tedious
to read. They usually include definitions of XML namespaces, which are qualifiers
for names. A namespace identifier may precede any identifier used in the XML descrip-
tion. It means that it is possible to distinguish between identifiers with the same
name that have been defined in different parts of an XML description. I do not
want to go into details of namespaces here. To understand this chapter, you need
to know only that names can be prefixed with a namespace identifier and that the
namespace:name pair should be unique.

I have included an example of a complete service description on the book
website. However, as this is very long, I focus here on the description of the abstract
interface. This is the part of the WSDL that equates to the ‘provides’ interface
of a software component. Figure 31.6 shows details of the interface for a simple
service that, given a date and a place (town and country), returns the maximum
and minimum temperature recorded in that place on that date. These temperatures
may be returned in degrees Celsius or in degrees Fahrenheit, depending on the loca-
tion where they were recorded.

In Figure 31.6, the first part of the description shows part of the element and
type definition that is used in the service specification. This defines the elements
PlaceAndDate, MaxMinTemp and InDataFault. I have only included the specifica-
tion of PlaceAndDate, which you can think of as a record with three fields—town,
country and date. A similar approach would be used to define MaxMinTemp and
InDataFault.

The second part of the description shows how the service interface is defined.
In this example, the service weatherInfo has a single operation, although there are
no restrictions on the number of operations that may be defined. The weatherInfo
operation has an associated in-out pattern, meaning that it takes one input message
and generates one output message. The WSDL 2.0 specification allows for a number
of different message exchange patterns such as in-only, in-out, out-only, in-optional-out,
out-in, etc. The input and output messages, which refer to the definitions made earlier
in the types section, are then defined.

The major problem with WSDL is that the definition of the service interface does
not include any information about the semantics of the service or its non-functional
characteristics, such as performance and dependability. It is simply a description of

••••

SE8_C31.qxd 4/4/06 9:25 Page 750

31.2 ■ Service engineering 751

the service signature and it relies on the user of the service to deduce what the service
actually does and what the different fields in the input and output messages mean.
While meaningful names and service documentation helps here, there is still scope
for misunderstanding and misusing the service.

31.2 Service engineering

Service engineering is the process of developing services for reuse in service-oriented
applications. It has much in common with component engineering. Service engineers
have to ensure that the service represents a reusable abstraction that could be useful
in different systems. They must design and develop generally useful functionality
associated with that abstraction and must ensure that the service is robust and reliable
so that it operates dependably in different applications. They have to document the
service so that it can be discovered by and understood by potential users.

••••

Define some of the types used. Assume that the namespace prefixes ‘ws’ refers to
the namespace URI for XML schemas and the namespace prefix associated with this
definition is weathns.

<types>
<xs: schema targetNameSpace = “http://.../weathns”

xmlns: weathns = “http://…/weathns” >
<xs:element name = “PlaceAndDate” type = “pdrec” / >
<xs:element name = “MaxMinTemp” type = “mmtrec” / >
<xs: element name = “InDataFault” type = “errmess” / >

<xs: complexType name = “pdrec”
<xs: sequence>

<xs:element name = “town” type = “xs:string”/ >
<xs:element name = “country” type = “xs:string”/ >
<xs:element name = “day” type = “xs:date” / >

</xs:complexType>

Definitions of MaxMinType and InDataFault here

</schema>
</types>

Now define the interface and its operations. In this case, there is only a single
operation to return maximum and minimum temperatures

<interface name = “weatherInfo”>
<operation name = “getMaxMinTemps” pattern = “wsdlns: in-out”>
<input messageLabel = “In” element = “weathns: PlaceAndDate” / >
<output messageLabel = “Out” element = “weathns:MaxMinTemp” / >
<outfault messageLabel = “Out” element = “weathns:InDataFault” / >

</operation>
</interface>

Figure 31.6 Part of a
WSDL description for
a web service

SE8_C31.qxd 4/4/06 9:25 Page 751

752 Chapter 31 ■ Service-oriented software engineering

There are three logical stages in the service engineering process (Figure 31.7).
These are:

1. Service candidate identification where you identify possible services that
might be implemented and define the service requirements.

2. Service design where you design the logical and WSDL service interfaces.

3. Service implementation and deployment where you implement and test the ser-
vice and make it available for use.

I discuss each of these stages in this section of the book.

31.2.1 Service candidate identification

The basic notion of service-oriented computing is that services should support
business processes. As every organisation has a wide range of processes, there are
therefore many possible services that may be implemented. Service candidate iden-
tification involves understanding and analysing the organisation’s business processes
to decide which reusable services are required to support these processes.

Erl identifies three fundamental types of service that may be identified:

1. Utility services These are services that implement some general functionality
that may be used by different business processes. An example of a utility service
is a currency conversion service that can be accessed to compute the conversion
of one currency (e.g. dollars) to another (e.g. euros).

2. Business services These are services that are associated with a specific busi-
ness function. An example of a business function in a university would be the
registering of students for a course.

3. Coordination or process services These are services that support a more general
business process which usually involves different actors and activities. An
example of a coordination service in a company is an ordering service that allows
orders to be placed with suppliers, goods accepted and payments made.

••••

Figure 31.7 The
service engineering
process

SE8_C31.qxd 4/4/06 9:25 Page 752

31.2 ■ Service engineering 753

Erl also suggests that services can be considered as task-oriented or entity-
oriented. Task-oriented services are those associated with some activity whereas
entity-oriented services are like objects—they are associated with some business entity
such as, for example, a job application form. Figure 31.8 suggests some examples
of services that are task or entity-oriented. While services can be utility and busi-
ness services, coordination services are always task-oriented.

Your goal in service candidate identification should be to identify services that
are logically coherent, independent and reusable. Erl’s classification is helpful in
this respect as it suggests how to discover reusable services by looking at business
entities and business activities. However, just as the processes of object and com-
ponent identification are difficult, so too is service candidate identification. You have
to think of possible candidates then ask a series of questions about them to see if
they are likely to be useful services. Possible questions that help you to identify
reusable services are:

1. For an entity-oriented service, is the service associated with a single logical
entity that is used in different business processes? What operations are normally
performed on that entity that must be supported?

2. For a task-oriented service, is the task one that is carried out by different
people in the organisation? Will they be willing to accept the inevitable
standardisation that occurs when a single support service is provided?

3. Is the service independent, i.e. to what extent does it rely on the availability
of other services?

4. For its operation, does the service have to maintain state? If so, will a database
be used for state maintenance? In general, systems that rely on internal state
are less reusable than those where state can be externally maintained.

5. Could the service be used by clients outside of the organisation? For example,
an entity-oriented service associated with a catalogue may be accessed both
internally and externally?

6. Are different users of the service likely to have different non-functional require-
ments? If they do, then this suggests that more than one version of a service
should perhaps be implemented.

••••

Task

Entity

Figure 31.8 Service
classification

Utility

Currency convertor
Employee locator

Document style checker
Web form to XML
converter

Business

Validate claim form
Check credit rating

Expenses form
Student application
form

Coordination

Process expense claim
Pay external supplier

SE8_C31.qxd 4/4/06 9:25 Page 753

754 Chapter 31 ■ Service-oriented software engineering

The answers to these questions help you select and refine abstractions that can
be implemented as services. However, there is no formulaic way of deciding which
are the best services and so service identification is a skill and experience-based
process.

The output of the candidate selection process is a set of identified services and
associated requirements for these services. The functional service requirements should
define what the service should do. The non-functional requirements should define
the security, performance and availability requirements of the service.

Assume that a large company, which sells computer equipment, has arranged
special prices for approved configurations for some customers. To facilitate auto-
mated ordering, the company wishes to produce a catalogue service that will allow
customers to select the equipment that they need. Unlike a consumer catalogue, how-
ever, orders are not placed directly, through a catalogue interface, but are made through
the web-based procurement system of each company. Most companies have their
own budgeting and approval procedures for orders and their own ordering process
must be followed when an order is placed.

The catalogue service is an example of an entity-oriented service that supports
business operations. The functional catalogue service requirements are:

1. A specific version of the catalogue shall be provided for each user com-
pany. This shall include the configurations and equipment that may be ordered
by employees of the customer company and the agreed prices for catalogue
items.

2. The catalogue shall allow a customer employee to download a version of the
catalogue for off-line browsing.

3. The catalogue shall allow users to compare the specifications and prices of up
to six catalogue items.

4. The catalogue shall provide browsing and searching facilities for users.

5. Users of the catalogue shall be able to discover the predicted delivery date for
a given number of specific catalogue items.

6. Users of the catalogue shall be able to place ‘virtual orders’ where the items
required will be reserved for them for 48 hours. Virtual orders must be con-
firmed by a real order placed by a procurement system. This must be received
within 48 hours of the virtual order.

In addition to these functional requirements, the catalogue has a number of non-
functional requirements:

1. Access to the catalogue service shall be restricted to employees of accredited
organisations.

2. The prices and configurations offered to one customer shall be confidential and
shall not be available to employees of any other customer.

••••

SE8_C31.qxd 4/4/06 9:25 Page 754

31.2 ■ Service engineering 755

3. The catalogue shall be available without disruption of service from 0700 GMT
to 1100 GMT.

4. The catalogue service shall be able to process up to 10 requests per second
peak load.

Notice that there is no non-functional requirement related to the response time
of the catalogue service. This depends on the size of the catalogue and the expected
number of simultaneous users. As this is not a time-critical service, there is no need
to specify it at this stage.

31.2.2 Service interface design

Once you have selected candidate services, the next stage in the service engineer-
ing process is to design the service interfaces. This involves defining the operations
associated with the service and their parameters. You also have to think carefully
about how the operations and messages of the service can be designed to minimise
the number of message exchanges that must take place to complete the service request.
You have to ensure that as much information as possible is passed to the service
in a message rather than require synchronous service interactions.

You should also remember that services are stateless and managing a service-
specific application state is the responsibility of the service user rather than the
service itself. You may therefore have to pass this state information to and from
services in input and output messages.

There are three stages to service interface design:

1. Logical interface design where you identify the operations associated with the
service, the inputs and outputs of these operations and the exceptions associ-
ated with these operations.

2. Message design where you design the structure of the messages that are sent
and received by the service.

3. WSDL development where you translate your logical and message design to
an abstract interface description written in WSDL.

The first stage, logical interface design, starts with the service requirements and
defines the operation names and parameters associated with the service. At this stage,
you should also define the exceptions that may arise when a service operation is
invoked. Figures 31.9 and 31.10 show the operations that implement the require-
ments and the inputs, outputs and exceptions for each of the catalogue operations.
At this stage, there is no need for these to be specified in detail—you add detail at
the next stage of the design process.

Defining exceptions and how these can be communicated to service users is
particularly important. Service engineers do not know how their services will be

••••

SE8_C31.qxd 4/4/06 9:25 Page 755

756 Chapter 31 ■ Service-oriented software engineering

••••

Operation

MakeCatalogue

Compare

Lookup

Search

CheckDelivery

PlaceOrder

Inputs

mcIn
Company id
PDF-flag

compIn
Company id
Entry attribute (up to 6)
Catalogue number (up to 4)

lookIn
Company id
Catalogue number

searchIn
Company id
Search string

gdIn
Company id
Catalogue number
Number of items required

poIn
Company id
Number of items required
Catalogue number

Outputs

mcOut
URL of the catalogue for
that company

compOut
URL of page showing
comparison table

lookOut
URL of page with the item
information

searchOut
URL of web page with
search results

gdOut
Catalogue number
Expected delivery date

poOut
Catalogue number
Number of items required
Predicted delivery date
Unit price estimate
Total price estimate

Exceptions

mcFault
Invalid company id

compFault
Invalid company id
Invalid catalogue number
Unknown attribute

lookFault
Invalid company id
Invalid catalogue number

searchFault
Invalid company id
Badly-formed search string

gdFault
Invalid company id
Invalid catalogue number
No availability
Zero items requested

poFault
Invalid company id
Invalid catalogue number
Zero items requested

Figure 31.10
Catalogue interface
design

Operation Description

MakeCatalogue Creates a version of the catalogue tailored for a specific
customer. Includes an optional parameter to create a
downloadable PDF version of the catalogue.

Compare Provides a comparison of up to six characteristics (e.g. price,
dimensions, processor speed, etc.) of up to four catalogue
items for comparison.

Lookup Displays all of the data associated with a specified catalogue item.

Search This operation takes a logical expression and searches the
catalogue according to that expression. It displays a list of all
items that match the search expression.

CheckDelivery Returns the predicted delivery date for an item if it is ordered today.

MakeVirtualOrder Reserves the number of items to be ordered by a customer and
provides item information for the customer’s own procurement
system.

Figure 31.9
Functional
descriptions of
catalogue service
operations

SE8_C31.qxd 4/4/06 9:25 Page 756

31.2 ■ Service engineering 757

used and it is usually unwise to make assumptions that service users will have
completely understood the service specification. Input messages may be incorrect
so you should define exceptions that report incorrect inputs to the service client. It
is generally good practice in reusable component development to leave all excep-
tion handling to the user of the component—the service developer should not impose
their views on how exceptions should be handled.

Once you have established an informal logical description of what the service
should do, the next stage is to define the structure of the input and output mess-
ages and the types used in these messages. XML is an awkward notation to use at
this stage. I think it better to represent the messages as objects and either define
them using the UML or in a programming language, such as Java. They can then be
manually or automatically converted to XML. Figure 31.11 is a UML diagram that
shows the structure of the input and output messages for the getDelivery operation
in the catalogue service.

Notice how I have added detail to the description, by annotating the UML diagram
with constraints. These define the length of the strings representing the company
and the catalogue item, specify that the number of items must be greater than zero
and that delivery must be after the current date. The annotations also show which
error codes are associated with each possible fault.

The final stage of the service design process is to translate the service interface
design into WSDL. As I discussed in the previous section, a WSDL representa-
tion is long and detailed and hence it is easy to make mistakes at this stage. Most
programming environments that support service-oriented development (e.g. the
ECLIPSE environment) include tools that can translate a logical interface descrip-
tion into its corresponding WSDL representation.

••••

Figure 31.11 UML
definition of input
and output messages

SE8_C31.qxd 4/4/06 9:25 Page 757

758 Chapter 31 ■ Service-oriented software engineering

31.2.3 Service implementation and deployment

Once you have identified candidate services and designed their interfaces, the final
stage of the service engineering process is service implementation. This implementa-
tion may involve programming the services using a standard programming language
such as Java or C#. Both of these languages now include libraries with extensive
support for service development.

Alternatively, services may be developed by using existing components or, as
I discuss below, legacy systems. This means that software assets that have already
proved to be useful can be made more widely available. In the case of legacy systems,
it may mean that the system functionality can be accessed by new applications.
New services may also be developed by defining compositions of existing services.
I discuss development by service composition in section 31.3.

Once a service has been implemented, it then has to be tested before it is deployed.
This involves examining and partitioning the service inputs (as discussed in
Chapter 23), creating input messages that reflect these input combinations and then
checking that the outputs are expected. You should always try to generate excep-
tions during the test to check that the service can cope with invalid inputs. Various
testing tools are now available that allow services to be examined and tested and
that generate tests from a WSDL specification. However, these can only test the
conformity of the service interface to the WSDL. They cannot test that the service’s
functional behaviour is as specified.

Service deployment, the final stage of the process, involves making the service
available for use on a web server. Most server software makes this very simple. You
only have to install the file containing the executable service in a specific directory.
It then automatically becomes available for use. If the service is intended to be
publicly available, you then have to to write a UDDI description so that potential
users can discover the service. Erl (2004) provides a useful summary of UDDI in
his book.

There are now a number of public registries for UDDI descriptions and busi-
nesses may also maintain their own private UDDI registries. A UDDI description
consists of a number of different types of information:

1. Details of the business providing the service. This is important for trust reasons.
Users of a service have to be confident that it will not behave maliciously.
Information about the service provider allows users to check a provider’s
credentials.

2. An informal description of the functionality provided by the service. This
helps potential users to decide if the service is what they want. However,
the functional description is in natural language, so it is not an unambiguous
semantic description of what the service does.

3. Information on where to find the WSDL specification associated with the service.

4. Subscription information that allows users to register for information about updates
to the service.

••••

SE8_C31.qxd 4/4/06 9:25 Page 758

31.2 ■ Service engineering 759

A potential problem with UDDI specifications is that the functional behav-
iour of the service is specified informally as a natural language description. As
I have discussed in Chapter 6, which covers software requirements, natural lan-
guage descriptions are easy to read but they are subject to misinterpretation. To
address this problem, there is an active research community concerned with
investigating how the semantics of services may be specified. The most promising
approach to semantic specification is based on ontology-based description where
the specific meaning of terms in a description is specified in an ontology. A lan-
guage called OWL-S has been developed for describing web service ontologies
(OWL_Services_Coalition, 2003). At the time of writing, these techniques for
semantic service specification are still immature but they are likely to become more
widely used over the next few years.

31.2.4 Legacy system services

In Chapter 18, I discussed the possibility of implementing reusable components
by providing a component interface to existing legacy systems. In essence, the
functionality of the legacy systems could be reused. The implementation of the
component was simply concerned with providing a general interface to that system.
One of the most important uses of services is to implement such ‘wrappers’ for legacy
systems. These systems can then be accessed over the web and integrated with
other applications.

To illustrate this, imagine that a large company maintains an inventory of its
equipment and an associated maintenance database. This keeps track of what main-
tenance requests have been made for different pieces of equipment, what regular
maintenance is scheduled, when maintenance was carried out, how much time was
spent on maintenance, etc. This legacy system was originally used to generate
daily job lists for maintenance staff but, over time, new facilities have been added.
These provide data about how much has been spent on maintenance for each piece
of equipment and information to help to cost maintenance work to be carried out
by external contractors. The system runs as a client–server system with special-
purpose client software running on a PC.

The company now wishes to provide real time access to this system from
portable terminals used by maintenance staff. They will update the system directly
with the time and resources spent on maintenance and will query the system to
find their next maintenance job. In addition, call centre staff require access to the
system to log maintenance requests and to check their status.

It is practically impossible to enhance the system to support these require-
ments so the company decides to provide new applications for maintenance and
call centre staff. These applications rely on the legacy system, which is to be
used as a basis for implementing a number of services. This is illustrated in
Figure 31.12, where I have used a UML stereotype to indicate a service. New
applications simply exchange messages with these services to access the legacy
system functionality.

••••

SE8_C31.qxd 4/4/06 9:25 Page 759

760 Chapter 31 ■ Service-oriented software engineering

Some of the services provided are:

1. A maintenance service This includes operations to retrieve a maintenance job
according to its job number, priority and geographical location and to upload
details of maintenance that has been carried out to the maintenance database.
It also supports an operation to allow maintenance that has started but is incom-
plete to be suspended.

2. A facilities service This includes operations to add and delete new equipment
and to modify the information associated with equipment in the database.

3. A logging service This includes operations to add a new request for service,
delete maintenance requests and query the status of outstanding requests.

The existing legacy system is not simply represented as a single service. Rather,
the services that are developed are coherent and support a single area of function-
ality. This reduces their complexity and makes them easier to understand and reuse
in other applications. I do not have space to discuss the details of the messages that
might be exchanged by these services—their design is left as an exercise for the
reader.

31.3 Software development with services

The development of software using services is based around the idea that you
compose and configure services to create new, composite services. These may be
integrated with a web user interface to create a web application or may be used as
components in some other service composition. The services involved in the com-
position may be specially developed for the application, may be business services
developed within a company or may be services from some external provider.

••••

Figure 31.12 Services
providing access to a
legacy system

SE8_C31.qxd 4/4/06 9:25 Page 760

31.3 ■ Software development with services 761

Many companies are now concerned with converting applications that are used
within an enterprise into service-oriented systems. This opens up the possibility of
more widespread reuse within the company. The next stage will be the development
of inter-organisational applications between trusted suppliers. The final realisation of
the long-term vision of service-oriented architectures will rely on the development
of a ‘services market’. I think it is unlikely that this will emerge during the lifetime
of this book. At the time of writing, only a relatively small number of business
services that might be included in business applications are publicly available.

Service composition may be used to integrate separate business processes to
provide an integrated process offering more extensive functionality. Say an airline
wishes to provide a complete vacation package for travellers. As well as booking
their flights, travellers can also book hotels in their preferred location, arrange car
hire or book a taxi from the airport, browse a travel guide and make reservations
to visit local attractions. To create this application, the airline composes its own
booking services with services offered by a hotel booking agency, car hire and
taxi companies and the reservation services offered by the providers of the local
attractions. The result is a single service that integrates these different services from
different providers.

You can think of this process as a sequence of separate steps as shown in
Figure 31.13. Information is passed from one step to the next—for example, the
car hire company is informed of the time that the flight is scheduled to arrive.
The sequence of steps is called a workflow—a set of activities ordered in time, with
each activity carrying out some part of the work. You can think of a workflow as
a model of a business process—the steps involved in reaching some goal that is
important for a business. In this case, the business process is the vacation booking
service, offered by the airline.

Workflow is a simple idea and the above scenario of booking a vacation seems
to be straightforward. In reality, service composition is much more complex than
this simple model implies. For example, you have to consider the possibility of
service failure and incorporate mechanisms to handle these failures. You also have
to take into account exceptional demands made by users of the application. For
example, say a traveller was disabled and required a wheelchair to be rented and
delivered to the airport.

You must to be able to cope with situations where the workflow has to be changed
because the normal execution of one of the services results in an incompatibility
with some other service execution. For example, say a flight is booked to leave on
1 June and return on 7 June. The workflow then proceeds to the hotel booking stage.
However, the resort is hosting a major convention until 2 June so no hotel rooms

••••

Figure 31.13
Vacation package
workflow

SE8_C31.qxd 4/4/06 9:25 Page 761

762 Chapter 31 ■ Service-oriented software engineering

are available. The hotel booking service reports this lack of availability. This is
not a failure: lack of availability is a common situation. You then have to ‘undo’
the flight booking and pass the information about lack of availability back to the
user. He or she then has to decide whether to change their dates or their resort.
In workflow terminology, a ‘compensating action’ is used to undo actions that
have already been completed.

The process of designing new services by composing existing services is, essen-
tially, a process of software design with reuse (Figure 31.14). Design with reuse
inevitably involves requirements compromises. The ‘ideal’ requirements for the sys-
tem have to be modified to reflect the services that are actually available, whose
costs fall within budget and whose quality of service is acceptable.

In Figure 31.14, I have shown six key stages in the process of service construction
by composition:

1. Formulate outline workflow In this initial stage of service design, you use the
requirements for the composite service as a basis for creating an ‘ideal’ service
design. You should create a fairly abstract design at this stage with the intention
of adding details once you know more about available services.

2. Discover services During this stage of the process, you search service registries
to discover what services exist, who provides these services and the details of
the service provision.

3. Select possible services From the set of possible service candidates that you
have discovered, you then select possible services that can implement work-
flow activities. Your selection criteria will obviously include the functionality
of the services offered. They may also include the cost of the services and the
quality of service (responsiveness, availability, etc.) offered. You may decide
to choose a number of functionally equivalent services, which could be bound
to a workflow activity depending on details of cost and quality of service.

4. Refine workflow On the basis of information about the services that you have
selected, you then refine the workflow. This involves adding detail to the abstract
description and, perhaps, adding or removing workflow activities. You then may
repeat the service discovery and selection stages. Once a stable set of services
has been chosen and the final workflow design established, you move on to
the next stage in the process.

••••

Figure 31.14 Service
construction by
composition

SE8_C31.qxd 4/4/06 9:25 Page 762

31.3 ■ Software development with services 763

5. Create workflow program During this stage, the abstract workflow design
is transformed to an executable program and the service interface is defined.
You can use a conventional programming language such as Java or C# for
service implementation or you can use a more specialised workflow language
such as WS-BPEL. As I discussed in the previous section, the service interface
specification should be written in WSDL. This stage may also involve the
creation of web-based user interfaces to allow the new service to be accessed
from a web browser.

6. Test completed service or application The process of testing the completed,
composite service is more complex than component testing in situations where
external services are used. I discuss testing issues in section 31.3.2.

In the remainder of this chapter, I focus on workflow design and testing. As I
discussed in the introduction, a market for services has not yet developed. Although
a number of public UDDI registries are available, these are sparsely populated and
the service descriptions are sometimes vague and incomplete. For these reasons,
service discovery is not yet a major issue. Most services will be discovered within
organisations where services can be discovered using internal registries and informal
communications between software engineers.

