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Preface

Prolog is a programming language in which solutions to computing problems are
expressed as facts representing relationships between objects and as rules
specifying consequences which derive from facts. In Prolog, the mechanisms for
representing knowledge about objects and relationships are both high-level and
general-purpose. This brings two substantial benefits to the programmer. The
first is that, to a very large extent, he or she is freed from concern about the
organisation of physical storage for the data which a program is to manipulate.
The second is the ease with which concepts and relationships from many areas of
human activity can be expressed in the language. You will be able to use Prolog
to tackle problems from outside the familiar scope of traditional computing, and
you will be able to describe them in a concise and powerful notation. Many of
these problems are in the exciting and growing area of Artificial Intelligence,
where the ground rules for tasks are often uncertain or scarcely articulated, the
tasks themselves so open-ended as to have no identifiable conclusion. Such tasks
as general problem-solving, understanding natural language and acquiring and
using expertise have been the province of human intellectual endeavour.
Programming a computer to carry out these tasks is a challenge indeed.

When we consider applications such as these, we have to recognise that the
traditional disciplines of systems design are not wholly appropriate. We cannot
establish a full statement of requirements as a starting point, for these are ill-
defined and come into focus only as system development proceeds. Instead, we
develop systems incrementally. Prolog is a very valuable tool in this context
because of its tremendous flexibility. It is normal to develop, test and refine parts
of a large Prolog program separately and to extend the capabilities of the whole
progressively.

Recognising that the need for an incremental approach to system development
is inescapable, I teach in this book a method of program design and
implementation which ensures the soundness of it. It is based on a collection of
programming techniques that I call “The Programmers’ Toolkit”. Each technique
comprises a description of what it is used for, and a step-by-step guide to how to
use it. Program development consists in choosing the right tools from the kit and
following carefully the instructions for their use.



I do not wish to foster the impression that Prolog is an esoteric language, of
interest only to specialists in Artificial Intelligence. On the contrary, I consider
that it has a great deal to offer to systems developers in more traditional areas,
such as text processing, databases and networking. In this belief, the emphasis
throughout is on the application of the toolkit to practical programming
problems, and not to examples contrived just to illustrate features of the
language.

Part 1 of the book begins with a description of the building blocks out
of which Prolog programs are constructed; this is Chapter 1. Chapter 2 describes
how a Prolog program is executed. I hope this book will be of value to
experienced Prolog programmers as well as to novices, but the expert may well
wish to skip these chapters.

Chapter 3 introduces the crucial topic of recursion, and it focuses on the inter-
dependence of recursive programs and data types. In Chapters 4 to 6, I describe
the built-in predicates of Prolog, which provide useful operations that are
essential for serious programming. In Chapter 7, I investigate the scope for meta-
programming in Prolog, and in Chapter 8, I look at the use of Prolog for writing
grammars, either of natural languages or artificial ones.

Prolog offers a great opportunity for accuracy and clarity of expression in
programs, but the programmer has to learn how to use this opportunity. So,
Chapter 9 covers the testing, debugging and documentation of Prolog programs,
topics which I consider have not been adequately treated in most textbooks on
the language.

Part 2 illustrates the application to large-scale programming of the lessons
taught in Part 1. The techniques in the toolkit, introduced at intervals through
Part 1, are applied in two case studies: the development of a general problem-
solving system and of an intelligent electronic diary. Of course, each of these is
an open-ended exercise. I hope readers will be enthused by what they learn in
this book of the scope for exciting and challenging programming that Prolog
offers, and for them I suggest ambitious routes for the further development of
each system.

Prolog is a language that is still evolving. As it is applied to an ever-increasing
range of applications, so suppliers of Prolog systems add new features to meet
the needs of users of their products. I describe a core of Prolog that is common to
most implementations. I also include a brief account of the work on a standard for
the language at present being done by the British Standards Institute, and I
comment on aspects of the language where the BSI is likely to propose departures
from the current core Prolog.

A note about style is appropriate here. I have avoided formations of
contemporary English such as “s/he” and “him/her”, and I have used the
masculine pronouns throughout. It should not need saying, but perhaps it does,
that this usage does not imply that I am addressing the book to a male readership
only.
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Part 1

The Prolog Language



Chapter 1
Programming with Facts

In this chapter, we describe the components of Prolog programs, and we use them
in a small but complete program. The program is a database about people, and
we show how to retrieve information from it. The same information may be
represented in many different ways; we illustrate how a good representation
makes the information retrieved easier to interpret.

1.1
Data Objects: the Term

Prolog provides only one data type, called a term. All the objects in the problem
being represented, and all the relationships between objects, are represented
using types of term. For instance, we might represent a date by the following
term:

date(thursday, 22, march, 1989)

This is an example of a structured term, usually called simply a structure. A
structure consists of a functor, which is the name of the relationship, and a
sequence of components, which are the objects in the relationship. The number
of components in a structure is called the arity of the structure In the example
given:

date is the functor of the structure, and
thursday

22
march
1989 are the components of the structure.

The arity of the structure is four. The syntax of Prolog requires that:

• The components of a structure are enclosed in brackets.
• The components are separated by commas “,”. 



• There is no space between the functor and the opening bracket which
introduces the components.

It is important to realise that the names we choose for the functor and the
components of a structure are arbitrary and have no special significance within
the language. When we use a structure to represent a relationship, we must state
how the structure is to be interpreted, and we must be consistent in interpreting
all structures having the same functor and the same arity in the same way within
a program. In this case, our interpretation of the structure is:

“The structure represents a date. The four components represent the day on
which the date falls, the date in the month, the month and the year.”

It is good programming practice to choose, for the functor and components of a
structure, names which remind a program’s reader of how to interpret the
structure.

In this example, the first and third components of the structure are atomic
constants, usually called simply atoms. An atom is another type of term. An atom
may include any character, but one which includes anything other than
alphanumeric characters and the underline character “_” must be enclosed in
single quote marks. Also, an atom which begins with a capital letter, a digit or
“_” must be quoted. So:

‘my mother’      ‘george, and, gertie’      ‘205’      ‘_first’      ‘George’

are all examples which would not be atoms without the quote marks.
The other type of constant is a numeric constant, usually called simply a

number. Examples of numbers are:

205      −10      3.75

The first two are integers, the third a real. The second and fourth components of
the structure representing the date are integers.

Exercises 1.1

(a) Which of the following are valid atoms:
(i) b
(ii) B
(iii) an_extremely_long_sequence_of_characters
(iv) 7
(v) man (george)
(vi) ‘man (george)’
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1.2
A Complete Program

Our first Prolog program records information about the soldiers of an army and
their ranks, such as:

“Peckem is a general.”
“Cathcart is a colonel.”
“Moodus is a colonel.”

In the program, we represent each soldier by a structure with functor soldier and
arity 2. Each component is an atom, the first representing the name of a soldier in
the army and the second his rank. In writing our program, we wish to assert that
relationships of this type do indeed hold for soldiers in the army. To make an
assertion, we write the structure which expresses the relationship as a fact in our
program. Each fact is followed by a full-stop “.”:

soldier (peckem, general).
soldier (cathcart, colonel).
soldier (moodus, colonel).

A fact is one way in which a structure can be used in Prolog. A simple program
consists of a series of facts.

In most implementations of Prolog, a program is created externally to the
Prolog system, using a text-editor provided as part of the computer system. A
command is then given to run the Prolog system, followed by a command to
Prolog to load the previously-created program. The details of this process differ
somewhat between systems. The typical sequence is described in section 2.5.

In the rest of this section, we illustrate the operation of Prolog by reference to
the following program, which describes part of the army:

soldier (peckem, general).
soldier (cathcart, colonel).
soldier (moodus, colonel).
soldier (towser, sergeant).
soldier (knight, sergeant).
soldier (aardvark, captain).
soldier (dunbar, lieutenant).
soldier (flume, captain).
soldier (danby, major).

When the program has been loaded, we can ask questions about the relationships
described in the program. 
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A question has the form of a structure, preceded by the symbol?-and
terminated by a full-stop.1 An example of a question is:

?- soldier (towser, sergeant).

Under our interpretation of the meaning of structures with functor soldier and
arity 2, this question is asking:

“Is there a soldier Towser with the rank of sergeant?”

A structure used as a question is a goal, which the user is asking Prolog to satisfy.
One way in which a goal is satisfied is when the structure which is the goal
matches a structure which is a fact in the program. The second way in which a
goal is satisfied involves the use of rules. Programs with rules are introduced in
chapter 2. Prolog recognises any match between a goal and a fact in the program.
If a match is found, Prolog responds with:

yes

to indicate that the goal has been satisfied. If no match is found, the response is:

no

which indicates that the goal has failed to be satisfied. So the response to our
first question:

?- soldier (towser, sergeant).

is:

yes

However, if we ask:

?- soldier (cathcart, captain).

the response is:

no

The goal does not match any fact in the program. Cathcart is not a captain. In the
same way, the response to:

PROGRAMMING WITH FACTS 5



?- soldier (dreedle, general).

is:

no

because we have no fact in the program about a soldier called Dreedle.
A goal may include variables as components of a structure. A variable is a

place-holder, denoting an unspecified value which we wish Prolog to fill in. A
variable begins with an upper-case letter or with the underline character. An
example of a goal which includes a variable is:

?- soldier (aardvark, R).

This goal is to be interpreted as asking the question:

“For what value of R is it true that Aardvark is a soldier of rank R?”

Phrased in everyday English, the question is:

“What is Aardvark’s rank?”

When a goal which includes variables is satisfied, Prolog displays the value
which it has substituted for each variable in the goal. So, the answer to the
question would be:

R = captain

We can ask Prolog to list all possible values for the variables in a goal. In most
Prolog systems the user does this by typing a semi-colon “;” after the first
answer. If other answers exist, Prolog displays the values of variables in them. If
there is no alternative, the response is: no, as for a goal that fails to be satisfied.
For example, we might want to know:

“What soldiers hold the rank of colonel?”

The question is formulated as:

1 In most Prolog systems, the system’s prompt to the user is?-, and the user does not have
to type this symbol to introduce a question. All terms input in response to this prompt are
assumed to be questions. However, throughout this book we preface every question with
the?- symbol, to distinguish questions from structures used in other contexts. 
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?- soldier (S, colonel).

and the answers are listed: 

S=cathcart;
S=moodus;
no

Our program can be used to answer more complicated questions, for example:

“Do Aardvark and Flume hold the same rank?”

We can re-phrase this question in a way which makes clear that it can be
answered by using two goals in succession, the result of the second depending on
that of the first:

“What is the rank that Aardvark holds, and, denoting Aardvark’s rank by R,
does Flume also hold the rank R?”

To express that a succession of goals are to be satisfied together, we separate the
goal structures by a comma. Our question becomes:

?- soldier (aardvark, R), soldier (flume, R).

and the answer is:

R=captain

1.3
Recursion in Structures

The functor of a structure must be an atom, but the components can be terms of
any kind. The definition of a structure reveals that an atom is just a special kind
of structure: one with arity 0. It says:

A structure comprises a functor, which must be an atom, and zero or more
components, each of which is a constant, a variable or a structure.

This definition is interesting because we have defined what a structure is partly
by reference to a structure. A definition which uses the thing being defined
within the definition itself is called a recursive definition. A structure is a
recursive data type. The significance of this becomes apparent in chapter 3,
where we write recursive programs to process recursive structures. At this stage,
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we simply give one illustration of how the meaning of facts in a program can be
captured very precisely by the mechanism of a recursive data type.

Consider the problem of Sergeant Major. In our chosen representation, his
existence would be recorded in our program by the fact: 

soldier (major, sergeant).

If we wanted to ask the question:

“Who is in the army, and what ranks do they hold?”

we would formulate the question as the goal:

?- soldier (A, B).

For Sergeant Major, the answer would be:

A=major
B=sergeant

The problem with this answer is that is does not make clear which is the name of
the soldier and which his rank. The user who asks the question must remember
the meaning of the two components of structures with functor soldier and arity 2
and the order of the components. We can prevent this difficulty arising by
representing name and rank not by atoms but by structures whose functors
suggest the meaning of the component. Using a structure with functor name and
arity 1 to represent the soldier’s name and a structure with functor rank and arity
1 for his rank, the existence of Sergeant Major would be denoted by the fact:

soldier (name (major), rank (sergeant)).

Even if the army also included a Major Sergeant, denoted by the fact:

soldier (name (sergeant), rank (major)).

there would be no confusion in the answers when the user asks the question:
?- soldier (A, B).
Among the answers would be:

A=name (major)
B=rank (sergeant);

This is Sergeant Major.

A=name (sergeant)
B=rank (major)

This is Major Sergeant.
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It is the simplicity and flexibility of the data type term that is the source of
Prolog’s power in representing the many complex objects and relationships
which the programmer recognises in the problem he is addressing. An important
skill of the programmer is the ability to use this power to construct terms which
represent in a meaningful way the objects and relationships in a real-world
problem. As the examples in this section have shown a more meaningful way of
representing the soldiers and their ranks, we shall re-write our first program in
this improved representation. The program becomes:

soldier (name (peckem), rank (general)).
soldier (name (cathcart), rank (colonel)).
soldier (name (moodus), rank (colonel)).
soldier (name (towser), rank (sergeant)).
soldier (name (knight), rank (sergeant)).
soldier (name (aardvark), rank (captain)).
soldier (name (dunbar), rank (lieutenant)).
soldier (name (flume), rank (captain)).
soldier (name (danby), rank (major)).

For the beginner, the different types of term can be confusing. It is helpful to
keep in mind the hierarchy shown in Figure 1.1. 

Exercises 1.3

(a) Identify which of the following are valid structures and, for those
which are valid, identify the arity of the structure and the arity of each
component:

(i) 22nd (street)
(ii) street (22)
(iii) orchestra

Figure 1.1 Hierarchy of terms
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(iv) orchestra (strings, brass, woodwind, percussion)
(v) string_orchestra (strings (violins, violas, cellos, basses))
(vi) quartet (string (violin (first), violin (second), cello, bass)) 
(vii) string_quartet (violin (first), violin (second), cello, bass)
(viii) jazz_ensemble (trumpet trombone fiddle clarinet drums)
(ix) jazz_ensemble (‘trumpet trombone fiddle clarinet drums’)
(x) jazz_ensemble (trumpet, trombone, fiddle, clarinet, drums)

(b) Re-formulate each of the questions about the army in section 1.2 to
take account of the revised representation for a soldier.
(c) Musical instruments are of various types. For instance, the violin
and the viola are string instruments, the clarinet and the bassoon are
woodwind instruments and the trumpet, trombone and horn are brass
instruments. Using the structure instrument (instrument ( A), type (B))
to represent that instrument A is of type B, write a program, consisting
of a series of facts, to represent some of the instruments that might be
found in a symphony orchestra and their types.

1.4
Matching between Structures

To understand when a goal matches a fact, you must master the rule which
determines when two structures match. The rule is as follows:

Two structures match if:

• they have the same functor, and
• they have the same arity, and
• components in corresponding positions in the two structures match.

Two components match if:

• both are variables (the two variables share), or
• one of them is a variable (a variable matches any term and the term is

substituted for every occurrence of the variable), or
• each is a structure and the two structures match.

Notice that here also we have used a recursive definition: within a rule which
defines when structures match, we refer to a requirement for components which
are structures to match.

To see the effect of this rule in practice, consider the following examples.

Example 1

Do the structures: orchestra (strings, B, C, D)
and: orchestra (strings, wind, percussion, keyboard)
match? 

10 PROBLEM SOLVING WITH PROLOG



We test each of three requirements for matching in turn. The two have the same
functor: orchestra and the same arity: 4, so we must compare components in
corresponding positions in the two structures. The first components of each,
strings and strings, are matching structures. (Remember that atoms are simply
structures with arity 0.) In the case of the second components, the variable B
matches the atom wind, and the value wind is substituted for the variable B in the
first structure. The same type of match between a variable and an atom occurs
with the third and fourth components of the structures, resulting in the
substitution of percussion for C and keyboard for D. The answer, therefore, is
that the two structures do match.

Example 2

Do the structures: pets (dog (fangs), cat (paws))
and: pets (Animal, Animal)
match?

Again, we readily note that the two have the same functor: pets and the same
arity: 2, so the question is whether components in corresponding positions
match. For the first components, the structure dog (fangs) would match the
variable Animal, with the value dog (fangs) being substituted for the variable. For
the second components, the structure cat (paws) would match the variable
Animal, with the value cat (paws) being substituted for the variable. However, in
Prolog a variable in a structure can only take a single value. It is not possible for
different substitutions to be made for the same variable in a single structure.
Hence, the two structures do not match.

Exercises 1.4

(a) Determine whether each of the following pairs of structures match.
If a pair does match, identify the values which are substituted for
variables in the structures. If a pair does not match, say why not.

(i) book (title (‘animal farm’), author (‘george orwell’))
and
book (title (T), Author)

(ii) date (day (wednesday), date (21), month (M), year (1986))
and
date (Day, Date, Month, Year)

(iii) holiday (christmas, date (day (25), month (december), year
(Y)))
and
holiday (H, date (Day, Month, year (1986))) 

(iv) holiday (mayday (1, may))
and
holiday (mayday, 1, may)
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1.5
Summary

In this chapter, we have introduced the following ideas:

• Every object in a Prolog program is a term.
• The types of term form a hierarchy.
• A structure is identified by its functor and its arity.
• A fact is a structure which is used in a program to represent an object or a

relationship in a real-world problem.
• We ask questions by using structures as goals.
• A goal is satisfied if it matches a fact in the program.
• The structure is a recursive data type.
• A variable is a place-holder. Any term may be substituted for a variable,

but the same substitution must be made for every occurrence of a variable
in a structure.

• When two terms match, values are substituted for the variables in them. 
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Chapter 2
Programming with Rules

In Chapter 1, we saw how to construct a program from facts, and we wrote a
program in which each fact identified one soldier in an army. In this chapter, we
add rules to the program. We then introduce some terminology and explain how
Prolog sets about satisfying the goals which the user types in. In the final
section, we show what a typical interactive session with Prolog looks like,
though the details do vary somewhat between implementations of the language.
We describe some of the proposals for a standard for the language in
Appendix 3. After reading this chapter, you will have a sufficient understanding
of the workings of Prolog to write simple programs of your own and run them on
your Prolog system.

2.1
Rules

The advantage of using a rule is that the programmer can express a general
principle governing the relationship between objects, rather than just listing
specific instances of a relationship. For example, we expressed the question:

“Do Aardvark and Flume hold the same rank?”

as a conjunction of the two goals:

?- soldier (name (aardvark), R), soldier (name (flume), R).

In fact, it is true of any two soldiers that if each is of some rank R, then the two
are of the same rank. We can express this principle in the following rule:

same_rank (A, B):-
soldier (A, R),
soldier (B, R). 

A rule has a head and a body, separated by the special symbol:-, which is
pronounced “if”. The body consists of one or more sub-goals, separated by



commas. Each sub-goal must be a structure or an atom. The whole rule is
terminated by a full-stop. In the example given:

same_rank (A, B) is the head of the rule,
soldier (A, R), soldier (B, R). is the body of the rule,
soldier (A, R) is the first sub-goal,
soldier (B, R) is the second sub-goal.

A rule states that the relationship in the head holds if each relationship in the
body holds. So, the meaning of our example rule is:

“It is true that: soldier A holds the same rank as soldier B if it is true that:
soldier A holds rank R and it is true that: soldier B holds rank R.”

If we add this rule to our program, the form of the question which previously
comprised two goals is now:

?-same_rank (name (aardvark), name (flume)).

and the answer is:

yes

There are other ways in which we might use our rule. For instance, if we want to
know:

“Which soldiers hold the same rank as Moodus?”

we use the goal:

?- same_rank (Soldier, name (moodus)).

and we get the answers:

Soldier = name (cathcart);
Soldier = name (moodus);
no

The question could equally be asked as: 

?- same_rank (name (moodus), Soldier).

with answers as before.
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Does the second answer come as a surprise to you? Probably so, though if you
had thought carefully about the rule you might have noticed that there is nothing
in it which says that soldiers A and B have to be different; and indeed it is true
that every soldier holds the same rank as himself. But, perhaps it is not a very
useful truth, one which we might have preferred our program not to remind us
of.

We could equally ask:

“Which pairs of soldiers hold the same rank?”

The question is formulated as:

?- same_rank (X, Y).

Many substitutions of values for X and Y are possible. The first few are:

X=name (peckem)
Y=name (peckem);

X = name (cathcart)
Y=name (cathcart);

X=name (cathcart)
Y=name (moodus);

X=name (moodus)
Y=name (cathcart)

As these answers are produced, it becomes apparent that Prolog is not only
enumerating identical pairs: X=name (peckem) Y=name (peckem), which by
now you should be expecting, but it is also giving answers which are duplicates,
save for the substitutions being reversed: X=name (cathcart) Y= name (moodus),
followed shortly by: X=name (moodus) Y=name (cathcart). Here also, we have
to acknowledge that as the same_rank relationship is reflexive, the responses are
strictly correct, though once again they are probably not what we would want.

Whether or not we wish to prevent this program from exhibiting this
behaviour, we do need to understand how Prolog produces its answers. Before
we can progress to writing more complex programs, we have to learn how a
program is executed, not just what a program comprises and what it means. That
is, we have to learn about the program’s procedural behaviour, rather than just
understanding it as a declarative description of objects and relationships between
objects. Prolog’s procedural behaviour is the subject of section 2.3. 

Exercises 2.1

(a) When the user formulates the question: “Do Aardvark and Flume hold the
same rank?” by the succession of goals:
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?- soldier (name (aardvark), R), soldier (name (flume), R).

Prolog gives the value which has been substituted for the variable in the
goal:

R=rank (captain)

When he formulates the question as:

?- same_rank (name (aardvark), name (flume)).

the answer is just:

yes

Write a version of the same_ rank rule which does give the rank of the two
soldiers, if they are of the same rank.

(b) Hermann, Klaus, Charlotte and Wilfrid are musicians. Hermann plays the
violin, and Charlotte plays the horn and the trombone. Klaus plays any string
instrument, and Wilfrid plays any musical instrument at all. Using the
structure plays (player (A), instrument (B)) to represent that person A plays
instrument B, write a series of facts and rules to describe the musical talents
of the quartet. Use the program describing the instruments of a symphony
orchestra that you wrote for exercise 1.3 (c).

2.2
Terminology: Procedures, Clauses and Predicates

The declarative view of a Prolog program is that it is a collection of data items.
Indeed, a complete program is called a database, reflecting the fact that every
object in a Prolog program is a data item. Facts, rules, the head of a rule, the
body of a rule, goals: all these are, at the level of syntax, simply structures. We
have a range of vocabulary which enables us to distinguish the context in which
structures are used: a fact is a structure used as an assertion; a goal is a structure
used as a question. This section introduces you to more words in the terminology
of Prolog, words which are used when talking about the procedural behaviour of
a program, rather than about its declarative characteristics as a collection of
structures. The terminology of any subject can be confusing for the beginner.
The terminology of Prolog is particularly so because it is providing a number of
different words for concepts which at the level of syntax are identical.

Each fact and each rule in a program is called a clause. A rule is a clause
which has a head and a body. A fact is a clause which has a head and an empty
body. If you answered exercise 2.1 (b), you probably wrote a program something
like:
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plays (player (hermann),      instrument (violin)).
plays (player (charlotte),      instrument (horn)).
plays (player (charlotte),      instrument (trombone)).
plays (player (klaus), X):-
     instrument (X, type (string)).
plays (player (wilfrid), X):-
     instrument (X, Any_type).

In this program, the head of each clause is a structure of the same type: functor
plays, arity 2. A collection of clauses whose heads have the same functor and the
same arity is called a procedure. So the program comprises one procedure having
five clauses. The set of clauses for a procedure defines a relationship. The
relationship which is defined by a procedure is called a predicate, and associated
with the predicate is its arity. Our program is, therefore, a definition of the
predicate plays with arity 2. We use the notation plays/2 as shorthand for the
phrase: “the predicate plays with arity 2”.

Prolog is not at all fussy about the layout of a program. The only requirement
is that there must be a <space> or <newline> character after the full-stop at the
end of each clause. Throughout this book we observe the following conventions:

• Each fact is written on a new line.
• The head of a rule and the:-symbol are written on one line, and each sub-goal

is written indented on a new line.
• Procedures are separated by a blank line.

The language allows comments to be used freely in a program. Any text between
the pair of symbols/* and */is treated as a comment. So:

/*
This is a comment.
It continues over several lines.
Comments can appear wherever a <space> character would be legal.
*/

Any text after the symbol % on a line is also treated as a comment. The end of
the comment is the <newline> character. So: 

% Procedure for plays/2
plays (player (hermann),      instrument (oboe)).      % hermann plays the

oboe
plays (player (charlotte),      instrument (horn)).      % charlotte plays the

horn
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Once we have written a procedure for a predicate, we call that procedure as a
goal by using the name of the predicate, together with the required number of
arguments, in a question:

?- Plays (player (charlotte),      instrument (glockenspiel)).
no

In this call, the arguments associated with the call to the procedure plays are the
structures player (charlotte) and instrument (glockenspiel). The term “argument”
is the word used for a component of a goal structure.

2.3
Procedural Behaviour: How Goals are Satisfied

Equipped with the necessary terminology, we can now describe what happens
when the user types in a goal. The questions are:

• For a program which includes both facts and rules, when is a goal satisfied?
• In what order does Prolog search the clauses of a program for a match with a

goal?
• What does Prolog do when a goal fails?
• How does Prolog produce alternative answers?

We consider these questions in turn.

2.3.1
Satisfying a goal

We must amplify the statement we made in section 1.2 about when a goal is
satisfied, for in that chapter we were writing about programs which consisted of
facts only. Taking rules into account leads us to the following:

A goal can be satisfied if it matches the head of a clause for a procedure. If
the match is with the head of a clause which has an empty body (i.e. the
clause is a fact), the goal is immediately satisfied. If the match is with the
head of a clause which is a rule, the goal is satisfied only if each sub-goal
in the body of the rule is satisfied when called as a goal. The sub-goals are
called in the order in which they are written. 

2.3.2
Searching for a match

For each goal or sub-goal, Prolog searches the clauses of the program in the
order they were written by the programmer, starting the search, for each goal or
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sub-goal, from the beginning of the database. We illustrate this process of search
with example goals and a program comprising procedures for same_rank/2 and
soldier/2. Consider first the goal:

?- same_rank (name (aardvark), name (flume)).

Figure 2.1 shows the goal and, in box 1, part of the program text. The heavy
arrow from the goal points to the clause in the program with whose head the goal

Figure 2.1 Satisfying the goal:?-same_rank (name (aardvark), name (flume)) by
satisfying two sub-goals 
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matches. The match results in the substitution of values for variables A and B.
The substitutions are shown in the small box and are denoted by the symbol ←.
As the match is with a rule, the goal is satisfied only if the sub-goals can be
satisfied. The first sub-goal, after the substitution A ← name (aardvark), is:?-
soldier (name (aardvark), R). We have drawn the relevant clauses of the program
in box 2.1, and the heavy arrow points to the place at which a matching clause is
found. The match results in the substitution of the value rank (captain) for the
variable R, as shown in the small box. As the matching clause has an empty
body, the sub-goal is immediately satisfied.

The second sub-goal is shown beneath the first. Note that its form is now:?-
soldier (name (flume), rank (captain)), following the substitution R ← rank
(captain). We have re-drawn the clauses for soldier/2 in box 2.2 to emphasise that
for each sub-goal there is a separate search starting afresh from the beginning of
the database. The heavy arrow from the goal to the clause in box 2.2 shows the
point at which a match is found. The match is with a fact, so the goal is
immediately satisfied. Now both the sub-goals in the body of the clause for
same_rank/2 are satisfied. The parent goal is satisfied, and Prolog’s answer is:

yes.

The answer was produced without Prolog searching the complete database for
each sub-goal. Clauses for soldier/2 which were not examined in the process of
satisfying the sub-goals are italicised in boxes 2.1 and 2.2.

2.3.3
Failure of goals

We illustrate Prolog’s action when a goal cannot be satisfied with the example:

?-same_rank (name (peckem), name (dunbar)).

The situation is shown in Figure 2.2.
The first sub-goal has been satisfied, with the substitution R ← rank (general).

The form of the second sub-goal is then:?-soldier (name (dunbar), rank
(general)), and, as shown at box 2.2, the end of the database is reached without
the goal being satisfied. This is what we mean by saying that a goal fails. When a
goal fails, Prolog backtracks to the previous goal and attempts to re-satisfy it.
When Prolog tries to re-satisfy a goal, it undoes any substitutions of values for
variables which the first match had produced and then continues its search for
another matching clause from the clause in the database after that at which the
previous match had been found. 

In our example, the goal before the failed goal is:?-soldier (name (peckem),
R). It had previously matched with the first clause for soldier/2, with the
substitution R ← rank (general). That substitution is undone, restoring the goal to
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its original form, and the search for a match continues from the next clause after
that arrowed in box 2.1 of Figure 2.2. However, there is no other matching clause
in the database, and, as shown in Figure 2.3, that goal also fails. 

The goal before:?-soldier (name (peckem), R) was:?-same_rank (name (
peckem), name (dunbar)). The attempt to re-satisfy that goal also ends in failure,
as shown in Figure 2.4 

Figure 2.2 The second sub-goal fails
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But this was the goal typed in by the user, so there are none before it! At this
point Prolog gives up, and the response to its user is the familiar: no.

2.3.4
Producing alternative answers to questions

It is by backtracking that Prolog produces alternative answers to questions which
include variables. Consider the goal: 

?-same_rank (S, name (knight)).

The progress of the attempt to satisfy this goal is illustrated in Figure 2.5. 
The match of the goal with the clause for same_rank/2 causes the variable S in

the goal to share with the variable A in the clause head and results in the

Figure 2.3 The first sub-goal fails to be re-satisfied

Figure 2.4 The goal:?-same_rank (name (peckem), name (dunbar)) fails
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substitution B ← name (knight). In the figure, we denote the sharing of two
variables by the symbol ↔. When two variables share, a substitution of a value
for either one of them causes the same substitution to be made for the other. The
first sub-goal is:?-soldier (A, R), and this goal is immediately satisfied by a
match with the first clause for soldier/2, producing substitutions as shown by box
2.1. However, Knight is not recorded as holding the rank of general, so the
second sub-goal fails. Though the goal: ?-soldier (A, R) can be re-satisfied on

Figure 2.5 The second sub-goal fails; backtrack to the first
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backtracking by matches with each clause for soldier/2, the second sub-goal fails
repeatedly until the match with the fourth clause produces the alternative
substitution R ← rank (sergeant). Now the second sub-goal has a form?-soldier
(name (knight), rank (sergeant)) in which it can be satisfied. Figure 2.6 illustrates
the situation.  

Notice that the goal has been satisfied without searching the entire database
for each sub-goal. Because S shared with A, the substitution A ← name (towser)

Figure 2.6 The first sub-goal is re-satisfied, and the second is now satisfied. 
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also caused the substitution S ← name (towser), so Prolog’s response to the
question is:

S=name (towser)

The user has the option of accepting this answer, by simply pressing <return>1, or
rejecting it by typing “;” and pressing <return>.

The effect of rejecting an answer is to force Prolog to attempt to re-satisfy the
most recent sub-goal. This is the goal:?-soldier (name (knight), rank (sergeant)).
This goal cannot be re-satisfied, as Figure 2.7 shows, so Prolog backtracks to the
previous goal. 

The previous goal was:?-soldier (A, R), last satisfied as illustrated in box 2.1 of
Figure 2.6. That goal is immediately re-satisfied by matching with the next
clause for soldier/2, as shown in Figure 2.8, and new substitutions for A and R
result.  

The form of the second sub-goal is again:?-soldier (name (knight), rank
(sergeant)), which is satisfied, as indicated in Figure 2.9. 

Prolog has now re-satisfied the original goal:?-same_rank (S, name (knight))
with a different substitution:

S=name (knight) 

Figure 2.7 The sub-goal:?-soldier (name (knight), rank (sergeant)) cannot be re-satisfied
on backtracking

1 In some implementations, the user has to type a character to indicate acceptance of an
answer. The character is usually the full-stop. 
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If the user rejects this answer, the first sub-goal:?-soldier (A, R) is re-satisfiable
by matching in turn with each of the remaining clauses for soldier/2. However, at
each match the value substituted for R denotes a rank other than sergeant, and
the second sub-goal repeatedly fails. The first sub-goal fails, causing failure of
the parent goal and the answer:

no.

It is essential to grasp the difference between the mechanism of backtracking to
re-satisfy a goal and that of satisfying a new goal. The first sub-goal:?-soldier
(A, R) is repeatedly re-satisfied by a search which continues each time from the

Figure 2.8 Re-satisfying the sub-goal:?-soldier (A, R) produces a different substitution
for the variable A

Figure 2.9 The sub-goal:?-soldier (name (knight), rank (sergeant)) is satisfied
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clause after the previously-found match. Examine Figures 2.5 (box 2.1), 2.6 (box
2.1) and 2.8 to be sure you recognise this. The second sub-goal is generated anew
each time:?-soldier (A, R) is satisfied. Contrast Figures 2.5 (box 2.2), 2.6 (box 2.
2) and 2.9. The three are separate sub-goals. The attempt to satisfy each starts at
the beginning of the database.

Exercises 2.3.4

(a) Using the clauses for plays/2 given in section 2.2 and those for
instrument/2 given in the answer to exercise 1.3 (c), show, in the
notation of Figures 2.1 to 2.9, how Prolog answers the question:

?-plays (Who, instrument (violin)).

Enumerate all alternative answers to this question in the order in which Prolog
would produce them.

(b) Siegfried is a musician who plays woodwind and brass instruments.
His situation can be represented by the following clauses:

plays (player (siegfried), X):-
     instrument (X, type (woodwind)).
plays (player (siegfried), X):-
     instrument (X, type (brass)).

Assuming the same clauses for instrument/2, what answers, and in what order,
would Prolog give to the question:

?- plays (player (siegfried), What).

What would be the order of the answers if the two clauses describing Siegfried’s
talents were reversed?

2.4
Progressive Substitution

As a final example in this chapter of how Prolog satisfies a goal, we present a
program which substitutes a complex structure for the variable in a goal. The
structure represents the form of a class of very simple English sentence, and the
purpose of the program is to generate, by backtracking, alternative sentences
having this form. A sentence of this class has two constituent parts: a noun
phrase, which is the subject of the sentence, followed by a verb phrase, which
expresses the action of the sentence. In the program, a sentence is represented by
the structure s (Subj, Vp). The first component of the structure represents the
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subject of the sentence, and the second component represents the action. The
following clause for sentence/1 defines the structure of this class of sentence:

sentence (s (Subj, Vp)):-
     noun_phrase (Subj),
     verb_phrase (Vp).

This rule says that the structure s (Subj, Vp) represents a sentence if Subj is a
noun phrase and Vp is a verb phrase. Two more rules in the program define the
structure of a noun phrase and of a verb phrase:

noun_phrase (np (D, N)):-
     determiner (D),
     noun (N).

verb_phrase (vp (Vb, Obj)):-
     verb (Vb),
     noun_phrase (Obj).

The program is completed by some facts which assert that certain words are valid
determiners, nouns or verbs:

determiner (d (the)).
determiner (d (a)).

noun (n (woman)).
noun (n (girl)).

verb (v (sees)).
verb (v (calls)).

To generate sentences consisting of these words and having the specified form,
we call the goal:

?- sentence (S).
S=s (np (d (the), n (woman)), vp (v (sees), np (d (the), n (woman)))) 

As displayed, the form of the sentence is not easy to see. In Figure 2.10, the
structure is drawn as a tree to make its form clearer. 

?- sentence (S).

Diagrams of this sort are familiar to you by now: in this one, we have not
bothered with showing how the goal:?-noun_phrase (Obj) is satisfied. It has an
identical form to the goal:?-noun_phrase (Subj), and is satisfied in the same way.

The important issue in this example is how the structure which is substituted
for the variable in the goal is built up in the arguments to the sub-goals. The key
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to understanding how this is done is to recognise that at each match between a
sub-goal and a clause head in the program, the value substituted for a variable in
the sub-goal is a structure which itself includes variables. These new variables
are then passed as arguments to further sub-goals.

In box 1, the match of the goal with the clause for sentence/1 produces the
substitution S ← s (Subj, Vp). The variables Subj and Vp are arguments to two
sub-goals in which they have substituted for them other structures including
variables as components: Subj ← np (D, N) and Vp ← vp (Vb, Obj). The
process terminates when a sub-goal matches a fact, representing a word, and the
term substituted for the variable in the goal contains no variables. A term which
does not contain any variables is called a ground term. Because every match with
a fact in the program substitutes a ground term for a variable, the final value
substituted for S is a ground term. 

As the objects and relationships in our programs become more complex, we
frequently need to represent the answer to a question about those relationships by
a complex structure. Building up the necessary structure in a program is a very
important programming technique. The method which we have illustrated, we
call progressive substitution. It is of such importance in Prolog programming
that we encapsulate it in a concise description and include it as the first technique
in our toolkit for Prolog programmers.

Progressive Substitution

The technique is used to build a recursive structure in a series of stages. It
comprises the following steps:

• The functor and arity of the structure which is to be built up are defined in the
head of a rule. One or more components of the structure are variables. These
variables are passed as arguments to sub-goals in the body of the rule.

Figure 2.10 illustrates how Prolog satisfies the goal:
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• A structure with several nested levels is built up in several nested sub-goals.
• The progression is terminated by specifying a ground term as the structure in

the head of a clause. Such a clause is usually a fact.

Figure 2.11 Satisfying the goal:?-sentence (S)
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The third step in applying the technique is particularly important because unless
the final term substituted is ground, the whole structure which is substituted for
the variable in the goal still includes variables. This can be very confusing
because Prolog displays a variable as an integer preceded by “_”, and this form,
which is its internal representation of variables, bears no resemblance to the
names which the programmer uses for variables.

Exercises 2.4

(a) List all the answers Prolog would produce in response to the goal:
?- sentence (S).

(b) In another class of English sentence, the verb phrase consists of just a verb.
“The girl calls” is a sentence of this class. Write another clause for
verb_phrase/1 to describe such verb phrases.

2.5
An Interactive Session

For the example in this section, we assume that the user has created a text file
soldiers.plg containing the procedure for soldier/2 and a text file rank.plg
containing that for same_rank/2. Also, we make use of several built-in
predicates. A built-in predicate is a predicate which is defined as part of Prolog
and for which the user does not have to write a procedure. 

Every Prolog system comes with a large number of them. Some provide
facilities which it is impossible to obtain in Prolog; others offer helpful facilities
which save the programmer writing his own procedures.

After giving a command to run the Prolog system, the user loads the programs
by typing:

?- consult (‘soldiers.plg’).
soldiers.plg consulted
yes

?- consult (‘rank.plg’).
rank.plg consulted
yes

consult is a built-in predicate. Its definition is:

consult/1

The argument in the call should be an atom. It is interpreted as the name
of a file containing Prolog procedures. The clauses for the procedures are
read and added to the Prolog database. For each procedure, the order of the
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clauses is preserved in loading the file. The goal always succeeds and is
not re-satisfiable.

We enclosed the file names in single quotes to make a valid atom of each.
A series of calls to consult/1 can be abbreviated to a single command by

enclosing the names of the files in square brackets, the file names being
separated by commas. Our first two commands could have been entered as:

?- [‘soldiers.plg’, ‘rank.plg’].
soldiers.plg consulted
rank.plg consulted
yes

If there are any syntactic faults in the program, they are reported to the user at
this stage. The style of the error report varies between implementations of the
language, but it is usual for the text of faulty clauses to be displayed at the user’s
terminal. When the program has been loaded without error messages, the user
can begin entering questions.

Questions can also be included in a program itself. Such questions are called
directives, and when Prolog encounters a directive, it immediately tries to satisfy
the goals in the directive. One use of a directive is as a convenient way of
loading several files. If we put the directive:

?- [first, second, third, fourth].

in a file called startup, we load the files: first, second, third and fourth into the
Prolog database by consulting this file: 

?- [startup],
first consulted
second consulted
third consulted
fourth consulted
startup consulted
yes

Two built-in predicates enable the user to inspect the contents of the Prolog
database. They are listing/0 and listing/1, defined as follows:

listing/0

The goal always succeeds. Its effect is to display at the current output
stream clauses for all procedures in the database.
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listing/1

The argument in the call should be an atom. The procedure behaves as
listing/0, except that clauses displayed are just those with the atom as
name, of whatever arity.

So, we get:

?-listing (soldier).
soldier (name (peckem), rank (general)).
soldier (name (cathcart), rank (colonel)).
soldier (name (moodus), rank (colonel)).
soldier (name (towser), rank (sergeant)).
soldier (name (knight), rank (sergeant)).
soldier (name (aardvark), rank (captain)).
soldier (name (dunbar), rank (lieutenant)).
soldier (name (flume), rank (captain)).
soldier (name (danby), rank (major)).
yes

By default, the user’s terminal is the output stream.
Often, a call to listing reveals a fault in a program. Let us suppose that there is

an omission from the list of soldiers: Captain Black. It is possible to add new
clauses to the database from the terminal. The terminal is treated as a special file,
the default for input and output, called user. By typing:

?- [user].

the user instructs Prolog to read clauses from the terminal and store them in the
Prolog database. In most implementations of the language, the prompt to the user
changes to signal that input will be treated as clauses to be added and not as
goals to be satisfied. The user indicates the end of input by entering the end-of-
file character, which is usually <control-z>. 

Assuming that the changed prompt is “I”, we get:

| soldier (name (black), rank (captain)).
^z
user consulted
yes

Equally likely is that the fault in the program is an incorrect procedure for a
predicate, rather than an omission from the procedure. In this case, the user will
wish to replace the faulty procedure. The built-in predicate reconsult allows this.
It is defined:
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reconsult/1

The argument in the call should be an atom. The atom is interpreted as
the name of a file containing Prolog procedures. The clauses for the
procedures are read and added to the Prolog database, replacing any
existing clauses for the same procedures. For each procedure, the order of
the clauses is preserved in loading the file. The goal always succeeds and
is not re-satisfiable.

A series of calls to reconsult/1 can be abbreviated, as for consult/1. To indicate
that procedures in the files being loaded are to replace existing ones for the same
predicates in the Prolog database, each file name is preceded by a minus sign
“-”. So, if the file soldiers2.plg contains another list of soldiers as clauses for
soldier/2, the command:

?- [-‘soldiers2.plg’].
soldiers.plg reconsulted
yes

reads the file and replaces the previous clauses for soldier/2 with those read.
The user leaves the Prolog system by calling halt/0, another built-in predicate.
To conclude this section, a word of warning is in order. It may appear to you

very convenient to be able to extend and modify programs without leaving
Prolog, but this technique is unsound as a method of correcting any but the
smallest programs. Modifications entered at the terminal are made only to the
Prolog database and do not affect the files, which are external to Prolog. It is all
too easy for the programmer to find that, after altering a program at the terminal
and leaving Prolog, he cannot remember the changes he made. The predicates
which we have described in this section are not intended as a set of debugging
tools. We consider the question of debugging Prolog programs in section 9.2. 

2.6
Summary

In this chapter, we have introduced the following ideas:

• A rule has a head and a body.
• The meaning of a rule is that the relationship in its head holds only if the

relationships in its body all hold.
• Rules and facts are both clauses. A fact is a clause with an empty body.
• A procedure is a collection of clauses together defining a predicate.
• Satisfying a goal may involve satisfying sub-goals.
• For each goal and sub-goal, Prolog searches for a matching clause starting

each time from the beginning of the database.
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• Prolog backtracks to re-satisfy a sub-goal if a later sub-goal fails.
• The user can force Prolog to backtrack by rejecting the answer it produces.
• When trying to re-satisfy a goal, Prolog resumes searching the database at the

clause after that which had previously satisfied the goal.
• Progressive substitution is a technique for building up recursive structures in a

program.
• Prolog has built-in predicates which enable the user to manage an interactive

session with a Prolog system. 
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Chapter 3
Recursion in Rules

A recursive rule is one in which a procedure includes a call to itself as a sub-goal
in the body of at least one of its clauses. For the beginner, it is hard to see how
such a procedure is executed when called as a goal. So, in section 3.1, we use the
graphical notation of Chapter 2 to show how a simple recursive procedure is
executed. In section 3.2, we show how to use progressive substitution to build a
recursive structure in a recursive procedure. In section 3.3, we introduce a very
important recursive data type: the list, and we show how to represent lists in
Prolog. In section 3.4, we introduce list processing predicates and develop
procedures for them. The simplicity and elegance of recursive procedures masks
the painstaking stages in their development. We unravel those stages, describing
a program development method called case analysis. We conclude the chapter
with some advice on how to choose the representation for a problem,
emphasising when to use lists and when not to use them!

3.1
Recursive Rules

Our first example of a recursive program is a procedure for subordinate/2. When
we call this procedure with the names of two soldiers as arguments, the goal is
satisfied if the first soldier is subordinate to the second. The procedure retrieves
from the clauses for soldier/2 the rank of each, then compares the two ranks:

subordinate (lower (Low), higher (High)):-
     soldier (name (Low), rank (L)),
     soldier (name (High), rank (H)),
     lower_rank (L, H).

We intend that the call to lower_rank/2 succeeds if the first rank is lower than the
second. The first step is to define the order of ranks. We use a series of facts for
next rank/2: 

next_rank (private, sergeant).
next_rank (sergeant, lieutenant).



next_rank (lieutenant, captain).
next_rank (captain, major).
next_rank (major, colonel).
next_rank (colonel, general).

The interpretation of a structure of the form next_rank (R1, R2) is:

“The next higher rank to R1 is R2.”

The first clause of the procedure for lower_rank/2 states that R1 is lower than R
2 if R2 is the next rank to R1:

lower_rank (R1, R2):-
     next_rank (R1, R2).

The clause deals with all cases where the ranks given are adjacent in the
hierarchy. Otherwise, R1 is lower than R2 if the next rank to R1 is rank R3 and
R3 is itself lower than R2. This introduces the recursive element. A call to
next_rank/2 identifies the rank R3 which is next up in the hierarchy from R1; to
determine whether R3 is lower than R2, we call lower_rank/2 again, with R3 as
its first argument in place of R1. The clause is:

lower_rank (R1, R2):-
     next_rank (R1, R3),
     lower_rank (R3, R2).

To see how a question involving this procedure is answered, consider the goal:

?- subordinate (lower (towser), higher (moodus)).

The first two sub-goals are satisfied by matches with clauses for soldier/2,
producing the substitutions L ← sergeant and H ← colonel. The third sub-goal is
then:?-lower_rank (sergeant, colonel). Figure 3.1 illustrates how it is satisfied.

The call succeeds after four recursive calls to lower_rank/2. They are shown in
boldface. At each, the first argument in the call is the next higher rank, reaching
eventually the rank R for which the goal:?-next_rank (R, colonel) is satisfied.
This is the rank of major.

We have re-drawn the procedure for lower_rank/2 for each level of recursion
to make clear that the process of matching is the same at each level. At each, we
obtain a new set of variables R1, R2 and R3, particular to one call to lower_ rank/
2, and for each instance of this goal new substitutions of values for them are
made.  

The top-level goal:?-lower_rank (sergeant, colonel) produces substitutions for
the variables R1 and R2 in the head of the second clause for the rule: R1 ←
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sergeant, R2 ← colonel. The success of the first sub-goal yields the substitution
R3 ← lieutenant. The substitutions made for R2 and R3 dictate that the form of

Figure 3.1 Satisfying the sub-goal:?-lower_rank (sergeant, colonel) 
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the second sub-goal is:?-lower_rank (lieutenant, colonel). As a variable is local
to the clause in which it occurs and to one instance of the clause, this goal term
matches the heads of clauses for lower_rank/2, with their variables R1 and R2,
exactly as the top-level goal did. There is no connection between the discrete
variables that the names R1, R2 and R3 denote at successive levels of recursion.
Indeed, Prolog internally does not use the names the user gives, but generates
new names for the variables that exist at each level of recursion. As we
mentioned in section 2.4, these names may be made visible to the user in certain
circumstances.

3.2
Building Recursive Structures

We illustrate how a recursive structure is built by a recursive procedure with the
example of a program to compute the route of promotion for a soldier. In
line_of_promotion/2 the first argument is the name of the soldier and the second
is the sequence of ranks through which the soldier would progress to reach the
highest rank in the army. The program uses next_rank/2. We represent the
sequence of ranks, which is of unknown length, as a list. A list is a data type,
defined as follows:

A list is either empty or consists of two components, called the head and
the tail of the list. The head of a list may be an element of any type, but the
tail of a list must be a list.

This is another recursive data type: to know the form of the tail of a list, consult
the definition of a list.

By the nature of this recursive definition, a sequence of any number of items
can be represented by a single list. For a list of length n, the list of length n+1 is
obtained by replacing the empty list at its end by the list consisting of one item
followed by the empty list. For this reason, the list is an appropriate data type to
represent the sequence of ranks. The ranks are the elements of the list.

To represent a list as a Prolog structure, we must choose a distinguished atom
to represent the empty list and a functor for the structure which represents the list
with a head and a tail. The structure has arity 2, the first component representing
the head and the second the tail. For the present example, we use last_rank to
denote the empty list and rank as the functor for constructing a non-empty list.
So, a call of the form:

?- line_of_promotion (name (dunbar), L). 

produces the answer:

L=rank (captain, rank (major, rank (colonel, rank (general, last_rank))))
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The call:

?- line_of_promotion (name (peckem), L).

produces the answer:

L=last_rank

Peckem is at the highest rank.
The form of the first of these structures can be more easily seen when drawn

as a tree, as in Figure 3.2. 
At each level of the tree, the left branch, which is the head of a list, is a list

element and the right branch, the tail of a list, is another list. To build the list
structure, we use the toolkit technique of progressive substitution.

The procedure first retrieves the rank of the given soldier and then calls a
recursive procedure which deals with ranks, not names:

line_of_promotion (Soldier, Route):-
     soldier (Soldier, rank (R)),
     progression (R, Route).

The simplest type of progression is that for the rank of general, because it is the
last rank. The first clause expresses this fact:

progression (general, last_rank). 

In this clause, we substitute for the second argument the atom which represents
the empty list.

Figure 3.2 Representation as a tree of the route of promotion for Lieutenant Dunbar
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For any other rank, the progression consists of a step to the next rank,
followed by a progression through other higher ranks. The clause is:

progression (R1, rank (R2, Route)):-
     next_rank (R1, R2),
     progression (R2, Route).

In this case, we substitute for the second argument the structure which represents
a non-empty list. In the head of the clause, the head and tail of the list are
variables: R2 and Route. The values for the head and tail are obtained by
progressive substitution of values for R2 and Route in the two sub-goals. The
process is illustrated in Figure 3.3 for the goal:

?- progression (captain, Route).

