

Effective Logic
Computation
REVISED EDITION

2

1

5

2

2

3

4 9

8

2

2

6

7

K. Truemper

Truemper Effective Logic Computation
R

ev
is

ed
E

di
tio

n

L
ei

bn
iz

ISBN 0-9663554-6-6

Effective Logic Computation

Revised Edition

Effective Logic Computation
Revised Edition

K. Truemper

University of Texas at Dallas
Richardson, Texas

Leibniz

Plano, Texas

Copyright c© 2010 by Klaus Truemper

All rights reserved.

Permission is herewith granted to individuals

to print single copies of the book for personal

use without charge by the publisher. Such printing

must always include this copyright information.

Licenses for commercial printing of the book

are available from:

Leibniz

2304 Cliffside Drive

Plano, Texas 75023-5337

U.S.A.

Cataloging Data

Truemper:K., 1942–

Effective Logic Computation (revised edition)/K. Truemper.

Includes bibliographical references and indexes.

ISBN 0-9663554-6-6

1. Logic. 2. Algorithm

I. Title.

Contents

Preface . ix

Chapter 1 Introduction . 1

1.1 Overview 1

1.2 History 5

1.3 Logic Problems 7

1.4 Prior Results 9

1.5 Overall Approach 17

1.6 Reading Guide 20

Chapter 2 Basic Concepts . 22

2.1 Overview 22

2.2 Sets 22

2.3 Propositional Logic 23

2.4 First-Order Logic 31

2.5 Graphs 33

2.6 Matrices 49

2.7 Complexity of Algorithms 67

2.8 References 68

v

vi Contents

Chapter 3 Some Matroid Theory . 69

3.1 Overview 69

3.2 Definitions 70

3.3 Minor 77

3.4 Connectivity 80

3.5 Finding Separations 82

3.6 Sums 101

3.7 Extensions and References 106

Chapter 4 System IB, Linear Algebra, and

Matroids . 108

4.1 Overview 108

4.2 Basic Equations and Inequalities 109

4.3 System IB and Linear Algebra 112

4.4 IB-Independence System 133

4.5 Connectivity 141

4.6 Finding Separations 145

4.7 Sums 152

4.8 A Glimpse Ahead 158

4.9 ID-System 160

4.10 Extensions and References 166

Chapter 5 Special Matrix Classes . 170

5.1 Overview 170

5.2 Centrality 172

5.3 Properties of Centrality 175

5.4 2SAT Matrices 181

5.5 Nearly Negative Matrices 187

5.6 Hidden Nearly Negative Matrices 190

5.7 Balanced Matrices 198

5.8 Comparison of Matrix Classes 216

5.9 Extensions and References 221

Contents vii

Chapter 6 Characterizations of Hidden Near

Negativity . 228

6.1 Overview 228

6.2 Minimal Excluded Boolean Minors 229

6.3 Minimal Excluded Subregions 244

6.4 References 254

Chapter 7 Boolean Closed Matrices . 256

7.1 Overview 256

7.2 Definitions 260

7.3 Characterizations 262

7.4 Properties 270

7.5 Algorithms 275

7.6 Extensions 281

Chapter 8 Closed Subregion Decomposition 282

8.1 Overview 282

8.2 Algorithm for SAT and MINSAT 285

8.3 Heuristic for Integer Programs 291

8.4 Decomposition for 2SAT 297

8.5 Decomposition for Hidden Near Negativity 300

8.6 Decomposition for Network Property 303

8.7 Extensions and References 307

Chapter 9 Monotone Sum . 313

9.1 Overview 313

9.2 Definitions and Properties 314

9.3 Decomposition Algorithm 317

9.4 Solution Algorithm 322

9.5 Extensions and References 327

Chapter 10 Closed Sum . 330

10.1 Overview 330

10.2 Review and Definitions 331

10.3 Decomposition Algorithms 334

10.4 Solution Algorithm 341

10.5 Extensions 348

viii Contents

Chapter 11 Augmented Sum . 350

11.1 Overview 350

11.2 Definitions 351

11.3 Decomposition Algorithm 356

11.4 Solution Algorithm 360

11.5 Extensions and References 367

Chapter 12 Linear Sum . 369

12.1 Overview 369

12.2 Definitions 370

12.3 Decomposition Algorithms 376

12.4 Solution Algorithm 381

12.5 Extensions 391

Chapter 13 Analysis Algorithm . 394

13.1 Overview 394

13.2 Structure of Solution Algorithms 395

13.3 Algorithm for Component Matrix 397

13.4 Analysis Algorithm 401

13.5 Approximate Minimization 414

13.6 Pre- and Postprocessing 417

13.7 Extensions and References 421

Chapter 14 Central and Semicentral Classes 422

14.1 Overview 422

14.2 Review of Centrality and Semicentrality Results 422

14.3 Construction of Central and Semicentral Classes 426

14.4 Link to Analysis Algorithm 428

14.5 Extensions and References 430

References . 431

Author Index . 451

Subject Index . 457

Preface

The engineering advances of the second half of the 20th century have
created an avalanche of new technology. Control and use of that technology
require, among many things, effective computational methods for logic.

This book proposes one such method. It is based on a new theory of
logic computation. Main features of the theory are an extension of proposi-
tional logic, an analysis of logic formulas via combinatorial structures, and
a construction of logic solution algorithms based on that analysis.

The research for this project began in 1985. Most results were es-
tablished during the period 1985–1989. To prove practical utility of the
new theory, we implemented the ideas in a commercially available soft-
ware system for logic programming called the Leibniz System, in honor
of the mathematician, physicist, engineer, and philosopher G. W. Leibniz
(1646–1716).

The first version of the Leibniz System was completed in 1990. Since
then, students in a course on expert systems taught by the author have
used the Leibniz System to construct numerous expert systems for a wide
variety of real-world problems.

In addition, in work with G. Felici, G. Rinaldi, G. Qian, J. Straach, and
Y. Zhao, we have developed several large, intelligent systems for complex
settings.

These applications of the Leibniz System to real-world problems have
verified our prediction that the new theory would yield very fast solution
algorithms for real-world logic problems. We began the writing of this book
once that fact had been established.

While we created the Leibniz System, other researchers obtained and
published a few results that we had found independently but had not pub-
lished. In this book, we shall not attempt to establish who had done what

ix

x Preface

first. Instead, we simply cite all references that in any way are related to
the material of this book.

Uses of the Book

The material of this book may be used as a blueprint for the design of logic
programming software—for example, for expert system shells, for Prolog-
type systems, or for systems similar to the Leibniz System.

The book may also be used as the main text for a graduate course in
computational logic. We have done so repeatedly with preliminary versions.

Overview

This book is completely self-contained. In particular, it does not require
any background in logic or combinatorics.

Chapter 1 reviews the history of logic and explains the basic ideas of
the new theory of logic computation.

Chapter 2 provides basic definitions and results of logic and combina-
torics. The chapter needs only to be scanned on first reading.

Chapter 3 reviews matroid theory. Here, too, scanning of the material
suffices initially.

Chapter 4 defines an extension of propositional logic called system IB
and introduces a number of related concepts.

Chapter 5 deals with special classes of logic problems.
Chapter 6 presents characterizations of a certain special class of logic

problems. The chapter may be skipped without loss of continuity.
Chapter 7 introduces a property called Boolean closedness that is em-

ployed in Chapters 8 and 10.
Chapters 8–12 describe several decompositions for logic problems. The

chapters may be read in any order.
Chapter 13 synthesizes the results of the preceding chapters and estab-

lishes the so-called analysis algorithm, which constructs solution algorithms
for logic problems.

Chapter 14 shows that the analysis algorithm produces efficient solu-
tion algorithms for large classes of logic problems. The classes include a
great many real-world logic problems.

Acknowledgments

The development of the theory was funded in Germany by the German
Science Foundation (Deutsche Forschungsgemeinschaft) and the Alexander
von Humboldt-Foundation, and it was funded in the United States by the

Preface xi

National Science Foundation, the Office of Naval Research, and the author’s
home institution, the University of Texas at Dallas.

The implementation of the theory in the Leibniz System was carried
out initially with private funds, and it was later funded with revenues
produced by the system.

Several people supported the development of the theory and the im-
plementation of the Leibniz System. First and foremost, we should men-
tion M. Grötschel, who, believing in our vision of a new computational
tool for logic computation, helped in numerous ways. A major portion of
the implementation effort was accomplished by R. Karpelowitz with ex-
emplary dedication and precision. Substantial help in various forms was
provided by J. N. Barrer, R. E. Bixby, M. Jünger, C. Ratliff, G. Rinaldi,
and D. K. Wagner.

Many persons assisted with the search for references—in particular,
E. Boros, R. Chandrasekaran, G. Cornuéjols, W. H. Cunningham, U. De-
rigs, J. V. Franco, G. Gallo, M. X. Goemans, P. L. Hammer, P. Hansen,
F. Harche, J. N. Hooker, B. Jaumard, H. Kleine Büning, B. Korte, O. Kull-
mann, D. W. Loveland, J. A. Makowsky, I. Mitterreiter, D. Pretolani,
G. Qian, G. Rago, A. Sassano, I. Schiermeyer, E. Speckenmeyer, I. H. Sud-
borough, R. P. Swaminathan, A. Tamir, and H. Zhang. The University of
Bonn and New York University assisted in the search for and verification
of reference material.

Typesetting was done in TEX. Spell and syntax checking was accom-
plished with the Laempel System for Intelligent Text Processing in an effi-
cient and untiring manner. We should mention that the latter system was
constructed in joint work with Y. Zhao, using the Leibniz System for the
processing of the numerous logic modules.

Alas, the checking of content still required human intellect, with much
assistance provided by G. Felici, G. Qian, E. Speckenmeyer, M. Stoer,
J. Straach, I. Truemper, and Y. Zhao.

The drawings were expertly done by Y. Zhao. Further help with the
processing of the drawings was provided by R. L. Brooks, G. Qian, G.
Rinaldi, and F.-S. Sun.

To all who gave so much support in so many ways, I express my sincere
thanks. This book and the Leibniz System could not have been created
without their help.

About the Revised Edition

The transfer of the copyright from John Wiley & Sons, Inc., to the author
made possible the issue of a revised edition where typographical errors have
been corrected. The revised edition can be distributed in electronic format
and may be printed for personal use without charge.

Chapter 1

Introduction

1.1 Overview

Theoretical results in computational complexity predict that computing in
logic is very difficult in general, even on very fast machines. However, that
negative conclusion leaves the door open for the existence of attractive or at
least reasonably effective solution algorithms for particular classes of logic
problems. A number of research programs have aimed at such solution
algorithms. Each one of those programs belongs to one of two categories.

In programs of the first category, algorithms and theories are desired
that handle broad problem classes. The size and complexity of the prob-
lem instances is such that researchers are willing to employ heuristic and
empirically based methods as part of the computing arsenal. Accordingly,
it typically is difficult to predict the performance of the algorithms. So one
accepts that a given algorithm may solve one instance very quickly, but
may not perform so well on another. There is nothing wrong with that
compromise. After all, if such an algorithm produces an important result
after extensive or even extraordinary computing effort, then this is good
news indeed.

Research programs of the second category focus on particular problem
classes and aim at results and theories that produce fast solution algo-
rithms, with guaranteed performance. Such algorithms are needed when-
ever the time available for the solution of the problem instances is severely
limited. Real-world logic situations often impose that constraint. In fact,
for real-time systems, it is mandatory that a solution be derived within a
guaranteed time interval.

1

2 Chapter 1. Introduction

The work of this book falls into the second category. The book presents
a new theory for logic computation that supports the construction of fast
solution algorithms, with guaranteed performance, for large classes of real-
world problems.

Prior work in this area concentrated almost exclusively on a few spe-
cial problem classes, plus some simple extensions. Real-world applications,
however, often lead to logic problems that do not fall into these classes or
extensions.

Much of the theory of this book has been used to create a commercially
available software system for logic programming. That software system is
called the Leibniz System, to honor the mathematician, physicist, engineer,
and philosopher G. W. Leibniz (1646–1716), who first proposed that logic
computations should be employed to solve real-world problems. To date,
the Leibniz System has been used to construct a large number of intelligent
computer systems. The excellent performance of these systems constitutes
empirical proof that the theory presented in this book is practical and
useful.

Logic Problems SAT and MINSAT

The logic problems considered in this book involve logic variables and
clauses. The variables can take on the values True and False. The clauses
follow a format called conjunctive normal form (CNF), where variables,
possibly negated, are joined by the logical “or.” Suppose certain True/False
values have been assigned to the variables. Declare a clause to have the
value True if some variable in the clause has the value True or some negated
variable in the clause has the value False. A clause with the value True is
also said to be satisfied. We consider two problem classes.

For logic instances of the first class, one must decide whether the
clauses can be satisfied. If this is so, one must provide an assignment of
True/False values to the variables proving that conclusion. The class of
these instances is called the satisfiability problem, abbreviated SAT.

The instances of the second class have variables and clauses like the
SAT instances, but also involve, for each variable, a rational nonnegative
number called the cost for that variable. The cost is incurred when one as-
signs the value True to the variable. The assignment of False does not entail
any cost. Given the variables, clauses, and costs, one must decide whether
the clauses are satisfiable. If this is so, one must obtain an assignment of
True/False values for the variables such that all clauses are satisfied and the
total cost of the assignment is minimum. The class of these logic instances
is called the minimum cost satisfiability problem, abbreviated MINSAT.

As an aside, the MINSAT condition that the costs for True values be
nonnegative and the costs for False be zero poses no substantive restriction,

1.1. Overview 3

since any instance with arbitrary costs for True and False values can be
readily transformed to an equivalent one satisfying the stated condition.

Encoding of SAT and MINSAT

The relationships between the variables and clauses of a SAT or MINSAT
instance can be conveniently encoded in a {0,±1} matrix, say, A, where
the columns of A represent the variables and the rows represent the clauses.
The entry of A in row i and column j is equal to 1 if the jth variable occurs
in the ith clause, is equal to −1 if the jth variable occurs negated in the
ith clause, and is 0 otherwise.

In the SAT case, the matrix A completely specifies the instance. In the
MINSAT case, we also need a vector, say, c, that contains the cost values.
The jth element of c is the cost of True for the jth variable. We combine
A and c to a matrix/vector pair (A, c) that contains all information about
the MINSAT instance.

SAT and MINSAT Problem Classes

A real-world logic application typically gives rise to a few, or at most several
dozen, SAT or MINSAT problem classes, each of which may be generated
by a two-step process. First, one defines one SAT instance A or MINSAT
instance (A, c). Second, one declares the class to consist of A or (A, c) as
well as all instances that may be obtained from A or (A, c) by the deletion
of rows and columns. We denote by A or (A, c) a typical instance of the
class.

Given the particular structure of the classes, it would seem possible,
indeed prudent, that we handle a given logic application by creating a
special solution algorithm for each SAT or MINSAT problem class of that
application. The theory for logic computation described in this book is
based on that idea.

Analysis Algorithm

A main result of this book is a scheme that investigates the structure of the
SAT instance A or MINSAT instance (A, c) defining a given class. Since
the scheme analyzes the combinatorial/logic structure of the given A or
(A, c), we call it the analysis algorithm. Based on the insight gained into
the structure of A or (A, c), the analysis algorithm assembles a solution
algorithm that correctly processes all instances A or (A, c) of the class.
The analysis algorithm also computes an upper bound on the run time of
the solution algorithm. That bound is valid regardless of the case of A

4 Chapter 1. Introduction

or (A, c) being solved, and it constitutes a performance guarantee for the
solution algorithm.

In the language of computer science, one may call the analysis algo-
rithm a compiler that accepts A or (A, c) as input and that outputs a
solution algorithm, together with a performance guarantee, for the SAT or
MINSAT problem class defined by A or (A, c).

Computational Complexity Versus Practical Utility

Computational complexity theory classifies SAT and MINSAT as difficult.
The precise term is NP-complete. For the moment, we leave that term
undefined and also do not go into the definition of polynomial time al-
gorithms. The classifications “NP-complete” and “polynomial time” are
based on an asymptotic viewpoint where the performance of algorithms is
evaluated as the size of the instances grows arbitrarily large. From that
position, polynomial time algorithms are considered to be attractive. On
the other hand, according to the present state of knowledge, NP-complete
problems are difficult.

In this book, we classify all algorithms according to these and re-
lated concepts. We point out, however, that these classifications are not
very helpful when one evaluates the practical utility of solution algorithms.
This is due to the fact that the real-world classes of SAT and MINSAT
instances that one wants to solve often are finite. Accordingly, the asymp-
totic viewpoint of computational complexity theory does not apply. For
example, consider the class of SAT or MINSAT instances having at most
10,000 variables and 10,000 clauses. A great many SAT and MINSAT in-
stances of real-world applications fall into that class. In fact, if one could
produce a fast solution algorithm for all such instances, it would be an
extraordinary achievement.

So how should one judge the practical utility of the theory described
in this book—in particular, the utility of the analysis algorithm? We know
of just one way. One should implement the analysis algorithm, apply it
to many real-world SAT and MINSAT problem classes, and evaluate the
performance bounds of the solution algorithms so produced. A number of
years ago we began that effort, and in the process we created the earlier-
mentioned Leibniz System. Using that system, we have produced solution
algorithms for hundreds of SAT and MINSAT problem classes arising from
practical applications. In almost all cases, the solution algorithm generated
by the Leibniz System turned out to have a small upper time bound and
thus was guaranteed to be fast. The implementation effort for the Leibniz
System had the negative effect of delaying publication of this book for
a number of years. But given the test results, we publish our work in
confidence, knowing that the ideas, results, and algorithms proposed here
are practical and useful.

1.2. History 5

1.2 History

This section points out key facts and results of the past that paved the way
for computing in logic or computational logic, as it is now called. Excellent
references are Newman (1956) and Kneale and Kneale (1984).

In the discussion below, we repeatedly refer to an “or” operator being
exclusive or inclusive. The exclusive “or” means “either . . . or . . . ,” and
the inclusive “or” means “. . . or . . . or both.”

We shall not attempt to even outline the roots of logic. Suffice it to
say that the Greeks—in particular, Aristotle (384–322 B.C.)—developed
logic to clarify discourse and to verify the correctness of mathematical
arguments. The results formulated at that time stood virtually unchanged
right up to the time of G. W. Leibniz (1646–1716), who developed several
versions of a calculus for logic.

Leibniz

In the first version of the logic calculus, Leibniz employed + and − as
operators. In today’s terminology, the + is the exclusive “or.” The −
operator is defined indirectly, by declaring that C = A−B if B and C have
nothing in common and A = B + C. These definitions cause difficulties.
For example, A + A makes sense only if A is nil, and A −B requires that
A subsumes B.

Leibniz eventually dropped the − operator and moved from + to a
more general ⊕ that supports two interpretations. In today’s language,
the axioms formulated by Leibniz for ⊕ permit interpretation as the logical
“and” or as the inclusive “or.” It is unfortunate that Leibniz permitted one
symbol to have these two interpretations. Had he employed two symbols,
he probably would have developed axioms linking the two concepts and
thus would have created the foundation for modern logic. As it was, that
development had to wait one hundred and fifty years.

Nevertheless, the results obtained by Leibniz for the ⊕ operator, as
well as his other far-ranging investigations and efforts that, for example,
produced a calculating machine for addition, subtraction, multiplication,
and division, propelled him to envision an encoding of human knowledge
and a computational process that would reduce rational discussions to mere
calculations. Thus, it is appropriate to consider Leibniz to be the father of
computational logic.

Boole

We move forward by one hundred and fifty years, to the time of G. Boole
(1815–1864). He created a calculus for logic that, in today’s terms, uses
the logical “and,” the exclusive “or,” and a certain inverse of that “or.”

6 Chapter 1. Introduction

We sketch Boole’s approach. He starts with classes having certain
features. Let x, y, z denote such classes. The universe of discourse is
denoted by 1, and the null class is denoted by 0. The class having the
features of both x and y is xy. For x and y with disjoint features, x + y

is the class where each element has either the features of x or those of y.
Finally, if z = x + y, then x = z − y is declared to hold.

Since 1 is the universe and 0 is the null class, 1x = x and 0x = 0. The
complement of x is 1 − x. Just as in the first calculus of Leibniz, these
definitions cause problems. But then Boole defines a specialized version by
adding the condition that each class must be equal to 0 or 1. This solves
the problems arising from subtraction. Boole handles the undefined x + x

by allowing integers larger than 1 during computations. The latter change
has the drawback that intermediate steps of calculations may not have an
interpretation in terms of classes. Nevertheless, Boole’s system makes logic
calculations possible.

Subsequently, Boole’s system was simplified. The symbol + was de-
clared to stand for the inclusive “or,” and the − operator was dropped.
That system is known today as Boolean algebra or propositional logic.

Frege, Russell, Whitehead, Hilbert, and Gödel

In terms of time, it is a short step from Boole to G. Frege (1848–1925), who
created a complete notation for mathematical logic. He used that notation
in far-ranging investigations. Today, Frege’s formulas would be called parse
trees of logic expressions. Such trees may be a bit cumbersome to typeset,
and they might have seemed strange to contemporaries. But they exhibit
the structure of logic expressions clearly and at least as well as the logic
notation in use today.

Frege envisioned that mathematics could be based on logic. He set out
to prove that conjecture in an extraordinary effort spanning many years.
His work contains many novel ideas. But later, B. Russell (1872–1970)
showed that the assumptions made by Frege contained a flaw.

A. N. Whitehead (1861–1947) and Russell successfully carried out
much of Frege’s plan and argued in a three-volume treatise called Prin-
cipia Mathematica that all of mathematics can be derived from logic. At
that time, it seemed that in principle one could derive all theorems of
mathematics by computation.

Subsequently, D. Hilbert (1862–1943) refined the axiomatic method,
introduced meta-mathematics, and hoped that with these tools one could
carry out a program that eventually would establish the consistency of most
if not all mathematical systems.

In 1931, K. Gödel (1906–1978) proved that the construction of White-
head and Russell cannot build all of mathematics and that Hilbert’s pro-
gram generally cannot be carried out. That result, called the incomplete-

1.3. Logic Problems 7

ness theorem, implies that one cannot systematically compute all theorems
of mathematics starting from some given axioms.

The availability of computers in the second half of the 20th century
raised the hope that computations in logic could be used to solve real-world
problems. Loveland (1984) gives a concise account of the developments
since the 1950s. The vision of effective logic computation is gradually being
translated into reality. We give an overview of the various approaches later,
once we have defined the logic problems to be considered.

1.3 Logic Problems

We discuss propositional logic, give precise definitions of the problems SAT
and MINSAT, and introduce first-order logic and related material.

Propositional Logic

Propositional logic consists of Boolean variables, which can take on the
values True and False, and the operators ¬ (denoting “not”), ∧ (denoting
“and”), and ∨ (denoting inclusive “or”). We skip the axioms of proposi-
tional logic, since they are discussed in Chapter 2.

CNF System

A conjunctive normal form system, abbreviated CNF system, is, for some
n ≥ 1, a logic expression of the form S1 ∧ S2 ∧ . . . ∧ Sn, where each Si

consists of possibly negated Boolean variables that are joined by ∨. An
example for Si is s1 ∨ ¬s2. Each Si is called a CNF clause, or simply a
clause for present purposes.

SAT and MINSAT

Suppose we assign True/False values to the variables of a CNF system
S. Declare a clause of S to be satisfied if the clause contains at least one
variable with the value True or at least one negated variable with the value
False. The CNF system S is satisfied if all clauses are satisfied.

Collectively, the CNF systems constitute the instances of the satisfia-
bility problem SAT. Given an instance S, one must find True/False values
for the variables of S such that S is satisfied or declare that no such val-
ues exist. In the former case, the True/False values constitute a satisfying
solution for S. In the latter case, S is unsatisfiable.

8 Chapter 1. Introduction

Suppose we assign to each variable of a CNF system a rational non-
negative cost, which is interpreted to be the cost of assigning True to the
variable. The assignment of False does not result in any cost. The CNF
systems with such costs are the instances of the minimum cost satisfiability
problem MINSAT. Given an instance of MINSAT, one must find a satis-
fying solution such that the total cost of the assignment is minimum or
declare the instance to be unsatisfiable.

Computational complexity theory classifies both SAT and MINSAT,
as well as several subclasses, as difficult; see Cook (1971), Garey and John-
son (1979), Blass and Gurevich (1982), Lichtenstein (1982), Tovey (1984),
Hunt and Stearns (1990), Kratochv́ıl, Savický, and Tuza (1993), Boros,
Crama, Hammer, and Saks (1994), and Kratochv́ıl (1994).

First-Order Logic

We move from propositional logic to first-order logic, defined as follows. Let
U be some nonempty set, called the universe. For any k ≥ 1, denote the
set {(u1, u2, . . . , uk) | ui ∈ U, for all i}, which is the product of k copies of

U , by
∏k

i=1
U . When k is small, we may denote

∏k

i=1
U by U×U× . . . ×U ,

with k U -terms. A predicate or truth function is a function p that, for some
k ≥ 1, takes the elements of

∏k

i=1
U to the set {True, False}.

Predicates are employed in connection with the universal quantifier ∀,
denoting “for all” or “for each,” and the existential quantifier ∃, denoting
“there exists.” Example statements involving these quantifiers and a pred-
icate p that takes the pairs of U × U to {True, False} are ∀x

(

∀y
[

p(x, y)
])

and ∀x
(

∃y
[

p(x, y)
])

, meaning “for all x ∈ U and for all y ∈ U , p(x, y)
holds” and “for each x ∈ U , there exists y ∈ U such that p(x, y) holds.”
Note the implicit use of U in each quantification.

We skip details of the construction of logic formulas of first-order logic.
It is covered in Chapter 2. Suffice it to say that the quantifiers ∀ and ∃ are
combined with the operators ¬, ∧, and ∨ of propositional logic.

Analogously to SAT and MINSAT, one may define a satisfiability prob-
lem and a minimum cost satisfiability problem of first-order logic.

In general, the universe U is considered to be infinite. When U is
restricted to be finite, the logic formulas can be restated as expressions
of propositional logic. Chapter 2 contains details. In this book, we only
consider the case of finite U . The satisfiability problem and the minimum
cost satisfiability problem of first-order logic then become the problems
SAT and MINSAT of propositional logic.

Other Types and Problems of Logic

There are many other types of logic—for example, nonmonotonic logic,
probabilistic logic, and logic under uncertainty. There are also a number of

1.4. Prior Results 9

logic problems besides SAT and MINSAT. Space constraints prohibit even
a cursory discussion of these logic types and problems. Details may be
found in Chang and Lee (1973), Loveland (1978, 1984), Hailperin (1986),
Genesereth and Nilsson (1987), Pearl (1988), Fitting (1990), Guan and Bell
(1991), Wos, Overbeek, Lusk, and Boyle (1992), Bibel (1993), and Nerode
and Shore (1993).

In this book, we shall not describe applications of computational logic,
since even a terse summary would require many pages and even at that
would fail to depict the richness and range of possibilities just for the
uses of SAT and MINSAT. Indeed, the word “applications” itself is too
restrictive. A better view is that, in almost any rational endeavor, some
reasoning is required and can be carried out by tools of logic.

1.4 Prior Results

Section 1.1 classifies research programs according to two categories. Pro-
grams of the first category deal with relatively large classes of logic prob-
lems. They aim at solution algorithms that need not have a good per-
formance guarantee. In contrast, programs of the second category only
consider solution algorithms with such a guarantee. In this section, we
outline prior approaches and results of the programs of both categories.
Since this book is concerned with the SAT and MINSAT problems, we re-
strict ourselves to solution methods for these problems. We begin with the
SAT case.

SAT Algorithms

The methods for SAT employed in research programs of the first category
can be classified as follows: resolution, enumeration, polyhedral techniques,
and encoding of solution space. For a comprehensive coverage of these
methods and variations, see Kleine Büning and Lettmann (1994).

We do not include here randomized or heuristic methods—for example,
the schemes proposed in Kamath, Karmarkar, Ramakrishnan, and Resende
(1990, 1992), Dubois and Carlier (1991), Koutsoupias and Papadimitriou
(1992), or Franco and Swaminathan (1997b)—since they may fail to solve
a given instance.

We first discuss resolution.

Resolution

It is convenient that we view each clause of a CNF system as a set which
contains the variables of the clause. For example, the CNF system (s1 ∨

10 Chapter 1. Introduction

¬s2) ∧ ¬s3 ∧ (s1 ∨ s4) becomes in set notation {s1,¬s2}, {¬s3}, {s1, s4}.
Note that the empty set corresponds to a clause without variables, called
the empty clause. Clearly, that clause cannot be satisfied.

Suppose y is a variable of a CNF system defined by sets C1, C2, . . . ,
Cn. Since any clause containing both y and ¬y always evaluates to True
and thus does not impose any restriction, we may assume that no such
clause is present. Hence, some of the clauses C1, C2, . . . , Cn contain y and
not ¬y, others contain ¬y and not y, and the remaining clauses do not
contain y or ¬y.

Suppose a clause Ci contains y, and a clause Cj contains ¬y. Using
Di = Ci − {y} and Dj = Cj − {¬y}, we define a new clause Di ∪Dj . The
derivation of Di ∪Dj from Ci and Cj is called resolution.

We claim that any satisfying solution for Ci and Cj also satisfies Di ∪
Dj . The proof is as follows.

If a satisfying solution for Ci and Cj has y = True , then the term ¬y

of Cj is False, and the fact that Cj is satisfied implies that Dj = Cj−{¬y}
is satisfied. Similarly, if y has the value False, then Di is satisfied. Thus,
no matter which value is assigned to y, we must have Di ∪Dj satisfied.

One may use resolution to reduce a given CNF system to one with
fewer variables that is satisfiable if and only if this is so for the original
CNF system. To eliminate one variable, say, y, we replace all clauses Ci

containing y and all clauses Cj containing ¬y by all possible clauses Di∪Dj

derivable by resolution. The above arguments prove that the new CNF
system is satisfiable if this is so for the original one. To show the converse,
let us assume that we have a satisfying solution for the new system. Thus,
all Di∪Dj are satisfied. But this implies that all Di or all Dj are satisfied.
Assume the former case. Then all clauses Ci = Di ∪ {y} are satisfied.
Using y = False, all clauses Cj = Dj ∪ {¬y} are satisfied as well. The case
where all Dj are satisfied is handled by y = True . Thus, in both cases, the
original CNF system is satisfied.

We combine the above resolution step for the elimination of variables
with elementary reduction steps to get a solution algorithm for SAT that
is usually called the resolution algorithm. The reductions are as follows.

If there is no clause at all, arbitrarily assign True/False values to the
variables, and declare the CNF system to be satisfiable. If there is an
empty clause, then declare the system to be unsatisfiable. If there is a
clause with just one variable y (resp. ¬y), then any satisfying solution
must have y = True (resp. y = False); hence, we assign the appropriate
value to y and reduce the system by deleting all satisfied clauses and all
occurrences of y or ¬y from the remaining clauses.

Davis and Putnam (1960) first proposed the above resolution algo-
rithm. For this reason, it is sometimes called the Davis–Putnam algorithm.
We should mention, though, that some authors use the name “Davis–
Putnam algorithm” for the enumerative method of the next subsection

1.4. Prior Results 11

and cite the Davis and Putnam (1960) reference. That use of the name
seems inappropriate, since the reference does not contain any enumerative
algorithms.

It is well known that the resolution method may be viewed as a spe-
cialization of an algorithm for solving linear inequalities called the Fourier–
Motzkin elimination method. For details about the latter method, see
Schrijver (1986).

The performance of the resolution algorithm generally is not good. The
main reason is that the elimination of variables may increase the number of
clauses rather substantially. For details, see Davis, Logemann, and Love-
land (1962), Tseitin (1968), Galil (1977a, 1977b), Ben-Ari (1980), Haken
(1985), Urquhart (1987), Buss and Turán (1988), Chvátal and Szemerédi
(1988), Hooker (1988a), Cook and Pitassi (1990), and Fouks (1992).

For additional material about resolution, see Chang (1970), Cook,
Coullard, and Turán (1987), Hooker (1988c, 1992, 1996), Kleine Büning
and Löwen (1989), Avron (1993), Goerdt (1992a, 1992b, 1993), Heusch
(1994), and Kullmann (1997a).