31.3.1 Workflow design and implementation

Workflow design involves analysing existing or planned business processes to under-
stand the different stages of these processes then representing the process being
designed in a workflow design notation. This shows the stages involved in enacting
the process and the information that is passed between the different process stages.
However, existing processes may be informal and dependent on the skills and abil-
ity of the people involved—there may be no ‘normal’ way of working. In such cases,
you have to use process knowledge to design a workflow that achieves the same
goals as current business processes.

Workflows represent business process models and are usually represented using
a graphical notation such as BPMN (White, 2004) or YAWL (van der Aalst and
ter Hofstede, 2005) At the time of writing, the process modelling language which
seems most likely to emerge as a standard is BPMN. This is a graphical language
which is reasonably easy to understand. Mappings have been defined to translate the
language to lower-level, XML-based descriptions in WS-BPEL. BPMN is therefore
conformant with the stack of web service standards that I showed in Figure 31.2.
I use BPMN here to illustrate the notion of business process programming.

Figure 31.15 is an example of a simple BPMN model of part of the above vaca-
tion package scenario. The model shows a simplified workflow for hotel booking
and assumes the existence of a Hotels service with associated operations called
GetRequirements, CheckAvailability, ReserveRooms, NoAvailability, ConfirmReservation
and CancelReservation. The process involves getting requirements from the customer,

••••

SE8_C31.qxd 4/4/06 9:25 Page 763

764 Chapter 31 ■ Service-oriented software engineering

checking room availability then, if rooms are available, making a booking for the
required dates.

This model introduces some of the core concepts of BPMN that are used to
create workflow models:

1. Activities are represented by a rectangle with rounded corners. An activity can
be executed by a human or by an automated service.

2. Events are represented by circles. An event is something that happens during
a business process. A simple circle is used to represent a starting event and a
darker circle to represent a end event. A double circle (not shown) is used
to represent an intermediate event. Events can be clock events, thus allowing
workflows to be executed periodically or timed out.

3. A diamond is used to represent a gateway. A gateway is a stage in the process
where some choice is made. For example, in Figure 31.15, there is a choice
made on the basis of whether rooms are available or not.

4. A solid arrow is used to show the sequence of activities; a dashed arrow
represents message flow between activities—in Figure 31.15, these messages
are passed between the hotel booking service and the customer.

These key features are enough to describe the essence of most workflows. How-
ever, BPMN includes many additional features that I do not have space to describe
here. These add information to a business process description that allows it to be
automatically translated into an executable form. Therefore, web services, based on
service compositions described in BPMN can be created from a business process
model.

••••

Figure 31.15 Hotel
booking workflow

SE8_C31.qxd 4/4/06 9:25 Page 764

31.3 ■ Software development with services 765

Figure 31.15 shows the process that is enacted in one organisation, the company
that provides a booking service. However, the key benefit of a service-oriented
approach is that it supports inter-organisational computing. This means that the total
computation involves services in different companies. This is represented in BPMN
by developing separate workflows for each of the organisations involved with inter-
actions between them.

To illustrate this, I use a different example, drawn from grid computing. A service-
oriented approach has been proposed to allow resources such as high-performance
computers to be shared. In this example, assume that a vector processing computer
(a machine that can carry out parallel computations on arrays of values) is offered
as a service (VectorProcService) by a research laboratory. This is accessed through
another service called SetupComputation. These services and their interactions are
shown in Figure 31.16.

In this example, the workflow for the SetupComputation service requests access
to a vector processor and, if a processor is available, establishes the computa-
tion required and downloads data to the processing service. Once the computation
is complete, the results are stored on the local computer. The workflow for
VectorProcService checks if a processor is available, allocates resources for the com-
putation, initialises the system, carries out the computation and returns the results
to the client service.

In BPMN terms, the workflow for each organisation is represented in a separate
pool. It is shown graphically by enclosing the workflow for each participant in

••••

Figure 31.16
Interacting workflows

SE8_C31.qxd 4/4/06 9:25 Page 765

766 Chapter 31 ■ Service-oriented software engineering

the process in a rectangle, with the name written vertically on the left edge. The
workflows defined in each pool are coordinated by exchanging messages; sequence
flow between the activities in different pools is not allowed. In situations where
different parts of an organisation are involved in a workflow, this can be shown by
separating pools into named ‘lanes’. Each lane shows the activities in that part of
the organisation.

Once a business process model has been designed, this has to be refined depend-
ing on the services that have been discovered. As I suggested in the discussion of
Figure 31.14, the model may go through a number of iterations until a design that
allows the maximum possible reuse of available services is created. Once such a
design is available, the next stage is to convert this to an executable program. As
services are implementation-language independent, this can be written in any lan-
guage and both Java and C# development environments provide support for web
service composition.

To provide direct support for the implementation of web service composi-
tions, several web service standards have been developed. The best known of
these is WS-BPEL (Business Process Execution Language) which is an XML-based
‘programming language’ to control interactions between services. This is supported
by additional standards such as WS-Coordination (Cabrera, et al., 2005), which is
used to specify how services are coordinated and WS-CDL (Choreography Descrip-
tion Language) (Kavantzas, et al., 2004) which is a means of defining the message
exchanges between participants (Andrews, et al., 2003).

All of these are XML standards so the resulting descriptions are long and diffi-
cult to read. Writing programs directly in XML-based notations is slow and error-
prone. I have therefore decided not to go into details of XML-based notations, such
as WS-BPEL, as they are not essential for understanding the principles of work-
flow and service-composition. As support for service-oriented computing matures,
these XML descriptions will be generated automatically. Tools will parse a graph-
ical workflow description and generate executable service compositions.

31.3.2 Service testing

Testing is important in all system development processes to help demonstrate that
a system meets its functional and non-functional requirements and to detect defects
that have been introduced during the development process. As I have discussed
in Chapters 22–24, a range of different approaches to system validation and test-
ing have been developed to support the testing process. Many of these techniques,
such as program inspections and coverage testing, rely on analysis of the software
source code. However, when services are offered by an external provider, source
code of the service implementation is not available. Service-based system testing
cannot therefore use proven, source code-based techniques.

As well as problems of understanding the operation of the service, testers may
also face further difficulties when testing services and service compositions:

••••

SE8_C31.qxd 4/4/06 9:25 Page 766

31.3 ■ Software development with services 767

1. External services are under the control of the service provider rather than the
user of the service. The service provider may withdraw these services at any
time or may make changes to them, which invalidates any previous testing
experience. These problems are handled in software components by maintaining
different versions of the component. Currently, however, there are no standards
proposed to deal with service versions.

2. The long-term vision of service-oriented architectures is for services to be bound
dynamically to service-oriented applications. This means that, an application may
not always use the same service each time that it is executed. Therefore, tests
may be successful when an application is bound to some particular service but it
cannot be guaranteed that that service will be used during an actual execution
of the system.

3. As, in most cases, a service is available to different customers, the non-
functional behaviour of that service is not simply dependent on how it is
used by the application that is being tested. A service may perform well
during testing because it is not operating under a heavy load. In practice, the
observed service behaviour may be different because of the demands made
by other users.

4. The payment model for services could make service testing very expensive.
There are different possible payment models—some services may be freely avail-
able, some paid for by subscription and others paid for on a per-use basis. If
services are free, then the service provider will not wish them to be loaded by
applications being tested; if a subscription is required, then a service user may
be reluctant to enter into a subscription agreement before testing the service;
if the usage is based on payment for each use, service users may find the cost
of testing to be prohibitive.

5. I have discussed the notion of compensation actions that are invoked when some
exception occurs and previous commitments that have been made (such as a
flight reservation) have to be revoked. There is a problem in testing such actions
as they may depend on failures of other services. Ensuring that these services
actually fail during the testing process may be very difficult.

These problems are particularly acute when external services are used. They are
less serious when services are used within the same company or where cooperat-
ing companies trust services offered by their partners. In such cases, source code
may be available to guide the testing process and payment for services is unlikely
to be a problem. Resolving these testing problems and producing guidelines, tools
and techniques for testing service-oriented applications is currently an important
research issue.

••••

SE8_C31.qxd 4/4/06 9:25 Page 767

768 Chapter 31 ■ Service-oriented software engineering

F U R T H E R R E A D I N G

There is an immense amount of tutorial material on the web covering all aspects of web services.
However, I found the following two books by Thomas Erl to be the best overview and description of
services and service standards. Unlike most books, Erl includes some discussion of software
engineering issues in service-oriented computing.

Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services,
Upper Saddle River, NJ: Prentice-Hall.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology and Design, Upper Saddle River,
NJ: Prentice-Hall.

••••

■ Service-oriented software engineering is based on the notion that programs can be
constructed by composing independent services that encapsulate reusable functionality.
Services are language independent and their implementation is based on widely adopted
XML-based standards.

■ Service interfaces are defined in an XML-based language called WSDL. A WSDL specification
includes a definition of the interface types and operations, the binding protocol used by the
service and the service location.

■ Services may be classified as utility services that provide some general-purpose
functionality, business services that implement part of a business process or coordination
services that coordinate the execution of other services.

■ The service engineering process involves identifying candidate services for implementation,
defining the service interface and implementing, testing and deploying the service.

■ Service interfaces may be defined for legacy software systems that continue to be useful for an
organisation. The functionality of the legacy system may then be reused in other applications.

■ The development of software using services is based around the idea that programs are
created by composing and configuring services to create new composite services.

■ Business process models define the activities and information exchange that takes place in
some business process. Activities in the business process may be implemented by services
so that the business process model represents a service composition.

■ Techniques of software testing based on source-code analysis cannot be used in service-
oriented systems that rely on externally provided services.

K E Y P O I N TS

SE8_C31.qxd 4/4/06 9:25 Page 768

Chapter 31 ■ Exercises 769

E X E R C I S E S

31.1 What are the important distinctions between services and software components?

31.2 Explain why service-oriented architectures should be based on standards.

31.3 Why is it important to minimise the number of messages exchanged by services?

31.4 Explain why services should always include an exception interface which is used to report
faults and exceptions to service clients.

31.5 Using the same notation, extend Figure 31.6 to include definitions for MaxMinType and
InDataFault. The temperatures should be represented as integers with an additional field
indicating whether the temperature is in degrees Fahrenheit or degrees Celsius. InDataFault
should be a simple type consisting of an error code.

31.6 Define an interface specification for the Currency Converter and Check credit rating services
shown in Figure 31.8.

31.7 Design possible input and output messages for the services shown in Figure 31.12. You may
specify these in the UML or in XML.

31.8 Giving reasons for your answer, suggest two important types of application that are unlikely
to make use of a service-oriented approach.

31.9 In section 31.2.1, I introduced an example of a company that has developed a catalogue
service that is used by the web-based procurement systems used by customers. Using BPMN,
design a workflow that uses this catalogue service to lookup and place orders for computer
equipment.

31.10 Explain what is meant by a ‘compensation action’ and, using an example, show why these
actions may have to be included in workflows.

31.11 For the example of the vacation package reservation service, design a workflow that will book
ground transportation for a group of passengers arriving at an airport. They should be given
the option of booking either a taxi or a hire car. You may assume that the taxi and car hire
companies offer web services to make a reservation.

31.12 Using an example, explain in detail why the thorough testing of services that include
compensation actions is difficult.

••••

SE8_C31.qxd 4/4/06 9:25 Page 769

Aspect-oriented
software development

32

Objectives
The objective of this chapter is to introduce you to aspect-oriented
software development, which is based on the idea of separating
concerns into separate system modules. When you have read this
chapter, you will:

■ understand why the separation of concerns is a good guiding
principle for software development;

■ have been introduced to the fundamental ideas underlying
aspects and aspect-oriented software development;

■ understand how to use an aspect-oriented approach for
requirements engineering, software design and programming;

■ know the problems of testing aspect-oriented systems.

Contents
32.1 The separation of concerns

32.2 Aspects, join points and pointcuts

32.3 Software engineering with aspects

••

SE8_C32.qxd 4/4/06 9:26 Page 770

Chapter 32 ■ Aspect-oriented software development 771

In most large systems, the relationships between the requirements and the program
components are complex. A single requirement may be implemented by a number
of components and each component may include elements of several requirements.
This means that implementing a change to the requirements may involve understand-
ing and changing many components. Reusing components may be difficult because
they do not implement a single system abstraction but also include fragments of
code that implement other requirements.

Aspect-oriented software development (AOSD), which I introduced briefly in
Chapter 18, is an emerging approach to software development that is intended to
address this problem and so make programs easier to maintain and reuse. AOSD is
based around a new type of abstraction called an aspect. Aspects are used alongside
other abstractions such as objects and methods. They encapsulate functionality that
cross-cuts and co-exists with other functionality that is included in the system. An
executable aspect-oriented program is created by automatically combining (weaving)
objects, methods and aspects, according to specifications that are included in the
program source code.

The key benefit of an aspect-oriented approach is that it supports the separation
of concerns. As I explain in section 32.1, separating concerns into independent
elements rather than including different concerns in the same logical abstraction
is good software engineering practice. By representing cross-cutting concerns as
aspects, these concerns can be understood, reused and modified independently. For
example, say user authentication is represented as an aspect that requests a login
name and password. This can be automatically woven into the program wherever
authentication is required.

An important characteristic of aspects is that they include a definition of where
they should be included in a program, as well as the code implementing the cross-
cutting concern. Thus, you can specify that the cross-cutting code should be included
before or after a specific method call or when an attribute is accessed. Essentially,
the aspect is woven into the core program to create a new, augmented system.

For example, say you have a requirement that user authentication is required before
any change to personal details is made in a database. You specify this in an aspect by
stating that the authentication code should be included before each call to methods
that update personal details. Subsequently, you may extend the requirement for
authentication to all database updates. This can easily be implemented by modify-
ing the aspect through changing the definition of where the authentication code is
to be woven into the system. You do not have to search through the system looking
for all occurrences of these methods. You are therefore less likely to make mistakes
and introduce accidental security vulnerabilities into your program.

Research and development in aspect-orientation has primarily focused on aspect-
oriented programming. Aspect-oriented programming languages such as AspectJ
(Kiczales, et al., 2001; Colyer and Clement, 2005; Laddad, 2003a; Laddad, 2003b;
Colyer, et al., 2005) have been developed that extend object-oriented programming
to include aspects. Some companies, such as IBM, are starting to use aspect-
oriented programming in their software production processes (Colyer and Clement,
2005). However, it has now been recognised that cross-cutting concerns are equally

••

SE8_C32.qxd 4/4/06 9:26 Page 771

772 Chapter 32 ■ Aspect-oriented software development

problematic at other stages of the software development process. Researchers are
now investigating how to utilise aspect-orientation in system requirements engineering
and system design and how to test and verify aspect-oriented programs.

Aspect-oriented software development is not yet part of mainstream software
engineering. We do not yet have sound principles and tested practices for AOSD
and these will take many years of practical experience to emerge. As with all new
technologies, advocates focus on the benefits rather than the problems and costs.
While I believe that AOSD will have a major impact on software engineering prac-
tice, I think that it will be several years before some problems with this approach
are solved. However, I have included a discussion of AOSD here because its focus
on separating concerns is an important way of thinking about and structuring a
software system.

In the remaining sections of the chapter, I therefore explain some of the new
concepts that are part of AOSD and discuss the advantages and disadvantages of
using an aspect-oriented approach at different stages of the software development
process. As my aim is to help you understand the concepts underlying AOSD, I do
not go into detail of any specific approach or aspect-oriented programming language.

32.1 The separation of concerns

The separation of concerns is a key principle of software design and implementation.
Essentially, it means that you should organise your software so that each element
in the program (class, method, procedure, etc.) does one thing and one thing only.
You can then focus on that element without regard for the other elements in the
program. You can understand each part of the program by knowing its concern,
without the need to understand other elements. When changes are required, they
are localised to a small number of elements.

The importance of separating concerns was recognised at a very early stage in the
history of computer science. Subroutines, which encapsulated a unit of functionality,
were invented in the early 1950s and all subsequent program structuring mechanisms
such as procedures and object classes, have been designed to provide better mechan-
isms for realising the separation of concerns. However, all of these mechanisms have
problems in dealing with certain types of concern which cut across other concerns.
Aspects have been invented to help manage these cross-cutting concerns.

While it is generally agreed that separating concerns is good software engineering
practice, it is harder to pin down what is actually meant by a concern. Sometimes it
is defined as a functional notion where a concern is some element of functionality
in a system; alternatively, it may be defined very broadly as ‘any piece of interest
or focus in a program’. Neither of these definitions is particularly useful. Concerns
certainly are more than simply functional elements and the more general definition
is so vague that it is practically useless.

••••

SE8_C32.qxd 4/4/06 9:26 Page 772

32.1 ■ The separation of concerns 773

In my view, most attempts to define concerns are problematic because they attempt
to relate concerns to programs. In fact, as discussed by Jacobsen and Ng (2004),
concerns are really reflections of the system requirements and the priorities of stake-
holders in the system. System performance may be a concern because users want to
have a rapid response from a system; some stakeholders may be concerned that the
system includes particular functionality; companies who are supporting a system,
may be concerned that it is easy to maintain. A concern is therefore something that
is of interest or significance to a stakeholder or a group of stakeholders.

With this view of a concern, we then see why an approach to implementation
that separates concerns into different program elements is good practice. It is easier
to trace concerns, expressed as a requirement or a related set of requirements, and
the program components that implement these concerns. If the requirements change,
then the part of the program that has to be changed is obvious.

There are several different types of stakeholder concern:

1. Functional concerns which are related to specific functionality to be included
in a system. For example, in a train control system, a specific functional con-
cern is train braking.

2. Quality of service concerns which are related to the non-functional behaviour
of a system. These include characteristics such as performance, reliability and
availability.

3. Policy concerns which are related to the overall policies that govern the use of
the system. Policy concerns include security and safety concerns and concerns
related to business rules.

4. System concerns which are related to attributes of the system as a whole such
as its maintainability or its configurability.

5. Organisational concerns which are related to organisational goals and priorities
such as producing a system within budget, making use of existing software assets
or maintaining the reputation of an organisation.

The core concerns of a system are those functional concerns that relate to its
primary purpose. Therefore, for a patient information system in a hospital, the core
concerns are the creation, editing, retrieval and management of patient records. In
addition to core concerns, most large systems also have secondary functional concerns.
These may involve functionality that shares information with the core concerns or
which is required so that the system can satisfy its non-functional requirements.

As a very simple example of this, consider a system that has a requirement
to provide concurrent access to a shared buffer. I discuss an example of such a
system (Figure 15.14) in Chapter 15, which covers real-time systems. This shared
buffer is part of a data acquisition system where a producer process puts data in
the buffer and a consumer process takes data from the buffer. The core concern
here is to maintain a shared buffer so the core functionality is associated with adding
and removing elements from the buffer. However, to ensure that the producer and

••••

SE8_C32.qxd 4/4/06 9:26 Page 773

774 Chapter 32 ■ Aspect-oriented software development

consumer processes do not interfere with each other, there is an essential secondary
concern of synchronisation. The system must be designed so that the producer pro-
cess cannot over-write data that has not been consumed and the consumer process
cannot take data from an empty buffer.

In addition to these secondary concerns, other concerns such as quality of service
concerns and policy concerns reflect essential system requirements. In general,
these concerns are system concerns—they apply to the system as a whole rather
than to individual requirements or the realisation of these requirements in a pro-
gram. We call these cross-cutting concerns to distinguish them from core concerns.
Secondary functional concerns may also be cross-cutting although they do not always
cross-cut the entire system; rather, they are associated with groupings of core con-
cerns that provide related functionality.

This is shown in Figure 32.1, which is based on the example of an Internet bank-
ing system. This system has requirements relating to new customers such as credit
checking and address verification. It also has requirements related to the manage-
ment of existing customers and the management of customer accounts. All of these
are core concerns as they are associated with the system’s primary purpose—the
provision of an Internet banking service. However, the system also has security require-
ments based on the bank’s security policy and recovery requirements to ensure that
data is not lost in the event of a system failure. These are cross-cutting concerns as
they may influence the implementation of all the other system requirements.

Programming language abstractions such as procedures and classes are the
mechanism that you normally use to organise and structure the core concerns of
a system. However, the implementation of the core concerns in conventional pro-
gramming languages usually includes additional code to implement the cross-cutting,
functional, quality of service and policy concerns. This leads to two undesirable
phenomena: tangling and scattering.

Tangling occurs when a module in a system includes code that implements dif-
ferent system requirements. The example in Figure 32.2, which is part of the code
for the bounded buffer system shown in Figure 15.14, illustrates this phenomenon.
The code supporting the primary concern (in this case, putting a record into the
buffer), is tangled with code implementing synchronisation. Synchronisation code

••••

Figure 32.1 Cross-
cutting concerns

SE8_C32.qxd 4/4/06 9:26 Page 774

32.1 ■ The separation of concerns 775

which is associated with the secondary concern of ensuring mutual exclusion has
to be included in all methods that access the shared buffer. Code associated with
the synchronisation concern is shown as shaded code in Figure 32.2.

The related phenomenon of scattering occurs when the implementation of a
single concern (a logical requirement or set of requirements) is scattered across
several components in a program. This is likely to occur when requirements related
to secondary functional concerns or policy concerns are implemented.

For example, say a hospital record management system has a number of com-
ponents concerned with managing personal information, medication, consultations,
medical images, diagnoses and treatments. These can be configured in different
ways for different types of clinic and implement the core concerns of the system—
maintaining records of patients.

However, assume there is also an important secondary concern which is the main-
tenance of statistical information—the hospital wishes to record details of how many
patients were admitted and discharged each month, how many patients died, what
medications were issued, the reasons for consultations, etc. These requirements have
to be implemented by adding code that anonymises the data (to maintain patient
privacy) and writes it to a statistical database. A statistics component processes the
statistical data and generates the statistic reports that are required.

This is illustrated in Figure 32.3. This diagram shows examples of three classes
that might be included in the patient record system along with some of the core

••••

Figure 32.3
Scattering of
methods
implementing
secondary concerns

synchronized void put (SensorRecord rec) throws InterruptedException
{

if (numberOfEntries == bufsize)
wait () ;

store [back] = new SensorRecord (rec.sensorId, rec.sensorVal) ;
back = back + 1 ;
if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;

} // put

Figure 32.2
Tangling of buffer
management and
synchronisation code

SE8_C32.qxd 4/4/06 9:26 Page 775

776 Chapter 32 ■ Aspect-oriented software development

methods for managing patient information. The shaded area shows the methods that
are required to implement the secondary statistics concern. You can see that this
statistics concern is scattered throughout the other core concerns.

Problems with scattering and tangling arise when the initial system requirements
change. For example, say new statistical data had to be collected in the patient record
system. The changes to the system are not all located in one place and so you have
to spend time looking for the components in the system that have to be changed.
You then have to change each of these components to incorporate the required changes.
Because of the time taken, this is a costly process. There is always the possibility
that you will miss some code that should be changed and so the statistics will be
incorrect. Furthermore, as several changes have to be made, this increases the chances
that you will make a mistake and introduce errors into the software.

32.2 Aspects, join points and pointcuts

In this section, I introduce the most important new concepts associated with
aspect-oriented software development and illustrate these using examples from the
hospital patient information system. The terminology that I use was first introduced
by the developers of AspectJ in the late 1990s. However, the concepts are generally
applicable and not specific to that programming language. Figure 32.4 summarises
the key terms that you need to understand.

The hospital patient information system, introduced in section 32.1, includes a
number of different components that handle logically related patient information. The
patient component maintains personal information about a patient, the medication

••••

Term Definition

advice The code implementing a concern.

aspect A program abstraction that defines a cross-cutting concern. It
includes the definition of a pointcut and the advice associated
with that concern.

join point An event in an executing program where the advice associated
with an aspect may be executed.

join point model The set of events that may be referenced in a pointcut.

pointcut A statement, included in an aspect, that defines the join points
where the associated aspect advice should be executed.

weaving The incorporation of advice code at the specified join points by
an aspect weaver.

Figure 32.4
Terminology used
in aspect-oriented
software
development

SE8_C32.qxd 4/4/06 9:26 Page 776

32.2 ■ Aspects, join points and pointcuts 777

component holds information about medications that may be prescribed, etc. By
designing the system using a component-based approach, different instantiations
of the system can be configured. For example, a version could be configured for
each type of clinic with doctors allowed to prescribe only medication relevant to
that clinic. This simplifies the job of clinical staff and reduces the chances that a
doctor will mistakenly prescribe the wrong medication.