The circled numbers indicate the level of recursion in the calls to progression/2.
The same substitution is applied to the variable Route at each level of recursion
until the highest rank is reached. The substitution is completed when the ground
term last_rank is substituted for Route. In this procedure, the technique of
progressive substitution is applied exactly as described in section 2.4. The

Figure 3.3 Progressive substitutions applied to the variable Route in satisfying the goal: ?-
progression (captain, Route).
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difference from the program sentence is that the list structure is built up by
recursive calls. The number of these calls, and therefore the length of the list, is
unspecified. By a recursive procedure, the programmer is able to define the form
of the structure which the procedure constructs without prescribing the size of it.

Exercises 3.2

(a) Formulate the following questions as calls to line_of_promotion/2:

“Which soldiers are at least two ranks below the highest?”
“Which soldiers are exactly two ranks below the highest?”

(b) Write a procedure for commands/2 which takes as its first
argument the name of a soldier and gives a list of the ranks he
commands, in descending order. (Moderately easy!)
(c) Write a procedure for relative_ranks/3 which takes the names of
two soldiers as its first two arguments and gives as its third argument a
list of the ranks through which the first soldier would progress to reach
the rank of the second. (Harder!)
(d) Write a different procedure for commands/2 which returns the list
of ranks in ascending order. (Definitely hard!)

3.3
Notation for Lists

The list is a very useful data type with many applications in Prolog. As the
examples in exercise 3.2 (a) showed, we can with a single predicate answer a
surprising variety of questions by specifying in a goal a list of a particular form.
However, there are some difficulties with the representation for lists that we have
used so far. Firstly, the multiple brackets make it hard for a user to express the form
of a list correctly and to interpret the lists which a program returns as output.
Secondly, if a programmer chooses a new name for the empty list and for the
functor of a non-empty list each time he uses a list to represent a collection of
objects, he is obliged to write a different predicate for each representation, even
if the definitions of the predicates and the structure of the procedures for them
are identical. In section 3.4, we give a collection of very useful list-processing
predicates. It would be extremely tiresome to have to write these afresh for each
new type of list element. 

For these reasons, a conventional notation is defined for the representation of
lists in Prolog, with a convenient abbreviation of the normal syntax of terms to
eliminate the multiple brackets. Using this abbreviation, the list comprising the
items a b c and d is written:

[a, b, c, d]
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This is an abbreviation for the structure:

‘.’ (a, ‘.’ (b, ‘.’ c (, ‘.’ (d, [ ]))))

Writing the list in the standard syntax of terms reveals that ‘.’ (pronounced
“dot”) is the functor of the non-empty list and [ ] is the atom which denotes the
empty list. These are the correlatives in the conventional notation of rank and
last_rank which we used as functor and distinguished atom in the procedure for
progression/2. Other examples of lists and the notation for them are shown in
Figure 3.4. 

The third example shows that the items in a list can themselves be lists and the
fourth makes clear that the atom [ ] can occur as an item in a list. All lists which
are input to a program can be in the abbreviated syntax, and lists output by the
program are displayed in the same syntax. In the text of the program itself, the
list with head H and tail T is denoted by: [H|T]. In the standard syntax, this is the
structure: ‘.’ (H, T). It is important to understand how lists match. Figure 3.5
makes clear that the list whose form is [H|T] matches any non-empty list and
shows what substitutions are made in various cases for the variables H and T. 

If we had used the conventional notation for lists in writing the procedure for
line_of_promotion/2, the two questions in exercise 3.2 (a) would have been
expressed as the goals: 

?- line_of_promotion (Who, [M, N|P]).

and

?- line_of_promotion (Who, [M, N]).

Figure 3.6 illustrates the lists which the two patterns define. 

Elements of the list Standard syntax using “.” and [ ] Abbreviated syntax
major
colonel
general

‘.’ (major, ‘.’ (colonel, ‘.’
(general, [ ])))

[major, colonel, general]

soldier (towser) ‘.’ (soldier (towser), [ ]) [soldier (towser)]
[towser, peckem]
[flume, knight]

‘.’ ([towser, peckem], ‘.’
([flume, knight, [ ]))

[[towser, peckem], [flume,
knight]]

[ ] ‘.’ ([ ], [ ]) [[ ]]
[12, 13]
may
[ ]
1988

‘.’ ([12, 13], ‘.’ (may, ‘.’ ([ ], ‘.’
(1988, [ ]))))

[[12, 13], may, [ ], 1988]

Figure 3.4 Some lists in the standard and the abbreviated syntax
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More examples of matching between lists are given as exercise 3.3 (a), and we
urge you to work through them before going on to the next section. If you are
unsure about any of the answers, clarify the form of the lists by drawing them as
trees in the manner of Figures 3.5 and 3.6.

Figure 3.5 Matching between lists and the term: [H|T]
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Exercises 3.3

(a) Identify whether each of the following pairs of terms match, and,
for those that do match, the substitutions made for variables.

(i) [[grey, green], black, blue] and [H|T]
(ii) [[george, millicent]] and [H|[ ]]
(iii) [[william, mary] |Others] and [First, Second]
(iv) [horse, ass, mule] and [H, T]
(v) [[married (george, millicent)]] and [A]
(vi) [[1805], 1815] and [[A|B], C|D]
(vii) [[1805], 1815] and [A|B, C|D]
(viii) [jack, jill] and [A, B|C]
(ix) [[jack, jill]] and [[A], B|C]

3.4
Developing Procedures through Case Analysis

In this section, we give procedures for some useful list-processing predicates.
The first is member/2, which takes as arguments an item and a list and succeeds
when called as a goal if the item occurs in the list. The procedure examines
successive elements of the list. If that at the head of the list is the same as the
given item, the goal is satisfied immediately. To express this as a fact, we use the
same variable name in the two positions. It can have only one value substituted
for it:

Figure 3.6 Defining types of list by a pattern
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member (Item, [Item|T]).

If the item and the first element are different, a call does not match this clause.
The second clause checks whether the item occurs in the tail of the list. This is
where recursion comes in: to apply the check, we have only to call member/2,
giving as second argument the tail of the original list. The clause is:

member (Item, [H|T]) :-
     member (Item, T).

member/2 can be used to determine list membership:

?- member (dickens, [thackeray, trollope, eliot, dickens, austen]).
yes

or to generate through backtracking all elements of a list:

?- member (Author, [thackeray, trollope, eliot, dickens, austen]).
Author=thackeray;

Author=trollope;
Author=eliot;
Author=dickens;
Author=as austen;

no

We use member/2 in the second way in the procedure for common _element/3, a
predicate which succeeds when called as a goal if two lists have an element in
common and the third argument is that element:

common_element (L1, L2, E):- % E is common to L1 and L2 if. .
member (E, L1), % it is a member of L1, and…
member (E, L2). % it is a member of L2 

In the case of the call:

?- common_element ([sartre, genet, beckett], [pinter, albee, beckett], E).
E=beckett

the first sub-goal generates successive members of a list; the second tests
whether they occur in another list.

Though it may appear to you that the procedure for member/2 emerged by an
unfathomable intuition in its author’s mind, it was, in fact, developed in a series
of distinct steps about which there is no mystery. First, we identified that there
were two possibilities for the given item and list. Then, we described the
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possibilities as patterns of arguments: Item and [Item|T] or Item and [H|T].
Finally, we specified the processing required to deal with each possibility: in the
first, the goal is immediately satisfied, and in the second it is satisfied if a
recursive call is satisfied. These steps are three of the stages of case analysis, a
technique from the programmer’s toolkit.

Case Analysis

The technique is a method of developing a procedure, given a statement of the
meaning of a predicate. It comprises the following steps:

• Identify the categories, or cases, of the input arguments to the procedure.
Usually, the procedure will have a clause for each case.

• Determine how each case is recognised. It may be by a pattern in the head of
the clause which is to handle the case or by a sub-goal which is the first one
called in the body of the clause.

• Specify the processing required for each case. This includes specifying the
form of output arguments. There are two classes of case, and each procedure
has a clause for at least one case of each class:

• the base case
In this case, there is no further recursion. If the output arguments are

being constructed by progressive substitution, the output for each is the
ground term which terminates the substitution.

• the recursive case
In this case, a clause specifies some substitution to be applied to the

output argument and includes a recursive call. The recursive call must
approach a base case.

• Determine the order of the clauses. Place the clauses which handle the base
cases first. There will often be a catch-all clause. It defines the processing to
be carried out when no other case applies, and it is the last clause in order.

• Determine whether the cases are mutually exclusive. If the predicate definition
prescribes a single result, you must ensure that each possible input falls into
just one of the cases you have indentified. Otherwise, Prolog may find
incorrect results on backtracking.

You can check that a recursive call does approach a base case by comparing the
arguments given in the head of the clause with those which you have used in the
recursive call. In the second clause of the procedure for member/2, the second
argument in the head is the structure [H|T] and in the recursive call it is the
variable T. At each recursive call, the list is shorter by the removal of its head.
Recursive calls terminate in success with a match between a sub-goal and the
first clause or in failure when the empty list is reached.
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Usually, the case of the empty input list is the one to consider first because it
is the base case, as our next example illustrates, conc/3 is a predicate which
defines the concatenation of two lists. The lists to be joined are given in the first
two arguments and the result is returned in the third. The output is constructed
from successive elements of the first list, followed by the whole of the second
list. So, we have two cases, depending on whether the first list has the form [H|
T] or is empty, and these correspond to two clauses for the procedure. These
cases are recognised by patterns in the heads of the two clauses.

In the base case, the procedure simply returns the second list:

conc ([ ], L, L).

In the recursive case, we begin to construct the output list by progressive
substitution, having identified that H, the head of the first input list, is its first
element. The tail T is passed to the recursive call to construct the tail of the
output list:

conc ([H|T], L1, [H|L2]):-
     conc (T, L1, L2).

The behaviour of the predicate is:
?-conc ([tabby, persian], [Siamese], L).

L=[tabby, persian, Siamese]

The procedure can be called with other patterns of input and output argument,
for example to determine all the ways in which a list may be split in two: 

?- conc (L1, L2, [red, white, blue]).
L1=[ ]
L2=[red, white, blue];
L1=[red]
L2=[white, blue];
L1=[red, white]
L2=[blue];
L1=[red ,white, blue]
L2=[ ];
no

Another useful list-processing predicate is remove/3. It is defined as a kind of
extension of member/2: determining whether an item occurs in a list, but also
returning as its third argument the list with that item removed. The cases are the
same as for member/2, but we must also specify how the output list is
constructed. In the base case, the output is the tail of the given list:

remove (H, [H|T], T).
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In the recursive case, the output list is constructed by progressive substitution,
with the head of the input list as its first item:

remove (Item, [H|T], [H|L]) :-
     remove (Item, T, L).

The two clauses are not mutually exclusive, as those of the procedure for
member/2 were not. An item which is found at the head of a list and removed
(first clause) will then be put at the head of the second list if Prolog backtracks to
use the second clause. If a list contains more than one occurrence of the item to
be removed, the goal is re-satisfiable on backtracking:

?- remove (charles, [george, charles, henry, charles, edward], L).
L=[george, henry, charles, edward];
L=[george, charles, henry, edward];
no

When called with its first and third arguments as variables, this procedure selects,
through backtracking, successive items in a list. We use it in this way in a
program to explore the possible pairings of players in a tennis match, given lists
of players to be paired up. pairings/3 does this. 

The procedure is:

pairings ([ ], [ ], [ ]).
pairings ([H|T], L1, [pair (H, P)|Ps]):-
     remove (P, L1, L2),
     pairings (T, L2, Ps).

The results are:

?- pairings ([beth, victoria, mary], [charles, george, edward], M).
M=[pair (beth, charles), pair (victoria, george), pair (mary, edward)];
M=[pair (beth, charles), pair (victoria, edward), pair (mary, george)];
M=[pair (beth, george), pair (victoria, charles), pair (mary, edward)];
M=[pair (beth, george), pair (victoria, edward), pair (mary, charles)];
M=[pair (beth, edward), pair (victoria, charles.), pair (mary, george)];
M=[pair (beth, edward), pair (victoria, george), pair (mary, charles)];
no

Our next predicate, reverse/2, illustrates a different programming technique. As
its name suggests, this predicate gives in its second argument the items of the list
which was the first argument in reverse order. The procedure is:

reverse (L1, L2):-
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     hidden_reverse (L, [ ], L2).
hidden_reverse ([ ], L, L).

hidden_reverse ([H|T], L1, L2):-
     hidden_reverse (T, [H|L1], L2).

We use a sub-goal with an extra argument to perform the reversing. In the call to
hidden_reverse/3, the extra argument is the empty list, and one element of the
first list is put at the head of it at each level of recursion. The third argument is
simply passed on at each level of recursion until the base case is reached, when
the value substituted for it is the value of the second argument. The technique is
illustrated in Figure 3.7.

This method of building a recursive structure is called ingoing recursion. We
include it as a technique in our toolkit. 

Ingoing Recursion

The technique builds a recursive structure starting from the ground term which
marks its end. It is used when a specific order, which cannot be obtained by
progressive substitution, is prescribed for the items in the structure or when the
computation in the recursive cases depends on having access to the structure
built so far. The technique comprises the following steps:

• The ground term is an argument in calls to the procedure.
• At each recursive call, that argument is a new structure with the previous

structure as one component.
• The variable which is to hold the final result is passed inwards, no

substitutions being applied to it until the base case.

Figure 3.7 Reversing a list by ingoing recursion
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• In the base case, this variable is matched with the argument denoting the
structure being built.

A procedure using ingoing recursion constructs a term in the opposite order from
the familiar method of outgoing recursion with progressive substitution. The
latter method usually results in a more natural procedure for a predicate and does
not require the use of the extra argument. The solutions to exercises 3.2 (b) and 3.
2 (d) illustrate the difference between the two methods. Look at them now if you
did not do so while trying the exercises. 

Our final example in this section is flatten/2. This predicate takes a list as its
first argument and returns a list with nested sublists removed:

?- flatten ([2, [1, 3], [4]], F).
F=[2, 1, 3, 4]
?- flatten ([[2, 4], [ ], [1], 3], F).
F=[2, 4, [ ], 1, 3]

An analysis of the forms of the input list reveals three cases:

• The list is empty: [ ].
• The head of the list is itself a list: [[H|T] | L].
• The head of the list is not a list, but an element in a list: [H|T].

This analysis identifies both the cases and how to recognise them. Our first
thought might be that we could use simple outgoing recursion to define the
processing appropriate to each case. In the first case, the output list would be
empty:

flatten ([ ], [ ]).

In the third case, the item H would belong at the head of the output list, and the
tail of the output would be constructed by a recursive call:

flatten ([H|T], [H|L]:-
     flatten (T, L).

The difficulty lies in the second case, that of the list whose form is [[H|T]|L]. We
cannot simply put H at the head of the output list, for it may itself be a list.
Outgoing recursion alone is not an adequate method for this problem. However,
if we combine ingoing recursion with our first attempt, we can overcome this
difficulty. The clause is:

hidden_flatten ([[H|T] | L], S, F):-
     hidden_flatten (L, S, Lf),
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     hidden_flatten ([H|T], Lf, F).

The extra argument S gives the flattened list so far. It is the empty list in the call
to hidden_flatten/3. The first sub-goal produces the list Lf, holding the elements
of the flattened list L at the front of S. Lf is then input as the result so far to a sub-
goal which flattens [H|T] to produce F.

Putting this clause together with modified versions of those for cases one and
three and a top-level procedure to provide the extra input argument gives: 

flatten (L, F):-
     hidden_flatten (L, [ ], F).

hiddenflatten ([ ], L, L).
hidden_flatten ([[H|T] | L], S, F):-
     hidden_flatten (L, S, Lf),
     hidden_flatten ([H|T], Lf, F).
hidden_flatten ([H|T], S, [H|L]):-
     hidden_flatten (T, S, L).
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The behaviour of the procedure can be most easily understood by visualising the
list as a binary tree which the procedure traverses in reverse order. The traversal
is illustrated in Figure 3.8 

If left and right branches from a node are trees, the right sub-tree is traversed
first, then the left (clause 2). If the left branch is a leaf node, it forms part of the
output, at the head of the list formed by traversing the right sub-tree (clause 3).

Unfortunately, though the procedure does return the correct result:

?- flatten ([[2, 4], [ ], [1], 3], F).
F=[2, 4, [ ], 1, 3]; 

it also generates incorrect alternatives if backtracking is forced:

F=[2, 4, [ ], [1], 3];
F=[[2, 4], [ ], 1, 3];
F=[[2, 4], [ ], [1], 3];
no

These alternatives arise because our procedure does not ensure exclusion
between cases, though the predicate defines just one correct answer for any given

Figure 3.8 Flattening the list [[2, 4], [ ], [1], 3] viewed as a tree traversal
 

RECURSION IN RULES 53



list. The case of the empty list excludes the other two, but the case of the list
whose form is [H|T] does not exclude a list whose form is [[H|T] | L]. In other
words, a list which matches the pattern [[H|T] | L] also matches [H|T]. We need a
way of ensuring in the third clause that H is not a non-empty list. Let us assume
that different/2 is defined to succeed if its two arguments do not match. Then we
can add a sub-goal in the third clause:

hidden_flatten ([H|T], S, [H|L]):-
     different (H, [A|B]),      % Fails if H is a non-empty list
     hidden_flatten (T, S, L).

This is an example of a sub-goal being used to identify a case, where a pattern
would not identify it exclusively. The sub-goal is called a guard.

We give a procedure for different/2 in section 4.5. We discuss other ways of
enforcing mutual exclusion between clauses in section 6.1.2.

Exercises 3.4

(a) Use remove/3 in a procedure for permute/2, to take two lists as
arguments and succeed if the elements of the second list are a
permutation of the elements of the first.
(b) Write a procedure for remove_all/3 to take a list and an item and
return a list from which all occurrences of the item have been
removed. If the item does not occur in the list, the procedure should
return the original list.
(c) Use remove_all/3 in a procedure for no_duplicates/2, to remove
duplicates from a list.

3.5
Another Technique for Developing Procedures

Case analysis is a relatively easy technique for the novice Prolog programmer to
master because it prescribes a clear procedure: a series of steps to follow which
go some way to removing the mystique that sometimes surrounds the
development of recursive programs. However, precisely because it is so overtly
procedural, case analysis is not always the most suitable approach. On occasions,
a higher-level approach based on identifying logical relationships between
arguments leads to a clearer and more concise procedure.

Consider the problem of writing a procedure for sublist/2, to succeed when
called as a goal if its second argument is a sublist of its first. So:

?- sublist ([apple, orange, pear, banana], [orange, pear]).
yes
?-sublist ([apple, orange, pear, banana], [orange, banana]),
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no

We might develop the procedure by case anaysis. The sublist is either empty or
has the form [H|T]. The two cases translate into clauses:

sublist (Any_list, [ ]). % The empty list is always a sublist.
sublist (L, [H|T]):- % The non-empty list is a sublist of L if…

In the second clause, we would define how to find H in L and how to determine
whether the elements of T were identical to the elements of L that immediately
followed the occurrence of H.

However, the case analysis approach overlooks the logical relationship
between a list and any sublist of it. List has Sub as a sublist if List comprises a
possibly empty sequence of elements, followed by the elements of Sub, followed
by another possibly empty sequence. The three sequences joined together form
List. We can translate this relationship directly into Prolog using conc/3:

sublist (List, Sub):-
     conc (Front, Back, List),
     conc (F, Sub, Front).

The logical relationship is illustrated in Figure 3.9.  

The procedure does correctly express the logical relationship:
?-sublist ([1, 2, 3, 4], [2, 3]).
yes
?-sublist ([1, 2, 3, 4], [2, 4]).
no

Closer examination reveals an odd feature: when used to generate sublists of a
list, the procedure produces some duplicates:

?-sublist ([1, 2, 3], Sub).

Figure 3.9 Logical relationship between List and Sub 
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Sub = [ ];
Sub = [1];
Sub = [ ];
Sub = [1,2];
Sub = [2];
Sub = [ ];
Sub = [1, 2, 3];
Sub = [2, 3];
Sub = [3];
Sub = [ ];
no

What would happen if the sub-goals were in the other order? Evidently, the
procedure would still express the logical relationship. In fact, after producing the
same alternatives in a different order, it would generate a never-ending sequence
of recursive sub-goals in a search for more sublists.

These oddities are not of any significance if the sole purpose of the procedure
is to illustrate the nature of the sublist relation between two lists. More typically,
however, we write a procedure for a predicate in order to use the predicate within
a larger program. The techniques and strategies for developing large Prolog
programs are the subject of Part 2 of this book. They are founded on the
assumption that the programmer tests and understands every aspect of the
behaviour of individual procedures. An approach to Prolog programming based
on expressing logical relationships satisfies this assumption only partially. That
approach can provide insights as a starting point for writing a procedure, but it must
be supplemented by consideration of the procedural behaviour of the resulting
program.

The first procedural issue in the execution of a declaratively correct procedure
is whether a call is certain to terminate. If you apply the case analysis technique,
putting clauses for base cases before those for recursive ones and ensuring that
recursive cases do approach a base case, you should not experience the problem
of non-termination. Consider, however, the following alternative procedure for
lower_rank/2:

lower_rank (R1, R2):-
     lower_rank (R3, R2),
     next_rank (R1, R3).
lower_rank (R1, R2):-
     next_rank (R1, R2).

This is declaratively identical to the one we gave in section 3.1, but when it is
called as a goal:

?- lower_rank (sergeant, colonel).
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execution does not terminate. The first sub-goal:?-lower_rank (R3, colonel) is
generated in an identical form at each level of recursion, and the computation
does not proceed to the call to next_rank/2.

A partial solution would be to reverse the order of the clauses, putting that for
the base case first. Then the program would function correctly for goals which
should succeed:

?- lower_rank (sergeant, colonel).
yes

but it still would not terminate if the goal ought to fail. The culprit is the clause
for the recursive case, which is left-recursive; that is, it has a recursive call as the
first sub-goal in its body. For goals which we expected to fail, the recursive sub-
goal after all ranks had been checked would have an identical form to its parent
goal and would not approach the base case. A complete solution to the problem
demands re-ordering the clauses and the sub-goals within the recursive clause.

The second procedural issue is efficiency of execution, and we consider this in
section 4.3.

Exercises 3.5

(a) Why does the procedure for sublist/2 produce duplicates of the empty
list when the second argument in a call is a variable?
(b) Complete the development by case analysis of a procedure for
sublist/2. What is the behaviour of the procedure when the goal is:

?-sublist ([1, 2, 3], Sub).

3.6
Lists and Data Structuring

The convenience of the list notation may lead the inexperienced programmer to
use it inappropriately for representing the data in a problem. As we emphasised at
the start of section 3.3, the notation is just an abbreviation for a structure
constructed from the functor “dot”, and, whereas the programmer should choose
functor names which are indicative of the relationships they represent, “dot” is
certainly not a meaningful name for a structure!

Consider, for example, the problem of writing a program to store information
about countries and answer questions about them. A user of the program might
want to know:

“What is the population of Egypt?”
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“What is the capital of France and what is its population?”
“What time zone is Moscow in?”
“What is the population density of Libya?”
“Are there any languages spoken by natives of both Romania and West

Germany?”
“Are there any countries that border both Morocco and Egypt?”

The issue in this problem is how to represent the information about each country.
The obvious choice is a series of facts, using a predicate of arity 8 if there are
eight items of information:

country (Name, Population, Area, NameOfCapital, PopulationOfCapital,
     TimeZoneOfCapital, ListOfLanguagesSpoken,
     ListOfCountriesBordering)

So, for Egypt:

country (egypt, 42, 1000, cairo, 7500, 3, [arabic, berber, nubian, english],
     [israel, sudan, libya]).

This representation has several weaknesses. The most serious is its failure to
capture the natural structure of the data stored. The data comprises a unique key
(the name of the country) and some information associated with the key. That
information has a structure itself: some relates to the country as a whole, some is
particular to the capital city. A better representation would reflect this structure.
It could be done using lists: 

country (egypt, [42, 1000, [cairo, 7500, 3],
     [arabic, berber, nubian, english],
     [israel, sudan, libya]]).

Now the structure of the information as key and data can be reflected in the
procedures which process it:

retrieve_and_process (Country):-
     country (Country, Info),

…
     Now process Info as required.

No procedures which process the database at this high level would need to be
altered if the structure of the information stored was later changed.

The weakness now is that we are using lists for several purposes, none of
which can be identified from the form of the representation alone. It is good
programming practice to use lists for representing collections of items only if the
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collection is of variable size and if the items are of the same type. This
consideration leads us to another refinement:

country (name (egypt),
     data (pop_in_millions (42),
     area_in_thou_sq_kms (1000),
     capital (name (cairo),
     pop_in_thousands (7500),
     time_zone_gmt (plus, 3)),
     languages ([arabic, berber, nubian, english]),
     countries_bordering ([israel, sudan, libya]))).

Besides eliminating the inappropriate use of lists, we have clarified the meaning
of the integer values. The functor of a structure should recall the meaning of the
information represented in the components and not itself represent information.
For this reason, we prefer time_zone_gmt (plus, 3) to time_zone_gmt (plus (3))
or time_zone_gmt_plus (3).

This representation has the merit of being both well-structured and
understandable. To insulate the user from the representational details, we provide
predicates to pick out components of complex structures. The first of our
example questions is answered by a call to population/2:

?- population (egypt, Pop).
Pop=pop_in_millions (42)

The procedure is:

population (Country, Population):-
     country (name (Country), data (Population, _, _, _, _,)). 

The underline character “_” by which we denote the last four components of the
structure with functor date is Prolog’s anonymous variable. It can be used in
place of any component of a structure whose value we do not wish to know, and
it saves us having to think up names for variables which have no significance in
the procedure. A structure may include any number of anonymous variables, and
they are all distinct. We can also use the anonymous variable in questions when
we are not interested in the value substituted for it. For instance, if we wanted to
know the countries about which information is held, we could ask:

?-population (Country, _).

Prolog would report only the substitution made for Country.
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population/2 is an example of a selector predicate. Selector predicates are very
widely used in programs which manipulate large databases, so we include the
technique in our toolkit.

Selector Predicates

A selector predicate retrieves an item from a database while concealing the
structure of the database from the user of the predicate. The technique comprises
the following steps:

• Identify the types of request for information which may be made. What
subsets of the database would it be meaningful for a user to ask about?

• Identify how a user of the database specifies the items to be retrieved. Usually,
it is by giving a key value.

• For each anticipated request, a selector predicate is needed. If the request
relates to information stored as facts, the procedure for the predicate uses
matching to retrieve the information from a structure. If the information is not
explicitly stored, the procedure computes it. The user of the predicate is
unaware of the distinction between explicitly-stored information and
information derived by application of a rule.

Procedures for selector predicates to answer the other requests we gave as
examples are:

capital_and_pop (Country, Capital, Population):-
     country (name (Country),
     data (_, _, capital (Capital, Population, _), _, _,)).

time_zone_is (City, Zone):-
     country (_, data (_, _, capital (name (City), _, Zone), _, _)). 

languages_are (Country, Languages):-
     country (name (Country),
     data (_, _, _, Languages, _)).

countries_bordering_are (Country, C):-
     country (name (Country),
     data (_, _, _, _, C)).

population_density_is (Country, density (D)):-
     country (name (Country),
     data (pop_in_millions (P), area_in_thou_sq_kms (A), _, _, _)),

     …
     and now calculating P * 1000/A gives the population density in
     persons per square kilometre.

We do not provide selector predicates to answer the last two requests, as these
are not requests for single items. A user of the database could define his own
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predicates using existing selector predicates and common_element/3. Though
one cannot define precisely what is a single item in a database which is
represented partly by rules, the principle of this design method is that a basic set
of selector predicates defined for a database is extensible to support different
user applications. Figure 3.10 illustrates the structure. 

3.7
Summary

In this chapter, we have introduced the following ideas: 

• A recursive procedure is one in which the procedure itself is called as a sub-
goal in the body of one or more of its own clauses.

• When the call is executed, a new set of variables is created for each level of
recursion.

• The list is a recursive data type. A notation using “dot” and [ ] is used by
convention for representing lists as structures. An abbreviation of the syntax of
terms facilitates manipulation of lists represented in the conventional
notation.

• Case analysis is a technique for developing procedures. A recursive procedure
has clauses for at least one base and one recursive case.

• The programmer must enforce mutual exclusion between clauses handling
cases if the predicate definition specifies just a single result for a given input.

• Ingoing recursion is an alternative method to progressive substitution for
building a structure.

Figure 3.10 Selector predicates supporting database applications
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• Procedures can sometimes be developed by analysing logical relationships
between arguments, but the procedural behaviour must always be checked.

• The procedural behaviour of a program is determined by the order of clauses
and the order of sub-goals within clauses.

• Often, the list is not the best representation for data. Structures with other
functors are more readily understood. Selector predicates give access to
components of such structures.

• The anonymous variable can be used if we are not interested in the value
substituted for it. 
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Chapter 4
Operations on Terms

The basic operation on terms is the test of whether two terms match. Other tests
are carried out by built-in predicates. The purpose of this chapter is to introduce
these predicates to you and to show how they greatly increase the power of
Prolog.

4.1
Arithmetic Operations

Arithmetic expressions are constructed using the arithmetic operators: +
(addition), − (subtraction), * (multiplication),/(real division), div (integer
division) and mod (remainder). The built-in predicate is evaluates an arithmetic
expression. Its definition is:

is/2
The second argument should be an arithmetic expression. The goal

evaluates the expression and succeeds if the value matches the first
argument; otherwise it fails.

is/2 can be written between its arguments. Examples are:

?- A is 10–5–4.
A=1

?- is (A, 10–5–4).
A=1

These two are equivalent.

?- 35 is 5+10 * 3.
yes
?-45 is 5+10 * 3.
no 



A useful predicate which uses is/2 is length/2, to determine the number of
elements in a list. The base case, as usual with lists, is the case of the empty list,
whose length is 0. The recursive case is the case of the non-empty list, whose
length is the length of its tail plus 1.

length ([ ], 0). % Base case
length ([_|T], N):- % Recursive case

length (T, M),
N is M+1.

The procedure behaves as follows:

?- length ([a, b, c, d], L).
L = 4

How long is the list [a, b, c, d]?

?- length ([10, [11, 11], 12], 4).
no

Is the list [10, [11, 11], 12] of length 4?

?- length (L, 4).
L = [_66, _67, _68, _69]

What list is of length 4?

Care is needed when using is/2. Its definition says: “The second argument should
be an arithmetic expression.” If it is not, a Prolog error results. A Prolog error is
a system response when an argument in a call to a built-in predicate is not of the
correct type. The response varies between implementations. Usually, it takes the
form of a message printed at the screen which interrupts program execution. The
possibility of Prolog errors complicates the view of a Prolog program presented
in earlier chapters, in which every call simply succeeded or failed. The behaviour
of programs which use those built-in predicates that impose constraints on the
types of their arguments is more complex and difficult to control. For example, if
we reversed the order of the sub-goals in the second clause of our length program:

length ([_|T], N):-
     N is M+1,
     length (T, M).

the procedure’s declarative interpretation would be unchanged, but a call such
as:

?- length ([a, b, c, d], L).

would cause a Prolog error. This is because in the expression: M+1, M would
still be a variable when is tried to evaluate the expression. A value would be
substituted for this variable only when the base case was reached. 

Exercises 4.1
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(a) In the following call to length/2, what happens if the user rejects the
first answer?

?- length (L, 3).

(b) Modify the procedure for length/2 to count the total number of
elements in a list, including elements in sublists.
(c) Write a procedure for sum_of_items/2 to sum the items in a list of
integers.

4.2
Relational Operations

The built-in predicates for relational operations are listed in Figure 4.1. Like the
arithmetic operators, they are written between their two operands. Operands
should be arithmetic expressions, and a Prolog error results if they are not. The
predicates evaluate the expressions and succeed if the values stand in the stated
relation. 

To illustrate these predicates, we give a procedure for max/3. A call of the
form:

?- max (N1, N2, N3).

succeeds if the three arguments are arithmetic expressions and N3 is equal to the
greater of N1 and N2. The procedure is:

max (N1, N2, N2):-
     N2 >=N1.
max (N1, N2, N1):-
     N2<N1. 

In calls, the third argument can be either a variable or an arithmetic expression:

Figure 4.1 Built-in predicates for relational operations
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?- max (10, 8, N).
N=10

What is the maximum of 10 and 8?

?- max (3, 7, 3).
no

Is 3 the maximum of 3 and 7?

?- max (10, 10+3-4, 10).
yes

Is 10 the maximum of 10 and the expression 10
+3-4?

A Prolog error occurs if either of the first two arguments is a variable.
We can use m ax/3 in a procedure for max_in_list/2 to determine the

maximum value in a list of integers. In this instance, the base case is not the
empty list, but the list with just one element. That element is the maximum in the
list:

max_in_list ([N], N).

In the case of a list with two or more elements, we recursively determine
Max_in_tail, the maximum value in the list without the head H, and we use max/
3 to identify the greater of Max_in_tail and H:

max_in_list ([H, N|T], Max):-
     max_in_list ([N|T], Max_in_tail),
     max (H, Max_in_tail, Max).

This gives:

?- max_in_list ([3, 4, 10, 5, 0], Max).
Max = 10
?- max_in_list ([3, 7, 7, 6], 6).
no

For another example of relational and arithmetic operators being used in a
program to manipulate lists of numbers, consider the “knapsack problem”. It
concerns a knapsack, which can carry a known maximum weight, and an
assortment of objects of various known weights which may be carried in the
knapsack. The question is: “What selection from the objects loads the knapsack
exactly to its maximum weight?”

In the solution, we use lists of integers to represent the objects available and
the objects included in the load and an integer to denote the maximum weight of
the load. Solutions are produced by calling knapsack/3:

?- knapsack (Objects_available, Target_weight, Objects_carried). 
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A little thought reveals that each one of the Objects_available can be included in
the Objects_carried if its weight does not exceed the Target_weight, and that if it
is included, the rest of the load comprises some selection of the other objects to a
total weight reduced by the weight of the object just included. This reasoning
gives us the first clause:

knapsack ([Next|Others], Target, [Next|Rest]):-
     Next =< Target,
     Remainder is Target-Next,
     knapsack (Others, Remainder, Rest).

The next possibility is that an object is not included in the load, whether or not it
could be. The load is then made up of a selection from the other objects. This
gives the second recursive case:

knapsack ([_|Others], Target, Load):-
     knapsack (Others, Target, Load).

The base case is reached when, with every object having been considered for
inclusion, the remaining weight is 0:

knapsack ([ ], 0, [ ]).

The program generates all possible loads through backtracking:

?- knapsack ([2, 7, 18, 5, 10, 3], 20, Load).
Load=[2, 18];
Load=[2, 5, 10, 3];
Load=[7, 10, 3];
no

Exercises 4.2

(a) What is the result of the following calls to max/3?
(i) ?- max (4+7, 8*9, N).
(ii) ?- max (4+7, 8*9, 72).

(b) Write a procedure for split/4 which takes a list of integers L1 and
an integer N and gives lists L2 and L3 such that integers less than N
are in L2 and all others in are in L3.
(c) Extend the max_in_list program to a predicate: position_of_max/3,
in which the third argument gives the position in L at which N occurs.
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4.3
Type Testing Operations

The programmer can prevent Prolog errors by checking that the arguments in a
call are of the required type. The built-in predicates to test the type of a term are
listed in Figure 4.2. Each of them succeeds when called as a goal if the argument
is of the indicated type, and fails otherwise. 

You must be careful about the order of sub-goals when using the type testing
predicates. The meaning of a program may alter if sub-goals are reordered. For
example, in the following procedure:

p (X) :-
…
var (X), % Is X a variable?
substitute (X), % If so, substitute a value for X.
…

a call to p/1 in which the argument was a variable might succeed, whereas it
could not if the sub-goals were reversed:

p (X) :-
…
substitute (X), % Substitute a value
var (X), % X cannot be a variable here.
…

The type testing predicates test a term at a particular point in program execution.
Thus, they have a purely procedural meaning: at a different point, the same call
may produce a different result.

Figure 4.2 Built-in predicates for type testing operations
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In Figure 4.3, we reproduce the hierarchy diagram of terms from section 1.3,
with boxes to show the range of argument types for which each type testing
predicate succeeds. 

A call to nonvar/1 succeeds even if the argument in the call is a structure
which includes variables as components:

?-nonvar (reverse ([ ], L, L)).
yes

It does not test whether the structure is ground. We give a procedure for ground/1
in the next section.

We can now write a procedure for arithmetic_expression/1 to test whether a
term is a valid arithmetic expression:

arithmetic_expression (N):-
     integer (N).
arithmetic_expression (E1+E2):-
     arithmetic_expression (E1),
     arithmetic_expression (E2).

and clauses for each arithmetic operator, down to:

Figure 4.3 Relation of type testing predicates to types of Prolog term
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arithmetic_expression (E1 mod E2):-
     arithmetic_expression (E1),
     arithmetic_expression (E2). 

To prevent any possibility of a Prolog error occurring with is/2, a call to this
procedure would precede the call to is/2, as in the procedure for safe_evaluation/
2:

safe_evaluation (Expression, Value):-
     arithmetic_expression (Expression),
     Value is Expression.

The behaviour of safe_evaluation/2 is:

?- safe_evaluation (20+5 mod 2, V).
V=22
?- safe_evaluation (N1 * N2+N3, V).
no

The same method could be used to check the form of operands in relational
operations and prevent the Prolog error which would occur if a goal such as:?-X
>= 5 were called. However, a more satisfactory outcome than the failure of the
goal would be if it succeeded, substituting for X some integer for which X >= 5
is true. This cannot be done using the built-in predicate, but we can write a
procedure which generates values for which the relation >= is satisfied, besides
testing values given on input. The procedure is:

greater_or_equal (N1, N2):-
     integer (N2),
     N2 >= N1.
greater_or_equal (N1, N2):-
     var (N2),
     next_integer (N1, N2).

next_integer (N, N).
next_integer (N1, N2):-
     N3 is N1+1,
     next_integer (N3, N2).

When the second argument is a variable in the call, greater_or_equal/2 is always
re-satisfiable, generating progressively larger integers. A Prolog error still occurs
if the first argument in the call is not an integer. We suggest an extension to
overcome this limitation in the exercises.

A similar predicate is in_range_integer/3, which tests whether an integer lies
between two given integers or generates integers that do satisfy this test. In the
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second usage, the predicate fails after generating all valid integers. The
procedure is: 

in_range_integer (N1, N2, N3):-
     integer (N2),
     N2 >= N1,
     N2 =< N3.
in_range_integer (N1, N2, N3):-
     var (N2),
     generate_in_range (N1, N2, N3).

generate_in_range (Base, Base, Limit):-
     Base =< Limit.
generate_in_range (Base, N, Limit):-
     Base < Limit,
     Next is Base + 1,
     generate_in_range (Next, N, Limit).

The purpose of the two clauses for in_range_integer/3 is to ensure that a call is
executed in the most efficient way. If we did not distinguish between calls in,
which the second argument was a variable and those in which it was an integer,
the call:

?- in_range_integer (1, 100, 100).

would produce 100 recursive calls to generate_in_range/3 before reaching the
base case. The sub-goals:?-integer (N2) and:?-var (N2) are guards which ensure
that the clauses which handle the two cases are mutually ex-clusive. We used the
same method in the procedure for greater_or_equal/2 to achieve efficiency of
execution, whether the procedure was testing a given value or generating values.

Notice that the conjunction:

?- greater_or_equal (1, N), greater_or_equal (N, 10).

is not equivalent to the call:

?- in_range_integer (1, N, 10).

The first sub-goal in the conjunction is always re-satisfiable, and the effect of
this is that after substituting for N each of the integers from 1 to 10, the sub-goal
continues generating larger integers for which the second sub-goal fails.

greater_or_equal/2 and in_range_integer/3 are utility predicates, and the
technique which they exemplify is part of the programmer’s toolkit.

Utility Predicates
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The technique is used when a predicate is to form part of a larger program, and
the procedure for it will be called with different patterns of arguments, either to
generate values or to test values given as input. It prevents Prolog errors and
ensures that a call is executed in an efficient way. The characteristics of the
technique are:

• The procedure has a clause for each pattern of arguments with which it may
be called.

• The first sub-goals of each clause are guards, testing the type of one or more
arguments.

• The procedure is re-satisfiable, generating all possible substitutions for
arguments which are variables in the call.

• The behaviour of the procedure is tested for every legitimate pattern of
arguments in a call.

• The description of the predicate states the permitted patterns of arguments in
calls and the order in which substitutions are generated.

The value of the technique is not confined to programming problems in which
we are manipulating numbers and there is a danger of Prolog errors if we fail to
check the types of terms. Let us examine again the procedure for subordinate/2
which we gave in section 3.1.

If we wish to know which soldiers are of higher rank than Flume, we
formulate the question as the goal:

?-subordinate (lower (flume), Who).

The process of satisfying this goal is shown in Figure 4.4. The figure shows that
the first answer to the question is:

Who = higher (peckem)

When the user rejects this answer, alternatives are produced by backtracking to
the second sub-goal:?-soldier (name (Higher), rank (H)) shown in box 2.2. The
goal can be re-satisfied by a match with each clause for soldier/2. For those
soldiers who are of higher rank than Flume, the value substituted for H is a rank
for which the third sub-goal can be satisfied. For others, the third sub-goal fails,
and Prolog backtracks to try the next soldier. Alternative answers are produced
by searching through all the soldiers, testing the rank of each against Flume’s
rank. This is not the most efficient method: better would be to identify in turn
each rank that is higher than Flume’s and then pick out the soldiers holding each
of these ranks. To implement this approach, we would reverse the order of the
last two sub-goals, giving the procedure: 

subordinate (Lower, Higher):-
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     soldier (name (Lower), rank (L)),
     lower_rank (L, H),
     soldier (name (Higher), rank (H)).

However, if subordinate/2 is to be used in a large program, we may not be able to
predict the pattern of arguments in every call. Yet, if in the larger program there
are many more soldiers and ranks than just those we used for illustration, it will
be important to execute a call in an efficient way. The predicate must be treated
as a utility and the procedure structured accordingly: 

subordinate (Lower, Higher):-

Figure 4.4 Satisfying the goal:?-subordinate (lower (flume), Who).
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compound (Lower),
compound (Higher),
soldier (name (Lower), rank (L)),
soldier (name (Higher), rank (H)),
lower_rank (L, H).

% Both names given on input

subordinate (Lower, Higher):-
compound (Lower),
var (Higher),
soldier (name (Lower), rank (L)),
lower_rank (L, H),
soldier (name (Higher), rank (H)).

% Just first name given

subordinate (Lower, Higher):-
var (Lower),
compound (Higher),
soldier (name (Higher), rank (H)),
lower_rank (L, H),
soldier (name (Lower), rank (L)).

% Just second name given

subordinate (Lower, Higher):-
var (Lower),
var (Higher),
soldier (name (Lower), rank (L)),
soldier (name (Higher), rank (H)),
lower_rank (L, H).

% Neither name given on input

There is now a clause for each of the four argument patterns, and the calls to the
type testing predicates ensure mutual exclusivity. The other sub-goals are
ordered for efficiency. In general, the fewer variables are in a sub-goal, the less
backtracking is involved in satisfying a conjunction of sub-goals and the more
efficiently a procedure is executed.

Exercises 4.3

(a) Extend the procedure for greater_or_equal/2 so that the call:

?- greater_or_equal (N, 10).

produces alternative substitutions for N through backtracking.

4.4
Term Constructing Operations

arithmetic_expression/1 is useful, but the procedure for it is rather long because
of the need for separate clauses, with identical bodies, for each arithmetic
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operator. More convenient would be to list the operators as clauses for
arithmetic_operator/1: 

arithmetic_operator (‘+’).
arithmetic_operator (‘-’).
arithmetic_operator (‘*’).
arithmetic_operator (‘/’).
arithmetic_operator (div).
arithmetic_operator (mod).

and write a single clause for arithmetic_expression/1 to handle all the cases
where the expression was a structure. The clause would be:

arithmetic_expression (E1 Op E2):-
arithmetic_operator (Op),
arithmetic_expression (E1),
arithmetic_expression (E2).

This, however, is syntactically incorrect because Op, the functor of the structure
E1 Op E2, is not an atom. The correct method is to use a single variable in the
head of the clause and then examine the functor and the components of the
structure which is substituted for it by using the built-in predicate =..
(pronounced “univ”). The definition is:

=../2
The goal succeeds if the first argument is a structure and the second

argument is a list whose head is the functor of the structure and whose tail
comprises the components of the structure in order.

The predicate, which is written between its arguments, can be used to decompose
a structure into functor and components:

?- soldier (name (moodus), rank (colonel)) =.. L.
L=[soldier, name (moodus), rank (colonel)]

?-f =.. L
L=[f]

?- [a, b, c] =.. [F|A].
F= .
A=[a, [b, c]]

or to construct a structure:

?- S =.. [a, b, c].
S=a (b, c)
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?- S =.. [‘+’, a, b].
S=a+b 

It is the first usage which occurs in the corrected procedure for
arithmetic_expression/1:

arithmetic_expression (Term):-
     Term =.. [Functor, Component1, Component2],
     arithmetic_operator (Functor),
     arithmetic_expression (Component1),
     arithmetic_expression (Component2).

With =../2, we can write programs which process arbitrary structures. At the time
of writing a program, we do not need to know what structure will be given as
argument in a call. An example is ground/1, which succeeds if the argument in a
call is a ground term. The procedure is:

ground (T):- % Atoms and numbers are
atomic (T). % ground terms.

ground (T):-
compound (T), % A structure is ground if…
T =..[_| Components],
ground_comps (Components). % its components are ground.

ground_comps ([ ]).
ground_comps ([First|Others]):-

ground (First),
ground_comps (Others).

At each recursive call, the procedure for ground_comps/1 reduces the list of
arguments by removing the head and passing it as argument to ground/1.

The built-in predicate functor provides another way of building a structure
from a functor and components. Its definition is:

functor/3
The goal succeeds if the first argument is a structure, the second

argument is its functor and the third is its arity.

We can call goals such as:

?- functor (T, s, 2).
T=s(_12, _20)

?- functor (a+b, Functor, Arity).
Functor=+
Arity=2
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?- functor (f, Functor, Arity).
Functor=f
Arity=0 

With functor/3, one cannot specify the value of components when building a
structure. The built-in predicate arg does this. It is defined as follows:

arg/3
The goal succeeds if the first argument is an integer N, the second is a

structure and the third is the Nth component of the structure. A Prolog
error results if the first argument is not an integer or the second argument
is not a structure.

So:

?- arg (2, soldier (name (moodus), rank (colonel)), R).
R=rank (colonel)

?- arg (2, [a, b, c, d], [b, c, d]).
yes

The effect of the goal:

?- T =.. [s, a, b].

can be achieved by a conjunction of calls to functor/3 and arg/3:

?- functor (T, s, 2), arg (1, T, a), arg (2, T, b).
T=s (a,b)

=../2 is simpler to use, but functor/3 and arg/3 are useful when writing programs
to process structures of large arity. In general, it is not good programming
practice to use such structures, because of the risk of confusing argument
positions in procedures which manipulate them. Occasionally, however, such a
structure is the most natural representation for a problem. For instance, if we
were writing a program to play noughts-and-crosses we might represent the
board by a structure with functor board and arity 9, each component representing
one square on the board. A procedure to establish the initial state of the board, in
which the empty squares are represented by variables, would be:

start_game (Board):-
     functor (Board, board, 9).

To determine whether the square at position P is free:
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empty_square (P, Board):-
     arg (P, Board, Square),
     var (Square).

To play in a square, assuming it is free: 

play_in (P, Board, Player):-
     arg (P, Board, Player).

The last term-constructing predicate is name. It is used to construct an atom from
a list of integers representing Ascii character codes. It is defined as follows:

name/2
The goal succeeds if the first argument is an atom and the second is a

list of the Ascii codes for the characters in the atom.

So, we get:

?- name (abc, L).
L=[97, 98, 99]

?- name (hat, [H|T]), name (W, [99|T]).
H=104
T=[97, 116]
W=cat

The predicate is used frequently in text processing applications in which words
are represented by atoms. A common requirement in such applications is to
determine the alphabetical order of two words. This can be done by a program
before, which takes two words as arguments and succeeds if the first is
alphabetically before the second:

before (W1, W2):-
     name (W1, L1),
     name (W2, L2),
     before_list (L1 , L2).

before_list ([H|_] , [J|_]):-
     H < J.
before_list ([H|M], [H|N]):-
     before_list (M, N).
before_list ([ ], [_|_] ).

There are three cases in which a call succeeds, and corresponding to each is a
clause of the procedure for before_list/2:
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• If the first letter of the first word is alphabetically before the first letter of the
second, eg. budgie is before canary.

• If the first letter of the two words is the same, but the first word comes before
the second when remaining letters of each are compared, eg. budgerigar is
before budgie. 

• If corresponding letters of the two words are all identical but the first word is
shorter than the second, e.g. bud is before budgerigar.

Another use of name/2 is to generate new atoms to represent different objects as
they are introduced, e.g. flight1, flight2, etc. The characteristic of these names is
that they consist of a root, identifying the type of the object named, and an
integer suffix to distinguish each object from others of its type. The program
new_name takes a root and generates names from that root. Successive names
are generated through backtracking. The procedure for new_name/2 is:

new_name (Root, Name):-
greater_or_equal (1, N), % Generate the next suffix.
convert (N, [ ], N_chars), % Convert it to Ascii codes.
name (Root, Root_chars), % Convert Root to Ascii codes.
conc (Root_chars, N_chars, Name_chars), % Join Root and suffix,
name (Name, Name_chars). % and re-convert to an atom.

We cannot construct an atom directly from the list of Ascii codes in Root and N,
the next integer. The integer must be converted to the list of Ascii codes for the
digits in it. The procedure for convert/3 does this:

convert (0, L, L).
convert (N, List_so_far, Full_list):-

     N > 0,
     Last_digit is N mod 10,
     Other_digits is N div 10,
     Ascii is Last_digit+48,
     convert (Other_digits, [Ascii|List_so_far], Full_list).

For a single digit number, the Ascii code for the digit is the number plus 48. For
larger integers, we obtain successive Ascii codes, starting with that for the least
significant digit, by repeatedly dividing the number by 10 and converting the
remainder to a code using the rule for a single digit number. To have the list of
codes in the right order, we use ingoing recursion. This is why convert is a three
argument predicate and why the extra argument in the call is the empty list. The
program behaves as follows:

?- new_name (flight, Name).
Name=flight1;
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Name=flight2;
Name=flight3;
Name=flight4 

Exercises 4.4

(a) The plural form of most English nouns is obtained by adding “s” to
the singular form. However, if the noun ends in a consonant followed
by “y”, the plural is formed by replacing the “y” with “ies”; and if the
noun ends in a consonant followed by “o”, the plural is formed by
adding “es”. Write clauses for plural_form/2, defining each of these
formation rules.
(b) A simple system for encoding messages is to replace each letter of
the message by the Nth letter after it in alphabetic order. For example,
for N = 2, “a” is replaced by “c”, “y” by “a”, etc. Given that the letters
“a” to “z” have Ascii codes 97 to 122, write a procedure for cifer/3
which takes a word to be encoded and an integer and produces the
coded form of the word using this method.
(c) Assuming the representation for the noughts-and-crosses board
which we described in this section, write a procedure for select_a_move/
2 which takes a board position and returns an integer representing the
move selected. The simplest method is to select the first free square.