We should emphasize that Davis and Putnam (1960) do not employ
the term “resolution” in the description of their algorithm. That term and
the generalization of the above-described resolution step to the resolution
principle of first-order logic are due to Robinson (1965a, 1965b). One
cannot possibly overstate the importance of that seminal contribution. It
started an avalanche of research in computation for first-order logic. Since
in this book we confine ourselves to the SAT and MINSAT problems of
propositional logic, we omit discussion of the resolution principle and of
the many results based on it. The interested reader should consult the
books cited at the end of Section 1.3.

We digress for a moment. The resolution step is implicit in the system
of syllogisms of the Greeks. Various laws of propositional logic—to wit, the
laws of conjunction argument, constructive dilemma, destructive dilemma,
detachment (= modus ponens), and disjunctive inference, as well as the
chain rule (= law of the syllogism) and modus ponens—are nothing but
manifestations of resolution. Given that fact, we marvel at the persistence
with which some texts on logic or discrete mathematics ask the reader to
understand and differentiate among the cited laws, when it would suffice
just to introduce the unifying resolution step.

We turn to enumeration.

Enumeration

Algorithms based on enumeration use the same elementary reduction steps
as the resolution algorithm. However, the elimination of variables in the
latter method is replaced by a search that involves a rooted binary tree
where the two descendants of any node represent the fixing of some variable

12 Chapter 1. Introduction

to True and False. Thus, for any node other than the root, the unique path
from that node to the root corresponds to the fixing of certain variables to
True/False values.

With each node of the tree, we associate a CNF system. For the root
node, it is the original CNF system. For any other node, it is the CNF
system that is obtained from the original one by fixing variables as specified
by the path from the root to the given node.

In general, enumerative algorithms explicitly or implicitly construct
the tree, starting with the root node, until a satisfying solution is found
or unsatisfiability can be proved. There are numerous ways to carry out
that construction task, with attendant differences of computational effi-
ciency. The first such method is the Davis–Putnam–Logemann–Loveland
algorithm, for short DPLL algorithm; see Davis, Logemann, and Loveland
(1962). Since that time, numerous versions have been created. Recent re-
sults and related material are in Purdom (1984), Monien and Speckenmeyer
(1985), Blair, Jeroslow, and Lowe (1986), van Gelder (1988), Bugrara, Pan,
and Purdom (1989), Gallo and Urbani (1989), Iwama (1989), Jeroslow and
Wang (1990), Dubois (1991), Tanaka (1991), Billionnet and Sutter (1992),
Larrabee (1992), Letz, Schumann, Bayerl, and Bibel (1992), Hooker (1993),
Pretolani (1993a, 1996), Vlach (1993), Zhang (1993), Schiermeyer (1993,
1996), Gallo and Pretolani (1995), Hooker and Vinay (1995), Böhm (1996),
Böhm and Speckenmeyer (1996), Freeman (1996), Rodošek (1996), Zhang
(1996), Kullmann (1997b, 1997c), Kullmann and Luckhardt (1997), and
Rodošek and Schiermeyer (1997).

For probabilistic analyses of enumerative algorithms, see Brown and
Purdom (1981), Goldberg, Purdom, and Brown (1982), Franco (1983, 1986,
1991, 1993), Franco and Paull (1983), Purdom (1984, 1990), Purdom and
Brown (1985a, 1985b, 1987), Speckenmeyer, Monien, and Vornberger
(1988), Bugrara and Purdom (1988), Franco and Ho (1988), Bugrara, Pan,
and Purdom (1989), Iwama (1989), Dubois and Carlier (1991), and Speck-
enmeyer, Böhm, and Heusch (1997). For a comprehensive coverage of prob-
abilistic results, see Franco and Swaminathan (1997a).

We describe polyhedral techniques next.

Polyhedral Techniques

Section 1.1 refers to a matrix encoding of SAT and a matrix/vector en-
coding of MINSAT. We need details of that encoding to discuss polyhedral
methods.

Consider the single clause

(1.4.1) ¬x1 ∨ x2 ∨ x3 ∨ ¬x4

It evaluates to True if and only if x1 = False, or x2 = True , or x3 = True,

1.4. Prior Results 13

or x4 = False. Compare the clause of (1.4.1) with the inequality

(1.4.2) (−1) · (r1 − 1) + (+1) · r2 + (+1) · r3 + (−1) · (r4 − 1) ≥ 1

where r1, r2, r3, r4 are {0, 1} variables. That inequality is satisfied if and
only if r1 = 0, or r2 = 1, or r3 = 1, or r4 = 0.

Suppose that, for j = 1, 2, 3, 4, we affiliate xj = True (resp. xj =
False) with rj = 1 (resp. rj = 0). Then any solution satisfying the clause
(1.4.1) corresponds to a solution for the inequality (1.4.2), and vice versa.

We move the constant terms of the left-hand side of (1.4.2) to the
right-hand side and get

(1.4.3) (−1) · r1 + (+1) · r2 + (+1) · r3 + (−1) · r4 ≥ 1− 2

Let r be the column vector containing r1, r2, r3, r4. Define a matrix A by

(1.4.4) A = [−1, +1, +1,−1]

With that notation, the inequality (1.4.3) can be written as

(1.4.5) A · r ≥ 1− 2

Note that the 2 on the right-hand side corresponds to the number of −1s
in the single row of A.

We move from a single clause to a CNF system S with variables x1,
x2, . . . , xn and with m clauses. Define A to be the m × n matrix where
the entry in row i and column j is 1 if clause i contains xj , is −1 if clause
i contains ¬xj , and is 0 otherwise. Let r be the column vector containing
{0, 1} variables r1, r1, . . . , rn. Declare q(A) to be the integer m× 1 vector
whose entry in position i is equal to the number of −1s in row i of A. Let
1 denote any column vector containing just 1s.

Analogously to the earlier example, we associate the value True (resp.
False) for any xj with the value 1 (resp. 0) for rj . It is then easy to see
that True/False values for the xj satisfy the CNF system S if and only if
the corresponding {0, 1} vector r satisfies the inequality

(1.4.6) A · r ≥ 1− q(A)

Polyhedral methods decide satisfiability of a CNF system by deter-
mining whether the corresponding inequality (1.4.6) has a {0, 1} solution.
We sketch the main approach.

We relax the condition that r be a {0, 1} vector, and demand instead
that r be rational and satisfy 0 ≤ r ≤ 1. Let P (A) be the polyhedron given
by

(1.4.7) P (A) = {r | A · r ≥ 1− q(A); 0 ≤ r ≤ 1}

14 Chapter 1. Introduction

With these definitions, determining satisfiability for a CNF system
has become equivalent to deciding whether the corresponding polyhedron
P (A) contains an integer vector. The latter problem is a special version of
one of the core problems of polyhedral combinatorics where one must settle
whether an arbitrary rational polyhedron, which generally is defined by a
finite number of inequalities, contains an integer vector.

Polyhedral combinatorics was founded by J. Edmonds in the 1960s.
Since that time, several techniques have been developed to decide whether
a polyhedron contains an integer point. A good reference is Nemhauser
and Wolsey (1988). For early approaches concerning the SAT problem, see
Jeroslow (1989). Suffice it to say here that the presently most powerful
method, called branch and cut, reduces a given polyhedron by adding in-
equalities called cuts to those defining the polyhedron. The cuts do not
eliminate integer vectors of the polyhedron. If cuts cannot be found by a
reasonable computing effort, the method switches to enumeration, where
variables are fixed to integer values.

The general branch and cut method has been specialized for the poly-
hedron P (A). Relevant references are Blair, Jeroslow, and Lowe (1986),
Hooker (1988a, 1988b, 1988c, 1989, 1992, 1996), Hooker and Fedjki (1990),
and Jeroslow and Wang (1989).

Besides branch and cut, other methods of polyhedral combinatorics
have been used to decide whether P (A) contains an integer vector. For
example, see Harche, Hooker, and Thompson (1994), which is based on
Harche and Thompson (1994). Additional results concerning P (A) are in
Wang (1993). For a complete overview of polyhedral methods for P (A),
see Chandru and Hooker (1997).

Encoding of Solution Space

A given CNF system S may admit a great many satisfying solutions. But
that fact, by itself, does not imply that one cannot find a compact represen-
tation for these solutions. Bryant (1986) pursued that idea and produced
an impressive method for encoding the solutions.

The encoding scheme accepts any Boolean formula involving the op-
erators ¬, ∧, and ∨. Together with such a formula, an ordering of the
variables must be supplied. The scheme then encodes the solutions of the
given formula by a directed acyclic graph. Once that graph is at hand, the
satisfiability problem for the given formula is easily solved.

The size of the encoding graph generally depends not only on the
formula, but also on the ordering of the variables. In fact, for the same
formula, one ordering may produce a small graph, while another ordering
may result in a large graph.

Bryant (1986) does not supply a method for selecting an ordering of
the variables that produces a smallest encoding graph. However, Bryant

1.4. Prior Results 15

(1986) proves that the encoding scheme creates a graph that in a certain
sense is smallest for a given ordering of the variables.

Implementations and Tests

A number of implementations of the above methods exist. For details and
computational results, see Blair, Jeroslow, and Lowe (1986), Bryant (1986),
Hooker (1988a, 1993), Gallo and Urbani (1989), Hooker and Fedjki (1990),
Jeroslow and Wang (1990), Tanaka (1991), Billionnet and Sutter (1992),
Larrabee (1992), Letz, Schumann, Bayerl, and Bibel (1992), Buro and Klei-
ne Büning (1993), Pretolani (1993a, 1996), Vlach (1993), Zhang (1993),
Harche, Hooker, and Thompson (1994), Mayer, Mitterreiter, and Raderma-
cher (1995), Gallo and Pretolani (1995), Hooker and Vinay (1995), Böhm
(1996), Böhm and Speckenmeyer (1996), Crawford and Auton (1996), Free-
man (1996), Gent and Walsh (1996), Mitchell and Levesque (1996), Schrag
and Crawford (1996), Selman and Kirkpatrick (1996), and Selman, Mit-
chell, and Levesque (1996).

Most test problems of the cited references are either randomly gen-
erated or represent special combinatorial problems. The results do not
establish any one of the methods to be uniformly best. Instead, each one
of the methods works well on some classes of problems and does not per-
form so well on others. From our experience, the structure of SAT instances
arising from real-world problems typically is quite different from that of the
cited test instances. Hence, it is not clear how the various methods perform
on SAT instances of real-world problems.

So far, we have covered algorithms for the SAT problem produced by
research programs of the first category. We turn to research programs of
the second category. The SAT algorithms developed by these programs
apply to special SAT instances having a certain structure. We sketch the
cases below. Chapter 5 contains details and references.

There are three main classes of special SAT instances, plus some ex-
tensions. We describe the classes in terms of the earlier introduced repre-
sentation of SAT instances by matrices A.

2SAT Matrices

Matrices of the first class have at most two nonzero entries in each row.
The class of such SAT instances is called 2SAT.

Nearly Negative Matrices

Matrices of the second class have mostly −1s as nonzero entries. Specifi-
cally, each row has at most one 1. We call such matrices nearly negative.

16 Chapter 1. Introduction

The CNF systems giving rise to nearly negative matrices are usually called
Horn systems. A generalization of nearly negative matrices permits more
than one 1 in each row, but demands that a certain scaling operation be
able to convert a given matrix to a nearly negative one. We call such ma-
trices hidden nearly negative. The CNF systems producing such matrices
typically are called hidden or disguised Horn systems.

Balanced Matrices

Matrices of the third class are called balanced. They are defined by the
absence of certain submatrices that we shall not specify here. The reader
should consult Chapter 5 for details. That chapter also describes some
subclasses and extensions of the three matrix classes. Suffice it to say here
that fast recognition and solution algorithms exist for most of those classes,
subclasses, and extensions.

We have completed the presentation of solution approaches for the
SAT problem and turn to schemes for the MINSAT problem.

MINSAT Algorithms

There are few prior results for MINSAT except for one special subclass
called MIN2SAT where each matrix has 2SAT form. That subclass is
treated in Gusfield and Pitt (1992) and in Hochbaum, Megiddo, Naor,
and Tamir (1993).

However, a related logic problem called MAXSAT has been investi-
gated to quite an extent. A MAXSAT instance is a SAT instance where
a positive weight has been assigned to each clause. One must produce an
assignment of True/False values for the variables such that the total weight
of the satisfied clauses is maximum.

The MAXSAT problem is difficult; see Garey, Johnson, and Stockmey-
er (1976), Lieberherr and Specker (1981), Jaumard and Simeone (1987),
and Arora, Lund, Motwani, Sudan, and Szegedy (1992).

Research efforts for MAXSAT have produced exact as well as approx-
imation algorithms. Solution approaches typically rely on linear program-
ming, polyhedral methods, and network flow techniques. Some methods
have been devised for subclasses—in particular, for the subclass MAX2SAT
where each matrix has 2SAT form. For details, see Johnson (1974), Lie-
berherr and Specker (1981), Lieberherr (1982), Poljak and Turźık (1982),
Hansen and Jaumard (1990), Yannakakis (1992), Kratochv́ıl and Kr̆ivánek
(1993), Goemans and Williamson (1994, 1995), Feige and Goemans (1995),
Gallo, Gentile, Pretolani, and Rago (1997), and Cheriyan, Cunningham,
Tunçel, and Wang (1996). The approach of Gallo, Gentile, Pretolani, and
Rago (1997) relies on a hypergraph formulation that has been used by

1.5. Overall Approach 17

Carraresi, Gallo, and Rago (1993) and Rago (1994) for constraint logic
programming and first-order logic.

It is easy to show that each MAXSAT instance can be readily converted
to a MINSAT instance, and vice versa. Details are included in Chapter 2.
Thus, MAXSAT solution algorithms may be used to solve the MINSAT
problem. We should mention, though, that approximation algorithms for
MAXSAT generally are not useful for that purpose.

We have completed the overview of prior results for SAT and MINSAT.
In the next section, we outline the approach taken in this book to solve
these problems.

1.5 Overall Approach

Recall from Section 1.1 that real-world problems typically produce
SAT or MINSAT problem classes that may be constructed as follows. For
a given class, one first defines one SAT instance A or MINSAT instance
(A, c). Then one declares the class to contain A or (A, c) as well as all
instances that may be obtained from A or (A, c) by the deletion of rows or
columns. Let A or (A, c) denote an arbitrary instance of the class.

Our approach to solving the SAT or MINSAT instances of such a class
is as follows. We analyze the structure of the SAT problem A or of the
MINSAT problem (A, c) defining the class. Based on that analysis, we
construct a solution algorithm that can solve all instances of the class.
We also compute an upper time bound for the run time of the solution
algorithm. The analysis algorithm carries out these steps. The scheme
contains two groups of subroutines.

The subroutines of the first group determine whether a given A or
(A, c) has one of the special properties discussed in the previous section.
Specifically, in the SAT case, it is tested whether the given matrix A is in the
class 2SAT, is hidden nearly negative, or is balanced. In the MINSAT case,
it is checked whether the matrix A of the given matrix/vector pair (A, c)
is nearly negative or balanced. Note that the cited properties are inherited
under submatrix taking. So if A or (A, c) has one of the properties, then
this is so for all instances of the class defined by A or (A, c).

The subroutines of the second group carry out five decompositions that
break down a given A or (A, c). The components of each decomposition
are obtained from A or (A, c) by the deletion of some nonzero entries or by
submatrix taking; the latter step may be followed by the adjoining of some
rows and columns.

The analysis algorithm utilizes the subroutines of the two groups in
the following manner. Given A or (A, c), the analysis algorithms first tests
whether A or (A, c) has one of the special properties. If that is so, the known

18 Chapter 1. Introduction

solution algorithm for that case solves each A or (A, c) of the class. In
addition, the performance guarantee for the solution of A or (A, c) applies
to each A or (A, c) as well.

If A or (A, c) does not have one of the special properties, then the
analysis algorithm recursively searches for a decomposition of A or (A, c)
into components, which in turn are processed analogously to A or (A, c).

Upon termination of the decomposition process, the analysis algorithm
creates from the information on hand a solution algorithm that handles all
instances A or (A, c) derivable from A or (A, c), and it computes an upper
bound on the run time of that solution algorithm.

The above sketch of the analysis algorithm skips over a number of dif-
ficulties. For example, the decompositions must be so selected that they
are in some sense mathematically compatible. Also, the decomposition
process involves the solution of a number of combinatorial problems that
theoretically and practically are just as difficult as SAT or MINSAT. The
latter point may prompt the thought that the proposed method simply
trades the difficult SAT or MINSAT problem for an equally difficult prob-
lem. But that is not so. The original task is to solve the SAT or MINSAT
instances produced by a given A or (A, c). In contrast, the decomposi-
tion process demands that we find decompositions that, according to some
measure, are good but not necessarily optimal. That fact allows us to use
approximate or heuristic decomposition methods. We emphasize that each
solution algorithm derived from the decompositions is an exact method
that solves all SAT or MINSAT instances A or (A, c) arising from A or
(A, c) within the time guaranteed by the performance bound.

Validity of the subroutines of the analysis algorithm is proved with a
new algebra called system IB that is an extension of propositional logic.
The algebra uses three binary operators ⊙, ⊕, and ⊖; they carry out IB-
multiplication, IB-addition, and IB-subtraction, respectively.

The ⊙ operator takes {0,±1} valued α and β to {0, 1} valued α⊙ β.
Specifically, α⊙ β is 1 if α = β = 1 or α = β = −1, and it is 0 otherwise.
Let a value of 1 (resp. −1) for α or β represent the value True (resp. False).
Declare that a value of 1 (resp. 0) for α⊙β designates the value True (resp.
False). Then α ⊙ β is True if α and β are both True or both False, and
it is False otherwise. Thus, for α and β restricted to {±1} values, the ⊙
operator acts like the “if and only if” operator ⇔ of propositional logic.

The ⊕ operator takes {0, 1} valued α and β to {0, 1} valued α ⊕ β.
That is, α⊕β is 1 if α or β is 1, and it is 0 otherwise. Letting 1 denote True
and 0 denote False, α⊕β is True if α or β is True, and it is False otherwise.
Thus, ⊕ behaves like the inclusive “or” operator ∨ of propositional logic.

The ⊖ operator takes {0, 1} valued α and β to {0, 1} valued α ⊖ β.
Specifically, α⊖ β is 1 if α = 1 and β = 0, and it is 0 otherwise. Evidently,
the ⊖ operator is some sort of inverse of ⊕ and thus of the inclusive “or”
operator ∨ of propositional logic.

1.5. Overall Approach 19

As described in Section 1.2, both Leibniz and Boole defined a sub-
traction operator in connection with the exclusive “or.” That subtraction
operator was later dropped, and the exclusive “or” was replaced by the
inclusive “or.” Given that history, our reintroduction of a subtraction op-
erator, this time in connection with the inclusive “or,” might seem to be
a backward step. Indeed, how can it be that logic subtraction, discarded
long ago as not useful, suddenly has become important?

The reason is that Leibniz and Boole, and presumably subsequent
researchers, evaluated the utility of logic subtraction for logic equations.
In contrast, we use it in connection with inequalities involving the values
0 and 1, where, as expected, 1 is considered to be greater than 0. For
example, let α, β, and γ be {0, 1} variables. Direct checking verifies that,
according to the above definitions of ⊕ and ⊖, we have α ≥ (α ⊕ β) ⊖ β,
α ≤ (α⊖ β)⊕ β, and (α⊖ β)⊕ (β ⊖ γ) ≥ α⊖ γ. These useful inequalities
cannot be strengthened to become equations. For example, α ≥ (α⊕β)⊖β

holds as a strict inequality when α = β = 1.
But why are we interested in logic inequalities? The answer is that

both SAT and MINSAT may be formulated using matrix inequalities of
the form A ⊙ s ≥ b, where A is the {0,±1} matrix representing a CNF
system, b is a {0, 1} vector, and s is a {0,±1} vector. We skip details for
the time being and only mention that b defines which clauses of A must be
satisfied, that s is the solution vector, and that the matrix multiplication
⊙ is defined via the above ⊙ and ⊕ in the same way that the customary
matrix multiplication is defined via scalar multiplication and addition.

The representation of SAT and MINSAT by matrix inequalities over
the system IB supports the analysis of SAT and MINSAT instances with
certain tools of combinatorics. The underlying notion is to analyze the ma-
trix A using new concepts such as Boolean independence, Boolean rank, and
Boolean basis that are adaptations of familiar concepts of linear algebra.
These concepts are crucial for the approximation of features of inequalities
A⊙s ≥ b by combinatorial structures. For that purpose, we mainly employ
the ternary field GF(3), graphs, and matroids. The latter structures are a
generalization of matrices over fields and graphs. The links so established
between A⊙ s ≥ b and the cited combinatorial structures are the basis for
the decomposition process employed by the analysis algorithm.

The methods developed in this book for SAT and MINSAT can be
extended. The system IB can be generalized to the notion of ID-systems,
with attendant generalization of the operators ⊙, ⊕, and ⊖. Some combi-
natorial problems different from SAT and MINSAT may be formulated by
ID-systems, and then they may be treated analogously to SAT and MIN-
SAT. Chapter 4 includes details.

We conclude this section with a remark on our treatment of computa-
tional complexity.

The theory of computational complexity defines an algorithm that

20 Chapter 1. Introduction

produces “yes” or “no” as output to be polynomial time if the run time can
be bounded by a polynomial function of the length of the input string.

Since the subroutines employed by the analysis algorithm are often
complicated, we usually describe simplified versions that, at some loss of
efficiency, clearly exhibit the underlying principles and ideas. Accordingly,
we typically claim those subroutines to be polynomial time and omit details
about the bounding polynomial functions. It is easy to verify, though, that
any reasonable implementation of the subroutines leads to computationally
effective versions.

On the other hand, the solution algorithms constructed by the anal-
ysis algorithm are composed of conceptually simple subroutines. Without
loss of clarity, we can describe very efficient versions of those subroutines,
together with usually tight polynomial bounds on run time.

1.6 Reading Guide

We include a reading guide for the subsequent chapters. The material can
be grouped into four parts.

The first part, which consists of Chapters 2–4, describes relevant back-
ground material and basic results for the system IB.

Chapter 2 covers basic definitions concerning sets, logic, graphs, ma-
trices, and the computational complexity of algorithms.

Chapter 3 gives an introduction to a part of matroid theory.
Chapter 4 adapts concepts of linear algebra and matroid theory to the

matrices over the system IB.
For a first reading, the reader may want to scan the material of Chap-

ters 2–4 and skip all proofs.
The second part concerns special matrices over IB and consists of Chap-

ters 5–7.
Chapters 5 and 7 are essential for the subsequent developments.
In contrast, Chapter 6 deals with certain matrix characterizations that

are not needed in later chapters. It may be skipped during a first reading.
The third part describes a number of matrix decompositions and com-

positions and consists of Chapters 8–12. These chapters are largely inde-
pendent and may be read in any order.

The fourth part synthesizes the results of the second and third part
and consists of Chapters 13 and 14.

Chapter 13 develops the analysis algorithm.
Chapter 14 determines large matrix classes that may be efficiently

treated by the analysis algorithm.
The Subject Index should prove helpful as the reader navigates through

the material of the various chapters.

1.6. Reading Guide 21

So far, we have listed references together with the material under dis-
cussion. We change that approach in subsequent chapters, where we sum-
marize related results and references in one section at the end of each
chapter. That approach unclutters the technical presentation and makes it
easier for the reader to locate references concerning a given topic.

We are ready to delve into details. In the next chapter, we introduce
definitions utilized throughout the book.

Chapter 2

Basic Concepts

2.1 Overview

We cover basic definitions concerning sets, logic, graphs, matrices, and the
computational complexity of algorithms. For a first pass, the reader may
just scan the material.

Section 2.2 defines sets and related operations.
Section 2.3 discusses propositional logic and the problems SAT and

MINSAT.
Section 2.4 defines basic concepts of first-order logic and shows that

finite quantification reduces first-order logic to propositional logic.
Section 2.5 is an introduction to graph theory. Included are theorems

about graph connectivity and related algorithms.
Section 2.6 deals with matrices over some fields or over an algebra

called system IB.
Section 2.7 covers some elementary concepts of complexity theory—in

particular, the problem class NP and polynomial algorithms.
The final section, 2.8, lists references.

2.2 Sets

An example of a set is {a, b, c}, the set with a, b, and c as elements. With
two exceptions, all sets are assumed to be finite. The exceptions are the

22

2.3. Propositional Logic 23

set of real numbers IR and possibly the set of elements of an arbitrary field
F . Let S and T be two sets. Then S ∪T is {z | z ∈ S or z ∈ T}, the union
of S and T . The set S ∩ T is {z | z ∈ S and z ∈ T}, the intersection of S
and T . The set S − T is {z | z ∈ S and z /∈ T}, the difference of S and T .

Let T contain all elements of a set S. We denote this fact by S ⊆ T
and declare S to be a subset of T . We write S ⊂ T if S ⊆ T and S 6= T .
The set S is then a proper subset of T . The set of all subsets of S is the
power set of S. We denote by |S| the cardinality of S. The set ∅ is the set
without elements and is called the empty set.

The terms “maximal” and “minimal” are used frequently. The mean-
ing depends on the context. When sets are involved, the interpretation is
as follows. Let I be a collection, each of whose elements is a set. Then a
set Z ∈ I is a maximal set of I if no set of I has Z as a proper subset. A
set Z ∈ I is a minimal set of I if no proper subset of Z is in I.

2.3 Propositional Logic

In this section and the next one, we review elementary concepts of logic.
Here, we discuss propositional logic, which is concerned with results for
Boolean formulas, also called propositional formulas. These formulas are
constructed with Boolean or propositional variables, which are variables
restricted to the values True or False.

Construction of Boolean Formula

A Boolean variable is a variable that may take on just two values, True
or False. We construct Boolean formulas, which are logic expressions in-
volving Boolean variables, as follows. First, any Boolean variable by itself
is a Boolean formula. Let S and T be two Boolean formulas already con-
structed. Using the operators ¬ (denoting “not”), ∧ (denoting “and”),
and ∨ (denoting inclusive “or”), we obtain the following Boolean formulas:
¬(S), (S) ∧ (T), and (S) ∨ (T). The formula ¬(S) is the negation of S.
The formula (S) ∧ (T) (resp. (S) ∨ (T)) is the conjunction (resp. disjunc-
tion) of S and T . It is customary to omit parentheses when the intended
interpretation is obvious. Thus, we usually write ¬S, S ∧ T , and S ∨ T .

Literal

A Boolean variable may occur any number of times in a Boolean formula.
Each such entry, possibly negated, is a literal of the formula.

24 Chapter 2. Basic Concepts

Rules for ¬, ∧, and ∨

The commutative and associative laws hold for the binary operators ∧ and
∨. That is, for formulas R, S, and T , we have R∧S = S∧R, R∨S = S∨R,
R ∧ (S ∧ T) = (R ∧ S) ∧ T , and R ∨ (S ∨ T) = (R ∨ S) ∨ T . Due to these
facts, we may omit parentheses when Boolean formulas are combined only
by ∧ or only by ∨. For example, we may write R∧S ∧T and R∨S ∨T , or
even, for n ≥ 2 and Boolean formulas S1, S2, . . . , Sn,

∨n

i=1 Si and
∧n

i=1 Si.
The operator ∧ (resp. ∨) distributes over ∨ (resp. ∧). That is, for

formulas R, S, and T , we have R ∧ (S ∨ T) = (R ∧ S) ∨ (R ∧ T) as well as
R ∨ (S ∧ T) = (R ∨ S) ∧ (R ∨ T).

For the ¬ operator and two Boolean formulas S and T , we have the
equations ¬(S ∨T) = ¬S ∧¬T , ¬(S ∧T) = ¬S ∨¬T , and S = ¬(¬S). Re-
peated use of these relationships allows us to convert any Boolean formula
to one where the negation symbol is attached only to the Boolean variables,
without changing the number of literals. Unless stated otherwise, we as-
sume from now on that any given Boolean formula is of the latter form.
For example, for Boolean variables s1, s2, s3, s4, we have ¬

[

(s1 ∨ ¬s2) ∧

(¬s3 ∨ s4)
]

=
[

¬(s1 ∨ ¬s2)
]

∨
[

¬(¬s3 ∨ s4)
]

= (¬s1 ∧ s2) ∨ (s3 ∧ ¬s4).

CNF and DNF System

A conjunctive normal form (CNF) system is, for some n ≥ 1, the conjunc-
tion of Boolean formulas S1, S2, . . . , Sn, that is,

∧n

i=1 Si, where each Si is
the disjunction of possibly negated Boolean variables. Each Si is a CNF
clause. For example, (s1 ∨ ¬s2) ∧ ¬s3 ∧ (s1 ∨ s4) is a CNF system, with
CNF clauses s1 ∨ ¬s2, ¬s3, and s1 ∨ s4. Another example is s1 ∨ ¬s2, or
just s1, each consisting of just one CNF clause.

When we reverse the roles of disjunction and conjunction in a CNF
system, we obtain a disjunctive normal form (DNF) system. Thus, a DNF
system is a disjunction of the form

∨n

i=1 Si, where each Si is the conjunction
of possibly negated Boolean variables. Each Si is a DNF clause of the
system. An example DNF system is (s1 ∧¬s2)∨¬s3 ∨ (s1 ∧ s4), with DNF
clauses s1 ∧ ¬s2, ¬s3, and s1 ∧ s4.

In this book, we work almost exclusively with CNF systems, and thus
we omit the DNF case from the definitions to follow. For the same rea-
son, we often reduce the term CNF clause to just clause without risk of
confusion.

Set Notation for CNF System

CNF systems may be nicely recorded in set notation. Each clause is then a
set having the literals of the clause as elements. The fact that the clauses

2.3. Propositional Logic 25

of the CNF system are coupled by conjunction is not made explicit. For
example, the CNF system (s1∨¬s2)∧¬s3∧(s1∨s4) becomes in set notation
{s1,¬s2}, {¬s3}, {s1, s4}.

Empty Clause

We adapt the notion of empty set to the situation at hand and declare the
empty set to represent a clause without literals. Such a clause is said to be
empty.

Trivial and Empty CNF Systems

We permit, indeed prefer, explicit declaration of the Boolean variables as
part of the definition of any CNF system. An example of such a CNF
system is as follows. The Boolean variables are s1, s2, . . . , s5. The sets
representing the clauses are {s1,¬s2}, {¬s3}, {s1, s4}. Note that neither
s5 nor ¬s5 occurs in any of the clauses, an acceptable situation. Indeed, by
the separate specification of variables and clauses, the following degenerate
cases are possible. First, we may have variables but no clauses at all.
Second, we may have no variables, but do have one or more clauses, all of
which must be empty. Third, we may have no variables and no clauses.
In the first two cases the CNF system is trivial, and in the third one it is
empty.

At times, the explicit specification of Boolean variables of a CNF sys-
tem would result in a cumbersome description. In such situations, we omit
the explicit specification and implicitly assume that the list of Boolean
variables contains precisely the variables occurring in the clauses.

CNF Subsystem

Let S be a given CNF system. We reduce S to a CNF subsystem by deleting
clauses or variables. If a variable is being deleted, then all literals arising
from that variable must be deleted. A subsystem of S is proper if at least
one clause or variable has been deleted.

Value of Boolean Formula

Suppose True/False values have been assigned to the Boolean variables of
a Boolean formula. Then we compute a value of True or False for that
Boolean formula, using the steps of its construction as follows. Suppose
True/False values have already been determined for S and T . Then ¬S
has the value opposite to that of S; S ∧T has the value True if both S and

26 Chapter 2. Basic Concepts

T have the value True, and it has the value False otherwise; S ∨ T has the
value False if both S and T have the value False, and it has the value True
otherwise.

Two formulas are equal if for each possible assignment of values to the
Boolean variables, the two formulas have agreeing values. For example,
S = ¬(¬S).

At times, it is convenient to admit additional operators in Boolean
formulas—in particular, ⇐ (denoting “if”), ⇒ (denoting “only if”), and
⇔ (denoting “if and only if”). Examples with S and T as given Boolean
formulas are S ⇐ T , S ⇒ T , and S ⇔ T . The values for these formulas
are as follows. S ⇐ T is True if S is True or T is False, and it is False
otherwise; S ⇒ T is True if S is False or T is True, and it is False otherwise;
S ⇔ T is True if S and T have the same value, and it is False otherwise.