However, this organisation means that information in the database is updated from
a number of different places in the system. For example, patient information may
be modified when their personal details change, when their assigned medication
changes, when they are assigned to a new specialist, etc. For simplicity, assume
that all components in the system use a consistent naming strategy and that all data-
base updates are implemented by methods starting with ‘update’. There are therefore
methods in the system such as:

updatePersonalInformation (patientId, infoupdate)

updateMedication (patientId, medicationupdate)

The patient is identified by patientId and the changes to be made are encoded
in the 2nd parameter—the details of this are not important for this example.
Updates are made by hospital staff who are logged into the system.

Imagine that a security breach occurs where patient information is maliciously
changed. Perhaps someone has accidentally left their computer logged on and an
unauthorised person has gained access to the system. Alternatively, an authorised
insider may have gained access and maliciously changed the patient information.
To reduce the probability of this happening again, a new security policy is intro-
duced. Before any change to the patient database is made, the person requesting the
change must re-authenticate themselves to the system. Details of who made the change
are also logged in a separate file. This helps trace problems if they re-occur.

One way of implementing this new policy is to modify the update method in
each component to call other methods that do the authentication and logging.
Alternatively, the system could be modified so that, each time an update method is
called, method calls are added before the call to do the authentication and after to
log the changes made. Neither of these is a very good solution to this problem:

1. The first approach leads to a tangled implementation. Logically, updating a
database, authenticating the originator of an update and logging details of the
update are separate, unrelated concerns. You may wish to include authentica-
tion elsewhere in the system without logging or to log actions apart from the
update action. The same authentication and logging code has to be included
within several different methods.

2. The alternative approach leads to a scattered implementation. If you explicitly
include method calls to do authentication and logging before and after every
call to the update methods, then this code is included at several different places
in the system.

••••

SE8_C32.qxd 4/4/06 9:26 Page 777

778 Chapter 32 ■ Aspect-oriented software development

Authentication and logging cut across the core concerns of the system and may
have to be included in several different places. In an aspect-oriented system, you
can represent these cross-cutting concerns as separate aspects. An aspect includes
a specification of where the cross-cutting concern is to be woven into the program
and code to implement the concern. This is illustrated in Figure 32.5, which defines
an authentication aspect. The notation that I use in this example follows the style
of AspectJ but uses a simplified syntax, which should be understandable without
knowledge of Java or AspectJ.

Aspects are completely different from other program abstractions in that the
aspect itself includes a specification of where it should be executed. With other
abstractions, such as methods, there is a clear separation between the definition of
the abstraction and its use. You can call a method from anywhere it is in scope and
you cannot tell by looking at the method where it should be called from. Aspects,
by contrast, include a pointcut—a statement which defines where the aspect will be
woven into the program.

In this example, the pointcut is a simple statement:

before: call (public void update* (..))

The meaning of this is that before the execution of any method whose name
starts with the string update followed by any other string (the character * is called
a wildcard and matches any string characters that are allowed in identifiers), the
code after the pointcut definition should be executed. This code is called the advice
and it is the implementation of the cross-cutting concern. In this case, the advice
gets a password from the person requesting the change and checks that it matches
the password of the currently logged-in user. If not, the user is logged out and the
update does not proceed.

••••

aspect authentication
{

before: call (public void update* (..)) // this is a pointcut
{

// this is the advice that should be executed when woven into
// the executing system
int tries = 0 ;
string userPassword = Password.Get (tries) ;
while (tries < 3 && userPassword != thisUser.password ())
{

// allow 3 tries to get the password right
tries = tries + 1 ;
userPassword = Password.Get (tries) ;

}
if (userPassword != thisUser.password ()) then

//if password wrong, assume user has forgotten to logout
System.Logout (thisUser.uid) ;

}
} // authentication

Figure 32.5
A description of an
authentication aspect

SE8_C32.qxd 4/4/06 9:26 Page 778

32.2 ■ Aspects, join points and pointcuts 779

The ability to specify, using pointcuts, where code should be executed is the
distinguishing characteristic of aspects. However, to understand what pointcuts
mean, you need to understand another concept—the idea of a join point. A join
point is an event that occurs during the execution of a program—so, it could be a
method call, the initialisation of a variable, the updating of a field, etc. Obviously,
there are many different types of event that occur during program execution. A join
point model defines those events which can be referenced by the aspect-oriented
programmer. For example, in AspectJ, events that are part of the join point model
include:

• call events—calls to a method or a constructor;

• execution events—the execution of a method or a constructor;

• initialisation events—class or object initialisation;

• data events—accessing or updating of a field;

• exception events—the handling of an exception.

A pointcut identifies the specific events (e.g. a call to a named procedure) with
which the advice should be associated. This means that you can weave advice into
a program in many different contexts. For example:

1. Before the execution of a specific method, a list of named methods or a list of
methods whose names match a pattern specification (such as update*).

2. After the normal or exceptional return from a method. In the example shown
in Figure 32.5, you could define a pointcut that would execute the logging code
after all calls to update methods.

3. When a field in an object is modified, you can include advice to monitor or
change that field.

The inclusion of advice at the join points specified in the pointcuts is the
responsibility of an aspect weaver. Aspect weavers are extensions to compilers that
process the definition of aspects and the object classes and methods defining the
system. The weaver then generates a new program with the aspects included at the
specified join points. The aspects are integrated so that the cross-cutting concerns
are executed at the right places in the final system.

Figure 32.6 illustrates this aspect weaving for the authentication and logging aspects
that have to be included in the patient management system. There are three differ-
ent approaches to aspect weaving:

1. Source code pre-processing where a weaver takes source code input and gener-
ates new source in a language such as Java or C++ which can then be compiled
using the standard language compiler. This approach has been adopted for the
AspectX language with its associated XWeaver (Birrer, et al., 2005).

••••

SE8_C32.qxd 4/4/06 9:26 Page 779

780 Chapter 32 ■ Aspect-oriented software development

2. Link time weaving where the compiler is modified to include an aspect weaver.
An aspect-oriented language such as AspectJ is processed and standard Java
bytecode is generated. This can then be executed directly by a Java interpreter
or further processed to generate native machine code. At the time of writing,
this is the most widely used approach.

3. Dynamic weaving at execution time. This is the most general approach but also
the one with the greatest overhead. In this case, join points are monitored and
when an event that is referenced in a pointcut occurs, the corresponding advice
is integrated with the executing program.

32.3 Software engineering with aspects

Aspects were originally introduced as a programming language construct but, as
I have discussed, the notion of concerns is one that really comes from the system
requirements. Therefore, it makes sense to adopt an aspect-oriented approach at all
stages in the system development process. In the early stages of software engineer-
ing, adopting an aspect-oriented approach means using the notion of separating
concerns as a basis for thinking about the requirements and the system design.
Identifying and modelling concerns should be part of the requirements engineering
and design processes. Aspect-oriented programming languages then provide the
technological support to maintain the separation of concerns in your implementa-
tion of the system.

Jacobsen and Ng (2004) suggest that you should think of a system that supports
different stakeholder concerns as a core system plus extensions. I have illustrated
this in Figure 32.7, where I have used UML packages to represent both the core and
the extensions. The core system is the set of system features that provide support
for the essential purpose of the system. Therefore, if the purpose of the system is to
maintain information on patients in a hospital, then this system provides a means of
creating, editing, managing and accessing a database of patient records. The extensions

••••

Authentication aspect

Logging aspect

Patient

...
updateDetails (...)
...

Patient

...
authentication code
updateDetails (...)
logging code
...

Aspect weaver

Figure 32.6 Aspect
weaving

SE8_C32.qxd 4/4/06 9:26 Page 780

32.3 ■ Software engineering with aspects 781

to the core system reflect additional concerns of system stakeholders, which must
be integrated with the core system. For example, it is important that a hospital informa-
tion system maintains the confidentiality of patient information, so one extension
may be concerned with access control, another with encryption, etc.

There are a number of types of extension that are derived from the different types
of concern, which I discussed in section 32.1.

1. Secondary functional extensions These add additional functional capabilities to
the functionality provided in the core system. For example, the production of
reports on the drugs prescribed in the previous month would be a secondary
functional extension to a patient information system.

2. Policy extensions These add functional capabilities to support some organisa-
tional policy. Extensions which add security features are examples of policy
extensions.

3. QoS extensions These add functional capabilities to help attain the quality
of service requirements that have been specified for the system. For example,
an extension might provide support for a cache to reduce the number of
database accesses or automated backups for recovery in the event of a system
failure.

4. Infrastructure extensions These extensions add functional capabilities to support
the implementation of a system on some specific implementation platform. For
example, in a patient information system, infrastructure extensions might be
used to implement the interface to the underlying database management system.
If this changes, then these changes can be made by changing the associated
infrastructure extensions.

Extensions always add some kind of functionality or additional features to
the core system. Aspects are a way to implement these extensions and they can be
composed with the core system functionality using the weaving facilities in the
aspect-oriented programming environment.

••••

Figure 32.7 Core
system with
extensions

SE8_C32.qxd 4/4/06 9:26 Page 781

782 Chapter 32 ■ Aspect-oriented software development

32.3.1 Concern-oriented requirements engineering

As I suggested in section 32.1, concerns reflect the requirements of stakeholders.
These concerns may reflect the functionality required by a stakeholder, the quality
of system service, organisational policies or issues that are related to the attri-
butes of the system as a whole. It therefore makes sense to adopt an approach
to requirements engineering that identifies and specifies the different stakeholder
concerns. The term early aspects is sometimes used to refer to the use of aspects
at early stages in the software lifecycle where the separation of concerns is
emphasised.

The importance of separating concerns during requirements engineering has
been recognised for many years. Viewpoints, which I covered in section 7.2.1
and which have been incorporated into a number of requirements engineering
methods (Finkelstein, et al., 1992; Easterbrook and Nuseibeh, 1996; Kotonya and
Sommerville, 1996), are a way to separate the concerns of different stakeholders.
These reflect the distinct functionality that is required by different stakeholder groups.
However, there are also requirements which cross-cut all viewpoints as shown in
Figure 32.8. This diagram shows that viewpoints may be of different types but
cross-cutting concerns (such as regulation, dependability and security) generate
requirements that may impact all of the system viewpoints. This was the major
consideration in the work which I did in the development of the PreView method
(Sommerville and Sawyer, 1997; Sommerville, et al., 1998), which included steps
to identify cross-cutting, non-functional concerns.

To develop a system that is organised as shown in Figure 32.7, you should
identify core system requirements plus the requirements for the system extensions.
A viewpoint-oriented approach to requirements engineering, where each view-
point represents the requirements of related groups of stakeholders, is one way to
separate core and secondary concerns. If you organise the requirements according
to stakeholder viewpoint, you can then analyse them to discover related require-
ments that appear in all or most viewpoints. These represent the core functionality

••••

Figure 32.8
Viewpoints and
concerns

SE8_C32.qxd 4/4/06 9:26 Page 782

32.3 ■ Software engineering with aspects 783

of the system. Other requirements may be requirements for the separate concerns
that can be implemented as extensions to the core functionality.

For example, Figure 32.9 shows outline requirements for three possible view-
points on a system that is used to keep track of specialised equipment used by the
emergency services. This equipment is located at different places across a region or
state and, in the event of an emergency such as a flood or earthquake, the emer-
gency services use the system to discover what equipment is available close to the
site of the problem.

You can see from this example that stakeholders from all of the different
viewpoints need to be able to find specific items of equipment, browse the equip-
ment available at each location and check-in/check-out equipment from the store.
These are therefore requirements for the core system. The secondary require-
ments help support more specific needs of each viewpoint. There are secondary
requirements for system extensions supporting equipment use, management and
maintenance.

The secondary functional requirements identified using viewpoints do not
necessarily cross-cut the requirements from all other viewpoints. They are more focused
on providing a separation of concerns. In addition to these, there are further cross-
cutting concerns which generate requirements that are of importance to all view-
points. These often reflect policy and quality of service requirements that apply to
the system as a whole. These cross-cutting concerns may emerge from individual
viewpoint requirements that are relevant to all viewpoints or from general dis-
cussions of the overall system properties.

••••

1. Emergency service users
1.1 Find a specified type of equipment (e.g. heavy lifting gear)
1.2 View equipment available in a specified store
1.3 Check-out equipment
1.4 Check-in equipment
1.5 Arrange equipment to be transported to emergency
1.6 Submit damage report
1.7 Find store close to emergency

2. Emergency planners
2.1 Find a specified type of equipment
2.2 View equipment available in a specified location
2.3 Add and remove equipment from a store
2.4 Move equipment from one store to another
2.6 Order new equipment

3. Maintenance staff
3.1 Check-in/check-out equipment for maintenance
3.2 View equipment available at each store
3.3 Find a specified type of equipment
3.4 View maintenance schedule for an equipment item
3.5 Complete maintenance record for an equipment item
3.6 Show all items in a store requiring maintenance

Figure 32.9
Viewpoints on an
equipment inventory
system

SE8_C32.qxd 4/4/06 9:26 Page 783

784 Chapter 32 ■ Aspect-oriented software development

In the equipment inventory system, an example of a cross-cutting concern is the
need for system availability. Emergencies may happen with little or no warning.
Saving lives may require essential equipment to be deployed as quickly as possible.
There must therefore be requirements for the equipment inventory system for a high
level of system availability. Some examples of these requirements, with associated
rationale, are shown in Figure 32.10. From these requirements, you can then identify
required extensions to the core functionality for transaction logging and status report-
ing. These make it easier to identify problems and switch to a backup system.

The outcome of the requirements engineering process should be a set of require-
ments that are structured around the notion of a core system plus extensions. For
example, in the inventory system, examples of core requirements might be:

C.1 The system shall allow authorised users to view the description of any item of
equipment in the emergency services inventory.

C.2 The system shall include a search facility to allow authorised users to search
either individual inventories or the complete inventory for a specific item of
equipment or a specific type of equipment.

The system may also include an extension explicitly to support equipment pro-
curements and replacement. Therefore, requirements for this extension might be:

E1.1 It shall be possible for authorised users to place orders with accredited
suppliers for replacement items of equipment.

E1.1.1 When an item of equipment is ordered, it should be allocated to a specific
inventory and flagged in that inventory as ‘on order’.

At this stage, it is important that you do not have too many concerns or extensions
to the system. These simply confuse the reader and may lead to premature design.

••••

AV.1 There shall be a ‘hot standby’ system available in a location that is
geographically well separated from the principal system.

Rationale: The emergency may affect the principal location of the system.

AV.1.1 All transactions shall be logged at the site of the principal system and
at the remote standby site.

Rationale: This allows these transactions to be replayed and the system databases
made consistent.

AV.1.2 The system shall send status information to the emergency control
room system every five minutes.

Rationale: The operators of the control room system can switch to the hot standby
if the principal system is unavailable.

Figure 32.10
Availability-related
requirements for the
equipment inventory
system

SE8_C32.qxd 4/4/06 9:26 Page 784

32.3 ■ Software engineering with aspects 785

This limits the freedom of designers and may result in a system design that cannot
meet its quality of service requirements.

32.3.2 Aspect-oriented design and programming

Aspect-oriented design is the process of designing a system that makes use of
aspects to implement the cross-cutting concerns and extensions that are identified
during the requirements engineering process. At this stage, you need to translate
the concerns that relate to the problem to be solved to corresponding aspects in
the program implementing the solution. You also need to understand how these
aspects will be composed with other system components and ensure that com-
position ambiguities do not arise.

The high-level statement of requirements provides a basis for identifying some
system extensions that may be implemented as aspects. You then need to develop
these in more detail to identify further extensions and to understand the function-
ality that is required. One way to do this is to identify a set of use-cases, (discussed
in Chapter 7) associated with each viewpoint. Use-case models are the bridge between
the requirements and the design. They are more detailed than the user requirements.
In a use-case model, you describe the steps of each user interaction and so start to
identify and define the classes in the system.

Jacobsen and Ng (2004) have written a book that discusses how use-cases can
play a fundamental role in aspect-oriented software engineering. They present a com-
prehensive discussion (which I do not have space to cover in detail) on how the
use-case approach can serve as the basis for aspect-oriented software engineering.
They suggest that each use-case represents an aspect and they propose extensions
to the use-case approach to support join points and pointcuts. They also introduce
the notion of use-case slices and use-case modules which include fragments of
classes that implement an aspect and which can be composed to create the com-
plete system.

Figure 32.11 shows examples of three use-cases that might be part of the
inventory management system. These reflect the concerns of adding equipment

••••

Figure 32.11
Use-cases from
the inventory
management system

SE8_C32.qxd 4/4/06 9:26 Page 785

786 Chapter 32 ■ Aspect-oriented software development

Figure 32.12
Extension use-cases

Figure 32.13
A generic aspect-
oriented design
process

to an inventory and ordering equipment. Equipment ordering and adding equipment
to a store are related concerns. Once ordered items have been delivered, they must
be added to the inventory and delivered to one of the equipment stores.

The UML already includes the notion of extension use-cases where an exten-
sion use case extends the functionality of another use-case. Figure 32.12 shows how
the placing of an equipment order extends the core use case for adding equipment
to a specific store. If the equipment to be added does not exist, it can be ordered
and added to the store when the equipment is delivered. During the development
of use-case models, you should look for common features in use-case models and,
where possible, structure the use-cases as core use-cases plus extensions. Cross-
cutting features, such as logging of all transactions, can also be represented as
extension use-cases. Jacobsen and Ng discuss how extensions of this type can be
implemented as aspects.

Developing an effect process for aspect-oriented design is essential if aspect-
oriented design is to be accepted and used. I suggest that an aspect-oriented design
process should include the activities shown in Figure 32.13. These activities are:

1. Core system design At this stage, you should design an architecture to support
the central, core functionality of the system. The architecture must also take into
account quality of service requirements such as performance and dependability
requirements. However, specific functional support that is required should be
implemented as extensions.

2. Aspect identification and design Starting with the extensions identified in
the system requirements, you should analyse these to see if they are aspects in
themselves or if they should be broken down into several aspects. Once aspects
have been identified, these can then be separately designed, taking into account
the design of the core system features.

••••

SE8_C32.qxd 4/4/06 9:26 Page 786

32.3 ■ Software engineering with aspects 787

3. Composition design At this stage, you analyse the core system and aspect designs
to discover where the aspects should be composed with the core system.
Essentially, at this stage, you are identifying the join points in a program where
aspects will be woven.

4. Conflict analysis and resolution A problem with aspects is that they may inter-
fere with each other when they are composed with the core system. Conflicts
arise when there is a pointcut clash with different aspects specifying that they
should be composed at the same point in the program. However, more subtle
conflicts may also arise. When aspects are designed independently, they may
make assumptions about the core system functionality that has to be modified.
However, when several aspects are composed, the functionality of the system
may be affected so that the initial assumptions are invalid.

5. Name design This is an important design activity that defines standards for
naming entities in the program. This is essential to avoid the problem of
accidental pointcuts. These occur when, at some program join point, the name
matches that in a pointcut pattern but there is no intention of weaving in advice
at that stage. Once you have designed naming standards, you may have to make
modifications to your design models to rename design elements.

This process is, naturally, an iterative process where you make initial design pro-
posals then refine them as you analyse and understand the design issues. Normally,
you would expect to refine the extensions identified in the requirements to a larger
number of aspects.

The outcome of the aspect-oriented design process is an aspect-oriented design
model. This may be expressed in an extended version of the UML which includes
new, aspect-specific, constructs such as those proposed by Clarke and Baniassad
(2005) and Jacobsen and Ng (2004). The essential elements of ‘aspect UML’ are
some means of modelling aspects and a means of specifying the join points where
the aspect advice should be composed with the core system. However, no standards
for including aspects in the UML have yet been agreed.

Figure 32.14 is an example of an aspect-oriented design model. I have used the
UML stereotype for an aspect proposed by Jacobsen and Ng. Figure 32.14 shows
the core system for the emergency services inventory plus some aspects that might
be composed with that core. I have shown some core system classes and some aspects.
This is a simplified picture—a complete model would include more classes and aspects.
Notice how I have used UML notes to provide additional information about the classes
that are cross-cut by some aspects.

Figure 32.15 is an expanded version of an aspect model which reveals more
information about the aspect. Obviously, before you design aspects, you have to
have a core system design. As I do not have space to show this here, I have made
a number of assumptions about classes and methods in the core system.

The first section of the aspect sets out the pointcuts that specify where it will
be composed with the core system. For example, the first pointcut specifies that
the aspect may be composed at the call getItemInfo (..) join point. The following

••••

SE8_C32.qxd 4/4/06 9:26 Page 787

788 Chapter 32 ■ Aspect-oriented software development

section defines the extensions that are implemented by the aspect. In the example
here, the extension statement can be read as:

In the method viewItem, after the call to the method getItemInfo, a call to the
method displayHistory should be included to display the maintenance record

Aspect-oriented programming started at Xerox’s PARC laboratories in 1997, with
the invention of the AspectJ programming language. This remains the most widely
used aspect-oriented language but aspect-oriented extensions of other languages, such
as C# and C++, have also been implemented. Other experimental languages have
also been developed to support the explicit separation of concerns and concern
composition. I do not go into detail on aspect-oriented programming here as this is
covered extensively in other books (Laddad, 2003b; Gradecki and Lezeiki, 2003;
Colyer, et al., 2005).

••••

Figure 32.14
An aspect-oriented
design model

Figure 32.15 A
partial model of an
aspect

SE8_C32.qxd 4/4/06 9:26 Page 788

32.3 ■ Software engineering with aspects 789

If you have followed an aspect-oriented approach to designing your system, you
will already have identified the core functionality and the extensions to that func-
tionality to be implemented as cross-cutting aspects. The focus of the programming
process should then be to write code implementing the core and extension func-
tionality and, critically, specify the pointcuts in the aspects so that the aspect advice
is woven into the base code at the correct places.

Correctly specifying pointcuts is very important as these define where the aspect
advice will be composed with the core functionality. If you make a mistake in
pointcut specification, then the aspect advice will be woven into the program in the
wrong place. This could lead to unexpected and unpredictable program behaviour.
Adherence to the naming standards established during system design is essential.
You also have to review all of the aspects to ensure that aspect interference will
not occur if two or more aspects are woven into the core system at the same join
point. In general, it is best to avoid this completely but, occasionally, it might be
the right thing to do. In those circumstances, you have to ensure that the aspects
are completely independent. The program’s behaviour should not depend on the order
of weaving the aspects into the program.

32.3.3 Verification and validation

As I discussed in Chapter 22, verification and validation is the process of demon-
strating that a program meets its specification (verification) and meets the real needs
of its stakeholders (validation). Static verification techniques focus on manual or
automated analysis of the source code of the program. Dynamic validation or testing
is intended to discover defects in the program or to demonstrate that the program
meets its requirements. Where defect detection is the objective, the testing process
may be guided by knowledge of the program’s source code. Test coverage metrics
show the effectiveness of tests in causing source code statements to be executed.

For aspect-oriented systems, the processes of validation testing are no different
than for any other system. The final executable program is treated as a black-box
and tests are devised to show whether or not the system meets its requirements.
However, there are real problems with program inspections when aspects are used
and with using white-box testing where the program source code is used to iden-
tify potential defect tests. Furthermore, as identified by Katz (2005), the use of aspects
introduces additional problems for program testers:

1. How should aspects be specified so that tests for these aspects may be derived?

2. How can aspects be tested independently of the base system with which they
should be woven?

3. How can aspect interference be tested? As I have discussed, aspect interference
occurs when two or more aspects use the same pointcut specification.

4. How can tests be designed so that all program join points are executed and
appropriate aspect tests applied?

••••

SE8_C32.qxd 4/4/06 9:26 Page 789

790 Chapter 32 ■ Aspect-oriented software development

All of these remain research problems for aspect-oriented software development
and, at the time of writing, there are no general solutions available. Fundament-
ally, testing problems arise because aspects are tightly rather than loosely integrated
with the base code of a system. They are therefore difficult to test in isolation.
Because they may be woven into a program in many different places, you cannot
be sure that an aspect that works successfully at one join point will work at all join
points. I do not discuss these testing issues further here. Rather, I focus on how
an aspect-oriented approach causes difficulties for program inspections and defect
testing.

Program inspections, as discussed in Chapter 22, involve a team of readers look-
ing at the source code of a program to discover defects that have been introduced
by the programmer. It is a very effective technique of defect discovery. However,
aspect-oriented programs cannot be read sequentially, from top to bottom. They are
therefore more difficult for people to understand.

A general guideline for program understandability is that a reader should be
able to read a program from left to right, top to bottom without having to switch
attention to other parts of the code. This guideline makes it easier for readers and
also makes it less likely that programmers will make mistakes as their attention
is focused on a single section of code. Improving program readability was a key
reason for the introduction of structured programming (Dijkstra, et al., 1972) and
the elimination of unconditional branch (goto) statements from high-level programming
languages.