4.5
Testing for Equality between Terms

There are several built-in predicates which test for equality between terms. You
have met is/2 and =:=/2, used in arithmetic. Another test is provided by =, which
is defined as follows:

=/2
The goal succeeds if the two arguments match and fails otherwise.

As =/2 exactly replicates the operation of matching terms, you may wonder why
it is needed as a built-in predicate. After all, for every clause of the form:

proc (X, Y):-
sub-goals 1 to k-1,
X=Y, % Test for match between the

% arguments in this sub-goal,
sub-goals k + 1 to n.

there is a formulation:
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proc (X, X):- % Test for match between the
% arguments in this pattern,

sub-goals 1 to n, excluding sub-goal k. 

which has the same declarative meaning whatever procedures are called in sub-
goals 1 to n. However, as you have seen, the meaning of some built-in predicates
can only be expressed in procedural terms, and if these predicates are used, the
position of a test for matching may affect the meaning of the program. For instance,
if the first sub-goal was:?-var (X), the two versions of the procedure for p roc/2
would behave differently in the call:

?- proc (V, atom).

In the first version, the test:?-var (X) would succeed, and if the other sub-goals
succeeded the answer, following the match X=Y, would be:

V=atom

In the second version, the two arguments would be matched in the head of the
clause, the test:?-var (X) would fail and the answer would be:

no

In Chapters 5, 6 and 7, you will learn of problems which do require =/2, but you
should always avoid using it unnecessarily. The question in your mind should
be: “Do I have to use =/2 here because of the procedural interpretation of my
program or is there an identical formulation which simply uses matching?”

Also provided as a built-in predicate is\=, defined thus:

\=/2
The goal succeeds if the two arguments do not match and fails

otherwise.

The procedure for different/2, which we used in section 3.4 but did not define,
uses \=/2:

different (A, B):-
     A\= B.

Note that we cannot use different/2 in a call such as:

?- different (george, Other).
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to generate values for the variable Other which are different from the atom george.
The goal merely fails, as the terms george and Other do match.

The final built-in predicates in this group are == (pronounced “is identical to”)
and\== (“is not identical to”). They are defined as:

==/2
The goal succeeds if the arguments have the same functor and arity and

corresponding components are identical. 
\==/2
The goal succeeds if the two arguments are not identical.

A variable is identical to another variable only if the two variables are sharing.
This gives the following behaviour:

?- X+7==Y+7. X and Y do not share,
no
?- X = Y, Succeeds: X and Y now share.
X+7==Y+7. Succeeds: X and Y share, so the terms are identical.
X=_71
Y=_71

Figure 4.5 illustrates the differences between is, =:=, = and == . 
==/2 is used when it is necessary to distinguish a variable from any other kind

of term. For instance, in our noughts-and-crosses example, where a blank square
was represented by a variable, we would use ==/2 in a procedure for
occupied_by/3 to test whether a square was occupied, and if so whether by
player o or player x. The procedure is:

Call Result

First
argument: X

X is 7+2 Succeeds: substitutes X ← 9

X =:= 7+2 Prolog error: X is not an arithmetic expression
Second
argument: 7+2

X=7+2 Succeeds: substitutes X ← 7+2

X == 7+2 Fails: the terms are not identical
First
argument: 8+1

8+1 is 7+2 Fails: the terms 8+1 and 9 do not match

8+1=:=7+2 Succeeds: the expressions have the same value
Second
argument: 7+2

8+1=7+2 Fails: the terms 8+1 and 7+2 do not match

8+1==7+2 Fails: the terms are not identical

Figure 4.5 Results of calls to is/2, =:=/2, =/2 and ==/2
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occupied_by (P, Board, o):-
     arg (P, Board, Square),
     Square == o. 

occupied_by (P, Board, x):-
     arg (P, Board, Square),
     Square=x.

A call to the procedure succeeds if the first argument represents a square and the
third argument is the player who has played in the square. We must not apply
any substitution to Square if it is a variable. Compare this procedure with that for
play_in/3 to ensure that you understand the effect of ==/2.

The justification for representing an unoccupied square by a variable rather
than by a distinguished atom such as b (for “blank”) is that it saves making a new
copy of the structure which represents the board each time a move is played. The
method is sound because the status of a square does not change once a nought or
a cross has been played in it. However, treating a variable as an object in its own
right, instead of just as a place-holder waiting to be filled, is a tricky business
because of the ever-present danger that a substitution may inadvertently be
applied to it. In section 5.2.1, we introduce a programming technique which
depends on exactly this trick, but in general you should beware of it. As we
develop the noughts-and-crosses program, you will come to appreciate the point
more clearly.

4.6
Summary

In this chapter, we have introduced the following ideas:

• Prolog provides arithmetic operators for constructing arithmetic expressions
and the built-in predicate is for evaluating them.

• Some built-in predicates require arguments of a particular type. The
programmer must observe these type constraints to prevent Prolog errors.

• There are built-in predicates to test the type of a term.
• A utility predicate is used for generating values or testing them and can be

called safely with different patterns of arguments.
• =.. functor and arg are built-in predicates for constructing and decomposing

structures, name is a built-in predicate for constructing and decomposing
atoms.

• Equality between terms is defined in different ways and tested by the four
built-in predicates is =:= = and ==. 
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Chapter 5
Input and Output

So far, input of data to programs has been through the arguments in a goal and
output of program results has been through the values substituted for variables.
This method is simple and convenient for the programmer when developing a
program. For a user, however, it is too restrictive, and in this chapter we describe
built-in predicates for input and output and show various ways they can be used
to implement a user interface.

5.1
Input and Output of Terms

The built-in predicates read and write input and output terms. They are defined
as follows:

read/1

The goal reads the next term from the current input stream. It succeeds if
the term matches the argument in the call; otherwise it fails. The goal is
not re-satisfiable.

write/1

The goal writes its argument to the current output stream.

The concept of input and output streams is central to Prolog I/O. By default, the
stream for input and output is the file user, identified with the user’s terminal.
How to change streams is described in section 5.3.

To illustrate read/1 and write/1, we give a program dimensions, whose
purpose is to calculate the wall area of a rectangular room:

dimensions:-
     write (‘All measurements for the room must be in feet’),
     nl,
     write (‘Type in the length of the room:’),
     read (Length),
     write (‘Type in the width of the room:’),



     read (Width), 
write (‘Type in the height of the room:’),
read (Height),
Longer_walls is Length * Height,
write (Longer_walls),
write (‘ sq.ft. is the area of each long wall’),
nl,
Shorter__walls is Width * Height,
write (Shorter_walls),
write (‘ sq.ft. is the area of each short wall’),
nl,
Total is (Longer__walls+Shorter_walls) * 2,
write (Total),
write (‘ sq.ft. is the total wall area’),
nl.

The behaviour of this program is shown below, with the user’s input in boldface:

?- dimensions.
All measurements for the room must be in feet
Type in the length of the room: 14.
Type in the width of the room: 10.
Type in the height of the room: 8.
112 sq.ft. is the area of each long wall
80 sq. ft. is the area of each short wall
384 sq. ft. is the total wall area
yes

There are several points to note here:

• When we wish to output a prompt of several words, we enclose the prompt in
single quotes to make it an atom.

• nl is another built-in predicate. Its definition is:

nl/0
The goal writes a <newline> character to the current output stream.

The goal always succeeds and is not re-satisfiable.

In the case of the prompts for user input, the call to write/1 is not followed by
a call to nl/0, so the user’s input is on the same line as the prompt.

• The end of the term input must be marked by a full-stop and a <newline>
character.

The predicates carry out actions of reading and writing as side-effects. 
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A side-effect is an action of a predicate that is not undone on backtracking. If
Prolog backtracks over a call to read/1 in which the argument was a variable, the
substitution of the term read for the variable is undone, but the action of reading
the term from the input stream is not. The term cannot be “put back” on the input
stream, and its value is lost to the program. Similarly, if a call to read/1 fails
because the term read does not match the argument in the call, that term is lost.
The following example illustrates the problems of predicates with side-effects. It
is a version of the dimensions program, extended to compute how much gloss
paint, emulsion paint or wallpaper is required for decorating the room.

The intended behaviour of the program is:

?- dimensions_and_quantities.
All measurements for the room must be in feet
Type in the length of the room: 17.
Type in the width of the room: 11.
Type in the height of the room: 8.
136 sq. ft. is the area of each long wall
88 sq. ft. is the area of each short wall
448 sq. ft. is the total wall area
Which material will be used for decorating the room?’
Type “paint (gloss).”, “paint (emulsion).” or “wallpaper.”: wallpaper.
5 rolls of wallpaper are required
yes

The extended program, then, is to issue a prompt and read one of three possible
inputs. First we give a procedure which implements this correctly:

dimensions_and_quantities:-
…
sub-goals as for dimensions/0, then:
…
write (‘Which material will be used for decorating the room?’),
nl,
write (Type “paint (gloss).”, “paint (emulsion).” or “wallpaper.”:’),
read (Material),
compute_quantity (Material, Total).

compute_quantity (paint (gloss), Total):- % Gloss paint is used.
Quantity is Total div 130+1,
write (Quantity),
write (‘litres of gloss paint are required’),
nl.

compute_quantity (paint (emulsion), Total):- % Emulsion is used.
Quantity is Total div 170+1,
write (Quantity),
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write (‘litres of emulsion paint are required’),
nl. 

compute_quantity (wallpaper, Total):- % Wallpaper is used.
Quantity is Total div 180+3,
write (Quantity),
write (‘rolls of wallpaper are required’),
nl.

After reading the user’s input, Prolog searches through the clauses for
compute_quantity/1 until a clause is found which matches the term which the
user had typed in. The design of the program ensures that the call to read/1 does
not fail and that Prolog does not backtrack over it. The following alternative
procedure would be incorrect:

dimensions_and_quantities:-
…
sub-goals as for dimensions/0
…
write (‘Which material will be used for decorating the room?’),
nl,
write (Type “paint (gloss).”, “paint (emulsion).” or “wallpaper.”:’),
compute_quantity (Total).

compute_quantity (Total):-
read (paint (gloss)), % Gloss paint is used.
Quantity is Total div 130+1,
write (Quantity),
write (‘litres of gloss paint are required’),
nl.

compute_quantity (Total):-
read (paint (emulsion)), % Emulsion is used.
Quantity is Total div 170+1,
write (Quantity),
write (‘litres of emulsion paint are required’),
nl.

compute_quantity (Total):-
read (wallpaper), % Wallpaper is used.
Quantity is Total div 180+3,
write (Quantity),
write (‘rolls of wallpaper are required’),
nl.
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The fault is the inclusion of the call to read/1 in the clauses for compute_quantity/
1. The call in the first clause would fail if the user’s input did not match paint
(gloss), and the input would be lost. In the second clause, it would be the next
term entered that would be read and tested for a match with paint (emulsion).

To avoid these pitfalls, you should ensure that the argument to read/1 is a
variable and that the term read is processed by a separate sub-goal from that
containing the call to read/1. The procedure for this sub-goal should have a
clause for each anticipated input and perhaps a catch-all clause to trap invalid
input.

The built-in predicate tab can be used to format output. It is defined:

tab/1

The argument in the goal must be N, an integer. The goal writes N blank
spaces to the current output stream.

We illustrate the use of tab/1 in a program format_term which writes a term in a
format that makes clear the structure of the term. The components are written on
successive lines, indented to the right of the functor, thus:

?- format_term (family (parents (george, lesley), children (bill, ben))).
family (parents (george,
     lesley),
     children (bill,
     ben))
yes

?- format_term (20−5+2*3).
+ (− (20,
     5),
     *(2,
     3))
yes

The procedure is:

format_term (Term):-
output_formatted (Term, 0),
nl.

% Initially indent is 0 spaces.

output_formatted (Term, _):-
atomic (Term),
write (Term).

output_formatted (Term, _):-
var (Term),
write (Term).
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output_formatted (Term, Current_indent):-
compound (Term),
Term =.. [Functor|Args],
write (Functor),
write (‘(’),
name (Functor, List),
length (List, L),
Next_indent is Current_indent+L+1,
output_args (Args, Next_indent).

% Find number of characters
% in functor, to compute
% indent for
% output of args. 

output_args ([Arg], Indent):- % Only one argument to output.
output_formatted (Arg, Indent),
write (‘)’).

% Output it as a term,
% and close bracket after it.

output_args ([First, Second|Others],
Indent):-

% More than one arg.

output_formatted (First, Indent),
write (‘,’),
nl,
tab (Indent),
output_args ([Second|Others], Indent).

% Output first as term.
% Comma,
% <newline>
% and indent, then
% output rest as args.

The program uses length/2, described in section 4.1.

Exercises 5.1

(a) Write a procedure for display_position/1 to print a noughts-and-
crosses board position at the current output stream, assuming the
representation for the board that we gave in section 4.4.

5.2
More Flexible Input and Output

With read/1 and write/1, the user is constrained by the syntax of Prolog. Input
must be as terms, which means putting commas and brackets in the right places
and a full-stop at the end. A program which fails if the syntax of the
programming language is not respected will be fragile in the hands of an
inexperienced user. We introduce two methods for achieving greater flexibility:
operator definition and character I/O.

5.2.1
Operator definition

Some functors of arity 2 can be written between their components, and this
makes structures easier to type in correctly and to read when they are output.
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Examples are the arithmetic operators, which we described in section 4.1, and built-
in predicates such as >/2, =../2 and ==/2 which we introduced in later section of
Chapter 4. In addition, the programmer can define his own functors as infix
operators, to be written between the components of a structure, prefix operators,
written before the single component, or postfix operators, written after the single
component. We explain the mechanism of operator definition by reference to the
pre-defined arithmetic operators and then give examples of the use of
programmer-defined operators.

The program format_term showed that an arithmetic expression which the
user enters in infix notation as 20−5+2 * 3 is interpreted as the term +(−(20, 5), *
(2, 3)). The expression is interpreted in accordance with the precedence and
associativity of the operators −, + and *. The precedence of an operator defines
its order of application in relation to other operators in expressions which are not
bracketed. The associativity defines the order of application in unbracketed
expressions where two operators have the same precedence. An operator is
defined by a call to the built-in predicate op. A typical call to define the
arithmetic operators would be:

?- op (31, yfx, [‘−’, ‘+’]).
yes
?- op (21, yfx, [‘*’, ‘/’, div]).
yes
?- op (11, xfx, mod),
yes

In each call to op/3, the first argument defines the precedence, the second defines
the associativity and the third is the name of the operator, or, where several
operators are being defined with the same precedence and associativity, it is a
list of names. The precedence is expressed as an integer, a lower number
indicating higher precedence. The associativity is denoted by one of the atoms:

xfx      xfy      yfx      fx      fy      xf      xy

These atoms are mnemonics: f represents the operator, x and y represent two
types of operand. So, xfx, xfy and yfx are mnemonics for infix operators, fx and
fy denote prefix operators and xf and yf denote postfix operators. A type x
operand, if unbracketed, may include only operators of higher precedence than
the operator f. A type y operand, if unbracketed, may include operators of equal
or higher precedence.  

Operators of higher precedence are applied first. This excludes interpretations
of the expression: 20−5+2*3 in which the multiplication is carried out last. The
two other possible interpretations are shown in Figure 5.1. As—requires a right
operand of type × and + is not of higher precedence than it, the second
interpretation is ruled out.
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In effect, the mnemonic yfx denotes an infix operator which associates to the
left in expressions where several operators of the same precedence are used, xfy
one which associates to the right, and xfx indicates that operands must be fully
bracketed in such expressions.

A set of operators is given as Figure 5.2. You can think of these clauses as
directives executed when you enter the Prolog system. The set provided varies
between implementations of the language, as does the range of integers used, but
the order within the precedence hierarchy is fixed. 

To define your own operators, simply include calls to op/3 as directives at the
head of a program. If you want these directives to be executed without causing
Prolog to respond with yes for each, use the prefix operator :-instead of?-. If, at
the head of the dimensions_and_quantities program, we defined paint as a
postfix operator:

:-op (xf, 150, paint),

Figure 5.1 Correct and incorrect interpretations of the arithmetic expression: 20−5+3 * 2 

Figure 5.2 Pre-defined operators
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the user could input:

gloss paint,

or:

emulsion paint,

in response to the prompt: 

Which material will be used for decorating the room?

We could also use the operator syntax in the program itself, writing the heads of
the first two clauses for compute_quantity/1 as:

compute_quantity (gloss paint):-

and:

compute_quantity (emulsion paint):-

Using operator syntax extensively in a program can make the program difficult
to read and understand. If clauses include operators with differing precedence
and associativity, the reader may have difficulty in discerning the structure of
clauses and in recognising which sub-goal calls match which clauses. However,
a program user does not need to be aware of the syntactic issues, and for him the
advantages of a more natural interface are considerable. We include the operator
definition technique in our toolkit for this reason.

Operator Definition

The technique is used to make program input easier and output more readable.
The programmer must ensure that:

• Directives defining operators are executed before Prolog reads any clauses
which use them.

• The precedence and associativity of operators are carefully considered and
fully understood.

• If terms are represented in standard syntax in the program, their structure does
match the terms which the user inputs in operator syntax.

The built-in predicate display is useful in connection with the last point. Its
definition is:
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display/1

The goal takes as argument a term in operator syntax and writes the term
to the current output stream in standard syntax in accordance with current
operator definitions.

Examples are:

?- display (20−5+2*3).
+(−(20, 5), *(2, 3)
yes 

?- display (gloss paint).
paint (gloss)
yes

As an illustration of the operator definition technique, we give a program to
generate a truth table for a Boolean expression constructed using the connectives
~ (not), ^ (and) and v (or). To enable the user to enter the expression in a
convenient form, we define the connectives as operators:

:- op (90, xfy, v).
:- op (89, xfy, ‘^’).
:- op (88, fy, ‘~’).

We also define operators gives and constant, so that we can write a truth table for
each connective entirely in operator syntax:

:- op (95, xfx, gives).
:- op (94, fx, constant).

The truth table is:

constant t.
constant f.
~t gives f.
~f gives t.
t ^ t gives t.
t ^ f gives f.
f ^ t gives f.
f ^ f gives f.
t v t gives t.
t v f gives t.
f v t gives t.
f v f gives f.
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Before proceeding, we check that the operator definitions do implement the
required precedence and associativity:

?- display (~a ^ b ^ c).
^ (~a, ^ (b, c))
yes

?- display (f v f gives f).
gives (v (f, f), f)
yes

The program evaluates an expression by replacing each term with one of the
Boolean constants t and f and each sub-expression with a constant value from the
truth table. The user obtains successive rows of the truth table by rejecting each
answer Prolog gives:

truth_table (Variable_expression, Const_expression gives Value):-
     assign (Variable_expression, Const_expression, Value).

assign (Term, Bool_constant, Bool_constant):-
     atom (Term),
     constant Bool_constant.
assign (~ E, ~ C, V):-
     assign (E, C, V1),
     ~ V1 gives V.
assign (E1 ^ E2, C1 ^ C2, V):-
     assign (E1, C1, V1),
     assign (E2, C2, V2),
     V1 ^ V2 gives V.
assign (E1 v E2, C1 v C2, V):-
     assign (E1, C1, V1),
     assign (E2, C2, V2),
     V1 v V2 gives V.

The procedure for assign/3 has a clause to handle the base case, that of a Boolean
expression which is a simple term, and three recursive clauses each handling a
compound expression constructed using one connective: ~, ^ or v. In the base
case, the term is replaced by a Boolean constant, which evaluates to itself. In the
other cases, we recursively assign values to the sub-expressions and then
evaluate the whole expression by searching the truth table.

We can call goals such as:

?- truth_table (~a ^ b ^ c, Line).
Line=~t ^ t ^ t gives f;
Line=~t ^ t ^ f gives f;
Line=~t ^ f ^ t gives f;
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Line=~t ^ f ^ f gives f;
Line=~f ^ t ^ t gives t;
Line=~f ^ t ^ f gives f;
Line=~f ^ f ^ t gives f;
Line=~f ^ f ^ f gives f;
no 

However, if a term occurs more than once in an expression, the program assigns
different truth values to different occurrences of it. For an expression such as: a v
b ^ a, it produces eight answers, rather than just four:

?- truthtable (a v b ^ a, Line).
Line=t v t ^ t gives t;
Line=t v t ^ f gives t;
Line=t v f ^ t gives t;
Line=t v f ^ f gives t
etc.

To prevent this, we must check, before replacing a term by a Boolean constant,
whether the term has already occurred in the expression and, if so, what value
had replaced it. To keep track of terms and the values which replaced them, we
could use two lists as extra arguments to the assign procedure. The first list,
empty in the initial call, would accumulate new terms and values by ingoing
recursion. The second would be returned as an output argument each time the
base case was reached. As each term was met, we would check whether it was in
the list, and if it was not we would add it, recording in a structure with functor value
and arity 2 the term and the value which had replaced it.

However, we can represent the growing list in a single argument by using a
hollow term. A hollow term, in contrast to a ground term, is a structure that does
contain variables. In the present problem, the hollow term is a list whose end is
marked by a variable instead of by the empty list. In the initial call to evaluate a
Boolean expression, the list is just a variable. As each new term is evaluated, we
substitute for this variable a list whose head is a structure recording the term and
the value which replaced it and whose tail is another variable. Because the list
remains a hollow term, we can always apply further substitutions to it.

We use put_in_list/2 to insert an item in a list represented as a hollow term:

put_in_list (Item, [Item|_]).
put_in_list (Item, [Element|Es]):-
     Item \== Element,
     put_in_list (Item, Es).

The first clause succeeds in two ways:
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• By matching a new item and an element in the list: this prevents duplication.
• By applying a substitution to the variable at the end of the list: this adds a new

item to it. 

The procedure behaves as follows:

?- put_in_list (a,L), put_in_list (b,L), put_in_list (b,L).
L=[a, b|_72]

The substitutions applied to L are illustrated in Figure 5.3.
This behaviour is exactly what we require for the truth table program: if a term is
already in the list, we wish to retrieve the value associated with it, and if it is not,
we add the term and a value to the list. In the modified program, assign is a four
argument predicate:

truth_table (Variable_expression, Const_expression gives Value):-
     assign (Variable_expression, Hollow, Const_expression, Value).

In the base case, we put another item in the list which the extra argument
represents, and in the recursive cases we pass it on:

assign (Operand, L, Bool_constant, Bool_constant):-
     atom (Operand),
     put_inlist (value (Operand, Bool_constant), L),
     constant (Bool_constant).
assign (~ E, L, ~ C, V):-
     assign (E, L, C, V1),
     ~ V1 gives V.
assign (E1 ^ E2, L, C1 ^ C2, V):-
     assign (E1, L, C1, V1),
     assign (E2, L, C2, V2),
     V1 ^ V2 gives V.
assign (E1 v E2, L, C1 v C2, V):-

Figure 5.3 Substitutions applied to the list L
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     assign (E1, L, C1, V1),
     assign (E2, L, C2, V2),
     V1 v V2 gives V.

The program gives the correct result in the call which previously produced an
error: 

?- truth_table (a v b ^ a, Line).
Line=t v t ^ t gives t;

Line=t v f ^ t gives t;
Line=f v t ^ f gives f;
Line=f v f ^ f gives f;

no

As we explained in section 4.5, there are risks in treating a variable as an object.
The use of one to represent the end of a list makes it more difficult to determine
whether an item really is in such a list. We could not use m ember/2, as given in
section 3.4, because the item being searched for would always match the variable
at the end of the list. We must check that the item at the head of the list is not a
variable. A procedure for found_in_list/2 is:

found_in_list (Item, [Element |_]):-
     nonvar (Element),
     Item=Element.
found_in_list (Item, [E|Es]):-
     nonvar (E),
     found_in_list (Item, Es).

This gives the required behaviour:

?- found in_list (cat, [can, cat, car |_] ).
yes
?- found_in_list (cab, [can, cat, car |_] ).
no
?- found_in_list (X, [matthew, mark, luke, john |_] ).
X=matthew;
X=mark;
X=luke;
X=john;
no

In the truth table example, where we do not have to distinguish whether an item
really is in a list, the use of a hollow term is appropriate. Indeed, the technique is
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valid in many situations where we wish to avoid encumbering numerous
procedures with two extra arguments, and it belongs in our toolkit. 

Hollow Terms

The technique is an alternative to ingoing recursion when a program needs
access to results accumulated so far. It comprises the following steps:

• One extra argument is needed to all procedures which examine results so far
or add to them.

• In the initial call, the argument is a variable.
• Progressive substitution is applied to the argument, but the structure

substituted always contains at least one variable.
• A single procedure both tests for the existence of a value in the hollow term

and adds a new value to it.
• The programmer must take great care when writing procedures in which it is

necessary to distinguish between an item in the hollow term and a variable.

Exercises 5.2.1

(a) Write operator definitions for the verb stands, prepositions by, on
and under and articles the and a, so that the layout of a room can be
described in a program by facts such as:

a table stands by the window,
the television stands on the table.
a box stands under the table.

and the user can ask questions such as:

?- What stands by the window.
?- What stands under Something.
?- the television stands Where.

(b) The connective -> (“implies”) is of lower precedence than ~ , ^ and
v.
The truth table for it is:

a b a -> b
t t t
t f f
f t t
f f t
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Extend the truth table program to deal with expressions which include this
connective.

5.2.2
Input and output of characters

Operator definitions make term output more readable and input easier, but a
program still fails if the syntax of current operator definitions is not respected.
As we have suggested, this fragility is unacceptable in many environments. For
robustness, the programmer must be able to control the program’s response when
a user enters invalid data. This means reading input character by character and
defining in the program classes of character and responses for each. Two built-in
predicates provide character input: get0 and get. They are defined as follows:

get0/1

The goal reads the next character from the current input stream. It
succeeds if the Ascii code for the character matches the argument in the
goal; otherwise it fails. The goal is not resatisfiable.

get/1

The goal reads characters from the current input stream until a printing
character is read. It succeeds if the Ascii code for the printing character
matches the argument in the goal; otherwise it fails. The goal is not re-
satisfiable.

We use get0/1 in conjunction with name/2 in a program to read characters from
the current input stream and return as output argument a list of words read. The
top level of the program is a procedure for read_words/1:

read_words (List_of_words):-
     get0 (C),
     form_words (C, List_of_words).

The character read is processed in the procedure for form_words/2. The
procedure has three clauses, each defining one character class and the processing
required for a character in the class:

form_words (C, [ ]):- % Return empty list if…
end_of_input (C). % C marks end of input.

form_words (C, Words):-
separates_words (C),
get0 (C1),

% C separates words.
% Read next character
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form_words (C1, Words). % and pass it to recursive call.
form_words (C, [W|Ws]):-
occurs_in_word (C),
form_a_list (C, List, C1),
name (W, List),
form_words (C1, Ws).

% C is a character of a word
% Form a list of characters,
% convert it to an atom
% Recursive call to form tail of list 

The three classes of character are defined by three guard predicates. The
procedures for them are:

end_of_input (46). % “.”
separates_words (32).
separates_words (10).
separates_words (13).
separates_words (9).

%<space>
% <carriage-return>
% <line-feed>
% <tab>

occurs_in_word (C):-
C > 64,
C < 91.

% “A” to “Z”

occurs_in_word (C):-
C > 96,
C < 123.

% “a” to “z”

occurs_in_word (40).
occurs_in_word (41).
occurs_in_word (44).
occurs_in_word (58).
occurs_in_word (59).

% “(”
% “)”
% “,”
% “:”
% “;”

If the user enters a character which falls into none of these classes, the call fails.
form_a_list/3 takes as input the first character of a word and returns a list of

all the characters in the word and the first character after the end of the word.
The procedure is:

form_a_list (C, [ ], C):-
     end_of_input (C).
form_a_list (C, [ ], C):-
     separates_words (C).
form_a_list (C, [C|Cs], C2):-
     occurs_in_word (C),
     get0 (C1),
     form_a_list (C1, Cs, C2).

The program behaves as follows, with the user’s input in boldface:
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?- read_words (S).
A sentence can continue over several lines;

punctuation marks are treated (like characters in a word).

S=[A, sentence, can, continue, over, several, lines;, punctuation, marks, are,
treated, (like, characters, in, a, word)]

You should study carefully how successive characters are read and processed
in this program. The program exemplifies the method described in section 5.1. In
particular, there is no backtracking over sub-goals. Each character read is
“passed forward” to another sub-goal to be processed.

read_words/1 is useful in many text processing applications, though for most
it would have to be extended to handle other classes of character. We suggest
one extension in the exercises.

Output of characters is achieved by the built-in predicate put. It is defined thus:

put/1

The argument should be an integer which is an Ascii character code. The
goal succeeds by writing the corresponding character to the current output
stream.

Output to the terminal is more conveniently achieved by write/1 than by put/1,
not least because the programmer does not have to have a table of Ascii
character codes to use write/1. put/1 is frequently used in conjunction with get0/1
in processing text files. File handling is the subject of the next section.

Exercises 5.2.2

(a) Modify the procedure for read_words/1 so that punctuation marks are
included as separate words in the list.

5.3
File Handling

To read input from and write output to external files, the current input and output
streams must be altered. For input, the predicates are see, seeing and seen. The
analogous set for output is tell, telling and told. These are defined as follows:

see/1

The argument should an atom representing a file name, and a file with this
name should exist. The predicate succeeds and, as a side-effect, makes the
named file the current input stream. If the file was not already open for
input, it is opened, and reading starts at the beginning of it. If the file was
open for input, reading continues from the point in the file already reached.
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seeing/1

The goal succeeds if its argument matches the name of the file which is
the current input stream and fails otherwise.

seen/0

The goal succeeds and, as a side-effect, the file which is the current input
stream is closed. The file user becomes the current input stream. 

tell/1

The argument should be an atom representing a file name. The goal
succeeds and, as a side-effect, makes the named file the current output
stream. If the file did not exist, it is created and opened for output. If it did
exist, but was not open for output, it is opened and its previous contents are
lost. If the file was already open for output, further output is appended to
it.

telling/1

The goal succeeds if its argument matches the name of the file which is
the current output stream and fails otherwise.

told/0

The goal succeeds and, as a side-effect, the file which is the current
output stream is closed. The file user becomes the current output stream.

A program can open several files, but at any point in the program just one is the
current stream for input and one for output. Only the special file user can be open
for input and for output.

The programs write_file_of_terms and read_file_of_terms show how to use
these predicates to write and read files of terms. The programs do not define how
the terms to be written are obtained or how the terms read are to be processed,
but they exemplify a program structure which you can use in any problem which
involves file handling. The argument to each is the name of a file. First, the
procedure for write_file_of_terms/1:

write_file_of_terms (To):-
telling (Currently), % Identify current output stream.
tell (To), % Re-direct output.
write_each_term,
tell (Currently). % Revert to previous output stream.

write_each_term:-
next (Term), % Obtain next term to be written.
write (Term), % Mark end of term with “.”
write (‘.’), nl, % and <newline>
fail. % This goal always fails.

write_each_term:-
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told. % Close output file.

The predicate fail is built-in. It always fails when called as a goal, like a
predicate without a procedure. We give examples of programs using fail in
section 6.2. Its purpose here is to force Prolog to backtrack to the sub-goal: ?-
next (Term) which, we assume, generates terms to be output through
backtracking. When there are no more, the sub-goal fails, and the second clause
for write_each_term/1 closes the output file. 

Now, the procedure for read_file_of_terms/1:

read_file_of_terms (From):-
seeing (Currently), % Identify current input stream.
see (From), % Take input from named file.
read (Term), % Read next term
process_term (Term).
see (Currently). % Revert to previous input stream.

process_term (Term):-
end_of_file_marker (Term), % End of input file reached?
seen. % Close input file.

process_term (Term):-
end_of_file_marker (T),
Term \== T,
actions_on (Term), % Process term read,
read (Next), % read next term
process_term (Next). % recursive call to process it.

The recursion in the procedure for process_term/1 stops when the term read is
the end of file marker. Implementations differ in the term used for this purpose.
In some systems, it is the atom end_of_file, in others it is the structure:-end.

Many text processing applications require characters to be read from an input
file and written, in a modified form, to an output file. Our program
convert_char_files exemplifies the structure of a program for such an
application. The arguments are the input and output file names:

convert_char_files (Chars_in, Chars_put):-
seeing (Input),
telling (Output),
see (Chars_in),
tell (Chars_out),
get0 (C),
change_char (C),
see (Input),
tell (Output).
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change_char (C):-
end_of_file_char (C),
seen,
told.

change_char (C):-
end_of_file_char (Eof),
C \= Eof,
change (C, C1),
put (C1),
get0 (C2),
change_char (C2). 

We assume that the procedure for change/2 defines the processing required on
the characters of the input file. Recursion in the procedure for change_char/1
stops when the end of file character is read. Usually, this is the character with
Ascii code 26, but again this is implementation-dependent.

Exercises 5.3

(a) Write a version of the program convert_char_files which converts
upper-case letters in the input file to lower-case in the output.
(b) Write a version of the program convert_char_files which replaces
multiple adjacent <space> characters in the input file with a single
<space> character in the output file.

5.4
Summary

In this chapter, we have introduced the following ideas:

• Prolog input and output is stream-oriented. There are built-in predicates to
associate files with streams.

• I/O may be term-based or character-based.
• The built-in predicates which read and write terms or characters do so by side-

effects. The programmer must take care to ensure that input is not lost
because of backtracking.

• The operator definition technique makes term input easier and term output
more readable.

• A hollow term is a term which is not ground. It is sometimes more convenient
to use a hollow term than ingoing recursion to accumulate results.

• A standard structure for programs which read and process files of terms can
be adapted for any application which has this requirement. An equivalent
structure forms the basis for any program which generates terms for storage in
an external file. 
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Chapter 6
Controlling Program Execution

In this chapter, we introduce built-in predicates which enable the programmer to
exercise a measure of control over Prolog’s search strategy. All are procedural
devices and tend to obscure the declarative interpretation of programs. An
important consideration throughout the chapter is how good programming
practice can mitigate this tendency.

6.1
Reducing Search: the “cut”

The built-in predicate! (pronounced “cut”) increases the efficiency of program
execution by reducing search. It eliminates alternatives which Prolog would
otherwise investigate on backtracking. The cut always succeeds when called as a
goal and is not re-satisfiable on backtracking. It has two side-effects in a clause
for a procedure:

• It cuts out backtracking to preceding sub-goals in the clause.
• It prevents any subsequent clauses for the procedure from being used to

satisfy a goal.

Figure 6.1 The cut prevents backtracking to earlier sub-goals in a clause 

 



Figure 6.1 illustrates the first of these side-effects. The failure of subgoal sub4
causes Prolog to seek to re-satisfy sub3. If sub3 cannot be resatisfied, Prolog
backtracks to the cut. Now, the call to proc1 immediately fails because the cut
has cut out backtracking to sub2 orsub1.

The second side-effect is shown in Figure 6.2. 
The cut in the first clause for proc2 cuts out the second and third clauses. If the

sub-goal sub2 fails, the call to proc2 fails. It is important to distinguish this
situation from that shown in Figure 6.3 where the call to sub1 has failed.  

As the cut in the first clause is not reached, the second clause for proc2 is used
after the failure of sub1. The call to proc2 now succeeds if the sub-goal sub4
succeeds and fails otherwise. If sub3 had failed, the cut in the second clause
would not have been reached, and Prolog would have used the third clause in
trying to satisfy the goal.

There are two reasons for using the cut:

• To prevent fruitless searches for ways of re-satisfying a goal on back-
tracking, when the programmer knows that the goal is not resatisfiable.

• To ensure that just one clause is used to satisfy a goal, when case analysis has
shown that clauses represent mutually exclusive cases.

We illustrate these usages in the next two sections.

6.1.1
Preventing fruitless searches

In a program to manipulate sets, we might choose to represent a set by a list. If
so, we would use member/2, for which we gave a procedure in section 3.4, to

Figure 6.2 The cut cuts out subsequent clauses for a procedure
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test for set membership. Consider the situation in which the test occurs as a sub-
goal in another procedure:

proc (Arg1,…, Argn):-
generate_item (Item), % Generate an item.
generate_set (Set), % Generate a set.
member (Item, Set), % If Item is a member of Set…
test (Arg1, Item), % apply further tests, and…
action (Item, Set, Argn). % take the required action.

If Item is a member of Set but the call to test/2 fails, Prolog backtracks to the set
membership test and searches the remainder of the list for another occurrence of
Item. As a set does not contain duplicates, we know that this search is fruitless.
With the cut, we can eliminate all search on backtracking. The procedure is:

member (H, [H|_]):-!.
member (H, [_|T]):-
     member (H, T).

Now, the sub-goal:?-member (Item, Set) fails immediately on backtracking
because when, on first satisfying the goal, the base case was reached, the cut in
the clause representing that case prevented the recursive clause from being used
to try to re-satisfy the goal. Prolog backtracks directly to try to generate another
set, in the sub-goal:?-generate_set (Set).

Used in this way, the cut does not alter the results produced by a program. It is
purely a device to reduce search. For most implementations of Prolog, the cut
also reduces the memory requirement of a running program. The saving comes

Figure 6.3 The cut in a clause is not reached, so the second can be used 
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about through the reduction in the number of points to which Prolog might have
to backtrack, each of which it has to record. For large programs, the reduction
can be considerable.

Despite these benefits, the utmost care is required for safe use of the cut.
Though it may not alter the behaviour of a whole program, its inclusion in a
procedure always alters the behaviour of that procedure. You must be aware of
the alteration, and you must satisfy yourself that it does not compromise the
operation of the whole program. In our example, the cut prevents the procedure
for member/2 from being used to generate members of a list. So:

?- member (Item, [red, orange, yellow, green, blue]).
Item=red;
no

Alternative substitutions cannot be generated because the cut in the clause for the
base case cuts out the backtracking which would otherwise produce alternatives
by the recursive case. This restriction is not pertinent if we are sure that member/
2 will only be used for testing for list membership.

The effect of the cut is to transform a procedure which may generate
alternative substitutions for variables in a goal (sometimes referred to as a non-
deterministic procedure) into one which can produce just a single answer (a
deterministic procedure). It is this action which makes the predicate valuable for
enforcing mutual exclusion, and in the next section we examine this usage.

6.1.2
Enforcing mutual exclusion

We illustrate this technique by re-considering the procedure for hidden_flatten/3
which we gave in section 3.4. There, we first wrote a procedure which was faulty
through failing to enforce mutual exclusion. We then removed the fault, giving:

hidden_flatten ([ ], L, L).
hidden_flatten ([[H|T] | L], S, F):-
      hidden_flatten (L, S, Lf),
      hidden_flatten ([H|T], Lf, F).
hidden_flatten ([H|T], S, [H|L]):-
      different (H, [_|_] ),
      hidden_flatten (T, S, L).

The sub-goal:?- different (H, [_|_] ), is the guard which enforces mutual
exclusion between the second and third clauses. We can make the procedure
deterministic by using the cut, instead of a guard, in the second clause: 

hidden_flatten ([ ], L, L).
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hidden_flatten ([[H|T] | L], S, F):-!,
     hidden_flatten (L, S, Lf),
     hidden_flatten ([H|T], Lf, F).
hidden_flatten ([H|T], S, [H|L]):-
     hidden_flatten (T, S, L).

If, at any level of recursion, the input list matches the pattern in the head of the
second clause: [[H|T] | L], the cut stops the third clause being used at that level to
re-satisfy the goal on backtracking.

The important decision is where to place the cut to make a procedure
deterministic. The guiding principle is that in each clause where it is needed, the
cut should appear immediately after the test which recognises the case that the
clause handles. The cut is not required in clauses which are already exclusive
with respect to all subsequent ones. That is why we did not use the cut in the first
clause for hidden_flatten/3: the case of the empty list excludes the other cases.

To see how this principle is applied, consider the problem of writing a program
to produce the Soundex code representation of a name. The code provides a way
of reducing similar-sounding names to a common code. Names are abbreviated
according to the following rules:

• The first letter of the name remains.
• All subsequent vowels, “h”, “w” and “y” are omitted.
• Double letters are replaced by single.
• The maximum length of the coded name is four letters.

A procedure for soundex/2 should behave as follows:

?- soundex (barrington, Code).
Code=brng
?- soundex (llewellyn, Code).
Code=lln
?- soundex (smith, Code), soundex (smythe, Code).
Code=smt

We can formulate the rules for the treatment of characters after the first as a
series of cases:

• If four letters have been output, terminate the output. 
• If there are no more characters in the input, terminate the output.
• If the current letter of the input is a vowel, “h”, “w” or “y”, discard it and

generate the output from the remaining letters of the input.
• If the current letter of the input is the same as the preceding one, discard it and

generate the output from the remaining letters of the input.
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• Otherwise, define the current letter of the input to be the next letter of the
output, and generate the remainder of the output from the remaining letters of
the input.

Besides completing the first stage in the application of the case analysis
technique, the identification of cases, this formulation encompasses part of the
second and third stages. It describes how each case is recognised, though this
description remains to be translated into a definition of Prolog terms, and it
describes in loose English the processing required in each case. The first two are
base cases; the third and fourth are recursive; and the last, also recursive, is a
catch-all. We note also that the cases are mutually exclusive: for a given name
there is just one correct encoding. We can express the cases as clauses for reduce/
4:

% reduce (Input_list, Count_of_output, Previous_letter, Output_list)
reduce (_, 4, _, [ ]):-!. % Output is empty list…
reduce ([ ], _, _, [ ]):-!. % in both base cases.
reduce ([Current|Others], Count, _, Code):-

vowel_h_w_y (Current),!,
reduce (Others, Count, Current, Code).

reduce ([Letter|Others], Count, Letter, Code):-!,
reduce (Others, Count, Letter, Code).

reduce ([Current|Others], Count, _, [Current|Code]):-
N is Count + 1,
reduce (Others, N, Current, Code).

vowel_h_w_y (97) % “a”
vowel_h_w_y (101), % “e”
vowel_h_w_y (105). % “i”
vowel_h_w_y (111). % “o”
vowel_h_w_y (117). % “u”
vowel_h_w_y (104). % “h”
vowel_h_w_y (119). % “w”
vowel_h_w_y (121). % “y”

The formulation of the clauses for reduce/4 follows very naturally from the case
analysis of the problem. The programmer’s skill is in recognising from the case
analysis what arguments are needed in the procedure and choosing suitable
representations for them. The first case suggests that one argument must be a
count of letters output so far, and we represent it by an integer. Other arguments
are the letters input and output; these we represent by lists of Ascii codes. The
fourth case requires a comparison between a letter of the input and the one which
preceded it. Evidently, we need another argument to denote the previous letter.
An integer representing an Ascii code serves the purpose.
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You should also study how the processing requirements are expressed in
clauses for each case. Look especially at how, in those for the recursive cases,
the arguments to recursive calls are formed from the arguments given in the
heads of clauses, and satisfy yourself that each call does approach a base case.

The procedure for sound ex/2, the top level of the program, converts between
the representation of names as atoms and as lists of Ascii codes and initiates the
call to recursively reduce a name to its code:

soundex (Name, Code):-
     name (Name, [First|Others]),
     reduce (Others, 1, First, Reduced),
     name (Code, [First)Reduced]).

Note that, as the First letter of the output is generated before calling the recursive
procedure, the count of letters output is 1 in the call to reduce/4.

The main lesson of this example concerns the positioning of the cut in clauses
for reduce/4. In the first and fourth clauses, the cut is the first sub-goal in the
body of the clause because the case is identified by a pattern in the clause head.
It is also identified in this way in the second clause, but as the case of the empty
list excludes the three following cases, the cut is not strictly required. Its use here
simply enhances efficiency. When the case is identified by a sub-goal, as in the
third clause, the cut is placed immediately after that sub-goal. Backtracking
alternatives are not eliminated as Prolog tests for each case, but as soon as a case
is recognised, other cases are excluded.

The value of this usage of the cut is the gain in efficiency and ease of
programming which derives from not having to formulate for each guard in a
clause its inverse in subsequent clauses. If you do exercise 6.1.2 (c), you will
appreciate the benefits of this. However, there is a drawback. The correct
behaviour of a program from which explicit guards are omitted depends on the
presence of the cut and on the order of clauses. Removing cuts which enforce
mutual exclusion would alter the results which a program gave: the program would
admit incorrect alternatives on back-tracking. Changing the order of clauses
would cause an incorrect result to be given when a goal was first satisfied.

The cut compromises the declarative interpretation of a procedure. Each
clause now has an implicit extra sub-goal which is the inverse of the guards in
each preceding clause. For instance, the last clause in the procedure for reduce/4
defines how to obtain the next character of the output, but the declarative reading
must be qualified by the procedural interpretation. Under that interpretation, the
final clause is stating a relationship between input and output arguments which
only holds if the condition expressed in each preceding clause has been tested
and does not hold.

On occasions, it is hard to see whether the cut is an adequate replacement for
explicit guards. Consider the procedure for max/3 which we gave in section 4.2:
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max (N1, N2, N2):-
     N2 >= N1.
max (N1, N2, N1):-
     N2 < N1.

The test:?-N2 < N1 is the the inverse of:?-N2 >= N1, and enforces mutual
exclusion between the two clauses. If we preferred to enforce it by the cut, we
might write:

max (N1, N2, N2):-
     N2 >= N1, !.
max (N1, N2, N1).

However, though this procedure behaves correctly when the third argument is a
variable in the call, it may not when that argument is a number:

?- max (3, 7, 3).
yes

The cut in the first clause is not reached because the call does not match the
pattern in the head; but the call succeeds because it does match the second clause.

One solution is to alter the first clause, postponing the test for a match between
the second and third arguments until after the cut:

max (N1, N2, N3):-
     N2 >= N1, !,
     N3 = N2.
max (N1, N2, N1)

This program illustrates the point we made in section 4.5 that the procedural
interpretation of a program sometimes obliges us to use =/2 instead of matching.
In this instance, however, a better solution is to stick to the first formulation and
avoid the cut altogether!

Prolog provides a built-in predicate fail_if for expressing the inverse of a
condition, and, in view of the drawbacks of the cut, it is sometimes preferable to
use it rather than the cut for enforcing mutual exclusion. The predicate is defined
as follows: 

fail_if/11

The argument must be a structure. The structure is called as a goal,
fail_if fails if the goal succeeds and succeeds otherwise. It is not re-
satisfiable on backtracking.
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In the following versions of a procedure for union/3, to determine the union of
two sets represented as lists, the first version uses f ai l_if while the second
includes the cut. The set C is the union of sets A and B if it comprises just those
elements that occur in A or in B:

% union (A, B, C)-Version with fail_if
union ([ ], S, S).

union ([H|T], S1, S2):-
     member (H, S1),
     union (T, S1, S2).
union ([H|T], S1, [H|S2]):-
     fail_if (member (H, S1)),
     union (T, S1, S2).

% Version with cut
union ([ ], S, S).

union ([H|T], S1, S2):-
     member (H, S1), !,
     union (T, S1, S2).
union ([H|T], S1, [H|S2]):-
     union (T, S1, S2).

In each version, the three clauses express three mutually exclusive cases:

• The first list represents an empty set.
• The head of the first list is a set element which occurs in the second set.
• The head of the first list is a set element which does not occur in the second

set.

The advantage of the first version is that the clauses can be placed in any order
and each can be understood without reference to the others. In the second
version, fail_if (member (H, S1)) is an implicit condition in the third clause.
However, by avoiding repetition of the test for set membership, the second
version has the merit of being more efficient.  

Exercises 6.1.2

(a) Representing a set by a list, write procedures for the following set-
processing predicates:

intersection/3 The set C is the intersection of sets A and B if it comprises just
those elements that occur in both A and B.

1 In most implementations, this predicate is called not. fail_if is the name to be used in the
Prolog standard. 
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subset/2 The set B is a subset of the set A if every element of B occurs
in A.

difference/3 Set C is the difference of sets A and B if it comprises just those
elements that occur in A but not in B.

equal_sets/2 Sets A and B are equal if they contain the same elements.
disjoint/2 Sets A and B are disjoint if there is no element in either that

occurs in the other.
Remember that a set is unordered, unlike a list.

(b) Using the representation for the noughts-and-crosses board given in
section 4.4, write a procedure for game_over/2. A call succeeds if the
first argument represents a completed game and the second argument
gives the result of the game as the structure winner_is (Player), where
Player is the winner, or as the atom ‘The game is drawn’. A game is
completed if one player has a winning line or all squares of the board
are occupied.
(c) Re-write the procedure you wrote for exercise 4.3 (a) using the cut
instead of guards.

6.2
Forcing Backtracking and Repetition: fail and repeat

The built-in predicate fail, which always fails when called as a goal, is used to
force Prolog to backtrack. In section 5.3, we used it to force a non-deterministic
procedure for next/1 to generate all alternatives. We might have used it in the
program to print a truth table, which we gave in section 5.2.1. The top-level
procedure in that program was:

truth_table (Variable_expression, Const_expression gives Value):-
     assign (Variable_expression, Hollow, Const_expression, Value). 

The procedure for assign/4 is non-deterministic, generating at each call another
row of the table, and the user forces it to generate all rows by rejecting each
answer. We might prefer to build the backtracking into the program, using fail:

truth_table (Variable_expression):-
     assign (Variable_expression, Hollow, Const_expression, Value),
     write (Const_expression gives Value),
     nl,
     fail.

giving:
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?- truth_table (~a ^ b ^ c).
~t ^ t ^ t gives f
~t ^ t ^ f gives f
~t ^ f ^ t gives f
~t ^ f ^ f gives f
~f ^ t ^ t gives t
~f ^ t ^ f gives f
~f ^ f ^ t gives f
~f ^ f ^ f gives f
no

As the substitutions made in the non-deterministic procedure are undone when
Prolog backtracks to it, we use the side-effect of write/1 to display the value
substituted. Unless we include a sub-goal with a side-effect somewhere between
the non-deterministic procedure which generates values and the fail goal which
rejects each, we simply lose all these values.

If a program is to obtain a series of values by using one of the built-in
predicates which read input, instead of by a non-deterministic procedure, the
program structure with fail is not adequate. The following example shows why
not:

process_values:-
read (Value), % Get an input value.
process (Value, Result), % Process it.
write (Result), % Display the result and…
nl,
fail. % backtrack to get the next input value.

The problem here is that the built-in predicate read reads a new value only when
first called as a goal and not on backtracking. As a result, the call to
process_values/0 fails after processing the first input value. To overcome this
problem, we use repeat/0, a built-in predicate which succeeds when called as a
goal and is always re-satisfiable on backtracking: 

process_values:-
repeat,
read (Value), % Get next input value.
process (Value, Result), % Process it.
write (Result), % Display the result and…
nl, % backtrack to get the next input value.
fail.