Any Boolean formula with ⇐, ⇒, or ⇔ is readily rewritten to an
equivalent one with just ¬, ∧, and ∨ using the relationships S⇒T =
¬S ∨ T , S⇐T = S ∨ ¬T , and S⇔T = (¬S ∨ T) ∧ (S ∨ ¬T). Hence, in
subsequent sections we often confine ourselves to Boolean formulas with
just the operators ¬, ∧, and ∨, and we leave it to the reader to fill in the
details for the cases of ⇐, ⇒, and ⇔.

Tautology and Contradiction

A Boolean formula S is a tautology (resp. contradiction) if for any assign-
ment of True/False values to the variables, the value of S is True (resp.
False). Evidently, S is a tautology if and only if ¬S is a contradiction.

Satisfiability

A Boolean formula S is satisfiable if there exists an assignment of True/
False values to the Boolean variables so that the value of S is True. By
that definition, a tautology is satisfiable, while a contradiction is unsatis-
fiable. Whether a given Boolean formula S is satisfiable or is a tautology
or contradiction, can in principle be decided by finite enumeration of all
possible True/False values for the Boolean variables of S and computation
of the corresponding values of S.

Theorem Proving

Suppose we have expressed the facts of a situation of interest by a Boolean
formula S. One sometimes says that S consists of axioms expressing some
facts of the situation. We want to know whether the axioms imply some
Boolean formula T . That is, we want to know whether S ⇒ T , which is
equal to ¬S ∨ T , is a tautology or, equivalently, whether R = ¬(S⇒T) =

2.3. Propositional Logic 27

¬(¬S ∨ T) = S ∧ ¬T is a contradiction. If this is so, we declare T to be a
theorem of S.

To investigate the question “Is T a theorem of S?” we check whether
R is unsatisfiable. If T is not a theorem, then any satisfying solution for
R certifies that T is not a theorem of S. One might also say that any
satisfying solution for R explains why T is not a theorem.

The reduction of the question “Is T a theorem of S?” to the satisfiabil-
ity question for R implies that the former question can always be decided
in a finite number of computational steps, using the earlier-mentioned enu-
merative method. Of course, we do not recommend that very inefficient
method for practical use.

SAT Problem

Define SAT to be the following problem involving satisfiability. Any CNF
system S is a problem instance. One must decide whether S is satisfiable.
In the affirmative case, one must also find an assignment of True/False
values for the Boolean variables of S so that the value of S is True. Since S
is a conjunction of CNF clauses, say, S =

∧n

i=1 Si, we may restate the latter
requirement as follows: We must produce an assignment of True/False
values for the Boolean variables of S such that each CNF clause Si has
the value True. When this has been accomplished, we say that the clauses
S1, S2, . . . , Sn are satisfied by the assigned True/False values, or that the
values for the Boolean variables constitute a satisfying solution for each Si

and thus for S.
We define the empty clause to be unsatisfiable. So if S contains at

least one such clause, then S is not satisfiable. In particular, if S is a
trivial CNF system and has no variables but does have clauses, all of which
must be empty, then S is unsatisfiable. On the other hand, if S has no
clause at all, then we define S to be satisfiable. In the latter case, S must
be a trivial CNF system that has variables but no clauses, or it must be
the empty CNF system.

The earlier-discussed theorem-proving problem and the SAT problem
are intimately connected. Recall that in the general theorem-proving prob-
lem we are given Boolean formulas S and T and must show whether T
is a theorem of S or, equivalently, whether R = S ∧ ¬T is unsatisfiable.
We see in the next subsection that any such theorem-proving problem can
be efficiently reduced to an instance of SAT. At this time, we examine a
special case of S and T that turns out to be particularly important.

Specifically, we assume S to be a CNF system and suppose T to be
a CNF clause, say, T = (

∨m

j=1 sj) ∨ (
∨n

j=1 ¬tj). Now R = S ∧ ¬T =

S∧(
∧m

j=1 ¬sj)∧(
∧n

j=1 tj) is a CNF system. Indeed, any satisfying solution
for R must obey s1 = s2 = . . . = sm = False and t1 = t2 = . . . = tn = True.

28 Chapter 2. Basic Concepts

Hence, we assign False to s1, s2, . . . , sm and True to t1, t2, . . . , tn. This
assignment allows us to reduce the satisfiability problem for R as follows.

Consider the clauses of R containing at least one literal of the form
¬s1, ¬s2, . . . , ¬sm, t1, t2, . . . , or tn. Those clauses are obviously satisfied,
since s1 = s2 = . . . = sm = False and t1 = t2 = . . . = tn = True , and
we may delete them from R. From the remaining clauses of R, we delete
all literals of the form s1, s2, . . . , sm, ¬t1, ¬t2, . . . , or ¬tn, since they are
irrelevant for satisfiability of R. The resulting CNF subsystem of R is a
subsystem of S, and that subsystem is satisfiable if and only if this is so
for R. Evidently, we have transformed the question “Is T a theorem of
S?” to the satisfiability question for a subsystem of S. So if we have a
fast computational method for solving the satisfiability problem for any
subsystem of S, then that method may be used to answer quickly, for any
CNF clause T , the question “Is T a theorem of S?” We record this simple
but crucial observation in the following lemma.

(2.3.1) Lemma. Let S be a CNF system, and let T be a CNF clause.
Then T is a theorem of S if and only if a certain subsystem of S, which
depends on T , is unsatisfiable.

SAT Equivalence

A Boolean formula and a CNF system are SAT equivalent if both are sat-
isfiable or both are unsatisfiable. One may convert any Boolean formula
efficiently to a SAT equivalent CNF system that is not much larger than
the given formula as follows.

We need the concept of representation for a Boolean formula R and a
CNF system R̃. We say that R̃ represents R if the following holds. Let R
have Boolean variables r1, r2, . . . , rm. The CNF system R̃ must contain
these variables, plus auxiliary Boolean variables, say, w1, w2, . . . , wk, for
some k ≥ 1. Suppose one assigns True/False to the Boolean variables
r1, r2, . . . , rm of R and R̃. We then must be able to extend this partial
assignment for R̃ to a satisfying solution for R̃ by a unique assignment
of True/False to the auxiliary variables w1, w2, . . . , wk. In particular,
the auxiliary variable wk must receive the value True if and only if the
True/False values for r1, r2, . . . , rm constitute a satisfying solution for R.
For this reason, we call wk the key variable of R̃.

We next determine a representing CNF system R̃ when R is just r
or ¬r. We declare R̃ to have the variable r and an auxiliary variable w,
which also serves as the key variable. Consider the case where R is the
Boolean formula r. Since r⇔w = (¬r ∨ w) ∧ (r ∨ ¬w), the CNF system
(¬r ∨ w) ∧ (r ∨ ¬w) is readily checked to represent R, and thus it will do
for R̃. If R is the Boolean formula ¬r, we take R̃ to be the CNF system
(r ∨ w) ∧ (¬r ∨ ¬w).

2.3. Propositional Logic 29

We proceed inductively, assuming that we have CNF systems S̃ and
T̃ representing Boolean systems S and T , respectively. We want a CNF
system R̃ representing R = S ∧ T . Let s1, s2, . . . , sm (resp. t1, t2, . . . ,
tn) be the Boolean variables of S (resp. T), and let u1, u2, . . . , uk (resp.
v1, v2, . . . , vl) be the auxiliary variables of S̃ (resp. T̃), with uk (resp. vl)
serving as key variable. Evidently, s1, s2, . . . , sm, t1, t2, . . . , tn are the
Boolean variables of R.

We define the CNF system R̃ as follows. First, R̃ contains the Boolean
variables s1, s2, . . . , sm, t1, t2, . . . , tn. Second, R̃ has u1, u2, . . . , uk, v1,
v2, . . . , vl plus a new variable w as auxiliary Boolean variables. The variable
w is the key variable of R̃. The clauses of R̃ consist of those of S̃ and T̃ ,
plus the clauses of a small CNF system R that is equal to w ⇔ (uk ∧ vl).
Since w⇔ (uk∧vl) =

[

¬w∨(uk∧vl)
]

∧
[

w∨(¬uk∨¬vl)
]

= (¬w∨uk)∧(¬w∨

vl)∧ (w∨¬uk ∨¬vl), we take R as (¬w∨uk)∧ (¬w∨ vl)∧ (w∨¬uk ∨¬vl).

We prove that R̃ represents R. Let arbitrary True/False values be
assigned to the Boolean variables s1, s2, . . . , sm, t1, t2, . . . , tn of R and R̃.
Assign the same values to s1, s2, . . . , sm of S and to t1, t2, . . . , tn of T . By
induction, there exist unique True/False values for the auxiliary variables
u1, u2, . . . , uk of S and v1, v2, . . . , vl of T such that satisfying solutions
are at hand for S̃ and T̃ . Furthermore, the key variable uk of S (resp. vl

of T) must have the same value as S (resp. T). Thus, R = S ∧ T has the
same value as uk ∧ vl.

Since R̃ contains all clauses of S̃ and T̃ , the True/False values so
far assigned to s1, s2, . . . , sm, t1, t2, . . . , tn of R̃ may be extended to a
satisfying solution of R̃ only if the auxiliary variables u1, u2, . . . , uk, v1,
v2, . . . , vl are fixed to the values just determined for S̃ and T̃ . To satisfy
the remaining clauses, which have been deduced from w ⇔ (uk ∧ vl), we
must assign the value of uk ∧ vl to the key variable w. Since w, uk ∧ vl,
and S ∧ T have the same value, w has the same value as R = S ∧ T , and
we are done.

By almost identical arguments, one may derive a representing system
R̃ for the case R = S ∨ T . Indeed, the only change occurs in the definition
of R, which now must be deduced from w ⇔ (uk∨vl). Since w⇔ (uk∨vl) =
[

¬w∨ (uk∨vl)
]

∧
[

w∨ (¬uk∧¬vl)
]

= (¬w∨uk∨vl)∧ (w∨¬uk)∧ (w∨¬vl),

the CNF system (¬w ∨ uk ∨ vl) ∧ (w ∨ ¬uk) ∧ (w ∨ ¬vl) will do for R.

We are ready to produce a SAT equivalent CNF system, say, R̂, for a
given Boolean formula R. We use the construction sequence for R to derive
a representing CNF system R̃ for R, say, with key variable w. The details
for each construction step of the sequence have just been shown. Finally,
we add the clause w to R̃ to get R̂. Since w is the key variable of R̃, the
CNF system R̂ is satisfiable if and only if this is so for R.

If R has N literals, then the above method produces a SAT equivalent
CNF system R̂ with less than 11·N literals. This bound can be significantly

30 Chapter 2. Basic Concepts

reduced when one employs a slightly more complicated method that avoids
the inefficient processing of Boolean formulas with just one variable and
that exploits specific structural properties of the formula R. We leave it to
the reader to work out the details.

We have proved that the satisfiability problem for Boolean formulas
can be efficiently transformed into one for CNF systems, that is, into the
SAT problem. This fact implies that the theorem-proving problem involv-
ing Boolean formulas can also be transformed into the SAT problem.

MINSAT and MAXSAT Problems

MINSAT and MAXSAT are closely related variations of SAT. A problem
instance of MINSAT (resp. MAXSAT) consists of a CNF system S, say,
with Boolean variables s1, s2, . . . , sn and clauses S1, S2, . . . , Sm, plus
rational nonnegative costs c1, c2, . . . , cn (resp. weights d1, d2, . . . , dm)
associated with the variables (resp. clauses). For the MINSAT instance,
one must decide whether the clauses are satisfiable; in the affirmative case,
one must produce a satisfying solution that minimizes the total cost of the
variables to which the value True has been assigned. For the MAXSAT
instance, one must determine True/False values for the variables so that
the total weight of the satisfied clauses is maximized.

Any MINSAT instance is readily converted into a MAXSAT instance,
and vice versa. We use the above notation to present details.

Let an instance of MAXSAT be given. For i = 1, 2, . . . , m, we augment
the clause Si to S′i = (Si ∨ ui), where ui is a new Boolean variable. For
i = 1, 2, . . . , m, we assign a cost ci = di to variable ui. The original
variables s1, s2, . . . , sn receive a cost of 0. The resulting CNF system S′

is a satisfiable instance of MINSAT. It is easily verified that the values for
s1, s2, . . . , sn of a solution for that MINSAT instance constitute a solution
for the original MAXSAT instance.

Now let an instance of MINSAT be given. The equivalent MAXSAT
instance has the clauses S1, S2, . . . , Sm, each with weight (

∑n

j=1 cj)+1, plus
n new clauses ¬s1, ¬s2, . . . , ¬sn with weights c1, c2, . . . , cn, respectively.
It is easy to see that any solution for the MAXSAT instance satisfying the
clauses S1, S2, . . . , Sm is one for the original MINSAT instance. Further-
more, if the solution of the MAXSAT instance does not satisfy one or more
of the clauses S1, S2, . . . , Sm, then the MINSAT instance is unsatisfiable.

According to the above discussion, any solution algorithm for MINSAT
may be used to solve MAXSAT with essentially the same efficiency, and
vice versa. Thus we may confine ourselves to the MINSAT problem without
loss of generality.

MINSAT is obviously useful when a logic formulation involves costs.
But there are other applications for MINSAT as well. We discuss an im-
portant case next. Let S be a CNF system, with variables s1, s2, . . . , sn

2.4. First-Order Logic 31

and t1, t2, . . . , tk. For some disjoint subsets J+, J− of {1, 2, . . . , n} and
for l = 1, 2, . . . , k, let Tl be the statement [(

∧

j∈J+ sj)∧(
∧

j∈J− ¬sj)] ⇒ tl,
which is equal to the CNF clause [(

∨

j∈J+ ¬sj)∨ (
∨

j∈J− sj)]∨ tl. We want
to prove which of the statements T1, T2, . . . , Tk are theorems of S. If one
uses the earlier described method, k SAT instances must be solved. In an-
other approach using MINSAT, one assigns a cost of 1 to t1, t2, . . . , tk and
a cost of 0 to the remaining variables s1, s2, . . . , sn. Finally, one fixes the
sj , j ∈ J+, to True and the sj, j ∈ J−, to False. If the resulting MINSAT
instance is unsatisfiable, then each Tl is a theorem of S. So assume that a
MINSAT solution exists that, for some partition L+, L− of {1, 2, . . . , k},
assigns True to tl, l ∈ L+, and assigns False to tl, l ∈ L−. That solution
proves that the Tl, l ∈ L−, are not theorems of S, while the Tl, l ∈ L+,
may be theorems. We decide which of the Tl, l ∈ L+, are theorems of S
by solving |L+| SAT instances as described earlier. Note that by solving
one MINSAT instance we implicitly have solved |L−| SAT instances. So if
the MINSAT instance is about as difficult to solve as any one of the SAT
instances and if we can expect |L−| to be large, as is the case in many
real-world situations, then the MINSAT approach is very effective.

2.4 First-Order Logic

First-order logic is an extension of propositional logic. It relies on predi-
cates, also called truth functions, plus universal and existential quantifica-
tion.

Predicate

Let U be some nonempty set, called the universe. In general, U is taken
to be infinite. For any k ≥ 1, denote the set {(u1, u2, . . . , uk) | ui ∈

U, for all i}, which is the product of k copies of U , by
∏k

i=1 U . When k

is small, we may denote
∏k

i=1 U by U × U × · · · × U , with k U -terms. A
predicate or truth function is a function p that, for some k ≥ 1, takes the
elements of

∏k

i=1 U to the set {True, False}.

Universal and Existential Quantification

Predicates are employed in connection with the universal quantifier ∀, de-
noting “for all” or “for each,” and the existential quantifier ∃, denoting
“there exists.” Example statements involving these quantifiers and a pred-
icate p that takes the pairs of U × U to {True, False} are ∀x

(

∀y
[

p(x, y)
])

and ∀x
(

∃y
[

p(x, y)
])

, meaning “for all x ∈ U and for all y ∈ U , p(x, y)
holds” and “for each x ∈ U , there exists y ∈ U such that p(x, y) holds.”
Note the implicit use of U in each quantification.

32 Chapter 2. Basic Concepts

Construction of Formula

Analogously to the case of Boolean formulas, a simple construction rule
creates all possible formulas of first-order logic as follows.

First, any Boolean variable or predicate constitutes a formula. In
the predicate case, each variable occurring as part of an argument of the
predicate is free.

Second, let S and T be formulas. Then ¬(S), (S)∧ (T), and (S)∨ (T)
are all formulas. Any free variable of S is also free in ¬(S), and any free
variable of S or T is also free in (S) ∧ (T) and (S) ∨ (T).

Third, let x be a free variable of a formula S. Then ∀x(S) and ∃x(S)
are formulas, with free variables as in S except for x.

Fourth, the construction process is allowed to stop only if the formula
at hand has no free variables. Such a formula is completed.

As for the propositional case, we omit parentheses when the interpre-
tation is obvious. For example, we may write ¬S, S ∧ T , S ∨ T , ∀x p(x),
or ∃x p(x).

We omit discussion of the conditions under which a completed formula
T is considered to be a theorem of a completed formula S. We also skip
computational aspects concerning verification of such conditions. Suffice
it to say that one can always prove in a finite number of computational
steps that T is a theorem of S if this is so. On the other hand, there
is no algorithm that in finite time confirms T to be not a theorem of S,
for all cases of S and T where this is so. Due to the latter result and
other practical considerations that we shall not elaborate on here, we now
restrict the universe U by requiring it to be always finite. Indeed, instead
of assuming each quantification term to implicitly involve U , we permit
specification of a particular finite set with each such term. The construction
rule for completed formulas is easily amended to accommodate this change.
That is, any term ∀x (resp. ∃x) is replaced by ∀x ∈ X (resp. ∃x ∈ X) using
some subset X of the finite set U . As before, we declare the outcome of a
sequence of construction steps, with finite quantification, to be a completed
formula.

Transformation to Boolean Formula

A completed formula with finite quantification is easily translated to a
Boolean formula by replacing any term of the form ∀x ∈ X (resp. ∃x ∈ X)
by

∧

x∈X (resp.
∨

x∈X). For example, the formula ∀x ∈ X
[

∃y ∈ Y p(x, y)
]

becomes the Boolean formula
∧

x∈X

[
∨

y∈Y p(x, y)
]

.
To any Boolean formula so produced, we may apply the results of

the preceding section. In particular, whether a completed formula T is a
theorem of a completed formula S can always be settled in finite time, in
contrast to the general situation of first-order logic discussed earlier.

2.5. Graphs 33

The switch to finite quantification permits an extension of the quan-
tification concept. For presentation of an example, we consider the formula
∀x ∈ X

[

∀y ∈ Y p(x, y)
]

. According to the above rule, the corresponding
Boolean formula is

∧

x∈X,y∈Y p(x, y). Suppose we want to impose a restric-
tion on x and y by demanding (x, y) ∈ Z, for some subset Z ⊆ X × Y .
Then the Boolean formula becomes

∧

x∈X,y∈Y,(x,y)∈Z p(x, y). The example
is an instance of restricted finite quantification, a useful notion for compact
modeling of real-world situations.

2.5 Graphs

A graph is given by a set of nodes and a set of edges. In principle, any edge
may be directed or undirected, but here we only deal with graphs where all
edges are either directed or undirected. In the former (resp. latter) case,
the graph is directed (resp. undirected). For example, the graph

(2.5.1)

1

2 4 5 6

3

Directed graph

has nodes 1, 2 . . . , 6 and various directed edges connecting them. The
undirected version of that graph is

(2.5.2)

1

4 5 62

3

Undirected graph

A directed edge, say, going from node i to j, is specified by the ordered pair
(i, j). In the undirected case, the edge is also specified by the pair (i, j),
but this time the pair is considered unordered. In either case, i and j are

34 Chapter 2. Basic Concepts

the endpoints of the edge and are adjacent. Each one of the nodes i and j
covers the edge (i, j). In turn, the edge (i, j) is incident at i and j. Nodes
are also called vertices or points. Edges are also referred to as arcs.

We rarely consider graphs with loops, which are edges with just one
endpoint. Loops may be directed or undirected. Unless stated otherwise,
we assume that graphs do not have loops.

Suppose that several edges connect two nodes where the edges have
the same direction if they are directed, or that more than one loop is
incident at a node. The above notation cannot handle these situations.
We then implicitly assume that a refined notation is used, say, involving
an additional index, to differentiate among these edges.

Complete Graph

The undirected graph with n ≥ 2 vertices and with every two vertices
connected by an edge is denoted by Kn. It is the complete graph on n
vertices. Small cases of Kn are as follows.

(2.5.3)

K2 K3 K4 K5

Small complete graphs

Bipartite Graph

A graph is bipartite if its node set can be partitioned into two nonempty
subsets such that every edge connects a node of one of the sets with a node
of the other set. A bipartite graph may be directed or undirected. The
complete bipartite graph Km,n is undirected, has m nodes on one side and
n on the other one, and has all possible edges. Small cases are as follows.

(2.5.4)

K1,1 K2,1 K2,2 K3,1 K3,2 K3,3

Small complete bipartite graphs

Evidently, K1,1 is the complete graph K2.

2.5. Graphs 35

Bipartite graphs may be viewed as one way of encoding matrices. De-
tails are presented in Section 2.6. For the time being, we only note that in
such an encoding one of the two node subsets of the bipartite graph corre-
sponds to the rows of the matrix, while the other node subset corresponds
to the columns. Accordingly, one of the two node subsets contains the
row nodes of the graph, and the other one contains the column nodes. As a
matter of consistency and simplicity, we use the terminology of row/column
nodes for the two node subsets of a bipartite graph even if a matrix has
not been a priori specified.

In a labeled, directed, bipartite graph, each arc has been assigned 1
or 2 as label. We only consider such graphs in connection with matrices.
Details are included in Section 2.6.

Deletion and Addition

The deletion of an edge is the removal of that edge from the graph. The
deletion of a node involves the removal of the node and of its incident edges.
The inverse of deletion is addition. In the case of a node addition, the edges
incident at the new node must also be specified.

Contraction and Expansion

The contraction of an edge (i, j) is the collapsing of (i, j) to one point.
The endpoints i and j of the edge become one node. If some other edge
also connects i and j, then the contraction of (i, j) converts that edge to
a loop. An expansion by an edge is the inverse of contraction. Thus, we
split a node k into two new nodes, say, i and j, assign each edge previously
incident at k to i or j according to some rule, and finally connect i and j
by the new edge specified in the expansion step.

Our notation for nodes is not designed to accommodate complicated
contraction or expansion sequences. But we rarely make use of those oper-
ations, so our admittedly cumbersome way of handling the corresponding
changes of the node labels suffices for our purposes.

Graph Minor

Any sequence of deletions and contractions reduces a given graph to a graph
minor. It is easily checked that the same minor results if the sequence is
reordered, provided that one selects node labels for the new nodes produced
by the contractions in a consistent manner. As a matter of convenience,
we declare G also to be a minor of G. All other minors of G are proper.

Let G be a graph, and suppose V and W are disjoint edge subsets of
G. Then G/V \W is the minor obtained from G by contraction of the edges
of V and deletion of the edges of W .

36 Chapter 2. Basic Concepts

Degree, Indegree, and Outdegree

The degree of a node is the number of incident edges. In the directed graph
case, the indegree (resp. outdegree) of a node is the number of edges entering
(resp. leaving) that node. A node is isolated if it has no edges incident.

Subgraph

Let G be a graph with node set V and edge set E. A subgraph of G is
obtained by the deletion of some edges and nodes. A subgraph is proper
if it is produced by the deletion of at least one edge or node. Let V be
a subset of V , and let E be a subset of E. Suppose we delete from G all
nodes of V − V . The result is the subgraph induced by the node subset
V . Now suppose we delete from G all nodes having only edges of E − E
incident and then delete all remaining edges of E − E. The result is the
subgraph induced by the edge subset E.

Analogously to the use of “maximal” and “minimal” for sets, we use
these terms in connection with graphs as follows. Suppose certain sub-
graphs of a given graph G have a property P, while others do not. Then
a subgraph H is a maximal subgraph of G with respect to P if no other
subgraph has P and has H as proper subgraph. A subgraph H of G is a
minimal subgraph of G with respect to P if no proper subgraph of H has
P.

Path

Suppose we walk along the edges of a graph starting at some node s, never
revisit any node, and stop at a node t 6= s. The set P of edges we have
traversed is a path from s to t. The nodes of the path are the nodes of the
graph we encountered during the walk. The nodes s and t are the endpoints
of P . The length of the path P is |P |. If the underlying graph is directed
and if during the walk from s to t the direction of each edge agrees with
the direction of the walk, then P is a directed path from s to t. Two paths
are node-disjoint if they do not share any nodes. Two paths with the same
endpoints are internally node-disjoint if they do not share any nodes except
for the endpoints.

Define the empty set to represent a path that consists of just one node
s. The context will make clear which node s is meant. If the underlying
graph is directed (resp. undirected), the path is considered directed (resp.
undirected).

Later in this chapter, the statement of Menger’s theorem relies on
a particular fact about the number of internally node-disjoint paths con-
necting two nodes. If the two nodes, say, i and j, are adjacent, then that

2.5. Graphs 37

number is unbounded, since we may declare any number of paths to consist
of just the edge connecting i and j. Evidently, these paths are internally
node-disjoint.

Connected Component

A graph is connected if, for any two vertices s and t, there is a path from
s to t. The connected components of a graph are the maximal connected
subgraphs.

A directed graph is strongly connected if for any two nodes i and j,
there are directed paths from i to j and from j to i. Each maximal strongly
connected subgraph of a directed graph is a strong component. Clearly, each
strong component of a directed graph is induced by some node subset of
the graph and has no node in common with any other strong component.
A strong component of a bipartite graph consists of a row node, or of a
column node, or of at least one row node and at least one column node.

A node whose deletion increases the number of connected components
is an articulation point.

Cycle

Imagine a walk as described above for the path definition, except that we
return to s. The set C of edges we have traversed is a cycle. The length of
the cycle is |C|. Analogously to the path case, the cycle is directed if one
can traverse it so that the direction of each edge agrees with the direction
of the walk. Note that a loop is a cycle of length 1. In contrast to the path
case, we do not interpret the empty set as some sort of cycle.

A directed graph is acyclic if it does not contain any directed cycles.
Evidently, each node of an acyclic graph is a strong component of that
graph. Define two nodes of an acyclic graph to be incomparable if they are
not connected by a directed path. Declare a collection of directed paths of
an acyclic graph to cover the nodes of the graph if each node occurs in at
least one of the paths.

A chord of a cycle or path H is an edge incident at two nodes i and j
of H that are not connected by an edge of H.

In a slight abuse of language, we say at times that a connected graph
G is a cycle or a path, meaning that the edge set of G is a cycle or path of
G. We employ terms of later defined edge subsets such as trees and cotrees
similarly. We may say, for example, that a connected graph G is a tree or
cotree, meaning that the edge set of G is a tree or cotree. The reader may
wonder why we introduce such inaccuracies. We must describe a number
of diverse graph operations that are not easily expressed with one simple
set of terms. So either we tolerate a slight abuse of language, or we are

38 Chapter 2. Basic Concepts

forced to introduce a number of different terms and sets. We have opted
for the former solution in the interest of simplicity and clarity.

Wheel Graph

A wheel is an undirected graph consisting of a rim and spokes. The rim
edges define a cycle, and the spokes are edges connecting an additional
node with each node of the rim. The wheel with n spokes is denoted by
Wn. Small wheels are as follows.

(2.5.5)

W1 W2 W3 W4

Small wheels

Evidently, W3 is the complete graph K4.

Tree, Cotree, and Forest

A tree is the edge set of a connected graph without cycles. Note that a tree
is the empty set if and only if the graph consists of one node. A spanning
tree of a connected graph is a maximal tree subgraph. It is easy to show
that the cardinality of any spanning tree of a connected graph is equal to
the number of nodes of the graph minus 1. A tip node or leaf node of a tree
is a node with degree 1. The edge incident at a tip node is a leaf edge.

A cotree of a connected graph with edge set E is E−T for some tree T
of the graph. A collection of trees is a forest. A principal forest of a graph
is a collection of spanning trees, one for each connected component of the
graph.

Rank

The rank of a graph is the cardinality of a principal forest, and thus it is the
number of nodes of the graph minus the number of connected components.

Empty Graph

As a matter of convenience, we introduce the empty graph. That graph
does not have any edges or nodes, and its rank is 0. We consider the empty
graph to be connected.

2.5. Graphs 39

Coloop and Cocycle

An edge of a graph that is not in any cycle is a coloop. Such an edge is
sometimes called a bridge or isthmus. It is easy to see that a coloop is in
every principal forest of the given graph.

As one removes edges from a graph with at least one edge, eventually
the number of connected components must increase. Correspondingly, the
rank is reduced. A minimal set of edges whose removal reduces the rank
is a cocycle or minimal cutset. Suppose one partitions the vertex set of a
graph into two nonempty subsets. Then the set of edges with endpoints in
both node subsets is a disjoint union of cocycles.

Recall that a coloop is contained in every principal forest. Hence,
removal of a coloop leads to a drop in rank. We conclude that a set con-
taining just a coloop is a cocycle. The definitions of principal forest and
cocycle imply that a cocycle is a minimal subset of edges that intersects
every principal forest.

Parallel and Series Edges

A subset of edges of a given graph G forms a parallel class if any two edges
form a cycle and if the subset is maximal with respect to that property.
We also say that the edges of the subset are in parallel. A subset of edges
forms a series class (or coparallel class) if any two edges form a cocycle and
if the subset is maximal with respect to that property. We also say that
the edges of the subset are in series or coparallel. In the customary graph
definition of “series,” a series class of edges constitutes either a path in the
graph all of whose intermediate vertices have the degree 2 or a cycle all of
whose vertices, save at most one, have the degree 2. Our definition allows
for these cases, but it also permits a slightly more general situation. For
example, in the graph

(2.5.6)

1

7

2

6

3

5

4

Graph G

the edges (2, 3) and (5, 6) are in series, since {(2, 3), (5, 6)} is a cocycle.

Matching

Define an edge subset of a graph to be a matching if no two edges of the
edge subset share an endpoint.

40 Chapter 2. Basic Concepts

Let X be the row or column node subset of a bipartite graph G, and
let Y be the set of the remaining nodes. If a matching of G covers all nodes
of X , then X has been matched into Y .

A matching of a graph is perfect if it covers all nodes. Clearly, a
bipartite graph G with node subsets X and Y specified as above has a
perfect matching if and only if |X | = |Y | and X can be matched into Y .

Scaling

We scale a node of a directed graph by reversing the direction of each arc
incident at that node or by leaving the graph unchanged. In the former case
the scaling factor is −1, and in the latter case it is +1. If the directed graph
is bipartite, then column scaling (resp. row scaling) refers to scaling of a
column node (resp. row node). Node scaling of labeled, directed, bipartite
graphs does not affect the arc labels.

Node Identification

Two nodes i and j of a graph are identified by deleting all arcs connecting
i and j and then collapsing the two nodes into just one node. Thus the
arcs previously incident at either i or j become incident at the new node.

Shrinking and Unshrinking

Let H be a labeled, directed, bipartite graph. Recall that the labels are 1s
and 2s assigned to the arcs of H. Suppose G1, G2, . . . , Gn are the strong
components of H. Then we shrink H by first collapsing, for each Gk, k = 1,
2, . . . , n, the row nodes of Gk to a new row node and collapsing the column
nodes of Gk to a new column node. Of course, Gk may not have any row
(resp. column) nodes. In that case, Gk has just one column (resp. row)
node, and that node is not affected according to the rule for collapsing
nodes. In the next step of the shrinking operation, we delete all arc labels
and replace any instance of multiple arcs with the same endpoints and the
same direction by just one arc each. Finally, in the reduced graph we assign
to each arc the label 1 or 2, where the case of a 1 corresponds precisely
to the following situation. Let the arc in question connect the row node r
and the column node c of the reduced graph. Define R (resp. C) to be the
set of row (resp. column) nodes of H that were collapsed to form r (resp.
c). If in the reduced graph the arc in question goes from node r to node
c (resp. from node c to node r), then that arc receives the label 1 if and
only if in H every row node of R has at most one arc outgoing to (resp.
incoming from) the nodes of C and any such arc has the label 1. The graph
H resulting from these steps is the graph produced by shrinking from H.