In an aspect-oriented system, sequential code reading is impossible. The reader
has to examine each aspect, understand its pointcuts (which may be patterns) and
the join point model of the aspect-oriented language. When reading the program,
he or she then has to identify every potential join point and switch attention to the
aspect code to see if it may be woven at that point. Their attention then returns to
the main flow of control of the base code. In reality, this is cognitively impossible
and the only possible way to inspect an aspect-oriented program is through the use
of code reading tools.

Code reading tools could be written that ‘flatten’ an aspect-oriented program and
present a program to the reader with the aspects ‘woven’ into the program at the
specified join points. However, the join point model in a language may be dynamic
rather than static and it may be impossible to demonstrate that the flattened program
will behave in exactly the same way as the program that will execute. Furthermore,
because it is possible for different aspects to have the same pointcut specification, the
program reading tool must know how the aspect weaver handles these ‘competing’
aspects and how the composition will be ordered.

As I discussed in Chapter 23, white-box or structural testing is a systematic approach
to testing where knowledge of the program source code is used to design defect
tests. The aim is to design tests that provide some level of program coverage. Typically,
the set of tests should ensure that each logical branch in a program is followed, with
the consequence that each program statement is executed at least once. Program
execution analysers may be used to demonstrate that this level of test coverage has
been achieved.

••••

SE8_C32.qxd 4/4/06 9:26 Page 790

32.3 ■ Software engineering with aspects 791

In an aspect-oriented system, there are two problems with this approach:

1. How can knowledge of the program code be used to systematically derive pro-
gram tests?

2. What exactly does test coverage mean?

To design tests in a structured program (e.g. tests of the code of a method) with-
out unconditional branches, you can derive a program flow graph which reveals
every logical execution path through that program. You then examine the code and,
for each path through the flow graph, choose input values that will cause that path
to be executed.

However, an aspect-oriented program is not a structured program. The flow of
control is interrupted by ‘come from’ statements (Constantinos, et al., 2004). At
some join point in the execution of the base code, an aspect may be executed. It is
not clear to me what a program flow graph would be like in such a situation. It is
therefore difficult to systematically design program tests that ensure that all com-
binations of base code and aspects are executed.

In an aspect-oriented program, there is also the problem of deciding what test
coverage means. Does it mean that the code of each aspect is executed at least
once? This is a very weak condition because of the interaction between aspects and
the base code at the join points where the aspects are woven. Therefore, does test
coverage mean that the code of the aspect should be executed at least once at every
join point specified in the aspect pointcut? What happens in such situations where
different aspects define the same pointcut? These are both theoretical and practical
problems? We need tools to support aspect-oriented program testing which will
help assess the extent of test coverage of a system.

As I discuss in Chapter 27, large projects normally have a separate quality
assurance team who set testing standards and who require a formal assurance that
program reviews and testing has been completed to these standards. The problems of
inspecting and deriving tests for aspect-oriented programs are a significant barrier
to the adoption of aspect-oriented software development in such large software
projects.

••••

SE8_C32.qxd 4/4/06 9:26 Page 791

792 Chapter 32 ■ Aspect-oriented software development

F U R T H E R R E A D I N G

‘Aspect-oriented programming’. This special issue of the CACM has a number of articles for a
general audience, which are a good starting point for reading about aspect-oriented programming
(Comm. ACM, 44 (10), October 2001.)

Aspect-oriented Software Development. A multi-author book with a wide range of papers on
aspect-oriented software development by many of the leading researchers in the field.
(R. E. Filman, T. Elrad, S. Clarke and M. Aksit, Addison Wesley, 2005.)

Aspect-oriented Software Development with Use-Cases. This is a practical book for software
designers. The authors discuss how to use use-cases to manage the separation of concerns and to
use these as the basis of an aspect-oriented design. (I. Jacobsen and P. Ng, Addison Wesley, 2005.)

••••

■ The principal benefit of an aspect-oriented approach to software development is that it
supports the separation of concerns. By representing cross-cutting concerns as aspects,
these concerns can be understood, reused and modified independently.

■ Tangling occurs when a module in a system includes code that implements different system
requirements. The related phenomenon of scattering occurs when the implementation of a
single concern is scattered across several components in a program.

■ Aspects, include a pointcut—a statement which defines where the aspect will be woven into
the program and advice—the code to implement the cross-cutting concern. Join points are
the events that can be referenced in a pointcut.

■ To support the separation of concerns, systems can be designed as a core system that
implements the primary concerns of stakeholders and extensions that implement secondary
concerns.

■ To identify concerns, you may use a viewpoint-oriented approach to requirements
engineering to elicit stakeholder requirements and explicitly identify the cross-cutting
quality of service and policy concerns.

■ The transition from requirements to design can be made by identifying use-cases, where
each use case represents a stakeholder concern. The design may be modelled using an
extended version of the UML with aspect stereotypes.

■ The problems of inspecting and deriving tests for aspect-oriented programs are a significant
barrier to the adoption of aspect-oriented software development in large software projects.

K E Y P O I N TS

SE8_C32.qxd 4/4/06 9:26 Page 792

Chapter 32 ■ Exercises 793

E X E R C I S E S

32.1 What are the different types of stakeholder concern that may arise in a large system? How
can aspects support the implementation of each of these types of concern?

32.2 Summarise what is meant by tangling and scattering. Using examples, explain why tangling
and scattering can cause problems when system requirements change.

32.3 What is the difference between a join point and a pointcut? Explain how these facilitate the
weaving of code into a program to handle cross-cutting concerns.

32.4 Using the LIBSYS system, which has been discussed extensively elsewhere in the book, show
how a design for this could be organised as a core system plus extensions. What functionality
would be included in the extensions?

32.5 What viewpoints should be considered when developing a requirements specification for a
patient records system for mental health patients, as discussed in Chapter 30? What are
likely to be the most important cross-cutting concerns?

32.6 Using the outline functionality for each viewpoint shown in Figure 32.9, identify six further
use cases for the equipment inventory system, in addition to those shown in Figure 32.11.
Where appropriate, show how some of these might be organised as extension use cases.

32.7 Using the aspect stereotype organisation illustrated in Figure 32.15, develop in more detail
the Ordering and Monitor aspects, shown in Figure 32.14.

32.8 Explain how aspect interference can arise and suggest what should be done during the
system design process to reduce the problems of aspect interference.

32.9 Explain why expressing pointcut specifications as patterns, increases the problems of testing
and debugging aspect-oriented programs. To answer this, think about how program testing
normally involves comparing the expected output to the actual output produced by a
program.

32.10 Suggest how you could use aspects to simplify the debugging of programs.

••••

SE8_C32.qxd 4/4/06 9:26 Page 793

••

Glossary

abstract data type
A type whose representation is concealed and that is defined by its operations.

activity (PERT) chart
A chart used by project managers to show the dependencies between tasks that
have to be completed. The chart shows the tasks, the time expected to complete
these tasks and the task dependencies. The critical path is the longest path (in
terms of the time required to complete the tasks) through the activity chart. The
critical path defines the minimum time required to complete the project.

Ada
A programming language that was developed for the US Department of Defense
as a standard language for developing military software. It is based on program-
ming language research from the 1970s and includes constructs such as abstract
data types and support for concurrency. It is still used for large, complex military
and aerospace systems.

agile methods
Methods of software development that are geared to rapid software delivery. The
software is developed and delivered in increments, and process documentation
and bureaucracy are minimised.

algorithmic cost modelling
An approach to software cost estimation where a formula is used to estimate the
project cost. The parameters in the formula are attributes of the project and the
software itself.

SE8_Z01.qxd 4/4/06 9:27 Page 794

Glossary 795

application family
A set of software application programs that have a common architecture and
generic functionality. These can be tailored to the needs of specific customers by
modifying components and program parameters.

application framework
A generic structure in some specific domain that can form the basis of a family
of applications. Application frameworks are generally implemented as a set of
concrete and abstract classes that are specialised and instantiated to create an
application.

Application Program Interface (API)
An interface, generally specified as a set of operations, which is defined by an
application program that allows access to the program’s functionality. This means
that this functionality can be called on directly by other programs and not just
accessed through the user interface.

aspect-oriented software development
An approach to software development that combined generative and component-
based development. Cross-cutting concerns are identified in a program and the
implementation of these concerns is defined as aspects. A program weaver then
weaves the aspects into the appropriate places in the program.

availability
The readiness of a system to deliver services when requested. Availability is usu-
ally expressed as a decimal number, so an availability of 0.999 means that the
system can deliver services for 999 out of 1000 time units.

bar (Gantt) chart
A chart used by project managers to show the project tasks, the schedule associ-
ated with these tasks and the people who will work on them. It shows the tasks
start and end dates and the staff allocations against a timeline.

C
A programming language that was originally developed to help implement the
Unix system. C is a relatively low-level system implementation language that
allows access to the system hardware and that can be compiled to efficient code.
It is still widely used for low-level systems programming.

C++
An object-oriented programming language that is a superset of C.

Computer-Aided Software Engineering (CASE)
The process of developing software using automated support.

CASE tool
A software tool, such as a design editor or a program debugger, used to support
an activity in the software development process.

CASE workbench
An integrated set of CASE tools that work together to support a major process
activity such as software design or configuration management.

••

SE8_Z01.qxd 4/4/06 9:27 Page 795

•• ••

796 Glossary

client–server architecture
An architectural model for distributed systems where the system functionality is
offered as a set of services provided by a server. These are accessed by client
computers that make use of the services. Variants of this approach, such as three-
tier client–server architectures, use multiple servers.

Cleanroom software engineering
An approach to software development where the aim is to avoid introducing
faults into the software (by analogy with a cleanroom used in semiconductor fab-
rication). The process involves formal software specification, structured transfor-
mation of a specification to a program, the development of correctness arguments
and statistical program testing.

CMMI
An integrated approach to process capability maturity modelling. It supports dis-
crete and continuous maturity modelling and integrates systems and software
engineering process maturity models.

code of ethics and professional practice
A set of guidelines that set out expected ethical and professional behaviour for soft-
ware engineers. This was defined by the major US professional societies (the ACM
and the IEEE) and defines ethical behaviour under eight headings: public, client and
employer, product, judgement, management, colleagues, profession and self.

COM+
A component model designed for use on Microsoft platforms.

Common Request Broker Architecture (CORBA)
A set of standards proposed by the OMG that define a distributed object model
and object communications.

component
A deployable, independent unit of software that is completely defined and
accessed through a set of interfaces.

component model
A set of standards for component implementation, documentation and deploy-
ment. These cover the specific interfaces that may be provided by a component,
component naming, component interoperation and component composition.
Component models provide the basis for middleware to support executing com-
ponents.

component-based software engineering (CBSE)
The development of software by composing independent, deployable components.

configuration item
A machine-readable unit, such as a document or a source code file, that is subject
to change and where the change has to be controlled by a configuration manage-
ment system.

SE8_Z01.qxd 4/4/06 9:27 Page 796

••

Glossary 797

configuration management
The process of managing the changes to an evolving software product.
Configuration management involves configuration planning, version management,
system building and change management.

Constructive Cost Modelling (COCOMO)
Perhaps the best-known algorithmic cost estimation model.

CORBA component model
A component model designed for use for the CORBA platform.

critical system
A computer system whose failure can result in significant economic, human or
environmental losses.

data processing system
A system whose aim is to process large amounts of structured data. These sys-
tems usually process the data in batches and follow an input-process-output
model. Examples of data processing systems are billing and invoicing systems,
and payment systems.

dependability
The dependability of a system is an aggregate property that takes into account
the system’s safety, reliability, availability, security and other attributes. The
dependability of a system reflects the extent to which it can be trusted by its
users.

dependability requirement
A system requirement that is included to help achieve the required dependability
for a system. Non-functional dependability requirements specify dependability
attribute values; functional dependability requirements are functional require-
ments to avoid, detect, tolerate or recover from system faults and failures.

dependability case
A structured document that is used to back up claims made by a system devel-
oper about the dependability of a system.

design pattern
A well-tried solution to a common problem that captures experience and good
practice in a form that can be reused. It is an abstract representation than can be
instantiated in a number of ways.

distributed system
A software system where the software sub-systems or components execute on
different processors.

distributed object system
A distributed system where the executing components are objects.

domain
A specific problem or business area where software systems are used. Examples
of domains are real-time control, business data processing and telecommunica-
tions switching.

••

SE8_Z01.qxd 4/4/06 9:27 Page 797

••

798 Glossary

domain model
A definition of domain abstractions such as policies, procedures, objects, relation-
ships and events. It serves as a base of knowledge about some problem area.

emergent property
A property that only becomes apparent once all of the components of the system
have been integrated to create the system.

enterprise Java beans (EJB)
A Java-based component model.

ethnography
An observational technique that may be used in requirements elicitation and anal-
ysis. The ethnographer immerses himself or herself in the users’ environment and
observes their day-to-day work habits. Requirements for software support can be
inferred from these observations.

event-based systems
Systems where the control of operation is determined by events that are gener-
ated in the system’s environment. Most real-time systems are event-based
systems.

extreme programming (XP)
An agile method of software development that includes practices such as sce-
nario-based requirements, test-first development and pair programming.

fault avoidance
Developing software in such a way that faults are not introduced into that
software.

fault detection
The use of processes and run-time checking to detect and remove faults in a pro-
gram before these result in a system failure.

fault tolerance
The ability of a system to continue in execution even after faults have occurred.

formal methods
Methods of software development that are based on mathematically rigorous
approaches and that model the software using formal mathematical constructs
such as predicates and sets.

formal specification, algebraic
A method of mathematical system specification where a system or component is
specified by defining relationships between the operations defined in its external
interfaces.

formal specification, model-based
A method of mathematical system specification where a system or component is
specified by defining pre-conditions, post-conditions and invariants that apply to
the system state.

••

SE8_Z01.qxd 4/4/06 9:27 Page 798

••

Glossary 799

information hiding
Using programming language constructs to conceal the representation of data
structures and to control external access to these structures.

incremental development
An approach to software development where the software is delivered and
deployed in increments.

interface
A specification of attributes and operations associated with a software compo-
nent. The interface is used as the means of accessing the component’s functional-
ity.

ISO 9000
A standard for quality management processes that is defined by the International
Standards Organisation (ISO).

iterative development
An approach to software development where the processes of specification,
design, programming and testing are interleaved.

Java
An object-oriented programming language that was designed by Sun with the aim
of platform independence.

language processing system
A system that translates one language to another. For example, a compiler is a
language processing system that translates program source code to object code.

legacy system
A socio-technical system that is useful or essential to an organisation but which
has been developed using obsolete technology or methods. Because legacy sys-
tems often perform critical business functions, they have to be maintained.

maintenance
The process of making changes to a system after it has been put into operation.

middleware
The infrastructure software in a distributed system. It helps manage interactions
between the distributed entities in the system and the system databases. Examples
of middleware are an object request broker and a transaction management system.

object class
An object class defines the attributes and operations of objects. Objects are cre-
ated at run-time by instantiating the class definition. The object class name can
be used as a type name in some object-oriented languages.

object model
A model of a software system that is structured and organised as a set of object
classes and the relationships between these classes. Various different perspectives
on the model may exist such as a state perspective and a sequence perspective.

••

SE8_Z01.qxd 4/4/06 9:27 Page 799

••••

800 Glossary

object-oriented (OO) development
An approach to software development where the fundamental abstractions in the
system are independent objects. The same type of abstraction is used during
specification, design and development.

object constraint language (OCL)
A language that is part of the UML, used to define predicates that apply to object
classes and interactions in a UML model.

Object Management Group (OMG)
A group of companies formed to develop standards for object-oriented develop-
ment. Examples of standards promoted by the OMG are CORBA, UML and
MDA.

peer-to-peer system
A distributed system where there is no distinction between clients and servers.
Computers in the system can act as both clients and servers. Peer-to-peer applica-
tions include file sharing, instant messaging and cooperation support systems.

People Capability Maturity Model (P-CMM)
A process maturity model that reflects how effective an organisation is at manag-
ing the skills, training and experience of the people in that organisation.

process improvement
The process of making changes to a process with the aim of making that process
more predictable or to improve the quality of its outputs. For example, if your
aim is to reduce the number of defects in the delivered software, you might
improve the process by adding new validation activities.

process model
An abstract representation of a process. Process models may be developed from
various perspectives and may show the activities involved in a process, the arte-
facts used in the process, constraints that apply to the process and the roles of the
people enacting the process.

process maturity model
A model of the extent to which a process includes good practice and reflective
and measurement capabilities that are geared to process improvement.

program evolution dynamics
The study of the ways in which an evolving software system changes.

program generator
A program that generates another program from a high-level, abstract specifica-
tion. The generator embeds knowledge that is reused in each generation activity.

program inspection
A verification process where a group of inspectors examine a program, line by
line, with the aim of detecting program errors.

SE8_Z01.qxd 4/4/06 9:27 Page 800

••••

Glossary 801

quality assurance (QA)
The overall process of defining how software quality can be achieved and how
the development organisation knows that the software has the required level of
quality.

quality control (QC)
The process of ensuring that a software development team is following quality
standards.

quality plan
A plan that defines the quality processes and procedures that should be used.
This involves selecting and instantiating standards for products and processes and
defining the required quality attributes of the system.

rapid application development (RAD)
An approach to software development aimed at rapid delivery of the software. It
often involves the use of database programming and development support tools
such as screen and report generators.

Rational Unified Process (RUP)
A generic software process model that presents software development as a four-
phase iterative activity where the phases are inception, elaboration, construction
and transition. Inception establishes a business case for the system, elaboration
defines the architecture, construction implements the system and transition
deploys the system in the customer’s environment.

real-time system
A system that has to respond to and process external events in ‘real-time’. The
correctness of the system does not just depend on what it does but also on how
quickly it does it. Real-time systems are usually organised as a set of cooperating
sequential processes.

re-engineering
Modifying a software system to make it easier to understand and change. Re-
engineering often involves software and data restructuring and organisation, pro-
gram simplification and redocumentation.

re-engineering, business process
Changing a business process to meet some new organisational objectives such as
reduced cost and faster execution.

reference architecture
A generic system architecture that is an idealised architecture that includes all the
features that systems might incorporate. This is a way of informing designers
about the general structure of that class of system.

release
A version of a software system that is made available to system customers.

reliability
The ability of a system to deliver services as specified. Reliability can be speci-
fied quantitatively as a probability of failure on demand or as the rate of occur-
rence of failure.

SE8_Z01.qxd 4/4/06 9:27 Page 801

••

802 Glossary

reliability growth modelling
The development of a model of how the reliability of a system changes (hope-
fully improves) as it is tested and program defects are removed.

requirement, functional
A statement of some function or feature that should be implemented in a system.

requirement, non-functional
A statement of a constraint or expected behaviour that applies to a system. This
constraint may refer to the emergent properties of the software that is being
developed or to the development process.

requirements management
The process of managing changes to requirements to ensure that the changes
made are properly analysed and tracked through the system.

risk
An undesirable outcome that poses a threat to the achievement of some objective.
A process risk threatens the schedule or cost of a process; a product risk is a risk
that may mean that some of the system requirements may not be achieved.

risk management
The process of identifying risks, assessing their severity, planning measures to
put in place if the risks arise and monitoring the software and the software pro-
cess for risks.

safety
The ability of a system to operate without catastrophic failure.

safety case
A structured argument that a system is safe. Usually required by regulators such
as nuclear safety regulators.

scenario
A description of one typical way in which a system is used or a user carried out
some activity.

security
The ability of a system to protect itself against accidental or deliberate intrusion.

sequence diagram
A diagram that shows the sequence of interactions required to complete some
operation. In the UML, sequence diagrams may be associated with use-cases.

server
A program that provides some service to other (client) programs.

software architecture
A model of the fundamental structure and organisation of a software system.

software metric
An attribute of a software system or process that can be expressed numerically
and measured. Process metrics are attributes of the process such as the time taken
to complete a task; product metrics are attributes of the software itself such as
size or complexity.

••

SE8_Z01.qxd 4/4/06 9:27 Page 802

••

Glossary 803

software product line
See application family.

socio-technical system
A system, including hardware and software components, that has defined opera-
tional processes followed by human operators and that operates within an organi-
sation. It is therefore influenced by organisational policies, procedures and
structures.

software process
The related set of activities and processes that are involved in developing and
evolving a software system.

software life cycle
Often used as another name for the software process. Originally coined to refer
to the waterfall model of the software process.

spiral model
A model of a development process where the process is represented as a spiral
with each round of the spiral incorporating the different stages in the process. As
you move from one round of the spiral to another, you repeat all of the stages of
the process.

static analysis
Tool-based analysis of a program’s source code to discover errors and anomalies.
Anomalies such as successive assignments to a variable with no intermediate use
may be programming errors.

structured method
A method of software design that defines the system models that should be
developed, the rules and guidelines that should apply to these models and a pro-
cess to be followed in developing the design.

Structured Query Language (SQL)
A standard language used for relational database programming.

system building
The process of compiling the components or units that make up a system and
linking these with other components to create an executable program. System
building is normally automated so that recompilation is minimised. This automa-
tion may be built in to the language processing system (as in Java) or may
involve CASE tools to support system building.

systems engineering
A process that is concerned with specifying a system, integrating its components
and testing that the system meets its requirements. System engineering is con-
cerned with the whole socio-technical system—software, hardware and opera-
tional processes—not just the system software.

transaction
A unit of interaction with a computer system. Transactions are independent and
atomic (they are not broken down into smaller units) and are a fundamental unit
of recovery, consistency and concurrency.

••

SE8_Z01.qxd 4/4/06 9:27 Page 803

•• ••

804 Glossary

transaction processing system
A system that ensures that transactions are processed in such a way so that they
do not interfere with each other and so that individual transaction failure does not
affect other transactions or the system’s data.

Unified Modeling Language (UML)
A graphical language that is used in object-oriented development that includes a
several types of system model that provide different views of a system. The
UML has become a de facto standard for object-oriented modelling.

use-case
A specification of one type of interaction with a system.

user interface design
The process of designing the way in which system users access the system func-
tionality and information produced by the system is displayed.

user interface design principles
A set of principles that embody good practice for user interface design.

validation
The process of checking that a system meets the needs and expectations of the
customer.

verification
The process of checking that a system meets its specification.

waterfall model
A software process model where there are discrete development stages: specifica-
tion, design, implementation, testing and maintenance. In principle, one stage
must be complete before progress to the next stage is possible. In practice, there
is iteration between stages.

web service
An independent software component that can be accessed through the Internet
using standard protocols. SOAP (Standard Object Access Protocol) is used for
web service information exchange. WSDL (Web Service Definition Language) is
used to define the web service interfaces.

Wizard-of-Oz prototyping
An approach to user interface prototyping where commands input by a user are
interpreted by a person who responds as if he or she were the computer.

XML
Extended Markup Language. XML is a text markup language that supports the
interchange of structured data. Each data field is delimited by tags that give
information about that field. XML is now very widely used and has become the
basis of protocols for web services.

Z
A model-based, formal specification language developed at the University of
Oxford in England.

SE8_Z01.qxd 4/4/06 9:27 Page 804

••

Glossary 805

Definitions of many other terms are available in the on-line glossary accessible
through the book’s web site.