Now, Prolog backtracks to the sub-goal:?-repeat, and each time it is re-satisfied,
read/1 is called anew and does deliver a new value. Unfortunately, there is a
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different problem, which is that this program never terminates! If the programmer
does intend the program to terminate, there must be some value which the user
enters to indicate the end of the input. Assuming that value is the atom end, the
correct program structure is:

process_values:-
repeat,
read (Value), % Get next input value…
act_on (Value), !. % and act on it.

act_on (end):-!. % Terminate processing, or…
act_on (Value):-
process (Value, Result), % Process the value.
write (Result), % Display the result and…
nl,
fail. % backtrack to get the next value.

The cut at the end of the procedure for process_values/0 ensures that when the
procedure is called as a sub-goal of a larger program, failure of a later sub-goal
does not cause Prolog to backtrack to repeat but to whatever sub-goal preceded
the call to process_values/0. Without the cut here, Prolog would never be able to
backtrack to before the sub-goal:?-repeat.

The structure which we have shown is a very commonly-used one in programs
which interact with a user in a dialogue style. We call this structuring technique
forced backtracking, and we include it in the programmer’s toolkit.

Forced Backtracking

The technique provides a structure for programs which interact with a user
through a repeated series of prompts and responses. It comprises the following
steps:

• Identify the condition which terminates the interaction. Usually, this is a
special data value. 

• Identify whether the procedure which generates data values does so on
backtracking or only when first called as a goal. In the latter case, it must be
preceded by a call to repeat.

• The procedure which processes input has two clauses: the first recognises the
terminating value, and the second processes input values. The last sub-goal in
the second clause is fail. In the second clause, the result of processing an
input must be recorded by a side-effect.

We could obtain the same sequencing as through forced backtracking by using
recursion:
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process_values:-
read (Value), % Get an input value…
act_on (Value). % and act on it.

act_on (end):-!. % Terminate processing, or…
act_on (Value):-
process (Value, Result), % Process the value.
write (Result), % Display the result…
nl,
process_values. % and process the next value.

When deciding between forced backtracking and recursion, you should bear
three points in mind:

• Forced backtracking is only suitable if the procedures being repeated achieve
their action through side-effects.

• With a recursive formulation, results can be accumulated by ingoing recursion
in the arguments to the top-level goal. The programmer is not wholly
dependent on side-effects for results.

• In general, recursion uses more memory as the program runs, though some
implementations have mechanisms which avoid the memory overhead in
some types of recursive procedure. This consideration may be significant if,
for instance, you are deciding on the design for the top level of an interactive
command-driven program and you anticipate a long sequence of commands in
a single run of the program.

To illustrate how the various options for controlling execution provide the means
of structuring a larger program, we give the remaining procedures of the noughts-
and-crosses program: 

play (First_player, Result):-
start_game (Board), % See section 4.4
play_game (First_player, Board, Result).

play_game (_, Board, Result):-
game_over (Board, Result), !, % See answer to exercise 6.1.2 (b)
display_position (Board), % See answer to exercise 5.1 (a)
write (The game is over’),
nl.

play_game (Player_to_move, Board, Result):-
get_move (Player_to_move, Board, Move),
play_in (Move, Board, Player_to_move), % See section 4.4
next_player_is (Player_to_move, Next_player),
play_game (Next_player, Board, Result).

get_move (o, Board, Move):- % User to move
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display_position (Board),
get_users_move (Board, Move).

get_move (x, Board, Move):- % Computer to move
select_a_move (Board, Move), % See answer to exercise 4.4 (c)
write (‘My move’ is Move),
nl.

next_player_is (o, x).
next_player_is (x, o).
get_users_move (Board, Move):-
repeat,
write (‘Type in a number between 1 and 9’),
nl,
write (‘for the square you want to occupy:’),
read (Move),
verify_move (Board, Move), !.

verify_move (Board, Move):- % Move is valid if…
integer (Move), % it is an integer which…
Move >= 1, % represents a square…
Move =< 9,
empty_square (Move, Board), !. % that is empty. See section 4.4

verify_move (_, Invalid):-
write (Invalid is impossible),
nl,
fail.

The program makes the user play the noughts but allows him to choose whether
to play first. In the call to play/2, the first argument, given as input, indicates
which player is to start the game, and the second, returned as output, reports the
result.

We use a recursive structure in the procedure for play_game/3 because we
wish to build up the structure representing the board in the second argument and
return the result of the game as output in the third. We use forced backtracking in
the procedure for get_users_move/2 to control a dialogue which is repeated until
the user enters a valid move.

In the following example, the user’s input is shown in boldface.

?- play (x, Result).
My move is 1
Position is:
x _ _
_ _ _
_ _ _

Type in a number between 1 and 9

118 PROBLEM SOLVING WITH PROLOG



      for the square you want to occupy: 5.
My move is 2
Position is:
x x _
_ o _
_ _ _

Type in a number between 1 and 9
      for the square you want to occupy: 7.
My move is 3
Position is:
x x x
_ o _
o _ _

The game is over
Result=winner_is (x)

It is interesting to see how we can extend the program to allow the user who
loses to re-select moves made during the game. We have to build the possibility
of backtracking into the part of the program where the user selects a move. That
selection is made within the procedure for get_users_move/2. To allow
alternative selections, we introduce a higher-level procedure, of which the
existing procedure forms the first clause:

user_tries_a_move (Board, Move):-
get_users_move (Board, Move).

This gets one move, as at present. A second clause enables the goal to be re-
satisfied if the user does want to select an alternative for the move: 

user_tries_a_move (Board, Move):-
display_position (Board),
write (‘Do you want to try a different move’),
write (‘ in this position (y/n)?’),
get (121), % Succeeds if user enters “y”
user_tries_a_move (Board, Move).

By making the procedure for user_tries_a_move/2 recursive, we ensure that it is
re-satisfiable for so long as the user enters y in response to the prompt. He can
have as many tries as he likes at selecting a winning move! Finally, we alter the
procedure for get_move/3 to call the new procedure when the user has the move:

get_move (o, Board, Move):- % User to move
display_position (Board),
user_tries_a_move (Board, Move).
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With the new version, the previous interaction can continue if the user rejects the
first answer:

Result=winner_is (x);
Position is:

x x _
_ o _
_ _ _

Do you want to try a different move in this position (y/n)? n
Position is:

x _ _
_ _ _
_ _ _

Do you want to try a different move in this position (y/n)? y

The user thinks this is where he went wrong!

Type in a number between 1 and 9
for the square you want to occupy: 3.
My reply is 2
Position is:

x x o
_ _ _
_ _ _

Type in a number between 1 and 9
for the square you want to occupy: 5. 

My reply is 4
Position is:

x x o
x o _
_ _ _

Type in a number between 1 and 9
for the square you want to occupy: 7.
Position is:

x x o
x o _
o _ _

The game is over
Result=winner_is (o)

We are able to encapsulate a considerable extension to the program’s power in a
very small extension to the code because Prolog’s backtracking search strategy
reflects a natural human approach to problem-solving. The approach is to make a
series of decisions, and if something goes wrong, to re-consider the decisions,
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starting with the most recent. Of course, human problem-solving is vastly more
sophisticated than this. For instance, experience gives us the capacity often to
recognise at once which of our decisions is at fault and correct our plan from that
point, rather than laboriously working back from the most recent decision. An
important topic in Chapter 11 is how to enhance Prolog’s mechanical approach
to capture more expertise. At this stage, our purpose is to illustrate how the
Prolog programmer can solve a programming problem in a concise way by
making the language work for him. A simple control structure in a large program
is a sign of success in this endeavour.

Exercises 6.2

(a) Modify the procedure for truth_table/1 so that a call succeeds after
printing the truth table.
(b) Re-write the procedure for get_users_move/2 using recursion
instead of forced backtracking.

6.3
Other Options for Control

As in all programming languages, there are in Prolog different ways of obtaining
a particular program behaviour. In section 6.3.1, we mention other built-in
predicates which can be used instead of the methods we have taught for
expressing alternatives. They do not bring any more power to the language when
used for this purpose, and we try to persuade you of the superior merits of the
methods we recommend! In section 6.3.2, we show how the cut and fail can be
used in combination to achieve a control effect which is difficult to realise by the
methods we have described so far.

6.3.1
Expressing alternatives

The best way of expressing alternatives in a procedure is to describe each in a
separate clause. It is possible, however, to express them in a single clause. For
example, instead of:

occurs_in_word (C):-
C > 64, % “A” to “Z”
C < 91.

occurs_in_word (C):-
C > 96, % “a” to “z”
C < 123.
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which we gave in section 5.2.2 as the first clauses of the procedure for a
predicate which defined whether a given character could occur as part of a word,
we might write:

occurs_in_word (C):-
C > 64, % “A” to “Z”
C<91;
C > 96, % “a” to “z”
C < 123.

Here,; expresses disjunction: the goal is satisfied if either the first two sub-goals
are satisfied or the last two are.

One drawback of; is the difficulty of understanding a clause which includes
both; and,. For a clause:

proc1:-
      sub1, sub2; sub3.

is the meaning of the body: (sub1 and sub2) or sub3 or is it: sub1 and (sub2 or
sub3)? The answer is that the first interpretation is correct. Rule bodies which
include both symbols are interpreted as a disjunction of conjuncts, not as a
conjunction of disjuncts.

The programmer can use brackets to make the meaning clearer:

proc2:-
      (sub1, sub2); sub3.

or to alter the normal interpretation: 
proc3:-

      sub1, (sub2; sub3).

Even if he does so, the structure of the procedure is obscure. It is not clear what
cases are recognised, nor which sub-goal handles each. A procedure using; can
always be re-written using, only, as you will see if you do exercise 6.3.1 (b).

Prolog provides a built-in predicate true, defined as:

true/0

The goal always succeeds and does nothing. It is not re
satisfiable on backtracking.

This predicate can be used in dubious ways in conjunction with;. If you did
exercise 6.2 (a), you probably wrote:

truth_table (Variable_expression):-
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assign (Variable_expression, Hollow, Const_expression, Value),
write (Const_expression gives Value),
nl,
fail.

truth_table (_).

After the failure of the first clause, the second ensures that the goal is satisfied. The
same effect is achieved by:

truth_table (Variable_expression):-
assign (Variable_expression, Hollow, Const_expression, Value),
write (Const_expression gives Value),
nl,
fail;
true.

Of course, the second version is much less readable. If this clause was in a large
program, it would be all too easy for a reader to overlook the trick at the end of
it.

You may wonder why these nefarious predicates are part of the language. In
fact, there are some very special situations in which their use is necessary. These
we mention in section 7.2.1. Unfortunately, lazy programmers use them in
reprehensible ways just because they exist.

Exercises 6.3.1

(a) Under what combinations of success and failure of sub-goals sub1,
sub2 and sub3 would a call to proc2 succeed where a call to proc3 would
fail? Use the program truth_table to check your intuition. 
(b) Re-write the procedures for proc2 and proc3 using only
conjunction. Do you think the answer to the question in the previous
exercise is more obvious now?

6.3.2
The cut and fail combination

Consider the problem of writing a procedure for after_month/2. A call is to
succeed if the arguments are the names of two months of the year and the second
comes after the first in a year. In many respects, the problem is analogous to that
of determining the order of two military ranks which we examined in section 3.1.
We represent the calendar by facts for

next_month/2:
next_month (jan, feb).
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next_month (feb, mar).
next_month (mar, apr).
next_month (apr, may).
next_month (may, jun).
next_month (jun, jul).
next_month (jul, aug).
next_month (aug, sep).
next_month (sep, oct).
next_month (oct, nov).
next_month (nov, dec).
next_month (dec, jan).      % The calendar is cyclic.

At first sight, there appear to be two cases, as in the procedure for lower_rank/2,
handled by clauses:

after_month (M1, M2):-
next_month (M1, M2).

after_month (M1, M2):-
next_month (M1, M3),
after_month (M3, M2).

But this is not adequate:

?- after_month (feb, jul).
yes
?- after_month (dec, mar),
yes
?- after_month (jul, feb).
yes 

In fact, every month is recognised as coming after any other! The fault is our
failure to recognise December as a special case. As the month after it does not
come in the same year, a call should fail when the first argument is dec. The case
is handled by a new clause:

after_month (dec, _):-!,
fail. % No month comes after dec.

The clause must be placed first because the other clauses handle cases which
only hold if the given month is not December. The cut ensures mutual exclusion
between this clause and the other two: there is only one correct way of
processing December. The action when the case is recognised is to cause the call
to fail. Now, we have:
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?- after_month (feb, jul).
yes
?- after_month (dec, mar),
no
?- after_month (jul, feb).
no

Backtracking alternatives are only eliminated when the cut is reached. So, the
procedure can be used non-deterministically:

?- after_month (oct, M).      What months come after oct?
M=nov;
M=dec;
no

to some extent:

?- after_month (M, mar).      What months come before mar?
no

In general, it is good programming practice, having identified a case, to express
the processing required in that case in terms of the conditions which, if satisfied,
make the call succeed. You should only use the cut and fail combination if a
predicate defines when a relationship does not hold, rather than when it does. For
instance, a case analysis of the list membership relationship includes the case of
the empty list, of which no item is a member. However, we do not translate this
analysis into:

member (_, [ ]):-!,
     fail. 

We ensure failure in this case by not providing a clause to handle it. Beware of
writing redundant clauses.

Exercises 6.3.2

(a) Why does a call to after_month/2 fail when the first argument is a
variable? Write a procedure for the predicate so that a call such as:

?- after_month (M, mar),

succeeds and generates alternatives.
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6.4
Summary

In this chapter, we have introduced the following ideas:

• The cut is a procedural device which eliminates backtracking alternatives but
obscures the declarative interpretation of a procedure.

• By making a procedure deterministic, the cut can prevent fruitless searches or
enforce mutual exclusion between clauses.

• Careful placing of the cut and ordering of clauses in which it is used are
essential for correct use of the predicate.

• fail_if can be used as an alternative to the cut for enforcing mutual exclusion
between clauses of a procedure, but the procedure may be less efficient.

• Used together, repeat and fail are an alternative to recursion as a means of
structuring a program. Forced backtracking depends on side-effects to deliver
results because substitutions applied to variables are undone by the
backtracking.

• true and; used for controlling program execution detract from the clarity of
the program.

• The cut and fail combination forces a goal to fail. Its use should be confined
to occasions when the definition of a predicate is partly in terms of when a
call fails. 
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Chapter 7
Programs as Data

At the beginning of this book, we stated that every object in a Prolog program is
a term of one type or another. In this chapter, we explore the implications of this
for the kinds of program we can write.

What type of term are the clauses of a program? With facts, it is
straightforward. The fact:

union ([ ], S, S).

is a structure with functor union and arity 3. In the next clause for this procedure,
it is not apparent what the structure is:

union ([H|T], S1, S2):-
      member (H, S1), !,
      union (T, S1, S2).

The answer is that the rule is the structure shown as a tree diagram in Figure 7.1.  

Figure 7.1 Structure of a rule 

 



The functor is:-, the structure has arity 2 and the components are the head and
body of the rule.:- was defined as an operator in Figure 5.2, as were all the other
symbols we have used with special meanings in our programs:

?-       for introducing a goal;
:-       for introducing a directive (a prefix operator);
,       for denoting a conjunction of goals;
;       for denoting a disjunction of goals.
The operators, and; are built-in predicates, defined as follows:

,/2
The two arguments should be structures. A call succeeds if the two

arguments are satisfied when called in succession as goals. It is re-
satisfiable if the second goal is re-satisfiable or if the first can be re-
satisfied and the second can be satisfied anew after it.

;/2
The two arguments should be structures. A call succeeds if either the

first or the second argument is satisfied when called as a goal. It is re-
satisfiable if the second goal can be satisfied after the first or if either is re-
satisfiable.

When a rule whose body comprises conjoined sub-goals is used to try to satisfy a
goal, it is,/2 that is called. Obviously, by appealing to the definition of,/2 to
explain the meaning of the body of a rule with conjoined sub-goals, we arrive at
exactly the same statement of when a call using that rule succeeds as by saying
that it has a series of sub-goals which must be satisfied in turn. However, to
understand and write programs which process rules as items of data, you must
recognise the structure of a rule body with more than one sub-goal and know the
meaning of the predicate which is its functor.

7.1
Modifying the Clauses of a Program

The built-in predicates as sert a and assert enable the programmer to add new
clauses to the Prolog database. They are defined as follows:

asserta/1

The argument in the goal should be a structure. The goal is always
satisfiable and is not re-satisfiable on backtracking. As a side-effect, the
structure is added to the Prolog database as a clause, before any existing
clauses for the same procedure.

assert/1
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The definition is the same as that of asserta/1, except that the new clause
is added after existing clauses for the procedure.

As these predicates add the new clause by a side-effect, the clause remains even
if Prolog backtracks over the goal. The built-in predicates retract and retracta ll
are for removing clauses from the Prolog database.

retract/1

The argument in the goal should be a structure. The Prolog database is
searched for the first clause which matches the structure. If a match is
found, the goal is satisfied and as a side-effect the clause is removed from
the Prolog database; otherwise it fails. On backtracking, the goal is re-
satisfiable by removing subsequent matching clauses.

retractall/1

The argument in the goal should be a structure. The goal is always
satisfiable, and, as a side-effect, all clauses (zero or more) whose heads
match the structure are removed from the Prolog database. The goal is not
re-satisfiable on backtracking.

If retractall/1 were not built-in, we could write a procedure for it:

retractall (Head):-
retract (Head), % Remove all facts.
fail.

retractall (Head):-
retract ((Head:-Body)), % Remove all rules.
fail

retractall (_). % Then succeed.

The syntax of Prolog requires a structure of the form: Terml:-Term2 to be
enclosed in brackets when it occurs as a component of another structure.

We illustrate three usages of these predicates in the following sections.

7.1.1
Managing a database

In many programming applications, programs process a body of stored data,
allowing the user to update this database and using it to provide information and
reports to the user. The typical structure of a database application in Prolog is
illustrated in Figure 7.2. 

The figure illustrates the important distinction between the database
management system (DBMS) and the database. The database cannot be
represented in arguments to procedures because it exists independently of the
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programs which manipulate it. It must be represented by clauses in the Prolog
database and be manipulated by calls to assert and retract.

For illustration, we use the example of a database which records information
about the members of a social club: their surname and age, how much their
subscription is and whether they have paid it. In the database, we record the
details of each member as a fact of the form: member (Name, Age,
Subscription_status). We do not record the amount of the subscription separately
for each member, as this is determined according to the member’s age by the
rule:

subscription_is (Age, pounds (10)):-
Age < 18.

subscription_is (Age, pounds (20)):-
Age >= 18.

Some operations on the database are:

• Adding details of a new member:

add_member (M):-
      assert (M).

• Displaying membership details: 

Figure 7.2 Structure of a database application in Prolog
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print_details (member (Name, Age, Status)):-
      member (Name, Age, Status),
      subscription_is (Age, Subs),
      write (member (Name, Age, Subs, Status)),
      nl,
      fail.
print_details (_).

• Removing details of members:

remove_members (M):-
      retract (M),
      fail.
remove_members (_).

• Recording that a member has paid the subscription:

record_payment (member (Name, Age)):-
      retract (member (Name, Age, unpaid)),
      assert (member (Name, Age, paid)).

The following interaction illustrates these predicates. First, we enrol some
members:

?- add_member (member (holmes, 33, unpaid)),
yes
?- add_member (member (sutcliffe, 44, paid)),
yes
?- add_member (member (sutcliffe, 42, paid)),
yes
?- add_member (member (sutcliffe, 17, unpaid)).
yes
?- add_member (member (hobbs, 27, unpaid)).
yes

Display the list of members:

?- print_details (_).
member (holmes, 33, pounds (20), unpaid)
member (sutcliffe, 44, pounds (20), paid)
member (sutcliffe, 42, pounds (20), paid)
member (sutcliffe, 17, pounds (10), unpaid)
member (hobbs, 27, pounds (20), unpaid)
yes 
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As we used assert and not asserta in the procedure for add_member/1, the
members are in the order in which they were enrolled.

Record that Holmes has now paid:

?- record_payment (member (holmes, 33)).
yes

Check who has not paid:

?- print_details (member (_, _, unpaid)).
member (sutcliffe, 17, pounds (10), unpaid)
member (hobbs, 27, pounds (20), unpaid)
yes

Eject all members who have not paid:

?- remove_members (member (_, _, unpaid)),
yes

Establish who is left:

?- print_details (_).
member (sutcliffe, 44, pounds (20), paid)
member (sutcliffe, 42, pounds (20), paid)
member (holmes, 33, pounds (20), paid)
yes

Holmes is now at the end of the list because a replacement record was added for
him when we recorded his payment.

If the club treasurer frequently had to remove defaulters, we could provide a
separate operation to do this, as a procedure for remove_unpaid/0:

remove_unpaid:-
      retractall (member (_, _, unpaid)).

If the club agreed to a reduced subscription for the under-fif teens, the change
could be entered as:

?- asserta ((subscription_is (Age, pounds (5)):- Age < 15, !)).

Of course, we would not wish the treasurer to call asserta/1 directly because it
would be too easy to alter the programs of the DBMS inadvertently.

The risk that a program may be altered is the main reason why you must be
very cautious in using assert and retract. Once the clauses of a program are
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altered, that program is liable to produce errors whose cause is very hard to pin
down. The rogue alteration could be anywhere in the program. In the database
application, this risk was minimised by the clear logical separation of programs
and data. We only changed the stored data.

Exercises 7.1.1

(a) Write procedures for load/1 and store/1, to read a database from a
named file and write it to a file. If you use the structure given in
section 5.3, you have only to write procedures for action_on/1 and
next/1.

7.1.2
Accumulating results with forced backtracking

We use forced backtracking to make Prolog satisfy and re-satisfy a goal
exhaustively. By the side-effects of assert and retract, we can accumulate results,
which the backtracking would otherwise preclude, within a procedure which is
structured using this technique.

To count how many members the club has, we have to make Prolog
exhaustively satisfy the goal:?-member (Name, Age, Status). Forced
backtracking does this. To record the number of times the goal is satisfied, we
use a counter stored as a clause in the Prolog database. In a call to
count__members/2, the first argument is a structure indicating which members
are to be counted, the second an integer which is the answer. The procedure is:

count_members (member (Name, Age, Status), _):-
     initialise_counter (no_of_members, 0),
     member (Name, Age, Status),
     increment_counter (no_of_members, 1),
     fail.
count_members (_, Count):-
     finalise_counter (no_of_members, Count).

In the first clause, we initialise the no_of_members counter to 0 and increment it
by 1 each time the second sub-goal is satisfied. This clause eventually fails,
leaving the counter at its final value. In the second clause, we retrieve that value.

The procedures for the predicates which manipulate the counter are:

initialise_counter (Name, Initial_value):-
     retractall (counter (Name, _)),
     assert (counter (Name, Initial_value)).

increment_counter (Name, Inc):-
     retract (counter (Name, Old_value)),
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     New_value is Old_value+Inc,
     assert (counter (Name, New_value)), !. 

finalise_counter (Name, Final_value):-
     retract (counter (Name, Final_value)).

The purpose of requiring the counter to be named is to enable several to be used
in a single program, if necessary. The sub-goal:?-retractall ( counter (Name, _))
prevents duplication when we initialise a counter. The cut at the end of the
procedure for increment_counter/2 ensures that a call is not re-satisfiable.
Without it, the sub-goal:?-retract (counter (Name, Old_value)) would be re-
satisfiable, removing from the Prolog database the new value which the third sub-
goal had added.

The structure of the procedure for count_members/2 is typical of programs
which accumulate results in this way. There is a phase where results are added to
the Prolog database, followed by a phase in which they are collected. It is
essential that all clauses added are indeed collected in the second phase.
Otherwise a program would modify itself, and though it might give correct
results when first used, it would deliver incorrect results forever thereafter!

There are two built-in predicates which force a goal to be satisfied and re-
satisfied exhaustively while preserving a result each time the goal is satisfied. They
are:

bag/31

The goal is always satisfiable and is not re-satisfiable. The form of a call
is:?-bag (Term, Goal, List). Term is a term representing the result which is
to be preserved each time Goal is satisfied. Goal should be a structure. It is
called as a goal and re-satisfied exhaustively through backtracking. List is
the list of all Terms in the order in which they are generated.

set/3
The definition is the same as that of bag/3, except that the list is in sorted

order2 and duplicates are removed.

In view of the difficulties of using assert and retract safely, these predicates offer
a useful alternative. To count the number of members in the club, we could
write:

?-bag (__, member (_, _, _), L), length (L, Count).
L=[_12, _13, _14, _15, _16]
Count=5

assuming the existence of the procedure for length/1 from section 4.1.  Here, we
only wanted to know how many times the goal:?-member (_, _, _) could be
satisfied. More commonly, we wish to know the substitutions made for variables
in a goal each time it is satisfied. To do this, we include the variables in the term

134 PROBLEM SOLVING WITH PROLOG



which is the first argument, as in the following examples of the club with its five
initial members.

Display a list of members who have not paid:

?- bag (defaulter (Name, Age), member (Name, Age, unpaid), L).
Name=_12
Age=_13
L=[defaulter (sutcliffe, 17),
     defaulter (hobbs, 22)]

Display full details of all members:

?- bag (member (Name, Age, Subs, Status), (member (Name, Age, Status),
     subscription_is (Age, Subs)), L).

Name=_12
Age=_13
Status=_14
Subs=_15
L=[member (sutcliffe, 44, pounds (20), paid),
      member (sutcliffe, 42, pounds (20), paid),
      member (sutcliffe, 17, pounds (10), unpaid),
      member (holmes, 33, pounds (20), unpaid),
      member (hobbs, 27, pounds (20), unpaid)]

In this example, the second argument is a conjunction of goals. The notation:

(member (Name, Age, Status), subscription_is (Age, Subs))

is an abbreviation for the term:

‘,’ (member (Name, Age, Status), subscription_is (Age, Subs))

The syntax of Prolog provides a list-like notation for structures with functor, and
arity 2. So, the term:

‘,’ (a, ‘,’ (b, c))

can be written:

1 bag and set are the names to be used in the Prolog standard. In many implementations,
these predicates are called bagof and setof, respectively.
2 The Prolog standard defines an order of all terms. See Appendix 3. 
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(a, b, c).

This notation aggravates the confusion which arises from the function of the
comma character as both functor and separator of components. For instance, the
structures f (a, b, c) and f ((a, b, c)) look as though they have the same arity, but
they do not, as Figure 7.3 makes clear. 

Sometimes, we need to inspect results as they are being accumulated. In these
situations, bag and set are unsuitable. Our next example illustrates this.

The problem involves graph traversal. Given a description of a directed graph,
we want to know what nodes can be reached from a given node. 

Figure 7.4 shows a directed graph. We represent it by a series of facts for arc/
2: 

arc (a, c). arc (b, a).
arc (b, d). arc (c, b).
arc (c, f). arc (d, e).
arc (d, f). arc (e, g).
arc (f, g). arc (g, h).
arc (g, i). arc (g, j).
arc (i, k). arc (i, l).

Our interpretation of a fact of the form arc (A, B) is:

“There is an arc from node A to node B.”

Figure 7.3 Form of similar-looking structures
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In the procedure for reachable/2, the first argument is the starting node and the
second is the list of reachable nodes. The procedure exhibits clearly the two-
phase structure:

reachable (From, _):-
      traverse_graph (From).
reachable (_, Nodes_reached):-
      collect_nodes (Nodes_reached).
traverse_graph (Node):-
      reached (Node), !, fail.

traverse_graph (From):-
      assert (reached (From)),
      arc (From, To),
      traverse_graph (To).
collect_nodes ([Node|Others]):-
      retract (reached (Node)), !,
      collect_nodes (Others).
collect_nodes ([ ]).

The adding phase is the first clause, in which a fact: reached (Node) is added to
the Prolog database for each reachable Node. The collecting phase is the second
clause, in which these facts are retracted and collected in a list. The two clauses
for traverse_graph/1 handle the two cases for a node which is reached:

• The node has already been reached by a different route. To establish this, we
inspect the results accumulated so far by a call to reached/1. If the node has
been reached, we force Prolog to backtrack to follow other routes.

Figure 7.4 A directed graph
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• The node has not previously been reached. We record the node, find an
outgoing arc from it and continue the traversal along that arc. As the
traverse_graph sub-goal eventually fails, backtracking forces all outgoing arcs
to be explored. 

The behaviour of the program is:
?- reachable (f, Nodes).
Nodes=[f, g, h, i, k, I, j]

No duplicate routes from f.

?- reachable (d, Nodes)
Nodes=[d, e, g, h, i, k, I, j, f]

Some duplicate routes from d.

?- reachable (a, Nodes)
Nodes=[a, c, b, d, e, g, h, i, k, l, j, f]

Some cycles in routes from a.

Exercises 7.1.2

(a) What would be the order of the nodes in the answers to the three
calls to reachable/2 if the nodes reached were recorded in the Prolog
database by the sub-goal:?-asserta (reached (From))?

7.1.3
Global variables

The two-phase structure does not guarantee that a program which uses assert and
retract will not be left in an altered state after it is run. We must ensure that in the
calling sequence of sub-goals there is no failure which would prevent the
collecting phase being reached, once the adding phase has been passed. In
general, this can be assured if the predicates are used only within low-level
procedures and the results accumulated are then returned to higher-level
procedures in an argument to a call. If we use them at the top level of a large
program, there may well, in the dynamic calling sequence, be an extensive series
of deeply-nested sub-goals between the two phases. Any failure in the series
disrupts the co-ordination between the two phases.

Despite these problems, we are sometimes justified in using assert and retract
to return a result to the top level of a program from a low-level procedure if the
normal methods of indicating a result, by the success or failure of the call or by a
substitution applied to a variable, are unsuitable. We may wish to ensure that
subsequent sub-goals are reached; if so, the call must not fail. If we return results
in an argument, the whole series of nested sub-goals has to carry this extra
argument. Instead, we may decide that a procedure is to indicate a result by a
side-effect on the Prolog database. In this, we are treating the Prolog database as
a global variable. It can be very convenient to do so. Any procedure can record a
result there, and that result is visible to any other, whatever the distance between
the two in the dynamic calling sequence of goals. Of course, we abandon the
principles of the two-phase structure, but we can guard against the consequences
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by using a predicate whose side-effects on the Prolog database are undone on
backtracking. The procedure is: 

undoable_assert (Clause):-
     assert (Clause).
undoable_assert (Clause):-
     retract (Clause), !,
     fail.

We would use undoable_assert/1 if we anticipated the results accumulated in the
Prolog database being removed in the collecting phase, but wished to ensure
that, if failure of an intermediate sub-goal prevented that phase being reached,
the Prolog database would remain unaltered. The second clause removes an
asserted clause on backtracking, and the cut and fail combination at the end of it
ensures that backtracking is not interrupted. In terms of its effect on control
within a program, undoable_assert/1 behaves exactly as assert/1.

Another problem of global variables is their effect on program structure. In a
program which uses global variables, there are sub-goals in one part of the
program which have no procedures and are comprehensible only in terms of the
clauses added as side-effects by procedures elsewhere. The result is a program
whose text is hard to understand and whose operation is hard to test and debug.
In section 7.2.1, we introduce a structuring technique to control the effects of
using the Prolog database as a global variable and, in particular, to make clear
the association between one procedure which adds a clause to the Prolog
database and another whose operation depends on the presence of that clause.
With our method, we can reliably use the Prolog database as a global variable,
and for this reason we include this strategy as one of those which our next toolkit
technique supports.

Database Modification

The technique is used:

• To manage a database.
• To prevent results of a procedure execution being lost on backtracking.
• To facilitate communication between parts of a program through global

variables.

The technique is based on the use of the Prolog database for recording the
progress of a computation. It comprises the following elements:

• The built-in predicates asserta and assert are used to add results to the Prolog
database. In managing a database, the order of clauses added may be
significant, and the choice between asserta and assert must be carefully
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considered. In the second and third uses, the two predicates may be used
indifferently. 

• The built-in predicates retract and retractall are used to remove results from
the Prolog database. In the second and third uses, the Prolog database must not
be permanently altered. This is achieved by structuring a program as an
adding phase followed by a collecting phase. It is essential to ensure that once
the adding phase is passed, the collecting phase is always reached.

• In the second use, the database modification should be confined to low levels
of a program, and the adding and collecting phases should be close together.
In this way, the effects of database modification are localised.

7.2
Meta-Programming

If we wished to have a message encoded, we might use a predicate which took
the words of the message as input and returned the code words as output.
Representing messages input and output as lists of atoms, a procedure would be:

encode ([ ], [ ]).
encode ([Word|Ws], [Code|Cs]):-
     cifer (Word, Code),
     encode (Ws, Cs).

The procedure for cifer/2 would embody the encryption algorithm. If, for the
sake of security, we wished to vary it periodically, we might express each
algorithm as a procedure for a different predicate and change the procedure for
encode/2 to call whichever we wished to use. A better method, however, uses the
built-in predicate call and avoids having to change the encoding procedure. The
definition is:

call/1

The argument should be a structure. It is called as a goal. The call to cal
1/1 succeeds, is re-satisfiable or fails exactly as the goal which is its
argument.

In the revised procedure, the name of the encryption algorithm is the second
argument:

encoded ([ ], _, [ ]).
encode ([Word|Ws], Algorithm_name, [Code|Cs]):-
     Goal =.. [Algorithm_name, Word, Code],
     call (Goal),
encode (Ws, Algorithm_name, Cs).
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At each level of recursion, we construct a goal term from the name of
the algorithm as functor and the next plain text word and code word as
components and call that goal.

Independently of particular encryption algorithms, the procedure describes
how to encode a message. It states that the encryption algorithm is to be applied
to successive plain text words, yielding each time one word of cifer text.

A program which defines how other programs are to be used is called a meta-
program. The procedure for encode/3 is a meta-program, and the procedures for
encryption are the object program. Meta-programming is easy in Prolog, thanks
to the identity of programs and data. In the next two sections, we investigate two
applications of it.

7.2.1
Meta-programming and program structure

On a very modest scale, our revised encoding procedure provided a higher-level
structure for the procedures that implemented encryption algorithms. It defined
how all were applied. We now extend the idea of a meta-program as a device for
program structuring to the problem of controlling the use of the Prolog database
as a global variable.

We illustrate the problem by considering the design of the input validation
component of an interactive system. The role of this component is to determine
whether the user’s input represents a meaningful command, by applying a
sequence of checks. To provide helpful error messages, the program must carry
out all the checks appropriate to the command, even if an early one reveals a user
error. If an error is detected during a complex check, information may have to be
communicated from a low level to higher levels of the program. From our
discussion in section 7.1.3, you should recognise this as a situation in which it is
appropriate to use the Prolog database as a global variable.

Notice that this analysis of the design problem applies to all the commands to
the system. A meta-program for this problem both controls the database
modification and defines a structure for validation of all commands. The object
program comprises procedures to implement each validation check and each
command.

The first part of the meta-program defines the actions taken in a validation
check:

validate (Check, _):-
     call (Check), !.
validate (_, Error_message):-
     assert (error (Error_message)).

If there is an error, the sub-goal:?-call (Check) fails, and the error message
associated with the check is added to the Prolog database as a clause for error/1.
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In the object program, the first part of a procedure to process a command is a
series of calls to validate/2. In each, the first argument is the goal term which
applies the check and the second is a term representing the error message to be
output if the check reveals an error.

The second part of the meta-program defines the manner in which a command
is executed:

execute (_):-
     retract (error (Message)), !,
     report_error (Message).

execute (Action):-
     call (Action).

report_error (Message):-
     report_to_user (Message),
     retract (error (Next_message)), !,
     report_error (Next_message).

report_error (_).

The goal term which carries out the action of the command is the argument in the
call from the object program to execute/1. The procedure specifies that if
validation revealed errors in the command, a query is executed by reporting these
to the user; otherwise it is executed by carrying out the action defined in the goal
term.

This part of the meta-program is the collecting phase for clauses for error/1
added to the Prolog database by the procedure for validate/2. The structure of the
procedure for report_error/1 ensures that all the clauses are collected. We do not
give a procedure for report_to_user/1, as the details of it depend on the form of
the terms representing error messages.

In our club membership example, we validate a command to add a new
member by checking:

• That the person to be added is not already a member, assuming that a member
is uniquely identified by their name and age.

• That the age given is reasonable.
• That the fees status given is either paid or unpaid.

A revised procedure for add_member/1 which uses the meta-program to carry out
these checks is:

add_member (member (Name, Age, Status)):-
     validate (fail_if (member (Name, Age, _)),
     ‘This person is already a member’),
     validate ((Age >=5, Age=< 85),
     ‘Age must be between 5 and 85’),
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     validate ((Status=paid; Status=unpaid),
     ‘Fees status must be “paid” or “unpaid”’),
     execute (assert (member (Name, Age, Status))). 

Conformity to a common structure in procedures which process commands has
not constrained the form in which validation checks and actions may be defined
in the object program. In validating the member’s age, the check comprises a
conjunction of goals, and in validating the fees status it is a disjunction. We
could even define the action:?- execute (true) if no action was required, as might
be the case if the query were an operating system command prefaced by an
escape character.

By this meta-program, we gain several benefits in writing the object program.
Firstly, procedures which process commands have a common structure,
emphasising their common role. Secondly, we are relieved of the risks associated
with global variables. We can include calls to validate/2 at any level of a
validation routine. The discipline is provided by the meta-program.

A validation check is most naturally specified as a structure which succeeds
when called as a goal if its components are valid and fails otherwise. The final
benefit of the meta-program is that it enables us to adopt this design for each
check in the object program without the worry that later checks may not be
reached and that Prolog will attempt to resatisfy goals in which earlier ones were
applied. We use an extended version of this meta-program in the implementation
of an electronic diary in Chapter 12.

7.2.2
A Prolog interpreter in Prolog

An interpreter for a programming language is a meta-program which executes
programs written in that language. To write an interpreter for Prolog we need the
built-in predicate clause:

clause/2

In a call, the first argument should be a structure. Prolog searches its
database for a clause whose head matches this structure. The call succeeds
if such a clause is found and the body of it matches the second argument;
otherwise it fails. A fact is treated as though its body was the atom true. On
backtracking, the goal is re-satisfiable by matching with subsequent clause
heads.

The following interpreter defines how Prolog tries to satisfy a goal:

satisfy (true).
satisfy ((Goal, Goals)):-
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     satisfy (Goal),
     satisfy (Goals).

satisfy (Goal; Goals):-
     satisfy (Goal);      satisfy (Goals). 

satisfy (Goal):-
     bip (Goal),
     call (Goal).

satisfy (Goal):-
     clause (Goal, Sub_goals),
     satisfy (Sub_goals).

In a call to satisfy/1, the argument is the goal which we wish Prolog to try to
satisfy. The first clause is the base case, the case of the goal:?-true. It is reached
after the goal to be satisfied in the object program has matched a fact. In the
second clause, we state that a conjunction of goals is satisfied by satisfying each
in turn, and in the third that a disjunction of goals is satisfied if either is satisfied.
The fourth clause handles the case where the call in the object program is to a
built-in predicate. It assumes that the interpreter includes facts for bip/1,
identifying each:

bip (arg (_, _, _)).
bip (assert (_)).

     …
     down to
     …

bip (write (_)).

A built-in predicate is satisfied by calling it as a goal, without reference to the
object program. The list would not include clauses for,/2 or;/2, whose behaviour
is defined in the interpreter.

Unfortunately, executing a cut in the object program as:?-call (!) does not
handle the cut correctly because when it occurs in the argument of a call to call/1,
the cut behaves as though the argument is a procedure body, and it only cuts out
backtracking alternatives among any preceding goals in that argument. Instead of
cutting out alternatives in the object program, the call in the interpreter has no
effect at all! However, as the meaning of the cut is hard to capture in any
interpreter written in Prolog, we shall disregard this limitation of our very simple
one.

The final clause states that a goal is satisfied if there is a clause in the object
program whose head matches the goal and whose body can be satisfied.

Subject to the limitation we have mentioned, the answers the interpreter gives
are exactly those we would get if we had called the object program goal directly.
For an object program consisting of the procedure for permute/2 which we gave
in the answer to exercise 3.4 (a), we have:
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?- satisfy (permute ([a, e, i, o, u], [a, u, i, e, o]).
yes
?- satisfy (permute ([1,2,3], P)).
P=[1,2, 3];
P=[1,3, 2]; 
P=P, 1,3];
P=[2, 3, 1];
P=[3, 1, 2];
P=[3, 2, 1];
no

The significance of the interpreter, which is otherwise a singularly useless artifact,
is that it shows an object program being executed under the control of a program
we have written, instead of under the control of the Prolog system. With suitable
enhancements, the interpreter can offer a more helpful programming environment
than the basic Prolog system.

We illustrate the possibilities with an interpreter that reports how a goal in an
object program was satisfied. It has a second argument and returns in this
argument a structure recording the sub-goals satisfied in the course of satisfying
a goal in the object program. The procedure is:

satisfy (true, ‘match with a fact’).
satisfy ((Goal, Goals), and (Proof, Proofs)):-

     satisfy (Goal, Proof),
     satisfy (Goals, Proofs).

satisfy (‘;’ (Goal, Goal), Proof):-
     satisfy (Goal, Proof); satisfy (Goals, Proof).

satisfy (Goal, by (Goal, ‘built-in predicate’)):-
     bip (Goal),
     call (Goal).

satisfy (Goal, by (Goal, Proof)):-
     clause (Goal, Sub_goals),
     satisfy (Sub_goals, Proof).

There are two special cases of satisfying a goal, handled by clauses one and four:
when it is satisfied by a match with a fact and when it is satisfied as a built-in
predicate. In these cases, the proof of how the goal is satisfied is represented by
the atoms ‘match with a fact’ and ‘built-in predicate’ respectively. When the
goal is satisfied following a match with a clause in the object program, the proof
is represented by a structure with functor by and arity 2, the two components
being the goal satisfied and a term representing how its sub-goals are satisfied.

As the second argument is liable to be a large structure, we output it formatted
instead of as a substitution for a variable:
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satisfy_and_display (Goal):-
     satisfy (Goal, Proof),
     display_proof (Proof, 2). 

display_proof (and (P, Ps), Indent):-
     display_proof (P, Indent),
     display_proof (Ps, Indent).

display_proof (by (Goal, Proof), Indent):-
     tab (Indent),
     write (Goal),
     write (‘by’),
     display_proof_of_goal (Proof, Indent).

display_proof_of_goal (Proof, _):-
     special_case (Proof), !,
     write (Proof),
     nl.

display_proof_of_goal (Proof, Indent):-
     nl,
     N is Indent+4,
     display_proof (Proof, N).

special_case (‘match with a fact’).
special_case (‘built-in predicate’).

The information provided by the interpreter is useful if calls to our object
program succeed but yield the wrong substitutions. If, in the procedure for
permute/2, we had defined the clause for the base case incorrectly as:

permute ([ ], _).

the error in the first answer to the question:

?- permute ([1, 2, 3], P).
P=[1,2, 3, |_46]

could be traced to this fault. The significant line of the proof is in boldface:

?- satisfy_and_display (permute ([1, 2, 3], P)).
     permute ([1, 2, 3], [1, 2, 3|_133]) by

     remove (1, [1, 2, 3], [2, 3]) by match with a fact
     permute ([2, 3], [2, 3|_133]) by
     remove (2, [2, 3], [3]) by match with a fact
     permute ([3], [3|_133]) by
     remove (3, [3], [ ]) by match with a fact
     permute ([ ], _133) by match with a fact

P=[1, 2, 3|
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The display reveals where the variable _133 has crept into the answer. 
In section 9.3, we investigate further the concept of an interpreter as an aid to

finding faults in an object program.

7.3
Summary

In this chapter, we have introduced the following ideas:

• Rules, as well as facts, are terms which can be treated as items of data. A rule
has functor:-and arity 2.

• assert and asserta are built-in predicates which add clauses to the Prolog
database, retract and retractall remove clauses from it. They are all potentially
harmful because their actions are achieved as side-effects which may leave a
program in an altered state after it is run.

• The technique of database modification is the basis for safely using assert,
asserta, retract and retractall. It is a technique for managing a database, for
accumulating results which would be lost on back-tracking or for safely using
the Prolog database as a global variable.

• A meta-program is a program which defines how another program, called the
object program, is to be used. A meta-program can be a means of structuring
an object program.

• An interpreter for a programming language is a meta-program which executes
programs written in that language. A Prolog interpreter in Prolog can extend
the facilities offered by the Prolog system. 
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Chapter 8
Grammar Rules

In this chapter, we discuss the topic of parsing and investigate the application of
Prolog to the problem of writing parsers. An appreciation of how Prolog is
applied to this problem is valuable for two reasons. Firstly, a very important
class of grammar for describing natural language, called a phrase-structure
grammar, can be represented easily and naturally as a Prolog program, and this
has stimulated a great deal of investigation of the structure of natural language to
use Prolog as a tool (Pereira & Shieber, 1987). Indeed, this use was the aim of
the designers of Prolog. Secondly, as the notation for a phrase-structure grammar
in Prolog is different from the syntax of facts and rules, mastery of the language
must include an understanding of the relationship between this notation and the
standard syntax.

8.1
Phrase-Structure Grammar

The parsing problem is to determine whether a sequence of words is a sentence of
a language and to produce a representation of the structure of the sentence if it is.
The representation is called the parse tree for the sentence. The starting point is a
grammar for the language in question. A grammar is a set of rules which defines
how sentences of the language are constructed. A phrase-structure grammar
expresses the rules in terms of components of the language and how they may be
concatenated. A phrase-structure grammar for a very small subset of English is
given in Figure 8.1. The rules are numbered for easy reference.

A rule such as:

VerbPhrase → Verb NounPhrase

is to be interpreted as stating that the component called VerbPhrase is a sentence
element composed of the component Verb immediately followed by the
component NounPhrase. The components whose names begin with an upper-
case letter are the non-terminal symbols of the grammar. These are the
grammatical categories of the language. The terminal symbols, written with an
initial lower-case letter, are the words of the language. 



In the grammar, there is one distinguished non-terminal, called the starting
symbol, which describes the components of a complete sentence of the language.
A grammar must have at least one rule with the starting symbol on the left of the
arrow. In the grammar of Figure 8.1, Sentence is the starting symbol.

One way of approaching the parsing problem for this very simple grammar is
to begin with the starting symbol on the left side of rule 1 and repeatedly re-write
the left side by replacing it with the components on the right side. When the
component on the right is a terminal symbol, we check whether the next word in
the sequence matches the symbol. The sequence is a sentence if the starting
symbol can be fully re-written, with all the words checked.

To see how this parsing strategy works and how a parse tree is built, consider
the problem of parsing the sequence: “The woman calls”. The effect of re-writing
the starting symbol is to build the parse tree of Figure 8.2. 

Next, we take the first of these components and, finding it on the left side of
rule 2, re-write it as Determiner Noun. The parse tree expands to that of
Figure 8.3. 

The first rule for Determiner re-writes it as a terminal symbol, and as the first
word in the sequence does match the symbol, parsing can proceed. The rule for
Noun is re-written in the same way after checking the next word, and this
completes the re-write of the symbol NounPhrase. The parse tree is in
Figure 8.4. 

The non-terminal VerbPhrase is re-written, using rule 3, as Verb NounPhrase.
To re-write Verb, we try rule 9. This fails because the word in the sequence does
not match the terminal sees. It does, however, match the right side of rule 10, and

Figure 8.1 A phrase-structure grammar

Figure 8.2 Parse tree built by re-writing rule 1
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after also re-writing NounPhrase as Determiner Noun, we get the parse tree of
Figure 8.5.

At this point, parsing breaks down. Though we have checked all the words in
the sequence, we have not fully re-written the starting symbol. We must
backtrack to seek other ways of re-writing previous symbols, dismantling the
parse tree and working back through the sequence as we go. 

There is no other way to re-write Verb, so “calls”, the last word of the
sequence, remains to be checked. By using rule 4 instead of rule 3, we can re-
write VerbPhrase as Verb. After applying rule 10 again and re-checking the word
“calls”, we complete the re-write of the starting symbol, leaving the parse tree of
Figure 8.6. 

At this point, having checked every word of the sequence, we confirm it as a
sentence of the language which the grammar describes. 

8.2
Definite Clause Grammar

You probably realised that our parsing strategy for the phrase-structure grammar
was exactly Prolog’s search strategy in trying to satisfy a goal. To automate the
laborious process which we described in the previous section, we have only to
represent the rules of the grammar as clauses of a Prolog program and construct a

Figure 8.3 Parse tree after re-writing using rule 2

Figure 8.4 The parse tree after fully re-writing NounPhrase
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goal which provides the sequence of words as input and yields the parse tree as
output. In Prolog’s grammar rules notation, the phrase-structure grammar of
Figure 8.1 is:

sentence -->
     noun_phrase,
     verb_phrase.

noun_phrase -->
     determiner,
     noun.

verb_phrase -->
     verb,

Figure 8.5 The parse tree after applying rules 3, 10 and 2 in re-writing VerbPhrase

Figure 8.6 The parse tree after fully re-writing the starting symbol
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     noun_phrase.
verb_phrase -->

     verb.
determiner --> [the],
determiner --> [a].
noun --> [woman],
noun --> [girl].
verb --> [sees],
verb --> [calls].

Each grammar rule is a structure with functor --> and arity 2. The components
are the left and right sides of the rule. Non-terminal symbols must conform to the
syntax of Prolog atoms. Terminals may be atoms or variables and are enclosed in
square brackets.

When a program is loaded into the Prolog system, clauses with functor --> are
transformed into clauses of standard Prolog. A grammar rule which re-writes a
symbol as non-terminals is transformed into a Prolog rule whose head is the left
side of the grammar ruleand whose body comprises the symbols on the right side
as conjoined sub-goals. The rule is augmented by two arguments. In the head of
the rule, the first argument represents the sequence to be parsed. It is given as the
first argument to the first sub-goal. For each sub-goal, the first argument
represents the sequence remaining to be parsed and the second represents the
sequence left after a component has been parsed. The second argument in the
head of the rule is the sequence left after the last sub-goal has been satisfied. For
instance, the grammar rule:

noun_phrase -->
     determiner,
     noun.

is transformed into the rule:

noun_phrase (L0, L2):-
     determiner (L0, L1),
     noun (L1, L2).

The sequence of words to be parsed and the sequence remaining after parsing are
represented as lists. The whole rule is to be interpreted as stating:

“The list L0 begins with a noun phrase and L2 is the list which remains
after it has been removed if:

• The list L0 begins with a determiner and L1 is the list which remains
after it has been removed, and
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• The list L1 begins with a noun and L2 is the list which remains after it
has been removed.”

A grammar rule which re-writes a symbol as a terminal is transformed into a
Prolog rule whose body is a call to the built-in predicate ‘C’, defined as:

‘C’/31

The goal succeeds if the first argument is a list, the second is its head
and the third is its tail.”

The rule:

noun --> [woman].

is transformed into:

noun (L0, L1):
     ‘C’ (L0, woman, L1).

The rule is to be interpreted as stating:  

“The list L0 begins with the noun “woman” and L1 is the list which
remains after it has been removed if L0 has the atom woman as its head
and the list L1 as its tail.”

A Prolog grammar rule can have any sequence of terminals and non-terminals on
its right side. Adjacent terminals can be put in a single list; in the rule shown in
Figure 8.7, we write [r, s] instead of [r], [s]. Figure 8.7 illustrates the mechanism
for translating a grammar rule into a Prolog rule. 