2.5. Graphs 41

We demonstrate the shrinking operation using the following graph H.
Here and later we employ the convention that any arc shown without a
label actually has the label 1, and that row nodes are indicated by squares.

(2.5.7)

2

1

5

2

2

3

4 9

8

2

2

6

7

Graph H

The strong components of H containing more than one node are given by
the node sets {1, 2, 6, 7} and {3, 4, 8, 9}. Accordingly, we collapse the row
node subsets {1, 2} and {3, 4} to one node each, say, to new nodes 10 and
11, and collapse the column node subsets {6, 7} and {8, 9} to new nodes
12 and 13. The reduction of arc multiplicities and the assignment of arc
labels then produce the following graph H.

(2.5.8)
11

2
5

12
2

10
13 2

2

Graph H produced by shrinking of H

We verify, as examples, the labels of the three arcs connecting the nodes
r = 10, c1 = 12, and c2 = 13. The nodes 1 and 2 of H are collapsed to
the node r = 10 of H, nodes 6 and 7 to c1 = 12, and 8 and 9 to c2 = 13.
For the determination of the labels of the arcs connecting r, c1, and c2 in
H, let R = {1, 2}, C1 = {6, 7}, and C2 = {8, 9}. In H, each node of R
has exactly one arc incoming from the nodes of C1, and each such arc has
the label 1. Thus, the label of the arc (c1, r) = (12, 10) of H is 1. On the
other hand, node 1 of R has one arc with the label 2 outgoing to node 6 of
C1 and has two arcs with the label 1 incoming from nodes 8 and 9 of C2.
Thus, the arcs (r, c1) = (10, 12) and (c2, r) = (13, 10) receive the label 2.

Unshrinking is the operation inverse to shrinking. In principle, the
result of unshrinking of a graph H can be any graph H that by shrinking
would become H.

Boolean Minor

We have already defined the term graph minor. Deletions and contractions

42 Chapter 2. Basic Concepts

in a graph produce such minors. A second type of minor called Boolean
will also be of use. As the name suggests, Boolean minors are connected
with propositional logic. The precise relationships are explained in Section
2.6. For the time being, we just introduce the definition. Let H be a
labeled, directed, bipartite graph. We reduce H to a Boolean minor H
using column scaling, shrinking, and deletion of column or row nodes. Any
one of these operations may be omitted. But, modulo such omissions, we
always consider these operations done in the specified order. The inverse
operations are addition of nodes, unshrinking, and column scaling, always
done in that order. We demand adherence to the specified order, since a
resequencing of reduction steps may produce different minors or may even
lead to undefined situations.

Subdivision, Isomorphism, and Homeomorphism

In a special case of expansion, we replace an edge e by a path P that
contains e plus at least one more edge. We say that the edge e has been
subdivided. The substitution process by the path is a subdivision of edge e.

Two graphs are isomorphic if they become identical upon a suitable
renaming of the nodes. They are homeomorphic if they can be made iso-
morphic by repeated subdivision of certain edges in both graphs.

Terminology for Graph Minors and Boolean Minors

At times, a certain graph, say, G, may be a graph minor of a graph G, or
may only be isomorphic to a graph minor of G. In the first case, we say, as
expected, that G is a graph minor of G or that G has G as a graph minor.
For the second, more frequently occurring case, the terminology “G has a
graph minor isomorphic to G” is technically correct but cumbersome. So
instead, we say that G has a G graph minor.

We employ the same terminology for Boolean minors. So we may say
that a labeled, directed, bipartite graph H has a graph H as a Boolean
minor or that H has an H Boolean minor. In the first case, H is a Boolean
minor of H. In the second case, H has a Boolean minor that is isomorphic
to H.

Vertex, Cycle, and Tutte Connectivity

There are several ways to specify the connectivity of graphs. Two commonly
used concepts of graph theory are vertex connectivity and cycle connectiv-
ity. A third connectivity concept is Tutte connectivity, which is important
when one links graphs with matroids. For completeness and purposes of

2.5. Graphs 43

comparison, we describe all three types of graph connectivity even though
later we mostly use vertex connectivity.

Let (E1, E2) be a pair of nonempty sets that partition the edge set E
of a connected graph G. Let G1 (resp. G2) be the subgraph of G induced
by E1 (resp. E2). Assume G1 and G2 to be connected. Suppose pairwise
identification of k nodes of G1 with k nodes of G2 produces G. These
k nodes of G1 and G2, as well as the k nodes of G they create, we call
connecting nodes. Since G is connected and since both G1 and G2 are
nonempty, we have k ≥ 1. If k = 1, the single connecting node of G is an
articulation point of G. For general k ≥ 1, (E1, E2) is a vertex k-separation
of G if both G1 and G2 have at least k + 1 nodes. The pair (E1, E2)
is a cycle k-separation if both G1 and G2 contain cycles of G. Finally,
(E1, E2) is a Tutte k-separation if E1 and E2 have at least k edges each.
Correspondingly, we call G vertex k-separable, cycle k-separable, or Tutte
k-separable. For k ≥ 2, the graph G is vertex k-connected (resp. cycle k-
connected, Tutte k-connected) if G does not have any vertex l-separation
(resp. cycle l-separation, Tutte l-separation) for 1 ≤ l < k. Note that the
empty graph is vertex, cycle, and Tutte k-connected for every k ≥ 2. The
same conclusion holds for the connected graph with just one edge. The
vertex connectivity (resp. cycle connectivity, Tutte connectivity) of G is the
largest value k for which G is vertex k-connected (resp. cycle k-connected,
Tutte k-connected).

It is easy to see that any vertex l-separation or cycle l-separation is a
Tutte l-separation. Thus, Tutte k-connectivity implies vertex k-connecti-
vity and cycle k-connectivity. The converse does not hold; that is, in gen-
eral, vertex k-connectivity plus cycle k-connectivity do not imply Tutte k-
connectivity. A counterexample is the wheel W3. For any k ≥ 1, that graph
is readily verified to be both vertex k-connected and cycle k-connected.
But it has a Tutte 3-separation (E1, E2), where E1 is one of the 3-stars
and where E2 contains the remaining three edges. There are not many
other counterexamples. Indeed, it is not difficult to show that the wheels
W1 and W2 constitute the only other counterexamples.

Some Graph Theorems

Four basic graph theorems will be of much use: Menger’s theorem, which
relates vertex k-separations and the existence of internally node-disjoint
paths; König’s theorem, which for bipartite graphs connects matchings with
covering nodes; Hall’s theorem, which for bipartite graphs characterizes the
existence of certain matchings; and finally Dilworth’s theorem, which for
acyclic graphs links covering directed paths and incomparable nodes.

We list these theorems, beginning with Menger’s theorem.

(2.5.9) Theorem. For given k ≥ 1, a graph is vertex k-connected if and

44 Chapter 2. Basic Concepts

only if for any nodes i and j there are k internally node-disjoint paths
connecting i and j.

Theorem (2.5.9) is easily seen to imply that a graph is vertex 2-
connected if and only if any two edges lie on some cycle.

König’s theorem relates matchings of a bipartite graph to node covers
as follows.

(2.5.10) Theorem. In a bipartite graph, the cardinality of a maximum
matching is equal to the minimum number of nodes covering all edges.

Let X be the row or column node subset of a bipartite graph G, and
let Y be the set of the remaining nodes. Hall’s theorem characterizes when
X cannot be matched into Y .

(2.5.11) Theorem. Let X be the row or column node subset of a bipartite
graph G, and let Y be the set of the remaining nodes. Then X cannot be
matched into Y if and only if there exist subsets X ⊆ X and Y ⊆ Y
with |X| > |Y | such that each arc incident at a node of X has its second
endpoint in Y .

Note that Theorem (2.5.11) may be used to characterize the absence
of perfect matchings.

Dilworth’s theorem relates incomparable nodes to covering paths as
follows.

(2.5.12) Theorem. In an acyclic graph, the maximum number of pairwise
incomparable nodes is equal to the minimum number of directed paths
covering all nodes of the graph.

Although quite distinct in appearance, Theorems (2.5.9)–(2.5.12) are
nothing but manifestations of the so-called max flow min cut theorem,
which we introduce in a moment. We need two optimization problems
called max flow and min cut.

Let G be a directed graph. One of the edges of G, say, l, is declared
to be special. To each edge e of G other than l, a nonnegative integer he

is assigned and is called the capacity of e. Define G to have flow value
F if there are F directed cycles, not necessarily distinct, that satisfy the
following two conditions. Each cycle of the collection must contain the
special edge l, and any other edge e of G is allowed to occur altogether in
at most he of the cycles. The max flow problem demands that one solve the
problem maxF . The solution value must be accompanied by a specification
of the cycles producing that value.

A companion of the max flow problem is the following min cut problem.
For any cocycle D of G containing the special edge l, define the capacity of
D as follows. Since D is a cocycle, G\D consists without loss of generality
of two disjoint graphs G1 and G2 such that the edge l goes in G from a node
of G2 to one of G1. Then the capacity of D is the sum of the capacities he

2.5. Graphs 45

of the edges e of D going in G from some node of G1 to some node of G2.
Denote the capacity of D by h(D). The min cut problem asks one to solve
min h(D).

The max flow min cut theorem relates maxF and minh(D) as follows.

(2.5.13) Theorem. Let G be a directed graph with a special edge l and
nonnegative integral capacities he for all edges e 6= l. Then maxF =
min h(D).

Some Graph Algorithms

There are a number of practically and theoretically efficient methods for
solving the max flow problem and the min cut problem. As we shall see
shortly, any such method may be used to solve the optimization or decision
problems implicit in Theorems (2.5.9)–(2.5.12). In each such application,
the max flow problem has 1s as edge capacities. Thus, the max flow solution
consists of a maximum number of directed cycles that are edge-disjoint
except for the special edge l. Suppose the edge l goes from a node t to
a node s. Then the max flow solution is given by a maximum number of
edge-disjoint, directed paths from s to t. For this reason, s is typically
called the source node, and t the sink node. Due to this designation, the
special edge l is no longer needed. Furthermore, the min cut may then be
specified by a partition of the node set into two sets X and X with s ∈ X ,
t ∈ X such that the number of edges going from X to X is minimum.

The Algorithm MAX FLOW given next relies on the above terminol-
ogy. That algorithm is claimed to have polynomial complexity, meaning
that the run time is bounded by some polynomial in the number of edges
of the graph being processed. An analogous interpretation applies to other
polynomial algorithms presented later for graphs or matrices. A more de-
tailed discussion of computational complexity issues is included in Section
2.7.

The Algorithm MAX FLOW and all other algorithms of this chapter
are so well known that we omit proofs of validity. Appropriate references
are cited in Section 2.8.

(2.5.14) Algorithm MAX FLOW. Solves the max flow problem and
min cut problem for directed graphs with 1s as edge capacities.

Input: Directed graph G with source node s and sink node t. The graph
has no parallel edges.

Output: A maximum number of edge-disjoint, directed paths from s to t.
A partition of the node set of G into X and X with s ∈ X , t ∈ X such
that the number of edges going from X to X is minimum.

Complexity: Polynomial.

46 Chapter 2. Basic Concepts

Procedure:
1. Declare all edges to be unused.
2. Label s by (−).
3. Carry out the following step until t has been labeled or until no ad-

ditional labeling is possible: If a labeled node i has an unused arc
outgoing to or a used arc incoming from an unlabeled node j, then
label j by (i).
If t has been labeled, go to step 4. If labeling cannot continue, go to
step 5.

4. Backtrack from node t to node s using the labels. That is, if backtrack-
ing has led so far to node j and the label of j is (i), then backtrack
to node i. The backtracking produces a path connecting s and t. De-
clare each arc of the path pointing toward t (resp. s) to be used (resp.
unused). Erase all labels and go to step 2.

5. The used arcs define a maximum number of edge-disjoint, directed
paths going from s to t. The labeled (resp. unlabeled) nodes make up
the desired node set X (resp. X).

We apply Algorithm MAX FLOW (2.5.14) in the following Algorithm DIS-
JOINT PATHS to find the matchings and node sets of Theorems (2.5.10)
and (2.5.11).

(2.5.15) Algorithm DISJOINT PATHS. Finds for undirected graphs
a maximum number of node-disjoint paths connecting two disjoint node
subsets X and Y , and identifies a minimum number of nodes whose removal
disconnects the nodes of X from those of Y . For undirected bipartite
graphs, the output may be interpreted in terms of matchings and of covers
of edges by nodes.

Input: Undirected graph G with two nonempty, disjoint node subsets X
and Y .

Output: A maximum number, say, k, of node-disjoint paths connecting
nodes of X with nodes of Y . A minimum cardinality node subset Z, where
|Z| = k, so that deletion of the nodes of Z reduces G to a graph where no
path connects any node of X with any node of Y .
If G is bipartite and if X is the set of row nodes or column nodes and Y
is the set of the remaining nodes: The k node-disjoint paths consist of one
edge each and constitute a maximum cardinality matching of G. The set
Z is a minimum cardinality node subset of G covering all edges of G. If X
has not been matched into Y , then X = X − Z and Y = Y ∩ Z are the
sets of Theorem (2.5.11); that is, all edges incident at X are also incident
at Y , and |X| > |Y |.

Complexity: Polynomial.

Procedure:

2.5. Graphs 47

1. Convert G to a directed graph H as follows. Delete all edges with both
endpoints in X or with both endpoints in Y . Direct all remaining edges
incident at X (resp. Y) so that they point away from X (resp. into Y).
Replace each edge not treated so far by two parallel, directed edges
of opposite direction. Split each node i /∈ (X ∪ Y) into two nodes i1
and i2, and declare each edge with direction into i (resp. away from i)
to become incident at i1 (resp. i2). Connect each node pair i1, i2 by
a directed edge going from i1 to i2. Introduce two additional nodes
s and t to H, and insert directed arcs from s to each node of X and
from each node of Y to t.

2. Apply Algorithm MAX FLOW (2.5.14) to H. At termination, the
algorithm has declared each edge of H to be used or unused and has
declared each node of H to be labeled or unlabeled.

3. For some k ≥ 0, the used edges of H define k internally node-disjoint,
directed paths from s to t and thus define k node-disjoint paths from
X to Y . The corresponding node-disjoint paths in G from X to Y are
the desired ones. Declare the set Z to consist of the nodes of X that
are unlabeled in H, the nodes of Y that are labeled in H, and the
nodes i /∈ (X ∪ Y) of G for which in H the corresponding i1 is labeled
and i2 is unlabeled.

A modified version of Algorithm DISJOINT PATHS determines the vertex
connectivity of graphs as follows.

(2.5.16) Algorithm VERTEX CONNECTIVITY. Determines the
vertex connectivity of undirected graphs.

Input: Undirected graph G.

Output: The vertex connectivity of G.

Complexity: Polynomial.

Procedure:
1. Repeat the steps 2 and 3 below for each pair s, t of nonadjacent nodes

of G. The vertex connectivity of G is the minimum of the k-values
found in step 3.

2. For the selected s and t, convert G to a directed graph H as follows.
Direct all edges incident at s (resp. t) so that they point away from s
(resp. into t). Replace each remaining edge by two parallel, directed
edges of opposite direction. Split each node i 6= s, t into two nodes i1
and i2, and declare each edge with direction into i (resp. away from i)
to become incident at i1 (resp. i2). Connect each node pair i1, i2 by a
directed edge from i1 to i2.

3. Apply Algorithm MAX FLOW (2.5.14) to H. At termination, the
algorithm has declared each edge to be used or unused. Let k be the
number of directed paths in H from s to t that are defined by the used
edges.

48 Chapter 2. Basic Concepts

Theorem (2.5.12) links covering paths for an acyclic graph with incompa-
rable nodes. Algorithm PATH COVER below finds these paths and nodes.

(2.5.17) Algorithm PATH COVER. Finds a minimum number of di-
rected paths covering the nodes of an acyclic graph and finds a maximum
number of incomparable nodes.

Input: Directed acyclic graph G.

Output: For some k ≥ 1, k directed paths covering all nodes, and k incom-
parable nodes; k is the minimum number of such directed paths and is the
maximum number of incomparable nodes.

Complexity: Polynomial.

Procedure:
1. Find the transitive closure G̃ of G; that is, G̃ has the same node set as

G and has an arc from a node i to a node j whenever G has a directed
path from i to j.

2. Deduce a directed, acyclic graph H from G̃ as follows. For each node
i of G̃, let i1 and i2 be two nodes of H. For each arc of G̃, say, going
from i to j, insert an arc into H from i1 to j2. Introduce two additional
nodes s and t to H, and insert directed arcs from s to each node of
type i1 and from each node of type i2 to t.

3. Apply algorithm MAX FLOW (2.5.14) to H. At termination, that
algorithm has declared each edge of H to be used or unused, and each
node to be labeled or unlabeled.

4. For each used edge (i1, j2) of H, declare the edge (i, j) of G̃ to be
used. The used edges of G̃ define a certain number of directed paths,
say, k1. The nodes of G̃ without any used edges incident, say, k2 in
total, define paths of length 0. Together, the k = k1 + k2 paths of G̃
constitute a minimum number of directed paths covering all nodes of
G̃. The k covering paths of G̃ are converted to k covering paths of G
by replacing any path edge of G̃, say, from i to j, by a directed path
from i to j in G. These k directed paths of G constitute a minimum
number of directed paths covering all nodes of G.
The desired k incomparable nodes of G are determined as follows.
Each one of the k covering paths of G̃ contains precisely one such
node. That node is found by moving in G̃ from the source node of the
path toward its destination node and stopping at the first node i for
which the node i1 of H is labeled. That node i is the desired one.

We make a first use of the above theorems and algorithms in the next
section, where we discuss matrices.

2.6. Matrices 49

2.6 Matrices

In this section, we define elementary concepts for matrices. We also link
matrices to the CNF systems of Section 2.3 and to the labeled, directed,
bipartite graphs of Section 2.5.

We view a matrix to be a rectangular array with entries taken from
some set that typically includes 0, 1, and −1. The matrix entries are always
such that they can be interpreted to be real numbers or, in a special case,
to be ordered pairs of real numbers. Thus it always makes sense to consider
a matrix to be over IR, the field of real numbers. But we may also consider
a matrix to be over some other field—in particular, the binary field GF(2)
or the ternary field GF(3). At times, we even define a matrix to be over
one of two systems of axioms called IB and BG. The system IB is a certain
extension of Boolean algebra. The system BG postulates that the nonzero
matrix entries be implicitly replaced by certain real numbers; the resulting
matrix is then viewed to be over IR.

Trivial and Empty Matrices

We allow a matrix to have no rows or columns. Thus, for some k ≥ 1, a
matrix A may have size k × 0 or 0 × k. Such a matrix is trivial. We even
permit the case 0× 0, in which case A is empty.

When a matrix is declared to be a {0,±1}, {0, 1}, or zero matrix, then
we allow for the situation where the matrix is actually trivial or empty and
thus has no entries.

Length, Count, and Order

The length of an m×n matrix A, denoted by length(A), is m+n. The count
of A, denoted by count(A), is the number of nonzero entries of A. The order
of a square matrix A is the number of rows of A. We denote any column
vector containing only 1s by 1. Suppose a matrix A has been partitioned
into two row submatrices B and C, say, A = [B

C
]. For typesetting reasons,

we may denote this situation by A = [B/C]. If A, B, and C are column
vectors, say, a, b, and c, respectively, we correspondingly write a = [b/c].
A superscripted t denotes transpose, so At is the transpose of A.

Matrix Indexing

Frequently, we index the rows and columns of a matrix. We write the row
indices or index subsets to the left of a given matrix and write the column
indices or index subsets above the matrix. For example, we might have

50 Chapter 2. Basic Concepts

(2.6.1)

x

a
bB =

1

-1

-1

0
10

y e f

1

0
-1

Example matrix B

All row and column indices, whether directly shown or implicitly given
by index sets, are considered to be distinct, except if indices or index sets
are explicitly shown to apply to both rows and columns.

Appended Identity Matrix

Occasionally, we append an identity to a given matrix. In that case the
index of the ith column of the identity is taken to be that of the ith row
of the given matrix. From the matrix B of (2.6.1), we thus may derive the
following matrix A.

(2.6.2)

b x y

x

a
b

0

0

0
1

1
0

a

1

0
0

e f

A =
-1

1
0

0

-1
1

1

0
-1

Matrix A produced from B of (2.6.1)

Matrix Isomorphism

We consider two matrices to be equal if up to permutation of rows and
columns they are identical. Two matrices that become equal upon a suit-
able change of row and column indices are isomorphic.

Terminology for Rows and Columns

We may refer to a column directly or by its index. For example, in a given
matrix B, let b be a column vector with column index y. We may refer
to b as “the column vector b of B.” We may also refer to b by saying
“the column y of B.” In the latter case, we should say more precisely “the
column of B indexed by y.” We have opted for the abbreviated expression
“the column y of B,” since references of that type occur very often in this
book. We treat references to rows in an analogous manner.

2.6. Matrices 51

Characteristic Vector and Support Matrix

Suppose a set E indexes the rows (resp. columns) of a column (resp. row)
vector with {0, 1} entries. Let E′ be the subset of E corresponding to the
1s of the vector. Then that vector is the characteristic column (resp. row)
vector of E′. We abbreviate this to characteristic vector when it is clear
from the context whether it is a row or column vector. The support of a
matrix A is a {0, 1} matrix B of the same size as A such that the 1s of B
occur in the positions of the nonzeros of A.

Monotone and Nested Matrices

A matrix is monotone if, when viewed over IR, all entries are nonnegative
or are nonpositive. Two matrices are nested if, when viewed over IR, each
entry of one of the two matrices is at least as large as the corresponding
entry of the other matrix. A set of matrices is nested if any two matrices
of the collection are nested.

Parallel Vectors

Two vectors are parallel if, when viewed over IR, they are nonzero and one
of them is a scalar multiple of the other one.

Simple Matrix

A matrix is simple if no row or column has less than two nonzeros and if
there are no parallel rows or columns.

Scaling

Let A be a matrix over a field F . We column scale (resp. row scale) A
by multiplying each column (resp. row) by some nonzero. Scaling refers to
column or row scaling. We also use this terminology when A is over the
as yet undefined systems IB or BG. In that case, one temporarily considers
the matrix to be over IR to carry out the scaling operation.

Submatrix and Subregion

A submatrix is obtained from a given matrix by the deletion of some rows
and columns. The submatrix is proper if at least one row or column has
been deleted. A subregion is obtained from a given matrix by first taking
a submatrix and then replacing in that submatrix some nonzero entries by

52 Chapter 2. Basic Concepts

zeros. The subregion is proper if the submatrix is proper or if at least one
nonzero entry of the submatrix has been replaced by a zero.

The process of deducing a submatrix (resp. subregion) is called sub-
matrix taking (resp. subregion taking).

Let I be a collection of matrices. A matrix in I is maximal under
submatrix taking if it is not a proper submatrix of another matrix in I. A
matrix in I is minimal under submatrix taking if it does not have a proper
submatrix that is also in I. If I consists of submatrices of a given matrix,
we abbreviate the above terminology to maximal submatrix and minimal
submatrix.

Maximality under subregion taking and minimality under subregion
taking, as well as maximal subregion and minimal subregion, are defined
analogously.

Fields

Often, we view a matrix to be over some field F , where F is almost always
the binary field GF(2), the ternary field GF(3), or the field IR of real
numbers.

The binary field GF(2) has only the elements 0 and 1. Addition is
given by 0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0. Multiplication is specified
by 0 · 0 = 0, 0 · 1 = 0, and 1 · 1 = 1. Note that the element 1 is also the
additive inverse of 1, that is, −1. Thus, we may view a {0,±1} matrix to
be over GF(2). Each −1 then stands for the 1 of the field.

The ternary field GF(3) has 0, 1, and −1. Instead of the −1, we could
also employ some other symbol, say, 2, but never do so. Addition is given
by 0 + 0 = 0, 0 + 1 = 1, 0 + (−1) = −1, 1 + 1 = −1, 1 + (−1) = 0, and
(−1)+(−1) = 1. Multiplication is given by 0 · 0 = 0, 0 · 1 = 0, 0 · (−1) = 0,
1 · 1 = 1, 1 · (−1) = −1, and (−1) · (−1) = 1.

We need a matrix terminology that indicates the underlying field. For
example, consider the rank of a matrix, that is, the order of any maximal
nonsingular submatrix. If the field is F , we refer to the F-rank of the
matrix. For determinants we use “detF ,” but in the case of GF(2) and
GF(3) we simplify that notation to “det2” and “det3,” respectively.

In addition, we use the terms F-independence, F-basis, and F-span
in the expected way. That is, some columns of a matrix over F are F-
independent if they are linearly independent. A maximal collection of such
columns forms an F-basis of the matrix. A collection of columns of a
matrix F-spans the remaining columns if it spans them or, equivalently, if
it contains an F -basis.

There is another reason for emphasizing the underlying field. Later
in this section, we encounter the systems IB and BG. For matrices over
IB or BG, several concepts of linear algebra—in particular, those of inde-
pendence, basis, rank, and span—can be adapted. We then refer to these

2.6. Matrices 53

concepts as IB-independence, BG-independence, IB-basis, BG-basis, etc. as
expected.

Pivot

Customarily, a pivot consists of the following row operations, to be per-
formed on a given matrix A over a field F . First, a specified row x is scaled
so that a 1 is produced in a specified column y. Second, scalar multiples of
the new row x are added to all other rows so that column y becomes a unit
vector. In this book, the term F-pivot refers to a closely related process.

Let B be a matrix over a field F with row index set X and column
index set Y . An F-pivot on a nonzero pivot element Bxy of B is carried
out as follows.

(2.6.3)
We replace for every v ∈ (X − {x}) and every w ∈
(Y −{y}), Bvw by B′

vw = Bvw +(Bvy ·Bxw)/(−Bxy).

(2.6.4)
We replace Bxy by −Bxy, and exchange the indices
x and y.

We demonstrate the pivot operation using the following matrix B over
GF(3).

(2.6.5)

x

a
bB =

1

-1

-1

0
10

y e f

1

0
-1

Y

X

Matrix B

A GF(3)-pivot on Bxy = −1 may be displayed as follows.

(2.6.6)

f f

1 1

0 1
GF(3)-pivot

x

a
bB =

1

-1

-1

0
10

y e

-1 B' =
y

a
b

1

1

-1

0
10

x e

-1

Effect of GF(3)-pivot on matrix B

Here and later we use a circle to highlight the pivot element Bxy. To relate
the above process to the row operations of the customary pivot, we append
an identity matrix I to B, getting the following matrix A over GF(3).

54 Chapter 2. Basic Concepts

(2.6.7)

X Y
b x y

x

a
b

0

0

0
1

1
0

a

1

0
0

-1

1
0

e

0

-1
1

f

1

0
-1A = X

Matrix A

We modify A in two steps as follows.
First, we do row operations to convert column y of A to a vector

containing only zeros except for the pivot element Bxy. In our case, we
just add row x to row a to achieve this. Note that these row operations
modify, for every v ∈ (X − {x}) and every w ∈ (Y − {y}), the entry Bvw

of the submatrix B to B′
vw = Bvw + (Bvy · Bxw)/(−Bxy), in agreement

with the above rule (2.6.3). The row operations also transform the zero in
row v ∈ (X − {x}) and column x of the submatrix I of A to Bvy/(−Bxy).
All other entries of A not mentioned so far, that is, row x and all columns
w ∈ ((X − {x}) ∪ {y}), remain unchanged.

Second, we exchange the current columns x and y and then scale col-
umn x by −Bxy and column y by 1/Bxy.

Evidently, column x of A has become column y of the original B except
that Bxy has become −Bxy and column y of A has become a unit vector.
Accordingly, the matrix A′ deduced in the above two steps from A is of the
form A′ = [I | B′], where B′ is the matrix defined by (2.6.3) and (2.6.4)
from B.

We conclude that the pivot given by (2.6.3) and (2.6.4) is an abbrevi-
ated method of displaying the effect of the row operations of the customary
pivot, followed by an exchange and scaling of two columns. Below, we dis-
play A and A′ for the example (2.6.7). As expected, the nonidentity portion
of A′ is the matrix B′ of (2.6.6).

(2.6.8)
bb

row operations,
column exchange,

and scaling

x y

x

a
b

0

0

0
1

1
0

a

1

0
0

e f

A =
-1

1
0

0

-1
1

1

0
-1

1
y x

y

a
b

0

0

0
1

1
0

a

1

0
0

1
0

e

0

-1
1

f

1

1
-1A' =

Effect of row operations, column exchange,
and scaling on A of (2.6.7)

By the above discussion, every basis of A is one of A′, and vice versa. We
record this fact for future reference.

(2.6.9) Lemma. Let B′ be derived from B by an F -pivot as described by
(2.6.3) and (2.6.4). Append identities to both B and B′ to get A = [I | B]

2.6. Matrices 55

and A′ = [I | B′]. Declare the row index sets of B and B′ to become the
column index sets of the identity submatrices I of A and A′, respectively.
Then every column index subset of A corresponding to a basis of A also
indexes a basis of A′, and vice versa.

Pivots have several important features. For the discussion below, let
B, Bxy, and B′ be the matrices just defined.

First, when we F -pivot in B′ on B′
yx, we obtain B again.

Second, the pivot operation is symmetric with respect to rows versus
columns. Thus, the F -pivot operation and the operation of taking the
transpose commute.

Third, we may use F -pivots to compute determinants as follows. Sup-
pose that B is square. If we delete row y and column x from B′, then the
resulting matrix, say, B′′, satisfies |detF (B′′)| = |detF (B)|/|Bxy|. Thus,
B is nonsingular if and only if this is so for B′′. Obviously, this way of
computing determinants is nothing but the well-known method based on
row operations.

System BG

Let A be a matrix with row index set X and column index set Y . Then
BG(A) is the following undirected bipartite graph. The row index set X
(resp. column index set Y) is the set of row nodes (resp. column nodes)
of the graph. Each nonzero entry Axy of A produces an undirected edge
connecting row node x with column node y.

The system BG introduced later makes much use of the graph BG(A).
To begin the discussion, we assume that A is a real k × k matrix. Recall
that count(A) is the number of nonzeros of A. Denote the nonzero entries
of A by r1, r2, . . . , rcount(A).

Suppose that r1, r2, . . . , rcount(A) are algebraically independent over
the rationals; that is, r1, r2, . . . , rcount(A) cannot be the roots for any
nonzero polynomial with rational coefficients and variables x1, x2, . . . ,
xcount(A). We then have the following characterization of detIR(A).

(2.6.10) Theorem. Let A be a real k × k matrix whose nonzero entries
r1, r2, . . . , rcount(A) are algebraically independent over the rationals. Then
the following statements are equivalent.

(i) detIR(A) 6= 0.

(ii) detIR(A) is not the zero polynomial when r1, r2, . . . , rcount(A) are
viewed as variables.

(iii) The rows (resp. columns) of A may be permuted such that the diagonal
of the resulting matrix contains only nonzeros.

(iv) BG(A) has a perfect matching.

56 Chapter 2. Basic Concepts

Proof. According to a basic result of matrix theory, detIR(A) is a polyno-
mial in r1, r2, . . . , rcount(A) with integer coefficients. Indeed, each term of
detIR(A) is, for some integer α and for some indices 1 ≤ i1 < i2 < . . . <
ik ≤ count(A), of the form α · ri1 · ri2 · . . . · rik

, where no two of ri1 , ri2 , . . . ,
rik

reside in the same column or row. These observations and the definition
of algebraic independence imply (i)⇔(ii)⇔(iii). Finally, (iv) restates (iii)
in graph language.

Theorem (2.6.10) has the following two corollaries.

(2.6.11) Corollary. Let A be a real k×k matrix whose nonzero entries are
algebraically independent over the rationals. Then detIR(A) = 0 if and only
if the row index set X and the column index set Y of A can be partitioned
into X1, X2 and Y1, Y2, respectively, such that A can be depicted as

(2.6.12)
X1

X2 any entry

Y1 Y2

A =
0

Partition of matrix A

with |X1| > |Y1|.