••

SE8_Z01.qxd 4/4/06 9:27 Page 805

••

References

Abbott, R. (1983). Program design by informal English descriptions. Comm. ACM, 26(11),
882–94. (Ch. 14)

Abdel-Ghaly, A. A., Chan, P. Y., et al. (1986). Evaluation of competing software reliability
predictions. IEEE Trans. on Software Engineering, SE-12(9), 950–67. (Ch. 24)

Ackroyd, S., Harper, R., et al. (1992). Information Technology and Practical Police Work.
Milton Keynes: Open University Press. (Ch. 2)

Adams, E. N. (1984). Optimizing preventative service of software products. IBM J. Res. &
Dev., 28(1), 2–14. (Ch. 3)

Ahern, D. M., Clouse, A., et al. (2001). CMMI Distilled. Reading, MA: Addison-Wesley.
(Chs. 28, 29)

Albrecht, A. J. (1979). Measuring application development productivity. Proc. SHARE/
GUIDE IBM Application Development Symposium. (Ch. 26)

Albrecht, A. J. and Gaffney, J. E. (1983). Software function, lines of code and development
effort prediction: a software science validation. IEEE Trans. on Software Engineering,
SE-9(6), 639–47. (Ch. 26)

Alexander, C., Ishikawa, S., et al. (1977). A Pattern Language. Oxford: Oxford University
Press. (Ch. 18)

Ambler, S. W. and Jeffries, R. (2002). Agile Modeling. New York: John Wiley & Sons.
(Ch. 17)

Andrews, T., et al. (2003). Business Process Execution Language for Web Services.
www.128.ibm.com/developerworks/library/ws-bpel/. (Ch. 31)

Anderson, R. (2001). Security Engineering: A Guide to Building Dependable Distributed Systems.
Chichester: John Wiley & Sons. (Chs. 24, 30)

Appelrath, H.-J. and Ritter, J. (2000). SAP R/3 Implementation: Methods and Tools (SAP
Excellence). Berlin: Springer-Verlag. (Ch. 13)

Armour, P. (2002). Ten unmyths of project estimation. Comm. ACM, 45(11), 15–18.
(Ch. 26)

SE8_Z02.qxd 4/4/06 9:28 Page 806

••

References 807

Aron, J. D. (1974). The Program Development Process. Reading, MA: Addison-Wesley.
(Ch. 25)

Arthur, L. J. (1988). Software Evolution. New York: John Wiley & Sons. (Ch. 21)
Avizienis, A. (1985). The N-version approach to fault-tolerant software. IEEE Trans. on Software

Engineering, SE-11(12), 1491–501. (Ch. 20)
Avizienis, A. A. (1995). A methodology of N-version programming. In Software Fault Tolerance

(M. R. Lyu, ed.). New York: John Wiley & Sons, 23–46. (Ch. 20)
Bagert, D. J. (2002). Texas licensing of software engineers: all’s quiet for now. Comm. ACM,

45(11), 92–4. (Ch. 24)
Baker, F. T. (1972). Chief programmer team management of production programming. IBM

Systems J., 11(1), 56–73. (Ch. 25)
Baker, T. (2002). Lessons learned integrating COTS into systems. Proc. ICCBSS 2002 (1st

Int. Conf on COTS-based Software Systems), Orlando, FL: Springer-Verlag. (Ch. 18)
Balk, L. D. and Kedia, A. (2000). PPT: a COTS integration case study. Proc. Int. Conf. on

Software Engineering, Limerick, Ireland: ACM Press. (Ch. 18)
Bamford, R. and Deibler, W. J., eds. (2003). ISO 9001: 2000 for Software and Systems Providers:

An Engineering Approach. CRC Press. (Ch. 27)
Banker, R. D., Datar, S. M., et al. (1993). Software complexity and maintenance costs. Comm.

ACM, 36(11), 81–94. (Chs. 21, 26)
Banker, R., Kauffman, R., et al. (1994). An empirical test of object-based output measure-

ment metrics in a computer-aided software engineering (CASE) environment. J. of
Management Info. Sys., 8(3), 127–50. (Ch. 26)

Bansler, J. P. and Bødker, K. (1993). A reappraisal of structured analysis: design in an
organizational context. ACM Trans. on Information Systems, 11(2), 165–93. (Ch. 4)

Barker, R. (1989). CASE* Method: Entity Relationship Modelling. Wokingham: Addison-
Wesley. (Ch. 8)

Barnard, J. and Price, A. (1994). Managing code inspection information. IEEE Software, 11(2),
59–69. (Chs. 22, 27)

Basili, V. and Green, S. (1993). Software process improvement at the SEL. IEEE Software,
11(4), 58–66. (Ch. 28)

Basili, V. R. and Rombach, H. D. (1988). The TAME project: towards improvement-oriented
software environments. IEEE Trans. on Software Engineering, 14(6), 758–73. (Chs. 27, 28)

Bass, B. M. and Dunteman, G. (1963). Behaviour in groups as a function of self, interaction
and task orientation. J. Abnorm. Soc. Psychology, 66(4), 19–28. (Ch. 25)

Bass, L., Clements, P., et al. (2003). Software Architecture in Practice, 2nd edn. Boston:
Addison-Wesley. (Ch. 11)

Baumer, D., Gryczan, G., et al. (1997). Framework development for large systems. Comm.
ACM, 40(10), 52–9. (Ch. 18)

Beck, K. (1999). Embracing change with extreme programming. IEEE Computer, 32(10),
70–8. (Chs. 6, 17)

Beck, K. (2000). Extreme Programming Explained. Boston: Addison-Wesley. (Chs. 4, 17,
25, 26)

Beck, K. and Cunningham, W. (1989). A laboratory for teaching object-oriented thinking.
Proc. OOPSLA’89, New Orleans: ACM Press. (Ch. 14)

Bentley, R., Rodden, T., et al. (1992). Ethnographically informed systems design for air
traffic control. Proc. CSCW’92, Toronto: ACM Press. (Ch. 16)

Berczuk, S. P. and Appleton, B. (2002). Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Boston: Addison-Wesley. (Ch. 18)

SE8_Z02.qxd 4/4/06 9:28 Page 807

•• ••

808 References

Berghel, H. (2001). The code red worm. Comm. ACM, 44(12), 15–19. (Chs. 3, 30)
Berliner, B. (1990). CVS II: parallelizing software development. Proc. 1990 Winter USENIX

Conference, Washington, DC: USENIX Assoc. (Ch. 29)
Bernstein, P. A. (1996). Middleware: a model for distributed system services. Comm. ACM,

39(2), 86–97. (Ch. 12)
Bersoff, E. H. and Davis, A. M. (1991). Impact of life cycle models on software configura-

tion management. Comm. ACM, 34(8), 104–18. (Ch. 29)
Bezier, B. (1990). Software Testing Techniques, 2nd edn. New York: Van Nostrand

Rheinhold. (Ch. 23)
Biggerstaff, T. (1998). A perspective of generative reuse. Annals of Software Engineering,

5, 169–226. (Ch. 18)
Birrer, I., Pasetti, A., et al. (2005). The XWeaver Project: aspect-oriented programming

for on-board applications. http://control.ee.ethz.ch/index.cgi?page=publications;action=
details;id=2361.

Bishop, M. (2005). Introduction to Computer Security, Boston, MA: Addison-Wesley. (Ch. 30)
Bishop, P. and Bloomfield, R. E. (1995). The SHIP safety case approach. Proc. Safecomp’95,

Belgirate, Italy: Springer-Verlag. (Ch. 24)
Bishop, P. and Bloomfield, R. E. (1998). A methodology for safety case development. Proc.

Safety-critical Systems Symposium, Birmingham, UK: Springer-Verlag. (Ch. 24)
Blevins, D. (2001). Overview of the Enterprise Java Beans component model. In

Component-Based Software Engineering (G. T. Heineman and W. T. Councill, eds.). Boston:
Addison-Wesley, 589–606 (Ch. 19)

Boehm, B. (1997). COCOMO II Model Definition Manual. Center for Software Engineering,
Univ. of Southern California (http://sunset.usc.edu/research/COCOMOII). (Ch. 26)

Boehm, B. and Abts, C. (1999). COTS integration: plug and pray? IEEE Computer, 32(1),
135–8. (Ch. 18)

Boehm, B. and Royce, W. (1989). Ada COCOMO and the Ada process model. Proc. 5th
COCOMO Users’ Group Meeting, Pittsburgh: Software Engineering Institute. (Ch. 26)

Boehm, B. W. (1979). Software engineering; R & D trends and defense needs. In Research
Directions in Software Technology (P. Wegner, ed.). Cambridge, MA: MIT Press, 1–9.
(Ch. 22)

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall.
(Ch. 26)

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE
Computer, 21(5), 61–72. (Chs. 4, 5)

Boehm, B. W., Abts, C., et al. (2000). Software Cost Estimation with COCOMO II. Upper
Saddle River, NJ: Prentice Hall. (Chs. 19, 22, 26)

Boehm, B. W., McClean, R. L., et al. (1975). Some experience with automated aids to the
design of large-scale reliable software. IEEE Trans. on Software Engineering, SE-1(1),
125–33. (Ch. 3)

Boehm, B., Clark, B., et al. (1995). Cost models for future life cycle processes: COCOMO
2. Annals of Software Engineering, 1, 57–94. (Ch. 26)

Bolognesi, T. and Brinksma, E. (1987). Introduction to the ISO specification language
LOTOS. Computer Networks, 14(1), 25–59. (Ch. 10)

Booch, G. (1987). Software Components with Ada: Structures, Tools, and Subsystems.
Menlo Park, CA: Benjamin-Cummings. (Ch. 18)

Booch, G. (1994). Object-Oriented Analysis and Design with Applications. Redwood City,
CA: Benjamin-Cummings. (Chs. 1, 4, 8, 14)

SE8_Z02.qxd 4/4/06 9:28 Page 808

••

References 809

Booch, G., Rumbaugh, J., et al. (1999). The Unified Modeling Language User Guide.
Reading, MA: Addison-Wesley. (Ch. 1, 4, 8)

Borchers, J. (2001). A Pattern Approach to Interaction Design. New York: John Wiley &
Sons. (Ch. 18)

Bosch, J. (2000). Design and Use of Software Architectures. Harlow: Addison-Wesley. (Ch. 11)
Bourne, S. R. (1978). The Unix shell. Bell Sys. Tech. J., 57(6), 1971–90. (Ch. 17)
Bracket, M. H. (1994). Data Sharing Using a Common Data Architecture. New York: John

Wiley & Sons. (Ch. 13)
Brazendale, J. and Bell, R. (1994). Safety-related control and protection systems: standards

update. IEEE Computing and Control Engineering J., 5(1), 6–12. (Ch. 9)
Brilliant, S. S., Knight, J. C., et al. (1990). Analysis of faults in an N-version software experi-

ment. IEEE Trans. on Software Engineering, 16(2), 238–47. (Ch. 20)
Brinch-Hansen, P. (1973). Operating System Principles. Englewood Cliffs, NJ: Prentice Hall.

(Ch. 15)
Brooks F. P. (1975). The Mythical Man Month. Reading, MA: Addison-Wesley. (Ch. 25)
Brown, A. W., Earl, A. N., et al. (1992). Software Engineering Environments. London: McGraw-

Hill. (Ch. 11)
Budgen, D. (2003). Software Design, 2nd edn. Harlow: Addison-Wesley. (Ch. 8)
Burns, A. and Wellings, A. (2001). Real-Time Systems and Programming Languages.

Harlow: Addison-Wesley. (Ch. 15)
Butler, H. (1994). Virtual remote: the centralized expert. HP Journal, 45(5),

http://www.hpl.hp.com/hpjournal/94oct/oct94a13.htm. (Ch. 18)
Buxton, J. (1980). Requirements for Ada Programming Support Environments: Stoneman.

Washington, DC: US Department of Defense. (Ch. 11)
Cabrera, L. F., Copeland, G., et al. (2005). Web Services Coordination (WS-Coordination).

ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf. (Ch. 31)
Checkland, P. (1981). Systems Thinking, Systems Practice. Chichester: John Wiley & Sons.

(Ch. 2)
Checkland, P. and Scholes, J. (1990). Soft Systems Methodology in Action. Chichester: John

Wiley & Sons. (Ch. 2)
Chen, P. (1976). The entity relationship model—towards a unified view of data. ACM Trans.

on Database Systems, 1(1), 9–36. (Ch. 8)
Chess, B. and Mcgraw, G. (2004). Static analysis for security. IEEE Security and Privacy,

2(6), 76–9. (Ch. 30)
Chidamber, S. and Kemerer, C. (1994). A metrics suite for object-oriented design. IEEE Trans.

on Software Engineering, 20(6), 476–93. (Ch. 27)
Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineering and design recovery: a taxonomy.

IEEE Software, 7(1), 13–17. (Ch. 21)
Clark, S. and Baniassad, E. (2005). Aspect-oriented Analysis and Design: the Theme Approach,

Harlow, UK: Addison Wesley.
Clements, P., Bachmann, F., et al. (2002). Documenting Software Architectures: Views and

Beyond. Boston: Addison-Wesley. (Ch. 11)
Coad, P. and Yourdon, E. (1990). Object-Oriented Analysis. Englewood Cliffs, NJ: Prentice

Hall. (Chs. 8, 14)
Cobb, R. H. and Mills, H. D. (1990). Engineering software under statistical quality control.

IEEE Software, 7(6), 44–54. (Ch. 22)
Cockburn, A. (2001). Agile Software Development. Reading, MA: Addison-Wesley. (Ch. 17)
Codd, E. F. (1979). Extending the database relational model to capture more meaning. ACM

Trans. on Database Systems, 4(4), 397–434. (Ch. 8)

••

SE8_Z02.qxd 4/4/06 9:28 Page 809

810 References

Cohen, B., Harwood, W. T., et al. (1986). The Specification of Complex Systems.
Wokingham: Addison-Wesley. (Ch. 10)

Colyer, A. and Clement, A. (2005). Aspect-oriented programming with AspectJ. IBM
Systems J., 44(2), 301–8.

Colyer, A., Clement, A., et al. (2005). eclipse AspectJ, Upper Saddle River, NJ: Addison Wesley.
Constantine, L. L. and Yourdon, E. (1979). Structured Design. Englewood Cliffs, NJ:

Prentice Hall. (Chs. 4, 8)
Constantinos, C., Skotiniotis, T., et al. (2004). AOP considered harmful. Proc. European

Interactive Workshop on Aspects in Software (EIWAS’04), Berlin, Germany.
www.infosun.fmi.uni-passau.de/st/papers/EIWAS04/stoerzer04aop_harmful.pdf.

Cooling, J. (2003). Software Engineering for Real-Time Systems. Harlow: Addison-Wesley.
(Ch. 15)

Coulouris, G., Dollimore, J., et al. (2001). Distributed Systems: Concepts and Design.
Harlow: Addison-Wesley. (Ch. 12)

Councill, W. T. and Heineman, G. T. (2001). Definition of a software component and its
elements. In Component-Based Software Engineering (G. T. Heineman and W. T.
Councill, eds.). Boston: Addison-Wesley, 5–20. (Ch. 19)

Crabtree, A. (2003). Designing Collaborative Systems: A Practical Guide to Ethnography.
London: Springer. (Ch. 16)

Crosby, P. (1979). Quality Is Free. New York: McGraw-Hill. (Ch. 27)
Curtis, B., Hefley, W. E., et al. (2001). The People Capability Model: Guidelines for

Improving the Workforce. Boston: Addison-Wesley. (Chs. 25, 28)
Cusamano, M. (1989). The software factory: a historical interpretation. IEEE Software, 6(2),

23–30. (Ch. 18)
Czarnecki, K. and Eisenecher, U. (2000). Generative Programming: Methods, Tools, and

Applications. Boston: Addison-Wesley. (Ch. 18)
Davis, A. M. (1993). Software Requirements: Objects, Functions, & States. Englewood Cliffs,

NJ: Prentice Hall. (Ch. 6)
Dehbonei, B. and Mejia, F. (1995). Formal development of safety-critical software systems

in railway signalling. In Applications of Formal Methods (M. Hinchey and J. P. Bowen,
eds.). London: Prentice Hall, 227–52. (Ch. 10)

DeMarco, T. (1978). Structured Analysis and System Specification. New York: Yourdon Press.
(Ch. 8)

DeMarco, T. and Boehm, B. (2002). The agile methods fray. IEEE Computer, 35(6), 90–2.
(Ch. 17)

DeMarco, T. and Lister, T. (1985). Programmer performance and the effects of the work-
place. Proc. 8th Int. Conf. on Software Engineering, London: IEEE Press. (Ch. 25)

DeMarco, T. and Lister, T. (1999). Peopleware: Productive Projects and Teams. New York:
Dorset House. (Ch. 25)

DeMarco, T. (1978). Structured Analysis and System Specification. New York: Yourdon Press.
(Ch. 1)

Diaper, D. (1989). Task Analysis for Human-Computer Interaction. Chichester: Ellis Horwood.
(Ch. 16)

Dijkstra, E. W. (1968). Cooperating sequential processes. In Programming Languages
(F. Genuys, ed.). London: Academic Press, 43–112. (Ch. 15)

Dijkstra, E. W. (1968). Goto statement considered harmful. Comm. ACM, 11(3), 147–8.
(Ch. 20)

Dijkstra, E. W., Dahl, O. J., et al. (1972). Structured Programming. London: Academic Press.
(Chs. 23, 32)

••••

SE8_Z02.qxd 4/4/06 9:28 Page 810

Dix, A., Finlay, J., et al. (2004). Human Computer Interaction, 3rd edn. Harlow: Addison-
Wesley. (Ch. 16)

Douglass, B. P. (1999). Real-Time UML: Developing Efficient Objects for Embedded
Systems, 2nd edn. Boston: Addison-Wesley. (Ch. 15)

DuBois, P. (1996). Software Portability with imake, 2nd edn. Sebastopol, CA: O’Reilly &
Associates. (Ch. 29)

Easterbrook, S. and Nuseibeh, B. (1996). Using ViewPoints for inconsistency management.
BCS/IEE Software Eng. J., 11(1), 31–43.

Easterbrook, S., Lutz, R., et al. (1998). Experiences using lightweight formal methods for
requirements modeling. IEEE Trans. on Software Engineering, 24(1), 4–14. (Ch. 10)

ECMA. (1991). A reference model for frameworks of computer-assisted software engineer-
ing environments. In Reprints of the Seventh International Software Process Workshop,
Yountville, CA: ACM Press. (Ch. 11)

Ehrlich, W., Prasanna, B., et al. (1993). Determining the cost of a stop-test decision. IEEE
Software, 9(4), 33–42. (Ch. 24)

El-Amam, K. (2001). Object-Oriented Metrics: A Review of Theory and Practice. (Ch. 27)
Elliott, J., Eckstein, R., et al. (2002). Java Swing, 2nd edn. Sebastopol, CA: O’Reilly &

Associates Inc. (Ch. 16)
Ellison, R. J., Fisher, D. A., et al. (1999). Survivability: protecting your critical systems. IEEE

Internet Computing, 3(6), 55–63. (Ch. 3)
Ellison, R. J., Linger, R. C., et al. (1999). Survivable network system analysis: a case study.

IEEE Software, 16(4), 70–7. (Ch. 3)
Ellison, R. J., Fisher, D. A., et al. (1999a). Survivability: protecting your critical systems.

IEEE Internet Computing, 3(6), 55–63. (Ch. 30)
Ellison, R., Linger, R., et al. (2002). Foundations of survivable systems engineering.

Crosstalk: The Journal of Defense Software Engineering, 12, 10–15. (Chs. 3, 30)
Elrad, T., Askit, M., et al. (2001). Discussing aspects of AOP. Comm. ACM, 44(10), 33–8.

(Ch. 18)
Endres, A. (1975). An analysis of errors and their causes in system programs. IEEE Trans.

on Software Engineering, SE-1(2), 140–9. (Ch. 3)
Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and Web

Services, Upple Saddle River, NJ: Prentice-Hall. (Ch. 31)
Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology and Design, Upper Saddle

River, NJ: Prentice-Hall. (Ch. 31)
Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Pro, May/June 2000,

17–23. (Ch. 21)
Estublier, J. and Casallas, R. (1994). The Adele configuration manager. In Configuration

Management (W. Tichy, ed.). Chichester: John Wiley & Sons, 99–134. (Ch. 29)
Evans, D. and Larochelle, D. (2002). Improving security using extensible lightweight static

analysis. IEEE Software, 19(1), 42–51. (Chs. 22, 30)
Ewald, T. (2001). Overview of COM+. In Component-Based Software Engineering

(G. T. Heineman and W. T. Councill, eds.). Boston: Addison-Wesley, 573–88. (Ch. 19)
Fagan, M. E. (1976). Design and code inspections to reduce errors in program development.

IBM Systems J., 15(3), 182–211. (Ch. 22)
Fagan, M. E. (1986). Advances in software inspections. IEEE Trans. on Software

Engineering, SE-12(7), 744–51. (Ch. 22)
Fayad, M. E. and Schmidt, D. C. (1997). Object-oriented application frameworks. Comm.

ACM, 40(10), 32–8. (Ch. 18)

References 811

••••

SE8_Z02.qxd 4/4/06 9:28 Page 811

812 References

••••

Feldman, S. I. (1979). MAKE—a program for maintaining computer programs. Software-
Practice and Experience, 9(4), 255–65. (Ch. 29)

Finkelstein, A., Kramer, J., et al. (1992). Viewpoints: a framework for integrating multiple
perspectives in system development. Int. J. Software Engineering Knowledge Engineering,
2(1), 31–58.

Firesmith, D. G. (2003). Engineering security requirements. Journal of Object Technology,
2(1), 53–68. (Ch. 9)

Foster, I., Kesselman, C., et al. (2002). Grid services for distributed system integration. IEEE
Computer, 35(6), 37–46. (Ch. 12)

Frewin, G. D. and Hatton, B. J. (1986). Quality management—procedures and practises.
IEE/BCS Software Engineering J., 1(1), 29–38. (Ch. 22)

Fromme, B. and Walker, J. (1993). An open architecture for tool and process integration. Proc.
6th Conf. on Software Engineering Environments, Reading, UK: IEEE Press. (Ch. 11)

Fuggetta, A. (1993). A classification of CASE technology. IEEE Computer, 26(12), 25–38.
(Ch. 4)

Fujiwara, E. and Pradhan, D. K. (1990). Error-control coding in computers. IEEE Computer,
23(7), 63–72. (Ch. 20)

Furey, S. and Kitchenham, B. (1997). Point /counterpoint: function points. IEEE Software,
14(2), 28–31. (Ch. 26)

Futatsugi, K., Goguen, J. A., et al. (1985). Principles of OBJ2. Proc. 12th ACM Symp. on
Principles of Programming Languages, New Orleans: ACM Press. (Ch. 10)

Gamma, E., Helm, R., et al. (1995). Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley. (Ch. 18)

Gane, C. and Sarson, T. (1979). Structured Systems Analysis. Englewood Cliffs, NJ: Prentice
Hall. (Chs. 4, 8)

Garlan, D. and Shaw, M. (1993). An introduction to software architecture. Advances in Software
Engineering and Knowledge Engineering, 1, 1–39. (Chs. 11, 13)

Garlan, D., Allen, R., et al. (1995). Architectural mismatch: why reuse is so hard. IEEE Software,
12(6), 17–26. (Ch. 18)

Garlan, D., Kaiser, G. E., et al. (1992). Using tool abstraction to compose systems. IEEE
Computer, 25(6), 30–8. (Ch. 11)

Garmus, D. and Herron, D. (2000). Function Point Analysis: Measurement Practices for
Successful Software Projects. Boston: Addison-Wesley. (Ch. 26)

Gilb, T. and Graham, D. (1993). Software Inspection. Wokingham: Addison-Wesley.
(Ch. 22)

Goldberg, A. and Robson, D. (1983). Smalltalk-80. The Language and Its Implementation.
Reading, MA: Addison-Wesley. (Ch. 16)

Gollmann, D. (1999). Computer Security. Chichester: John Wiley & Sons. (Ch. 24)
Gomaa, H. (1993). Software Design Methods for Concurrent and Real-Time Systems.

Reading, MA: Addison-Wesley. (Ch. 15)
Gordon, V. S. and Bieman, J. M. (1995). Rapid prototyping: lessons learned. IEEE Software,

12(1), 85–95. (Ch. 17)
Gotterbarn, D., Miller, K., et al. (1999). Software engineering code of ethics is approved.

Comm. ACM, 42(10), 102–7. (Ch. 1)
Gradecki, J. D. and Lezeiki, N. (2003). Mastering AspectJ: Aspect-oriented Programming

in Java, New York: John Wiley & Sons.
Grady, R. B. (1993). Practical results from measuring software quality. Comm. ACM, 36(11),

62–8. (Ch. 27)

SE8_Z02.qxd 4/4/06 9:28 Page 812

Grady, R. B. and Van Slack, T. (1994). Key lessons in achieving widespread inspection use.
IEEE Software, 11(4), 46–57. (Ch. 22)

Graham, I. (1994). Object-Oriented Methods, 2nd edn. Wokingham: Addison-Wesley.
(Ch. 14)

Griss, M. L. and Wosser, M. (1995). Making reuse work at Hewlett-Packard. IEEE Software,
12(1), 105–7. (Ch. 18)

Groff, J. R., Weinberg, P. N., et al. (2002). SQL: The Complete Reference, 2nd edn. New
York: McGraw-Hill Osborne. (Ch. 17)

Grudin, J. (1989). The case against user interface consistency. Comm. ACM, 32(10),
1164–73. (Ch. 16)

Guimaraes, T. (1983). Managing application program maintenance expenditures. Comm. ACM,
26(10), 739–46. (Ch. 21)

Gunning, R. (1962). Techniques of Clear Writing. New York: McGraw-Hill. (Ch. 27)
Guttag, J. (1977). Abstract data types and the development of data structures. Comm. ACM,

20(6), 396–405. (Ch. 10)
Guttag, J., Horning, J., et al. (1993). Larch: Languages and Tools for Formal Specification.