In section 8.2.2, we give an example of a rule from a grammar of English that
has a terminal and a non-terminal on the right side.

To determine whether our example sequence is a sentence, we call the goal:

?- sentence ([the, woman, calls], [ ]).
yes

The second argument is the empty list because in parsing we wish to check all
the words of the sequence.

This Prolog grammar is only a partial solution to the parsing problem. It
discriminates between sentences of the language and sequences which are not

1 The name of this predicate varies between implementations of the language. 
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sentences, but it does not produce a parse tree for a sentence. To do this, we add
an argument to each grammar rule and build the parse tree up by progressive
substitution, exactly as we did in the procedure for sentence/1 in section 2.5. The
revised grammar, including some more terminal symbols, is: 

sentence (s (Np, Vp)) -->
     noun_phrase (Np),
     verb_phrase (Vp).

noun_phrase (np (D, N)) -->
     determiner (D),
     noun (N).

verb_phrase (vp (V, Np)) -->
     verb (V),
     noun_phrase (Np).

verb_phrase (vp (V)) -->
     verb (V).

determiner (d (the)) --> [the].
determiner (d (a)) --> [a].
noun (n (woman)) --> [woman].
noun (n (women)) --> [women].
noun (n (girl)) --> [girl].
noun (n (girls)) --> [girls].

Figure 8.7 Translation of a grammar rule into a Prolog rule
 

154 PROBLEM SOLVING WITH PROLOG



verb (v (see)) --> [sees].
verb (v (see)) --> [see].
verb (v (call)) --> [calls].
verb (v (call)) --> [call].

When a grammar rule with arguments is transformed into a clause of standard
Prolog, the two extra arguments are added as the last two. So, the grammar rule:

sentence (s (Np, Vp)) -->
     noun_phrase (Np),
     verb_phrase (Vp).

becomes the rule:

sentence (s (Np, Vp), L0, L2):-
     noun_phrase (Np, L0, L1),
     verb_phrase (Vp, L1, L2).

and the grammar rule:

noun (n (woman)) --> [woman],

becomes the rule: 

noun (n (woman), L0, L1):-
     ‘C’ (L0, woman, L1).

The call to parse the example sentence is now:

?- sentence (S, [the, woman, calls], [ ]).
S=s (np (d (the), n (woman)), vp (v (call)))

On the parse tree, we choose to represent the verb by its infinitive form, rather
than by the form with suffix “s” that occurs in the input. In replacing the
inflected forms of verbs that occur in sentences, we aim to simplify the
processing in the phase that would follow parsing. We do not consider that phase
in this chapter, but it is evident that the actions in it would be more easily
programmed if its procedures deal with just a single form of each verb.

A grammar in Prolog which builds a parse tree is called a definite clause
grammar. A definite clause grammar is a much more powerful mechanism for
describing natural language than a phrase-structure grammar. We investigate two
features of natural language which can be readily captured.
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8.2.1
Person and number agreement

Consider the following pairs of sequences:

[1] A woman calls
[2] *A woman call
and:
[3] The women call
[4] *A women call

In each pair, the two sequences have an identical phrase structure: they are
constructed from the same components in the same order, but only the first is a
sentence of English. We indicate that a sequence is not a sentence by the
asterisk.

Sequence [2] is not acceptable because it does not conform to the rule of
English which prescribes that the verb in the verb phrase must agree in person
and number with the noun phrase which is the subject of the sentence. This is a
context-sensitive rule. The question of whether the verb in a verb phrase is valid
depends on the context in which it occurs, namely the person and number of the
subject noun phrase which precedes it. The rule is illustrated in Figure 8.8 by the
example of the parse tree for the sentence: “A woman calls”. The figure
illustrates a second context-sensitive rule of English: that a determiner and a
noun which are components of a noun phrase must agree in number. It is this rule
which leads us to reject sequence [4]. 

To capture these rules, we introduce an argument to carry the contextual
information:

sentence (s (Np, Vp)) -->
     noun_phrase (Np, F),
     verb_phrase (Vp, F).

This rule states that a verb phrase and a following noun phrase are only valid
components of a sentence if each is of form F. A revised rule describing a noun
phrase expresses the second context-sensitive rule:

noun_phrase (np (D, N), form (third, Number)) -->
     determiner (D, Number),
     noun (N, Number).

The form of the noun phrase is represented by a structure with functor form and
arity 2, the two components denoting person and number. Every noun phrase
composed of a determiner and a noun is in the third person.
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In the rules which describe the terminal symbols, we substitute the value
singular or plural for the variable Number:

determiner (d (the), _) --> [the].
determiner (d (a), singular) --> [a]. 

noun (n (woman), singular) --> [woman].
noun (n (women), plural) --> [women].
noun (n (girl), singular) --> [girl],
noun (n (girls), plural) --> [girls].

When the determiner is “the”, no substitution is made because this word occurs
in both singular and plural noun phrases: “the woman” and “the women”.

The rules for a verb phrase are:

verb_phrase (vp (V, Np), F) -->
     verb (V, F),
     noun_phrase (Np, _).
verb_phrase (vp (V), F)
     verb (V, F).

A noun phrase following the verb is not subject to rules of agreement with any
other component, so in the first clause, we use the anonymous variable in the call

Figure 8.8 Context-sensitive rules apply between components of a sentence
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to noun_phrase/4. The clauses for verb/4 specify the forms of each verb that the
grammar recognises:

verb (v (see), form (first, singular)) --> [see].
verb (v (see), form (second, singular)) --. [see].
verb (v (see), form (third, singular)) --> [sees].
verb (v (see), form (_, plural)) --> [see].
verb (v (call), form (first, singular)) --> [call].
verb (v (call), form (second, singular)) --> [call].
verb (v (call), form (third, singular)) --> [calls].
verb (v (call), form (_, plural)) --> [call].

The extended grammar enforces both context-sensitive rules, as the following
examples show:

?- sentence (_, [a, woman, calls], [ ]).
yes
?- sentence (_, [a, woman, call], [ ]).
no
?- sentence (_, [the, women, call], [ ]).
yes
?- sentence (_, [a, women, call], [ ]).
no 

Exercises 8.2.1

(a) Write clauses for noun_phrase/4 to recognise the personal
pronouns: “I”, “we”, “me”, “us”, “you”, “he”, “she”, “it”, “they”, “him”,
“her” and “them”, as used in sentences such as: “She sees me” and
“They call you”.

8.2.2
Surface structure and deep structure

We recognise that a pair of sentences such as:

[5] The woman sees the girl
[6] The girl is seen by the woman

are similar despite their different phrase structures. Sentence [5] is in the active
voice. You can think of a sentence in the active voice as being one in which the
subject noun phrase describes the agent that is carrying out the action. Sentence
[6] describes the same action, but is in the passive voice. The subject noun phrase
is not the agent but is the participant to whom the action is applied. Linguists
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account for the relationship between sentences such as [5] and [6] by postulating
that the two have an identical deep structure and that the surface structure of [6]
is derived from the deep structure by the application of a transformational rule,
specifically the passivization rule. Besides defining a re-ordering of noun
phrases, this rule specifies a change in the form of the verb and the introduction
of the preposition “by”. It is illustrated in Figure 8.9.  

We would like our grammar to carry out the transformation in reverse,
producing a parse tree to represent the deep structure whether the sentence given
is active or passive. The problem in producing this representation is that when
we parse the subject noun phrase, we do not know where on the parse tree it
belongs. If the sentence is passive in voice, which we identify only when we
parse the verb, the subject noun phrase has to be moved to a position within the
verb phrase. In the extended grammar, the initial noun phrase, which is
recognised in a call to noun_phrase/4, is simply passed as argument in a call to
verb_phrase/6. The parse tree is returned from this call:

sentence (Parse_tree, Voice) -->
     noun_phrase (Np, F),
     verb_phrase (Np, F, Parse_tree, Voice).

The second argument in the call to sentence/4 is an indicator of the surface
structure of the sentence: active or passive in voice.

The procedure for verb_phrase/6 is:

verb_phrase (SNp, F, s (SNp, vp (V, Np)), active) -->
     verb (V, F),
     noun_phrase (Np, _).

verb_phrase (SNp, F, s (SNp, vp (V)), active)

Figure 8.9 The relationship between active and passive sentences is explained by a
transformational rule 
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     verb (V, F).
verb_phrase (SNp, F, s (Np, vp (V, SNp)), passive)

     verb_group (V, F),
     agent_phrase (Np).

The first two clauses specify that SNp, the variable denoting the subject noun
phrase which was given as input, is the first branch of the parse tree whose root
is the node s. In these clauses, the voice is active and there is no transformation of
the surface structure in obtaining the deep structure. The third clause specifies
that in the passive voice SNp is identified as the second branch of the vp node of
the tree and the noun phrase which in the deep structure occupies the position of
the subject is Np, obtained from parsing an agent phrase after the verb group.
The rules for verb group and agent phrase are:

verb_group (V, F) -->
     auxiliary_verb (F),
     verb (V, form (past_participle)).

agent_phrase (Np) -->
     [by],
     noun_phrase (Np, _).

The rules which introduce new terminal symbols are: 

auxiliary_verb (form (first,singular)) --> [am].
auxiliary_verb (form (second, singular)) --> [are].
auxiliary_verb (form (third, singular)) --> [is].
auxiliary_verb (form (_, plural)) --> [are].

verb (v (see), form (past_participle)) --> [seen].
verb (v (call), form (past_participle)) --> [called].

In the passive voice, person and number agreement are to be enforced between
the subject noun phrase and the auxiliary verb.

With these extensions, the grammar produces identical deep structures for
corresponding active and passive sentences:

?-sentence (S, V1, [the, woman, sees, the, girl], [ ]),
     sentence (S, V2, [the, girl, is, seen, by, the, woman], [ ]).
S=s (np (d (the), n (woman)), vp (v (see), np (d (the), n (girl))))
V1=active
V2=passive

A feature of the passive voice which the grammar does not recognise is the
possibility that the agent phrase may be omitted, as in: “The girl is seen”. To
handle this, we add a second clause to the procedure for agent_phrase/3:
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agent_phrase (someone) --> [ ].

In this rule, the symbol [ ] is a special terminal symbol denoting the empty
sequence. The rule is transformed into the fact:

agent_phrase (someone, L, L).

The fact states:

“An agent phrase is recognised without removing any element from the list
L. Such an agent phrase is represented by the atom: someone.”

With this refinement, we get:

?-sentence (S, V, [the, girl, is, seen], [ ]).
S=s (np (someone), vp (v (see), np (d (the), n (girl))))
V=passive

Exercises 8.2.2

(a) Some noun phrases do not have a determiner: “The women sing
songs”. Write a clause for noun_phrase/4 to describe this feature of
English.

8.3
Adding a Dictionary

Extending our grammar to recognise more English verbs would lead to a rapid
escalation in its size because we would have to add a rule for each form of each
verb. We can prevent this by using the facility to include calls to ordinary Prolog
procedures on the right side of grammar rules. The idea is to describe the general
form of a verb in a single grammar rule and include all the particular verbs and
their forms as clauses of standard Prolog in a separate dictionary. The grammar
rule is:

verb (v (Inf), F) -->
     [V],
     {is_verb (V, Inf, F)}.

The call to is_verb/3 is a call to a Prolog procedure. By enclosing it in curly
brackets, we ensure that it is not augmented by the two extra arguments when the
grammar rule is transformed into standard Prolog:
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verb (v (Inf), F, L0, L1):-
     ‘C’ (L0, V, L1),
     is_verb (V, Inf, F).

The rule is to be intepreted as stating:

“The list L0 has a verb at its head and L1 is the list which remains after it
has been removed if V is the head of L0, L1 is the tail of L0 and V is a
verb of form F whose infinitive form is Inf.”

The procedure for is_verb/3 is:

is_verb (Inf, Inf, form (first, singular)):-
     verb_entry (Inf, _, _).

is_verb (Inf, Inf, form (second, singular)):-
     verb_entry (Inf, _, _).

is_verb (V, Inf, form (third, singular)):-
     verb_entry (Inf, V, _).

is_verb (Inf, Inf, form (_, plural)):-
     verb_entry (Inf, _, _).

is_verb (V, Inf, form (past_participle)):-
     verb_entry (Inf, _, V).

Each clause for verb_entry/3 constitutes the dictionary entry for a single verb;
the first component is the infinitive form, the second is the third person singular
form and the third is the past participle:

verb_entry (see, sees, seen).
verb_entry (call, calls, called). 

The dictionary entries might also include information about the meaning of words.
For instance, if the entry for the verb “see” included the information that the
word referred to an action carried out by an animate being and the entries for
nouns indicated whether the word denoted an animate being or an inanimate
object, we would be able to reject a sequence such as: “The brick sees the girl”
even though its phrase structure is valid and it respects context-sensitive rules.
How much semantic information to use in parsing depends on the application for
which a grammar is to be used. The point is that the grammar rules notation lets
us include semantic or other tests of arbitrary complexity within a grammar
simply by embedding Prolog sub-goals in curly brackets in the right sides of
grammar rules.

Exercises 8.3
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(a) Write a grammar rule for nouns and dictionary entries for them in
the style of those for verbs.
(b) Extend the entries for verbs and nouns to include the semantic
information described in this section and modify the grammar to
enforce the semantic check referred to.

8.4
Pragmatic Issues in Parser Design

There are many issues to be considered in the design of a grammar and many
different phrase-structure grammars for even the simplest language. In this
section, we examine some of the main issues which you must bear in mind, and
we point out some of the pitfalls to be avoided.

The question of efficiency is often an important consideration. A parser which
does not backtrack over the input sequence is likely to be an efficient one.
Consider the rules of our grammar which describe the structure of a verb phrase
in the active voice:

verb_phrase (SNp, F, s(SNp, vp (V, Np)), active) -->
     verb (V, F),
     noun_phrase (Np, _).

verb_phrase (SNp, F, s(SNp, vp (V)), active) -->
     verb (V, F).

In processing the sentence: “The woman calls”, Prolog backtracks over the word
“calls”, examining it when trying to use the first clause for verb_phrase/6 and
again when using the second. The inefficiency is trivial, but would not be so if there
were complex dictionary look-up or semantic analysis routines associated with
processing the word “calls”. The backtracking occurs because the constituent
verb is the first element of both rules. It can be eliminated by factoring out the
common element into a single rule: 

verb_phrase (SNp, F, s(SNp, vp (V, Np)), active) -->
     verb (V, F),
     object_np (Np).

object_np (Np) -->
     noun_phrase (Np, _).

object_np ([ ]) --> [ ].

By moving the choice point down to the rules for an object noun phrase, we
eliminate the source of the inefficiency. However, this grammar of a verb phrase
is only weakly equivalent to our first version: it recognises the same verb phrases,
but it does not ascribe the same parse trees to them. You can see the differences
by comparing Figure 8.6 with Figure 8.10. 
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For an efficient grammar of verb phrases which is strongly equivalent, we
must construct the parse tree for the verb phrase after parsing the object noun
phrase:

verb_phrase (SNp, F, s (SNp, Vp), active) -->
     verb (V, F),
     object_np (V, Vp).

object_np (V, vp (V, Np)) -->
     noun_phrase (Np, _).
object_np (V, vp (V)) --> [ ].

A grammar which never backtracks over input is called a deterministic grammar.
A non-deterministic grammar, though less efficient, has the merit that the
structure of the parse tree it builds does mirror in a direct and natural way the
hierarchy of its rules. Sometimes, the most natural way of describing a language
is by phrase-structure rules that are left-recursive, and a direct translation into
rules of a definite clause grammar is impossible. An example is the phrase-

Figure 8.10 Parse tree for the sentence: “The woman calls” produced by the second
grammar of verb phrases
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structure grammar for a language of arithmetic expressions shown in
Figure 8.11. 

Assuming that we have a definition for Integer, the grammar ascribes to the
expression: “4−3+5 * 6” a parse tree, shown in Figure 8.12, which represents
both the precedence and the associativity of arithmetic operators. 

A naive translation of this grammar into a definite clause grammar yields the
following clauses for expression/2: 

expression -->
     term,

expression -->
     expression,

Figure 8.11 A phrase-structure grammar for a language of arithmetic expressions

Figure 8.12 Parse tree for the expression: “4−3+5 * 6”
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     add_op,
     term.

Though declaratively sound, the second clause is fatally flawed in its procedural
interpretation:

“An expression is found if an expression is found, followed by an adding
operator and a term.”

With this clause, Prolog would generate endless recursive sub-goals to find an
expression. To prevent this, we replace the two rules defining Expression with
one rule which recognises the first symbol of an expression and a second which
recognises the symbols which optionally follow. In this way, we ensure that
Prolog does progress through the input sequence. The rules are:

expression -->
     term,
     more_terms.

more_terms -->
     add_op,
     term,
     more_terms.

more_terms --> [ ].

The remaining clauses of the grammar, including a similar treatment of the left
recursion in the rules for Term, are:

term -->
     factor,
     more_factors.

more_factors -->
     mult_op,
     factor,
     more_factors.

more_factors -->[ ].
factor -->

     [N],
     {integer (N)}. 
add_op --> [‘+’].
add_op --> [‘-’].

mult_op --> [‘*’].
mult_op --> [‘/’].
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Though the grammar now has a sound procedural interpretation, it is not obvious
how we are to construct a satisfactory parse tree. Reflecting directly the rules
used in parsing an expression, we arrive at that of Figure 8.13. 

This is unlikely to be a satisfactory representation of an arithmetic expression,
whatever processing is to be applied to it after syntactic analysis, because it
obscures the structure of the expression. A more useful parse tree for the same
expression is shown in Figure 8.14.  

As the example in section 8.2.2 showed, the form of a parse tree is not
constrained by the order of rule applications, and we can construct the parse tree
of Figure 8.14 by manipulation of the arguments in the grammar rules.

The resulting program is:

expression (E) -->
     term (T),
     more_terms (T, E).

more_terms (Part, Complete) -->

Figure 8.13 A possible parse tree for the expression: “4−3+5*6”

Figure 8.14 A clearer parse tree for the expression: “4−3+5 * 6” 
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     add_op (Op),
     term (T),
     more_terms (expr (Part, Op, T), Complete).

more_terms (T, T) --> [ ].
term (T) -->

     factor (F),
     more_factors (F, T).

more_factors (Part, Complete) -->
     mult_op (Op),
     factor (F),
     more_factors (expr (Part, Op, F), Complete).

more_factors (F, F) --> [ ].
factor (N) -->

     [N],
     {integer (N)}.

add_op (‘+’) --> [‘+’].
add_op (‘−’) --> [‘−’].
mult_op (‘*’) --> [‘*’].
mult_op (‘/’) --> [‘/’].

We get:

?- expression (E, [4, −, 3, +, 5, *, 6], [ ]).
E=expr (expr (4, −, 3), +, expr (5, *, 6))
?- expression (E, [4, +, 3, *, 6, +, 5, +, 6], [ ]).
E=expr (expr (expr (4, +, expr (3, *, 6)), +, 5), +, 6)

The precedence of a mult_op over an add_op is enforced by the hierarchy of
rules. We obtain the correct associativity for adjacent operators of equal
precedence by the manner in which we combine sub-expressions in the
arguments to the procedures for more_terms/4 and more_factors/4. In the first
clause of each, the Part expression which is given as input argument is combined
with the operator Op and the next term T (or factor F) into a structure that
represents a sub-expression and is the first argument in a call to more_terms/4
(or more_factors/4). Thus, each sub-expression which has on its left a sub-
expression with an operator of equal precedence is combined with that sub-
expression before being joined to any on its right. How to enforce right-
associativity within an identically-structured grammar, we leave to you as
exercise 8.4 (b).

Failure to specify the associativity of operators or connectives is a common
source of ambiguity in a grammar. A grammar is ambiguous if it ascribes two or
more different parse trees to a sentence or if a single parse tree can be ascribed
by different sequences of rule applications. The following definite clause
grammar for English sentences with conjunctions is ambiguous:

168 PROBLEM SOLVING WITH PROLOG



sentence_sequence (S) -->
     sentence (S).

sentence_sequence (conj (S1, C, S2)) -->
     sentence_sequence (S1),
     conjunction (C),
     sentence_sequence (S2).

conjunction (but) --> [but],
coinjunction (and) --> [and].

If “s1”, “s2” and “s3” are valid sentences, the grammar ascribes two parse trees
to the sentence: “s1 and s2 but s3”, as shown in Figure 8.15. 

The triangles represent portions of the parse tree not fully expanded.
It can be very hard to detect ambiguities in a complex grammar. In this, Prolog

is a very valuable tool, for its search strategy is a means of checking all possible
ways of deriving a parse tree for a sentence. We simply have to reject the answer
which a call to parse a sentence first produces: 

?- sentence_sequence (S, [s1, and, s2, but, s3], [ ]).
S=conj (s1, and, conj (s2, but, s3));
S=conj (conj (s1, and, s2), but, s3);
no

We could prevent Prolog finding the second parse on backtracking simply by
placing a cut at the end of the second clause for sentence_sequence/3, but this
would not resolve the ambiguity inherent in the grammar. It would merely ensure
that, under the procedural interpretation of Prolog rules with the cut, just a single
parse was produced. As the definition of ambiguity makes no mention of a
procedure for applying rules, a definite clause grammar must be declaratively
sound in order to meet the criterion for being unambiguous. This precludes use
of the cut. To eliminate the ambiguity, we should re-write the rules, making clear
the associativity of the conjunctions “and” and “or”.

Figure 8.15 Two parse trees for the sentence: “s1 and s2 but s3”
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If we are designing a grammar for a query language or a programming
language, it is essential that the grammar is unambiguous. However, all natural
languages are rich in ambiguity, and grammars for them are necessarily
ambiguous. For example, two parse trees may be ascribed to the sentence: “A
good chemist dispenses with accuracy”, as Figure 8.16 shows. 

Presumably, the first represents the intended meaning, but we cannot expect a
grammar to discern this. The best we can hope for is that the grammar generates
all possible interpretations of an ambiguous sentence and that the succeeding
semantic analysis phase is able to to make the right choice among them.

Exercises 8.4

(a) An arithmetic expression may include brackets to override the
normal precedence of operators. Extend the grammar to recognise
brackets. The brackets should not appear on the parse tree, but it must
reflect their effect on the meaning of the expression. 
(b) Write a grammar of Boolean expressions, to include the operators
“and” and “or”. Assume that “and” is of greater precedence, that both
are right-associative and that the terms of expressions are relational
expressions. For example, the parse tree for the expression:

“8=3+5 or 7>9 * 2 or 3=5 * 10 and 5=7”

Figure 8.16 Two parse trees for the ambiguous sentence:

“A good chemist dispenses with accuracy”
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is as shown in Figure 8.17. 
(c) Supplement the grammar you wrote for exercise 8.4 (b) with a
semantic analysis phase to evaluate the expression and return the atom
true or false. Evaluation of sub-expressions should stop as soon as the
value of the whole is known. The value of the expression in
Figure 8.17 is known as soon as the leftmost sub-expression has been
evaluated.

8.5
Summary

In this chapter, we have introduced the following ideas:

• A grammar is a set of rules for forming sentences of a language.
• A phrase-structure grammar expresses the rules in terms of components of the

language and how they may be concatenated.
• The parsing problem is to determine whether a sequence of words is a

sentence of a language and to produce a representation of the structure of the
sentence if it is.

• The grammar rules notation enables a phrase-structure grammar to
be represented as a Prolog program, called a definite clause grammar. The
parsing problem is solved by calling a procedure of the program as a goal.

• A definite clause grammar can capture features of natural language which are
described by context-sensitive rules or by transformational rules.

• A definite clause grammar can have calls to Prolog procedures in the right
side of its rules.

• Pragmatic issues you must consider when writing a definite clause grammar
include its efficiency and the problems of left-recursive rules and of
ambiguity.

• The cut should not be used in a definite clause grammar because it has only a
procedural interpretation and does not resolve ambiguity. 

Figure 8.17 Parse tree showing precedence and associativity of Boolean operators
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Chapter 9
Testing, Debugging and Documentation

How to test a Prolog program, how to find faults in it when it gives erroneous
results and how to describe its behaviour are questions which have pervaded the
whole of Part 1 of this book. However, our emphasis has been on teaching good
design, based on the programmers’ toolkit. Illustrating the methods by which we
may check the soundness of our programming efforts has been incidental to our
main purpose. In this chapter, we bring together the lessons about testing,
debugging and documentation which have been implicit in what has gone before.
As the toolkit equips you to solve problems, so we now offer a set of
prescriptions which you will be able to follow to check the validity of the
solutions you devise.

9.1
Testing

The first consideration in designing test data for a procedure is to ensure that
every clause is exercised by at least one of the tests. If the procedure was
developed by case analysis, this is easy: we identify an item of test data to
exemplify each case, and we use the outcome of the third stage of case analysis,
in which we identified the processing required for each case, to predict the result
of each test. In all testing, it is essential that you identify the correct outcome
before running the test. Otherwise, it is too easy, given the natural reluctance of
every programmer to admit that his creation may be faulty, to persuade yourself
that the observed result is the correct one.

As an example, we consider how to test the procedure for reduce/4 which we
gave in section 6.1.2 as part of the solution to the Soundex coding problem. We
identified three recursive cases. Figure 9.1 shows test data for each. The actual
result is as expected in each test:

?- reduce ([97, 98], 1, _, Res).
Res=[98];
no 



?- reduce ([98, 99], 1, 98, Res).
Res=[99];
no
?- reduce ([98, 99], 1, 10, Res).
Res=[98, 99];
no

In these tests, we test the second base case indirectly, as the recursive cases
reduce the input argument to the empty list. We could exercise the clause for the
first base case directly by a test such as:

?- reduce ([99], 4, _, Res),

for which the expected result is:

Res=[ ];
no

Better, however, is to test it indirectly by calling the procedure with an input list
for which we expect a list of the maximum length to be produced without
exhausting the input. In this way, we thoroughly check the arithmetic in the
clause-for the catch-all case:

?- reduce ([98, 99, 100, 102, 103], 1, 99, Res).
Res=[98, 99, 100];
no 

To check that a procedure which you intend to be deterministic is indeed so, you
must always reject the first answer Prolog produces. If the procedure is
deterministic, there will be no alternatives.

You must test a non-deterministic procedure very carefully to ensure that it
can indeed be called with all the patterns of argument you envisage and that it
produces exactly the intended alternative answers. In section 3.5, we gave two
procedures for sub_list/2, and the answer to exercise 3.5 (b) gives a third. The

Case Test data in a call

Arguments input Expected result

Current letter is a vowel, “h”, “w” or “y” [97, 98] 1 − [98]
Current letter is the same as the preceding one [98, 99] 1 98 [99]
Catch-all [98, 99] 1 100 [98, 99]
Ascii codes: 97=“a”, 98=“b”, 99=“c”, 100=“d”

Figure 9.1 Test data for recursive clauses of the procedure for reduce/4
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three behave identically when used to determine whether one list is a sublist of
another, but their behaviours differ in quite subtle ways when they are used non-
deterministically. The version developed by case analysis and the first of the two
developed by analysis of logical relationships can safely be used to generate
sublists of a given list, though the latter generates duplicate sublists among its
alternative answers. The third is unsound in this usage because it starts an
endless series of recursive calls after producing its alternatives.

Testing a non-deterministic procedure includes checking what it does after it has
exhausted the alternative answers, so test data, though it must be complex
enough to exercise the procedure fully, must not be so elaborate that it is
impractical for all the answers to be enumerated. This is particularly important in
the case of procedures for utility predicates, which we expect to be used to
generate values. In section 4.3, we tested the procedure for in_range_integer/3 by
a call:

?- in_range_integer (1, N, 10).

rather than:

?- in_range_integer (1, N, 500).

Sometimes, we have to modify a procedure to constrain the set of values to a size
which enables it to be readily enumerated. In section 12.4.1, we give a utility
procedure which computes the day of the week on which a given date falls or
generates dates which do fall on a given day. Because there are so many
alternatives in the second usage, we modify the procedure to constrain a lower-
level procedure which generates successive months to generate just two for
testing purposes.

The discipline of testing every procedure exhaustively is a very worthwhile one
for the Prolog programmer. Save for the actions of the built-in predicates which
modify the Prolog database, one procedure cannot have a side-effect on another.
We can be absolutely confident that when we have tested a procedure as an
independent component, its interaction with other components as part of a large
program will not produce errors. The importance of this approach to testing
becomes clear in Part 2, where we embark on much larger-scale Prolog
programming and encounter a new set of difficulties, which can only be resolved
if we are not also worrying about the correctness of low-level procedures.
Nonetheless, our discipline of incremental testing is a severe one. You may not
find the meticulous bottom-up approach to testing very appealing as you become
experienced in Prolog programming and discover that you can often write
correct programs without testing the numerous procedures individually. It is
natural to want to short-circuit a laborious testing strategy; indeed, we did so
ourselves by not testing the procedure for vowel_h__w_y/1 before using it in
that for reduce/4! Inevitably, you will be faced with having to find faults in large
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programs whose procedures you have not tested separately. There is a
comforting term for this process, which we use to try to shift the blame for faults
from ourselves to the computer: debugging. Debugging, the process of finding
and correcting our mistakes, is the subject of the next section.

Exercises 9.1

(a) Thoroughly test the procedure for permute/2 which you wrote using
remove/3 in answer to exercise 3.4 (a). What limitations do you find?
Can you write a different procedure for the predicate which overcomes
the limitations?

9.2
Debugging

A characteristic of programming is the mis-match between cause and effect: a
small fault can make a large program produce wildly inaccurate results. This is
strikingly true of Prolog, where typing mistakes are liable to alter the meaning of
a program, instead of giving rise to faulty syntax. The first stage in debugging is
to proof-read your program very carefully. The most obvious mistake is to mis-
spell the functor of a structure or the name of a variable. Equally common, but
less easy to spot, are the following:

• Typing “.” instead of “,” before the last of a series of conjoined sub-goals.
The last sub-goal drops out of the procedure body to be treated by Prolog as a
fact.

• Omitting “,” between arguments. When this mistake occurs in the head of a
clause, Prolog interprets the clause as belonging to a procedure of a different
arity; in a sub-goal, it results in a procedure call of the wrong arity.

• Typing a variable with an initial lower-case letter. The supposed variable
becomes an atom and does not match as intended.

If a careful reading of the program text does not reveal any typing mistakes, the
second stage of debugging is to examine the program as it runs. All Prolog
systems have a debugging mode of operation, in which information about the
behaviour of the user’s program is displayed to him, but they differ widely in the
views of program execution that they present. None is as sophisticated as the
graphical illustrations we used in Chapters 2 and 3. We describe the most
common, called the procedure box view of program execution. This view of the
procedure for subordinate/2 is illustrated in Figure 9.2. 

When’ the procedure is called as a goal, the procedure box is entered by the call
port. A series of sub-goals is generated, which are wholly contained within the
box, and if these are satisfied the route out of the box is via the exit port. If the
user rejects the answer produced, the box is re-entered at the redo port. The route
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out is via the exit port again if the goal is re-satisfiable or via the fail port if it is
not. This view is repeated for all sub-goals. In debugging mode, Prolog displays
a message as it passes through a port, showing the form of the procedure call at
that port.

For illustration, we assume that the user has omitted the clause:

next_rank (captain, major).

from the procedure for next_rank/2. As a result, some calls to subordinate/2
produce errors:

?- subordinate (cathcart, peckem).
yes
?- subordinate (towser, aardvark).
yes
?- subordinate (towser, peckem).
no
?- debug.
Debug mode switched on.
yes
?- trace,
yes 
?- subordinate (towser, peckem).

(1) 1 Call: subordinate (towser, peckem)
(2) 2 Call: soldier (name (towser), rank (_6))
(2) 2 Exit: soldier (name (towser), rank (sergeant))
(3) 2 Call: soldier (name (peckem), rank (_7))
(3) 2 Exit: soldier (name (peckem), rank (general))
(4) 2 Call: lower_rank (sergeant, general)
(5) 3 Call: next_rank (sergeant, general)

Figure 9.2 Procedure box view of the procedure for subordinate/2
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(5) 3 Fail: next_rank (sergeant, general)
(6) 3 Call: next_rank (sergeant, _61)
(6) 3 Exit: next_rank (sergeant, lieutenant)
(7) 3 Call: lower_rank (lieutenant, general)
(8) 4 Call: next_rank (lieutenant, general)
(8) 4 Fail: next_rank (lieutenant, general)
(9) 4 Call: next_rank (lieutenant, _80)
(9) 4 Exit: next_rank (lieutenant, captain)
(10) 4 Call: lower_rank (captain, general)
(11) 5 Call: next_rank (captain, general)
(11) 5 Fail: next_rank (captain, general)
(12) 5 Call: next_rank (captain, _99)
(12) 5 Fail: next_rank (captain, _99)
(10) 4 Redo: lower_rank (captain, general)
(10) 4 Fail: lower_rank (captain, general)
(9) 4 Redo: next_rank (lieutenant, _80)
(9) 4 Fail: next_rank (lieutenant, _80)
(7) 3 Redo: lower_rank (lieutenant, general)
(7) 3 Fail: lower_rank (lieutenant, general)
(6) 3 Redo: next_rank (sergeant, _61)
(6) 3 Fail: next_rank (sergeant, _61)
(4) 2 Redo: lower_rank (sergeant, general)
(4) 2 Fail: lower_rank (sergeant, general)
(3) 2 Redo: soldier (name (peckem), rank (_7))
(3) 2 Fail: soldier (name (peckem), rank (_7))
(2) 2 Redo: soldier (name (towser), rank (_6))
(2) 2 Fail: soldier (name (towser), rank (_6))
(1) 1 Redo: subordinate (towser, peckem)
(1) 1 Fail: subordinate (towser, peckem)

no
The built-in predicates used in this sequence are:

debug/0

The debug mode of operation is switched on.
trace/0

Debug mode is switched on if it is not already on. In a traced execution,
a message is displayed at each port of every goal and sub-goal of a
program’s execution. 

In the traced execution, each message gives the invocation number in brackets,
the depth count, the name of the port and the goal which Prolog is trying to
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satisfy. Each of a series of conjoined sub-goals, for example the goals:?-soldier
(name (towser), rank (_6)),?-soldier (name (peckem), rank (_7)) and?-
lower_rank (sergeant,general), which are sub-goals of the top-level goal, has the
same depth count. It denotes the number of goals which have been called but
whose execution has not ended. Every procedure call has a unique invocation
number, including, for example, the recursive calls to lower_rank/2 at invocations
4, 7 and 10. The procedure box view has a parallel in the system of boxes and
numbers which we used in Chapters 2 and 3 to describe the procedural behaviour
of Prolog. In Figure 2.1, there are three goal invocations, each shown in a
separate box. The depth of the goal in box 1 is 1, and that of the sub-goals in
boxes 2.1 and 2.2 is 2.

Knowing the fault in the program, you probably spotted in the trace of its
execution that the error was the failure of invocation 12. However, an exhaustive
trace produces too much information too rapidly for a user to have a realistic
chance of finding a fault. If you have no clue about where the faults lie, for there
will certainly be several, debugging a large program in this way is a hopeless
proposition. You should never get into the situation of needing to try. If you
follow our guidelines on testing even partially, you will have confined the faults
to just those procedures which you have not tested bottom-up. This is much more
promising: we have a chance of finding faults when we know where to look.
Also, the Prolog debugging system allows the programmer to focus on the
suspect parts of a program by leashing the execution of it and by setting spy-points,
and in this way the amount of information produced can be reduced to manageable
proportions.

When the debugging system is leashed, the display halts at some or all of the
ports of a procedure invocation to allow the user to examine the progress of the
computation and to specify how it should proceed. The behaviour of the built-in
predicate leash varies somewhat between implementations, but a typical
definition is:

leash/1

The leashing mode of the display is set according to the form of the
argument in the call, as follows:

off The display does not stop.
loose The display stops at call ports.
half The display stops at call and redo ports.
tight The display stops at call, redo and fail ports.
full The display stops at all ports.

When the display stops, the user inputs a single character to indicate the manner
in which debugging should proceed. Once again, the options vary, but the most
useful are: 
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c Creep through program execution. The display stops at the next leashed
port. Use this option when you think you are in the region of a fault.

s Skip tracing this goal. This option is available only at call and redo ports. If
our procedure for soldier/2 had sub-goals but we believed them to be fault-
free, we would use this option to go on quickly to the call to lower_rank/2.

q Quasi-skip tracing this goal. This option is available only at call and redo
ports. Tracing is skipped, except of sub-goals on which spy-points have
been set. This option is particularly useful when you wish to see the form
of successive recursive calls to a procedure whose execution you are
spying.

f Fail the call. Use this at the call port of a procedure when you can see from
the form of the goal that it will fail, for instance, when a procedure has a
number of clauses handling different cases and the call in question is
handled by a later clause. You are spared watching Prolog test the call
against the wrong cases. Notice that you could not use this option if the
goal, though failing, had a side-effect on the Prolog database on which a
procedure elsewhere in the program depended. This illustrates the point we
made in section 7.1.3 about the difficulty of testing programs which use
global variables.

r Re-try the current goal by transferring to its call port. This is very useful
when you suspect you have overlooked a fault. If r is followed by an integer
n, the goal re-tried is the procedure with invocation number n. This option
enables you to revert to any stage of program execution. However,
modifications to the Prolog database are not undone, nor are other side-
effects of program execution.

a Abort execution. This is the right action once you have spotted a fault. In
the example, we could have aborted execution after the failure of
invocation 12. Once we have identified the fault, we gain nothing by
watching Prolog continue.

Spy points are set by calls to the built-in predicate spy:

spy/1
The argument in the call is either a structure of the form: P/A or an atom.

In the first case, a spy point is set on the procedure for the predicate P with
arity A. In the second, one is set on each procedure for the named
predicate, whatever its arity.

They are removed by calling no spy/1, whose argument has the same form as
that in a call to spy/1. Spy points are removed from the procedures for the named
predicates. Alternatively, a call to nodebug/0 removes all spy points and switches
off the debug mode.
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When a spy point has been set on a procedure, program execution proceeds
normally until the spied procedure is called. The message for the call port is then
displayed, and unless leashing is off, Prolog halts for the user to select an option
for continued execution. When Prolog leaves the exit or the fail port of the spied
procedure, normal execution resumes and halts only when a spied procedure is
called again. This is an alternative to exhaustive tracing by trace as a means of
observing program behaviour. By careful leashing and use of spy-points, the
debugging example could be shortened to:

?- subordinate (towser, peckem).
no
?- debug.
Debug mode switched on.
yes

?- spy (lower_rank/2).
Spy-points set on:
     lower_rank/2

yes
?- leash (half).
Leashing set to half (call, redo)
yes
?- subordinate (towser, peckem).

(4) 2 Call: lower_rank (sergeant, general) c
(5) 3 Call: next_rank (sergeant, general) s
(5) 3 Fail: next_rank (sergeant, general)
(6) 3 Call: next_rank (sergeant, _61) s
(6) 3 Exit: next_rank (sergeant, lieutenant)
(7) 3 Call: lower_rank (lieutenant, general) c
(8) 4 Call: next_rank (lieutenant, general) s
(8) 4 Fail: next_rank (lieutenant, general)
(9) 4 Call: next_rank (lieutenant, _80) s
(9) 4 Exit: next_rank (lieutenant, captain)
(10) 4 Call: lower_rank (captain, general) c
(11) 5 Call: next_rank (captain, general) s
(11) 5 Fail: next_rank (captain, general)
(12) 5 Call: next_rank (captain, _99) s
(12) 5 Fail: next_rank (captain, _99) a

execution aborted
no 
Though spy-points reduce the verbiage that the debugging mode of operation

generates, they depend for effect on you having assessed correctly where a
program’s faults are likely to be. Of course, you should always make this
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assessment before starting your debugging attempts. Otherwise, you will be
confused by the output from Prolog in debugging mode, to the point where you
may overlook even a fault which is staring you in the face.

9.3
An Enhanced Interpreter for Debugging

When we have difficulty in expressing in Prolog the logic of a complex
predicate, our first attempts are likely to contain many faults. A large program
which includes such procedures untested suffers from having faults occurring
not singly but in clusters, and is particularly tiresome to debug. We risk repeating
several times a cycle in which we watch a traced execution of the program, find
and correct the first fault that we notice, but discover that the program fails again
scarcely further on in its execution. If the debugging system allowed us to
correct the sub-goal which had erroneously failed, program execution could
resume until the next fault manifested itself, and we would break the cycle. In
this section, we extend the interpreter of section 7.2.2 to support this facility.

A failure of a sub-goal in the object program causes a call to satisfy/2 in the
interpreter also to fail. Our method is to add another clause for satisfy/2 to detect
a failing goal in the object program and then, by an interaction with the user, to
determine whether the goal should have succeeded. The procedure is:

satisfy (true, ‘match with a fact’):-!.
satisfy ((Goal, Goals), and (Proof, Proofs)):-!,
     satisfy (Goal, Proof),
     satisfy (Goals, Proofs).

satisfy (‘;’ (Goal, Goal), Proof):-!,
     satisfy (Goal, Proof); satisfy (Goals, Proof).

satisfy (Goal, by (Goal, ‘built-in predicate’)):-
     bip (Goal), !,
     call (Goal).

satisfy (Goal, by (Goal, Proof)):-
     clause (Goal, Sub_goals),
     satisfy (Sub_goals, Proof).

satisfy (Goal, by (Goal, ‘by user intervention’)):-
     satisfied (Goal).

We now use the cut because we do not wish the user to be asked about the failure
of a goal if that goal had initially been handled by one of the first four clauses.

The procedure for satisfied/1 is: 

satisfied (Goal):-
write (‘Should goal:?-’),
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write (Goal),
write (‘fail (y/n)?’),
get (110). % succeeds if next character input is “n”

If the user’s answer is that Goal should not fail, the interpreter considers Goal to
be satisfied by user intervention, and the execution of the object program
continues. The proof of a goal which is satisfied in this way is a new special case:

special_case (‘by user intervention’).

We illustrate the behaviour of the extended interpreter by reference to an object
program which describes the family tree shown in Figure 9.3. 

mother (anne, david).
mother (anne, emily).
mother (gina, ivy).
father (david, frank).
father (david, gina).

Notice that the program omits some family relationships. It also includes a
procedure for descendant/2, defining when one person is recognised as having
another as a descendant:

descendant (Ancestor, Descendant):-
     parent (Ancestor, Descendant). 

descendant (Ancestor, Descendant):-
     parent (Ancestor, Child),

Figure 9.3 A family tree
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     descendant (Child, Descendant).
parent (Parent, Child):-

     father (Parent, Child).
parent (Parent, Child):-

     mother (Parent, Child).

Because of the omissions, calls fail unexpectedly:

?- descendant (anne, john),
no

We can identify the fault with the interpreter:

?- satisfy_and_display (descendant (anne, john)).
Should goal:?- father (anne, john) fail (y/n)? y
Should goal:?- mother (anne, john) fail (y/n)? y
Should goal:?- parent (anne, john) fail (y/n)? y
Should goal:?- father (anne,_17) fail (y/n)? y
Should goal:?- father (david, john) fail (y/n)? y
Should goal:?- mother (david, john) fail (y/n)? y
Should goal:?- parent (david, john) fail (y/n)? y
Should goal:?- father (frank, john) fail (y/n)? n

descendant (anne, john) by
     parent (anne, david) by
     mother (anne, david) by match with a fact
     descendant (david, john) by
     parent (david, frank) by
     father (david, frank) by match with a fact
     descendant (frank, john) by
     parent (frank, john) by
     father (frank, john) by user intervention

yes

However, if the failing goal is:

?- descendant (anne, lois),
no

our interpreter proves inadequate:

?- satisfy_and_display (descendant (anne, lois)).
Should goal:?- father (anne, lois) fail (y/n)? y 
Should goal:?- mother (anne, lois) fail (y/n)? y

Should goal:?- parent (anne, lois) fail (y/n)? y
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Should goal:?- father (anne, _17) fail (y/n)? y
Should goal:?- father (david, lois) fail (y/n)? y
Should goal:?- mother (david, lois) fail (y/n)? y
Should goal:?- parent (david, lois) fail (y/n)? y
Should goal:?- father (frank, lois) fail (y/n)? y
Should goal:?- mother (frank, lois) fail (y/n)? y
Should goal:?- parent (frank, lois) fail (y/n)? y
Should goal:?- father (frank, _151) fail (y/n)? n
Should goal:?- father (_151, lois) fail (y/n)? n

descendant (anne, lois) by
     parent (anne, david) by
     mother (anne, david) by match with a fact
     descendant (david, lois) by
     parent (david, frank) by
     father (david, frank) by match with a fact
     descendant (frank, lois) by
     parent (frank, _151) by
     father (frank, _151) by user intervention
     descendant (_151, lois) by
     parent (_151, lois) by
     father (_151, lois) by user intervention

yes

The problem is that when the user indicates that the goal:?-father (frank, _151)
should not fail, he means that there is a substitution for _151 for which the goal
should succeed, not that it should succeed for all substitutions. We must modify
the procedure for satisfied/1 so that when the incorrectly-failing goal includes
variables, the user is asked to supply substitutions for which the goal should
succeed. The modified procedure is:

satisfied (Goal):-
write (‘should goal:?-’),
write (Goal),
write (‘fail (y/n)?’),
get (110), % succeeds if next printing character is “n”
fill_vars (Goal, Goal).

In the procedure for fill_vars/2, we look for variables in the second argument. For
each, we ask the user to supply a value. The purpose of passing the goal term
also as the first argument is to enhance the display of the term, as values are
substituted for variables in it:

fill_vars (_, Term):-
     atomic (Term). 
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fill_vars (Goal, Term):-
     compound (Term),
     Term =.. [Functor|Arguments],
     fill_vars_in_args (Goal, Arguments).

fill_vars (Goal, Term):-
     var (Term),
     write (‘enter a value for:’),
     write (Term),
     nl,
     write (‘ for which:?-’),
     write (Goal),
     nl,
     write (‘should succeed:’),
     read (Value),
     fill (Goal, Value, Term).

fill_vars_in_args (_, [ ]).
fill_vars_in_args (Goal, [Arg|Args]):-

     fill_vars (Goal, Arg),
     fill_vars_in_args (Goal, Args).

The user may be aware of numerous values which could be substituted for a
variable to make a goal succeed. On backtracking, therefore, the procedure for
fill_vars/2 must prompt the user to enter a different value and be re-satisfiable
for so long as he does so. The user enters the atom: no_more to indicate that
there are no more possible substitutions. We support the required behaviour
through the call to fill/3. The procedure is:

fill (_, no_more, _):-,
     fail.

fill (_, Term, Term).
fill (Goal, _, Term):-

     write (‘enter another value for:’),
     write (Term),
     nl,
     write (‘for which:?-’),
     write (Goal),
     nl,
     write (‘should succeed (or “no_more”):’),
     read (Value),
     fill (Goal, Value, Term).

The series of questions and answers is as before until the user is asked about the
goal:?-father (frank, _151). We show the user first entering a value for the variable
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different from that which leads to the call succeeding. Frank has two sons, but it
is Ken, not John, who is Lois’ father. 

?- satisfy_and_display (descendant (anne, lois)).
     …

Questions as before until:
     …

Should goal:?- father (frank, _151) fail (y/n)? n
Enter a value for: _151

     for which:?- father (frank, _151)
     should succeed: john.
Should goal:?- father (john, lois) fail (y/n)? y
Should goal:?- mother (john, lois) fail (y/n)? y
Should goal:?- parent (john, lois) fail (y/n)? y
Should goal:?- father (john, _225) fail (y/n)? y
Should goal:?- mother (john, _225) fail (y/n)? y
Should goal:?- parent (john, _225) fail (y/n)? y
Should goal:?- descendant (john, lois) fail (y/n)? y
Enter another value for: _151
     for which:?- father (frank, _151)
     should succeed (or “no_more”): ken.
Should goal:?- father (ken, lois) fail (y/n)? n

descendant (anne, lois) by
     parent (anne, david) by
     mother (anne, david) by match with a fact
     descendant (david, lois) by
     parent (david, frank) by
     father (david, frank) by match with a fact
     descendant (frank, lois) by
     parent (frank, ken) by
     father (frank, ken) by user intervention
     descendant (ken, lois) by
     parent (ken, lois) by
     father (ken, lois) by user intervention

yes

To find and correct the failing goals, the interpreter asked the user nineteen
questions. If the user had entered the correct name when first asked about
Frank’s children, the total would have been twelve. This is rather tiresome for
the user, and we would like to make fewer demands upon him. However, it is
characteristic of Prolog that programs have a complex procedural behaviour even
if they express simple logical relationships and their declarative interpretation
can readily be grasped. Consider the following procedure for sort_integers/2:
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sort_integers (List, Sorted):-
     permute (List, Sorted),
     ordered (Sorted). 

ordered ([_]) % A one element list is ordered.
ordered ([First, Second|Others]):-

First =< Second,
ordered ([Second|Others]).

The declarative interpretation is clear: Sorted is a sorted version of List if it is a
permutation of List and elements of it are in order. Procedurally, the program’s
behaviour is complex, with extensive backtracking in the search for the correct
permutation. If there was a fault in the program, finding it with our interpreter
would necessitate a long series of questions because the interpreter intervenes to
ask whether a goal should have failed every time Prolog backtracks in the object
program. For example, if the fault is the omission of the clause for permute/2
which handles the base case and the failing goal is:

?- sort_integers ([3, 1], S).

the user has to answer twelve questions before the interpreter produces the proof:

sort_integers ([3, 1], [1, 3]) by
     permute ([3, 1], [1, 3]) by
     remove (1, [3, 1], [3]) by
     remove (1, [1], [ ]) by match with a fact
     permute ([3], [3]) by
     remove (3, [3], [ ]) by match with a fact
     permute ([ ], [ ]) by user intervention
     ordered ([1, 3]) by
     1=< 3 by built-in predicate
     ordered ([3]) by match with a fact

Included in the twelve is the question:

Should goal:?- remove (_162, [ ], _165) fail (y/n)?

which is asked four times, and the questions:

Should goal:?- permute ([ ], _110) fail (y/n)?

and:

Should goal:?- ordered ([3, 1]) fail (y/n)?
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each asked three times. To prevent repetition, we must record the user’s answers
in the interpreter and check them before asking each question. We record goals
which should have succeeded as clauses for succeeded/1 and those which
correctly failed as clauses for failed/1. In determining whether a goal may be
satisfied by user intervention, we first check the answers already obtained. The
revised procedure for satisfied/1 is:

satisfied (Goal):-
     succeeded (Goal).

satisfied (Goal):-
     failed (Previous),
     is_instance (Goal, Previous), !,
     fail.

satisfied (Goal):-
     write (‘Should goal:’),
     write (Goal),
     write (‘fail (y/n)?’),
     nl,
     get (110),
     fill_vars (Goal, Goal),
     assert (succeeded (Goal)).

satisfied (Goal):-
     assert (failed (Goal)),
     fail.