Proof. By parts (i) and (iv) of Theorem (2.6.10), detIR(A) = 0 if and
only BG(A) does not have a perfect matching. By Theorem (2.5.11), the
latter condition holds if and only if for some subset X1 of the row node
set X and for some subset Y1 of the column node set Y of BG(A), all arcs
incident at a node of X1 have their second endpoint in Y1 and |X1| > |Y1|.
The condition on the arcs incident at X1 implies that the submatrix of A
indexed by X1 and Y2 = Y − Y1 is zero as shown in (2.6.12).

(2.6.13) Corollary. Let A be a matrix over IR whose nonzeros are alge-
braically independent over the rationals. Then the row index set X and the
column index set Y of A can be partitioned into X1, X2 and Y1, Y2, respec-
tively, such that A is the matrix of (2.6.12) and |X2|+ |Y1| = IR-rank(A).

Proof. Parts (i) and (iv) of Theorem (2.6.10) imply that IR-rank(A) is
equal to the cardinality of a largest matching of BG(A). By Theorem
(2.5.10), that cardinality is equal to the minimum number of nodes covering
all edges. Accordingly, X has a subset X2 and Y has a subset Y1 such
that deletion of the nodes of X2 ∪ Y1 removes all edges from BG(A) and
IR-rank(A) = |X2|+ |Y1|. In matrix language, deletion of the rows indexed
by X2 and of the columns indexed by Y1 reduces A to a zero matrix. Thus,
A is given by (2.6.12).

2.6. Matrices 57

The expression “algebraically independent over the rationals” is rather
unwieldy. Also, we want to apply that concept indirectly to matrices that
are not over IR or even over any other field. Such a situation would require
an even more complex formulation unless one settles for an abbreviated
terminology, as we shall do now.

Let A be a nontrivial and nonempty matrix. Derive a matrix Ã from
A by replacing the nonzeros of A by real numbers that are algebraically
independent over the rationals. The relationship between IR-rank(Ã) and
the above cited results for the graph BG(Ã), which is the same graph as
BG(A), then motivates the following definitions.

The IR-rank of Ã is the BG-rank of A. If a row (resp. column) subma-
trix of Ã has IR-independent rows (resp. columns), then the corresponding
row (resp. column) submatrix of A is said to have BG-independent rows
(resp. columns). A maximal set of BG-independent columns of A consti-
tutes a BG-basis of A. Suppose certain columns of Ã span the remaining
columns of that matrix. Then the corresponding columns of A are said to
BG-span the remaining columns of A.

If Ã is square and detIR(Ã) = 0 (resp. detIR(Ã) 6= 0), then the BG-
determinant of A, abbreviated detBG(A), is 0 (resp. 1). In the case of
detBG(A) = 0 (resp. detBG(A) = 1), A is also said to be BG-singular (resp.
BG-nonsingular).

We define any trivial as well as the empty matrix to have BG-rank
equal to 0, and we declare the BG-determinant of the empty matrix to be
0 as well.

Define BG to be the system of axioms defining BG-rank, BG-indepen-
dence, BG-bases, and BG-determinants for arbitrary matrices A as speci-
fied above via Ã. When a matrix A is to be interpreted in terms of these
axioms, we say that A is to be viewed as a matrix over BG, or that A is
over BG. Note that we never carry out pivots in such a matrix A.

Theorem (2.6.10) implies the following useful characterizations of BG-
rank, BG-independence, BG-bases, and BG-determinants for matrices over
BG.

(2.6.14) Theorem. Let A be a matrix over BG with row index set X and
column index set Y . Then the following statements hold.

(a) BG-rank(A) is equal to the size of a maximum cardinality matching of
BG(A) and is also equal to the minimum number of rows and columns
whose deletion reduces A to a zero matrix.

(b) A has BG-independent rows (resp. columns) if and only if in BG(A)
the node subset X (resp. Y) can be matched into the node subset Y
(resp. X).

(c) A column submatrix A of A, say, indexed by Y ⊆ Y , is a BG-basis of A
if and only if some maximum cardinality matching of BG(A) matches
Y into X .

58 Chapter 2. Basic Concepts

(d) If A is square, then detBG(A) = 1 if and only if BG(A) has a perfect
matching.

Proof. By Theorem (2.6.10)(i) and (iv) and the definition of the BG-
determinant, a square matrix A has detBG(A) = 1 if and only if BG(A)
has a perfect matching. Thus (d) holds. That result plus Corollary (2.6.13)
implies (a)–(c).

We include an algorithm that for a given matrix A over BG establishes
the BG-rank and related results.

(2.6.15) Algorithm BG-RANK. Computes the BG-rank of a matrix
over BG and related results.

Input: Matrix A over BG, with row index set X and column index set Y .

Output: The BG-rank of A; whether A has BG-independent rows or
columns; a column BG-basis of A; if A is square, the BG-determinant
of A.

Complexity: Polynomial.

Procedure:

1. Apply Algorithm DISJOINT PATHS (2.5.15) to determine a maxi-
mum cardinality matching for the graph BG(A).

2. Define BG-rank(A) to be the size of the matching. Declare the rows
(resp. columns) of A to be BG-independent if the node subset X (resp.
Y) of BG(A) has been matched into Y (resp. X), and to be BG-
dependent otherwise. Let Y ⊆ Y be the set of column nodes of BG(A)
having matching edges incident. Then the column submatrix A of A
indexed by Y is a column BG-basis of A. If A is square, declare
detBG(A) = 1 if the matching is perfect, and declare detBG(A) = 0
otherwise.

Validity of the algorithm follows directly from that of Algorithm DISJOINT
PATHS and Theorem (2.6.14).

Connected Matrix

We say that a matrix A is connected if the graph BG(A) is connected.
Suppose A is trivial; that is, A is k × 0 or 0 × k for some k ≥ 1. Then
BG(A) and hence A are connected if and only if k = 1. Suppose A is
empty, that is, of size 0 × 0. Then BG(A) is the empty graph. By the
earlier definition, the empty graph is connected. Thus, the empty matrix
is connected. A connected block of a matrix is a maximal connected and
nonempty submatrix.

2.6. Matrices 59

Clause/Variable Matrix

Let S be a CNF system, say, with X as the set of clauses and Y as
the set of Boolean variables. Unless stated otherwise, we assume that
no clause contains both a Boolean variable and the negation of that vari-
able. Indeed, such a clause would always be satisfied for any assignment
of True/False values to the Boolean variables and thus should be deleted.
The clause/variable matrix of S is the {0,±1} matrix A with row index
set X and column index set Y where the entry in row x ∈ X and column
y ∈ Y is 1 if clause x contains the Boolean variable y, is −1 if clause x
contains the negation of the Boolean variable y, and is 0 otherwise.

For example, let S be the CNF system with variables y1, y2, y3 and
clauses x1, x2, x3 given in set notation by {y1,¬y2}, {y2,¬y3}, {¬y1, y3}.
The clause/variable matrix of S is then

(2.6.16)
x1
x2

x3

y3y2y1

A =
1

-1

-1

0
10

1

0
-1

Clause/variable matrix A of CNF system S

Recall that a CNF system S is satisfiable if one can assign True/False
values to the Boolean variables of S such that each clause has the value
True. Satisfiability of S and column scaling of its clause/variable matrix
are closely linked according to the following elementary result.

(2.6.17) Lemma. Let A be the clause/variable matrix of a CNF system
S. Then S is satisfiable if and only if the columns of A can be scaled by
{±1} factors such that each row of the resulting matrix contains at least
one +1.

Proof. Suppose S is satisfiable. Thus, a certain assignment of True/False
values to the variables of S leads to an evaluation of True for each clause
of S. If True (resp. False) is assigned to variable y of S, then we scale
column y of A by +1 (resp. −1). Then the evaluation of each clause to
True manifests itself in the scaled matrix by at least one +1 in each row.
To prove the converse part, we reverse the above arguments.

If S is satisfiable (resp. unsatisfiable), then A is also called satisfi-
able (resp. unsatisfiable). Let A be satisfiable. In agreement with Lemma
(2.6.17), we define a satisfying vector for A to be a {±1} vector of column
scaling factors that converts A to a matrix having at least one +1 in each
row.

In subsequent chapters, we interpret clause/variable matrices in several
ways. For example, we view such matrices to be over the field GF(3) or to

60 Chapter 2. Basic Concepts

be over BG. We also assume such matrices to be over a system IB that we
introduce next.

System IB

The system IB is an extension of Boolean algebra. Its elements are 0, +1,
and −1. Its operations are called IB-multiplication, IB-addition, and IB-
subtraction, denoted by ⊙, ⊕, and ⊖, respectively. We first define these
operations, then interpret them in terms of the customary Boolean algebra.

For α, β ∈ {0,±1}, IB-multiplication is defined by

(2.6.18) α⊙ β =
{

1 if α = β = 1 or α = β = −1
0 otherwise

IB-addition and IB-subtraction are defined only for {0, 1} elements. For
α, β ∈ {0, 1}, IB-addition is given by

(2.6.19) α⊕ β =
{

1 if α = 1 or β = 1
0 otherwise

IB-subtraction is some sort of inverse of IB-addition. For α, β ∈ {0, 1},
IB-subtraction is specified by

(2.6.20) α⊖ β =
{

1 if α = 1 and β = 0
0 otherwise

Let P = {0,±1} and R = {0, 1}. Interpret the elements of P as follows.
Define the +1 to represent True, the −1 False, and the 0 “not present.” For
R, let the 1 stand for True and the 0 for False. View the IB-multiplication
operator⊙ as a function from P×P to R, and view the IB-addition operator
⊕ as a function from R×R to R. It is then easily verified that the operator
⊙ is an extension of the Boolean “if and only if” operator ⇔, while the
operator ⊕ is precisely the Boolean “or” operator ∨.

For any α, β, γ ∈ {0, 1}, it is easy to verify that (α⊕β)⊕γ = α⊕(β⊕γ)
and α ⊕ β = β ⊕ α, so IB-addition is both associative and commuta-
tive. Accordingly, repeated IB-additions involving, say, α1, α2, . . . , αn,
for some n ≥ 2, may be carried out in any order, and a notation such as
α1 ⊕ α2 ⊕ · · · ⊕ αn or

⊕n

k=1 αk is sufficient. It is easily checked that IB-
multiplication is commutative but not associative, and that IB-subtraction
is neither associative nor commutative.

IB-multiplication, IB-addition, and IB-subtraction have straightforward
matrix extensions that we cover in a moment. Whenever the latter oper-
ations are applied to matrices, we say, in agreement with the terminology
for fields and the system BG, that the matrices are viewed to be over IB,
or simply that they are over IB.

2.6. Matrices 61

Matrix Operations in IB

Let A and B be {0,±1}matrices over IB of size m×n and n×p, respectively.
If both A and B are nontrivial and nonempty, then the matrix C = A⊙B
is defined to be the m × p {0, 1} matrix whose elements Cij are given by
Cij =

⊕n

k=1(Aik ⊙Bkj), for i = 1, 2, . . . , m and j = 1, 2, . . . , p. If at least
one of A and B is trivial or empty, then C = A ⊙ B is defined to be the
m×p zero matrix. The latter convention simplifies the matrix algebra with
matrices over IB, since it eliminates the otherwise necessary treatment of
special cases with m, n, or p equal to 0.

Let A and B be m × n {0, 1} matrices over IB. If A is nontrivial and
nonempty, then so is B, and C = A⊕B (resp. C = A⊖B) is defined to be
the m × n {0, 1} matrix whose elements Cij are given by Cij = Aij ⊕Bij

(resp. Cij = Aij ⊖ Bij), for i = 1, 2, . . . , m and j = 1, 2, . . . , n. If A is
trivial or empty, then B is of the same type, and both C = A ⊕ B and
C = A⊖B are defined to be equal to A or, equivalently, B.

Satisfiability Revisited

Lemma (2.6.17) relates satisfiability of a CNF system S to the existence
of certain scaling factors for the clause/variable matrix A of S. Suppose
we collect the scaling factors in a vector s. Then we may rephrase Lemma
(2.6.17) as follows. A CNF system S is satisfiable if and only if there exists
a {±1} vector s so that column scaling of A with the entries of s results in
a matrix with at least one 1 in each row.

Declare A and a scaling vector s to be over IB and examine A⊙ s. By
the scaling condition, for each row x of A there is a column y of A such
that Axy is nonzero and has the same sign as sy. Thus, Axy ⊙ sy = 1, and
hence

⊕

j(Axj ⊙ sj) = 1. By definition of the ⊙ operation for matrices, we
then have A ⊙ s = 1 and are justified to declare s to be a solution vector
for the latter equation.

Note that a {0,±1} vector s solving A⊙s = 1 becomes a {±1} solution
vector when its 0s are replaced by arbitrarily selected ±1s. Hence A⊙s = 1
has a {±1} solution vector if and only if it has a {0,±1} solution vector.
Thus it makes sense to define a matrix A over IB to be satisfiable (resp.
unsatisfiable) if the system A ⊙ s = 1 does have (resp. does not have) a
{0,±1} solution vector.

For later reference, we record the relationships between the various
satisfiability definitions of this chapter in the next lemma.

(2.6.21) Lemma. The following statements are equivalent for a CNF sys-
tem S with clause/variable matrix A. The matrix A is to be viewed over
IB whenever this is appropriate.

(i) S is satisfiable.

62 Chapter 2. Basic Concepts

(ii) A is satisfiable.
(iii) One may assign True/False values to the Boolean variables of S such

that each clause has the value True.
(iv) There is a {±1} vector s of scaling factors such that column scaling

of A with these factors produces a matrix each of whose rows contains
at least one 1.

(v) There exists a {±1} solution vector for A⊙ s = 1.
(vi) There exists a {0,±1} solution vector for A⊙ s = 1.

IB-Simple Matrix

We already have introduced a definition of simple matrices. Such a matrix
has no rows or columns with less than two nonzeros and has no parallel
rows or columns. For matrices over IB, it is useful that we replace the
exclusion of parallel rows by a weaker requirement demanding absence of
duplicate rows and that we introduce two subcases. Accordingly, we define
a {0,±1} matrix over IB to be IB-row simple (resp. IB-column simple) if
it has no rows (resp. columns) with less than two nonzeros and has no
duplicate rows (resp. parallel columns). The matrix is IB-simple if it is
both IB-row simple and IB-column simple.

Matrix Representation of Labeled,
Directed, Bipartite Graph

Section 2.5 includes a definition of labeled, directed, bipartite graphs and
several related operations—in particular, the taking of Boolean minors.
Here, we represent these graphs by matrices and translate graph operations
such as the taking of Boolean minors into matrix language.

We start with any clause/variable matrix A and the associated bipar-
tite graph BG(A). In the latter graph, each edge represents a {±1} entry
of A. The graph BG(A) does not differentiate between +1 and −1 entries
of A. But we may encode that information for each nonzero entry Axy of
A by directing in BG(A) the corresponding edge, which connects row node
x with column node y. Specifically, if Axy = 1 (resp. Axy = −1), we direct
that edge from row node x to column node y (resp. column node y to row
node x). We convert the resulting directed, bipartite graph to a labeled,
directed, bipartite graph by assigning the label 1 to each arc. The latter
graph we declare to be DBG(A), the “D” indicating “directed.”

When we reduce DBG(A) to a Boolean minor as described in Sec-
tion 2.5, we might get a graph where two nodes, say, x and y, are connected
by an edge from x to y and one from y to x. Also, the labels on the edges of
the Boolean minor may be 1s as well as 2s, and not just 1s as for DBG(A).
We would like to have a matrix representation of such Boolean minors.

2.6. Matrices 63

There are many ways to define such a representation. For our purposes,
the following approach seems advantageous.

Given the Boolean minor H or, in general, given a labeled, directed,
bipartite graph H, the rows (resp. columns) of a representation matrix B
of H correspond to the row nodes (resp. column nodes) of H. The entry
Bxy in row x and column y of B is an ordered pair (α, β) where α and
β are determined as follows. If H has an arc from row node x to column
node y (resp. from column node y to row node x), then α (resp. β) is equal
to the label of that arc. If there is no arc from x to y (resp. from y to x),
then α = 0 (resp. β = 0). We call B the generalized clause/variable matrix
arising from H.

As an example, we encode the labeled, directed, bipartite graph H of
(2.5.7), which we display again.

(2.6.22)

2

1

5

2

2

3

4 9

8

2

2

6

7

Labeled, directed, bipartite graph H

The generalized clause/variable matrix B for that graph is

(2.6.23) B =

6 7 8 9

2
(2,0)1

3
4
5

(0,1)
(0,0)
(0,0)
(0,0)

(0,1)
(1,0)
(0,0)
(1,0)
(2,0)

(0,1)
(0,0)
(1,0)
(0,1)
(0,0)

(0,1)
(0,0)
(0,2)
(1,2)
(0,1)

Generalized clause/variable matrix B of H

Given B, we obtain H again by the following rules. The row nodes (resp.
column nodes) of H correspond to the rows (resp. columns) of B. If Bxy =
(α, β) has α (resp. β) nonzero, then we introduce an arc in H from row
node x to column node y (resp. column node y to row node x) with the
label α (resp. β).

We know already how to encode a CNF system S by a clause/variable
matrix A. We may also encode S by a generalized clause/variable matrix
B, by taking B to be the matrix corresponding to the labeled, directed,
bipartite graph DBG(A). We may derive B directly from S by the following
rule. Each row (resp. column) of B corresponds to a clause (resp. variable)

64 Chapter 2. Basic Concepts

of S. The pair (α, β) in row x and column y of B is determined as follows.
The entry α is 1 (resp. 0) if variable y occurs (resp. does not occur) in
clause x. The entry β is 1 (resp. 0) if variable y occurs negated (resp. does
not occur) in clause x. Note that the simultaneous occurrence of a variable
and its negation in a given clause can be encoded in B. Such an encoding
is not possible in a clause/variable matrix.

It is useful for us to extend the definition of DBG(A) to accommodate
generalized clause/variable matrices. That is, for any such matrix B, we
now declare DBG(B) to be the labeled, directed, bipartite graph corre-
sponding to B. The definition is consistent with the earlier one involving
clause/variable matrices, in the following sense. Let A (resp. B) be the
clause/variable matrix (resp. generalized clause/variable matrix) of a CNF
system S. Then DBG(A) = DBG(B), as one would want.

Section 2.5 includes rules for deriving a Boolean minor H from a given
labeled, directed, bipartite graph H. Specifically, such a minor is produced
by column scaling, shrinking, and deletion of nodes, in that order. Any of
these operations may be omitted. Let B be the generalized clause/variable
matrix corresponding to H; that is, H = DBG(B).

Column scaling with a −1 factor, say, of column node y of H, cor-
responds to flipping of all pairs in column y of B. That is, for all x, the
entry Bxy = (α, β) of B becomes the pair (β, α). Column scaling with a
+1 factor leaves H and thus B unchanged.

The deletion of nodes from H becomes the deletion of rows or columns
from B.

The translation of the shrinking step for H into matrix language is
a bit more complicated. We first review that step for H, as described in
Section 2.5.

Suppose G1, G2, . . . , Gn are the strong components of H. Then we
shrink H by first collapsing, for each Gk, k = 1, 2, . . . , n, the row nodes
of Gk to a new row node and collapsing the column nodes of Gk to a new
column node. In the next step of the shrinking operation, we delete all arc
labels and replace any instance of multiple arcs with same endpoints and
same direction by just one arc each. Finally, in the reduced graph we assign
to each arc the label 1 or 2, where the case of a 1 corresponds precisely
to the following situation. Let the arc in question connect the row node r
and the column node c of the reduced graph. Define R (resp. C) to be the
set of row (resp. column) nodes of H that were collapsed to form r (resp.
c). If in the reduced graph the arc in question goes from node r to node
c (resp. from node c to node r), then that arc receives the label 1 if and
only if in H every row node of R has at most one arc outgoing to (resp.
incoming from) the nodes of C and any such arc has the label 1.

Let H be obtained from H just by shrinking. Define B to be the gen-
eralized clause/variable matrix corresponding to H; that is, H = DBG(B).
We may deduce B from B, without finding H first, once the strong compo-

2.6. Matrices 65

nents of H have been identified. The following two steps accomplish that
task.

For the first step, let G1, G2, . . . , Gm be the strong components of
H with at least three nodes each, say, defined by row node subsets R1,
R2, . . . , Rm and column node subsets C1, C2, . . . , Cm, respectively. For
k = 1, 2, . . . , m, we replace in B the columns of Ck by just one column ck

which is the sum of the columns it replaces. The summing of the columns of
Ck involves the real addition of the ordered pairs residing in these columns;
that is, we use (e, f)+(g, h) = (e+g, f+h). In each of the resulting columns
c1, c2, . . . , cm, we reduce any entry larger than 2 in any pair to a 2. Let
B′ be the resulting matrix.

For the second step, we first define a max combination operation for
matrices having ordered pairs of real numbers as entries, as is the case
for B′. The max combination of two pairs (e, f) and (g, h) is the pair
(max{e, g}, max{f, h}). The max combination of several pairs is obtained
by repeated application of the max combination step to two pairs at a time
until just one pair is left. The max combination of several rows of a matrix
is defined to be a row vector r where the pair in column position y of r is
the max combination of the pairs in column y of the original rows.

In the second step, we replace in B′, for k = 1, 2, . . . , m, the rows of
Rk by just one row rk which is the max combination of the rows it replaces.
The resulting matrix is, up to the indices, the matrix B corresponding to
H. We leave the straightforward verification of this claim to the reader.

As an example for the derivation of B directly from B or via H, we
consider H to be the graph of (2.6.22), which is the same graph as that of
(2.5.7). According to Section 2.5, shrinking reduces H to the graph H of
(2.5.8). We include the latter graph below.

(2.6.24)
11

2
5

12
2

10
13 2

2

Minor H of H produced by shrinking

By direct translation of H into matrix form, or by application of the matrix
shrinking operation described above, we get the following matrix B for H.

(2.6.25) (2,1)
11
10

12 13

5
(1,0)
(2,0)

(0,2)
(1,2)
(0,1)

B =

Matrix B for H

66 Chapter 2. Basic Concepts

Any matrix B obtained from a generalized clause/variable matrix B by
scaling, shrinking, and column or row deletion, in that order, is a Boolean
minor of B.

According to Lemma (2.6.21), a clause/variable matrix is satisfiable
if its columns can be scaled by {±1} factors such that each row of the
resulting matrix has at least one +1. Consistent with that result, we declare
a generalized clause/variable matrix to be satisfiable if its columns can be
scaled by {±1} factors such that each row of the resulting matrix has at
least one pair (α, β) with α ≥ 1.

Extension of System IB

The extension of clause/variable matrices to generalized clause/variable
matrices motivates the following extension of IB. We enlarge the set of
elements {0,±1} by

(2.6.26) U = {(α, β) | α, β ∈ {0, 1, 2}}

and extend IB-multiplication so that for (α, β) ∈ U and γ ∈ {0,±1},

(2.6.27) (α, β)⊙ γ =
{

1 if α ≥ 1 and γ = 1, or β ≥ 1 and γ = −1
0 otherwise

Note that the extended IB-multiplication is no longer commutative. IB-
addition and IB-subtraction need not be modified.

A matrix over the extension of IB has its entries in {0,±1}∪U . Matrix
IB-multiplication is defined when such a matrix is postmultiplied with one
having {0,±1} entries. The rules for matrix IB-addition and matrix IB-
subtraction are unchanged.

Let B be a generalized clause/variable matrix. Then all entries of B
are in U , and we may consider B to be over the extension of IB. According to
the definition of that extension, the question whether the equation B⊙s = 1
has a {0,±1} vector is well-posed. If such a solution exists, we say that
B is satisfiable; otherwise, B is unsatisfiable. It is easy to see that this
definition is consistent with the earlier ones used in Lemma (2.6.21).

We consider any matrix over the extension of IB to be over BG by
viewing any 0 or (0, 0) entry of B to be zero, and we consider any other
entry to be nonzero.

In the sequel, whenever we rely on the extension of IB, we explicitly
say so. However, we use the terms IB-multiplication, IB-addition, and IB-
subtraction for matrices over IB and for matrices over the extension of IB.

Display of Matrices

We employ a particular convention for the display of matrices. If in some
portion of a matrix we explicitly list some entries but not all of them,
then the omitted entries are always to be taken as zeros. This convention
unclutters the appearance of matrices with complicated structure.

2.7. Complexity of Algorithms 67

2.7 Complexity of Algorithms

We cover elementary notions of the computational complexity of algorithms
in a summarizing discussion. Define a problem to be a question about
binary strings that is answered each time by “yes” or “no.” Any such
string, say, of length s1, represents a problem instance. In the setting of
this book, the strings typically are graph or matrix problems encoded in
binary form. The answer “yes” or “no” may be accompanied by a second
binary string, say, of length s2. We define s2 = 0 if there is no such string.
The size of each problem is then s = s1 + s2.

Suppose for a given problem we have an algorithm that determines the
correct answer for each problem instance. We may imagine the algorithm
to be encoded as a computer program. The algorithm is polynomial time,
abbreviated polynomial, if the run time of the computer program can, for
some positive integers α, β, and γ, be uniformly bounded by a polynomial
of the form α · sβ + γ. We also say that the algorithm is of order β, and
we denote this by O(sβ). For example, the algorithm of Section 2.3 for the
transformation of a general Boolean formula into a SAT equivalent CNF
system is polynomial, as are Algorithms (2.5.14)–(2.5.17).

Suppose there are positive integers δ, ǫ, and ζ such that the following
holds. For each problem instance of size s and with an affirmative answer,
a proof of “yes” exists whose binary encoding is bounded by δ ·sǫ +ζ. Then
the problem is said to be in NP. For example, the SAT problem is in NP,
since one may prove satisfiability of a CNF system by exhibiting True/False
values for the variables such that each clause has the value True.

A problem P is polynomially reducible to a problem P ′ if there is a
polynomial algorithm that transforms any instance of P into an instance
of P ′.

The class NP has a subclass of NP-complete problems, which in some
sense are the hardest problems of NP. Specifically, a problem is NP-
complete if every problem in NP is polynomially reducible to it. Thus, ex-
istence of a polynomial solution algorithm for just one of the NP-complete
problems would imply existence of polynomial solution algorithms for ev-
ery problem in NP. It is an open question whether or not such polynomial
algorithms exist. SAT is one of the problems of the class of NP-complete
problems; in fact, it was the first one determined to be in that class.

Let P be a given problem. If some NP-complete problem is polyno-
mially reducible to P , then P is NP-hard.

A polynomial algorithm is not necessarily usable in practice. The
constants α, β, and γ of the upper bound α · sβ + γ on the run time may
be huge, and the algorithm may require large run times even for small
problem instances. The definition of “polynomial” completely ignores the
magnitude of these constants.

However, almost all polynomial algorithms of this book involve con-

68 Chapter 2. Basic Concepts

stants α, β, and γ that are small enough to make the schemes practically
useful.

In general, when one claims existence of an algorithm for a given class
of problems, then in principle one need not exhibit an algorithm or any
finite method for constructing it. Such existence claims are of little interest
here. So whenever we assume or claim existence of an algorithm, then we
mean that a complete description of the algorithm is at hand. Furthermore,
if the algorithm is assumed or claimed to be polynomial, then we also mean
that a polynomial function is available that bounds the worst-case run time.

2.8 References

Almost any book on logic or automated reasoning—for example, Chang
and Lee (1973), Loveland (1978), Genesereth and Nilsson (1987), Hamil-
ton (1988), Lloyd (1987), and Wos, Overbeek, Lusk, and Boyle (1992)—
includes most logic definitions and results of Sections 2.3 and 2.4. For
references about the MINSAT and MAXSAT problems, see Chapters 1
and 5.

The graph definitions of Section 2.5 are typically covered in the first
few chapters of graph theory books—for example, in Ore (1962), Hara-
ry (1969), Wilson (1972), and Bondy and Murty (1976). The concept of
Boolean minor for graphs is new. Theorems (2.5.9), (2.5.10), (2.5.11), and
(2.5.12) are due to Menger (1927), König (1936), Hall (1935), and Dil-
worth (1950), respectively. Theorem (2.5.13) is a special case of the max
flow min cut theorem for networks proved by Ford and Fulkerson (1956)
and independently by Elias, Feinstein, and Shannon (1956). Algorithms
(2.5.14)–(2.5.17) are simplified versions of algorithms described in the clas-
sic book on network flows by Ford and Fulkerson (1962). That book also
shows Theorems (2.5.9)–(2.5.12) to be special cases of Theorem (2.5.13).
The historical developments leading up to and involving Theorems (2.5.9)–
(2.5.13) and Algorithms (2.5.14)–(2.5.17) are reviewed in detail in the book
on matching by Lovász and Plummer (1986). Very efficient versions of Al-
gorithms (2.5.14)–(2.5.17) are presented in Ahuja, Magnanti, and Orlin
(1993).

The basic matrix definitions of Section 2.6 are included in any book
on linear algebra; see, for example, Faddeev and Faddeeva (1963), Strang
(1980), or Lancaster and Tismenetsky (1985). The system BG, Theorems
(2.6.10) and (2.6.14), Corollaries (2.6.11) and (2.6.13), and Algorithm BG-
RANK (2.6.15) are motivated by the algebra proof of Theorem (2.5.11)
due to Edmonds (1967). System IB and the concept of Boolean minors for
generalized clause/variable matrices are new.

Details about the computational complexity definitions may be found
in Garey and Johnson (1979).

Chapter 3

Some Matroid Theory

3.1 Overview

We give a rather terse introduction to a part of matroid theory. A detailed
treatment may be found in the books cited in Section 3.7.

We proceed as follows. In Section 3.2, we introduce matroids using
several axiomatic definitions. We cover basic terminology and show how
matroids arise from graphs and from matrices over fields.

Section 3.3 is concerned with the concept of matroid minor. We ex-
amine this idea in detail for the matroids arising from matrices over fields
and compare it with those of graph minor and Boolean minor defined in
Section 2.5.

In Section 3.4, we define separations and connectivity for matroids, and
we relate these concepts to the graph separations and graph connectivity
covered in Section 2.5. For matroids produced from matrices, we restate
the separation and connectivity concepts using matrix terminology.

Sections 3.5 and 3.6 build upon Section 3.4. In Section 3.5, we show
how one may efficiently locate several types of matroid and matrix sepa-
rations. In Section 3.6, we introduce certain decompositions and composi-
tions of matroids and matrices called k-sums, where k may be any positive
integer. In later chapters, we employ the ideas underlying matroid and
matrix separations and k-sums to obtain decompositions and compositions
of logic problems.

In the final section, 3.7, we cover extensions and cite relevant refer-
ences.

69

70 Chapter 3. Some Matroid Theory

3.2 Definitions

We introduce the matroid concept via that of independence system. We
also present several classes of matroids and define a number of matroid
terms.

Independence System

Let E be a finite set. Define I to be a nonempty subset of the power
set of E; that is, each element of I is a subset of E.

Suppose that for every subset E ⊆ E occurring in I, every subset E ⊆
E is also in I. We then say that the ordered pair (E, I) is an independence
system and that E is the groundset of the system. We define the subsets E
of E present (resp. not present) in I to be independent (resp. dependent).

By these definitions, the null set must always be an element of the set
I of an independence system, and we may replace the condition that I be
nonempty by the demand that the null set be in I. Thus, the following
axioms define independence systems.

(3.2.1)
(i) The null set is in I.
(ii) Every subset of any set in I is also in I.

Let E and E be subsets of E such that E ⊆ E. Suppose E is independent.

Then E spans the set E if E is a maximal independent subset of E. Any
independent subset of E that spans E is a base of (E, I).

The rank of a subset E ⊆ E, abbreviated rank(E), is the cardinality
of a maximum size independent subset of E.

By these definitions, the independence system (E, I) has a base E
for which rank(E) = |E|. But there may also be bases having fewer than
rank(E) elements.

Matroid

A matroid is an independence system M = (E, I) where, for any subset
E ⊆ E, all maximal independent subsets of E have the same cardinality.
Thus, a matroid consists of a finite set E and a subset I of the power set
of E satisfying the following axioms.