Heidelberg: Springer-Verlag. (Ch. 10)
Haase, V., Messnarz, R., et al. (1994). Bootstrap: fine tuning process assessment. IEEE Software,

11(4), 25–35. (Ch. 28)
Hall, A. (1990). Seven myths of formal methods. IEEE Software, 7(5), 11–20. (Ch. 10)
Hall, A. (1996). Using formal methods to develop an ATC information system. IEEE

Software, 13(2), 66–76. (Chs. 3, 9, 10)
Hall, A. and Chapman, R. (2002). Correctness by construction: developing a commercially

secure system. IEEE Software, 19(1), 18–25. (Ch. 3, 9, 10)
Hall, E. (1998). Managing Risk: Methods for Software Systems Development. Reading, MA:

Addison-Wesley. (Ch. 5)
Hall, T. and Fenton, N. (1997). Implementing effective software metrics programs. IEEE

Software, 14(2), 55–64. (Ch. 27)
Halstead, M. H. (1977). Elements of Software Science. Amsterdam: North-Holland. (Ch. 21)
Hamlet, D. (1992). Are we testing for true reliability? IEEE Software, 9(4), 21–7. (Ch. 24)
Hammer, M. (1990). Reengineering work: don’t automate, obliterate. Harvard Business Review,

July-August 1990, 104–12. (Ch. 28)
Hammer, M. and McLeod, D. (1981). Database descriptions with SDM: A semantic database

model. ACM Trans. on Database Sys., 6(3), 351–86. (Ch. 8)
Hardin, D., Frerking, M., et al. (2002). Getting down and dirty: device-level programming

using the real-time specification for Java. Proc. Fifth IEEE International Symp. on
Object-Oriented Real-Time Distributed Computing, Washington, DC: IEEE Computer Society
Press. (Ch. 15)

Harel, D. (1987). Statecharts: a visual formalism for complex systems. Sci. Comput.
Programming, 8(3), 231–74. (Chs. 8, 14, 15)

Harel, D. (1988). On visual formalisms. Comm. ACM, 31(5), 514–30. (Chs. 8, 15)
Harold, E. R. and Means, W. S. (2002). XML in a Nutshell. Sebastopol. CA: O’Reilly &

Associates. (Ch. 13)
Hass, A. M. J. (2003). Configuration Management: Principles and Practice. Boston:

Addison-Wesley. (Ch. 29)
Hayes, I. (1987). Specification Case Studies. London: Prentice Hall. (Ch. 10)
Heninger, K. L. (1980). Specifying software requirements for complex systems: new techniques

and their applications. IEEE Trans. on Software Engineering, SE-6(1), 2–13. (Ch. 6)

References 813

••••

SE8_Z02.qxd 4/4/06 9:28 Page 813

••••

814 References

Highsmith, J. A. (2000). Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. New York: Dorset House. (Ch. 17)

Higuera-Toledano, M. T. and Issarny, V. (2000). Java embedded real-time systems: an overview
of existing solutions. Proc. Third IEEE International Symp. on Object-Oriented Real-Time
Distributed Computing, Newport Beach, CA: IEEE Computer Society Press. (Ch. 15)

Hoare, C. A. R. (1974). Monitors: an operating system structuring concept. Comm. ACM,
21(8), 666–77. (Ch. 15)

Hoare, C. A. R. (1985). Communicating Sequential Processes. London: Prentice Hall. (Ch. 10)
Hofmeister, C., Nord, R., et al. (2000). Applied Software Architecture. Boston: Addison-Wesley.

(Ch. 11)
Horswill, J. and Miller, S. A. (2000). Designing and Programming CICS Applications.

Sebastopol, CA: O’Reilly & Associates. (Ch. 13)
Huang, Y. and Kintala, C. M. R. (1993). Software implemented fault tolerance: technologies

and experience. Proc. 23rd Fault-tolerant Computing Symposium (FTCS-23), Toulouse,
France: IEEE Computer Society Press. (Ch. 20)

Huff, C. C. (1992). Elements of a realistic CASE tool adoption budget. Comm. ACM, 35(4),
45–54. (Ch. 4)

Huff, K. E. (1996). Software process modeling. In Trends in Software: Software Process
(A. Fuggetta and A. Wolf, eds.). Chichester: John Wiley & Sons, 1–24. (Ch. 28)

Huff, C. and Martin, C. D. (1995). Computing consequences: a framework for teaching
ethical computing. Comm. ACM, 38(12), 75–84. (Ch. 1)

Hughes, J. A., O’Brien, J., et al. (1997). Designing with ethnography: a presentation frame-
work for design. Proc. DIS’97, Amsterdam: ACM Press. (Ch. 16)

Hull, R. and King, R. (1987). Semantic database modeling: survey, applications and research
issues. ACM Computing Surveys, 19(3), 201–60. (Ch. 8)

Humphrey, W. (1989). Managing the Software Process. Reading, MA: Addison-Wesley.
(Chs. 22, 27. 28)

Humphrey, W. S. (1988). Characterizing the software process. IEEE Software, 5(2), 73–9.
(Ch. 28)

Humphrey, W. S. (1995). A Discipline for Software Engineering. Reading, MA: Addison-
Wesley. (Ch. 28)

IEC. (1998). Standard IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems. (Ch. 9)

IEEE. (1998). IEEE recommended practice for software requirements specifications. In
IEEE Software Engineering Standards Collection. Los Alamitos, CA: IEEE Computer Society
Press. (Ch. 6)

IEEE. (2003). IEEE Software Engineering Standards Collection on CD-ROM. Los Alamitos,
CA: IEEE Computer Society Press. (Ch. 27)

Ince, D. (1994). ISO 9001 and Software Quality Assurance. London: McGraw-Hill. (Ch. 27)
Jackson, M. A. (1983). System Development. London: Prentice Hall. (Chs. 1, 8)
Jackson, M. A. (1995). Requirements and Specifications. Wokingham: Addison-Wesley.

(Ch. 6)
Jacky, J. (1995). Specifying a safety-critical control system. IEEE Trans. on Software

Engineering, 21(2), 99–106. (Ch. 10)
Jacky, J. (1997). The Way of Z: Practical Programming with Formal methods. Cambridge,

UK: Cambridge University Press. (Ch. 10)
Jacky, J., Unger, J., et al. (1997). Experience with Z: developing a control program for a

radiation therapy machine. Proc. ZUM’97, Reading: Springer. (Ch. 10)

SE8_Z02.qxd 4/4/06 9:28 Page 814

••••

References 815

Jacobsen, I. and Ng, P.-W. (2004). Aspect-oriented Software Development with Use Cases,
Boston, MA: Addison Wesley.

Jacobsen, I., Christerson, M., et al. (1993). Object-Oriented Software Engineering.
Wokingham: Addison-Wesley. (Chs. 6, 8, 15)

Jacobsen, I., Griss, M., et al. (1997). Software Reuse. Reading, MA: Addison-Wesley.
(Chs. 18, 19)

Jahanian, F. and Mok, A. K. (1986). Safety analysis of timing properties in real-time systems.
IEEE Trans. on Software Engineering, SE-12(9), 890–904. (Ch. 9)

Janis, I. L. (1972). Victims of Groupthink. A Psychological Study of Foreign Policy
Decisions and Fiascos. Boston: Houghton Mifflin. (Ch. 25)

Jelinski, Z. and Moranda, P. B. (1972). Software reliability research. In Statistical Computer
Performance Evaluation (W. Frieberger, ed.). New York: Academic Press, 465–84. (Ch. 24)

Johnson, P. L. (1993). ISO 9000: Meeting the New International Standards. New York: McGraw-
Hill. (Ch. 27)

Jones, C. B. (1980). Software Development—A Rigorous Approach. London: Prentice Hall.
(Ch. 10)

Jones, C. B. (1986). Systematic Software Development Using VDM. London: Prentice Hall.
(Chs. 10, 22)

Kafura, D. and Reddy, G. R. (1987). The use of software complexity metrics in software
maintenance. IEEE Trans. on Software Engineering, SE-13(3), 335–43. (Ch. 21)

Kan, S. H. (2003). Metrics and Models in Software Quality Engineering. Boston: Addison-
Wesley. (Ch. 24)

Katz, S. (2005). A survey of verification and static analysis for aspects. http://www.aosd-europe.net/
documents/verificM81.pdf.

Kavantzas, N., Burdett, D., et al. (2004). Web Services Choreography Description Language
Version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/. (Ch. 31)

Kiczales, G., Hilsdale, E., et al. (2001). Getting started with AspectJ. Comm. ACM, 44(10),
59–65. (Chs. 18, 32)

Kilpi, T. (2001). Implementing a software metrics program at Nokia. IEEE Software, 18(6),
72–7. (Ch. 27)

Kit, E. (1995). Software Testing in the Real World: Improving the Process. Reading, MA:
Addison-Wesley. (Ch. 22)

Kitchenham, B. (1990). Measuring software development. In Software Reliability Handbook
(P. Rook, ed.). Amsterdam: Elsevier, 303–31. (Ch. 27)

Kleppe, A., Warmer, J., et al. (2003). MDA Explained: The Model-Driven Architecture—
Practice and Promise. Boston: Addison-Wesley. (Ch. 14)

Knight, J. C. and Leveson, N. G. (1986). An experimental evaluation of the assumption of
independence in multi-version programming. IEEE Trans. on Software Engineering, SE-
12(1), 96–109. (Ch. 20)

Knight, J. C. and Leveson, N. G. (2002). Should software engineers be licensed? Comm.
ACM, 45(11), 87–90. (Ch. 24)

Knuth, D. E. (1971). The Art of Computer Programming: Fundamental Algorithms. Reading,
MA: Addison-Wesley. (Ch. 18)

Kotonya, G. and Sommerville, I. (1996). Requirements engineering with viewpoints.
BCS/IEE Software Eng. J., 11 (1), 5–18.

Kotonya, G. and Sommerville, I. (1998). Requirements Engineering: Processes and
Techniques. Chichester: John Wiley & Sons. (Ch. 6)

Kreger, H. (2001). Web Services Conceptual Architecture (WSCA 1.0). IBM.
www.ibm.com/software/solutions/ webservices/pdf/WSCA.pdf (Ch. 12)

SE8_Z02.qxd 4/4/06 9:28 Page 815

••••

816 References

Krutchen, P. (2000). The Rational Unified Process—An Introduction. Reading, MA:
Addison-Wesley. (Chs. 4, 8)

Kumaran, S. I. (2001). JINI Technology: An Overview. Englewood Cliffs, NJ: Prentice Hall.
(Ch. 12)

Kuvaja, P., Similä, J., et al. (1994). Software Process Assessment and Improvement: The BOOT-
STRAP Approach. Oxford: Blackwell Publishers. (Ch. 28)

Laddad, R. (2003a). AspectJ in Action, Greenwich, CT: Manning Publications Co.
Laddad, R. (2003b). AspectJ in Action: Practical Aspect-oriented Programming, Greenwich,

CT: Manning Publications.
Lamping, J., Rao, R., et al. (1995). A focus + context technique based on hyperbolic geo-

metry for visualising large hierarchies. Proc. CHI’95, Denver, CO: ACM Press. (Ch. 16)
Laprie, J.-C. (1995). Dependable computing: concepts, limits, challenges. Proc. 25th IEEE

Symposium on Fault-Tolerant Computing, Pasadena, CA: IEEE Press. (Ch. 3)
Laprie, J.-C., Arlat, J., et al. (1995). Architectural issues in software fault tolerance. In Software

Fault Tolerance (M. R. Lyu, ed.). New York: John Wiley & Sons 47–80. (Ch. 20)
Larman, C. (2002). Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and the Unified Process. Englewood Cliffs, NJ: Prentice Hall. (Ch. 17)
Larus, J. R., Ball, T., et al. (2004). Righting software. IEEE Software, 21(3), 92–100. (Ch. 30)
Laudon, K. (1995). Ethical concepts and information technology. Comm. ACM, 38(12), 33–9.

(Ch. 1)
Leblang, D. B. and Chase, R. P. (1987). Parallel software configuration management in a

network environment. IEEE Software, 4(6), 28–35. (Ch. 29)
Lehman, M. M. (1996). Laws of software evolution revisited. Proc. European Workshop on

Software Process Technology (EWSPT’96), Nancy, France: Springer-Verlag. (Ch. 21)
Lehman, M. M. and Belady, L. (1985). Program Evolution: Processes of Software Change.

London: Academic Press. (Ch. 21)
Lehman, M. M., Perry, D. E., et al. (1998). On evidence supporting the FEAST hypothesis

and the laws of software evolution. Proc. Metrics’98, Bethesda, MD: IEEE Computer Society
Press. (Ch. 21)

Lehman, M. M., Ramil, J. F., et al. (2001). An approach to modelling long-term growth trends
in software systems. Proc. Int. Conf. on Software Maintenance, Florence, Italy: IEEE
Computer Society Press. (Ch. 21)

Leveson, N. and Stolzy, J. (1987). Safety analysis using Petri nets. IEEE Transactions on
Software Engineering, 13(3), 386–97. (Ch. 9)

Leveson, N. G. (1985). Software safety. In Resilient Computing Systems (T. Anderson, ed.).
London: Collins, 12343. (Chs. 3, 9)

Leveson, N. G. (1995). Safeware: System Safety and Computers. Reading, MA: Addison-
Wesley. (Chs. 9, 20)

Leveson, N. G. and Harvey, P. R. (1983). Analysing software safety. IEEE Trans. on
Software Engineering, SE-9(5), 569–79. (Ch. 9)

Lewis, P. M., Bernstein, A. J., et al. (2003). Databases and Transaction Processing: An
Application-Oriented Approach. Boston: Addison-Wesley. (Ch. 13)

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Reading, MA:
Addison-Wesley. (Ch. 21)

Linger, R. C. (1994). Cleanroom process model. IEEE Software, 11(2), 50–8. (Chs. 4, 22)
Liskov, B. and Guttag, J. (1986). Abstraction and Specification in Program Development.

Cambridge, MA: MIT Press. (Ch. 10)
Littlewood, B. (1990). Software reliability growth models. In Software Reliability Handbook

(P. Rook, ed.). Amsterdam: Elsevier, 401–12. (Chs. 3, 24)

SE8_Z02.qxd 4/4/06 9:28 Page 816

••••

References 817

Littlewood, B. and Verrall, J. L. (1973). A Bayesian reliability growth model for computer
software. Applied Statistics, 22, 332–46. (Ch. 24)

Livshits, V. B. and Lam, M. S. (2005). Finding Security Vulnerabilities in Java Applications
with Static Analysis. Proc. 14th USENIX Security Symposium, Baltimore, MD.
http://www.usenix.org/events/sec05/tech/.

Londeix, B. (1987). Cost Estimation for Software Development. Wokingham: Addison-
Wesley. (Ch. 26)

Lovelock, C., Vandermerwe, S., et al. (1996). Services Marketing. Englewood Cliffs, NJ:
Prentice Hall. (Ch. 12)

Lutz, M. (1996). Programming Python. Sebastopol, CA: O’Reilly & Associates. (Ch. 17)
Lutz, R. R. (1993). Analysing software requirements errors in safety-critical embedded sys-

tems. Proc. RE’93, San Diego CA: IEEE Computer Society Press. (Chs. 3, 22, 23)
MacDonell, S. G. (1994). Comparative review of functional complexity assessment methods

for effort estimation. BCS/IEE Software Engineering J., 9(3), 107–17. (Ch. 26)
Marshall, J. E. and Heslin, R. (1975). Boys and girls together: sexual composition and the

effect of density on group size and cohesiveness. J. of Personality and Social Psychology,
35(5), 952–61. (Ch. 25)

Martin, D., Rodden, T., et al. (2001). Finding patterns in the fieldwork. Proc. ECSCW’01,
Bonn: Kluwer. (Ch. 18)

Martin, D., Rouncefield, M., et al. (2002). Applying patterns of interaction to work
(re)design: e-government and planning. Proc CHI’2002, ACM Press. (Ch. 18)

Maslow, A. A. (1954). Motivation and Personality. New York: Harper and Row. (Ch. 25)
Massol, V. and Husted, T. (2003). JUnit in Action. Greenwich, CT: Manning. (Ch. 23)
Matsumoto, Y. (1984). Some experience in promoting reusable software: presentation in higher

abstract levels. IEEE Trans. on Software Engineering, SE-10(5), 502–12. (Ch. 18)
McCabe, T. J. (1976). A complexity measure. IEEE Trans. on Software Engineering, SE-

2(4), 308–20. (Ch. 21)
McCue, G. M. (1978). IBM’s Santa Teresa laboratory: architectural design for program

development. IBM Systems J., 17(1), 4–25. (Ch. 25)
McDougall, P. (2000). The power of peer-to-peer. Information Week, August 28,

http://www.informationweek.com. (Ch. 12)
McGuffin, R. W., Elliston, A. E., et al. (1979). CADES—software engineering in practice.

Proc. 4th Int. Conf. on Software Engineering, Munich: IEEE Computer Society Press.
(Ch. 11)

McIlroy, M. D. (1968). Mass-produced software components. Proc. NATO Conf. on
Software Engineering, Garmisch, Germany: Springer-Verlag. (Ch. 18)

Meyer, B. (1992). Design by contract. IEEE Computer, 25(10), 40–51. (Ch. 19)
Meyer, B. (2003). The grand challenge of trusted components. Proc. ICSE 25: Int. Conf. on

Software Engineering, Portland, OR: IEEE Press. (Ch. 19)
Mili, H., Mili, A., et al. (2002). Reuse-Based Software Engineering. New York: John Wiley

& Sons. (Ch. 19)
Miller, G. A. (1957). The magical number 7 plus or minus two: Some limits on our capacity

for processing information. Psychological Review, 63, 81–97. (Ch. 16)
Mills, H. D., Dyer, M., et al. (1987). Cleanroom software engineering. IEEE Software, 4(5),

19–25. (Chs. 3, 4, 22)
Mitschele-Thiel, A. (2001). Systems Engineering with SDL: Developing Performance-

Critical Communication Systems. Chichester: John Wiley & Sons. (Ch. 22)
MOD, (1995). The Procurement of Safety Critical Software (Revised edn). UK Ministry of

Defence, Interim Standard, 00–55. (Ch. 22)

SE8_Z02.qxd 4/4/06 9:28 Page 817

••••

818 References

Mosley, D. J. and Posey, B. A. (2002). Just Enough Test Automation. Englewood Cliffs, NJ:
Prentice Hall. (Ch. 23)

Mumford, E. (1989). User participation in a changing environment—why we need it. In
Participation in Systems Development (K. Knight, ed.). London: Kegan Paul. (Ch. 2)

Munch, B. P., Larsen, J-O., et al. (1993). Uniform versioning: the change-oriented model.
Proc. 4th Workshop on Software Configuration Management, Baltimore, MD: ACM Press.
(Ch. 29)

Musa, J. D. (1993). Operational profiles in software reliability engineering. IEEE Software,
10(2), 14–32. (Ch. 24)

Musa, J. D. (1998). Software Reliability Engineering: More Reliable Software, Faster
Development and Testing. New York: McGraw-Hill. (Ch. 24)

Musciano, C. and Kennedy, B. (2002). HTML & XHTML: The Definitive Guide. Sebastopol,
CA: O’Reilly & Associates. (Ch. 16)

Myers, W. (1989). Allow plenty of time for large-scale software. IEEE Software, 6(4), 92–9.
(Ch. 26)

Nakajo, T. and Kume, H. (1991). A case history analysis of software error-cause relation-
ships. IEEE Trans. on Software Engineering, 18(8), 830–8. (Ch. 3)

Neil, M., Ostrolenk, G., et al. (1998). Lessons from using Z to specify a software tool. IEEE
Trans. on Software Engineering, 24(1), 15–23. (Ch. 10)

Neilsen, J. (1993). Usability Engineering. New York: Academic Press. (Ch. 16)
Newcomer, E. & Lomow, G. (2005). Understanding SOA with Web Services, Boston, MA:

Addison Wesley. (Ch. 31)
Nii, H. P. (1986). Blackboard systems, parts 1 and 2. AI Magazine, 7(3 and 4), 38–53 and

62–9. (Ch. 11)
Nilsen, K. (1998). Adding real-time capabilities to Java. Comm. ACM, 41(6), 49–56.

(Ch. 15)
Norman, D. A. and Draper, S. W. (1986). User-Centered System Design. Hillsdale, NJ: Lawrence

Erlbaum. (Ch. 16)
Nosek, J. T. and Palvia, P. (1990). Software maintenance management: changes in the last

decade. Software Maintenance: Research and Practice, 2(3), 157–74. (Ch. 21)
Nuseibeh, B. (1997). Ariane 5: who dunnit? IEEE Software, 14(3), 15–16. (Ch. 18)
O’Connor, J., Mansour, C., et al. (1994). Reuse in command and control systems. IEEE Software,

11(4), 70–9. (Ch. 18)
Offen, R. J. and Jeffrey, R. (1997). Establishing software measurement programs. IEEE Software,

14(2), 45–54. (Ch. 27)
O’Leary, D. E. (2000). Enterprise Resource Planning Systems: Systems, Life Cycle, Electronic

Commerce and Risk. Cambridge, UK: Cambridge University Press. (Ch. 18)
Oram, A. (2001). Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Sebastopol,

CA: O’Reilly & Associates. (Ch. 12)
Oram, A. and Talbott, S. (1991). Managing Projects with make, 2nd edn. Sebastopol, CA:

O’Reilly & Associates. (Ch. 29)
Orcero, D. S. (2000). The code analyser LCLint. Linux Journal, 73,

http://www.linuxjournal.com/article.php?sid=3599. (Ch. 22)
Orfali, R. and Harkey, D. (1998). Client/Server Programming with Java and CORBA. New

York: John Wiley & Sons. (Ch. 12)
Oskarsson, O. and Glass, R. L. (1995). An ISO 9000 Approach to Building Quality Software.

Englewood Cliffs, NJ: Prentice Hall. (Ch. 27)
Ould, M. A. (1999). Managing Software Quality and Business Risk. Chichester: John Wiley

& Sons. (Ch. 5)

SE8_Z02.qxd 4/4/06 9:28 Page 818

••••

References 819

Ould, M. A. (1995). Business Processes: Modelling and Analysis for Re-engineering and
Improvement. Chichester: John Wiley & Sons. (Ch. 28)

Ousterhout, J. (1994). TCL and the TK toolkit. Reading, MA: Addison-Wesley. (Ch. 17)
Ousterhout, J. K. (1998). Scripting: higher-level programming for the 21st century. IEEE

Computer, 31(3), 23–30. (Chs. 17, 26)
Owl_Services_Coalition (2003). OWL-S: Semantic Markup for Web Services.

http://www.daml.org/services/owl-s/1.0/owl-s.pdf. (Ch. 31)
Palmer, S. R. and Felsing, J. M. (2002). A Practical Guide to Feature-Driven Development.

Englewood Cliffs, NJ: Prentice Hall. (Ch. 17)
Parnas, D. L., van Schouwen, J., et al. (1990). Evaluation of safety-critical software. Comm.

ACM, 33(6), 636–51. (Chs. 20, 24)
Paulk, M. C. and Konrad, M. (1994). An overview of ISO’s SPICE project. IEEE Computer,

27(4), 68–70. (Ch. 28)
Paulk, M. C., Curtis, B., et al. (1993). Capability maturity model, version 1.1. IEEE Software,

10(4), 18–27. (Ch. 28)
Paulk, M. C., Weber, C. V., et al. (1995). The Capability Maturity Model: Guidelines for

Improving the Software Process. Reading, MA: Addison-Wesley. (Chs. 28, 29)
Peach, R. W. (1996). The ISO 9000 Handbook, 3rd edn. New York: Irwin Professional.