In this instance, we use database modification to accumulate results and prevent
them being lost on backtracking. The first clause checks whether the current goal
matches one which has already been satisfied. The second determines if there is a
previously-failed goal of which the current goal is an instance. If this case holds,
the cut and fail combination makes the call to satisfy/1 fail immediately.

The third and fourth clauses record the user’s answers in the Prolog data-base.
The third adds a clause for succeeded/1, recording an instance of the goal, each
time the call to fill_vars/2 succeeds. The fourth clause is reached if the goal
should correctly fail or if the user has enumerated all instances for which it
should succeed, and it adds a clause for failed/1.

A term T1 is an instance of a term T2 if there is a set of substitutions which,
applied to the variables in T2, make the two terms identical. Our implementation
of is_instance/2 actually applies these substitutions:

?- is_instance (member (a, [a, b, c]), member (X, [X|Y])).
X=a
Y=[b, c]
?-is_instance (member (X, [X|Y]), member (a, [a, b, c])).
no
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The procedure is:

is_instance (Term, Variable):-
     var (Variable),
     Variable=Term. 

is_instance (Term1, Term2):-
     atomic (Term2),
     Terml == Term2.

is_instance (Term1, Term2):-
     compound (Term1),
     compound (Term2),
     Term1 =.. [Func|T1args],
     Term2 =.. [Func|T2args],
     args_is_instance (T1args, T2args).

args_is_instance ([ ], [ ]).
args_is_instance ([T1|T1s], [T2|T2s]):-

     is_instance (T1, T2),
     args_is_instance (T1s, T2s).

With these enhancements, the interpreter asks just five questions before
displaying the proof:

?- satisfy_and_display (sort_integers ([3, 1], M)).
Should goal:?- remove (_162, [ ], _165) fail (y/n)? y
Should goal:?- permute ([ ], _110) fail (y/n)? n
Enter a value for: _110

     for which:?-permute ([ ], _110)
     succeed: [ ].

Should goal:?-ordered ([3, 1]) fail (y/n)? y
Enter another value for: _110

     for which:?- permute ([ ], _110)
     should succeed (or “no_more”): no_more.

Should goal:?- remove (_109, [1], _112) fail (y/n)? n
Enter a value for: _109

     for which:?- remove (_109, [1], _112)
     should succeed: 1.

Enter a value for: _112
     for which:?- remove (1, [1], _112)
     should succeed: [ ].

Enter another value for: _112
     for which:?- remove (1, [1], _112)
     should succeed (or “no_more”): no_more.

Enter another value for: _109
     for which:?- remove (_109, [1], _112)
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     should succeed (or “no_more”): no_more.
Should goal:?-permute ([1], _55) fail (y/n)? n
Enter a value for: _55

     for which:?- permute ([1], _55)
     should succeed: [1].

Enter another value for: _55 
for which:?- permute ([1], _55)
should succeed (or “no_more”): no_more.
sort_integers ([3, 1], [1, 3]) by

     …
Proof as before.

     …

The study of Prolog programming environments is an area of active research, and
very sophisticated debugging tools are being developed for these environments.
A useful summary of recent work is given in Brna et al, 1987. It is important not
to forget, however, that no computer-based aid to debugging can reveal the cause
of program failure; it can only provide better information about the symptoms of
failure. In simple cases, this information may directly illuminate the fault, but as
we show in Chapter 11, this is not so for a complex problem.

Exercises 9.3

(a) As it stands, the interpreter has an adding phase for the clauses for
succeeded/1 and failed/1 but not a collecting phase. Write the
collecting phase.
(b) Spy-points can be used in conjunction with the interpreter to reduce
further the number of questions the user has to answer. Given the
following procedure for set_spy_point/1:

set_spy_point (Predicate/Arity):-
     assert (suspect (Predicate/Arity)).

modify the interpreter so that it only asks about calls to procedures recorded as
suspect.

9.4
Documentation

In this section, we focus on aspects of documentation which are particular to
Prolog. We are concerned with documentation for the reader of a program, not with
end-user documentation, the principles of which apply whatever the language of
implementation.
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Program documentation should explain both a predicate and the procedure
that implements it. Documentation for the predicate gives the declarative view, in
terms of the form of the arguments and the relationship between them. To
document flatten/2, we would record that the two arguments are lists and the
second contains the same elements in the same order as the first, but with nested
sublists removed. It is helpful to give some examples which do satisfy the
predicate. So: 

?- flatten ([[a, or, b], and, [not, c]], [a, or, b, and, not, c]).

and:

?- flatten ([[ ], [ ]], [[ ], [ ]]).

are both true. The second example makes clear that the predicate admits the
empty list as an element which can occur in a list.

Side-effects of execution also form part of the description of a predicate. This
applies both to one such as add_member/1, which uses database modification to
manage a body of stored data and whose side-effect we view as long-term, and to
traverse_graph/1, which is simply the adding phase of a program which uses the
Prolog database to accumulate results.

Documentation for a procedure begins by stating the patterns of arguments
which are permitted in calls. This is a statement of restrictions on the declarative
view, and, of course, it depends for accuracy on the thoroughness of the testing.
There may be restrictions even if the declarative interpretation is very simple, as
we demonstrated through the procedures for max/3 in section 6.1.2. We had to
specify whether a procedure could be called to test if integer n was the minimum
of I and m or only to generate n such that the predicate is satisfied for l, m, n.

If a procedure can be used non-deterministically, we document the order of the
answers it produces. If there are any oddities in the order, such as the inclusion
of duplicates, these should be mentioned, though if the procedure’s behaviour is
idiosyncratic when it is used non-deterministically, you may consider it safer to
record that this usage is prohibited.

The best way to explain how a procedure works is by reference to the toolkit
techniques used to develop it. If a procedure was developed through case
analysis, explain the clauses as handlers for cases; if it uses forced backtracking,
highlight the sub-goal that generates values, the one that has the side-effect by
which values are reported and the one that initiates back-tracking. Record also
the terminating value which ends the backtracking. It is not necessary to
document well-written procedures in more detail than this. They are clear enough
for a reader who knows the declarative inter-pretation of a predicate and
understands the techniques in the procedure to see how the means achieve the
end. However, if a procedure includes unexpected devices or tricks, you should
explain them. For instance, we thought the design of the procedure for fill_vars/2
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in section 9.3 was tricky enough to merit special comment. It is probably not
obvious to a reader who sees the call:

?- fill_vars (Goal, Goal).

as a sub-goal within the procedure for satisfied/1 why a two argument predicate
is used. Our comment was not a full explanation of how the device enhanced the
display of a term, but we surmised that a reader would be able to follow our
method, once acquainted with our purpose. 

In Part 1 of this book, we have studied the design of well-structured and
correct procedures, but we have not examined how to design and implement
large Prolog programs. The documentation for a large program is not just an
amalgam of comments on its components. It must also record how the components
are realised as goals and sub-goals and describe the controlling logic under
which they interact. How this is done, we consider in our two case studies in
Part 2.

Exercises 9.4

(a) Document the graph-traversal program of section 7.1.2. Make sure
that you distinguish clearly between documentation of the predicate
and of the procedure for it.

9.5
Summary

In this chapter, we have introduced the following ideas:

• The expected results of a test must be identified before the test is run.
• A Prolog program should be tested incrementally, as its component

procedures are written.
• Debugging is the process of finding and correcting mistakes.
• Many program errors are caused by minor typing mistakes. The first stage of

debugging is to proof-read the program.
• The procedure box model is a view of how a Prolog program is executed.
• The procedural behaviour of a Prolog program is very complex, and in

debugging mode a great deal of information is displayed. To avoid being
overwhelmed with information, you must first narrow the potential sources of
a program error and then make careful use of leashed execution and of spy-
points when running the debugging system.

• An enhanced interpreter for debugging can make fault-finding easier, but is
liable to ask too many questions of the programmer.
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• Documentation of a predicate describes the declarative view; documentation
of a procedure states restrictions on the declarative view and describes the
techniques used in writing a program. 

TESTING, DEBUGGING AND DOCUMENTATION 193



Part 2

Case Studies in Prolog  Programming



Chapter 10
Writing Procedures and Writing Programs

The aim of Part 1 of this book was to equip you with the skills to write
procedures that are declaratively correct and have a sound procedural
interpretation. The core of these skills is the programmer’s toolkit, which we
review in Figure 10.1.  Mastery of the techniques in the toolkit is supported by an
understanding of the issues of program termination and efficiency and a grasp of
testing and debugging methods.

Part 2 is concerned with the application of these skills to programming in the
large. The issue of large-scale program design, which we did not address in
Part 1 is, therefore, of central concern. In the two case studies, we seek to
demonstrate the practical consequences of the principles of the Prolog language
for program design methods. Chief among these principles are:

Technique Reference Illustrative Programs Case Study

Progressive
Substitution

2.4 sentence/1
line_of_promotion/2

Problem-Solver

Case Analysis 3.4 conc/3 soundex/2 Problem-Solver
Ingoing Recursion 3.4 reverse/2 flatten/2 Problem-Solver
Selector Predicates 3.6 population/2 Electronic Diary
Utility Predicates 4.3 greater_or_equal/2

in_range_integer/3
subordinate/2

Electronic Diary

Operator Definition 5.2.1 truth_table/2 Problem-Solver
Hollow Terms 5.2.1 assign/4 Problem-Solver
Forced Backtracking 6.2 truth_table/1

get_users_move/2
Electronic Diary

Database Modification 7.1.3 add_member/1
count_members/2
reachable/2

Problem-Solver
Electronic Diary

Figure 10.1 Summary of the Prolog programmers’ toolkit 
 



• That a procedure has a declarative interpretation which enables it to be
checked as a statement of logical relationships independently of its behaviour
as an executable program.

• That the procedural semantics of a syntactically correct program is totally
defined by the mechanism of matching between terms and Prolog’s
deterministic search strategy. In Prolog, it is impossible for an error condition
to arise or for an undefined operation to be performed. A totally defined
semantics ensures that faults in a program result only in failure of a match or
of a goal to be satisfied and not in bizarre program behaviour or
incomprehensible error messages.

Of course, these principles are diluted by compromises with the world of
practical programming. Efficiency of execution, indeed the very question of
program termination, must be considered together with a declarative view of a
procedure. Some useful built-in predicates achieve actions by side-effects, which
complicates the procedural semantics of a program. Others prescribe constraints
on the types of their arguments, and errors do occur if these constraints are not
respected. Nonetheless, the principles of Prolog do shine through the murky
waters of these pragmatic considerations, and they form the basis for approaches
to the design and implementation of large progams which are not available in
other languages. Each of our case studies illustrates one approach.

If a Prolog procedure has a declarative interpretation, we ought to be able to
carry out the translation of a given algorithm into a Prolog procedure, which is
really the design phase, independently of procedural considerations. When we
are satisfied that our translation is a correct one, we can study the procedural
properties of what is also an executable program. Our first case study shows that
this approach is indeed feasible. The basis of our problem-solving system is a
recursive algorithm, and it can readily be expressed as a Prolog procedure.
Indeed, the bulk of Chapter 11 is concerned with the procedural characteristics
of the algorithm in Prolog and not with its declarative aspects.

If the procedural semantics of a program is totally defined, we expect to be
able to combine programs developed as independent components without
encountering problems arising from the interaction between these components in
the whole system. Our second case study illustrates that this too is a feasible
approach to program development. Through an analysis of the requirements for
the electronic diary, we identify a number of functions it must support, and we
design it as a set of interacting components. However, after describing the
interactions informally, we implement the system by developing and testing the
components entirely separately from each other. It is a development which
proceeds neither strictly top-down nor bottom-up, and we emphasise that the
success of this approach depends on the thoroughness of the analysis of
requirements, the soundness of the resulting design, which is the guide to
implementation, and on the rigour of the testing.
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Each case study illustrates one option for the development of a large program:
the first top-down development and the second functional decomposition, with
implementation bottom-up. Both are, of course, independent of the programming
language to be used. But we consider that the scope for incremental program
development is particular to Prolog, is a consequence of the two principles of the
language and really does make the task of implementation easier. 

10 WRITING PROCEDURES AND WRITING PROGRAMS 197



Chapter 11
A Problem-Solving System

This case study shows the development of a program which formulates plans of
action to solve problems. The program is independent of any domain of
application and suitable for use in diverse problem situations.

The case study illustrates the application of the following techniques from the
programmers’ toolkit:

• Progressive substitution, for building up a structure to represent a plan of
action.

• Operator definition, for describing a problem domain.
• Database modification, for representing the effect of executing a plan of

action.
• Hollow terms, as a possible way of recording the steps used in a plan.

Section 11.1 describes the requirements for the system. In section 11.2, we
describe the problem-solving algorithm and the example problem to which we
apply it. In section 11.3, the algorithm is implemented. The algorithm is a
recursive one, and the ease with which it can be expressed as a procedure enables
us quickly to obtain an executable program. This is characteristic of software
development in Prolog and makes possible a prototyping approach: the
procedural characteristics of a declaratively sound algorithm can be investigated
by testing an implementation at a very early stage of program development.
Section 11.4 shows the progress of that investigation as the declaratively sound
algorithm is applied to a planning problem. The section shows the difficult
process whereby the procedural weaknesses of an algorithm are identified and
gradually overcome. Eventually, the program is capable of solving quite complex
problems involving a long sequence of plan steps. In section 11.5, we draw
attention to its remaining limitations and suggest further refinements as
programming exercises for you. 

11.1
System Requirements

The system must be able to:



• Accept a description of a problem domain. A problem domain is described in
terms of an initial state and a set of problem-solving methods which are
available in planning. The system should allow the user the greatest possible
flexibility in the form of this description.

• Accept a description of a problem to be solved. The problem is expressed as a
new state, into which the initial state is to be transformed.

• Produce plans to solve the problem. The solution to a problem is the sequence
of steps which achieves the required transformation. The first plan is
displayed at the user’s terminal. The user has the option of accepting or
rejecting the proposed plan. If he rejects it, the system is required to seek
other ways of solving the problem.

• Maintain a description of the current problem state. When the user accepts a
proposed plan, the system must update its representation of the problem state
to reflect the plan having been carried out.

• Display the current problem state. We want this to be in exactly the form in
which the user had described the initial state.

11.2
The Problem-Solving Algorithm

The algorithm used in our program is a version of one which was first published
in 1971 and which was the stimulus for much research in problem-solving
methods (Fikes & Nilsson, 1971). To illustrate it, we use the example of a robot
in a world of three connected rooms which contain some boxes. In this example,
plans are formulated to guide the robot in manoeuvring about its world in
response to commands. The initial problem state is shown in Figure 11.1.

11.2.1
Representing a problem state

A requirement of the system is that it should allow the user the greatest possible
freedom in the representation of a problem. The only restriction is that the user
must distinguish between features of the problem state which are unvarying and
features which could change as a result of the execution of a plan. We represent
the first type by clauses for always/1 and the second by clauses for presently/1.
We define always and presently as prefix operators: 

:- op (250, fx, [always, presently]).

In this representation, the problem state of Figure 11.1 is described as in
Figure 11.2.  

Every fact is of the form always X or presently Y, but the system allows the
user complete freedom as to the form of the structures X and Y. Here, we use the
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operator definition technique to make the task of creating a problem description
easier for a user and to make the display of a problem state more readable.

The operators is_next_to and is_at would denote that the robot or a box is next
to another box or is at a door. In the initial state, there are no facts of this form.

We interpret a structure of the form D connects R1 with R2 as meaning:

“It is possible to use the door D to go from the room R1 to the room R2.”

Under this interpretation, we need two structures to represent a two-way door.
The interpretation of other structures is straightforward.

11.2.2
Representing problem-solving methods

The problem-solving methods available are described in terms of actions, the job
of the planning program being to construct a complete plan from a collection of
possible actions. An action is defined by when it can be carried out and what its
effects are.

For each action, the first part of the definition is given by a clause for requires/
2. The planning system defines operators:

:- op (240, xfx, [requires, removes, adds]).
:- op (230, xfy, and).

For the action of closing a door, we have the following clause:

:- op (220, fx, close).

Figure 11.1 The initial problem state

200 PROBLEM SOLVING WITH PROLOG



close Door requires
Door is_a door and % The thing to be closed must be a door!
Door stands opened and % It must be open.
robot is_at Door. % The robot must be at the door.

The effects of an action could be defined by a description of the problem state
after the action had been carried out, but because an action can usually be carried
out in many different situations, it is difficult to give a complete description.
However, as any action affects only a small part of the problem state, we can
overcome the difficulty by describing just those features of a problem state
which an action does change, with the assumption that all other aspects of the state
are unchanged. For example, the action of closing a door alters the problem state
only in that a door which was previously open is now closed. The changes are of
two types: 

• Some facts which were true in the previous state no longer hold true.
• Some facts hold true which did not apply in the previous state.

Figure 11.2 Representation of the initial problem state 
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Defining changes of the first type by a clause for removes/2 and of the second
type by a clause for adds/2, we have:

close Door removes
     Door stands opened.

close Door adds
     Door stands closed.

We have described, independently of what doors actually exist in a particular
environment, a general class of action which is applicable in any state in which
the set of requirements is satisfied. Such a description is called an action schema.

Figure 11.3 Hierarchy of operator definition and use 
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A plan includes instances of this action schema, with a particular door substituted
for the variable Door in the schema.

The definition and use of operators in this system is quite elaborate. The
planning program defines some; the user defines more in the description of the
problem state and in the description of actions. As we explained in section 5.2.1,
safe use of the operator definition technique depends on paying careful attention
to the interaction between operators. The situation in the present program is
illustrated in Figures 11.3 and 11.4. Figure 11.3 shows the hierarchy of operator
definitions in the system. Each component of the system can make use of
operators which it defines and of those defined at higher levels.

This hierarchy implies that if the components of the system are held in
separate files, these files must be read by Prolog from the top of the hierarchy
down.

Figure 11.4 illustrates the structure of the clause for requires/2 which defines
the close Door schema. It uses operators defined at each level of the hierarchy. 

Initially, the set of problem solving methods comprises the five action
schemas in Figure 11.5. These do not include any actions to move the boxes. We
add more later. 

11.2.3
The planning algorithm

A problem to be solved is expressed as a fact or a conjunction of facts which
partially specify a state. The problem is solved when a state is reached in which
the facts hold true. Given a problem statement, the algorithm proceeds as
follows:

Figure 11.4 Form of a structure Action requires Requirements
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Algorithm ‘planner’

For each of the facts in turn, test whether the fact is true in the present state. If
it is, do nothing. If it is not, do the following:

• Find an action schema whose add clause includes an effect which matches the
fact. An instance of the action brings about a state in which the fact holds
true. 

• Find the requirements for the action, and satisfy them as a sub-problem using
algorithm ‘planner’.

• Include the action as a step in the plan after any actions needed to satisfy its
requirements.

• Change the problem state by:

• removing from it all facts which match an effect in the remove clause of
the action, and then

Figure 11.5 A set of action schemas
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• adding to the description of the problem state all the effects in the add
clause of the action.

Figure 11.6 shows the progress of the algorithm, where state S1 is that of
Figure 11.2, given the problem: door23 stands closed 

As each problem and sub-problem is encountered, the current problem state is
examined to determine whether the problem is trivial, in the sense of describing a
fact which holds true in the current state. The problem state changes during the
process of planning, as each action in the plan is selected. The selection of the
action go to door23 as the solution to the sub-problem robot is_at door23
changes state S1 to state S2; in state S2, the fact robot is_at door23 holds true.
The result is a new state in which the problem is solved (state S3 in the figure),
and a sequence of actions to transform the initial state into the new state.

Figure 11.6 Solving the problem door23 stands closed
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11.3
A Program to Meet the System Requirements

We use a top-down method in designing a program to meet the requirements for
the system. At the top level, the procedure for plan/1 is:

plan (Problem):-
     initial_state_is (Si),
     devise_plan (Problem, Si, Plan, Sf),
     confirm_plan (Plan),
     update_state (Sf).

Problem is the problem to be solved. Si is the initial problem state. The
procedure for devise_plan/4 implements algorithm ‘planner'. Plan is a plan which
solves Problem, from state Si, producing the final state Sf. The user is asked to
confirm the plan, which is displayed at the terminal, and state Si is replaced by
state Sf.

Before we proceed to the next stage, we must consider procedural aspects of
the program so far. It is essential to be clear about the controlling logic under
which the parts of the program interact before proceeding to design each part. As
the control component is provided by Prolog’s search strategy, the interaction is
described very simply, by specifying, for each sub-goal:

• Whether the goal is always satisfiable, or whether it may fail.
• Whether the goal is re-satisfiable on backtracking.

For this program, we prescribe the following behaviour:

• ?- initial_state_is (Si) is always satisfiable. It is not re-satisfiable on
backtracking.

• ?- devise_plan (Problem, Si, Plan, Sf) is satisfied if a plan can be found to
solve the given problem and fails otherwise. It is re-satisfiable if an alternative
plan can be found.

• ?- confirm_plan (Plan) is satisfied if the user confirms the proposed plan as
acceptable and fails otherwise. It is not re-satisfiable on backtracking. 

• ?- update_state (Sf) replaces state Si by state Sf using database modification.
It is always satisfiable, and is not re-satisfiable on backtracking.

As Problem is expected to be a ground term, the user cannot force backtracking
once the call to plan/1 has succeeded. We examine the implications for our
design of Problem not being ground in section 11.5.1.

We are using database modification to manage the database of facts which
describes the problem state. The design meets the criteria for use of the
technique. Firstly, the database modification is confined to one part of the
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program. Secondly, the procedure within which the database is modified always
succeeds when called as a goal, so the actions to retract a previous state and
those to assert a new state will both be safely completed. There should be no
possibility of just one phase happening.

At the top level of a design, one should as far as possible avoid decisions
about the form which arguments passed between the sub-goals are to take. Such
decisions should be taken at lower levels where they can be made on the basis of
an understanding of the details of how the arguments are to be processed. At the
top level of our program, we specify only that the argument Problem is an
arbitrary structure to represent a single fact or a structure with functor and and
arity 2 to represent a conjunction of facts.

11.3.1
Refinement of sub-goal:?-initial_state_is (Si)

A plan can change any aspect of the problem state which is represented by a clause
for presently/1. The following clause substitutes for Si a list of all such clauses:

initial_state_is (Si):-
     bag (Fact, presently Fact, Si).

A check on the controlling logic at the top level of the program makes clear that
the clauses cannot be retracted from the database at this stage: later top-level
goals might fail, causing backtracking over this sub-goal and loss of the
description of the problem state.

The refinement of this sub-goal shows that Si is a list. This has implications for
the refinement of the procedure for devise_plan/4.

11.3.2
Refinement of sub-goal: ?- devise_plan (Problem, Si, Plan,

Sf)

Given the decision about the form of the argument Problem, two cases can be
identified: either the problem is a conjunction of facts or it is a single fact. If we
assume that a procedure for plan_step/4 produces a plan to solve a single
problem, we can handle the first case by a clause which recursively reduces a
conjunction of problems to a sequence of single problems and the second case by
a call to plan_step/4:

devise_plan (P and Ps, Si, Plan and Plans, Sf):-
     plan_step (P, Si, Plan, Sj),
     devise_plan (Ps, Sj, Plans, Sf).

devise_plan (P, Si, Plan, Sf):-
     plan_step (P, Si, Plan, Sf).
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There are two points to note about the first clause:

• Solving problem P changes the initial state, and problems Ps have to be solved
from this changed state. The changed state is represented by Sj, returned as
output from the call to plan_step/4 and given as input, in place of Si, to the
recursive call to devise a plan for problems Ps.

• The complete plan is being built up in the third argument by progressive
substitution. A match with this clause substitutes the structure Plan and Plans
for the variable Plan in the call. The two components of the structure are
passed to sub-goals, in which further substitutions are made. Notice also that
the structure Plan and Plans expresses the linear ordering of actions in the
final plan. The actions in Plan are carried out first, followed by those in Plans.

Refinement of:?- plan_step (P, Si, Plan, Sf)
The algorithm ‘planner’ suggests two cases here: either the fact P, representing

the problem, holds true in state Si, or it does not hold in state Si. Each case is
handled by one clause:

plan_step (P, S, none, S):-
true_in_state (P, S).

plan_step (P, Si, Actions and Action, Sf):-
Action adds Effects, % Find an action
relevant_action (P, Effects), % which is relevant to P.
Action requires Requirements, % Find its requirements
devise_plan (Requirements, Si, Actions, Sj), % and devise a plan

% to satisfy them.
change_state (Sj, Action, Sf). % Change the problem state.

The head of the first clause expresses, for the first case, that the final problem state
is identical to the initial state S and that the atom none denotes a plan which
contains no steps.

In the second clause, progressive substitution continues to be used to build up
the complete plan. The clause specifies the third argument to be a structure with
functor and and arity 2 and also substitutes a value for the second component of
the structure: it is the action which solves the problem. Actions to satisfy its
requirements come before it in the plan.

The non-deterministic instruction in algorithm ‘planner’ to “Find an action
schema whose add clause includes an effect which matches the fact” is
implemented as a non-deterministic search through the clauses in the database
for adds/2.

Again, an additional variable Sj is used for the state resulting from the
satisfaction of all the requirements for carrying out the action Action.
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Refinement of:?-true_in_state (P, S), relevant_action (P, Effects) and change_state
(Sj, Action, Sf)

The procedures for these predicates simply:

• find an item in a list;
• delete an item from a list;
• join two lists.

The procedures differ from those for the list-processing predicates presented in
section 3.4 only because in this application some lists are represented by
structures with functor and and do not have a distinguished atom to represent the
empty list:

true_in_state (P, _):-
always (P). % P always holds.

true_in_state (P, State):-
member (P, State). % P is part of the current state.
member (H, [H|_]).
member (H, [_|T]):-
member (H, T).

% Find an effect in a conjunction of effects
relevant_action (Effect, Effect).
relevant_action (Effect, Effect and _).
relevant_action (Effect, _ and Effects):-

relevant_action (Effect, Effects).
change_state (Si, Action, Sf):-

Action removes Removed, % Find the facts to be removed
remove (Si, Removed, Sj), % and remove them, giving Sj.
Action adds Effects, % Find the facts to be added
add (Sj, Effects, Sf). % and add them, giving Sf. 

% Remove a fact or a conjunction of facts from a list of facts.
remove (Si, Fact and Facts, Sf):-!, % There is a conjunction of facts.

remove_first (Si, Fact, Sj),
remove (Sj, Facts, Sf).

remove (Si, Fact, Sf):- % There is a single fact only.
remove_first (Si, Fact, Sf).

% Remove the first occurrence of a fact from a list of facts.
remove_first ([ ], _, [ ]).

remove_first ([Fact|Facts], Fact, Facts):-!
remove_first ([F1|Facts], Fact, [F1|Fs]):

remove_first (Facts, Fact, Fs).
% Add an effect or a conjunction of effects to a list of facts.
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add (Si, Fact and Facts, [Fact|F1]):-!, % A conjunction of facts
add (Si, Facts, F1).

add (Si, Fact, [Fact|Si]). % A single fact only.

11.3.3
Refinement of sub-goal:?-confirm_plan (Plan)

This component of the system simply displays the plan steps and seeks
confirmation of whether the plan is acceptable:

confirm_plan (Plan):
write (‘The steps to be taken are:’),
nl,
show_steps (Plan),
nl,
write (‘Is this ok? (y/n):’),
get (121). % Succeeds if next printing character is “y”

The procedure for show_steps/1 is always satisfied when first called. It is not re-
satisfiable on backtracking. The processing required is dictated by the form of
the structure that represents the plan, which was described in section 11.3.2.
There are three clauses corresponding to the three cases. Mutual exclusion
between the cases must be enforced to ensure that the procedure is not re-
satisfiable on backtracking:

show_steps (none):-!. % There are no steps.
show_steps (Steps1 and Steps2):-!, % There is a series of steps.

show_steps (Steps1),
show_steps (Steps2).

show_steps (Step): % There is a single step.
tab (4),
write (Step),
nl. 

11.3.4
Refinement of sub-goal:?-update_state (Sf).

We first retract from the database all clauses for presently/1, and then assert as
new clauses the facts in the list Sf. We also report the new state to the user:

update_state (Sf):-
retractall (presently _), % First, remove the existing state from
nl, % the database.

210 PROBLEM SOLVING WITH PROLOG



write (‘The situation now is:’), % Then display the new facts
nl,
show_facts (Sf). % and add them to the database.

show_facts ([ ]).
show_facts ([Fact|Facts]):-
tab (4),
write (Fact),
nl,
assert (presently Fact),
show_facts (Facts).

11.4
Testing and Improving the Program

The first step in testing the program is to check each action. The initial state is:

?- listing (presently).
presently door12 stands opened,
presently door23 stands opened,
presently box1 is_in room1.
presently box2 is_in room1.
presently box3 is_in room2.
presently robot is_in room2.
yes

The test produces the following results:

?- plan (door12 stands closed).
The steps to be taken are:

     go to door12
     close door12

Is this ok? (y/n): y
The situation now is:

     door12 stands closed 
     robot is_at door12
     door23 stands opened
     box1 is_in room1
     box2 is_in room1
     box3 is_in room2
     robot is_in room2
yes

?- plan (robot is_in room3).
The steps to be taken are:
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     go to door23
     go through door23 to room3

Is this ok? (y/n): y
The situation now is:

     robot is_in room3
     door12 stands closed
     door23 stands opened
     box1 is_in room1
     box2 is_in room1
     box3 is_in room2
yes

?- plan (robot is_in room2).

At this point, Prolog paused and then responded sadly with:

! more core needed [execution aborted]

The gory details vary between implementations of the language, but a message
of this type is, for anything other than a very large program, a sure sign that the
program is stuck in a loop, generating identical sub-goals to an ever greater
depth. The system can formulate a plan to move the robot from room2 to room 3
but not to send it back! In the remainder of section 11.4, we show how to detect
and correct the faults which cause this failure.

11.4.1
Fault finding

With a program of this size, it is important to think carefully before using the
debugging mode of Prolog operation to find faults. Section 9.2 showed that it is
hard to prevent the debugging system generating too much detailed information
about a program’s procedural behaviour, and in the present problem we have the
additional difficulty that several arguments to sub-goals have substituted for them
large structures whose form would be difficult to discern if they were displayed
at the terminal. 

If we consider the program to be a declaratively correct statement of algorithm
‘planner’, the fault must lie in the way the algorithm is transformed procedurally.
As we mentioned in section 11.3.2, the algorithm has a non-deterministic element
which is rendered by a search through the Prolog database. This search, though
non-deterministic in the sense of possibly yielding several relevant action
schemas through backtracking, nonetheless follows the fixed Prolog search
strategy. To examine the consequences of implementing a non-deterministic
algorithm by a fixed search strategy, we set a spy-point on the sub-goal:?-Action
requires Requirements, in which the selection of a relevant action is made, and we
set the leashing mode to loose:
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?- debug.
Debug mode switched on
yes
?- spy (requires/2).
Spy-points set on:
     requires/2
yes
?- leash (loose).
Leashing set to loose (call)
yes
?- listing (presently).
presently robot is_in room3. Robot is still in room3
presently door12 stands closed.
presently door23 stands opened.
presently box1 is_in room1.
presently box2 is_in room1.
presently box3 is_in room2.
yes
?- plan (robot is_in room2).
(22) 13 Call: go through _52 to room2 requires _65683 s
(22) 13 Exit: go through _52 to room2 requires room2 is_a room

and _52 is_a door and _60 is_a room and _52
connects _60 with room2 and robot is_in _60 and
robot is_at _52 and _52 stands opened

(23) 13 Call: devise_plan (room2 is_a room and _52 is_a door and
_60 is_a room and_52 connects_60 with room2 and
robot is_in_60 and robot is_at_52 and_52 stands
opened, [robot is_in room3, door12 stands
closed, door23 stands opened, box1 is_in room1, box2
is_in room1, box3 is_in room2], _48, _65684) q

(55) 28 Call: go through _117 to room1 requires _65884 s
(55) 28 Exit: go through _117 to room1 requires room1 is_a room 

and _117 is_a door and _125 is_a room and _117
connects _125 with room1 and robot is_in _125 and
robot is_at _117 and _117 stands opened

(56) 28 Call: devise_plan (room1 is_a room and _117 is_a door and
_125 is_a room and _117 connects _125 with room1
and robot is_in _125 and robot is_at _117 and _117
stands opened, [robot is_in room3, door12 stands
closed, door23 stands opened, box1 is_in room1, box2
is_in room1, box3 is_in room2], _113, _65885) q

(121) 43 Call: go through _182 to room2 requires _66085 s
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(121) 43 Exit: go through _182 to room2 requires room2 is_a room
and _182 is_a door and _190 is_a room and _182
connects _190 with room2 and robot is_in _190 and
robot is_at _182 and _182 stands opened

(122) 43 Call: devise_plan (room2 is_a room and _182 is_a door and
_190 is_a room and _182 connects _190 with room2
and robot is_in _190 and robot is_at _182 and _182
stands opened, [robot is_in room3, door12 stands
closed, door23 stands opened, box1 is_in room1, box2
is_in room1, box3is_in room2], _178, _66086) q

(154) 58 Call: go through _247 to room1 requires _66286 a
execution aborted
no

This glimpse at the execution of the program has produced a deluge of output.
The key point, which you might well have missed, is that invocation 121 is a
duplicate of invocation 22, as is invocation 154 of invocation 55. This reveals
that the system has somehow got stuck in a loop going between room1 and
room2. However, what the debugging mode cannot reveal is the cause of this
failure; as we observed in section 9.2, it can only provide more information
about the symptoms. To find causes, there is really no substitute for a careful
analysis by hand of the progress of a program. We now show how to analyse a
failure of this type without mechanical aids. The key to success is: be
methodical, use a notation you can understand and be sure not to depart from the
search strategy which Prolog applies. Execution with a spy-point has provided
clues about what to look out for.

We can readily see that, given the substitution Problem ← robot is_in room2
in the top-level goal:?-plan (Problem), the call to devise_plan/4 has the form:?-
devise_plan (robot is_in room2, Si, Plan, Sf) and the second clause for the
procedure is used. At the next level, the sub-goal is:?-plan_step (robot is_in
room2, Si, Plan, Sj). Though this call matches the first clause for plan_step/4, the
sub-goal:?-true_in_state (robot is_in room2, Si) fails. The match with the second
clause gives the substitution Plan ← Actions and Action. The first
relevant_action is go through Door to room2, giving the substitution Action ←
go through Door to room2. Finding the requirements for the chosen action gives
the substitution: 

Requirements ← room2 is_a room and
Door is_a door and
R2 is_a room and
Door connects R2 with room2 and
robot is_in R2 and
robot is_at Door and
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Door stands opened

At this stage, the variables in the structure which was substituted for Plan are
Actions, R2 and Door. R2 and Door are wrapped up in the structure
Requirements. Both are passed to the sub-goal:?-devise_plan ( Requirements, Si,
Actions, Sj).

The attempt to satisfy each requirement in the sub-goal proceeds thus:

room2 is_a room
Door is_a door
R2 is_a room

true in Si
true in Si, with the substitution Door ← door 12
true in Si with the substitution R2 ← room 1

door12 connects room1 with room2
robot is_in room1 true in Si

false in Si. A plan has to be devised to satisfy
this requirement

Because of the substitution Door ← door12, the last step in the plan has become
go through door12 to room2, and to carry out this action robot is_in room1 must
be true.

The relevant action to make this true is go through Door to room1, producing
Plan ← Actions and go through Door1 to room1. The next sub-goal is:?-
devise_plan (Requirements, Si, Actions, Sj), where:

Requirements ← room1 is_a room and
Door is_a door and
R2 is_a room and
Door connects R2 with room1 and
robot is_in R2 and
robot is_at Door and
Door stands opened.

The attempt to satisfy each requirement in the sub-goal proceeds thus:

room1 is_a room
Door is_a door
R2 is_a room

true in Si
true in Si, with the substitution Door ← door 12
true in Si, with the substitution R2 ← room 1

door12 connects room1 with room1
false in Si, and no plan can be devised to solve
this as a sub-problem. 

The failure to solve this sub-problem causes the system to backtrack to the
previous sub-problem, undoing the substitution R2 ← room1. That sub-problem
can be solved in a different way:
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R2 is_a room true in Si, with the substitution R2 ← room2
door12 connects room2 with room1

true in S i
robot is_in room2 false in Si. A plan has to be devised to satisfy this

requirement

At this point, alerted by the results of our execution with a spy-point, we
recognise the occurrence of a loop and the cause of it. The system decided that to
get to room2 the robot would have to be in room1. To get to room1, it must be in
room2, and so on. The cause of the problem is that in satisfying the requirements
for the last step in the plan: go through Door to room2, the system, searching for
a fact true_in_state to satisfy the requirement Door connects R2 with room2,
finds a match with door 12 connects room1 with room2, but never backtracks to
find the alternative, correct, match with door23 connects room3 with room2.

11.4.2
Correcting the program

Figure 11.7 shows how a sequence of repeated steps builds up and suggests that
the solution to the problem is to include a check that, when an action is selected,
it does not duplicate another plan step. 

We could use a list to carry the information about the sequence of steps used
in a plan. Then, whenever a relevant action was identified, we would check the
list to ensure that the action had not already been used in the plan. If it had not,
we would add it to the list. We might build the list up by ingoing recursion, but if
we maintained it as a hollow term, we would need only one extra argument to the

Figure 11.7 An endless sequence of sub-problems is generated
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procedures for devise_plan/4 and plan_step/4. This approach is shown in
Figure 11.8, given a problem in which a b c d and e are possible actions. 

This check seems appropriate at first sight, but is in fact too strict a test. There
are circumstances in which a sound plan may be expected to include duplicate
steps. Consider, for instance, the problem:

?- plan (box1 is_in room3 and box2 is_in room3)

We introduce action schemas to describe how boxes can be moved in section 11.
4.4, but given that the robot can move only one box at a time, it is obvious that,
in the initial state of Figure 11.1, the sequence of steps go to door12, go through
door12 to room1 occurs first in the branch of the plan to solve the problem box1
is_in room3 and is needed again to solve the problem box2 is_in room3. The
point is that the program should reject a relevant action only if it duplicates
another action chosen for solving the same sub-problem. With this approach, the
process illustrated in Figure 11.8 is simplified to that shown in Figure 11.9. 

Figure 11.8 Repeated steps are precluded
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Now, the argument which is given as input and which holds the record of
actions used at higher levels in a single branch of the plan does not have to return
an output, so we do not need a hollow term.

This refinement is implemented by the following clauses, which replace those
for devise_plan/4 and plan_step/4:

devise_plan (P and Ps, Si, Steps, Plan and Plans, Sf):-
     plan_step (P, Si, Steps, Plan, Sj),
     devise_plan (Ps, Sj, Steps, Plans, Sf).

devise_plan (P, Si, Steps, Plan, Sf):-
     plan_step (P, Si, Steps, Plan, Sf).

plan_step (P, S, _, none, S):-
     true_in_state (P, S).

plan_step (P, Si, Steps, Actions and Action, Sf):-
     Action adds Effects,
     relevant_action (P, Effects), 
     fail_if (member (Action, Steps)), % Check for duplicates.
     Action requires Requirements,

Figure 11.9 Repeated steps are precluded in the solution of a single sub-problem
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     devise_plan (Requirements, Si, [Action|Steps], Actions, Sj),
     change_state (Sj, Action, Sf).

At the top level, the procedure for plan/1 also has to be altered to include the
extra argument in the call to devise_plan, which now is a five argument
predicate. In the call, the extra argument is the empty list:

plan (Problem):-
     initial_state_is (Si),
     devise_plan (Problem, Si, [ ], Plan, Sf),
     confirm_plan (Plan),
     update_state (Sf).

With this refinement, the program solves the problem which had previously
baffled it:

?- nodebug.
Debug mode switched off
All spy points removed
yes

We check that the robot is still in room3:
?- listing (presently).
presently robot is_in rooms,
presently door12 stands closed,
presently door23 stands opened,
presently box1 is_in room1.
presently box2 is_in room1.
presently box3 is_in room2.
yes
?- plan (robot is_in room2).
The steps to be taken are:

     go to door23
     go through door23 to room2

Is this ok? (y/n): y

The situation now is:
robot is_in room2

door12 stands opened
door23 stands opened
box1 is_in room1
box2 is_in room1
box3 is_in room2

yes 
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11.4.3
Refining the knowledge representation

In the example which we worked through in the previous section, the program
tried to formulate a plan to solve the problem door12 connects room1 with
room1 which the user would recognise as insoluble. We can eliminate such
attempts to achieve the impossible by distinguishing between two types of
requirement in the representation of an action schema. The first type is
requirements which are set up as sub-problems if they are not satisfied in a
problem state. Physical constraints of the problem domain which can never be
altered are requirements of the second type. If these, which we call the
assumptions for an action schema, are not satisfied, they should not be set up as
sub-problems. If assumptions are not satisfied, the action schema is not relevant
to the problem. In Figure 11.10, the set of actions is described in this richer
representation.  

Notice that this refinement has made our representation more perspicuous in a
number of respects:

• By listing Object is_in Room as an assumption for the action move to Object
in Room, we have made explicit that the robot is to move to wherever the
object is, and that the position of the object does not alter.

• In the case of move to Object in Room and go to Door in Room, we now
include the room within which the action takes place. This is necessary to
ensure that the room in which the robot is required to be is the same as that in
which the object is assumed to be.

Alterations to the planning program are limited to the extension of the operator
definitions:

:- op (240, xfx, [requires, removes, adds, assumes]),

the introduction of two new sub-goals in the second clause for plan_step/5:

plan_step (P, Si, Steps, Actions and Action, Sf):-
Action adds Effects,
relevant_action (P, Effects),
fail_if (member (Action, Steps)),
Action assumes Assumptions, % Identify the assumptions
satisfied (Assumptions, Si), % and check they are satisfied.
Action requires Requirements,
devise_plan (Requirements, Si, [Action] Steps], Actions, Sj),
change_state (Sj, Action, Sf).

and the addition of a procedure for the new predicate:
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satisfied (Fact and Facts, S):- %There are several assumptions.
true_in_state (Fact, S),
satisfied (Facts, S).

satisfied (Fact, S):- % There is a single assumption.
true_in_state (Fact, S).

It is characteristic of programs which manipulate a knowledge base describing a
complex real-world situation that improvements in program performance are
obtained by refinements to the knowledge representation framework, as well as
by refinements to the reasoning process. In the next section, where we increase
the number of actions available to the robot, both these aspects of our knowledge-
based program have to be further refined. 

Figure 11.10 A set of action schemas, showing assumptions and requirements 
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11.4.4
Adding new actions

The new actions define how the robot can move the boxes about in its world. The
first, shown in Figure 11.11, describes the action of moving a box so that it
is_next_to another. By listing Obj2 is_in Room as an assumption for the action,
we make clear that only the first object is to be moved.  

Two more actions together enable a box to be moved between rooms. The first
defines the action of shifting the box to a door, the second that of moving it
through a door from one room to another. They are shown in Figure 11.12.
Because the second of these actions alters the room which the robot and the
object are in, the list of facts removed is quite lengthy. We must not only record
that the object moved ceases to be next to anything which it might previously
have been adjacent to, but we must also state explicitly the converse: anything
previously next to the object named is now no longer so.

There is a more serious problem, however, than that of defining the effect of
these new actions. It emerges that the system is no longer able to solve the
problems which were previously within its grasp! We left the robot in room2. It
can still find its way to room3:

?- plan (robot is_in room3).
The steps to be taken are:

     go to door23 in room2
     go from room2 through door23 to room3

Is this ok? (y/n): y
The situation now is:

     robot is_in room3
     door12 stands opened
     door23 stands opened
     box1 is_in room1
     box2 is_in room1

Figure 11.11 An action schema for moving one box to another
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     box3 is_in room2
yes

but it can no longer get back:

?- plan (robot is_in room2).

The only response to this request is a very long silence from the system!
We recommend that for programs of this size, the process of fault-finding

should be carried out at a high level, by the programmer using pencil and paper,
rather than at the low level that the debugging mode of Prolog operation allows.
However, this approach can only be successful if the programmer is sufficiently
experienced to be sure that he will not make false assumptions about the
behaviour of his program at lower levels of detail. At this high level, tree
diagrams, in the style of Figure 11.9, are useful.

Given the sub-goal:

?- plan_step (Si, P, Steps, Plan, Sf) 

Figure 11.12 Action schemas for moving boxes between rooms 
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where: P ← robot is_in room2, the first level of the tree is as in Figure 11.13. 
The action chosen to get the robot into room2 is inappropriate. The reason for

it being chosen was investigated in section 11.4.1. As we refined the algorithm
precisely to forestall the problems caused by this erroneous choice, it is all the
more puzzling that the refinement is not now adequate. Continuing to work
through the system’s attempts to satisfy requirements, we have Figure 11.14.  

At level 3, the system selects go from room1 through door12 to room2 as a
relevant action to solve the problem: robot is_in room2, but this action is rejected

Figure 11.13 The top level of the search tree for the goal:?-plan (robot is_in room2)

Figure 11.14 A relevant action at level 3 duplicates a previous action 
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as a duplicate. We intended the rejection of this action to make the system
abandon the incorrect plan steps at levels 2 and 1. Following the addition of new
action schemas, however, detection of the duplicated step at level 3 no longer
forces backtracking all the way to level 1 because one of the new actions is
relevant to achieving the goal robot is_in room2 at level 3. The relevant action is
push Obj1 from R1 through Door to room2.

The assumptions for this action are satisfied and produce the substitutions:

Obj1 ← box1 (the first object in the problem state)
R1 ← room1
Door ← door12.

The system, instead of abandoning the attempt to get to room2 from room1, has
discovered that the robot can get to room2 from room1 by pushing a box from
the one room into the other! From this point onwards, the system is lost in a
fruitless search in which there are so many alternative choices of action, all
involving problem steps which differ slightly from one another, that it does not,
within any acceptable time, get back to reconsider the incorrect choice at level 1.
The impasse is represented in Figure 11.15.  

The search in the wrong branch of the tree continues for a prohibitively long
time because the check on duplicate actions is insufficient by itself to limit the
length of a sequence of plan steps and because at each level of the tree there are
liable to be many instances of a relevant action schema, each with different
substitutions of values for the variables in the schema. We tackle the first

Figure 11.15 The effect of an incorrect choice at an early stage in a large search tree 
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problem by a refinement of the planning algorithm, the second by a refinement
of the method of representing action schemas.

The depth of the search tree can be constrained by a depth count. Its effect is
illustrated in Figure 11.16. 

The difficulty is that there is no single value for the depth count appropriate in
all cases. We adopt the solution of requiring the user to supply a value for the
count as an estimate of the length of the longest sequence of plan steps to solve
any single sub-problem.

We can reduce the number of relevant actions at each level by distinguishing,
in the representation of an action schema, between the main effects and the side-
effects of carrying out an action and by prescribing that an action is only relevant
if one of its main effects matches the current goal. For instance, the action push
Object from R1 through Door to R2 has the effect of moving both the robot and
Object to R2, but we would not wish it to be chosen unless the goal was Object
is_in R2. The movement of the robot is just a side-effect of carrying out the
action, and if the goal was to get the robot to R2, we would wish to use an action

Figure 11.16 Using a depth count to force backtracking
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such as go through Door to Room. In a representation in which every action
achieves one or more main effects and may produce one or more side-effects, the
action schema push Object from R1 through Door to R2 is defined as in
Figure 11.17. 

A description in this representation of all the action schemas used in this case
study is given in Appendix 1.

The changes to the planning program are to extend the list of operators:

:- op (240, xfx, [requires, removes, achieves, produces, assumes]).

to alter the procedures for devise_plan/5 and plan__step/5 to include as an extra
argument the depth count, which is decremented as each action is chosen: 

devise_plan (P and Ps, Si, Steps, Depth, Plan and Plans, Sf):-

Figure 11.17 Distinguishing between main effects and side-effects in the representation
of an action schema
 

A PROBLEM-SOLVING SYSTEM 227



plan_step (P, Si, Steps, Depth, Plan, Sj),
devise_plan (Ps, Sj, Steps, Depth, Plans, Sf).

devise_plan (P, Si, Steps, Depth, Plan, Sf):-
plan_step (P, Si, Steps, Depth, Plan, Sf).

plan_step (P, S, _, _, none, S):-
true_in_state (P, S).

plan_step (P, Si, Steps, Depth, Actions and Action, Sf):-
Depth > 0, % Hit depth bound?
Reduced is Depth-1, % If not, decrement count.
Action achieves Effects, % Find main effects of Action.
relevant_action (P, Effects),
fail_if (member (Action, Steps)),
Action assumes Assumptions,
satisfied (Assumptions, Si),
Action requires Requirements,
devise_plan (Requirements, Si, [Action|Steps], Reduced, Actions, Sj),
change_state (Sj, Action, Sf).

and to alter the procedure for change_state/3 to take account of the separation of
main effects and side-effects:

change_state (Si, Action, Sf):-
Action removes Removed,
remove (Si, Removed, Sj),
Action achieves Main_effects,
add (Sj, Main_effects, Sk),
add_side_effects (Sk, Action, Sf).

add_side_effects (Si, Action, Sj):-
Action produces Side_effects, !,
add (Si, Side_effects, Sj).

% There are side-effects.

add_side_effects (S, _, S). % There are no side-effects.

In the revised form, the predicate plan has two arguments and is defined by the
following procedure:

plan (Problem, Depth):-
     initial_stateis (Si),
     devise_plan (Problem, Si, [ ], Depth, Plan, Sf),
     confirm_plan (Plan),
     update_state (Sf).
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With these refinements, the performance of the program improves markedly. Its
capabilities are illustrated in the following interactions. The robot gets safely
back from room3: 

?- plan (robot is_in room2, 3).
The steps to be taken are:
     go to door23 in rooms
     go from rooms through door23 to room2

Is this ok? (y/n): y
The situation now is:

     robot is_in room2
     door12 stands opened
     door23 stands opened
     box1 is_in room1
     box2 is_in room1
     box3 is_in room2

yes

The boxes can be moved:

?- plan (box3 is_next_to box2, 3).
The steps to be taken are:

     move to box3 in room2
     shift box3 to door12 in room2
     push box3 from room2 through door12 to room1
     push box3 to box2 in room1

Is this ok? (y/n): y

The situation now is:
     robot is_next_to box3
     robot is_next_to box2
     box3 is_next_to box2
     robot is_in room1
     box3 is_in room1
     door12 stands opened
     door23 stands opened
     box1 is_in room1
     box2 is_in room1

yes

The depth count has to be adequate:

?- plan (door23 stands closed and door12 stands closed, 3).
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no

A depth count of 4 is adequate:

?- plan (door23 stands closed and door12 stands closed, 4). 
The steps to be taken are:

     go to door12 in room1
     go from room1 through door12 to room2
     go to door23 in room2
     close door23
     go to door12 in room2
     close door12

Is this ok? (y/n): y

The situation now is:
     door12 stands closed
     robot is_at door12
     door23 stands closed
     robot is_in room2
     box3 is_next_to box2
     box3 is_in room1
     box1 is_in room1
     box2 is_in room1

yes

Conjunctions of problems can be solved. The depth count limits search in solving
any single problem:

?-plan (box1 is_in room3 and box2 is_in room3 and box3 is_in room3, 5).
The steps to be taken are:

     go to door23 in room2
     open door23
     go to door12 in room2
     open door12
     go from room2 through door12 to room1
     move to box1 in room1
     shift box1 to door12 in room1
     push box1 from room1 through door12 to room2
     shift box1 to door23 in room2
     push box1 from room2 through door23 to room3
     go to door23 in room3
     go from room3 through door23 to room2
     go to door12 in room2
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     go from room2 through door12 to room1
     move to box2 in room1
     shift box2 to door12 in room1
     push box2 from room1 through door12 to room2
     shift box2 to door23 in room2
     push box2 from room2 through door23 to room3
     go to door23 in room3
     go from room3 through door23 to room2
     go to door12 in room2 
     go from room2 through door12 to room1
     move to box3 in room1
     shift box3 to door12 in room1
     push box3 from room1 through door12 to room2
     shift box3 to door23 in room2
     push box3 from room2 through door23 to room3

Is this ok? (y/n): y

The situation now is:
     robot is_in rooms
     robot is_next_to box3
     box3 is_in room3
     box2 is_in room3
     box1 is_in room3
     door12 stands opened
     door23 stands opened

yes

What rooms can the robot move to?