(3.2.2)

(i) The null set is in I.
(ii) Every subset of any set in I is also in I.
(iii) For any subset E ⊆ E, the maximal subsets of E

that are in I have the same cardinality.

3.2. Definitions 71

Let E be an independent set that is a subset of some E ⊆ E. If E is

a maximal independent subset of E, then E spans E. By (iii) of (3.2.2),
the cardinalities of any two maximal independent subsets of any E ⊆ E
are the same. Thus, we may define the rank of E, denoted by r(E), to be
the cardinality of any maximal independent subset of E. Any independent
subset of E that spans E is a base of M . Again by (iii) of (3.2.2), all bases
of M must have the same cardinality. A circuit is a minimal dependent
subset of E.

One can axiomatize matroids in terms of bases, circuits, and other
subsets of E, or by certain functions, geometries, and operators. It is
usually a simple, though at times tedious, exercise to prove equivalence of
these systems. Here we just include the axioms that rely on bases, circuits,
and the rank function.

Axioms Using Bases, Circuits, Rank Function

For bases, the axioms are as follows. Let B be a set of subsets of E. Suppose
B observes the following axioms.

(3.2.3)

(i) B is nonempty.
(ii) For any sets B1, B2 ∈ B and any x ∈ (B1 − B2),

there is a y ∈ (B2−B1) such that (B1−{x})∪{y}
is in B.

Then B is the set of bases of a matroid on E.
Via circuits, we may define matroids as follows. Let C be the empty

set, or let it be a set of nonempty subsets of E observing the following
axioms.

(3.2.4)

(i) For any C1, C2 ∈ C, C1 is not a proper subset of
C2.

(ii) For any two C1, C2 ∈ C and any z ∈ (C1 ∩ C2),
there is a set C3 ∈ C where C3 ⊆ (C1∪C2)−{z}.

Then C is the set of circuits of a matroid on E.
With the rank function, we specify a matroid as follows. Let r(·) be a

function from the power set of E to the nonnegative integers. Assume r(·)
satisfies the following axioms for any subsets S and T of E.

(3.2.5)
(i) r(S) ≤ |S|.
(ii) S ⊆ T implies r(S) ≤ r(T).
(iii) r(S) + r(T) ≥ r(S ∪ T) + r(S ∩ T).

Then r(·) is the rank function of a matroid on E.
We omit the proofs of equivalence of the systems. It is instructive,

though, to express each one of I, B, C, and r(·) in terms of the other ones.

72 Chapter 3. Some Matroid Theory

Suppose I is given. Then B is the set of Z ∈ I with maximum car-
dinality. C is the set of the minimal C ⊆ E that are not in I. For any
E ⊆ E, r(E) is the cardinality of a maximal set Z ⊆ E that is in I.

Suppose B is given. Then I is the set of all X ∈ B plus their subsets.
C is the set of the minimal C ⊆ E that are not contained in any X ∈ B.
For any E ⊆ E, r(E) is the cardinality of any maximal set X ∩ E where
X ∈ B.

Suppose r(·) is given. Then I is the set of E ⊆ E for which r(E) = |E|.
B is the set of Z ⊆ E for which |Z| = r(E). C is the set of the minimal
C ⊆ E for which r(C) = |C| − 1.

Matroids arise from graphs, matrices, and other settings. We present
several examples.

Graphic Matroid

Let G be an undirected graph with arc set E. Define a subset E of E to be
independent if deletion of the edges of E−E reduces G to a forest. Declare
I to be the set of independent subsets of E. We prove that M = (E, I) is
a matroid. Clearly, any subset of an independent set is also independent,
so M is an independence system. To establish axiom (iii) of (3.2.2), let
E be a subset of E. We must show that all maximal independent subsets
of E have the same cardinality. Define G to be the graph obtained from
G by deletion of the edges of E − E. A maximal independent subset of
E is the edge set of a principal forest of G. As shown in Section 2.5, all
such forests have the same number of edges. Thus, M is a matroid. The
matroids produced that way from graphs are called graphic.

Matroid Represented by Matrix

Let A be a matrix over a field F , with columns indexed by the elements
of a set E. Define a subset E of E to be independent if the columns of
A indexed by E are linearly independent over F . Collect in a set I the
independent sets E ⊆ E. Well-known arguments of linear algebra prove
that M = (E, I) satisfies the axioms of (3.2.2), so M is a matroid.

Suppose a matrix A over some field F and with column index set
E generates a matroid M = (E, I) as just described. In the spirit of
the matroid representability definitions yet to come, we declare A to be a
nonstandard representation matrix of M . Any elementary row operation
transforms A to another nonstandard representation matrix of M . It is well
known that such operations plus the deletion of zero rows can convert A
to a matrix with leading identity matrix, say, [I|B]. As for A, the columns
of [I|B] are indexed by E, say, with subset X ⊆ E (resp. Y ⊆ E) indexing
the columns of I (resp. B). In conformance with the indexing convention

3.2. Definitions 73

introduced in Section 2.6, we declare the rows of [I|B] and of B to be
indexed by X . Clearly, the matrix B over F , with row index set X and
column index set Y , completely specifies M . Indeed, the independent sets
of M are completely determined by the F -rank of the submatrices of B.
We present details of this relationship between B and M in a moment when
we discuss the matroid rank function.

We call B a standard representation matrix, abbreviated representation
matrix, of M . At times, we want to make the role of the underlying field
F explicit. We then call B an F-representation matrix of M .

By the discussion of the pivot operation in Section 2.6, any matrix B′

obtained from B by pivots is an F -representation matrix of M .

We discuss an instance of a nonstandard representation matrix. Con-
sider the graphic matroid M of an undirected graph G. Define A to be the
following matrix, called the node/edge incidence matrix of G. Each row of
A corresponds to a node of G, and each column corresponds to an edge.
All entries of A are zero, except that for any nonloop edge (i, j) of G, the
column (i, j) of A has a 1 in row i and a second 1 in row j. Consider A to
be over the binary field GF(2). It is not difficult to verify that any set of
linearly independent columns of A corresponds to the edge set of a forest
subgraph of G, and vice versa. Since the edge sets of forests are precisely
the independent sets of M , we know that A over GF(2) is a nonstandard
representation matrix of M .

F-Matroid

For a given field F , an F -matroid is a matroid that can be represented
by some matrix over F . In particular, there are GF(2)-matroids, GF(3)-
matroids, and IR-matroids.

BG-Matroid

Let B be a matrix over BG with row index set X and column index set Y .
Derive a real matrix B′ from B by replacing the nonzero entries of B by
real numbers that are algebraically independent over the rationals. Recall
that the BG-rank of any submatrix of B is defined to be the IR-rank of the
corresponding submatrix of B′. Let M be the matroid represented by B′.
Since the independent sets of M are completely determined by the IR-rank
of the submatrices of B′, we could also establish the independent sets of M
using the BG-rank of the submatrices of B. Accordingly, we declare B to
be a BG-representation matrix of M and call M a BG-matroid. Evidently,
the BG-matroids are representable over IR and thus are IR-matroids.

74 Chapter 3. Some Matroid Theory

Matrix and Matroid Rank

Let B be a matrix over a field F with row index set X and column index
set Y . Let M on X∪Y be the matroid F -represented by B. We repeatedly
make use of some partition (X1, X2) of X and some partition (Y1, Y2) of
Y . Typically, we just specify one set of X1, X2 and one set of Y1, Y2. For
any such partitions, we assume B to be partitioned as

(3.2.6) X1
B =

Y1

A1

D1X2

Y2

A2

D2

Partitioned version of B

Let A = [I|B]. According to our indexing convention, A has row index set
X and column index set X ∪ Y . Let Z ⊆ X ∪Y be a base of M ; that is, Z
is a maximal independent set. Define X2 = Z ∩X and Y1 = Z ∩ Y . Then
the column submatrix A of A indexed by Z = X2 ∪ Y1 must be an F -basis
of A of the form

(3.2.7)

X2

A =
X1

X2

0

Y1

D1

A1

...1
1

Submatrix of A indexed by Z = X2 ∪ Y1

The submatrix A1 of A is square and, by cofactor expansion, F -nonsingu-
lar. Conversely, any square and F -nonsingular submatrix A1 of B defined
by (X1, X2) and (Y1, Y2) corresponds to a base Z = X2 ∪ Y1 of M . More
generally, let the submatrix A1 of B of (3.2.7) be of arbitrary size and with
F -rank A1 = k. Then the set X2 ∪ Y1 of M has rank equal to |X2|+ k.

Let r(·) be the rank function of M . We have just shown that

(3.2.8) r(X2 ∪ Y1) = |X2|+F -rank(A1)

The above arguments are easily adjusted for the case where B is a
matrix over BG and where M is the BG-matroid of B. The equation
(3.2.8) then becomes

(3.2.9) r(X2 ∪ Y1) = |X2|+ BG-rank(A1)

3.2. Definitions 75

When we let the submatrices D1 and D2 of (3.2.6) play the role of A1, we
get the respective equations

(3.2.10)
r(X1 ∪ Y1) = |X1|+ F -rank(D1)

r(X2 ∪ Y2) = |X2|+ F -rank(D2)

Adding these two equations and using r(X ∪ Y) = |X | = |X1| + |X2|, we
obtain

(3.2.11)
r(X1 ∪ Y1) + r(X2 ∪ Y2)

= r(X ∪ Y) + F -rank(D1) + F -rank(D2)

The corresponding equation for the BG case is

(3.2.12)
r(X1 ∪ Y1) + r(X2 ∪ Y2)

= r(X∪Y)+BG-rank(D1)+BG-rank(D2)

There are matroids that are not represented by any matrix over any
field. Such matroids are nonrepresentable. In this book, we only use repre-
sentable matroids—in particular, GF(3)-matroids and BG-matroids. Ac-
cordingly, we interpret most matroid definitions given below for an arbi-
trary matroid N = (E, I) also in terms of two matrices B and B̃ repre-
senting two matroids M and M̃ , respectively. The matrix B (resp. B̃) is
assumed to be over an arbitrary field F (resp. over BG). Both matrices B
and B̃ have row index set X and column index set Y . Define A = [I|B]
and Ã = [I|B̃]. We assume that E = X ∪ Y , so the three matroids N , M ,
and M̃ have the same groundset.

Loop

An element v of N is a loop if the rank of v is 0. The loops of M (resp. M̃)
correspond precisely to the zero columns of B (resp. B̃).

Parallel Elements and Triangle

Two nonloop elements v and w of N are parallel if the rank of the set {v, w}
is 1 or, equivalently, if that set is a circuit.

Two elements of M are parallel if and only if one of the following two
cases applies. In the first case, one of v and w, say, v, indexes a row of B,
and w indexes a column of B with exactly one nonzero, which occurs in
row v. In the second case, v and w index two nonzero columns of B that
form a matrix with F -rank equal to 1.

For M̃ and B̃, two cases are also possible for parallel v and w. The
first case corresponds to the first one of M and B; that is, one of v and

76 Chapter 3. Some Matroid Theory

w, say, v, indexes a row of B̃, and w indexes a column of B̃ with exactly
one nonzero, which occurs in row v. The second case for M̃ and B̃ is more
restrictive than that for M and B. As before, v and w index two nonzero
columns of B̃. But this time, the columns v and w contain just one nonzero
each. The two nonzeros of the columns v and w must occur in the same
row.

Evidently, “is parallel to” is an equivalence relation. The equivalence
classes are the parallel classes.

A triangle is a circuit with three elements.

Fundamental Circuit

Let Z be a base of N . For any element z /∈ Z, the set Z ∪ {z} contains
exactly one circuit, which is of the form Z ∪ {z} for some subset Z ⊆ Z.
The circuit Z ∪ {z} is the fundamental circuit that z creates with the base
Z of N .

The fundamental circuit of M that any element y ∈ Y creates with the
base X of M is of the form {x ∈ X | Bxy 6= 0} ∪ {y}. The corresponding

fundamental circuit of M̃ is {x ∈ X | B̃xy 6= 0} ∪ {y}.

Dual Matroid

The collection {E−Z | Z = base of N} is the set of bases of a matroid on E,
as is readily checked using the axioms of (3.2.3). We call that matroid the
dual matroid of N . We use the asterisk to denote the dualizing operation,
so N∗ is the just defined dual matroid of N . Evidently, the dual matroid
of the dual matroid of N is N again, so (N∗)∗ = N .

It is not difficult to verify that the dual matroid M∗ of M (resp. M̃∗

of M̃) is represented by Bt (resp. B̃t), where the superscripted t denotes
transpose.

If r(·) is the rank function of N , then the rank function r∗(·) of N∗ is
given by

(3.2.13) r∗(E) = r(E − E) + |E| − r(E), ∀ E ⊆ E

The prefix “co” dualizes a term. For example, a cobase (resp. coloop, cocir-
cuit) of N is a base (resp. loop, circuit) of the dual matroid N∗. Coparallel
or series elements of N are parallel elements of N∗. The equivalence classes
of the equivalence relation “is coparallel to” (=“is in series with”) are the
coparallel or series classes. A cotriangle or triad of N is a triangle of N∗.

Since Bt (resp. B̃t) represents M∗ (resp. M̃∗), it is a simple matter to
describe cobases, coloops, series (=coparallel) elements, and fundamental
cocircuits of M (resp. M̃) in terms of B (resp. B̃). We do this here for

3.3. Minor 77

coloops and series elements, and we leave it to the reader to characterize
the remaining items.

A coloop of M (resp. M∗) corresponds precisely to a zero row of B
(resp. B̃).

Two elements v and w of M are in series if and only if one of the
following two cases applies. In the first case, one of v and w, say, v, indexes
a column of B, and w indexes a row of B with exactly one nonzero entry,
which occurs in column v. In the second case, v and w index two nonzero
rows of B that form a matrix with F -rank equal to 1.

For M̃ and B̃, two cases are also possible for series elements v and
w. The first case corresponds to that of M and B; that is, one of v and
w, say, v, indexes a column of B̃, and w indexes a row of B̃ with exactly
one nonzero entry, which occurs in column v. The second case is more
restrictive than that for M and B. Here, too, v and w index two nonzero
rows. But this time, the rows v and w contain just one nonzero entry each.
The two nonzero entries of rows v and w must occur in the same column.

Next, we cover matroid operations producing so-called matroid minors.

3.3 Minor

We continue to refer to the three matroids N , M , and M̃ of Section 3.2
above, each with groundset E. The matroids M and M̃ are represented by
B over a field F and by B̃ over BG, respectively. Both matrices have the
rows indexed by X and the columns indexed by Y , so E = X ∪ Y .

Deletion and Contraction

Let z be an element of N that is not a coloop. Define N to be the matroid
on E−{z} whose bases are the bases Z of N that do not contain z. Using
the axioms of (3.2.3) for bases, one readily confirms that N is indeed a
matroid. We say that N is obtained from N by the deletion of the element
z. We denote the deletion operation by “\”, so N = N\z.

Now let z be an element of N that is not a loop. Define N to be
the matroid on E − {z} whose bases are the sets Z − {z}, where Z ranges
over the bases of N with z. Again, it is not difficult to check that N is
a matroid. We say that N is obtained from N by the contraction of the
element z. We denote the contraction operation by “/”, so N = N/z.

To complete the specification of the deletion and contraction opera-
tions, we declare the deletion of a coloop to be actually a contraction and
declare the contraction of a loop to be actually a deletion.

A reduction by an element is the deletion or contraction of that ele-
ment. A matroid obtained by a sequence of reductions from N is a minor

78 Chapter 3. Some Matroid Theory

of N . It is easy to show that the same minor results regardless of the order
in which the reductions are carried out. By induction, one only needs to
show that the reordering of two successive reduction steps results in the
same minor.

Suppose a reduction sequence involves the deletion of elements w1,
w2, . . . , wn and the contraction of elements v1, v2, . . . , vm. Let V =
{v1, v2, . . . , vm} and W = {w1, w2, . . . , wn}. We denote the minor of N ob-
tained by the deletion of w1, w2, . . . , wn and the contraction of v1, v2, . . . ,
vm by N/V \W . We also write N/V if W = ∅ and N\W if V = ∅. The
above notation for minors is somewhat imprecise, since, for example, we
write N/v when element v is contracted, and we write N/V when all ele-
ments of the set V are contracted. But our notation is the customary one
and less cumbersome than, say, the alternate and formally correct notation
N/{v} when element v is contracted.

We consider N itself to be a minor of N . All other minors of N are
proper minors of N .

Duality of Deletion and Contraction

Let z be a noncoloop element of N . The bases of the minor N\z are by
definition the bases Z of N without z. Hence, the bases of (N\z)∗, the
dual of N\z, are the sets (E−Z)−{z}, where Z ranges over the bases of N
without z. Since the bases Z∗ of N∗ are the sets E−Z, where Z ranges over
the bases of N , the bases of (N\z)∗ are the sets Z∗−{z}, where Z∗ ranges
over the bases of N∗ with z. By definition of the contraction operation,
the just defined sets Z∗ − {z} are the bases of N∗/z. We conclude that
(N\z)∗ = N∗/z. It is easy to check that the same conclusion holds when
z is a coloop of N . Thus, in general, (N\z)∗ = N∗/z and, by duality,
(N/z)∗ = N∗\z.

We have shown that deletion (resp. contraction) in a matroid corre-
sponds to contraction (resp. deletion) in the dual matroid. For the earlier
defined set V and W , we have (N/V \W)∗ = N∗/W\V .

Addition, Expansion, and Extension

If N = N\z or N = N/z, then one may obtain N from N again by
inserting the element z. Specifically, if N = N\z (resp. N = N/z) and
z is not a coloop (resp. loop) of N , then we say that N can be obtained
from N by the addition of z (resp. expansion by z). We denote addition by
“+” and expansion by “&”. Accordingly, in the addition (resp. expansion)
case, we have N = N+z (resp. N = N&z). An extension is an addition or
expansion.

The addition and expansion operations may be extended to sets of
elements in the obvious way. In particular, if N is obtained from a minor

3.3. Minor 79

N via the addition of the elements of a set W and via the expansion by
the elements of a set V , then we write N = N&V +W .

By the duality relationship between deletion and contraction, addition
(resp. expansion) in a matroid corresponds to expansion (resp. addition)
in the dual matroid.

Representation Matrix of Minor

Let z be an element of M that is not a coloop. Recall that M is represented
by the matrix B over F with row index set X and column index set Y .
We know that the bases of M\z are the bases Z of M without z. So if
z indexes a column of B, that is, if z ∈ Y , then we just delete column z
from B to get a representation matrix for M\z. Suppose z indexes a row
of B; that is, z ∈ X . Since z is not a coloop of M , row z of B must be
nonzero. By one pivot on any nonzero entry in row z of B, we get another
representation matrix for M where z indexes a column. We conclude that,
up to a pivot, deletion of a noncoloop element from M corresponds to
deletion of a column from B.

Recall that the pivot operation and the taking of transpose commute,
that Bt represents M∗, and that deletion and contraction are dual opera-
tions. So by duality, contraction of a nonloop element of M corresponds
up to a pivot to deletion of a row from B.

By definition, the addition (resp. expansion) operation is the inverse
of the deletion of a noncoloop element (resp. contraction of a nonloop ele-
ment). Thus, the addition of (resp. expansion by) an element in a proper
minor of M corresponds to adjoining of a column (resp. row) to any repre-
sentation matrix of the minor.

Minor of Graphic Matroid

Let G be an undirected graph with edge set E. Define M to be the graphic
matroid produced by G, as discussed earlier in Section 3.2. So M has
E as groundset, and the edge sets of the forest subgraphs of G are the
independent sets of M .

We claim that for any disjoint subset V and W of E, the matroid
minor M/V \W is the graphic matroid of the graph minor G/V \W . To
prove this claim, one only needs to consider the deletion and contraction
of just one element in M and G. We omit the elementary proof.

Matroid Minor and Boolean Minor

According to Section 2.5, labeled, directed, bipartite graphs may be reduced
to Boolean minors by scaling, shrinking, and deletion of nodes. Section 2.6

80 Chapter 3. Some Matroid Theory

contains a translation of these steps into matrix language for generalized
clause/variable matrices where each entry is an ordered pair.

Suppose we exclude the shrinking step. The remaining reduction op-
erations of column scaling and submatrix taking may also be carried out
in any {0,±1} clause/variable matrix B. Indeed, any matrix B so derived
from B is the clause/variable matrix of some Boolean minor of DBG(B).
Suppose B has row index set X and column index set Y . Define M to be
the matroid represented by B by viewing B to be over some field F or over
the system BG.

We know that any reduction sequence for M involving contractions
of some elements of X and deletion of some elements of Y reduces M to
a matroid minor M that is represented by a submatrix B of B. At the
same time, B is the clause/variable matrix of a Boolean minor of DBG(B).
Hence, all matroid minors of M of the form M/X\Y with X ⊆ X and
Y ⊆ Y correspond to Boolean minors of DBG(B).

The converse relationship also holds; that is, any Boolean minor of
DBG(B) produced without shrinking corresponds to a matroid minor of
the matroid M .

3.4 Connectivity

We introduce matroid separations and connectivity.
Let M be a matroid with groundset E and rank function r(·). Let

E1 and E2 be two sets that partition E. For k ≥ 1, the unordered pair
(E1, E2) is a k-separation of M if

(3.4.1)
|E1|, |E2| ≥ k

r(E1) + r(E2) ≤ r(E) + k − 1

The sets E1 and E2 are the two sides of the k-separation. The k-separation
is exact if the inequality of (3.4.1) involving the rank function r(·) holds with
equality. The matroid M is k-separable if it has a k-separation. For k ≥ 2,
M is k-connected if it does not have an l-separation for some 1 ≤ l ≤ k−1.
If M is 2-connected, then it is also said to be connected.

Tutte graph connectivity and matroid connectivity are linked by the
following theorem due to Tutte. We include that result, since it sheds light
on the relationship between graphs and graphic matroids. But we make no
use of the theorem and thus omit the proof.

(3.4.2) Theorem. For any k ≥ 2, a graph G is Tutte k-connected if and

only if the graphic matroid M(G) is k-connected.

For a matroid M represented by a matrix B over a field F , the condi-
tions of (3.4.1) for k-separations manifest themselves in B as follows.

3.4. Connectivity 81

(3.4.3) Lemma. Let M be a matroid represented by a matrix B over a

field F or over the system BG. Let B have row index set X and column

index set Y . Denote the groundset of M , which is X ∪ Y , by E. Then (a)
and (b) below hold.

(a) For some k ≥ 1, let (E1, E2) be a k-separation of M . For i = 1, 2,

define Xi = Ei ∩X and Yi = Ei ∩ Y . Partition B using X1, X2, Y1,

and Y2 as follows.

(3.4.4) X1
B =

Y1

A1

D1X2

Y2

A2

D2

Partitioned version of B

Then the sets X1, X2, Y1, Y2 and the submatrices D1, D2 of B satisfy

(3.4.5) |X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

as well as

(3.4.6) F -rank(D1) +F -rank(D2) ≤ k − 1

for the case of the field F , and

(3.4.7) BG-rank(D1) + BG-rank(D2) ≤ k − 1

for the case of the system BG. If the k-separation of M is exact, then

the applicable inequality of (3.4.6) or (3.4.7) holds with equality.

(b) Suppose (X1, X2) and (Y1, Y2) are partitions of X and Y , respectively.

Assume that (3.4.5) and the applicable inequality of (3.4.6) or (3.4.7)
hold. For i = 1, 2, define Ei = Xi∪Yi. Then (E1, E2) is a k-separation

of M .

Proof. We begin with part (a), assuming the case of field F . The inequal-
ity |X1 ∪ Y1|, |X2 ∪ Y2| ≥ k of (3.4.5) obviously holds. To establish (3.4.6),
we combine (3.2.11), which says that r(X1∪Y1)+r(X2∪Y2) = r(X ∪Y)+
F -rank(D1) + F -rank(D2), with (3.4.1). Thus, r(E1) + r(E2) = r(X1 ∪
Y1) + r(X2 ∪ Y2) = r(X ∪ Y) +F -rank(D1) +F -rank(D2) ≤ r(E) + k− 1.
Since E = X ∪Y , we conclude that F -rank(D1)+F -rank(D2) ≤ k−1. We
handle the case of (3.4.7) using (3.2.12) instead of (3.2.11). The remainder
of part (a) and also part (b) are then immediate.

We apply the terminology for matroid k-separations and k-connectivity
to matrices in the expected way. So if a matrix B represents a matroid

82 Chapter 3. Some Matroid Theory

M and if M has a k-separation (X1 ∪ Y1, X2 ∪ Y2) (resp. has an exact k-
separation, or is k-connected), then we declare B to also have a k-separation
(X1∪Y1, X2∪Y2) (resp. to have an exact k-separation, or to be k-connected).
The matrix B may at one time be over a field F , and at another time be
over BG. To differentiate among the possible k-separations, we say, for ex-
ample, that B has an F -k-separation or has a BG-k-separation. Terms such
as F -k-connected and BG-k-connected are to be analogously interpreted.

The next lemma implies that separations of M are also separations of
its dual M∗.

(3.4.8) Lemma. A matroid M is k-separable or k-connected if and only

if this is so for its dual M∗.

Proof. The lemma follows from the equation (3.2.13) for the rank function
r∗(·) of M∗ and the k-separation conditions of (3.4.1). For representable
matroids, the symmetry inherent in (3.4.5)–(3.4.7) immediately proves the
result.

3.5 Finding Separations

For the decompositions to come, we need a method that for the matroid
represented by a given matrix either locates a k-separation satisfying spec-
ified conditions or determines that such a separation does not exist. If such
a k-separation exists, we want one with k as small as possible. For the case
of 1-separations, the specified conditions are vacuous. For k-separations
with k ≥ 2, the conditions demand that the two sides of the separation
properly contain some specified sets and have at least a certain size.

We first treat the 1-separation case.

1-Separation

Define B to be a matrix over a field F or over BG, with row index set X
and column index set Y . Let M be the matroid represented by B. We use
the notation of (3.4.4). Thus, (X1, X2) and (Y1, Y2) are partitions of X
and Y , respectively, and A1, A2, D1, D2 are the submatrices of B defined
by these partitions.

By (3.4.5) and (3.4.6) (resp. (3.4.7)), (X1 ∪ X2, Y1 ∪ Y2) is an F -1-
separation (resp. BG-1-separation) if and only if |X1 ∪ Y1|, |X2 ∪ Y2| ≥ 1
and F -rank(D1)+F -rank(D2) (resp. BG-rank(D1)+BG-rank(D2)) is equal
to 0. The zero matrix is the only matrix with F -rank or BG-rank equal to
0. Thus, for any F -1-separation or BG-1-separation, both submatrices D1

and D2 must be zero. The latter condition implies that the graph BG(B)
is not connected. Conversely, assume that BG(B) is not connected, and

3.5. Finding Separations 83

let X1 ∪ Y1 be the set of nodes of BG(B) of some, but not all, connected
components of BG(B). Then (X1 ∪ Y1, X2 ∪ Y2) is an F -1-separation or
BG-1-separation, whichever applies. We conclude that finding the F -1-
separations or BG-1-separations of B is equivalent to finding the connected
components of BG(B), an easy task.

We make use of these observations in the following algorithm for find-
ing 1-separations.

(3.5.1) Algorithm 1-SEPARATION. Finds a 1-separation of a ma-

troid M represented by a matrix B over a field F or over the system BG.

Input: Matrix B with row index set X and column index set Y .

Output: Either: A 1-separation of B and M for which the submatrix A1

is connected. Or: “B and M do not have a 1-separation.”

Complexity: Polynomial.

Procedure:
Determine the connected components of the graph BG(B). If there is
only one such component, declare that B does not have a 1-separation.
Otherwise, output a 1-separation where the submatrix A1 corresponds to
one of the connected components.

Induced Separation

We turn to the case of k-separations with k ≥ 2 where each side must
contain specified sets and must be at least of specified size. We present
a simple algorithm, called Algorithm k-SEPARATION below, for finding
such separations. The algorithm relies on a subroutine where so-called in-
duced separations are determined. The subroutine is described in this sub-
section, while the algorithm is covered in the next one. We should mention
that Algorithm k-SEPARATION is quite satisfactory from a theoretical
viewpoint, since it is polynomial whenever k is bounded from above. How-
ever, the algorithm is too inefficient to be used in actual computations. In
later subsections, we address this difficulty and suggest appropriate reme-
dies.

We still assume B to be a matrix over F or over BG, with row index set
X and column index set Y , and assume M to be the matroid represented
by B. Let B be a submatrix of B of the following form.

(3.5.2)

X2 A2D1

D2A1X1

Y2Y1

B =

Submatrix B of B

84 Chapter 3. Some Matroid Theory

Define M to be the minor of M represented by B. Assume that, for
some l ≥ k,

(3.5.3) |X1 ∪ Y 1|, |X2 ∪ Y 2| ≥ l

and that

(3.5.4) F -rank(D1) +F -rank(D2) = k − 1

or

(3.5.5) BG-rank(D1) + BG-rank(D2) = k − 1

whichever applies. Hence, (X1 ∪ Y 1, X2 ∪ Y 2) is an exact k-separation of
B where each side has at least l elements.

We are to decide whether the given k-separation of B can be extended
to one for B. Specifically, we must determine whether B has a k-separation
(X1 ∪ Y1, X2 ∪ Y2) where, for i = 1, 2, Xi ⊇ Xi and Yi ⊇ Y i. If this is so,
we say that the k-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B and M induces the
k-separation (X1 ∪ Y1, X2 ∪ Y2) of B and M .

Define X3 = X − (X1 ∪ X2) and Y3 = Y − (Y 1 ∪ Y 2). We depict
B with the submatrix B and the index sets X1, X2, X3 and Y 1, Y 2, Y3

below. For reasons to become clear shortly, we have placed the submatrices
A1, A2, D1, and D2 of B into the corners of B.

(3.5.6)

A2

Y2Y1

X2

X1

Y3

X3B = any entry

D1

D2A1

Matrix B with submatrix B

By definition, an induced k-separation exists if and only if X3 and Y3

can be partitioned into X31, X32 and Y31, Y32, respectively, such that
(X1 ∪ Y 1 ∪ X31 ∪ Y31, X2 ∪ Y 2 ∪ X32 ∪ Y32) is a k-separation of B. We
display B with that k-separation below.

3.5. Finding Separations 85

(3.5.7) A1 D2

A2D1

Y2Y1

X2 D1 A2

A1X1

Y31 Y32

B =

Y3

X3

X31

X32

D2

Partition of B induced by that of B

By (3.5.3), we have

(3.5.8) |Xi ∪ Y i ∪X3i ∪ Y3i| ≥ l, i = 1, 2

By (3.4.6), (3.4.7), (3.5.4), (3.5.5), and the fact that the matrices D1 and
D2 are submatrices of D1 and D2, respectively, we must have

(3.5.9) F -rank(D1) +F -rank(D2) = k − 1

or

(3.5.10) BG-rank(D1) + BG-rank(D2) = k − 1

Hence, if an induced k-separation exists, then it must be an exact k-
separation with at least l elements on each side, and

(3.5.11) F -rank(Di) = F -rank(Di), i = 1, 2

or

(3.5.12) BG-rank(Di) = BG-rank(Di), i = 1, 2

We utilize two different methods for deciding whether an induced k-
separation exists, depending on whether the matrix B is over the field F
or over BG.

For the case of B over F , we employ a recursive scheme. As the
measure of problem size for the recursion, we use |X3∪Y3|. If |X3∪Y3| = 0,
then (X1 ∪ Y 1, X2 ∪ Y 2) is the desired induced k-separation. Suppose
|X3 ∪ Y3| > 0. Redraw B of (3.5.6) so that an arbitrary row x ∈ X3 and
an arbitrary column y ∈ Y3 are displayed.

86 Chapter 3. Some Matroid Theory

(3.5.13)

X2

Y2Y1

D1 A2

A1X1

y

B =

g

e

h

Y3

X3

x f

D2

any entry

Matrix B with row x ∈ X3 and column y ∈ Y3

The recursive method relies on the analysis of the following three cases of
B of (3.5.13). Collectively, these cases cover all situations.