(Chs. 27, 29)
Perrow, C. (1984). Normal Accidents: Living with High-Risk Technology. New York: Basic

Books. (Ch. 3)
Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. New York: McGraw-

Hill. (Chs. 9, 10)
Pfaff, G. and ten Hagen, P. J. W. (1985). Seeheim Workshop on User Interface Management

Systems. Heidelberg: Springer-Verlag. (Ch. 16)
Pfarr, T. and Reis, J. E. (2002). The integration of COTS/GOTS within NASA’s HST com-

mand and control system. Proc. ICCBSS 2002 (1st Int. Conf on COTS-based Software
Systems), Orlando, FL: Springer-Verlag. (Ch. 18)

Pfleeger, C. P. (1997). Security in Computing, 2nd edn. Englewood Cliffs, NJ: Prentice Hall.
(Ch. 3)

Pfleeger, C. P. and Pfleeger, S. L. (2003). Security in Computing, 3rd edition, Upper Saddle
River, NJ: Prentice-Hall. (Ch. 30)

Pope, A. (1998). CORBA. Harlow: Addison-Wesley. (Ch. 19)
Potter, B., Sinclair, J., et al. (1996). An Introduction to Formal Specification and Z. London:

Prentice Hall. (Ch. 10)
Preiser, W. and Ostoff, E. (2001). The Universal Design Handbook. New York: McGraw-Hill.

(Ch. 16)
Pritchard, J. (1999). COM and CORBA Side by Side: Architectures, Strategies, and

Implementations. Boston: Addison-Wesley. (Ch. 12)
Prowell, S. J., Trammell, C. J., et al. (1999). Cleanroom Software Engineering: Technology

and Process. Reading, MA: Addison-Wesley. (Chs. 4, 10, 22, 24)
Pulford, K., Kuntzmann-Combelles, A., et al. (1996). A Quantitative Approach to Software

Management. Wokingham: Addison-Wesley. (Chs. 27, 28)
Pullum, L. L. (2001). Software Fault Tolerance Techniques and Implementation. Norwood,

MA: Artech House. (Ch. 20)
Putnam, L. H. (1978). A general empirical solution to the macro software sizing and estimat-

ing problem. IEEE Trans. on Software Engineering, SE-4(3), 345–61. (Ch. 26)
Randell, B. (1975). System structure for software fault tolerance. IEEE Trans. on Software

Engineering, SE-1(2), 220–32. (Ch. 20)

SE8_Z02.qxd 4/4/06 9:28 Page 819

••••

820 References

Randell, B. and Xu, J. (1995). The evolution of the recovery block concept. In Software Fault
Tolerance (M. R. Lyu, ed.). New York: John Wiley & Sons, 1–22. (Ch. 20)

Rankin, C. (2002). The software testing automation framework. IBM Systems J., 41(1), 126–40.
(Ch. 23)

Redmill, F. (1998). IEC 61508: principles and use in the management of safety. IEEE Computing
and Control Engineering J., 9(10), 205–13. (Ch. 9)

Reiss, S., P. (1990). Connecting tools using message passing in the field environment. IEEE
Software, 7(4), 57–66. (Ch. 11)

Rettig, M. (1994). Practical programmer: prototyping for tiny fingers. Comm. ACM, 37(4),
21–7. (Ch. 17)

Rittel, H. and Webber, M. (1973). Dilemmas in a general theory of planning. Policy
Sciences, 4, 155–69. (Ch. 2)

Robertson, S. and Robertson, J. (1999). Mastering the Requirements Process. Harlow:
Addison-Wesley. (Ch. 6)

Robinson, P. J. (1992). Hierarchical Object-Oriented Design. Englewood Cliffs, NJ:
Prentice Hall. (Chs. 4, 8, 14)

Ross, D. T. (1977). Structured analysis (SA): a language for communicating ideas. IEEE Trans.
on Software Engineering, SE-3(1), 16–34. (Ch. 6)

Royce, W. W. (1970). Managing the development of large software systems: concepts and
techniques. Proc. IEEE WESTCON, Los Angeles CA: IEEE Computer Society Press.
(Ch. 4)

Rubin, K. and Goldberg, A. (1992). Object behaviour analysis. Comm. ACM, 35(9), 48–62.
(Ch. 14)

Rumbaugh, J., Blaha, M., et al. (1991). Object-Oriented Modeling and Design. Englewood
Cliffs, NJ: Prentice Hall. (Chs. 1, 4, 8)

Rumbaugh, J., Jacobson, I., et al. (1999). The Unified Modeling Language Reference
Manual. Reading, MA: Addison-Wesley. (Chs. 1, 4, 8, 14)

Rumbaugh, J., Jacobson, I., et al. (1999). The Unified Software Development Process.
Reading, MA: Addison-Wesley. (Chs. 1, 4, 8)

Sackman, H., Erikson, W. J., et al. (1968). Exploratory experimentation studies comparing
on-line and off-line programming performance. Comm. ACM, 11(1), 3–11. (Ch. 26)

Schmidt, D. C. (1997). Applying design patterns and frameworks to develop object-oriented
communications software. In Handbook of Programming Languages, Vol. 1 (P. Salus,
ed.). London: Macmillan Computer Publishing. (Ch. 18)

Schneidewind, N. F. and Keller, T. W. (1992). Applying reliability models to the space
shuttle. IEEE Software, 9(4), 28–33. (Ch. 24)

Schneier, B. (2000). Secrets and Lies: Digital Security in a Networked World, New York:
John Wiley and Sons.

Schoman, K. and Ross, D. T. (1977). Structured analysis for requirements definition. IEEE
Trans. on Software Engineering, SE-3(1), 6–15. (Ch. 6)

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum. Englewood
Cliffs, NJ: Prentice Hall. (Ch. 17)

Scott, J. E. (1999). The FoxMeyer Drug’s bankruptcy: was it a failure of ERP? Proc. Associ-
ation for Information Systems 5th Americas Conf. on Information Systems, Milwaukee, WI.
(Ch. 18)

Selby, R. W., Basili, V. R., et al. (1987). Cleanroom software development: an empirical
evaluation. IEEE Trans. on Software Engineering, SE-13(9), 1027–37. (Chs. 4, 22)

Sheldon, F. T., Kavi, K. M., et al. (1992). Reliability measurement: from theory to practice.
IEEE Software, 9(4), 13–20. (Ch. 24)

SE8_Z02.qxd 4/4/06 9:28 Page 820

••••

References 821

Shlaer, S. and Mellor, S. (1988). Object-Oriented Systems Analysis: Modeling the World in
Data. Englewood Cliffs, NJ: Yourdon Press. (Ch. 14)

Shneiderman, B. (1998). Designing the User Interface, 3rd edn. Reading, MA: Addison-Wesley.
(Ch. 16)

Siegal, J. (1998). OMG overview: CORBA and the OMA in enterprise computing. Comm.
ACM, 41(10), 37–43. (Ch. 12)

Silberschatz, A., Galvin, P. B., et al. (2002). Operating System Concepts, 6th edn. New York:
John Wiley & Sons. (Ch. 15)

Skonnard, A. and Gudgin, M. (2002). Essential XML Quick Reference: A Programmer’s
Reference to XML, XPath, XSLT, XML Schema, SOAP, and More. Boston: Addison-Wesley.
(Ch. 12)

Snyder, C. (2003). Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces. San Francisco: Morgan Kaufmann. (Ch. 16)

Sommerville, I. and Sawyer, P. (1997). Viewpoints: principles, problems and a practical approach
to requirements engineering. Annals of Software Engineering, 3 101–30.

Sommerville, I., Sawyer, P., et al. (1998). Viewpoints for requirements elicitation: a
practical approach. Proc. Int. Conf. on Requirements Engineering, Colorado.

Spafford, E. (1989). The Internet worm: crisis and aftermath. Comm. ACM, 32(6), 678–87.
(Chs. 3, 30)

Spivey, J. M. (1990). Specifying a real-time kernel. IEEE Software, 7(5), 21–8. (Ch. 10)
Spivey, J. M. (1992). The Z Notation: A Reference Manual, 2nd edn. London: Prentice Hall.

(Chs. 10, 22)
Stal, M. (2002). Web services: beyond component-based computing. Comm. ACM, 45(10),

71–6. (Ch. 12)
Stapleton, J. (1997). DSDM Dynamic Systems Development Method. Harlow: Addison-

Wesley. (Ch. 17)
Stephens, M. and Rosenberg, D. (2003). Extreme Programming Refactored. Berkley, CA:

Apress. (Ch. 17)
Stevens, P. and Pooley, R. (1999). Software Engineering with Objects and Components. Harlow:

Addison-Wesley. (Ch. 6)
Storey, N. (1996). Safety-Critical Computer Systems. Harlow: Addison-Wesley. (Chs. 9, 20)
Suchman, L. (1983). Office procedures as practical action. ACM Trans. on Office

Information Systems, 1(3), 320–28. (Ch. 16)
Swartz, A. J. (1996). Airport 95: automated baggage system? ACM Software Engineering

Notes, 21(2), 79–83. (Ch. 2)
Symons, C. R. (1988). Function-point analysis: difficulties and improvements. IEEE Trans.

on Software Engineering, 14(1), 2–11. (Ch. 26)
Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming, 2nd edn.

Harlow: Addison-Wesley. (Chs. 12, 19)
Tanenbaum, A. S. (2001). Modern Operating Systems, 2nd edn. Englewood Cliffs, NJ: Prentice

Hall. (Ch. 15)
Thayer, R. H. (1997). Software system engineering: an engineering process. In Software

Requirements Engineering (R. H. Thayer and M. Dorfmann, eds.). Los Alamitos: IEEE
Computer Society Press, 84106. (Ch. 2)

Thayer, R. H. (2002). Software system engineering: a tutorial. IEEE Computer, 35(4), 68–73.
(Ch. 2)

Tichy, W. (1985). RCS—a system for version control. Software Practice and Experience,
15(7), 637–54. (Ch. 29)

SE8_Z02.qxd 4/4/06 9:28 Page 821

•• ••

822 References

Tracz, W. (2001). COTS myths and other lessons learned in component-based software develop-
ment. In Component-Based Software Engineering (G. T. Heineman and W. T. Councill,
eds.). Boston: Addison-Wesley, 99–112. (Ch. 18)

Turner, M., Budgen, D., et al. (2003). Turning software into a service. IEEE Computer, 36(10),
38–45. (Ch. 12)

Ulrich, W. M. (1990). The evolutionary growth of software reengineering and the decade
ahead. American Programmer, 3(10), 14–20. (Ch. 21)

van der Aalst, W. M. P. and ter Hofstede, A. H. M. (2005). YAWL: Yet Another Workflow
Language. Information Systems, 30(4), 245–75.

Vesperman, J. (2003). Essential CVS. Sebastopol, CA: O’Reilly & Associates. (Ch. 29)
Viega, J. and Mcgraw, G. (2002). Building Secure Software, Boston, MA: Addison-Wesley.

(Ch. 30)
Wall, L., Christiansen, T., et al. (1996). Programming Perl. Sebastopol, CA: O’Reilly &

Associates. (Ch. 17)
Wang, N., Schmidt, D. C., et al. (2001). Overview of the CORBA component model. In

Component-Based Software Engineering (G. T. Heineman and W. T. Councill, eds.). Boston:
Addison-Wesley, 557–72. (Ch. 19)

Ward, P. and Mellor, S. (1985). Structured Development for Real-Time Systems. Englewood
Cliffs, NJ: Prentice Hall. (Ch. 8)

Warmer, J. and Kleppe, A. (1998). The Object Constraint Language: Precise Modeling with
UML. Boston: Addison-Wesley. (Ch. 19)

Warren, I. (1998). The Renaissance of Legacy Systems. London: Springer. (Ch. 21)
Weinberg, G. (1971). The Psychology of Computer Programming. New York: Van

Nostrand. (Chs. 17, 25)
Weinreich, R. and Sametinger, J. (2001). Component models and component services: con-

cepts and principles. In Component-Based Software Engineering (G. T. Heineman and
W. T. Councill, eds.). Boston: Addison-Wesley, 33–48. (Ch. 19)

Weiss, S. (2002). Handheld Usability. New York: John Wiley & Sons. (Ch. 16)
Westmark, V. R. (2004). A definition for information system survivability. Proc. 37th

Hawaii Int. Conf. on System Sciences, Hawaii. (Ch. 30)
Wheeler, D. A. (2003). Secure Programming for Linux and UNix HOWTO, Web published,

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html. (Ch. 30)
White, B. A. (2000). Software Configuration Management Strategies and Rational

ClearCase. Reading, MA: Addison-Wesley. (Ch. 29)
White, S. A. (2004). An introduction to BPMN. http://www.bpmn.org/Documents/

Introduction%20to%20BPMN. (Ch. 31)
White, S., Alford, M., et al. (1993). Systems engineering of computer-based systems. IEEE

Computer, 26(11), 54–65. (Ch. 2)
Whitgift, D. (1991). Software Configuration Management: Methods and Tools. Chichester:

John Wiley & Sons. (Ch. 29)
Whittaker, J. A. and Thompson, H. H. (2004). How to Break Sofware Security: Effective

Techniques for Security Testing, Boston, MA: Addison-Wesley.
Whittaker, J. W. (2002). How to Break Software: A Practical Guide to Testing. Boston: Addison-

Wesley. (Ch. 23)
Williams, L., Kessler, R. R., et al. (2000). Strengthening the case for pair programming. IEEE

Software, 17(4), 19–25. (Ch. 17)
Wirfs-Brock, R. J. and Johnson, R. E. (1990). Surveying current research in object-oriented

design. Comm. ACM, 33(9), 104–24. (Ch. 18)

SE8_Z02.qxd 4/4/06 9:28 Page 822

••

References 823

Wirfs-Brock, R., Wilkerson, B., et al. (1990). Designing Object-Oriented Software.
Englewood Cliffs, NJ: Prentice Hall. (Ch. 14)

Wordsworth, J. (1996). Software Engineering with B. Wokingham: Addison-Wesley. (Chs. 4,
9, 10, 22)

Wordsworth, J. B. (1991). The CICS application programming interface definition. Proc.
Z User Workshop, Oxford, Berlin: Springer-Verlag. (Ch. 10)

Zimmermann, H. (1980). OSI reference model—the ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, COM-28(4), 425–32.
(Ch. 11)

••

SE8_Z02.qxd 4/4/06 9:28 Page 823

••

A

abstract data types, 225–26
abstractions, 170
acceptable risk, 197
acceptance testing, 80
ACM, 14–17
active objects, 320
Active X controls, 273
activities

bar charts, 103
project management, 94–96
software processes, 74–82

activity models, 9
activity networks, 100–104. See also project

management
adaptability, 160
adaptive maintenance, 493
additive composition, 453
ADLs (architectural description languages), 246–47
advice, 776
aggregation, 185–86
agile methods, 396–98
ALARP (as low as reasonably practical), 197
algebraic specification, 224–29
algorithms

design, 77
errors, 202

aliasing, 471

alpha testing, 80
analysis

components, 70
context models, 171–73
impact, 497
object-oriented, 182
requirements, 75
requirements engineering process, 146–58
risk, 107–8, 197–99
static, 467
systems, 242
threat, 205. See also risk
user, 377, 378–81
V & V (verification and validation), 527–30

AOSD (aspect-oriented software development), 425,
771–72

aspects, join points and pointcuts, 776–80
separation of concerns, 772–76

aperiodic stimuli, 340
APIs (Application Programming Interfaces), 135.

See also interfaces
application system reuse, 429

appendices, software requirements documentation,
138

application-level protection, 730
applications

architecture, 293–95
data processing systems, 295–98
event processing systems, 304–7
language processing systems, 307–9
transaction processing systems, 298

Index

SE8_Z03.qxd 4/4/06 9:28 Page 824

••

Index 825

applications (continued)
data, 39
domains, 420
frameworks, 426–28
layers, 272
links, 408
reuse, 416
software, 39
system reuse, 428–36

APSE (Ada Programming Support Environment),
251

architectural design, 77, 242–44, 325
control styles, 255–60
modular decomposition styles, 252–55
organisation, 247–52
reference architectures, 260–63
in security engineering, 728–31
system selection, 244–47

architecture, 85
applications

data processing systems, 295–98
event processing systems, 304–7
language processing systems, 307–9
transaction processing systems

distributed systems, 267–69. See also distributed
systems

fault tolerance, 482–86
layers, 303
MDA (Model Driven Architecture), 314
resource allocation systems, 434

arithmetic errors, 201
aspect identification, 786
aspect-oriented design and programming, 785–89
aspects, 226, 776, 778, 780–91

weaving, 426, 776, 779–90
AspectJ, 776, 788
assessment

legacy systems, 506
risk reduction, 201–2

asset
analysis, 725
compartmentalised, 735
and security, 720–21

ATM (automated teller machine), 133–35
client-server architecture, 272–74
context model, 172
failure classes, 212
transaction processing systems, 298–304

attack detection, 60, 720–21
attributes of software, 12–13
automated static analysis, 527–30

availability, 48
critical systems, 51–55
design, 243
metrics, 209
threats to, 721

avoidance strategies, 109
risk, 201

B

bar charts, 100–104. See also project management
batch processing systems, 295
behaviour

formal specification, 229–36
objects, 186–87

behavioural models, 173–77
BPMN, 763
British Computer Society, 14
broadcast models, 258
business objects, 277
business policies, 39
business processes, 39
business services, 752–53

C

call–return model, 256
CASE (Computer-Aided Software Engineering),

12
classification, 86–89
generator-based software reuse, 423–26
meta-CASE tools, 307
software processes, 85–89
toolsets, 248

CBSE (component-based software engineering),
9, 65, 69–71, 440–42

component composition, 452–59
models, 442–50
processes, 450–52
software engineering, 747

centralised control, 256–58
classes

failures, 212
hierarchies, 184
objects, 316–20

SE8_Z03.qxd 4/4/06 9:28 Page 825

••••

826 Index

Cleanroom
processes, 66
software development, 532–35

client–server
architecture, 270–75
model, 249–50

clusters, legacy systems, 505
code of ethics, 15
colours, user interfaces, 374
competence, 14
completeness, 121

checks, 159
components

analysis, 70
design, 77
development for reuse, 447–50
interfaces, 444
legacy systems, 39
methods, 12–13
reuse, 416
testing, 80

composition, 452–59
design, 787

comprehensibility, 160
computer misuse, 14
computer science, 7
computer systems management, 34–35
concept reuse, 416
concern-oriented requirements engineering, 782–85
concerns, 780–81
concurrent objects, 319–20
confidentiality, 14, 49

disclosure, 59
threats to, 721

conflict analysis and resolution, 787
consistency

checks, 159
software requirements, 121

construction, 83
constructor operations, 225
containers, 447
context models, 171–73
contingency plans, 110
contracts

maintenance, 495
rapid software development, 394

control styles, 255–60
control systems, 349–55

in security, 720–721
coordination services, 752–53
CORBA, 278–82, 445–47

Core system design, 786
corrective maintenance, 493, 497
corruption of programs, 59
costs, 9–11

dependability, 50
formal specification, 221
project management, 95
system re-engineering, 501, 503

COTS (commercial off-the shelf), 32
application system reuse, 429–36
in security engineering, 727, 737

Create operation, 227
critical systems, 44–45

availability, 51–55
dependability, 47–50
development, 463–66

dependable processes, 466–67
dependable programming, 467–75
fault tolerance, 475–82
fault tolerant architectures, 482–86

reliability, 51–55
safety, 55–58
security, 58–60
specification, 194–95

risk-driven, 195–202
safety, 202–4
security, 204–7
software reliability, 207–13

types of, 46–47
customised products, 5

D

damage assessment, 476–80
damage limitation, 57
data acquisitions

real-time software design, 355–57
systems, 355–57

databases, 405
data-flow

diagrams, 296–97
models, 9, 174–75

data integration services, 262
data models, 177–81
data processing systems, 295–98
data re-engineering, 502
data repository services, 262
data structure design, 77

SE8_Z03.qxd 4/4/06 9:28 Page 826

••••

Index 827

debugging, 79, 85
decomposition, 199–201
default input processing, 471
definition, requirements analysis and, 67
deliverables, 98–99
delivery

challenge, 13
incremental, 71–73

denial of service, 59
dependability, 47–50
dependable programming, 467–75
dependable software processes, 466–67
dependencies, 101
deployment-time configuration, 433
deployment, design for, 735, 736–37
design, 67, 76–79

algorithms, 77
architectural. See architectural design
components, 77
data structure, 77
inspections, 467
interfaces, 77, 363–66

evaluation, 383–85
processes, 376–81
prototyping, 381–83
troubleshooting, 366–76

messages, 375
models, 328–33
object-oriented, 314–16

classes, 316–20
processes, 320–35, 335–36

rapid software development. See rapid software
development

real-time software. See real-time software design
reuse, 70
software reuse, 416–18, 421–23
specification, 220

design-time configuration, 433
detection

fault, 476–80
risk, 201

development
Cleanroom software, 532–35
components for reuse, 447–50
critical systems, 463–66

dependable processes, 466–67
dependable programming, 467–75
fault tolerance, 475–82
fault tolerant architectures, 482–86

evolutionary, 65, 68–69
integration, 70

iteration, 84
object models, 181–87
processes, 441
product instance, 436
rapid software development. See rapid software

development
spiral, 73–74
Unified Software Development Process, 82
validation, 73

dictionaries, 180
distributed systems

client–server architecture, 270–75
distributed object architectures, 275–82
inter-organisational distributed computing, 282–89
multiprocessor architectures, 269–70

distribution, 729
diversity, 734
documentation. See also architectural design

design, 331
software requirements, 136–39

domains
applications, 420
software requirements, 125–26
viewpoints, 150

domain-specific architectures, 261
dynamic memory allocation, 470
dynamic models, 329

E

early aspects, 782
editing systems, 305
editor grid facilities, 129
elaboration, 83
elicitation

requirements analysis and, 75
requirements engineering process, 146–58

emergency repair processes, 500
emergent system properties, 23–25
enduring requirements, 161–62
Enter operation, 227
enterprise application frameworks, 427
environments, 87
ERA (Entity-Relation-Attribute) modeling, 178
ERP (Enterprise Resource Planning), 6, 293, 433
error tolerance, 49. See also critical systems
ethical responsibility, 14–17
ethnography, 157–58, 380–81
evaluation, 383–85

SE8_Z03.qxd 4/4/06 9:28 Page 827

••••

functional emergent properties, 23
functionality

COTS (commercial-off-the-shelf), 429
sub-systems, 28

functional requirements, 27, 119–26
function-oriented pipelining, 253, 254–55
functions, 416

G

generalisation hierarchies, 318
generalisation relationships, 183
generative programming, 425
generator-based reuse, 423–26
generic models, 261
generic products, 5
GIOP (Generic Inter-ORB Protocol), 281
goals, system, 124
grid facilities, 128

H

hardware, 39
COTS, 33
fault tolerance, 483
reliability, 24, 207–8

hazards, 198. See also risk
avoidance, 56
detection and removal, 57

heterogeneity challenge, 13
hierarchical composition, 453
hierarchies

classes, 184
generalisation, 318

I

identification
components, 451
evolution processes, 499
objects, 326–28
risk, 196–97

IDL (Interface Definition Language), 280

828 Index

event-driven systems, 258
event processing systems, 304–7
evolution, 8, 81–82, 489–90

COTS (commercial-off-the-shelf), 431
design, 335–36
legacy systems, 504–9
maintenance, 492–98
processes, 498–504
program dynamics, 490–92
systems engineering, 33–34

evolutionary development, 65, 68–69
exception handling, 471–75
exceptions, 755
existing systems, structured methods, 187–90
exploratory development, 68
exposure to security, 720–721
extensions, 780, 781, 785–86
external requirements, 123
extreme programming (XP), 398–405

F

facilities service, 760
fail-secure, 733
failures, 44. See also critical systems

classification, 211
power, 350

FAQs (Frequently Asked Questions), 5–14
fat-client model, 271
faults. See also critical systems

avoidance, 53
detection and removal, 53
fault-free software, 464
tolerance, 53, 475–86
trees, 200

feasibility studies, 75
requirements engineering process, 144–46

floating-point numbers, 470
formal methods, 218–19, 530–35
formal specification, 218–19

behaviour, 229–36
software process, 219–22
sub-system interfaces, 222–29

forms
rapid software development, 406
structured language specifications, 132

frameworks
applications, 426–28
MVC (Model-View-Controller), 427

SE8_Z03.qxd 4/4/06 9:28 Page 828

••••

interviewing, 152–53
intolerable risk, 197
intruder alarms, 351
IOR (Interoperable Object Reference), 280
iteration

development, 9, 84
RUP (Rational Unified Process), 83
software processes, 71–74

J

Java
applets, 273
building monitor process, 353
exception handling, 471–75
fault tolerance, 475–82
protected information, 468–69
real-time versions, 342