?- plan (robot is_in Some_room, 3).
The steps to be taken are:
Is this ok? (y/n): n

We don’t want it to stay in the same room…

The steps to be taken are:
     go to door23 in room3
     go from room3 through door23 to room2
     go to door12 in room2
     go from room2 through door12 to room1

Is this ok? (y/n): n

or go to room1…
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The steps to be taken are:
     go to door23 in rooms
     go from room3 through door23 to room2
     go to door23 in room2
     go from room2 through door23 to room3

Is this ok? (y/n): n

or out of room3 and back… 

The steps to be taken are:
     go to door23 in room3
     go from room3 through door23 to room2

Is this ok? (y/n): n

or to room2…

no

and there are no other possibilities within the specified depth count.

?- plan (Some_door stands closed, 3).
The steps to be taken are:

     go to door23 in room3
     close door23

Is this ok? (y/n): y
The situation now is:

     door23 stands closed
     robot is_at door23
     robot is_in rooms
     door12 stands opened
     box1 is_in room1
     box2 is_in room1
     box3 is_in room2

Some_door = door23

This is the substitution for the variable in the goal.

11.5
Further Development of the Program

The code for the program which produced the behaviour shown in the previous
section is given in Appendix 1. In this section, we consider the scope for further
improvements and the lessons to be drawn from from the development of the
program thus far.
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11.5.1
Variables in goals

The last two examples of the previous section showed a hollow goal term. As we
specifically excluded this possibility when discussing the program design in
section 11.3, we must examine the program’s behaviour when the goal term does
include variables. 

If the user accepts a proposed plan but then rejects the substitutions for
variables that it produces, Prolog backtracks over the goal which modified the
problem state. The sub-goal:?-update_state (Sf) succeeded by removing from the
database all clauses for presently/1, which defined the initial problem state, and
adding a new set of clauses recording the final state. This database modification
does not interfere with the generation of alternative plans from state Si, and if
one of the alternatives is eventually accepted by the user, the final set of clauses
for presently/1 correctly defines the state resulting from execution of the plan.
Problems arise, however, if the user after accepting a plan rejects all
substitutions of values for variables in the goal and forces the top-level goal to
fail. In this situation, the final state Sf, which the sub-goal:?-update_state (Sf)
had recorded, would remain in the Prolog database, as though the plan had been
accepted and executed. The problem is illustrated in Figure 11.18. 

Figure 11.18 State Sf may replace state Si, even when the goal:?-plan (Problem, Depth)
fails
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The simplest solution would be to put a cut at the end of the top-level goal, in
effect saying to the user: “Once you have accepted a plan, it is carried out.”
Alternative solutions would involve adding a second clause to the procedure for
initial_state/1 to ensure that on backtracking the procedure restored the problem
description to its initial state before failing. The modifications to achieve this
would be more extensive. 

11.5.2
Limitations of the planning algorithm

Redundant steps in a plan

A top-level goal may be achieved as a side-effect of a step at a lower level in
the plan. When this occurs, the plan step chosen to solve the top-level problem
becomes redundant, but because the algorithm does not keep a record, when
planning for a sub-goal, of what higher level goals it is working towards, it does
not recognise redundant steps and proposes a sub-optimal plan.

Plans which do not meet the specified goal

In section 11.2.3, we stated that the planning algorithm should produce plans
to transform an initial state into one in which a fact or a conjunction of facts held
true. The program we have developed produces a plan for each fact in turn, and
this approach is based on the important assumption that later steps in a plan do
not undo the effects of earlier steps. If this assumption does not hold, the program
produces a plan in which not all facts in the goal are true in the final state, as for
instance after planning to meet the goal:

?- plan (robot is_in room2 and box3 is_in room1, 6).

This goal is treated as a request first to move the robot to room2 and then to
move box3 to room1.

More sophisticated planning systems do treat a conjunction of goals as a
description of facts to be made true simultaneously and include strategies to
detect unrealisable goals. To such a system, the goal:

?- plan (robot is_in room2 and robot is_in room3, 6).

is an unrealisable goal, whereas in our system it simply means:

“Move the robot to room2, and then move it to room3.”

The advantage of our approach is its simplicity; its disadvantage is that it puts the
burden of correctly ordering the requirements in each action schema firmly on

234 PROBLEM SOLVING WITH PROLOG



the user. Some recent research has sought to automate the process of identifying
these requirements (Silver, 1986).

Extending the program to overcome either of these limitations would be a
substantial undertaking, but not one beyond the scope of the reader who has
mastered the techniques and skills taught in Part 1 of this book. 

11.6
Concluding Observations

The development of the planning program illustrated both the power of Prolog
and the constraints which the language imposes. Its chief advantage is that the
recursive algorithm ‘planner’ could be transformed quite easily into a procedure
for a Prolog predicate which was an executable program.

However, the search strategy which the programmer is given for free was also
the source of difficulties. We discovered that it did not enforce quite the
behaviour which was required. This experience is a common one, indicating that
the search strategy is both a help and a hindrance in program development. We
adopted two techniques to make that strategy more useful: checks for duplication
and a restriction on search depth. The further refinements to the program which
we suggested in section 11.5.2 would be implemented by devising more
elaborate mechanisms to constrain search.

But besides a search strategy, Prolog also makes available a very general-
purpose data type for representing knowledge: the term. By using the operator
definition technique, the programmer has in this data type a powerful
representation for capturing the important characteristics of a problem in a
readable notation. The development of the program showed that refining
representations to capture more of the semantics of the planning problem was an
important way of improving program performance. Development of
representations proceeds in parallel with development of algorithms. 
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Chapter 12
An Electronic Diary

This case study is about the design and implementation of an electronic diary to
manage staff commitments in a business organisation. We have chosen to use an
academic institution as our example organisation. It has two features common to
most business enterprises, which influence the design of the diary system:

• It has a hierarchical staffing structure.
• The commitments of the staff are a mixture of activities which recur at regular

intervals, typically weekly or monthly, and engagements which are booked
for just a single date.

The case study illustrates the application of the following techniques from the
programmers’ toolkit:

• Utility predicates, to check the validity of input values and to generate valid
values in specified ranges.

• Database modification, to manage a body of stored data about the institution
and to manage global variables in the input data validation phase of the
program.

• Selector predicates, for accessing components of structures while hiding the
form of the structures.

• Forced backtracking, to make procedures for utility predicates generate all
valid values and to print the entries in a teacher’s diary.

It also illustrates on a larger scale than was possible in section 7.2.1 the use of a
meta-program for program structuring.

Section 12.1 describes the requirements for the electronic diary. In
section 12.2, we present a system design: it makes clear how the requirements
are to be met and identifies the functional components of the program.
Section 12.3 shows the implementation of each component. In section 12.4, we
consider how to extend the diary system, and we suggest some programming
exercises for you.



12.1
System Requirements

The electronic diary must store a description of the institution. The description
comprises the following information:

• The working pattern at the institution, for example the earliest and latest
working hours of the day and which days of the week are working days.

• The departments into which it is divided.
• The teachers employed in it, each of whom is a member of one department.
• The courses offered by it, each being taught by one department.
• The days and times when classes in a course take place.
• Which teachers are teaching which courses during each academic term.
• The dates of terms.
• The commitments of each teacher. Some commitments, such as giving classes

in a course, are recurring ones. Others are non-recurring, such as meetings,
interviews and the like. The set of commitments for a teacher constitutes that
teacher’s diary. We assume that all commitments begin on the hour and are
booked in one hour blocks.

We assume that the working pattern is the same for all staff, is unchanging and is
known when the program is written. A representation of it forms part of the
program. All other aspects of the description are to be provided by the program’s
user. This implies both the need to accept and validate input data and the
requirement for a permanent record of the data external to Prolog. The validation
of the input data includes various checks, for example that each department,
teacher and course has a unique name and whether a new commitment for a
teacher conflicts with existing ones.

In reality, provision of information about the departments into which the
institution is divided, the teachers employed in those departments and the
courses offered by them would probably be the responsibility of a senior member
of staff. The ability of other personnel to view or modify this information would
be controlled, their access to the system being limited to viewing and modifying
their own diaries. However, issues of data protection and the vetting of the
system’s users are not considered in this case study. Similarly, the problems of
shared concurrent access to the diary are beyond the scope of this chapter. We
view the system from the standpoint of a single user with access to all its
facilities and all the institution’s data.

The system must provide access to the record of teachers’ commitments in
convenient ways. It must be able to display a teacher’s engagements for a given
date, for a given purpose or at a given time of day or of a given duration. In each
case, the display must be in date order and chronological order within a day.

Finally, the system must be able to find free times in users’ diaries for new
appointments. The user indicates the duration of the booking and the earliest date
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for it, and the system must report on available slots and book an acceptable one.
The user must be able either to input the list of teachers for whom the booking is
to be made or to specify some distinguishing characteristic and have the system
make the booking for all teachers who share the characteristic. For instance, if
the user wishes to arrange a meeting for all staff in the “Financial Studies”
department, he must be able to instruct the system to make the booking for all
teachers T for whom teacher (T, financial_studies) is true.

12.2
System Design

In problems where the requirement is for a set of disparate functions, the most
difficult part of writing a program is settling on a suitable design which ties the
functions together and serves as the framework within which implementation can
proceed. The best starting point is to analyse the information which the system
manages: how it is obtained, how it is stored and how, in its stored form, it
supports the required functions of the system.

We identified in the previous section that some basic information about the
institution is included as part of the program. We can represent it as facts, thus:

earliest_hour (9).
latest_hour (21).

% Nothing starts before 9.00am
% Everything finishes by 9.00pm

working_day (mon).
working_day (tue).
working_day (wed).
working_day (thu).
working_day (fri).

We can also express some basic information in terms of rules. The following rule
defines the number of hours in the working day: 

working_hours (H):-
     earliest_hour (E),
     latest_hour (L),
     H is L-E.

It is wise to express information as rules, derived from a small set of facts,
because rules make the description more flexible. Using this rule for
working_hours/1 is better than using a fact:

working_hours (12).

because the rule would not have to be changed if teachers agreed to work until
midnight, i.e. latest_hour (24), whereas the fact would.
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Information which the program user is to supply can most simply be
represented as facts which are added to the Prolog database. We use facts as
follows:

• department/1
To record the departments at the institution.

• teacher/2
To record the teachers in the institution, the first component giving the

teacher’s name, the second the department to which the teacher belongs.
• course/2

To record the courses offered by the institution, the two components giving
the title of the course and the department offering it.

• class/3
To record the classes in a course. The three components are the title of the

course, the day of the week and the starting time of the class. We assume that
all classes are one hour long.

• teaches/3
To record the period when a teacher is teaching a course. The three

components give the name of the teacher, the title of the course and the period
when the teacher is teaching the course.

At this stage, we do not consider the form of components within these structures.
It is not so obvious what is the most suitable representation for the information

about term dates. Clearly, the system must be able to establish, for any date in
the calendar, whether the date falls within a term, but it is equally clear that we
must not require the user to state this for every date in the calendar. We can only
reasonably expect him to provide the starting and finishing dates for each term.
We might choose to store just these dates, perhaps as clause for start_and_finish/
5:

start_and_finish (start, autumn, 26, sep, 1988).
start_and_finish (finish, autumn, 16, dec, 1988).

These clauses would say that the Autumn term 1988 ran from 26 September to
16 December.

This representation would have the merit of economy, but the disadvantage
that a non-trivial calculation would have to be carried out each time we wished to
know whether a date occurred in term time or to generate dates which did fall in
a term. At the other extreme, we could store a fact for term_date/4 for every date
of a term:

term_date (autumn, 26, sep, 1988).
     …
     and each date down to:
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     …
term_date (autumn, 16, dec, 1988).

The initial calculation would be considerable and the redundancy in the data
representation could be costly, but it would then be trivial to find or generate
dates of terms.

The trade-off between economy of representation and efficiency of
computation is a familiar one in Prolog programming, and in isolation from the
rest of a system it is hard to know whether one has made a sensible choice. You
can be reassured, however, by the knowledge that a choice can readily be revised
Without having any impact on procedures in a program which are to use the
information represented.

In the present problem, we choose a method between the two extremes, storing
the dates of a term as clauses for term_dates/5, one for each month in the term.
Each records:

• Whether the term is the autumn, spring or summer term (first component).
• The month and year (second and third components).
• For the month of the year, the first and last dates which fall within the stated

term (fourth and fifth components).

These facts are added to the Prolog database when the user calls add_term_dates/
3 to input the start and finish dates of a term and are read by the procedure for
in_term_time/2. The design is illustrated in Figure 12.1. 

For teachers’ commitments, we must record the date of the commitment and
the purpose of it, its start time and duration. However, the use of a fact for every
engagement would be unsatisfactory because of the redundancy which would
arise in the representation of recurring commitments. For instance, if there is a
clause for teaches/3 recording that Miss Beak teaches “Physiology of British
Birds” in the present term and a clause for class/3 recording a class in this
subject on Wednesday at 10.00am, then it is implicit that Miss Beak has a one
hour engagement at 10.00am every Wednesday of term. Much better than to
record each class as a separate engagement for her is to write a rule to express
the connection between teaching, classes and a teacher’s engagements. This rule
is one clause for appointment/4, in which:

• The first component gives the teacher’s name.
• The second component gives the date of the engagement. 
• The third component gives the start time and duration of the engagement.
• The fourth component gives the purpose of the engagement.

There is a clause for each type of commitment, including one for the non-
recurring engagements. When the user inputs details of a non-recurring
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engagement, we add a fact for single_booking/4 to the Prolog database. Its
components have the same use as those for appointment/4.

How is this information to be used in supporting the functions of the diary
system? Well, as it does not constitute part of the system, we must provide the
user with predicates to save it permanently at the end of a program run and to
reload it at the start of a run. The system has a file-handling component.

Next, the information is used in the process of validating user commands. We
have already mentioned some integrity constraints: one was that each teacher’s
name be unique. Some of the constraints we enforce are simplifications of a real-
world situation, but we design and implement a general-purpose framework for
the data entry component of the system which you can use in your own
programming.

Besides validating new information against existing data in the diary, we must
check that all dates are in the required format and are meaningful. We must

Figure 12.1 Representation of term dates information
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forestall attempts to book appointments for 31 November, for example, and for
dates which do not fall on working days. Another component of the system,
therefore, manages a calendar, providing a range of operations on structures
representing dates. Components of these structures are days, weeks, months and
years, and we provide selector predicates to access them.

The management of the record of teachers’ commitments is handled by another
component of the system. It provides predicates to display parts of the diary and
to find free slots in it. Though the predicates which the user calls as goals
provide quite complex functions, the procedures defining them should not be
especially complex. For we envisage that routines which check the validity of
given dates and times in the data entry component of the system, are utility
procedures and serve equally to generate valid dates and times, for example
when the system seeks a free slot for a new appointment.

Putting these components together gives us the system design shown in
Figure 12.2, where the dependency of all the components on the data managed
by the system is clear. The sections referred to in the figure are the sections of
this chapter in which the implementation is described.

The importance of a sound design is crucial to Prolog programming, for it is
not a language with a block structure and scope rules to restrict the visibility of
procedures, and if we tried to implement without the framework which the
design provides, the problem of system structure, or rather of its absence, would
become acute. 

12.3
Implementation

We begin the implementation by developing a representation for the calendar and
a set of calendar utilities and selector predicates. We then examine how data
about teachers’ commitments can be represented as rules which use these
utilities, and when we have a complete picture of how the system’s data
resources are held we implement the file handling component of the system. We
then write the data entry component. We have called the checking part of this
component “constraint satisfaction” to emphasise that procedures within it do
not just check the validity of users’ input but also generate valid data. It is in the
latter way that they are used by the diary manager, the last component of the
system. 

12.3.1
The calendar

The basis of the calendar is a definition, using facts and rules, of the order of
days and months and the lengths of months:

next_day (sun, mon).
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next_day (mon, tue).
next_day (tue, wed).
next_day (wed, thu).
next_day (thu, fri).
next_day (fri, sat).
next_day (sat, sun).

next_month (jan, feb).
next_month (feb, mar).
next_month (mar, apr).
next_month (apr, may).
next_month (may, jun).
next_month (jun, jul).
next_month (jul, aug).

Figure 12.2 System design
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next_month (aug, sep).
next_month (sep, oct).
next_month (oct, nov).
next_month (nov, dec).
next_month (dec, jan).

month_length (M, _, 30):-
     (M=apr; M=jun; M=sep; M=nov).

month_length (M, _, 31):-
     (M = jan; M = mar; M = may; M = jul; M = aug; M = oct; M = dec).

month_length (feb, Year, 29):-
     leap_year (Year), !.

month_length (feb, _, 28).
leap_year (Y):-

     0 is Y mod 400, !.
leap_year (Y):-

     0 is Y mod 4,
     fail_if (0 is Y mod 100).

We must be clear how we intend month_length/3 to be used. Given a month and
a year, it is to tell us how many days are in that month of that year:

?- month_length (feb, 1900, L).
L=28 
?- month_length (feb, 2000, L).
L=29

It is not designed to check whether a given month has a given number of days,
and it cannot safely be used in this way:

?- month_length (feb, 1900, 28).
yes
?- month_length (feb, 2000, 28).
yes

The answer to the second question is wrong for exactly the same reason that the
procedure for max/3 with the cut, which we showed in section 6.1.2, sometimes
gave the wrong answer.

You will have noticed that we call;/2 in the procedure for month_length/3,
though we advised you against using it. In our experience, the predicate can be
used without detriment to program readability in procedures which are simply
using =/2 to test an argument against a series of values. However, as always,;/2
could be replaced by an equivalent formulation using separate clauses:

month_length (apr, _ 30).
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month_length (jun, _ 30).
etc.

The calendar must also provide a means of establishing the correspondence
between dates and days of the week, so that when the user seeks to book an
appointment, for instance, the program can check that the date given is a
working_day. To do this, we require the user to indicate the day of the week on
which the 1st. of the starting month falls when he initialises the diary with the
month and year from which it is to start and the year to which it is to run. It runs
to the end of this year. However, if we recorded in the Prolog database just the
information which the user gave, we would have to recalculate from this starting
point every time we wanted the day of a later date. As with the record of term
dates, we prefer a method which trades an increase in the data stored for a
substantial reduction in the processing required in using the data. The method is
to record the day on which the first of each month in the currency of the diary
falls, and compute the day of the week for other dates from that for the 1st. The
procedure for find_days/3 does this:

% find_days (Day_of_first_in_month, Date, Day_of_date)
find_days (D, 1, D).
find_days (D1, N, D2):

% Given day is 1st. of month.
% Given day is after 1st.

next_day (D1, D3),
M is N−1,
find_days (D3, M, D2). 

The procedure gives the correct answer when it is used in the way we have
described:

?- find_days (mon, 1, D).
D=mon
?- find_days (tue, 10, D).
D=thu

The system design of Figure 12.2 indicates that the calendar utilities are a low-
level component and may be expected to be called with different patterns of
argument. find_days/3 is a utility predicate, and the procedure for it must be
designed accordingly.

One use for such a utility would be to answer the question:

“For a month beginning on a Monday, on what dates do the Fridays fall?”

The question would be formulated as the goal:

?- find_days (mon, N, fri)
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In this call, execution would produce a Prolog error because when the second
sub-goal was called:?-M is N-1, N would be a variable and Prolog would not be
able to evaluate the expression N-1. To prevent this, the variable N must always
have a substitution applied to it before the arithmetic expression is evaluated.
The substitution is made when the base case is reached. Therefore, the arithmetic
must come after the recursive call. This reasoning leads us to an improved
procedure for find_days/3:

find_days (D, 1, D).
find_days (D1, N, D2):-
     find_days (D1, N1, D3),
     next_day (D3, D2),
     N is N1+1.

Now we get:

?- find_days (mon, N, fri)
N=5;
N=12;
N=19;
N=26 

The predicate has other uses. The question:

“When the first of the month is a Sunday, what days of the week do other
dates in the month fall on?”

is answered by:

?- find_days (sun, N, D)
N=1
D=sun;
N=2
D=mon;
N=3
D=tue;
etc.

In fact, the procedure would behave correctly whenever the second argument in
the goal was a variable. To make the utility completely all-purpose, we must
enclose the call to find_days/3 in a predicate which tests the status of this
argument. This is what corresponding_day/3 does. The procedure is:

corresponding_day (Day1, N, Day2):-

246 PROBLEM SOLVING WITH PROLOG



     var (N), !,
     find_days (Day1, N, Day2).

corresponding_day (Day1, N, Day2):-
     0 is N mod 7, !,
     find_days (Day1, 7, Temp), !,
     Day2=Temp.

corresponding_day (Day1, N, Day2):-
     Min is N mod 7,
     find_days (Day1, Min, Temp), !,
     Day2=Temp.

To make the procedure efficient, we take advantage of the weekly cycle of days
and in the second and third clauses reduce the second argument to an integer in
the range 1 to 7 before calling find_days/3. The case of a date exactly divisible
by 7 must be distinguished from that of other dates because find_days/3 cannot be
called with 0 as its second argument. Mutual exclusion between the three clauses
is enforced by the cuts after the guards:?- var (N) in the first clause and:?- 0 is N
mod 7 in the second.

In the second and third clauses, we use the sub-goals:?- find_days (Day1, 7,
Temp), !, Day2=Temp instead of the single sub-goal:?- find_days (Day1, Min,
Day2) to ensure correct behaviour when all arguments in a call are ground terms.
For instance, to answer the question: 

“For a month which starts on a Tuesday, does the 24th. fall on a Sunday?”

the call is:

?- corresponding_day (tue, 24, sun).

The answer is: no, but formulating these clauses with the single sub-goal would
cause the procedure to continue indefinitely generating ever-larger dates and
finding none matching 24. To prevent this, we use the variable Temp as the third
argument in the call to find_days/3, and after the call has succeeded, test whether
the value substituted for it matches the given Day2. The cut prevents
backtracking if it does not. The two formulations are declaratively identical.
Procedurally, we have to separate the attempt to satisfy the sub-goal find_days
from the attempt to match the third argument in this sub-goal with the given
date, and put a cut between the two. This is a situation in which the programmer
must use=/2, rather than Prolog’s matching mechanism, and it exemplifies the
point we made in section 4.5 about the differences between the two under the
procedural interpretation of a program.

We emphasised in section 4.3 that the programmer must test a utility under all
patterns of argument and document any restrictions on the patterns which may be
used. In the case of corresponding_day/3, there are no restrictions.
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The procedure for set_up_diary/4 adds the information about the 1st. of each
month to the Prolog database as a clause for first_of_month/3:

% set_up_diary (Start_year, Start_month, First_of_start_year, End_year)
% Clause 1: Reached Dec. in the year to which the diary is to run.
set_up_diary (Year, dec, S, Year):-!,

     assert (first_of_month (dec, Year, S)).
% Clause 2: Reached Dec. in a different year:
% Set up diary from start of following year.
set_up_diary (Current_year, dec, S, End_year):-!,

     assert (first_of_month (dec, Current_year, S)),
     corresponding_day (S, 32, S2),
     Next_year is Current_year+1,
     set_up_diary (Next_year, jan, S2, End_year).

% Clause 3: set up diary from start of following month.
set_up_diary (Current_year, Current_month, S, End_year):-

     assert (first_of_month (Current_month, Current_year, S)),
     month_length (Current_month, Current_year, L),
     corresponding_day (S, L, S2),
     next_day (S2, S3), 

next_month (Current_month, Next_month),
set_up_diary (Current_year, Next_month, S3, End_year).

We also provide todays_date/1 to obtain the current date. There may be a built-in
predicate in your Prolog system which enables you to get this information from
the computer system’s clock. If there is not, the procedure for get_date/1, which
is used as a directive, prompts the user to supply the current date and stores it in
the Prolog database as a clause for todays_date/1:

get_date:-
write (‘Please enter the date in the form:’),
nl,
write (‘date (1, jan, 1999).’),
nl,
write (‘The month must be abbreviated’),
nl,
write (‘to its first three characters’),
nl,
seeing (F), % Record current input stream.
see (user), % Take input from terminal.
read (Date),
assert (todays_date (Date)),
see (F). % Revert to taking input from file

% being consulted.
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:- get_date.

The date is recorded as a structure with functor date and arity 3, in which:

• The first component is an integer and gives the date in the month.
• The second component is the month, abbreviated to the first three letters.
• The third component is an integer, giving the year.

We provide selector predicates same_or_later/2, date_falls_on/2, in_term_time/2
and teaching/3 to access components of such structures. The procedures for them
follow.

A call to same_or_later/2, takes dates D1 and D2 and succeeds if D2 is the
same date as D1 or is a later date than D1:

% Clause 1: D2 falls in a later year.
same_or_later (date (_, _, Y1), date (_, _, Y2)):-

     Y2 >Y1, !. 
% Clause 2: D2 falls in a later month of the same year.
same_or_later (date (_, M1, Y), date (_, M2, Y)):-

     after_month (M1, M2), !.
% Clause 3: D2 falls on the same or a later day of the same month
% of the same year.
same_or_later (date (D1, M, Y), date (D2, M, Y)):-

     D2 >=D1.

We gave a procedure for after_month/2 in section 6.3.2.
A call to date_falls_on/2 succeeds if the first argument is a date and the second

argument is the day of the week on which the date falls:

date_falls_on (date (D, M, Y), Day1):-
     first_of_month (M, Y, Day2),
     month_length (M, Y, L),
     in_range_integer (1, D, L),
     corresponding_day (Day2, D, Day1).

A call to in_term_time/2 succeeds if the first argument is a term and the second
is a date which falls in that term:

in_term_time (Term, date (Date, Month, Year)):-
     term_dates (Term, Month, Year, From, To),
     in_range_integer (From, Date, To).
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A call to teaching/3 succeeds if the first argument is the name of a teacher, the
second is a subject and the third is a date which falls within the period for which
the teacher is recorded as teaching the subject:

teaching (T, S, date (Date, Month, Year)):-
     teach (T, S, Term, Year),
     in_term_time (Term, date (Date, Month, Year)).

The last three are written as utilities which can be called with any pattern of
arguments and generate alternatives through backtracking. The order of the last
two sub-goals in the procedure for date_falls_on/2 is crucial in ensuring the
correct behaviour on backtracking when the first argument in the call is a
variable. The first two sub-goals identify the starting day and the length of a month.
We then use in_range_integer/3, for which we gave a procedure in section 4.3, to
generate a date in that month and corresponding_day/3 to test the day that the
date falls on. When all dates in the month have been generated, the call to
in_range_integer/3 fails, and Prolog backtracks to seek another month.
Eventually, the call fails. This would not be so if we reversed the last two sub-
goals, using corresponding_day/3 to generate a date which did fall on the given
day of the week and in_range_integer to test whether the date existed in the
month. The call to corresponding_day/3 would always be re-satisfiable on
backtracking, generating progressively larger dates, all of which would fail the
test of being an in_range_integer.

We use this example to emphasise the importance of testing utilities
exhaustively before they are used in a large program. To test date_falls_on/2, we
temporarily add to the Prolog database two clauses for first_of_month/3:

first_of_month (oct, 1987, thu).
first_of_month (nov, 1987, sun).

There are now not too many alternatives when we test the procedure with the
goal:

?- date_falls_on (Date, tue).
Date=date (6, oct, 1987);
Date=date (13, oct, 1987);
Date=date (20, oct, 1987);
Date=date (27, oct, 1987);
Date=date (3, nov, 1987);
Date=date (10, nov, 1987);
Date=date (17, nov, 1987);
Date=date (24, nov, 1987);
no
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12.3.2
Representing data by rules

We obtain details of teachers’ commitments by calling appointment/4 as a goal.
In section 12.1, we mentioned two types of commitment, and each is defined by
one clause:

appointment (Name, Date, period (T, 1), teaching (S)):-
     teaching (Name, S, Date),
     class (S, D, T),
     date_falls_on (Date, D).

appointment (Teacher, Date, Period, Purpose):-
     single_booking (Teacher, Date, Period, Purpose). 

The first clause handles classes. They recur at the same time on the same day of
the week in every week of term and are one hour long. The start time and
duration are represented in the third argument as the two compnents of a
structure with functor period. The rule states that for any subject S which teacher
Name is teaching on a date Date and for which there is a class at time T on day D,
Name has an appointment on Date starting at T and of one hour’s duration for
the purpose of teaching S if the date Date falls on the day D. The second clause
handles one-off appointments, booked for a specific teacher on a specific date
and for a specific period and purpose.

By using rules to capture the structure of the database, we enhance the clarity
of the representation and prevent redundancy in it. We also conceal from the rest
of the system that teachers’ commitments are represented in several different
ways. Other components see nothing of these rules, but simply call appointment/
4, as though the information were stored as facts.

We use the same technique to deal with the different periods for which
teachers teach courses. In section 12.2, we wrote that this information would be
recorded as clauses for teaches/3, with the third component recording the period
covered by the course. This component is a structure, having one of two forms:

• in (Y1/Y2)
To represent that the course continues throughout the academic year

denoted by the integers Y1 and Y2.
• in (T, Y)

To represent that the course is taught only in term T of academic year Y.

To conceal the different representations from other components of the system,
we provide teach/4. A call succeeds by giving a term in which a teacher is
teaching a course. When the course is given for a whole academic year, the call
generates each of the three terms on backtracking. The procedure is:
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teach (Teacher, Subject, autumn, Year):-
     teaches (Teacher, Subject, in (Year/_)).

teach (Teacher, Subject, spring, Year):-
     teaches (Teacher, Subject, in (_/Year)).

teach (Teacher, Subject, summer, Year):-
     teaches (Teacher, Subject, in (_/Year)). teach (Teacher, Subject, Term,
Year):-
     teaches (Teacher, Subject, in (Term, Year)).

We also provide term_of/3 as a selector predicate for getting at components of
structures with functor in and arity 2. The procedure is: 

term_of (in (Y/_), autumn, Y).
term_of (in (_/Y), spring, Y).
term_of (in (_/Y), summer, Y).
term_of (in (Term, Year), Term, Year).

12.3.3
File handling

Having defined how all information relating to the institution is recorded, we can
write procedures for save_diary/1 and load_diary/1 to save data in, and load data
from, the file which is given as argument in the call:

save_diary (File):-
     write_file_of_terms (File).

The procedure for write_file_of_terms/1 was given in section 5.3. In this case,
the procedure for next/1 is:

next (Entry):-
     diary_entry_type (Functor/Arity),
     functor (Entry, Functor, Arity),
     call (Entry).

diary_entry_type (first_of_month/3).
diary_entry_type (term_dates/5).
diary_entry_type (teacher/2).
diary_entry_type (course/2).
diary_entry_type (single_booking/4).
diary_entry_type (teaches/3).
diary_entry_type (class/3).
diary_entry_type (department/1).
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We could also use the procedure for read_file_of_terms/1 from section 5.3, but
as the processing required for each term read is just to add it to the Prolog
database, we use a simpler procedure:

load_diary (File):-
     consult (File).

12.3.4
Data entry

The structure of this component is based on that of the meta-program for data
input validation which we gave in section 7.2.1. The meta-program is extended
to handle a common situation in data validation problems, that in which the
user’s input contains an error which is to be reported to him but which does not
necessarily invalidate the command. For instance, when the user adds a new
commitment to a teacher’s diary which conflicts with exising engagements, we
must warn the user of the conflict, but it is for him to decide whether to cancel
the new commitment. The teacher might want to preserve both in the diary as a
reminder to fulfil the second engagement if the first is cancelled.

The first part of the meta-program becomes:

validate (warning (Check_clash), none):-!,
     arg (1, Check_clash, Details),
     bag (Details, Check_clash, Result),
     check_result (Result).

validate (Check, _):-
     call (Check), !.

validate (_, Error_message):-
     assert (error (Error_message)).

check_result ([ ]):-!.
check_result (L):-

     assert (warning (L)).

A call from the object program to check for clashes between existing
engagements and those implied by a new commitment has the form validate
(warning (Check), none). Check is a term which identifies the procedure in the
object program to be called to apply the check. The procedure may have any
form, but its first argument must be a structure with functor appointment and
arity 4, and it must be defined so that when a call succeeds, it returns in the
components of this structure details of an existing engagement with which the
new one clashes. By passing Details and the whole structure represented by
Check as the first two arguments in a call to bag/3, we obtain in the third
argument a list of all the existing engagements with which the new commitment
clashes. If this list is not empty, the procedure for check_result/1 adds it to the
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Prolog database as a clause for warning/1. To make clear that in this type of call
to validate/2 the second argument has no significance, we use the atom none,
rather than the anonymous variable

The second part of the meta-program, that which defines how a command in
the object program is executed, has an extra clause to handle the case where a
warning has been recorded:

do_action (Action):-
     retract (warning (Message)), !,
     write_out ([‘New commitment clashes with:’|Message]),
     write (‘Should it be added? (y/n):’),
     get (Answer),
     act_on (Answer, Action).

do_action (_):-
     retract (error (Message)), !,
     report_error (Message). 

do_action (Action):-
     call (Action).

act_on (121, Action):-!,      % Character entered was “y”
     call (Action).

act_on (_, _).
report_error (Message):-

     write_out (Message),
     nl,
     retract (error (Next_message)), !,
     report_error (Next_message).

report_error (_).
write_out ([ ]).
write_out ([H|T]):-

     write (H),
     nl,
     write_out (T).

We give first the procedures for those data input predicates which do not imply
new commitments for a teacher: add_term_dates/3, add_dept/1, add_teacher/2
and add_course/2:

add_term_dates (Term, From, To):-
     validate (is_term (Term), [Term,’ is not a term’]),
     validate (same_or_later (From, To),
     [‘finish date must not be before start date’]),
     do_action (record_term_dates (Term, From, To)).

is_term (autumn).
is_term (spring).
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is_term (summer).
record_term_dates (Term, date (D1, M, Y), date (D2, M, Y)):-!,

     assert (term_dates (Term, M, Y, D1, D2)).
record_term_dates (Term, date (D, dec, Y), To):-!,

     assert (term_dates (Term, dec, Y, D, 31)),
     Y2isY+1,
     record_term_dates (Term, date (1, jan, Y2), To).

record_term_dates (Term, date (D, M, Y), To):-
     month_length (M, Y, L),
     assert (term_dates (Term, M, Y, D, L)),
     next_month (M, Next_m),
     record_term_dates (Term, date (1, Next_m, Y), To).

add_dept (Dept):-
     do_action (add_fact (department (Dept))). 

add_teacher (Teacher, Dept):-
     validate (fail_if (teacher (Teacher, _)), [Teacher, ‘already exists’]),
     validate (department (Dept), [Dept, ‘is not a department’]),
     do_action (add_fact (teacher (Teacher, Dept))).

add_course (Course, Dept):-
     validate (fail_if (course (Course, _)), [Course, ‘already exists’]),
     validate (department (Dept), [Dept, ‘is not a department’]),
     do_action (add_fact (course (Course, Dept))).

add_fact (Fact):-
     clause (Fact, true), !,
     write (‘This information is already stored in the database’),
     nl.

add_fact (Fact):-
     assert (Fact).

Notice that the procedure for add_dept/1 does not call validate/2. This is because
a department can have any name at all. The only constraint is that its name must
not duplicate that of an existing department, and this is checked within the
procedure for add_fact/1.

The procedures for add_appointment/4, add_teaches/3 and add_class/3 include
checks for clashes between a new appointment, a new teaching commitment or a
new class for a course and existing engagements in the diaries of the teachers
concerned. It is in the rule which determines whether there is a clash that we
make use of warnings. The procedure for add_appointment/4 is:

add_appointment (Teacher, Date, Period, Purpose):-
     validate (teacher (Teacher, _), [Teacher, ‘is not a teacher’]),
     validate (bookable_date (Date), [Date,‘is not a bookable date’]),
     validate (bookable_hours (Period), [Period, ‘is not within working
hours’]),
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     validate (warning (appointment_clashes (appointment (Teacher, Date, _,
_), Period)), none),
     do_action (assert (single_booking (Teacher, Date, Period, Purpose))).

bookable_date (Date):-
     date_falls_on (Date, Day),
     working_day (Day),
     todays_date (Today),
     same_or_later (Today, Date).

bookable_hours (period (Start, Duration)):-
     earliest_hour (E),
     latest_hour (L), 

     Last_start is L—1,
     in_range_integer (E, Start, Last_start),
     Max_duration is L-Start,
     in_range_integer (1, Duration, Max_duration).

appointment_clashes/2 checks for conflicts between existing commitments and
the proposed new appointment. The procedure is:

appointment_clashes (Present_commitment, Period):-
     call (Present_commitment),
     arg (3, Present_commitment, P),
     overlapping (P, Period).

overlapping (period (S, D), period (NewS, NewD)):-
     NewS < S+D,
     NewS+NewD > S.

The logic of appointment_clashes/2 is that a conflict occurs if there is a
Present_commitment for period P, and P overlaps with the Period of the new
commitment. And the procedure for overlapping/2 says that a new commitment
overlaps with an existing one if its start time is before the end time of the
existing commitment and its end time is after the start time of the existing
commitment.

The procedures for add_teaches/3 and add_class/3 are:

add_teaches (Teacher, Subject, When):-
validate (teacher (Teacher, _), [Teacher, ‘is not a teacher’]),
validate (course (Subject, _), [Subject, ‘is not a subject’]),
validate (unit_of_teaching (When), [When, ‘is not a unit of teaching’]),
validate (warning (teaching_clashes (appointment (Teacher, _, _, _), Subject,
When)), none),
do_action (add_fact (teaches (Teacher, Subject, When))).

unit_of_teaching (in (Term, Year)):-
term_dates (Term, _, Year, _, _).
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unit_of_teaching (in (Y1/Y2)):-
Y2 is Y1+1,
term_dates (autumn, _, Y1, _, _),
term_dates (spring, _, Y2, _, _),
term_dates (summer, _, Y2, _, _).

teaching_clashes (appointment (T, date (Date, Month, Year), P, W), S,
When):-
class (S, Day, Time),
term_of (When, Term, Year),
in_term_time (Term, date (Date,
Month, Year)),
date_falls_on (date (Date, Month,
Year), Day),

% For any class in the subject S
% and, in the period when T is
% to teach S,
% any date which
% falls on the day of the class, 

appointment (T, date (Date, Month, Year),
P, W),

% does T have an
% appointment

overlapping (P, period (Time, 1)). % which overlaps with the
class?

add_class (Subject, Day, Time):-
validate (course (Subject, _), [Subject, ‘is not a subject’]),
validate (working_day (Day), [Day, ‘is not a working day’]),
validate (bookable_hours (period (Time, 1)),

[Time, ‘is not a valid time for the start of a class’]),
validate (warning (class_clashes (appointment (_, _, _, _), Subject,

Day, Time)), none),
do_action (assert (class (Subject, Day, Time))).

class_clashes (appointment (T, Date, P, Why), Subject, Day, Time):-
teaching (T, Subject, Date), % For any teacher T who is

teaching
% the subject on a date

date_falls_on (Date, Day),
appointment (T, Date, P, Why),
overlapping (P, period (Time, 1)).

% which falls on the day of
a class,
% does T have an
appointment
% which overlaps with the
class?

When the user inputs the information that a teacher is to teach a subject in a
particular period, the system checks for clashes between any timetabled classes
in the subject and existing engagements for the teacher. When the user inputs
details of a new class in an existing course, the system checks for clashes with
existing engagements for any teacher who is to teach the course. Identifying such
rules as these is difficult, but the use of the meta-program does lessen the
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difficulty of correctly expressing them. It reduces the problem to that of stating
statically the conditions for a clash. The procedural problem of collecting a list
of all engagements which satisfy the conditions is handled in the meta-program
by the call to bag/3.

Meta-programming, in which terms that are variables in the text of a program
are called as goals after substitutions have been applied to them, introduces a
level of indirection in the execution of the program, and if several levels are used,
the program can become confusing for a reader. It is easy to lose track of the
substitutions that have been applied to a variable, which makes the program very
hard to understand when that variable is then called as a goal. The manipulation
of variables and the calls involved in satisfying the sub-goal:?-validate (warning
(class_clashes ( appointment (_, _, _, _), Subject, Day, Time)), none) are
illustrated in Figure 12.3.

At the object program level, the variable Check stands for a structure which is
the goal in the object program that detects a clash between an existing
engagement and commitments implied by the new class for a course. At level 2,
the first level of the meta-program, the variable Details has substituted for it the
first component of this structure. At level 3, the meta-program calls bag/3, giving
Details and Check as the first two arguments. 

Figure 12.3 Relationship of object program and meta-program calls
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The point here is that the structure substituted for Details also occurs in that
which was substituted for Check, and though in the object program we used the
anonymous variable for components of this structure, those variables share with
corresponding ones in the first component of the structure that Check stands for.
When, at level 4, the built-in predicate bag exhaustively satisfies the goal
represented by Check, values substituted each time for the variables that were
anonymous are preserved in the list which Result stands for.

We can now test all the procedures for the data entry predicates. The fact that
we have not yet written procedures for the predicates which display the diary
entries does not prevent us from checking that new information is being correctly
added to the Prolog database. We can use lower-level mechanisms for examining
the diary. After we enter the information that today’s date is: date (7, oct, 1987),
the program behaves as follows:

?- set_up_diary (1987, sep, tue, 1988).
yes

Check that the correct clauses have been added:

?- listing (first_of_month).
first_of_month (sep, 1987, tue).
first_of_month (oct, 1987, thu). 
first_of_month (nov, 1987, sun).
first_of_month (dec, 1987, tue).
first_of_month (jan, 1988, fri).
first_of_month (feb, 1988, mon).
first_of_month (mar, 1988, tue).
first_of_month (apr, 1988, fri).
first_of_month (may, 1988, sun).
first_of_month (jun, 1988, wed).
first_of_month (jul, 1988, fri).
first_of_month (aug, 1988, mon).
first_of_month (sep, 1988, thu).
first_of_month (oct, 1988, sat).
first_of_month (nov, 1988, tue).
first_of_month (dec, 1988, thu).
yes

Check the validation routines:

?- add_term_dates (autum, date (11, dec, 1987), date (5, oct, 1987)).
autum

is not a term
finish date must not be before start date
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yes
?- add_term_dates (autumn, date (5, oct, 1987), date (11, dec, 1987)).
yes
?- add_term_dates (spring, date (25, jan, 1988), date (18, mar, 1988)).
yes
?- add_term_dates (summer, date (18, apr, 1988), date (17, jun, 1988)),
yes

Check the correct clauses have been added:

?- listing (term_dates).
term_dates (autumn, oct, 1987, 5, 31).
term_dates (autumn, nov, 1987, 1, 30).
term_dates (autumn, dec, 1987, 1, 11).
term_dates (spring, jan, 1988, 25, 31).
term_dates (spring, feb, 1988, 1, 29).
term_dates (spring, mar, 1988, 1, 18).
term_dates (summer, apr, 1988, 18, 30).
term_dates (summer, may, 1988, 1, 31).
term_dates (summer, jun, 1988, 1, 17).
yes 

?- add_dept (financial_studies).
yes

Check the general-purpose validation routine:

?- add_dept (financial_studies).
This information is already stored in the database
yes
?- add_teacher (sterling, financial_studies).
yes

Check some validation routines:

?- add_teacher (sterling, ornithology).
sterling
already exists
ornithology

is not a department
yes
?- add_teacher (ledger, financial_studies).
yes
?- add_course (tax_evasion, financial_studies).
yes
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?- add_course (vat_frauds, financial_studies).
yes
?- add_course (asset_stripping, financial_studies).
yes

Check the correct clauses have been added:

?- listing (course).
course (tax_evasion, financial_studies).
course (vat_frauds, financial_studies).
course (asset_stripping, financial_studies).
yes

Check more validation routines:

?- add_appointment (ledger, date (17, oct, 1987), period (8, 3),
     seeing_solicitor).
date (17, oct, 1987)
is not a bookable date 
period (8, 3)
is not within working hours
yes

?- add_appointment (ledger, date (16, oct, 1987), period (10, 3),
     seeing_solicitor).

yes

The next check is that the system does detect an overlap of a new appointment
with the beginning of an existing engagement:

?- add_appointment (ledger, date (16, oct, 1987), period (9, 2),
     seeing_bank_manager).

New commitment clashes with:
appointment (ledger, date (16, oct, 1987), period (10, 3), seeing_solicitor)
Should it be added? (y/n): n

yes

Now we check that it detects an overlap with the end of an existing engagement,
though we add the new one anyway:

?- add_appointment (ledger, date (16, oct, 1987), period (12, 1),
     seeing_bank_manager).

New commitment clashes with:
appointment (ledger, date (16, oct, 1987), period (10, 3), seeing_solicitor)
Should it be added? (y/n): y
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yes

Check that the correct clauses have been added:

?- listing (single_booking).
single_booking (ledger, date (16, oct, 1987), period (10, 3),

seeing_solicitor).
single_booking (ledger, date (16, oct, 1987), period (12, 1),
     seeing_bank_manager).

yes
?- add_teaches (ledger, vat_frauds, in (autumn, 1987)).
yes

Check that the correct clause was added:

?- listing (teaches).
teaches (ledger, vat_frauds, in (autumn, 1987))
yes

Check the behaviour of the procedure for class_clashes/4: 

?- add_class (vat_frauds, fri, 10).
New commitment clashes with:
appointment (ledger, date (16, oct, 1987), period (10, 3), seeing_solicitor)
Should it be added? (y/n): n

yes
?- add_class (vat_frauds, fri, 18).
yes

Check the correct clause was added:

?- listing (class).
class (vat_frauds, fri, 18).
yes
?- add_appointment (sterling, date (16, oct, 1987), period (18, 2),

     cocktail_party).
yes

Check the behaviour of the procedure for teach ing_clashes/3:

?- add_teaches (sterling, vat_frauds, in (autumn, 1987)).
New commitment clashes with:
appointment (sterling, date (16, oct, 1987), period (18, 2), cocktail_party)
Should it be added? (y/n): y
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yes
?- save_diary (diary),
yes

Progressive testing of constituent procedures as they are written must be a part of
program development in Prolog. We allow ourselves great flexibility in the
approach to implementation of a large system because we consider the language
is powerful enough for it to be safe to do so. However, the incremental approach
is only valid as an alternative to the discipline of conventional top-down program
development if it is applied within the framework of its own discipline.
Incremental testing is an essential part of that discipline.

12.3.5
Diary management

Procedures in this component of the system make extensive use of utilities
already written. For this reason, the programming is relatively straight-forward,
despite the rather complex requirements in respect of the display and
management of the diary entries. 

Firstly, print_entries/2 provides the display of diary entries in the required
form. The procedure is:

print_entries (Teacher, Commitment):-
     validate (teacher (Teacher, _), [Teacher, ‘is not a teacher’]),
     do_action (list_entries (Teacher, Commitment)).

list_entries (T, date (D, M, Y)):- % Entries on a given date.
show_entries (T, date (D, M, Y), _, _).

list_entries (T,subject (S)):- % Entries about a given subject.
show_entries (T, _, _, S).

list_entries (T, period (S, D)):- % Entries at given time and/or of a
show_entries (T, _, period (S, D), _). % given duration.

show_entries (T, Date, period (S, D), Purpose):-
     bookable_date (Date),
     earliest_hour (E),
     latest_hour (L),
     in_range_integer (E, S, L),
     appointment (T, Date, period (S, D), Purpose),
     write (‘Date:’),
     write (Date),
     write (‘Time:’),
     write (S),
     write (‘Duration:’),
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     write (D),
     write (‘Purpose:’),
     write (Purpose),
     nl,
     fail.

show_entries (_, _, _, _).

In the procedure for show_entries/4, the utilities bookable_date/1 and
in_range_integer/3 generate valid dates and starting times if Date or S is a
variable when the goal is called, and we use forced backtracking to generate all
valid values. The utilities generate alternative values in chronological order, as is
required.

The same utilities are used in the procedure for book_soonest/4 which the user
calls to find the earliest free slot in the diary on or after a given date:

book_soonest (For, Duration, Purpose, Not_before):-
     validate (bookable_hours (period (_, Duration)),
     [Duration, ‘is longer than working day’]),
     validate (bookable_date (Not_before),
     [Not_before, ‘is not a bookable date’]).
     do_action ((
     make_list (For, [First|Others]), 
     find_soonest (First, Duration, Not_before, When),
     check_others (Others, When),
     confirm_time (When),
     record_group_booking ([First|Others], When, Purpose)
     )).

make_list ([H|T], [H|T]).
make_list (people (People, Condition), List_of_people):-

     bag (People, Condition, List_of_people).
find_soonest (Teacher, Duration, Not_before,

     slot (Date, period (Start, Duration))):-
     date_falls_on (Date, Day),
     working_day (Day),
     same_or_later (Not_before, Date),
     bookable_hours (period (Start, Duration)),
     fail_if (appointment_clashes (appointment (Teacher, Date, _, _),
     period (Start, Duration))).

check_others ([ ], _).
check_others ([First|Others], slot (Date, Period)):-

     fail_if (appointment_clashes (appointment (First, Date, _, _), Period)),
     check_others (Others, slot (Date, Period)).

confirm_time (slot (Date, Period)):-
     write (‘Appointment could be booked for:’),
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     write (Date),
     nl,
     write (‘At:’),
     write (Period),
     nl,
     write (‘Is this ok (y/n)?’),
     get (121).      % succeeds if user types “y”

record_group_booking ([First|Others], slot (Date, Period), P):-
     teacher (First, _), !,
     write (‘Booked for:’),
     write (First),
     nl,
     assert (single_booking (First, Date, Period, P)),
     record_group_booking (Others, slot (Date, Period), P).

record_group_booking ([First|Others], When, Purpose):-
     write (‘Ignored:’),
     write (First),
     nl,
     record_group_booking (Others, When, Purpose).

record_group_booking ([ ], _, _). 