In the first case, we suppose that for some row x ∈ X3, the subvector
e is not spanned by the rows of D1. We claim that, in any induced k-
separation, we must have x ∈ X31. For a proof, take any such separation
as depicted by (3.5.7). If x ∈ X32, then the subvector e of row x occurs
in D1. Since e is not spanned by the rows of D1, we have F -rank(D1) >
F -rank(D1), which contradicts (3.5.11). Thus, x must be in X31 as claimed.
We examine the subvector f of row x. Suppose that subvector is not
spanned by the rows of D2. Using (3.5.7) and (3.5.11) once more, we see
that in any induced k-separation the subvector f forces x to be in X32. But
the latter requirement conflicts with the one determined earlier for x. Thus,
an induced k-separation cannot exist, and we stop with that conclusion.
So assume that the subvector f of row x is spanned by the rows of D2. We
know already that x must be in X31 in any induced k-separation. Suppose
in B of (3.5.13) we adjoin e to A1 and f to D2, getting a new A1 and a
new D2. Evidently, the new A1, D2 plus the old A2, D1 constitutes a new
matrix B for which (X1 ∪ {x} ∪ Y 1, X2 ∪ Y 2) is a k-separation, and that
k-separation induces one in B if and only if this is so for the k-separation
(X1 ∪ Y 1, X2 ∪ Y 2) of the original B. Thus, we may replace the original
problem by one involving the new B. By our measure of problem size, the
new problem is smaller than the original one, and we may apply recursion.

In the second case, we suppose that for some column y ∈ Y3, the
subvector g is not spanned by the columns of D2. Arguing analogously
to the first case via (3.5.7) and (3.5.11), we conclude that y must be in
Y31 in any induced k-separation. Furthermore, suppose that the column
subvector h of column y is not spanned by the columns of D1. Using (3.5.7)
and (3.5.11) once more, we see that y must also be in Y32 in any induced k-
separation. Thus, an induced k-separation cannot exist, and we stop with
that conclusion. So suppose that h is spanned by the columns of D1. Then
we adjoin g to A1, adjoin h to D1, and correspondingly redefine B. The

3.5. Finding Separations 87

k-separation (X1∪Y 1∪{y}, X2∪Y 2) of the new B induces a k-separation
of B if and only if this is so for the k-separation (X1 ∪Y 1, X2 ∪Y 2) of the
original B. Once more, we may replace the induced k-separation problem
involving the original B by one with the new B. The latter problem is
smaller, and we may invoke recursion.

For the discussion of the third and final case, we suppose that neither
of the above cases applies. Equivalently, for all x ∈ X3, the subvector e of
row x is spanned by the rows of D1, and, for all y ∈ Y3, the subvector g of
column y is spanned by the columns of D2. By (3.5.13), (X1 ∪ Y 1, X2 ∪
X3 ∪ Y 2 ∪ Y3) is a k-separation of B induced by the one of B, and we stop
with that conclusion.

Clearly, the above scheme has a polynomial implementation. We sum-
marize it below.

(3.5.14) Algorithm INDUCED F-SEPARATION. Finds a k-sepa-

ration for the matroid M represented by a matrix B over a field F that is

induced by an exact k-separation of the minor M represented by a subma-

trix B, or declares that such an induced separation does not exist.

Input: Matrix B over field F , with row index set X and column index set
Y . A submatrix B of B with an exact k-separation (X1 ∪ Y 1, X2 ∪ Y 2)
where, for i = 1, 2, Xi ⊆ X and Y i ⊆ Y . The k-separation of B has at
least l elements on each side.

Output: Either: A k-separation (X1∪Y1, X2∪Y2) of B and M induced by
the k-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B and M ; the k-separation of B is
exact and has at least l elements on each side. Or: “The given k-separation
of B and M does not induce a k-separation of B and M .”

Complexity: Polynomial.

Procedure:
1. Consider B partitioned as in (3.5.13). Assume that B has a row x ∈ X3

with the indicated row subvectors e and f such that F -rank([e/D1]) >
F -rank(D1). Then x must be in X31. Suppose, in addition, that
F -rank([D2/f]) > F -rank(D2). Then x must also be in X32; that is,
B cannot be partitioned, and we stop with that declaration. On the
other hand, suppose F -rank([D2/f]) = F -rank(D2). Since x must be
in X31, we adjoin e to A1 and f to D2. Then we start recursively
again with the new B.

2. Suppose B as shown in (3.5.13) has a column y ∈ Y3 with the indicated
column subvectors g and h such that F -rank([g|D2]) > F -rank(D2).
Then y must be in Y31. Suppose, in addition, F -rank([D1|h]) >
F -rank(D1). Then y must also be in Y32; that is, B cannot be parti-
tioned, and we stop with that declaration. On the other hand, suppose
F -rank([D1|h]) = F -rank(D1). Since y must be in Y31, we adjoin g to
A1 and h to D1. Then we start recursively again with the new B.

88 Chapter 3. Some Matroid Theory

3. Finally, suppose that, for all rows x ∈ X3, the row subvector e satisfies
F -rank([e/D1]) = F -rank(D1), and suppose that, for all columns y ∈
Y3, the column subvector g satisfies F -rank([g|D2]) = F -rank(D2).
Then X1 = X1, X2 = X2 ∪ X3, Y1 = Y 1, and Y2 = Y 2 ∪ Y3 are the
sets for the desired k-separation (X1 ∪ Y1, X2 ∪ Y2) of B.

For later use, we include two observations about the output of Algorithm
INDUCED F -SEPARATION (3.5.14).

(3.5.15) Lemma.
(a) Any k-separation produced by Algorithm INDUCED F -SEPARA-

TION (3.5.14) has X1 ∪ Y1 minimal and X2 ∪ Y2 maximal, in the

sense that any other k-separation (X ′

1
∪ Y ′

1
, X ′

2
∪ Y ′

2
) of B induced by

the exact k-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B observes X1 ⊆ X ′

1
,

X2 ⊇ X ′

2
, Y1 ⊆ Y ′

1
, and Y2 ⊇ Y ′

2
.

(b) Let (X1∪Y 1, X2∪Y 2) be an exact k-separation of B, except that |X2∪
Y 2| may be equal to k− 1. If B has a k-separation (X ′

1
∪ Y ′

1
, X ′

2
∪ Y ′

2
)

where, for i = 1, 2, X i ⊆ X ′

i and Y i ⊆ Y ′

i , then one such k-separation

of B is found by Algorithm INDUCED F -SEPARATION (3.5.14).

Proof. (a) According to Steps 1 and 2 of Algorithm INDUCED F -SEP-
ARATION (3.5.14), X1 (resp. Y 1) is enlarged by x ∈ X3 (resp. y ∈ Y3)
only if there is no induced k-separation of B with x (resp. y) on the side
containing X2 (resp. Y 2). Thus, any x (resp. y) added to X1 (resp. Y 1)
must also be in X ′

1
(resp. Y ′

1
). This implies the minimality of X1 ∪ Y1 and

the maximality of X2 ∪ Y2.
(b) The validity of Algorithm INDUCED F -SEPARATION (3.5.14) and
the proof of part (a) are not affected if |X2 ∪ Y 2| is equal to k − 1, except
that possibly (X1∪Y1, X2∪Y2) of the output of the algorithm has |X2∪Y2|
equal to k − 1. Assume that exceptional situation. By part (a), X2 ∪ Y2

is maximal, which implies that there is no k-separation (X ′

1
∪ Y ′

1
, X ′

2
∪ Y ′

2
)

of B where, for i = 1, 2, Xi ⊆ X ′

i and Y i ⊆ Y ′

i . But this contradicts the
assumptions of part (b).

We turn to the situation where B is over the system BG. As before, B
has row index set X and column index set Y , and (X1∪Y 1, X2∪Y 2) is an
exact k-separation of the given submatrix B with at least l elements on each
side. First, we establish an auxiliary result that characterizes separations
of B and induced separations of B by certain node subsets of the bipartite
graphs BG(B) and BG(B), respectively.

(3.5.16) Lemma. Let B be a matrix over the system BG, with row index

set X and column index set Y . Suppose that B has the matrix B of (3.5.2)
as a submatrix. Define G to be the bipartite graph BG(B), and define G
to be BG(B). Then (a) and (b) below hold.

(a) For any k ≥ 1, (X1∪Y 1, X2∪Y 2) is an exact k-separation of B if and

only if |X1 ∪ Y 1|, |X2 ∪ Y 2| ≥ k and k − 1 is the minimum number of

3.5. Finding Separations 89

nodes of G whose removal from G disconnects the nodes of X1 ∪ Y 1

from the nodes of X2 ∪ Y 2.

(b) Suppose (X1 ∪ Y 1, X2 ∪ Y 2) is an exact k-separation of B. Then that

k-separation induces one for B if and only if k − 1 is the minimum

number of nodes of G whose removal from G disconnects the nodes of

X1 ∪ Y 1 from the nodes of X2 ∪ Y 2.

Proof. Let Z, Z1, and Z2 be subsets of the node set of a graph, where
Z1 and Z2 are disjoint. Suppose removal of the nodes of Z from the graph
disconnects the nodes of Z1 from the nodes of Z2. We then say that Z is
a disconnecting set of the graph for Z1 and Z2.

For the proof of the “if” part of (a), let Z be a minimum cardinality
disconnecting set of G for Z1 = X1∪Y 1 and Z2 = X2∪Y 2. By assumption,
|Z| = k − 1. In terms of B and its submatrices D1 and D2, the set Z is a
minimum cardinality subset of the index set of B whose removal reduces D1

and D2 to zero matrices. By Theorem (2.6.14), the latter fact implies that
BG-rank(D1)+BG-rank(D2) = k−1. We conclude that (X1∪Y 1, X2∪Y 2)
is an exact k-separation of B.

The above arguments can be reversed to establish validity of the “only
if” part of (a).

For the proof of the “if” part of (b), let Z be a minimum cardinality
disconnecting set of G for Z1 = X1∪Y 1 and Z2 = X2∪Y 2. By assumption,
|Z| = k − 1. Let G′ be G minus the nodes of Z. Define X1 (resp. Y1) to
be X1 (resp. Y 1) plus the subset of nodes in X (resp. Y) that in G′ may
be reached from nodes in X1 ∪ Y 1. Let X2 = X − X1 and Y2 = Y − Y1.
By arguments analogous to those for (a), (X1 ∪ Y1, X2 ∪ Y2) is an exact
k-separation of B induced by (X1 ∪ Y 1, X2 ∪ Y 2).

For the proof of the “only if” part of (b), let (X1 ∪ Y1, X2 ∪ Y2) be an
induced k-separation of B. By a properly adapted part (a), any minimum
cardinality disconnecting set of G for X1∪Y1 and X2∪Y2 contains exactly
k − 1 nodes. Since, for i = 1, 2, we have X i ∪ Y i ⊆ Xi ∪ Yi, any minimum
cardinality disconnecting set of G for X1 ∪ Y 1 and X2 ∪ Y 2 has at most
k − 1 nodes. But by (a), any disconnecting set of the subgraph G of G
for X1 ∪ Y 1 and X2 ∪ Y 2 has at least k − 1 nodes. We conclude that any
minimum cardinality disconnecting set of G for X1 ∪ Y 1 and X2 ∪ Y 2 has
exactly k − 1 nodes.

The disconnecting sets specified in Lemma (3.5.16)(a) and (b) may be
efficiently found by Algorithm DISJOINT PATHS (2.5.15). We use that
algorithm in the following method for finding induced BG-separations.

(3.5.17) Algorithm INDUCED BG-SEPARATION. Finds a k-sep-

aration of the matroid M represented by a matrix B over the system BG
that is induced by an exact k-separation of the minor M represented by a

submatrix B, or declares that such an induced separation does not exist.

90 Chapter 3. Some Matroid Theory

Input: Matrix B over the system BG, with row index set X and column
index set Y . A submatrix B of B with an exact k-separation (X1∪Y 1, X2∪
Y 2) where, for i = 1, 2, Xi ⊆ X and Y i ⊆ Y . The k-separation of B has
at least l elements on each side.

Output: Either: A k-separation (X1∪Y1, X2∪Y2) of B and M induced by
the k-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B and M ; the k-separation of B
and M is exact and has at least l elements on each side. Or: “The given
k-separation of B and M does not induce a k-separation of B and M .”

Complexity: Polynomial.

Procedure:
1. Define G to be the bipartite graph BG(B). Using Algorithm DIS-

JOINT PATHS (2.5.15), find a minimum cardinality node subset Z of
G so that the removal of the nodes of Z from G disconnects the nodes
of X1 ∪ Y 1 from the nodes of X2 ∪ Y 2.

2. If |Z| > k−1, declare that B has no induced k-separation. Otherwise,
let G′ be G minus the nodes of Z. Define X1 (resp. Y1) to be X1 (resp.
Y 1) plus the subset of nodes in X (resp. Y) that in G′ may be reached
from nodes in X1 ∪ Y 1. Let X2 = X − X1 and Y2 = Y − Y1. Then
(X1 ∪ Y1, X2 ∪ Y2) is the desired exact k-separation of B and M .

k-Separation

We present Algorithm k-SEPARATION, which for the matroid represented
by a given matrix finds a certain k-separation or determines that none ex-
ists. We mentioned earlier that Algorithm k-SEPARATION is polynomial
whenever k is bounded from above, but that it is not computationally us-
able for our purposes. In the next two subsections, we propose modified
versions of Algorithm k-SEPARATION that are computationally effective
for the cases of interest.

We begin with the definition of the problem solved by Algorithm k-
SEPARATION. We use the same notation as before. Thus, M is a matroid
represented by a matrix B over F or over BG. The matrix has row index
set X and column index set Y . Let P1, P2 (resp. Q1, Q2) be two disjoint
subsets of X (resp. Y). We want to either find partitions X1, X2 and Y1,
Y2 of X and Y , respectively, such that for given integers m1, m2, and n

(3.5.18)

(i) (X1 ∪ Y1, X2 ∪ Y2) is an exact k-separation of B
and M with k ≤ n.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Yi.
(iii) For i = 1, 2, |Xi∪Yi| ≥ |Pi∪Qi|+max{k, mi}+1.

or determine that such partitions do not exist. In the affirmative case,
we want the value of k to be minimal. We assume that B does not have

3.5. Finding Separations 91

a separation satisfying (3.5.18) for k = 1. This is, for example, the case
when B is connected.

We solve this problem as follows. For k = 2, 3, 4 . . . , we iteratively
carry out the search described below until either a k-separation with the
desired properties is found or k exceeds the upper bound n. In the latter
case, we stop and declare that a separation of the demanded type does not
exist.

Let us look at one iteration of the search, where the value of k is fixed.
Inductively, we assume that for any k′ < k, a k′-separation satisfying an
appropriately adjusted (3.5.18) does not exist. For the base case k = 2,
the induction hypothesis holds by assumption.

Let B be a submatrix of B as depicted in (3.5.2), and M be the minor
of M represented by B. We assume that B has the following features.

(3.5.19)

(i) (X1∪Y 1, X2∪Y 2) is an exact k-separation of B.
(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Y i.
(iii) For i = 1, 2, |Xi∪Y i| ≥ |Pi∪Qi|+max{k, mi}+1.
(iv) B is minimal with respect to (i)–(iii).

Let B and B be the input for Algorithm INDUCED F -SEPARATION
(3.5.14) or Algorithm INDUCED BG-SEPARATION (3.5.17), whichever
applies.

If the algorithm finds an induced k-separation for B, then by (3.5.19)
this k-separation satisfies the conditions of (3.5.18) and thus constitutes
the desired separation for B.

If the algorithm does not produce an induced k-separation, we try
other candidate submatrices B, until we either find the desired induced
k-separation for B or, having tried all possible candidates B, conclude that
B has no k-separation satisfying (3.5.18).

In the latter case, we increase k by 1. If the new k does not exceed
the specified upper bound n, we repeat the above process. Otherwise, we
stop and declare that B does not have a separation satisfying (3.5.18).

The computations involved in the derivation of the candidate subma-
trices B from B are rather straightforward. We remark only that the rank
calculations involved in that derivation are done with F -pivots if B is over
F , and with Algorithm DISJOINT PATHS (2.5.15) if B is over BG.

Suppose that n is bounded from above by some constant. The can-
didate matrices B may then be derived from B in polynomial time, as is
easily checked.

We summarize the above discussion in the following algorithm.

(3.5.20) Algorithm k-SEPARATION. Finds an exact k-separation of

the matroid M represented by a matrix B over a field F or over the system

BG, where the two sides contain specified sets and have at least a certain

size, or declares that such a separation does not exist.

92 Chapter 3. Some Matroid Theory

Input: Matrix B over a field F or over the system BG, with row index set
X and column index set Y . Two disjoint subsets P1, P2 (resp. Q1, Q2) of
X (resp. Y). Integers m1, m2, and n. For k = 1, the matrix B does not
have a separation (X1 ∪ Y1, X2 ∪ Y2) satisfying the following conditions.

(3.5.21)

(i) (X1 ∪ Y1, X2 ∪ Y2) is an exact k-separation of B
and M with k ≤ n.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Yi.
(iii) For i = 1, 2, |Xi∪Yi| ≥ |Pi∪Qi|+max{k, mi}+1.

Output: Either: A k-separation (X1 ∪ Y1, X2 ∪ Y2) of B and M satisfying
the conditions of (3.5.21) and, subject to them, with k minimal. Or: “B
and M do not have an exact k-separation (X1 ∪ Y1, X2 ∪ Y2) satisfying
(3.5.21).”

Complexity: Polynomial if m1, m2, and n are bounded by a constant.

Procedure:
1. Initialize k = 2.
2. Do for each submatrix B of (3.5.2) for which the sets X1, X2, Y 1, and

Y 2 satisfy (3.5.19):
Let B and B be the input matrices for Algorithm INDUCED F -
SEPARATION (3.5.14) or Algorithm INDUCED BG-SEPARATION
(3.5.17), whichever applies. If the algorithm finds an induced k-sepa-
ration (X1 ∪ Y1, X2 ∪ Y2), output that separation, and stop.

3. Increase k by 1. If k ≤ n, go to Step 2. Otherwise, declare that B and
M do not have a separation of the desired kind, and stop.

The matrices for which we want to locate separations typically have several
hundred and sometimes several thousand rows and columns. Of specific
interest are GF(3)-2-separations and BG-k-separations, where k is bounded
from above by some constant. Algorithm k-SEPARATION (3.5.20) is too
inefficient to find such separations with reasonable computing effort. In
the next three subsections, we address this issue. Specifically, in the next
two subsections we deal with GF(3)-2-separations, and in the subsequent
subsection we deal with BG-k-separations.

GF(3)-2-Separation

We are given a matroid M represented by a matrix B over GF(3). The
matroid M is connected and has no series or parallel elements. Corre-
spondingly, B is connected and has no parallel vectors and no vectors with
exactly one nonzero. Recall from Chapter 2 that a simple matrix has no
parallel vectors and no vectors with less than two nonzeros. Since a con-
nected matrix has no zero vectors, we may invoke the stated conditions for
B by demanding that B be connected and simple.

3.5. Finding Separations 93

We want to find a 2-separation of B and M or determine that none
exists. Note that the sets P1, P2, Q1, and Q2, which are part of the input
of Algorithm k-SEPARATION (3.5.20), are empty here.

Suppose B has a 2-separation. Thus, B can be partitioned as

(3.5.22) X1
B =

Y1

A1

D1X2

Y2

A2

D2

Partitioned version of B

where |X1∪Y1|, |X2∪Y2| ≥ 2 and where exactly one of the matrices of D1

and D2 has GF(3)-rank equal to 1, while the other matrix is a zero matrix.
We establish some properties of B in the next two lemmas.

(3.5.23) Lemma. Each one of the sets X1, X2, Y1, and Y2 is nonempty,

and the submatrices A1 and A2 are nonzero.

Proof. By the symmetry and duality, we may assume that X1 = ∅. By
|X1 ∪ Y1| ≥ 2, we know |Y1| ≥ 2. If D1 is a zero matrix, then B has zero
columns and is not connected, a contradiction. Hence GF(3)-rank(D1) = 1.
But then |Y1| ≥ 2 implies that D1 and B have two parallel columns, another
contradiction. If A1 or A2 is a zero matrix, then B contains a zero vector,
which contradicts the connectedness of B.

(3.5.24) Lemma. Matrix B has a row u with nonzero entries in some

columns v ∈ Y1 and w ∈ Y2.

Proof. By Lemma (3.5.23), the submatrices A1 and A2 are nonzero. Due
to the symmetry, we may assume that D2 is nonzero. If no row u ∈
X1 satisfies the stated condition, then in BG(B) the nodes of Y1 are not
connected with the nodes of Y2, which contradicts the connectedness of
B.

Suppose that we know the row index u and the column indices v ∈ Y1

and w ∈ Y2 of Lemma (3.5.24). If u is in X1, then we declare B and the
submatrix B defined by X1 = {u}, X2 = ∅, Y 1 = {v}, and Y 2 = {w} to
be the input for Algorithm INDUCED F -SEPARATION (3.5.14). That
input and the 2-separation (X1 ∪ Y1, X2 ∪ Y2) for B satisfy the hypotheses
of Lemma (3.5.15)(b). According to that result, Algorithm INDUCED F -
SEPARATION (3.5.14) must terminate with an induced 2-separation of
B. If u is in X2, then we define B by X1 = {u}, X2 = ∅, Y 1 = {w}, and
Y 2 = {v}. Once more, Algorithm INDUCED F -SEPARATION (3.5.14)
then produces an induced 2-separation of B.

94 Chapter 3. Some Matroid Theory

Of course, when we are looking for a 2-separation of B, we do not know
the indices u, v, or w. But we can search for them efficiently by apply-
ing Algorithm INDUCED F -SEPARATION (3.5.14) to each submatrix B
consisting of two nonzero entries of some row of B. Indeed, if the nonzero
entries of each row of B are stored sequentially in a list, then according to
the next lemma we can confine the search to submatrices B that contain
consecutive entries in the lists.

(3.5.25) Lemma. If a submatrix B of a row induces a 2-separation, then

this must be so for some submatrix B containing two consecutive entries

in the list for that row.

Proof. Let v and w be the column indices of the entries of B. Assume
that B induces the 2-separation (X1 ∪ Y1, X2 ∪ Y2) of B. Thus, v ∈ Y1

and w ∈ Y2, or vice versa. But then the indices of two adjacent entries
of the row list, say, v′ and w′, satisfy v′ ∈ Y1 and w′ ∈ Y2, or vice versa.
Hence, the submatrix containing these adjacent entries also induces the
2-separation (X1 ∪ Y1, X2 ∪ Y2) of B.

According to Lemma (3.5.25), the total number of cases of B to be
considered can be held in the worst case to the number of nonzeros of B
minus the number of rows of B.

It is easy to see that the effort for each application of Algorithm IN-
DUCED F -SEPARATION (3.5.14) is linear in the number of nonzeros of
B. Thus, total computing effort for finding a GF(3)-2-separation or deter-
mining that none exists, is in the worst case quadratic in the number of
nonzeros of B. We summarize the algorithm below.

(3.5.26) Algorithm GF(3)-2-SEPARATION. Finds an exact 2-sepa-

ration of the matroid M represented by a matrix B over GF(3) or declares

that such a separation does not exist.

Input: Connected, simple matrix B over GF(3), with row index set X and
column index set Y .

Output: Either: An exact 2-separation (X1∪Y1, X2∪Y2) of B and M . Or:
“B and M do not have a 2-separation.”

Complexity: Polynomial.

Procedure:

1. Do for each row u of B:

Do for each pair of consecutive entries in the list for row u, say, with
column indices v and w:

Let X1 = {u} and X2 = ∅.
Do once for Y 1 = {v} and Y 2 = {w}, and a second time for
Y 1 = {w} and Y 2 = {v}:

3.5. Finding Separations 95

Let B be defined by X1, X2, Y 1, and Y 2. Do Algorithm IN-
DUCED F -SEPARATION (3.5.14) with B and B as input. If a
2-separation is found, output that separation, and stop.

2. Declare that B and M do not have a 2-separation, and stop.

Algorithm GF(3)-2-SEPARATION (3.5.26) would work equally well if B
was stored in column lists instead of row lists. We state and prove this fact
next.

(3.5.27) Lemma. Suppose that the matrix B is represented by column

lists instead of row lists, and that in Algorithm GF(3)-2-SEPARATION
(3.5.26) each candidate submatrix B consists of two consecutive nonzeros

of some column. Then the modified algorithm is also valid.

Proof. The modified algorithm is nothing but Algorithm GF(3)-2-SEPA-
RATION (3.5.26) applied to Bt, which represents M∗. By Lemma (3.4.8),
any separation of M is also one for M∗, and vice versa. So if M has a
GF(3)-2-separation, then one such separation will be found by the modified
algorithm.

In the next subsection, we employ Algorithm GF(3)-2-SEPARATION
(3.5.26) as a subroutine to decompose matroids and matrices into so-called
3-connected components.

3-Connected Components

Suppose Algorithm GF(3)-2-SEPARATION (3.5.26) has detected a 2-sepa-
ration for a simple matrix B. Let that 2-separation be displayed by (3.5.22),
where without loss of generality GF(3)-rank(D1) = 1 and D2 = 0. Thus,
B is the matrix of (3.5.28) below, where the submatrix indexed by X2 and
Y1 corresponds to D1 of (3.5.22).

(3.5.28)

Y1
y

A2

B =

Y2

x

X2

A1X1 0

0

±1

Matrix B with 2-separation

In B, we have indexed an arbitrary nonzero row (column) of D1 by x (resp.
y). Let B1 (resp. B2) be the submatrix of B consisting of A1 and row x of
D1 (resp. A2 and column y of D1). We show B1 and B2 below.

96 Chapter 3. Some Matroid Theory

(3.5.29)
A2B2 =

y Y2
x

X2

Y1
y

B1 = A1

x

X1

0
0

±1

±1

Submatrices B1 and B2 of B

The reader may be puzzled by the matrices B1 and B2. Detailed reasons
for the selection of these submatrices are included in Section 3.6, where
matroid sums are discussed. The reader may skip ahead to read about
such sums or simply accept the selection of B1 and B2 for the time being.

We reduce B1 and B2 to simple matrices B1′ and B2′, respectively,
by removing vectors with exactly one nonzero and by deleting vectors of
parallel classes so that each class contains just one vector.

Using the bipartite graphs BG(·) for B, B1, and B2, one readily verifies
that the connectedness of B implies that B1 and B2 as well as B1′ and B2′

are connected.
By the derivation, each row of B1′ or B2′ may be represented by a list

which is obtained from the corresponding row list of B by the deletion of
some entries. Note that the ordering of the entries of the row lists of B1′

or B2′ is consistent with that of the row lists of B.
Suppose we want to decide whether B1′ or B2′ has a 2-separation.

We could answer this question in two applications of Algorithm GF(3)-2-
SEPARATION (3.5.26). One can significantly improve upon this method
if one has retained information about the processing of B by Algorithm
GF(3)-2-SEPARATION (3.5.26). The key observation for the improvement
is contained in Theorem (3.5.31) below. We first list a lemma that is
invoked in the proof of that theorem.

(3.5.30) Lemma. Let B′ be a matrix consisting of two nonzero entries of

some row of B. The two nonzero entries need not be adjacent in the row

list containing them. For each one of the two entries of B′, suppose there

is a candidate submatrix B for which Algorithm GF(3)-2-SEPARATION
(3.5.26) did not determine an induced 2-separation of B. Then that algo-

rithm would not determine a 2-separation for B if B′ were used as candidate

submatrix.

Proof. We know that the last B evaluated by Algorithm GF(3)-2-SEPA-
RATION (3.5.26) induced the 2-separation of B given by (3.5.28). Let u
be the row index of that B, and let v and w be its column indices. Suppose
v occurs in the list of row u ahead of w. Hence, the nonzero in row u
and column w occurs in precisely one B evaluated by Algorithm GF(3)-2-
SEPARATION (3.5.26). By assumption, B′ cannot contain that nonzero.

3.5. Finding Separations 97

All other B submatrices evaluated by Algorithm GF(3)-2-SEPARATION
(3.5.26) did not result in a 2-separation of B. Then, by the contrapositive
version of Lemma (3.5.25), the submatrix B′ cannot induce a 2-separation
of B.

(3.5.31) Theorem. For j = 1 or 2, let B′ be a submatrix containing

two consecutive nonzero entries of some row of Bj ′. For each one of the

two nonzero entries of B′, assume that the entry was part of some sub-

matrix B that did not lead to an induced 2-separation when Algorithm

GF(3)-2-SEPARATION (3.5.26) was applied to B. If Algorithm GF(3)-
2-SEPARATION (3.5.26) is applied to Bj ′, then the submatrix B′ of Bj ′

does not induce a 2-separation of Bj ′.

Proof. Suppose Algorithm GF(3)-2-SEPARATION (3.5.26) determines a
2-separation of Bj ′ using B′ as the candidate submatrix. We first convert
that 2-separation of Bj ′ to one for Bj , and later to one for B as follows.

We know that Bj ′ can be extended to Bj by the addition of parallel
vectors and of vectors with exactly one nonzero entry. If a vector v parallel
to a vector w is added, then we add v to the side of the 2-separation
containing w. If a vector v with exactly one nonzero is added, where the
position of the nonzero is indexed by w, then once more we add v to the side
containing w. It is easy to verify that this process results in a 2-separation
of Bj that is induced by B′.

Using (3.5.28) and (3.5.29), we may enlarge the 2-separation just de-
termined for Bj to one for B as follows. In the case of j = 1 (resp. j = 2),
we add (X2−{x})∪Y2 (resp. X1∪(Y1−{y})) to the side of the 2-separation
of Bj containing x (resp. y). Since GF(3)-rank(D1) = 1, one readily con-
firms that in both cases a 2-separation of B results that is induced by B′.
But Lemma (3.5.30) implies that B′ cannot induce a 2-separation of B, a
contradiction.

Suppose we apply Algorithm GF(3)-2-SEPARATION (3.5.26) to B1′

and B2′, using only those candidate submatrices B′ not ruled out a priori
by Theorem (3.5.31). If we find a 2-separation for either matrix, we re-
peat the process of deriving two simple submatrices analogous to (3.5.28)
and (3.5.29), then search again with Algorithm GF(3)-2-SEPARATION
(3.5.26) for a 2-separation of the latter submatrices, etc. The process stops
when further decompositions are not possible. By the rules of the decom-
position process, the matrices on hand at that time are connected and do
not have a 2-separation; that is, they are 3-connected. By the reduction
rules, some of the final matrices may be of size 1×0 or 0×1. We delete all
such matrices and call the remaining 3-connected matrices the 3-connected
components of B. The 3-connected components of B can be shown to be
unique up to indices.

We use the same terminology for the matroid M represented by B
and the minors of M represented by the 3-connected components of B.

98 Chapter 3. Some Matroid Theory

Thus, these minors are the 3-connected components of M . The use of
“3-connected components” for both matrices and matroids will not cause
difficulties, since the meaning will always be apparent from the context.

Due to Theorem (3.5.31), total computing effort for finding the 3-
connected components of B by repeated application of Algorithm GF(3)-
2-SEPARATION (3.5.26) is quadratic in the number of nonzeros of B and
thus is acceptable even for large matrices. Below, we summarize the entire
scheme. For ease of application, we do not assume B to be simple.

(3.5.32) Algorithm 3-CONNECTED COMPONENTS. Finds the

3-connected components of a GF(3)-matroid M by locating the 3-connected

components of a representation matrix B.

Input: A connected matrix B over GF(3), with row index set X and column
index set Y . The nonzero entries of B are stored sequentially in row lists.

Output: The 3-connected components of B and M . A complete list of the
separations and reductions that produce the 3-connected components of B
when one starts with B.

Complexity: Polynomial.

Procedure:
1. Reduce B to a simple matrix by deleting vectors with exactly one

nonzero and by reducing each class of parallel vectors to just one vec-
tor. Record these reductions. If the reduced matrix has size 1 × 0 or
0× 1, then declare that B has no 3-connected components, and stop.
Otherwise, initialize two sets C and L by defining C to contain the
reduced matrix and L to be the empty set.

2. If C = ∅, stop; the set L contains the 3-connected components of B;
the matrices of L represent the 3-connected components of M .