JINI model, 286
join points, 426, 776–80

model, 776, 779

L

language interface design, 755
languages

formal specification, 222
IDL (Interface Definition Language), 280
Java. See Java
OCL (object constraint language), 457
patterns, 421–23
processing systems, 307–9
SQL (Structured Query Language), 274
UML (Unified Modeling Language), 11, 155
visual programming, 383
WSDL (Web Services Description Language), 287

large-scale reuse, 242
layered models, 250–52

legacy systems, 40
layers

applications, 272
architecture, 303

Leave operation, 227
legacy systems, 38–40

evolution, 504–9
services, 759–60

Index 829

IEEE (Institute of Electrical and Electronic
Engineers), 14

impact analysis, 497
implementation, 67, 76–79
incremental delivery, 71–73
independent components, 440
indexes, 138
indirect viewpoints, 150
information management systems, 299–304
information presentation, 370–76
inheritance, 471

models, 183–85
input-process-output structure, 295
input validation, 734–35
inspection operations, 226
inspections, 467

V & V (verification and validation), 521–27
insulin pump, 46–47

formal specification, 232–35
requirements, 132, 202
run-time checking, 580–81
safety argument, 576–78
state constraints, 476

integration, 33
COTS (commercial-off-the-shelf), 429
development, 70
UDDI (Universal Description, Discovery, and

Integration), 287
integrity, threats to, 721
intellectual property rights, 14
interaction, 367–70
interactor viewpoints, 150
interdisciplinary involvement, 26
interfaces, 29

between contractors, 37
components, 444
design, 77, 363–66

evaluation, 383–85
processes, 376–81
prototyping, 381–83
troubleshooting, 366–76

generators, 405
object specification, 333–35
rapid software development, 393
services, 263
specification, 135–36, 222–29

Internet-based prototyping, 383
interoperability, 431
inter-organisational distributed computing, 282–89
interrupt, 471
interrupt-driven models, 258

SE8_Z03.qxd 4/4/06 9:28 Page 829

••

Lehman’s Laws, 490–92
LIBSYS, 120, 123

accounting systems, 128
architecture, 300–301
data models, 181
domain requirements, 126
interfaces, 369
object behaviour models, 186
requirements, 151
software reuse, 425
XP (extreme programming), 399

life cycles, 66
life cycle risk assessment, 723, 725–27
lifetimes, software, 419
linked data structure redundancy, 480
links, 405, 408
logging service, 760
Lookup operation, 227

M

maintainability, 49
design, 243

maintenance, 67. See also troubleshooting
evolution, 492–98
rapid software development, 394
service, 760

management
processes, 347–49
projects. See project management
rapid software development, 393
requirements, 84, 467
requirements engineering process, 160–66
safety, 202–4
test, 467

manager model, 256
mandatory software requirements, 129
MDA (Model Driven Architecture), 314
messages

design, 375
services, 263

meta-CASE tools, 307
methods, 11–12

agile. See agile methods
components, 12–13
V & V (verification and validation), 530–35

metrics
interface evaluation, 383–85
reliability, 208–10

middleware, 278, 440
integration frameworks, 427

milestones, 98–99
minimisation strategies, 109
mobile code, 273
models

architectural design, 246
CBSE (component-based software engineering),

442–50
checking, 467
design, 328–33
distributed object, 276
MDA (Model Driven Architecture), 314
processes, 8–9
software processes, 65–71
structured methods, 78
system models. See system models
systems engineering, 30–31

models of use, object-oriented design, 323–25
modification requirements, 70
modular decomposition styles, 252–55
modularisation, 502
monitoring, 95

real-time software design, 349–55
risk, 110–11

Move operation, 227, 229
MTTF (mean time to failure), 209
MTTR (mean time to repair), 209
multiple inheritance, 185
multiprocessor architectures, 269–70
MVC (Model-View-Controller), 370, 427

N

name design, 787
namespaces, 750
natural language, 130
navigation of interfaces, 367–70
networks

client–server architecture, 270–75
protocols, 281

neutralization, 60
neutron flux data acquisition, 356
non-functional emergent properties, 23
non-functional software requirements, 119–26,

210–13
non pre-emptive scheduling, 349
N-version programming, 484

830 Index

••

SE8_Z03.qxd 4/4/06 9:28 Page 830

••

periodic stimuli, 340
planning, 73

algorithmic cost models, 634–38
project management, 96–99
requirements engineering management, 162–65
risk, 108–10
testing, 467
V & V (verification and validation), 519–21

platform-level protection, 729
platforms, software reuse, 421
POFOD (probability of failure on demand), 209
pointcuts, 776, 778–779
pointers, 470
policies, business, 39
power failure, 350
p2p (peer-to-peer) systems, 283–85
precision, 49
prediction, maintenance, 496–98
pre-emptive scheduling, 349
preliminary risk assessment, 723–725
preventative fault detection, 476
primary safety-critical software, 55
procedural interfaces, 135
process services, 752–753
processes, 8

business, 39
CBSE (component-based software engineering),

450–52
Cleanroom, 66
debugging, 79, 85
dependable software, 466–67
development, 441
emergency repair, 500
evolution, 498–504
formal specification, 219–22
management, 347–49
models, 8–9
object-oriented design, 320–35
operational, 36
organisational, 35–38
paradigms, 65
planning, 96
prototype development, 411
Ratified Unified Process, 65
requirements engineering, 143–44. See also

requirements engineering process
RUP (Rational Unified Process), 145
software. See software processes
Unified Software Development Process, 82
user interface design, 376–78
XP (extreme programming), 398–405

Index 831

O

objective setting, 73
object models, 181–87
object-oriented decomposition, 252, 253–54
object-oriented design, 314–16

classes, 316–20
processes, 320–35, 335–36

objects
aggregation, 185–86
behaviour models, 186–87
concurrent, 319–20
distributed systems, 275–82
identification, 326–28
reuse, 416
specification, 223

Observer pattern, 423, 424
OCL (object constraint language), 457
OMG (Object Management Group), 279
OO (object-oriented), 11
operating systems, 346–49
operation, 67

abstract data types, 225–26
incompatibility, 454
incompleteness, 454
state, 177
reliability, 24, 207–8

operational processes, 36
ORBs (Object Request brokers), 259, 280
organisational requirements, 123
organisation of architectural design, 247–52
organisations, 34–35
OWL-S, 759

P

pair programming, 404–5
parallelism, 470
parameter incompatibility, 454
partitions, 28
patterns

design, 421–23
Observer, 423, 424

people management, 34–35
perfective maintenance, 493
performance, 23–25

design, 242

••

SE8_Z03.qxd 4/4/06 9:28 Page 831

procurement
development, 36
systems, 430

product development costs, 11
production, 7
product lines, 428, 432–36
product requirements, 123
professional responsibility, 14–17
program inspections, 467, 523–67
program structure improvement, 502
project management, 93–94

activities, 94–96
planning, 96–99
schedules, 99–104

properties, 27
proposals

requirements discovery, 148– 56
writing, 94–95

protected information, 468–69
protection, 729–730
prototyping

interfaces, 381–83
rapid software development, 409–12
requirements, 159
systems, 377

Q

queries, 274
questionnaires, 384

R

RAD (rapid application development), 405–9
rapid software development, 392–95

agile methods, 396–98
prototyping, 409–12
RAD (rapid application development), 405–9
XP (extreme programming), 398–405

realism checks, 159
real-time software design, 340–42

control systems, 349–55
data acquisitions, 355–57
monitoring, 349–55
RTOS (real-time operating system), 346–49
system design, 342–46

recognition in survivability, 739
record-level protection, 730
recovery

blocks, 484
design for, 735–36
fault, 481–82
in survivability, 739

recursion, 470
redundancy, 480

in security engineering, 734
TMR (triple-modular redundancy), 483

re-engineering, 501–4
reference architectures, 260–63
reliability, 48
critical systems, 51–55, 207–13
metrics, 208–10
removal of risk, 201
repairability, 49
report generators, 405
repository model, 247–49
representations, 170
requirements. See also software requirements

analysis, 67
change management, 165–66
discovery, 148–56
elicitation and analysis, 75
management, 84, 467
modification, 70
security, 206–7
specification, 76
validation, 76

requirements engineering process, 118, 143–44
analysis, 146–58
elicitation, 146–58
feasibility studies, 144–46
management, 160–66
validation, 158–60

resistance in survivability, 739
resource allocation systems, 302, 434
resource management systems, 299–304
retrospective fault detection, 476
reuse

component development, 447–50
design, 70
large-scale, 242
in service-oriented software engineering,

747–51
software. See software reuse
visual programming, 407

reverse engineering, 502
review requirements, 159

832 Index

••••

SE8_Z03.qxd 4/4/06 9:28 Page 832

risk
analysis, 107–8
assessment, 73, 201–2, 722–23
classification, 197–99
critical system specification, 195–202
identification, 106–7
management of, 722–27
monitoring, 110–11
planning, 108–10
project management, 104–11
system re-engineering, 501
reduction, 201–2

ROCOF (rate of failure occurrence), 209
role/action models, 9
RTOS (real-time operating system), 346–49
Run schema, 233
RUP (Rational Unified Process), 65, 82–85

feasibility studies, 145

S

safe programming, 469–71
safety, 48

critical systems, 55–58
critical system specification, 202–4
design, 243

scattering, 775–77
scenarios, requirements engineering, 153
schedules

non pre-emptive/pre-emptive, 349
project management, 99–104
software reuse, 419

schemas
Run, 233
Z, 230

scope, 26
script-driven prototyping, 382
secondary safety-critical software, 55–56
security, 48

critical systems, 58–60
critical system specification, 204–7
design, 243
policy, 732
requirements, 206–7
usability, 733–34

security engineering, 718–19
architectural design, 728–31

guidelines, 731–36
concepts, 720–2

risk management, 722–7
system survivability, 737–41

semantic data models, 178
separation of concerns, 425, 772–6
sequence models, 329
sequential composition, 453
servers

client–server architecture, 270–75
concurrent objects, 319

service candidate identification, 752–5
service engineering, 751–60

candidate identification, 752–5
implementation and deployment, 758–9
interface design, 755–7
legacy system services, 759–60

service-oriented software engineering, 744–7
development of, 760–7
reusable components, 747–51
service engineering, 751–60
testing, 766–7
workflow design and implementation, 763–6

service-oriented system architecture, 285–89, 744
services

component models, 448
interfaces, 263
models, 286

single point of failure, 733
SOAP (Simple Object Access Protocol), 287, 744,

745
social engineering, 734
socio-technical systems, 21
software engineering, 4

challenges, 13–14
costs, 9–11
FAQs, 5–14
methods, 11–12
service-oriented, 747

software processes, 64–65
activities, 74–82
CASE (Computer-Aided Software Engineering),

85–89
iteration, 71–74
models, 65–71
RUP (Rational Unified Process), 82–85

software reliability, 24, 207–13
software requirements, 118–19

documentation, 136–39
domains, 125–26
functional and non-functional, 119–26
interface specification, 135–36
SRS (software requirement specification), 136

Index 833

••••

SE8_Z03.qxd 4/4/06 9:28 Page 833

••••

834 Index

software requirements (continued)
system requirements, 129–35
users, 127–29

software reuse, 416–18
application frameworks, 426–28
application system reuse, 428–36
generator-based reuse, 423–26
techniques, 418–21

source code translation, 502
specialisation, software reuse, 432–36
specification, 8

abstract, 77
critical systems, 194–95

risk-driven, 195–202
safety, 202–4
security, 204–7
software reliability, 207–13

formal. See formal specification
interfaces, 135–36, 333–35
natural language, 130
objects, 223
requirements, 76
security, 204–7
software, 75–76
SRS (software requirement specification), 136
structured language, 131–35

spiral development, 73–74
SQL (Structured Query Language), 274

databases, 405
SRS (software requirement specification), 136
stakeholders, 146

communication, 242
standards, components, 440
Statecharts, 176
state machine models, 175–77, 329
static analysis, 467

V & V (verification and validation), 527–30
static models, 329
Structured Analysis, 11
structured language specifications, 131–35
structured methods, 11–12, 78

system models, 187–90
sub-systems, 22

broadcast models, 259
development, 31–32
formal specification, 222–29
identifying, 28
models, 329

support
COTS (commercial-off-the-shelf), 431
software, 39

surveys, 384
survivability, 49
Survivable Systems Analysis, 738, 739–41
system analysis, 242
system context, object-oriented design, 323–25
system failures, 44. See also critical systems
system infrastructure frameworks, 427
system models, 170–71

behavioural models, 173–77
context models, 171–73
data models, 177–81
object models, 181–87
structured methods, 187–90

system re-engineering, 501–4
system requirements, 129–35
systems engineering, 25–26

contractors, 37
in comparison to software engineering, 7–8
decommissioning, 34
design, 28–30
evolution, 33–34
models, 30–31
requirements definition, 26–28
sub-system development, 31–32

T

tabular specification of computation, 134
tangling, 776, 777
task analysis, 379–80
tasks

duration, 101
management services, 263

technical computer-based systems, 21
testing, 67, 80

planning, 467
XP (extreme programming), 401–4

text-case generation, 159
thin-client model, 271
threat analysis, 205, 720–721
three-tier client–servers, 273
throwaway prototyping, 68
timeliness, 49
TMR (triple-modular redundancy), 483
tools

meta-CASE, 307
method support, 189
software processes, 87

traceability, 160, 163

SE8_Z03.qxd 4/4/06 9:28 Page 834

••••

requirements engineering, 160
viewpoint-oriented approaches, requirements

engineering, 149–52, 782–3
visual programming

languages, 383
reuse, 407

volatile requirements, 161–62
VOLERE requirements engineering method, 129
vulnerability

avoidance, 60
and security, 720–21, 726–7, 728

V & V (verification and validation), 516–19
automated static analysis, 527–30
formal methods, 530–35
inspections, 521–27
planning, 519–21

W

waterfall approach, 9
waterfall models, 65–68
WSDL (Web Services Description Language), 287,

745–6, 748–9, 757
Web-based interfaces, 368. See also interfaces
workbenches, 87
workflows

models, 9
RUP (Rational Unified Process), 84

X

XP (extreme programming), 398–405

Y

YAWL, 763

Z

Z schema, 230
examples, 232–35

Index 835

transaction processing systems, 298–304
transition, 83
troubleshooting, 44. See also critical systems

CBSE (computer-based software engineering),
441–42

debugging, 79, 85
failure classification, 211
fault tolerance, 475–82
interfaces, 366–76
interoperability, 431
software reuse, 418

two-tier client–server architecture, 271

U

UD (Universal design), 366
UDDI (Universal Description, Discovery, and

Integration), 287, 744, 745, 758, 763
UML (Unified Modeling Language), 11, 155
unbounded arrays, 471
Unified Software Development Process, 82
use-cases, requirements engineering, 154–56
user interfaces. See also interfaces

design, 363–66
evaluation, 383–85
processes, 376–81
prototyping, 381–83
troubleshooting, 366–76

services, 263
users

interaction, 367–70
software requirements, 127–29

utility services, 752–3

V

validation, 8, 80–81
in aspect-oriented systems, 789–91
development, 73
rapid software development, 394
requirements, 76, 158–60

validity checks, 159
verifiability, 159
verification

in aspect-oriented systems, 789–91
non-functional software requirements, 124

SE8_Z03.qxd 4/4/06 9:28 Page 835

••

A

Abbott, 326
Abowd, 386
Abts, 430
Ackroyd, 35
Adams, 55
Addy, 437
Alexander, 421
Ambler, 396
Anderson, 718
Andrews, 766
Appelrath, 293
Appleton, 422
Arango, 162
Arnold, 41
Arthur, 498
Avizienis, 484, 485

B

Baker, 429
Balk, 429
Baniassad, 787
Banker, 497
Barker, 179
Barnard, 525
Bass, 242, 244, 246, 264
Beale, 386

Beck, 73, 90, 138, 327, 396, 398, 413
Beedle, 396
Belady, 490
Bell, 198
Bentley, 147, 380
Berczuk, 422
Berghel, 58, 734
Bernstein, 269, 290, 310
Bieman, 407, 410, 411
Biggerstaff, 423
Birrer, 779
Bisbal, 41
Bishop, 718
Blevins, 445
Boehm, 73, 74, 108, 397, 413, 430, 449, 498, 516
Booch, 11, 78, 182, 188, 315, 337
Borchers, 422
Bosch, 242, 249, 264, 310
Bott, 18
Bourne, 407
Bracket, 297
Braun, 437
Brazendale, 198
Brerton, 290
Brilliant, 485
Brinch-Hansen, 344
Brook, 41
Brooks, 18, 112
Brown, 262
Budgen, 290
Burns, 349, 359

Author Index

SE8_Z04.qxd 4/4/06 9:29 Page 836

••

Author Index 837

Butler, 425
Buxton, 248, 251

C

Cabrera, 766
Chapman, 45, 194, 219, 236
Checkland, 23, 35
Chen, 178
Chess, 728
Chikofsky, 502
Clarke, 787
Clement, 771
Clements, 247, 256, 264
Coad, 182, 315, 327
Cobb, 532, 534
Cockburn, 396
Codd, 178
Cohen, 223
Coleman, 18
Colyer, 771, 788
Constantine, 78
Constantinos, 791
Cooling, 344, 359
Coulouris, 267, 290
Councill, 442, 460
Crabtree, 380
Crnkovic, 461
Cross, 502
Cumings, 61
Cunningham, 327
Cusamano, 418
Czarnecki, 425

D

Davis, 118, 136
Dehbonei, 219
DeMarco, 11, 112, 174, 397
Diaper, 379
Dijkstra, 344, 470, 790
Diller, 230
Dix, 363, 364, 386
Dollimore, 290
Dorfman, 140
Douglass, 345, 359
Draper, 381
Dunn, 61
Dyer, 55

E

Easterbrook, 162, 219, 782
Eaton, 18
Eisenecher, 425
Elliott, 363
Ellison, 49, 61, 738
Elrad, 425
Erl, 745, 746, 752, 753, 758
Erlikh, 489
Evans, 529, 728
Ewald, 445

F

Fagan, 522, 523
Fayad, 427
Felsing, 396
Finkelstein, 149, 782
Finlay, 386
Firesmith, 206, 728
Foster, 286
Fowler, 155
Frewin, 520
Fromme, 259
Fuggetta, 87, 90
Fujiwara, 480

G

Galin, 535
Gamma, 422, 427, 438
Gane, 78
Garlan, 246, 258, 264, 308, 431
Ghezi, 18
Gilb, 522, 523, 525, 526
Goguen, 230
Goldberg, 327, 370
Gomaa, 345
Gordon, 407, 410, 411
Gotterbarn, 14, 18
Gradecki, 788
Grady, 523
Graham, 315, 522, 523, 525, 526
Griss, 418
Gudgin, 287
Guttag, 223

SE8_Z04.qxd 4/4/06 9:29 Page 837

••••

838 Author Index

H

Hailpern, 536
Hall, 45, 194, 219, 221, 236
Halstead, 497
Hammer, 178
Hardin, 342
Harel, 176, 332, 345
Harker, 162
Harkey, 270
Harold, 294
Harvey, 201
Hatton, 520
Hayes, 230
Heath, 157
Heineman, 442, 460
Helm, 438
Heninger, 131, 138
Highsmith, 396
Higuera-Toledano, 342
Hnich, 461
Hoare, 344
Hofmeister, 242
Horswill, 299
Huang, 482
Huff, 17, 86
Hughes, 157, 380
Hull, 178
Humphrey, 520, 525

I

Issarny, 342

J

Jackson, 11, 41, 130, 188
Jacky, 219, 230
Jacobsen, 154, 182, 188, 315, 337, 451, 773, 780,

785, 787
Jahanian, 199
Jeffries, 396
Johnson, 427, 438
Jones, 230, 532
Jonsson, 461

K

Kafura, 497
Katz, 789
Kavantzas, 766
Kazman, 256, 264
Kedia, 429
Kennedy, 363
Kiczales, 426, 771
Kifer, 310
Kindberg, 290
King, 178
Kintala, 482
Kit, 520
Kiziltan, 461
Kleppe, 314, 457
Knight, 485
Knuth, 421
Kotonya, 121, 136, 140, 149, 167, 782
Kreger, 286
Krutchen, 83, 90, 188
Kumaran, 286
Kume, 56

L

Laddad, 771, 788
Lam, 728
Lamping, 373
Laprie, 44, 485
Larman, 144, 337, 396
Larochelle, 529, 728
Larus, 728
Laudon, 17
Lehman, 490, 492
Leveson, 56, 196, 199, 201, 485
Lewis, 310, 510
Lezeiki, 788
Lientz, 493
Linger, 49, 66, 532, 534, 536
Liskov, 223
Lister, 112
Littlewood, 53
Livshits, 728
Lomow, 746
Lovelock, 285
Luff, 157
Luqi, 236

SE8_Z04.qxd 4/4/06 9:29 Page 838

••••

Author Index 839

Lutz, 56, 407, 531
Lyu, 487

M

Mandrioli, 18
Martin, 17, 157, 422
Matsumoto, 417
Mccabe, 497
McConnell, 112
McDougall, 283
McGraw, 728, 732
McGuffin, 248
MCIlroy, 416
McLeod, 178
Means, 294
Mejia, 219
Mellor, 176, 327
Meyer, 457
Mili, 437, 449
Miller, 14, 18, 299, 363
Mills, 55, 66, 522, 534
Mitschele-Thiel, 532
Mok, 199
Mullery, 149
Mumford, 35
Musciano, 363

N

Nakajo, 56
Neil, 219
Neilsen, 383
Neumann, 61
Newcomer, 746
Ng, 773, 780, 785, 787
Nii, 249
Nills, 532
Nilsen, 342
Norman, 381
Nosek, 493
Nuseibeh, 782

O

O'Connor, 425
O'Leary, 433

Oram, 283, 290
Orcero, 529
Orfali, 270
Ostoff, 366
Ould, 90, 112
Ousterhout, 407

P

Palmer, 396
Palvia, 493
Parnas, 464
Pedrycz, 18
Perrow, 57
Peters, 18
Peterson, 199
Pfaff, 368
Pfarr, 429
Pfleeger, 59, 718
Plakosh, 510
Poore, 536
Pope, 440
Potter, 230
Powell, 536
Pradhan, 480
Preece, 386
Preiser, 366
Price, 525
Prieto-Díaz, 162
Pritchard, 278
Prowell, 66, 219, 532
Pullum, 483, 486

R

Randell, 485
Reddy, 497
Redmill, 203
Reiss, 259, 429
Rittel, 28
Ritter, 293
Robertson, 129, 140, 167
Robinson, 78, 188, 315, 326
Robson, 370
Rogers, 386
Rogerson, 14, 18
Rowland, 18
Royce, 66

SE8_Z04.qxd 4/4/06 9:29 Page 839

••

V

Van Slack, 523
ven der Aalst, 763
Viega, 728, 732
Viller, 157
Vlissides, 438

W

Walker, 259
Wall, 407
Wang, 445
Ward, 176
Warmer, 457
Warren, 505, 510
Webber, 28
Weigers, 140
Weinberg, 404
Weinreich, 446, 447
Weiss, 363
Wellings, 349, 359
Westmark, 738
Wheeler, 732
White, 22, 763
Whittaker, 728
Williams, 405
Wirfs-Brock, 327, 427
Wordsworth, 66, 194, 219, 230, 532
Wosser, 418

X

Xu, 485

Y

Yacoub, 437
Yourdon, 78, 182, 315, 327

Z

Zimmermann, 251

840 Author Index

Rubin, 327
Rumbaugh, 11, 78, 82, 182, 188, 315, 337

S

Sametinger, 446, 447
Santhanam, 536
Saron, 188
Sarson, 78
Sawyer, 782
Schmidt, 427
Schneier, 61, 732
Scholes, 35
Schwaber, 396
Scott, 155, 434
Seacord, 510
Selby, 66, 522, 534
Sharp, 386
Shaw, 246, 264, 308, 309
Shlaer, 327
Shneiderman, 363, 364, 367, 373
Silberschatz, 344
Skonnard, 287
Snyder, 382
Sommerville, 121, 136, 140, 149, 157, 158, 167, 782
Spafford, 58, 734
Spivey, 219, 230, 532
Stal, 286
Stapleton, 396, 413
Stevens, 41
Stolzy, 199
Storey, 199, 464
Suchman, 157, 380
Swanson, 493
Swartz, 23
Szyperski, 279, 442, 451, 460

T

Tanenbaum, 344
ten Hagen, 368
ter Hofstede, 763
Thayer, 22, 25, 41, 140
Thompson, 728
Tracz, 429
Trammell, 536
Turner, 286, 290

SE8_Z04.qxd 4/4/06 9:29 Page 840