The structure is that used for all procedures which validate data input by the
user. In this case, a conjunction of actions is given as the argument in the call to
do_action/1. These actions are:

• To make a list of all the teachers for whom the booking is to be made.
• For the first teacher in the list, to find the earliest time when the teacher is free

for an appointment of the given length.
• To check that at this time all other teachers in the list are free. If any is not

free, the goal fails, and Prolog backtracks to find the next time when the first
teacher is free.

• To obtain confirmation from the user that the time found is suitable. If it is
not, the goal fails, and Prolog seeks another time.

• To record the confirmed time as a booking for all those in the list. Before
adding the new booking, we check that each name is indeed that of a teacher
at the institution.

The diary display and management components can now be tested. First, we
restore the previous diary entries:

?- load_diary (diary).
yes

Check the display of entries for a date:
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?- print_entries (ledger, date (23, oct, 1987)).
Date: date (23, oct, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
yes

and on a subject:

?- print_entries (sterling, subject (teaching (vat_frauds))).
Date: date (9, oct, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (16, oct, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (23, oct, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (30, oct, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (6, nov, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (13, nov, 1987) Time: 18 Duration: 1 Purpose: 

     teaching (vat_frauds)
Date: date (20, nov, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (27, nov, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (4, dec, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
Date: date (11, dec, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
yes

and at a time:

?- print_entries (ledger, period (10, _)).
Date: date (16, oct, 1987) Time: 10 Duration: 3 Purpose:

seeing_solicitor
yes

Check that the system does not double-book:

?- book_soonest ([ledger], 3, city_visit, date (16, oct, 1987)).
Appointment could be booked for: date (16, oct, 1987)
At: period (13, 3)
Is this ok (y/n)? y
Booked for: ledger
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yes

Check that the correct clause has been added:

?- print_entries (ledger, date (16, oct, 1987)).
Date: date (16, oct, 1987) Time: 10 Duration: 3 Purpose:

seeing_solicitor
Date: date (16, oct, 1987) Time: 12 Duration: 1 Purpose:

     seeing_bank_manager
Date: date (16, oct, 1987) Time: 13 Duration: 3 Purpose: city_visit
Date: date (16, oct, 1987) Time: 18 Duration: 1 Purpose:

     teaching (vat_frauds)
yes

Check that a booking can be made for a group:

?- book_soonest (people (P, teaches (P, vat_frauds, _)), 4,
     remand_appearance, date (16, oct, 1987)).

Appointment could be booked for: date (19, oct, 1987)
At: period (9, 4)
Is this ok (y/n)? y
Booked for: ledger
Booked for: sterling
P=_31

Check that it has been made:

?- print_entries (ledger, date (19, oct, 1987)).
Date: date (19, oct, 1987) Time: 9 Duration: 4 Purpose:

remand_appearance
yes
?- print_entries (sterling, date (19, oct, 1987)).
Date: date (19, oct, 1987) Time: 9 Duration: 4 Purpose:

remand_appearance
yes

Check that the system treats correctly a booking for a group which includes an
unknown name:

?- book_soonest ([ledger, sterling, nemo], 2, directors_meeting,
     date (16, oct, 1987)).

Appointment could be booked for: date (19, oct, 1987)
At: period (13, 2)
Is this ok (y/n)? y
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Booked for: ledger
Booked for: sterling
Ignored: nemo
?- save_diary (diary).
yes

12.4
Extensions to the System

In this section, we suggest some extensions to the electronic diary as
programming exercises for you.

12.4.1
Other types of commitment

It is a simple matter to extend the system to handle other types of recurring
commitment. For each, the programmer has to make three additions:

• A validation predicate to accept details of a commitment of the new type and
record it in the Prolog database. The procedure for the predicate should
conform to the structure of existing validation routines. It should include a
check, like that in the procedures for add_appointment/4, add_teaches/3 and
add_class/3, to identify conflicts between existing appointments for teachers
and engagements implied by the new commitment.

• A new clause for appointment/4, defining the commitment. 
• A new clause for diary_entry_type/1, so that commitments of the new type are

saved when save_diary/1 is called.

Using this method, you should be able to write an extension to incorporate
departmental meetings into the diary system, assuming:

• A department holds a departmental meeting once a month in term.
• The meeting is held on the corresponding day each month.
• The meeting is always scheduled for the same period.

When you have written the code, test it by entering the information that the
Financial Studies department meets on the third Monday of the month at 10.00am
for 3 hours. If the diary includes the information which we have used for
illustration in this chapter, the program should give some warnings about clashes
between existing commitments and departmental meetings. Does it do so? If you
override these warnings, does the program correctly record the information in the
representation you have chosen?
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12.4.2
Other operations on the diary

Many other questions about activities in the institution can be answered by
calling lower-level procedures as goals. Some examples are:

“Which teachers in the Financial Studies department have to make remand
appearances and when?”

The question is posed as the goal:

?- teacher (T, financial_studies), appointment (T, Date, Period,
remand_appearance).

“Mr. Sterling has to make an all-day visit away from the institution. On
what dates might he make it?”

The question is posed as the goal:

?- bookable_date (Date), fail_if (appointment (sterling, Date, _, _)).

If Mr. Sterling were definitely going to book the visit for one of the available
dates, the question could be posed as the goal:

?- working_day (W),
     today s_date (T),
     book_soonest ([sterling], W, all_day_visit, T). 

“Mr. Sterling has had enough of teaching VAT frauds. How many more
classes has he got to take before the end of term?”

Using length/2 from section 4.1, the question is posed as the goal:

?- todays_date (T),
     bag (class (Date, P),
     (appointment (sterling, Date, P, teaching (vat_frauds)),
     same_or_later (T, Date)), List),
     length (List, L).

With these examples to guide you, try formulating goals for the following
questions:

“Mr Sterling wishes to arrange for his classes in VAT frauds to be held in
the computer laboratory in November. What are the dates and times for
which he has to book this laboratory?”
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“The head of the department of Financial Studies wishes to arrange a
three hour meeting of the staff in the department for 4th December 1987 at
4.00pm. What other commitments do they have at this time?”

Unfortunately, diary users cannot be expected to use conjunctions of procedures
defined within the diary system in asking questions. They would not know of
their existence, and any who did would have difficulty in formulating queries
correctly, as you will have discovered if you tried to answer our example
questions. The diary system would be easier to use if it did not require input to
be formulated as Prolog goals. However, it is very hard to design an interface
which conceals the syntax of the implementation language while being flexible
enough to accept ad hoc queries. The simplest method of shielding users from
the syntax of Prolog would be to provide a menu of commands and to prompt for
the required input according to the command selected. The system would then
convert the user’s input into arguments to a goal which would be called to
execute the command. A program to provide a menu-driven interface which
repeatedly prompted the user to enter a command could be implemented using
either forced backtracking or recursion, as described in section 6.2. It should be
within your scope to write such a program.

The disadvantage of a menu-driven system is its inflexibility. As the most
flexible language for query formulation is natural language, researchers in
databases have devoted much effort to investigating the feasibility of using
natural language as a query language. They have encountered many problems,
not the least of which is that once users have an unrestricted language in which to
formulate their questions, they either ask complicated questions that require an
extended clarification dialogue or conceive unrealistic expectations of the
system’s power to answer questions of a philosophical nature. Nonetheless,
progress has been made. A good summary of recent work is given in the early
chapters of Wallace, 1985. The later chapters describe Wallace’s own design for
a natural language interface. He used Prolog as the implementation language. If
you wish to try writing a natural language interface to the diary system, that book
is a good source of ideas on how to set about it. 
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Appendix 1
Code for the Final Version of the Problem-

Solving System

This appendix gives the program text for the problem-solving system developed
in Chapter 11. It also includes the description of the problem domain used in
problem solving in that chapter and the complete set of action schemas in the
final representation, which distinguishes assumptions from requirements and
main effects from side-effects.

:- op (850, xfx, [requires, removes, achieves, produces, assumes]).
:- op (900, fx, [always, presently]).
:- op (800, xfy, and).
plan (Problem, Depth):-
initial_state_is (Si),
devise_plan (Problem, Si, [ ], Depth, Plan, Sf),
confirm_plan (Plan),
update_state (Sf).
initial_state_is (Si):-
bagof (Fact, presently (Fact), Si).
devise_plan (P and Ps, Si, Steps, Depth, Plan and Plans, Sf):-
plan_step (P, Si, Steps, Depth, Plan, Sj),
devise_plan (Ps, Sj, Steps, Depth, Plans, Sf).
devise_plan (P, Si, Steps, Depth, Plan, Sf):-
plan_step (P, Si, Steps, Depth, Plan, Sf).
plan_step (P, Si, _, _, none, Si):-
true_in_state (P, Si).
plan_step (P, Si, Steps, Depth, Actions and Action, Sf):-
Depth > 0,
Reduced is Depth-1,
Action achieves Effects,
relevant_action (P, Effects),
fail_if (member (Action, Steps)),
Action assumes Assumptions,
satisfied (Assumptions, Si),
Action requires Requirements,
devise_plan (Requirements, Si, [Action|Steps], Reduced, Actions,
Sj),
change_state (Sj, Action, Sf). 



satisfied (Fact and Facts, S):-
true_in_state (Fact, S),
satisfied (Facts, S).
satisfied (Fact, S):-
true_in_state (Fact, S).
true_in_state (P, _):-
always (P).
true_in_state (P, State):-
member (P, State).
member (H, [H|_]).
member (H,[_]T]):-
member (H, T).
relevant_action (Effect, Effect).
relevant_action (Effect, Effect and _).
relevant_action (Effect, _ and Effects):-
relevant_action (Effect, Effects).
change_state (Si, Action, Sf):-
Action removes Removed,
remove (Si, Removed, Sj),
Action achieves Main_effects,
add (Sj, Main_effects, Sk),
add_side_effects (Sk, Action, Sf).
add_side_effects (Si, Action, Sj):-
Action produces Side_effects, !,
add (Si, Side_effects, Sj).
add_side_effects (S, _, S).
remove (Si, Fact and Facts, Sf):-!,
remove_first (Si, Fact, Sm),
remove (Sm, Facts, Sf).
remove (Si, Fact, Sf):-
remove_first (Si, Fact, Sf).
remove_first ([ ], _, [ ]).
remove_first ([Fact| Facts], Fact, Facts):-!,
remove_first ([F1|Facts], Fact, [F1|Fs]):-
remove_first (Facts, Fact, Fs).
add (Si, Fact and Facts, [Fact|F1]):-!,
add (Si, Facts, F1).
add (Si, Fact, [Fact|Si]).
confirm_plan (Plan):-
nl,
write (‘The steps to be taken are:’),
nl,
show_steps (Plan),
nl,
write (‘Is this ok? (y/n)’),
nl,
get (121).
show_steps (none):-!. 
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show_steps (Steps1 and Steps2):-!,
show_steps (Steps1),
show_steps (Steps2).
show_steps (Step):-
tab (4),
write (Step),
nl.
update_state (_):-
retract (presently _),
fail.
update_state (Sf):-
nl,
write (‘The situation now is:’),
nl,
show_facts (Sf).
show_facts ([ ]).
show_facts ([Fact| Facts]):-
tab (4),
write (Fact),
nl,
assert (presently Fact),
show_f acts (Facts).
:- op (700, xfy, [is_a, with, stands, is_in, is_at, is_next_to,
connects]).
always room1 is_a room.
always room2 is_a room.
always room3 is_a room.
always door12 is_a door.
always door23 is_a door.
always box1 is_a object.
always box2 is_a object.
always box3 is_a object.
always door12 connects room2 with room1.
always door12 connects room1 with room2.
always door23 connects room2 with room3.
always door23 connects room3 with room2.
presently door12 stands opened,
presently door23 stands opened,
presently box1 is_in room1.
presently box2 is_in room1.
presently box3 is_in room2.
presently robot is_in room2.
:- op (700, xfy, [from, through, to, in]).
:- op (750, fx, [open, close, push, shift]).
go to Door in Room assumes
Door is_a door and
Room is_a room and
Door connects Room with Another_room.
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go to Door in Room requires
robot is_in Room. 

go to Door in Room removes
robot is_at Any_door and
robot is_next_to Anything.
go to Door in Room achieves
robot is_at Door.
open Door assumes
Door is_a door and
Door stands closed.
open Door requires
robot is_at Door.
open Door removes
Door stands closed.
open Door achieves
Door stands opened.
close Door assumes
Door is_a door and
Door stands opened.
close Door requires
robot is_at Door.
close Door removes
Door stands opened.
close Door achieves
Door stands closed.
go from Room1 through Door to Room2 assumes
Room1 is_a room and
Door is_a door and
Room2 is_a room and
Door connects Room1 with Room2.
go from Room1 through Door to Room2 requires
robot is_in Room1 and
robot is_at Door and
Door stands opened.
go from Room1 through Door to Room2 removes
robot is_at Any_door and
robot is_next_to Anything and
robot is_in Room1.
go from Room1 through Door to Room2 achieves
robot is_in Room2.
move to Object in Room assumes
Object is_a object and
Object is_in Room.
move to Object in Room requires
robot is_in Room.
move to Object in Room removes 
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robot is_at Any_door and
robot is_next_to Anything.
move to Object in Room achieves
robot is_next_to Object.
push Object1 to Object2 in Room assumes
Object1 is_a object and
Object2 is_a object and
Room is_a room and
Object2 is_in Room.
push Object1 to Object2 in Room requires
robot is_next_to Object1 and
Object1 is_in Room.
push Object1 to Object2 in Room removes
robot is_at Door1 and
robot is_next_to Thing 1 and
Object1 is_next_to Thing2 and
Things is_next_to Object1 and
Object1 is_at Door2.
push Object1 to Object2 in Room achieves
Object1 is_next_to Object2.
push Object1 to Object2 in Room produces
robot is_next_to Object1 and
robot is_next_to Object2.
shift Object to Door in Room assumes
Object is_a object and
Door is_a door and
Room is_a room and
Door connects Room with Another_room.
shift Object to Door in Room requires
robot is_next_to Object and
Object is_in Room.
shift Object to Door in Room removes
Object is_at Door1 and
robot is_next_to Thing1 and
Object is_next_to Thing2 and
Things is_next_to Object.
shift Object to Door in Room achieves
Object is_at Door.
shift Object to Door in Room produces
robot is_next_to Object and
robot is_at Door.
push Object from Room1 through Door to Room2 assumes
Object is_a object and
Room1 is_a room and
Door is_a door and
Room2 is_a room and
Door connects Room1 with Room2. 
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push Object from Room1 through Door to Room2 requires
Door stands opened and
robot is_next_to Object and
Object is_in Room1 and
Object is_at Door.
push Object from Room1 through Door to Room2 removes
robot is_at Door1 and
Object is_at Door2 and
robot is_next_to Thing1 and
Object is_next_to Thing2 and
Things is_next_to Object and
robot is_in Any_room and
Object is_in Any_other_room.
push Object from Room1 through Door to Room2 achieves
Object is_in Room2.
push Object from Room1 through Door to Room2 produces
robot is_in Room2 and
robot is_next_to Object. 
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Appendix 2
Code for the Final Version of the Electronic

Diary System

This appendix gives the program text for the electronic diary developed in
Chapter 12. The code is given in the order in which it was presented in that
chapter.

earliest_hour (9).
latest_hour (21).
working_day (mon).
working_day (tue).
working_day (wed).
working_day (thu).
working_day (fri).
working_hours (H):-
earliest_hour (E),
latest_hour (L),
H is L—E.
next_day (sun, mon).
next_day (mon, tue).
next_day (tue, wed).
next_day (wed, thu).
next_day (thu, fri).
next_day (fri, sat).
next_day (sat, sun).
next_month (jan, feb).
next_month (feb, mar).
next_month (mar, apr).
next_month (apr, may).
next_month (may, jun).
next_month (jun, jul).
next_month (jul, aug).
next_month (aug, sep).
next_month (sep, oct).
next_month (oct, nov).
next_month (nov, dec).
next_month (dec, jan). 



monthlength (M, _, 30):-
(M=apr; M=jun; M=sep; M=nov).
month_length (M, _, 31):-
(M = jan; M = mar; M = may; M = jul; M = aug; M = oct; M = dec).
month_length (feb, Year, 29):-
leap_year (Year), !.
month_length (feb, _, 28).
leap_year (Y):-
0 is Y mod 400, !.
leap_year (Y):-
0 is Y mod 4,
fail_if (0 is Y mod 100).
find_days (D, 1, D).
find_days (D1, N, D2):-
find_days (D1, N1, D3),
next_day (D3, D2),
N is N1+1.
corresponding_day (Day1, N, Day2):-
var (N), I,
find_days (Day1, N, Day2).
corresponding_day (Day1, N, Day2):-
0 is N mod 7, !,
find_days (Day1, 7, Temp), !,
Day2 = Temp.
corresponding_day (Day1, N, Day2):-
Min is N mod 7,
find_days (Day1, Min, Temp), !,
Day2 = Temp.
set_up_diary (Year, dec, S, Year):-!,
assert (first_of_month (dec, Year, S)).
set_up_diary (Current_year, dec, S, End_year):-!,
assert (first_of_month (dec, Current_year, S)),
corresponding_day (S, 32, S2),
Next_year is Current_year + 1,
set_up_diary (Next_year, jan, S2, End_year).
set_up_diary (Current_year, Current_month, S, End_year):-
assert (first_of_month (Current_month, Current_year, S)),
monthlength (Current_month, Current_year, L),
corresponding_day (S, L, S2),
next_day (S2, S3),
next_month (Current_month, Next_month),
set_up_diary (Current_year, Next_month, S3, End_year).
get_date:-
write (‘Please enter the date in the form:’),
nl,
write (‘date (1, jan, 1999).’),
nl,
write (‘The month must be abbreviated’),
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nl,
write (‘to its first three characters’),
nl,
seeing (F),
see (user),
read (Date), 

assert (todays_date (Date)),
see (F).
:- get_date.
same_or_later (date (_, _, Y1), date (_, _, Y2)):-
Y2 > Y1, !.
same_or_later (date (_, M1, Y), date (_, M2, Y)):-
after_month (M1, M2), !.
same_or_later (date (D1, M, Y), date (D2, M, Y)):-
D2 >= D1.
after_month (dec, _):-!,
fail.
after_month (M1, M2):-
next_month (M1, M2).
after_month (M1, M2):-
next_month (M1, M3),
after_month (M3, M2).
date_falls_on (date (D, M, Y), Day1):-
first_of_month (M, Y, Day2),
month_length (M, Y, L),
in_range_integer (1, D, L),
corresponding_day (Day2, D, Day1).
in_term_time (Term, date (Date, Month, Year)):-
term_dates (Term, Month, Year, From, To),
in_range_integer (From, Date, To).
teaching (T, S, date (Date, Month, Year)):-
teach (T, S, Term, Year),
in_term_time (Term, date (Date, Month, Year)).
appointment (Name, Date, period (T, 1), teaching (S)) :-
teaching (Name, S, Date),
class (S, D, T),
date_falls_on (Date, D).
appointment (Teacher, Date, Period, Purpose):-
single_booking (Teacher, Date, Period, Purpose).
teach (Teacher, Subject, autumn, Year):-
teaches (Teacher, Subject, in (Year/_)).
teach (Teacher, Subject, spring, Year):-
teaches (Teacher, Subject, in (_/Year)).
teach (Teacher, Subject, summer, Year):-
teaches (Teacher, Subject, in (_/Year)).
teach (Teacher, Subject, Term, Year):-
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teaches (Teacher, Subject, in (Term, Year)).
term_of (in (Y/_), autumn, Y).
term_of (in (_/Y), spring, Y).
term_of (in (_/Y), summer, Y).
term_of (in (Term, Year), Term, Year).
save_diary (File):-
write_file_of_terms (File).
write_file_of_terms (To):-
telling (Currently),
tell (To), 

write_each_term,
tell (Currently).
write_each_term:-
next (Term),
write (Term),
write (‘.’),
nl,
fail.
write_each_term:-
told.
next (Entry):-
diary_entry_type (Functor/Arity),
functor (Entry, Functor, Arity),
call (Entry).
diary_entry_type (first_of_month/3).
diary_entry_type (term_dates/5).
diary_entry_type (teacher/2).
diary_entry_type (course/2).
diary_entry_type (single_booking/4).
diary _entry_type (teaches/3).
diary_entry_type (class/3).
diary_entry_type (department/1).
load_diary (File):-
consult (File).
validate (warning (Check_clash), none):-!,
arg (1, Check_clash, Details),
bag (Details, Check_clash, Result),
check_result (Result).
validate (Check, _):-
call (Check), !.
validate (_, Error_message):-
assert (error (Error_message)).
check_result ([ ]):-!.
check_result (L):-
assert (warning (L)).
do_action (Action):-
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retract (warning (Message)), !,
write_out ([‘New commitment clashes with:’|Message]),
write (‘Should it be added? (y/n):’),
get (Answer),
act_on (Answer, Action).
do_action (_):-
retract (error (Message)), !,
report_error (Message).
do_action (Action):-
call (Action).
act_on (121, Action):-!,
call (Action).
act_on (_, _). 

report_error (Message):-
write_out (Message),
nl,
retract (error (Next_message)), !,
report_error (Next_message).
report_error (_).
write_out ([ ]).
write_out ([H|T]):-
write (H),
nl,
write_out (T).
add_term_dates (Term, From, To):-
validate (is_term (Term), [Term, ‘is not a term’]),
validate (same_or_later (From, To), [‘finish date must not be before
start date’]),
do_action (record_term_dates (Term, From, To)).
is_term (autumn).
is_term (spring).
is_term (summer).
record_term_dates (Term, date (D1, M, Y), date (D2, M, Y)):-!,
assert (term_dates (Term, M, Y, D1, D2)).
record_term_dates (Term, date (D, dec, Y), To):-!,
assert (term_dates (Term, dec, Y, D, 31)),
Y2is Y+1,
record_term_dates (Term, date (1, jan, Y2), To).
record_term_dates (Term, date (D, M, Y), To):-
month_length (M, Y, L),
assert (term_dates (Term, M, Y, D, L)),
next_month (M, Next_m),
record_term_dates (Term, date (1, Next_m, Y), To).
add_dept (Dept):-
do_action (add_fact (department (Dept))).
add_teacher (Teacher, Dept):-
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validate (fail_if (teacher (Teacher, _)), [Teacher, ‘already exists’]),
validate (department (Dept), [Dept, ‘is not a department’]),
do_action (add_fact (teacher (Teacher, Dept))).
add_course (Course, Dept):-
validate (fail_if (course (Course,_)), [Course, ‘already exists’]),
validate (department (Dept), [Dept, ‘is not a department’]),
do_action (add_fact (course (Course, Dept))).
add_fact (Fact):-
clause (Fact, true), !,
write (‘This information is already stored in the database’), nl.
add_fact (Fact):-
assert (Fact).
add_appointment (Teacher, Date, Period, Purpose):-
validate (teacher (Teacher, _), [Teacher, ‘is not a teacher’]),
validate (bookable_date (Date), [Date, ‘is not a bookable date’]),
validate (bookable_hours (Period), [Period, ‘is not within working
hours’]),
validate (warning (appointment_clashes (appointment (Teacher,
Date, _, _), Period)),
none), 

do_action (assert (single_booking (Teacher, Date, Period,
Purpose))).
bookable_date (Date):-
date_falls_on (Date, Day),
working_day (Day),
todays_date (Today),
same_or_later (Today, Date).
bookable_hours (period (Start, Duration)):-
earliest_hour (E),
latest_hour (L),
Last_start is L-1,
in_range_integer (E, Start, Last_start),
Max_duration is L—Start,
in_range_integer (1, Duration, Max_duration).
appointment_clashes (Present_commitment, Period):-
call (Present_commitment),
arg (3, Present_commitment, P),
overlapping (P, Period).
overlapping (period (S, D), period (NewS, NewD)):-
NewS < S+D,
NewS+NewD > S.
add_teaches (Teacher, Subject, When):-
validate (teacher (Teacher, _), [Teacher, ‘is not a teacher’]),
validate (course (Subject, _), [Subject, ‘is not a subject’]),
validate (unit_of_teaching (When), [When, ‘is not a unit of
teaching’]),
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validate (warning (teaching_clashes (appointment (Teacher, _, _,
_), Subject, When)),
none),
do_action (add_fact (teaches (Teacher, Subject, When))).
unit_of_teaching (in (Term, Year)):-
term_dates (Term, _, Year, _, _).
unit_of_teaching (in (Y1/Y2)):-
Y2 is Y1+1,
term_dates (autumn, _, Y1, _, _),
term_dates (spring, _, Y2, _, _),
term_dates (summer, _, Y2, _, _).
teaching_clashes (appointment (T, date (Date, Month, Year), P, W),
S, When):-
class (S, Day, Time),
term_of (When, Term, Year),
in_term_time (Term, date (Date, Month, Year)),
date_falls_on (date (Date, Month, Year), Day),
appointment (T, date (Date, Month, Year), P, W),
overlapping (P, period (Time, 1)).
add_class (Subject, Day, Time):-
validate (course (Subject, _), [Subject, ‘is not a subject’]),
validate (working_day (Day), [Day, ‘is not a working day’]),
validate (bookable_hours (period (Time, 1)), [Time,
‘is not a valid time for the start of a class’]),
validate (warning (class_clashes (appointment (_, _, _, _), Subject,
Day, Time)), none),
do_action (assert (class (Subject, Day, Time))).
class_clashes (appointment (T, Date, P, Why), Subject, Day,
Time):-
teaching (T, Subject, Date),
date_falls_on (Date, Day), 

appointment (T, Date, P, Why),
overlapping (P, period (Time, 1)).
print_entries (Teacher, Commitment):-
validate (teacher (Teacher, _), [Teacher, ‘is not a teacher’]),
do_action (list_entries (Teacher, Commitment)).
list_entries (T, date (D, M, Y)):-
show_entries (T, date (D, M, Y), _, _).
list_entries (T, subject (S)):-
show_entries (T, _, _, S).
list_entries (T, period (S, D)):-
show_entries (T, _, period (S, D), _).
show_entries (T, Date, period (S, D), Purpose):-
bookable_date (Date),
earliest_hour (E),
latest_hour (L),
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in_range_integer (E, S, L),
appointment (T, Date, period (S, D), Purpose),
write (‘Date:’),
write (Date),
write (‘Time:’),
write (S),
write (‘Duration:’),
write (D),
write (‘ Purpose:’),
write (Purpose),
nl,
fail.
show_entries (_, _, _, _).
book_soonest (For, Duration, Purpose, Not_before):-
validate (bookable_hours (period (_, Duration)),
[Duration, ‘is longer than working day’]),
validate (bookable_date (Not_before),
[Not_before, ‘is not a bookable date’]).
do_action ((
make_list (For, [First|Others]),
find_soonest (First, Duration, Not_before, When),
check_others (Others, When),
confirm_time (When),
record_group_booking ([First|Others], When, Purpose)
)).
make_list ([H|T], [H|T]).
make_list (people (People, Condition), List_of_people):-
bag (People, Condition, List_of_people).
find_soonest (Teacher, Duration, Not_before,
slot (Date, period (Start, Duration))):-
date_falls_on (Date, Day),
working_day (Day),
same_or_later (Not_before, Date),
bookable_hours (period (Start, Duration)),
fail_if (appointment_clashes (appointment (Teacher, Date, _, _),
period (Start,
Duration))).
check_others ([ ], _). 

check_others ([First|Others], slot (Date, Period)):-
fail_if (appointment_clashes (appointment (First, Date, _, _),
Period)),
check_others (Others, slot (Date, Period)).
confirm_time (slot (Date,Period)):-
write (‘Appointment could be booked for:’),
write (Date),
nl,
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write (‘At:’),
write (Period),
nl,
write (‘Is this ok (y/n)?’),
get (121).
record_group_booking ([First|Others], slot (Date, Period), P):-
teacher (First, _), !,
write (‘Booked for:’),
write (First),
nl,
assert (single_booking (First, Date, Period, P)),
record_group_booking (Others, slot (Date, Period), P).
record_group_booking ([First|Others], When, Purpose):-
write (‘Ignored:’),
write (First),
nl,
record_group_booking (Others, When, Purpose).
record_group_booking ([ ], _, _). 
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Appendix 3
A Standard for the Prolog Language

There are many versions of Prolog available. In this book, we have used the
syntax of Edinburgh Prolog, developed at the University of Edinburgh for the
DECSystem-10 computer, but widely adopted by other suppliers for other
machines. The set of built-in predicates we have described is also based on that of
Edinburgh Prolog. However, we have taken account of some of the
developments initiated by the British Standards Institute’s Working Group on
Prolog standardisation, indicating by footnotes in the text where the Working
Group is diverging from commonly-available implementations. In this appendix,
we mention some of the main proposals which seem likely to emerge as a result
of the Working Group’s efforts, though we should emphasise that its
deliberations have not yet been completed.

Types of Term
The introduction of string as a type of term. Values of the type to be denoted

by double quotes. So:

“abc” is a string,
abc is an atom.
“ ” is the empty string.

Another built-in predicate to test the type of a term. A call to string/1 would
succeed if the argument was a string.

Built-in predicates to operate on strings:

strlength/2 to determine the length of a string,
con cat/3 to concatenate two strings.
substring/4 to determine the substring starting at a given position in a string

and of a given length. 

Input and Output
The stream for input or output to be able to be specified in calls to the relevant

built-in predicates and the format to be able to be specified in term I/O. So, in
calls to write/3 and read/3 the first argument would be the stream for output or



input, the second the format of the term and the third the term to be written or
with which the term read was to be matched.

Term Ordering
A total ordering of all terms and a set of built-in predicates for testing term

ordering:

@</2 less than, in the ordering of terms.
@=</2 less than or equal to, in the ordering of terms.
@>/2 greater than, in the ordering of terms
@>=/2 greater than or equal to, in the ordering of terms

For the types of terms, the following order:

var < real < integer < string < atom < compound

Within types, the order of variables remains to be defined, that of reals and
integers is numeric and of strings and atoms is lexicographic. Structures are
ordered:

• First, according to their arity;
• Second, according to the lexicographic order of their functors;
• Third, according to the order of corresponding components of each, starting

with the first.

Arithmetic
An extension to the definition of is/2 to allow its second argument to be a call

to a procedure. So, the goal:

?- X is length (Y).

would be satisfied if a procedure for length/2 was defined and the goal:

? length (Y, X).

was satisfied. 
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Appendix 4
Answers to Exercises

1.1
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(a)
An atom
Not an atom (in fact, a variable)
An atom
Not an atom (an integer)
Not an atom (a structure)
An atom

1.3
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)

(a)
Invalid: functor is not an atom
Valid: arity 1, arity of the component: 0
Valid: arity 0
Valid: arity 4; arity of each component: 0
Valid: arity 1; arity of the component: 4; arity of its component: 0
Valid: arity 1; arity of the component: 4; arity of its components: 1, 1, 0,
0
Valid: arity 4; arity of the components: 1, 1, 0, 0
Invalid: components not separated by “,”
Valid: arity 1; arity of the component: 0
Valid: arity 5; arity of each component: 0

(b) ?- soldier (name (towser), rank (sergeant)).
?- soldier (name (cathcart), rank (captain)).
?- soldier (name (dreedle), rank (general)).
?- soldier (name (aardvark), R).
?- soldier (S, rank (colonel)).
?- soldier (name (aardvaark), R), soldier (name (flume), R).

(c) The instruments mentioned would be:
instrument (instrument (violin), type
(string)).
instrument (instrument (viola), type
(string)).
instrument (instrument (clarinet),
type (woodwind)).



instrument (instrument (bassoon),
type (woodwind)).
instrument (instrument (trumpet),
type (brass)).
instrument (instrument (trombone),
type (brass)).
instrument (instrument (horn), type
(brass)).

1.4
(i)
(ii)

(a)
Match: T ← ‘animal farm’, Author ← author (‘george orwell’)
Match: Day ← day (wednesday), Date ← date (21), Month ← month
(M), Year ← year (1986), M: no substitution made

(iii)
(iv)

Match: H ← christmas, Day ← day (25), Month ← month (december),
Y ← 1986
Not a match: different arity 

2.1
(a) same_rank (First_soldier, Second_soldier, Rank):-

soldier (First_soldier, Rank),
soldier (Second_soldier, Rank).

(b) See section 2.2.
2.3
(a) Who=player (hermann)

Who=player (klaus)
Who=player (wilfrid)

(b) What=instrument (clarinet)
What=instrument (bassoon)
What=instrument (trumpet)
What=instrument (trombone)
What=instrument (horn)
If the clauses were reversed, the brass instruments would be listed before
the woodwind.

2.4
(a) S=s (np (d (the), n (woman)), vp (v (sees), np (d (the), n (woman))))

S=s (np (d (the), n (woman)), vp (v (sees), np (d (the), n (girl))))
S=s (np (d (the), n (woman)), vp (v (sees), np (d (a), n (woman))))
S=s (np (d (the), n (woman)), vp (v (sees), np (d (a), n (girl))))
S=s (np (d (the), n (woman)), vp (v (calls), np (d (the), n (woman))))
S=s (np (d (the), n (woman)), vp (v (calls), np (d (the), n (girl))))
S=s (np (d (the), n (woman)), vp (v (calls), np (d (a), n (woman))))
S=s (np (d (the), n (woman)), vp (v (calls), np (d (a), n (girl))))
and this sequence of vp structures repeated for each of the subject np
structures:
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np (d (the), n (girl)) np (d (a), n
(woman))

np (d (a), n
(girl))

(b) verb_phrase (vp (Vb)):-
verb (Vb).

3.2
(a) See section 3.3
(b) commands (S, L):-

soldier (name (S), rank (R)),
ranks_commanded (R, L).

ranks_commanded (private, none).
ranks_commanded (R1, rank (R2, Ranks)):-

next_rank (R2, R1),
ranks_commanded (R2, Ranks).

(c) relative_ranks (S1, S2, L):-
soldier (name (S1), rank (R1)),
soldier (name (S2), rank (R2)),
ranks_from (R1, R2, L).

ranks_from (R, R, none).
ranks_from (R1, R2, next (R3, Others)):-

next_rank (R1, R3),
ranks_from (R3, R2, Others).

(d) commands (S, L):- 

ranks_commanded (R,
none, L).

ranks_commanded (private, L, L).
ranks_commanded (R1, L, Ranks):-

next_rank (R2, R1),
ranks_commanded
(R2, rank (R2, L),
Ranks).

3.3
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)

(a)
Match: H ← [grey, green], T ← [black, blue]
Match: H ← [george, millicent]
Match: First ← [william, mary], Others ← [Second], Second: no
substitution
No match
A ← [married (george, millicent)]
Match: A ← 1805, B ← [ ], C ← 1815, D ← [ ]
[A|B, C|D] is syntactically incorrect.
Match: A ← jack, B ← jill, C ← [ ]
No match

3.4
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(a) permute ([ ], [ ]).
permute ([H|T], [I|L]):-

remove (l, [H|T], L2),
permute (L2, L).

(b) remove_all (_, [ ], [ ]).
remove_all (H, [H|T], L):-

remove_all (H, T, L).
remove_all (l, [H|T], [I|L]):-

different (l, H),
remove_all (l, T, L).

(c) no_duplicates ([ ],[ ]).
no_duplicates ([H|T], [H|L]):-

remove_all (H, T, L1),
no_duplicates (L1, L).

3.5
(a) The sub-goal:?- conc (Front, Back, List) is re-satisfiable with Front

containing from 0 to n of the n items in List. Each time this goal is
satisfied, the second sub-goal:?- Conc (F, Sub, Front) is re-satisfiable
with Sub containing from m to 0 of the m items in Front. The empty
list is generated n+1 times.

(b) sublist (Any, [ ]).
sublist (L, [H|T]):-

split (H, L, Back),
front_of (T, Back).

split (H, [H|T], T).
split (l, [H|L1], L2):-

split (l, L1, L2).
front_of ([ ], Any).
front_of ([H|L1], [H|L2]):-

front_of (L1, L2).
The call:

?- sublist ([1, 2, 3], Sub)
produces: 

Sub=[ ];
Sub=[1];
Sub=[1, 2];
Sub=[1, 2, 3];
Sub=[2];
Sub=[2, 3];
Sub=[3];
no

4.1
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(a) The call produces infinite recursion as the procedure generates ever
longer lists, testing each to see if it is of length 3.

(b) length ([ ], 0|).
length ([[H|T] | L], N):-

% First element
in list is a list.

length ([H|T], P),
length (L, Q),
N is P+Q.

length ([H|T], N):-
different (H, [_|
_]),
length (T, M),
length (N is M+1.

% First element is
not a list.

(c) sum_of_elements ([ ], 0).
sum_of_elements ([H|T], M):-

sum_of_elements
(T, N),
M is N+H.

4.2 (a)
(i) Succeeds, substituting N ← 8*9. Though the expression is evaluated in

the sub-goal, the value substituted is that of the expression given as
argument,

(ii) Fails: the arguments do not match either clause.
(b) split ([ ], _, [ ], [ ]).

split ([H|L1], N, [H|L2], L3):
% Empty list
splits into two
empty lists.
% Head belongs
in list of less if

H < N,
split (L1|, N, L2,
L3).

% it is less than N

split ([H|L1], N, L2, [H|L3]):- % Otherwise
head belongs in
list of greater

H >=N,|||
Split (L1, N, L2,
L3).

(c) position_of_max ([N], N, 1).
position_of_max ([H, L|M], Max_num, Max_pos):-

position_of_max ([L|M], Tail_max,
Tail_pos),
max_of_positions (H, Tail_max,
Tail_pos, Max_num, Max_pos).

max_of_positions (First, Tail_max, _, First, 1):-
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max (First,
Tail_max, First).

max_of_positions (First, Tail_max, Tail_pos,
Tail_max, Pos):-

max (First,
Tail_max,
Tail_max),
Pos is Tail_pos
+1.

On backtracking, this procedure gives each position of the highest in the
list, though with some duplication!

4.3
(a) greater_or_equal (N1, N2):- % Both integers

integer (N1),
integer (N2),
N2 >=N1. 

greater_or_equal (N1, N2):- % N2 a variable
integer (N1),
var (N2),
next_integer (N1,
N2).

greater_or_equal (N1, N2):- % N1 a variable
var (N1),
integer (N2),
previous_integer
(N1, N2).

previous_integer (N, N).
previous_integer (N1, N2):-

N3 is N2–1,
previous_integer
(N1, N3).

4.4
(a) plural_form (Singular, Plural):- % Clause for

special plural
forms of nouns

name (Singular, Chs1),
conc (Begins, [Last_but_one, Last],
Chs1),
special_form ([Last_but_one, Last],
Special_plural),
conc (Begins, Special_plural, Chs2),
name (Plural, Chs2).
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plural_form (Singular, Plural):- % Clause for
ordinary forms

name (Singular,
Chs1),
conc (Chs1, [115],
Plural_chs),
name (Plural,
Plural_chs).

%Add “s”

specialform ([Ch, 121], [Ch, 105, 101, 115]):- %
Consonant + “y”

consonant (Ch).
special_form ([Ch, 111], [Ch, 111, 101, 115]):- %
Consonant + “o”

consonant (Ch).
consonant (Ch):- % “b” to “d”

Ch > 97,
Ch < 101.

consonant (Ch):- % “f” to “h”
Ch > 101,
Ch < 105.

consonant (Ch):- % “j” to “n”
Ch > 105,
Ch < 111.

consonant (Ch):- % “p” to “t”
Ch > 111,
Ch < 117.

consonant (Ch):- % “v” to “z”
Ch > 117,
Ch < 123.

Note that this program produces incorrect alternatives on backtracking
because the case of a special_form does not exclude the second case.

(b) cifer (Plain, Shift, Code):-
name (Plain, Plain_chars),
convert_chars (Plain_chars, Shift,
Code_chars),
name (Code, Code_chars).

convert_chars ([ ], _, [ ]).
convert_chars ([Plain|L1], Shift, [Code|L2]):-

Code is (Plain—97+Shift) mod 26+97,
convert_chars (L1, Shift, L2).

(c) select_a_move (Board, Move):-
test_next_square (1, Board, Move). 
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test_next_square (Move, Board, Move):-
arg (Move, Board, Square),
var (Square).

test_next_square (Possible_square, Board, Move)
arg (Possible_square, Board, Square),
nonvar (Square),
Next is Possible_square+1,
Next < 10,
test_next_square (Next, Board, Move).

5.1
(a) display_position (Board):-

write (‘Position is:’),
nl,
display_squares (Board, 1).

display_squares (_, Pos):-
Pos > 9.

display_squares (Board, Pos):-
Pos =< 9,
arg (Pos, Board, Square),
display_a_square (Square),
align_output (Pos),
Next_pos is Pos+1,
display_squares (Board, Next_pos).

display_a_square (Square):-
var (Square),
write (‘_’).

display_a_Square (Square):-
Square == o,
write (o).

display_a_square (Square):-
Square == x,
write (x).

align_output (P):-
P mod 3 =:= 0,
nl.

align_output (P):-
P mod 3 > 0,
tab (2).

5.2.1
(a) :- op (80, fx, [a, the]).

:- op (90, fx, [by, on, under]).
:- op (100, xfx, stands).

(b) :- op (91, xfy, ‘->’).
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t -> t gives t.
t -> f gives f.
f -> t gives t.
f -> f gives t.

A new clause for assign/4:
assign (E1 -> E2, L, C1 -> C2, V):-

assign (E1, L, C1, V1),
assign (E2, L, C2, V2),
V1 -> V2 gives V. 

5.2.2
(a) First, we must distinguish a punctuation mark and a letter in the

procedure for form_a_list/3:
form_a_list (C, [C], C1):-

punctuation_mar
k (C),
get0 (C1).

form_a_list (C, [C|Cs], C2):-
letter (C),
get0 (C1),
form_a_list (C1,
Cs, C2).

These clauses replace the existing third clause. Procedures for the
guards are:

punctuation_mark (40).
punctuation_mark (41).
punctuation_mark (44).
punctuation_mark (58).
punctuation_mark (59).

% “(”
% “)”
% “,”
% “:”
% “;”

letter (C):-
C > 64,
C < 91.

% “A” to “Z”

letter (C):-
C > 96,
C < 123.

% “a” to “z”

Then, replace the call to occurs_in_word/1 in the third clause of the
procedure for form_words/2 with a new guard:

form_words (C, [W|Ws]):-
first_of_word
(C).

first_of_word (C):-
punctuation_mar
k (C).
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first_of_word (C):-
letter (C).

Finally, remove the procedure for occurs_in_word/1, which is no
longer called.

5.3
(a) The following procedure for change/2 performs the conversion:

change (C, C):-
C < 65.

change (C, C):-
C > 90.

change (C, C1):-
C > 64,
C < 91,
C1 is C+32.

(b) We require an extra clause in the procedure for change_char/1 :
change_char (32):- % <space>

get0 (C1),
compress_spaces
(C1, C2),
change_char
(C2).

compress_spaces (32, C):-

get0 (C1),
compress_spaces (C1, C2).

compress_spaces (C, C):-
C \=32,
put (32).

% Output one <space>.

The guard on the second clause must also be changed:
change_char (C):-

end_of_file_char (C1),
C \=C1,
C \=32,
put (C),
get0 (C2),
change_char (C2).

6.1.2
(a) intersection ([ ], _, [ ]).

intersection ([H|T], S, [H|S1]):-
member (H, S), !,
intersection (T, S, S1).

intersection ([_|T], S, S1):-
intersection (T, S, S1).
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subset (_, [ ]).
subset (S, [H|T]):-

member (H, S),
subset (S, T).

difference ([ ], _, [ ]).
difference ([H|T], S, S1):-

member (H, S), l,
difference (T, S, S1).

difference ([H|T], S, [H|S1]):-
difference (T, S, S1).

equal_sets ([ ], [ ]).
equal_sets ([H|T], S):-

remove (H, S, S1),
equal_sets (T, S1).

disjoint (S1, S2):-
fail_if (member (E, S1), member (E, S2)).

(b) game_over (Board, winner_is (P1)):-
winning_line (S1, S2, S3),
arg (S1, Board, P1),
arg (S2, Board, P2),
arg (S3, Board, P3),
P1==P2,
P2==P3, !.
game_over (Board, ‘The game is drawn’):-
ground (Board).

winning_line (1, 2, 3).
winning_line (4, 5, 6).
winning_line (7, 8, 9).
winning_line (1, 4, 7).
winning_line (2, 5, 8).
winning_line (3, 6, 9).
winning_line (1, 5, 9). 

winning_line (3, 5, 7).
(c) greater_integer (N1, N2):- % Both integers

integer (N1),
integer (N2), !,
N2>N1

greater_integer (N1, N2):- % Just N1 an integer
integer (N1), !,
next_integer (N1, N2).

greater_integer (N1, N2):- % just N2 an integer
integer (N2),
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previous_integer (N1,
N2).

6.2
(a) See section 6.3.1
(b) get_users_move (Board, Move):-

write (‘Type in a number between 1 and 9’),
nl,
write (‘ for the square you want to occupy:’),
read (Possible_move),
verify_move (Board, Possible_move, Move).

verify_move (Board, Move,
Move):-

% Possible_move is valid
if…

integer (Move),
Move >=1,

% it is an integer…
% which represents a
square…

Move =< 9,
empty_square (Move,
Board), !.

% that is empty.

verify_move (Board, Invalid,
Move):-

write (Invalid is
impossible),
nl,
get_users_move (Board,
Move).

6.3.1
(a) When the call to sub1 fails and the call to sub3 succeeds.
(b) proc2:-

sub1,
sub2.

proc2:-
sub3.

proc3:-
sub1,
proc4.

proc4:-
sub2.

proc4:-
sub3.

6.3.2 Because it matches the first clause. The problem is overcome by
having a new clause as the first:

after_month (M1, M2):-
var (M1),
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next_month (M1, M3), !,
after_month (M1, M2).

7.1.1.
(a) actions_on (Member):-

assert (Member). 

next (member (Name, Age, Status)):-
member (Name, Age,
Status).

7.1.2
(a) In each case, the nodes would be in reverse order in the list.
8.2.1
(a) To distinguish subject noun phrases from object noun phrases, we make

noun_phrase a five argument predicate. The calls to it become:
sentence (s (Np, Vp)) -->

noun_phrase (Np, F,
subject),
verb_phrase (Vp, F).

verb_phrase (vp (V, Np), F) -->
verb (V, F),
noun_phrase (Np, _,
object).

In the existing clause, the extra argument is the anonymous variable:
noun_phrase (np (D, N), form (third, Number),
_) -->

determiner (D,
Number),
noun (N, Number).

The clause to recognise pronouns is:
noun_phrase (np (pn (Person, Number)), form
(Person, Number), Position) -->

pronoun (Person,
Number, Position).

pronoun (first, singular, subject) --> [i].
pronoun (second, _, _) --> [you].
pronoun (third, singular, _) --> [it].
pronoun (third, singular, subject) --> [he],
pronoun (third, singular, subject) --> [she].
pronoun (first, plural, subject) --> [we],
pronoun (third, plural, subject) --> [they].
pronoun (first, singular, object) --> [me].
pronoun (third, singular, object) --> [him].
pronoun (third, singular, object) --> [her].
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pronoun (first, plural, object) --> [us].
pronoun (third, plural, object) --> [them].

8.2.2
(a) noun_phrase (np (none, N), form (third, plural),

_) -->
noun (N, plural).

8.3
(a) noun (n (Noun), Number) -->

[N],
{is_noun (N, Noun,
Number)}.

is_noun (N, N, singular):-
noun_entry (N, _).

is_noun (Plural, Singular, plural):-
noun_entry (Singular,
Plural).

A typical dictionary entry would be:
noun_entry (woman,
women). 

(b) Dictionary entries:
verb_entry (see, sees, seen, subject (animate)).
noun_entry (woman, women, type (animate)).

Other rules would have an extra argument to return the new information.
The rule for sentence/3 would test for a match:

sentence (s (Np, Vp)) -->
noun_phrase (Np, F,
subject, type (T)),
verb_phrase (Vp, F,
subject (T)).

8.4.
(a) An extra clause is required for factor/3:

factor (F) -->
[‘(’],
expression (F),
[‘)’].

(b) condition (C) -->
boolean_term (T),
other_condition (T, C).

other_condition (T, expr (T, or, C)) -->
[or],
condition (C).

other_condition (T, T) --> [ ].
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boolean_term (C) -->
comparison (T),
other_comparison (T, C).

other_comparison (T, expr (T, and, C)) -->
[and],
boolean_term (C).

other_comparison (T, T) --> [ ].
comparison (rel_expr (E1, Op, E2)) -->

expression (E1),
[Op],
{relational_operator
(Op)},
expression (E2).

relational_operator (‘=’).
relational_operator (‘\=’).
relational_operator (‘>’).
relational_operator (‘<’).
relational_operator (‘>=’).
relational_operator (‘=<’).

(c) evaluate (rel_expr (E1, Op, E2), Value):-
Comparison =…[Op, E1,
E2],
test (Comparison,
Value).

evaluate (expr (E1, Op, E2), Value):-
evaluate (E1,
Sub_value),
combined_value
(Sub_value, Op, E2,
Value).

test (C, true):-
call (C), !. 

test (false, _).
combined_value (true, or, _, true).
combined_value (false, or, E, Value):-

evaluate (E, Value).
combined_value (true, and, E, Value):-

evaluate (E, Value).
combined_value (false, and, _, false).

9.1
(a) The procedure cannot be used to generate alternatives in a call such as:

?- permute (L, [1, 2, 3]).
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Written as:
permute ([ ], [ ]).
permute ([X|L], P):-

permute (L, L1),
insert (X, L1, P).

insert (H, T,
insert (X, [H|T1], [H|T2]):-

insert (X, T1, T2).
the procedure does generate all alternatives for the call given, but when
the user rejects the last answer, the procedure goes into endless recursion.

9.3
(a) satisfy_goal (Goal):-

satisfy_the_goal (Goal).
satisfy_goal (_):-

retractall (succeeded
(_)),
retractall (failed (_)).

satisfy_the_goal (Goal):-
satisfy_and_display
(Goal), l,
fail.

(b) The final clause for satisfy/1 becomes:
satisfy (Goal, by (Goal, ‘user intervention’)):-

functor (Goal, Functor,
Arity),
suspect (Functor/Arity),
satisfied (Goal).9.4

(a) To document the predicate:
•
•
•

The first argument is an atom representing a
node on a directed graph.
The second argument is a list representing the
nodes reachable from it.
Arcs on the graph are represented by facts
which are clauses for arc/ 2.

To document the procedure:
•
•

In calls, the first argument must be an atom; the
second can be a variable.
The procedure uses database modification to
accumulate results through forced
backtracking. The procedure for traverse_graph/
1 is the adding phase; the collecting phase is
that for collect_nodes/1 .
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• The clauses added in the first phase are facts for
reached/1. 
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Appendix 5
The Ascii Character Set

Code Character
33 !
34 "
35 £
36 $
37 %
38 &
39 '
40 (
41 )
42 *
43 +
44 ,
45 _
46 .
47 /
48–57 0–9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65–90 A–Z
91 [
92 \
93 ]
94 ^



95 _
96 `
97–122 a–z
123 {
124 |
125 }
126 ~ 
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