3. Remove a matrix from C and apply Algorithm GF(3)-2-SEPARA-
TION (3.5.26) to it. During the execution of that algorithm, candidate
submatrices satisfying the assumptions of Theorem (3.5.31) are to be
ignored.
If a 2-separation is not determined by Algorithm GF(3)-2-SEPARA-
TION (3.5.26), add the matrix to L and go to Step 2.
If a 2-separation is found, decompose the matrix into two matrices us-
ing (3.5.28) and (3.5.29). Reduce the latter matrices to simple matrices
analogously to the reduction of B in Step 1. Add the simple matrices
that are not of size 1× 0 or 0× 1 to C. Record the 2-separation and
the reductions, and go to Step 2.

We turn to the problem of finding BG-k-separations.

BG-k-Separation

We want to locate BG-k-separations where k is bounded by some con-

3.5. Finding Separations 99

stant. We already have a polynomial method for this task, Algorithm
k-SEPARATION (3.5.20). But that scheme is too slow for practical use.
In this subsection, we develop a heuristic algorithm that on one hand is
fast, but that on the other hand may fail to locate a separation even though
one exists.

The heuristic algorithm is very similar to Algorithm k-SEPARATION
(3.5.20) in that it selects candidate submatrices B and attempts to extend
separations of these submatrices to separations of B. However, the selection
of the submatrices B is handled by some heuristic method that limits the
number of B instances. Furthermore, any B that for some l ≤ k has an
exact l-separation with the required number of elements on each side is
deemed acceptable. This contrasts with the selection rule of Algorithm
k-SEPARATION (3.5.20), where each B must have an exact k-separation.

Since l may be less than k, it does not make much sense to demand that
the l-separation of B induce an l-separation of B. Instead, the algorithm
searches for an l′-separation of B, where l ≤ l′ ≤ k and where the two sides
of the l′-separation of B contain the two sides of the l-separation of B.

According to the next lemma, the search for such an l′-separation of
B is easy. We omit the proof, since it is very similar to that of Lemma
(3.5.16).

(3.5.33) Lemma. Let B be a matrix over the system BG, with row index

set X and column index set Y . Suppose that B has the matrix B of (3.5.2)
as submatrix. Define G to be the bipartite graph BG(B).

For l ≤ k, let (X1∪Y 1, X2 ∪Y 2) be an l-separation of B with at least

k+1 elements on each side. Then B has an l′-separation (X1∪Y1, X2∪Y2),
where l ≤ l′ ≤ k, where, for i = 1, 2, X i ⊆ Xi and Y i ⊆ Yi, and where

subject to these conditions l′ is minimal, if and only if l′−1 is the minimum

number of nodes of G whose removal from G disconnects the nodes of

X1 ∪ Y 1 from the nodes of X2 ∪ Y 2.

Lemma (3.5.33) validates the following heuristic algorithm.

(3.5.34) Heuristic BG-k-SEPARATION. Finds an exact k-separation

of the matroid M represented by a matrix B over the system BG, where the

two sides contain specified sets and have at least a certain size, or declares

that the method cannot find such a separation.

Input: Matrix B over the system BG, with row index set X and column
index set Y . Two disjoint subsets P1, P2 (resp. Q1, Q2) of X (resp. Y).
Integers m1, m2, and n. For k = 1, the matrix B does not have a separation
(X1 ∪ Y1, X2 ∪ Y2) satisfying the following conditions.

(3.5.35)

(i) (X1 ∪ Y1, X2 ∪ Y2) is an exact k-separation of B
and M with k ≤ n.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Yi.
(iii) For i = 1, 2, |Xi∪Yi| ≥ |Pi∪Qi|+max{k, mi}+1.

100 Chapter 3. Some Matroid Theory

Output: Either: A k-separation (X1 ∪ Y1, X2 ∪ Y2) of B and M satisfying
the conditions of (3.5.35). Or: “The heuristic algorithm cannot locate an
exact k-separation (X1 ∪ Y1, X2 ∪ Y2) for B and M satisfying (3.5.35).”

Complexity: Polynomial if m1, m2, and n are bounded by a constant.

Procedure:
1. Define G to be the bipartite graph BG(B). Initialize k = 2.
2. Use any convenient polynomial heuristic to find a collection of sub-

matrices B of the form (3.5.2) whose index sets X1, X2, Y 1, and Y 2

satisfy the following conditions.

(3.5.36)

(i) (X1 ∪Y 1, X2 ∪Y 2) is an exact l-separation of B,
for some l ≤ k.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Y i.
(iii) For i = 1, 2, |X1∪Y 1| ≥ |Pi∪Qi|+max{k, mi}+1.
(iv) B is minimal with respect to (i)–(iii).

3. Do for each submatrix B determined in Step 2:
Using Algorithm DISJOINT PATHS (2.5.15), find a minimum cardi-
nality node subset Z of G so that the removal of the nodes of Z from
G disconnects the nodes of X1 ∪ Y 1 from the nodes of X2 ∪ Y 2.
If |Z| ≤ k − 1, go to Step 5.

4. Increase k by 1. If k ≤ n, go to Step 2. Otherwise, declare that the
algorithm cannot locate the desired separation of B and M , and stop.

5. Let G′ be G minus the nodes of Z. Define X1 (resp. Y1) to be X1

(resp. Y 1) plus the subset of nodes in X (resp. Y) that in G′ may be
reached from nodes in X1 ∪ Y 1. Let X2 = X −X1 and Y2 = Y − Y1.
Redefine k to be |Z| + 1. Then declare (X1 ∪ Y1, X2 ∪ Y2) to be the
desired exact k-separation of B and M .

We briefly discuss a method for the selection of the candidate submatrices B
in Step 2 of Heuristic BG-k-SEPARATION (3.5.34). Depending on which
of the sets P1∪Q1 and P2 ∪Q2 are empty, the method proceeds as follows.
Let k be given.

First, suppose that P1 ∪Q1 and P2 ∪Q2 are nonempty. For i = 1, 2,
we try to enlarge the node subsets Pi and Qi of G by neighboring nodes of
Pi ∪ Qi until the resulting sets Xi and Y i are larger than the original Pi

and Qi and have together at least |Pi∪Qi|+max{k, mi}+1 elements. We
also enforce the following condition: X1∪Y 1 and X2∪Y 2 must be disjoint
node subsets of G that, for some l ≤ k, define an exact l-separation for the
subgraph G of G induced by X1 ∪ Y 1 ∪ X2 ∪ Y 2. If we can identify such
sets, we have obtained a candidate submatrix B. By varying the selection
of Xi and Y i while enforcing the above conditions, one obtains a suitable
number of candidate matrices B.

3.6. Sums 101

Second, assume that both P1 ∪ Q1 and P2 ∪ Q2 are empty. Using
any convenient shortest route method, we select two nodes i and j of G so
that the distance of any shortest path connecting these two nodes is large.
Temporarily, we place node i into P1 ∪Q1, place node j into P2 ∪Q2, and
carry out the above method for nonempty P1 ∪Q1 and P2 ∪Q2. If desired,
one may repeat this process using alternate pairs of nodes i and j for which
the distance of any shortest path connecting them is large.

Third, assume without loss of generality that P1 ∪ Q1 is empty and
P2 ∪Q2 is nonempty. Temporarily, declare P1 ∪Q1 to consist of a node i
whose shortest distance to the nodes of P2 ∪ Q2 is large, then apply the
method for the case of nonempty P1 ∪ Q1 and P2 ∪ Q2. Similarly to the
second case, one may select several nodes i and thus select several nonempty
P1∪Q1. Each such P1∪Q1 constitutes, together with P2∪Q2, an instance
to which the method of the first case can be applied.

3.6 Sums

We describe ways of decomposing or composing representable matroids,
using a class of constructs called k-sums, where k ranges over the positive
integers. Thus, there are 1-sums, 2-sums, 3-sums, etc. We describe these
sums here, since they are related to, and indeed are the motivation for, the
IB-k-sums introduced in Chapter 4.

To simplify the discussion, we confine ourselves to k-sums involving
GF(3)-matroids.

1- and 2-Sums

We start with the 1-sum case. Let M be a matroid represented by a matrix
B over GF(3). According to the discussion immediately preceding Algo-
rithm 1-SEPARATION (3.5.1), the matroid M has a 1-separation if and
only if the graph BG(B) is not connected. Assume the latter case. Clearly,
B can be partitioned as shown in (3.6.1) below, with |X1∪Y1|, |X2∪Y2| ≥ 1.
The latter inequality is equivalent to demanding that the submatrices A1

and A2 of B are nonempty; that is, they are not 0× 0 matrices.

(3.6.1) X1
B =

Y1

A1

0X2

Y2

A2

0

Matrix B with 1-separation

102 Chapter 3. Some Matroid Theory

We declare that the matroids represented by A1 and A2, say, M1 and M2,
are the two components of a 1-sum decomposition of M . The decomposition
is reversed in the obvious way, giving a 1-sum composition of M1 and M2

to M . We mean either process when we say that M is a 1-sum of M1 and
M2. We apply the same terminology to B, B1, and B2. For example, B is
a 1-sum of B1 and B2.

We move to the more interesting case of 2-sums. We assume that the
given GF(3)-matroid M is connected and has a GF(3)-2-separation. Since
M is connected, that separation must be exact. According to (3.5.28), the
GF(3)-2-separation corresponds to the following partition of B.

(3.6.2)

Y1
y

A2

B =

Y2

x

X2

A1X1 0

0

±1

Matrix B with 2-separation

We refer to the submatrix of B indexed by X2 and Y1 as D1, in agreement
with (3.4.4). We know that GF(3)-rank(D1) = 1. We want to extract
from B two submatrices B1 and B2 that contain A1 and A2, respectively,
and that also contain enough information to reconstruct B. Evidently,
the latter requirement is equivalent to the condition that we must be able
to compute D1 from B1 and B2. Since GF(3)-rank(D1) = 1, knowledge
of one nonzero row of D1 and one nonzero column of D1 suffices for the
computation of D1.

With this insight, we choose B1 to be A1 plus one nonzero row of D1,
say, row x, and B2 to be A2 plus one nonzero column of D1, say, column
y. The two indices x and y are shown in (3.6.2). We display B1 and B2

below.

(3.6.3)
A2B2 =

y Y2
x

X2

Y1
y

B1 = A1

x

X1

0
0

±1

±1

Matrices B1 and B2 of 2-sum

3.6. Sums 103

We reconstruct D1, and thus implicitly B, from B1 and B2 by computing

(3.6.4) D1 = (column y of B2) · (row x of B1)

Let M1 and M2 be the minors of M represented by B1 and B2. We call
these minors the components of a 2-sum decomposition of M . The reverse
process, which corresponds to a reconstruction of B from B1 and B2, is a
2-sum composition of M1 and M2 to M . Both cases are handled by saying
that M is a 2-sum of M1 and M2. We use the same terminology for B, B1,
and B2. For example, B is a 2-sum of B1 and B2.

We saw the matrices B1 and B2 earlier, under (3.5.29) and in con-
nection with Algorithm 3-CONNECTED COMPONENTS (3.5.32). That
algorithm locates the 3-connected components of a given matrix B us-
ing GF(3)-2-separations and certain reductions involving vectors with one
nonzero entry and parallel vectors. In the terminology of this section, the
algorithm processes each case of GF(3)-2-separation as a 2-sum decompo-
sition. We now show that the reductions made by the algorithm may also
be viewed as 2-sum decomposition steps, provided that the length of the
matrix being processed, say, B with row index set X and column index set
Y , is at least 4.

For example, suppose that B has two parallel columns y and z. Then
X1 = ∅, X2 = X , Y1 = {y, z}, and Y2 = Y − {y, z} define a 2-separation
(X1∪Y1, X2∪Y2) of B. Using the above rule for 2-sum decomposition, B1

is a 1 × 2 matrix with two nonzero entries, and B2 is B minus column z.
The matrix B1 has length 3 and can be reduced to a 1× 0 or 0× 1 matrix.
Effectively, we are thus left with B2. On the other hand, one reduction
step in Algorithm 3-CONNECTED COMPONENTS (3.5.32) converts B
up to indices to B2 as well. We conclude that reduction of a parallel class
by one vector is equivalent to a 2-sum decomposition. By similar argu-
ments, the other reductions can also be shown to be equivalent to 2-sum
decompositions. Thus, the 3-connected components of B are obtainable,
up to indices, by repeated 2-sum decompositions plus reductions involving
matrices with length at most 3.

We turn to the more complex case of k-sums with k ≥ 3.

k-Sums

We still assume that M is a matroid represented by a matrix B over GF(3),
with row index set X and column index set Y . For some k ≥ 3, we also
know an exact k-separation (X1 ∪ Y1, X2 ∪ Y2). We want to decompose
M in some useful way. We investigate this problem using the partitioned
version of B of (3.5.22). Slightly enlarged, we repeat that matrix below.

104 Chapter 3. Some Matroid Theory

(3.6.5)

D1 A2

B =

Y1 Y2

X2

A1X1 D2

Matrix B with exact k-separation

Recall that by (3.5.9)

(3.6.6) GF(3)-rank(D1) + GF(3)-rank(D2) = k − 1

We want to decompose M into two matroids M1 and M2 that correspond
to two submatrices B1 and B2 of B. As in the 2-sum case, we postulate
that B1 and B2 include A1 and A2, respectively. Furthermore, B1 and
B2 must permit a reconstruction of B. The latter requirement can be
satisfied by including in B1 (resp. B2) a row (resp. column) submatrix of
D1 with the same rank as D1 and a column (resp. row) submatrix of D2

with the same rank as D2. Indeed, the submatrices D1 and D2 of B can
be computed from these row and column submatrices. We provide the
relevant formulas in a moment. Last but not least, we want B1 and B2 to
be proper submatrices of B.

There are numerous ways to satisfy these requirements. In the most
general case, both B1 and B2 intersect all four submatrices A1, A2, D1, and
D2 of B and thus induce the following rather complicated looking partition
of B.

(3.6.7)

A2

D1

D2

D11

D23D22

D21

D13 D12

C2

C1

B =

A1

Y1 Y2

Y1
Y2

X1

X2

X1

X2

Partition of B displaying k-sum

In the notation of (3.6.7), the submatrix B1 of B, which is not explicitly
indicated, is indexed by X1∪X2 and Y1∪Y 2. Furthermore, the submatrix

3.6. Sums 105

B2 is indexed by X1∪X2 and Y 1∪Y2. Hence, B1 contains A1 and intersects
A2 in C2, D1 in [D11|D1], and D2 in [D22/D2]. The submatrix B2 contains
A2 and intersects A1 in C1, D1 in [D1/D12], and D2 in [D2|D21]. We
assume that C1 (resp. C2) is a proper submatrix of A1 (resp. A2). This
implies that both B1 and B2 are proper submatrices of B. Observe that
D1 (resp. D2) is the submatrix of D1 (resp. D2) contained in both B1 and
B2.

(3.6.8)

X1

X1

D1

D2

D11

D22

C2

C1B1 =

A1

Y1 Y2

Y1

X2

X1

A2

D1

D2 D21

D12

C2

C1

Y1 Y2

Y2

B2 =
X2

X2

Matrices B1 and B2 of k-sum

We assume that both submatrices [D11|D1] and [D1/D12] of D1 (resp.
[D2|D21] and [D22/D2] of D2) have the same GF(3)-rank as D1 (resp.
D2). By an elementary argument of linear algebra, this implies that

(3.6.9) GF(3)-rank(Di) = GF(3)-rank(Di), i = 1, 2

By (3.6.6) and (3.6.9), we conclude that

(3.6.10) GF(3)-rank(D1) + GF(3)-rank(D2) = k − 1

The decomposition of B into B1 and B2 corresponds to a decomposition
of M into two matroids, say, M1 and M2, that are represented by B1 and
B2. We call that decomposition of M a k-sum decomposition and declare
M1 and M2 to be the components of the k-sum.

The decomposition process is readily reversed. All submatrices of B
except for the submatrices D13 and D23 are present in B1 and B2 and thus
are already known.

For the computation of D13 from B1 and B2, we first depict D1 and
its submatrices.

(3.6.11) D1D11

D13 D12
D1 =

X2
X2

Y1

Y1

Partitioned version of D1

106 Chapter 3. Some Matroid Theory

By (3.6.9), GF(3)-rank(D1) = GF(3)-rank(D1), so there is a matrix F 1

solving the equation [D13|D12] = F 1 · [D11|D1]. Thus,

(3.6.12) D12 = F 1 ·D1

and

(3.6.13) D13 = F 1 ·D11

We first solve (3.6.12) for F 1. The solution may not be unique, but any
solution is acceptable. Then we use F 1 in (3.6.13) to obtain D13.

If D1 is square and nonsingular, then F 1 = D12 · (D1)−1. With that
solution, we compute D13 according to (3.6.13) as

(3.6.14) D13 = D12 · (D1)−1 ·D11

The computation of D23 proceeds analogously. We first solve

(3.6.15) D22 = F 2 ·D2

for F 2, then use that solution in

(3.6.16) D23 = F 2 ·D21

If D1 is square and nonsingular, we have

(3.6.17) D23 = D22 · (D2)−1 ·D21

The reconstruction of B from B1 and B2 corresponds to a k-sum compo-
sition of M1 and M2 to M . We use the term k-sum to refer to both the
k-sum decomposition of M and the k-sum composition of M1 and M2 to
M . We apply the same terminology to B, B1, and B2. For example, B is
a k-sum of B1 and B2.

It is a simple exercise to prove that the 1- and 2-sums discussed earlier
are special instances of the above situation. We leave the details to the
reader.

The above discussion of matroid sums, though brief, suffices for the
purposes of this book.

3.7 Extensions and References

Matroids were formulated by Whitney (1935) as an abstraction of matrices
and graphs. That pioneering paper already contains almost all matroid

3.7. Extensions and References 107

concepts of Sections 3.2 and 3.3. The material may also be found in many
books on matroid theory—for example, in Tutte (1971), Lawler (1976),
Aigner (1979), Recski (1989), Oxley (1992), and Truemper (1992).

The definitions of separation and connectivity of Section 3.4 are due
to Tutte (1966).

A detailed discussion of the historical developments and earlier work
on matroid connectivity and matroid sums is included in Truemper (1992).
Here, we mention only that a fundamental investigation of 2-separations for
matroids and other combinatorial structures is made in Cunningham and
Edmonds (1980), and that the first profound use of matroid k-sums with
k = 3 is due to Seymour (1980). Actually, Seymour (1980) uses a k-sum
definition that is different from that of Section 3.6, which is taken from
Truemper (1992). But for k = 3 and for the class of matroids considered
in Seymour (1980), the two definitions lead to very similar constructs.

Most algorithms of Sections 3.5 and 3.6 rely on results of Truemper
(1992). There is one difference, though. In Truemper (1992), pivots are
freely employed to reduce the number of cases that need to be considered.
But here pivots have been avoided as much as possible to simplify the
adaptation of results to matrices over the system IB.

Truemper (1992) contains a generalization of matrices over fields to so-
called abstract matrices. The latter matrices are nothing but an encoding
of matroids. Several algorithms of Sections 3.5 and 3.6 for GF(3)-matroids
can be extended to general matroids by a switch from matrices over GF(3)
to abstract matrices. We omit details here, but mention that the adaptation
of the algorithms is not difficult.

The reader interested in a survey of the historical developments of
matroid theory should turn to Kung (1986).

Chapter 4

System IB, Linear Algebra, and

Matroids

4.1 Overview

We adapt concepts of linear algebra and matroid theory to the matrices
over IB. The chapter contains a number of definitions, algorithms, and
theorems, so for a first pass the reader may want to skip all proofs and
may just scan any material concerning conjectures and counterexamples.

We first motivate the ideas and notions that have led us to link the sys-
tem IB to linear algebra and matroid theory. According to Lemma (2.6.21),
deciding satisfiability of a matrix A over IB is equivalent to solving matrix
equations of the form A ⊙ s = 1 over IB. Such equations are reminiscent
of matrix equations of linear algebra, and one may be tempted to modify
relevant solution techniques of linear algebra to the case at hand. That
idea has produced attractive results—for example, the polyhedral method
summarized in Chapter 1. In this book, we use that idea as well, but pro-
ceed in a different fashion. The main notion is to first analyze the structure
of a given system A ⊙ s = 1 using concepts and algorithms of linear alge-
bra and matroid theory, and then to build a solution algorithm with the
insight so gained. The indirect use of linear algebra and matroid theory
forces us to deal with a number of new constructs for the matrices over IB,
a definite drawback. On the other hand, the method leads to polynomial
and efficient solution algorithms for large classes of logic problems.

In Section 4.2, we begin the investigation into the structure of A⊙s = 1
by deducing some basic equations and inequalities for vectors over IB.

In Section 4.3, we adapt concepts of linear algebra and matroid theory
such as independence and rank to the matrices over IB.

108

4.2. Basic Equations and Inequalities 109

In Section 4.4, we use the independence concept for IB to derive for
each matrix over IB a so-called IB-independence system. That system is
related in certain ways to the BG-matroid and the GF(3)-matroid of A,
which are the matroids represented by A when that matrix is taken to be
over BG or GF(3), respectively.

In Sections 4.5–4.7, we adapt the matroid concepts and methods of
Chapter 3 to IB-independence.

In Section 4.5, we translate matroid separations and connectivity to
so-called IB-separations and IB-connectivity for IB-independence systems.

In Section 4.6, we develop algorithms for finding particular IB-separa-
tions.

In Section 4.7, we deduce so-called IB-sum decompositions and com-
positions from the related matroid concepts.

In Section 4.8, we summarize how the concepts of IB-independence,
IB-separation, IB-sum, etc. are put to use in later chapters.

The underlying ideas of this chapter are applicable to settings other
than logic once one extends the system IB to a more general system. In
Section 4.9, we introduce the axioms of that extension and sketch how it
may be used to solve certain combinatorial problems.

In the final section, 4.10, we discuss extensions and list references.

4.2 Basic Equations and Inequalities

We introduce basic equations and inequalities for the system IB. These
results will be used later for several decompositions and compositions of
matrices over IB.

According to (2.6.18)–(2.6.20), the system IB has 0, +1, and −1 as
elements, and the operations of IB-multiplication, IB-addition, and IB-sub-
traction, denoted by ⊙, ⊕, and ⊖, respectively, are as follows.

For α, β ∈ {0,±1}, IB-multiplication is defined by

(4.2.1) α⊙ β =
{

1 if α = β = 1 or α = β = −1
0 otherwise

IB-addition and IB-subtraction are defined only for {0, 1} elements. For
α, β ∈ {0, 1}, IB-addition is given by

(4.2.2) α⊕ β =
{

1 if α = 1 or β = 1
0 otherwise

For α, β ∈ {0, 1}, IB-subtraction is specified by

(4.2.3) α⊖ β =
{

1 if α = 1 and β = 0
0 otherwise

110 Chapter 4. System IB, Linear Algebra, and Matroids

The extension of these operations to matrices over IB is accomplished as
follows.

Let A and B be {0,±1} matrices over IB of size m × n and n × p,
respectively. If both A and B are nontrivial and nonempty, then the matrix
C = A⊙B is defined to be the m×p {0, 1} matrix whose elements Cij are
given by Cij =

⊕n

k=1(Aik ⊙Bkj), for i = 1, 2, . . . , m and j = 1, 2, . . . , p.
If at least one of A and B is trivial or empty, then C = A ⊙ B is defined
to be the m× p zero matrix.

Let A and B be m × n {0, 1} matrices over IB. If A is nontrivial and
nonempty, then so is B, and C = A⊕B (resp. C = A⊖B) is defined to be
the m × n {0, 1} matrix whose elements Cij are given by Cij = Aij ⊕Bij

(resp. Cij = Aij ⊖ Bij), for i = 1, 2, . . . , m and j = 1, 2, . . . , n. If A is
trivial or empty, then B is of the same type, and both C = A ⊕ B and
C = A⊖B are defined to be equal to A or, equivalently, B.

The next three lemmas summarize elementary results for system IB.

(4.2.4) Lemma. Let a be a {0, 1} vector, and let e be a {0,±1} vector.
View a and e to be over IB. Then the following relationships hold.

(4.2.5) e⊙ 0 = 0

(4.2.6) a⊕ 0 = a⊕ a = a⊖ 0 = a

(4.2.7) a⊖ a = 0

Proof. We may confine ourselves to the case where a and e are scalars. The
equations then follow directly from the definitions (4.2.1)–(4.2.3).

(4.2.8) Lemma. Let a, b, and c be {0, 1} vectors over IB of the same
dimension. Then the following relationships hold.

(4.2.9) a⊕ b = b⊕ a (⊕ is commutative)

(4.2.10) (a⊕ b)⊕ c = a⊕ (b⊕ c) (⊕ is associative)

(4.2.11) (a⊖ b)⊖ c = a⊖ (b⊕ c)

(4.2.12) (a⊖ b)⊕ (b⊖ c) ≥ a⊖ c

(4.2.13) a⊕ b ≥ c if and only if a ≥ c⊖ b

Proof. As for Lemma (4.2.4), we may restrict ourselves to the case where
a, b, and c are scalars.
(4.2.9), (4.2.10): These equations hold by the definition of ⊕.
(4.2.11): Both sides of the equation are equal to 1 if and only if a = 1 and
b = c = 0.
(4.2.12): If a = 0 or c = 1, then the right-hand side of the inequality is
equal to 0, and the inequality holds trivially. For the remaining case of

4.2. Basic Equations and Inequalities 111

a = 1 and c = 0, the left-hand side is equal to 1 regardless of the value of
b.
(4.2.13): The claim is obviously correct if a = 1 or c = 0. For the remaining
case of a = 0 and c = 1, the claim is verified by checking its validity for
b = 0 and b = 1.

In the next lemma, we deduce elementary relationships from (4.2.9)–
(4.2.13). For reasons explained shortly, we avoid references to system IB.

(4.2.14) Lemma. Let a partial order ≥ and binary operators ⊕ and ⊖
be defined for a given set. Suppose that, for any elements a, b, and c of
the set, (4.2.9)–(4.2.13) are satisfied. Then, for any elements a, b, c, and d
of the set, the following relationships hold.

(4.2.15) (a⊖ b)⊖ c = a⊖ (b⊕ c) = (a⊖ c)⊖ b

(4.2.16) a ≥ (a⊕ b)⊖ b

(4.2.17) a ≤ (a⊖ b)⊕ b

(4.2.18) a ≥ b implies a⊖ c ≥ b⊖ c

(4.2.19) a ≥ b implies a⊕ c ≥ b⊕ c

(4.2.20) a ≥ b and c ≥ d imply a⊕c ≥ b⊕d and a⊖d ≥ b⊖c

Proof. (4.2.15): The equation follows directly from (4.2.9) and (4.2.11).
(4.2.16): (4.2.13) and a⊕ b ≥ a⊕ b imply a ≥ (a⊕ b)⊖ b.
(4.2.17): (4.2.13) and a⊖ b ≥ a⊖ b imply a ≤ (a⊖ b)⊕ b.
(4.2.18): By (4.2.17) and a ≥ b we have (a ⊖ c) ⊕ c ≥ a ≥ b, and thus by
(4.2.13) we have a⊖ c ≥ b⊖ c.
(4.2.19): By (4.2.16) and a ≥ b we have a ≥ b ≥ (b ⊕ c) ⊖ c, and thus by
(4.2.13) we have a⊕ c ≥ b⊕ c.
(4.2.20): We use a ≥ b, c ≥ d, (4.2.9), and two applications of (4.2.19) to
deduce a⊕ c ≥ b⊕ c ≥ b⊕ d. That result and (4.2.17) imply (a⊖ d)⊕ c ≥
(a⊖ d)⊕ d ≥ a ≥ b. Using (4.2.13), we conclude a⊖ d ≥ b⊖ c.

The equations e ⊙ 0 = 0 of (4.2.5) and a ⊕ 0 = a of (4.2.6), plus the
commutativity and associativity of ⊕ established by (4.2.9) and (4.2.10),
are essential for the constructs, algorithms, and theorems of the subsequent
sections of this chapter. In fact, those results are valid for matrices over
systems other than IB if matrix multiplication and addition, say, denoted
by ⊙ and ⊕, have the properties just mentioned, and if these operations
are defined in terms of scalar multiplication and addition analogously to
the case of IB. Thus, we may view these properties as axioms that make
the results of this chapter possible.

In a similar vein, the equations and inequalities of Lemmas (4.2.8)
and (4.2.14) are essential for the validity of several decompositions, com-
positions, and solution algorithms of later chapters. Since Lemma (4.2.14)

112 Chapter 4. System IB, Linear Algebra, and Matroids

follows from (4.2.9)–(4.2.13) of Lemma (4.2.8), only (4.2.9)–(4.2.13) are
needed to establish these decompositions, compositions, and algorithms.
Accordingly, we also view (4.2.9)–(4.2.13) as axioms.

Altogether, we thus have the following axioms.

(4.2.21) e⊙ 0 = 0

(4.2.22) a⊕ 0 = a

(4.2.23) a⊕ b = b⊕ a (⊕ is commutative)

(4.2.24) (a⊕ b)⊕ c = a⊕ (b⊕ c) (⊕ is associative)

(4.2.25) (a⊖ b)⊖ c = a⊖ (b⊕ c)

(4.2.26) (a⊖ b)⊕ (b⊖ c) ≥ a⊖ c

(4.2.27) a⊕ b ≥ c if and only if a ≥ c⊖ b

In Section 4.9, we introduce important combinatorial problems that
may be expressed by matrices over certain systems and by operations ⊕,
⊖, and ⊙ to which (4.2.21)–(4.2.27) apply. According to the preceding
discussion, the constructs of this chapter and several decompositions, com-
positions, and solution algorithms of subsequent chapters are valid for these
problems.

4.3 System IB and Linear Algebra

We adapt concepts of linear algebra to the matrices over IB. We first intro-
duce two auxiliary notions called range and subrange.

Range and Subrange

Let A be an m × n {0,±1} matrix over IB. For the moment, we view A
to be a function that takes a given {0,±1} vector s of size n to the {0, 1}
vector b = A⊙ s of size m. Thus, the domain of the function A is the set
of {0,±1} vectors of size n, and the range of A is the following set of {0, 1}
vectors of size m.

(4.3.1) range(A) = {b | b = A⊙ s; sj ∈ {0,±1}, ∀ j}

When we restrict the vector s of (4.3.1) to {±1} entries, we get an important
subset of range(A) that we call subrange. Thus,

(4.3.2) subrange(A) = {b | b = A⊙ s; sj ∈ {±1}, ∀ j}

4.3. System IB and Linear Algebra 113

Occasionally, we require sets that lie between range(A) and subrange(A).
The vectors of such a set are of the form b = A ⊙ s as in the definition
(4.3.1) of range(A). But this time, only the entries sj indexed by a given
set J may take on {0,±1} values, while the remaining sj are confined to
{±1} values. The set of such vectors s, say, S, is therefore

(4.3.3) S = {s | sj ∈ {0,±1}, ∀ j ∈ J ; sj ∈ {±1}, ∀ j /∈ J}

In a slight abuse of notation, we denote the subset of range(A) correspond-
ing to the vectors s ∈ S by range(A, J). Thus,

(4.3.4) range(A, J) = {b | b = A⊙ s; s ∈ S}

Let Y be the column index set of A. Evidently,

(4.3.5)
range(A) = range(A, Y)

subrange(A) = range(A, ∅)

and, for any J ⊆ Y ,

(4.3.6) subrange(A) ⊆ range(A, J) ⊆ range(A)

Recall the following convention for matrix multiplication for IB intro-
duced in Section 2.6: If in a matrix product A ⊙ B with m × n A and
n × p B at least one of A and B is trivial or empty, then A ⊙ B is the
m× p zero matrix. This convention plus the above definitions of range(A),
subrange(A), and range(A, J) implies that these sets are always nonempty.
In particular, let the m × n matrix A be trivial or empty; that is, m = 0
or n = 0. Then, regardless of the choice of the n × 1 vector s, the vector
b = A⊙s is the m×1 zero vector. Thus, each one of range(A), subrange(A),
and range(A, J) contains just that zero vector.

Computation of Range

Computation of range(A), subrange(A), and range(A, J) is not difficult.
We first treat the case of range(A), assuming the nontrivial situation where
m, n ≥ 1. Inductively, we assume that for some column submatrix B of A
we already have range(B). Let j index a column vector a of A that is not
in B. We compute range([B|a]) as follows. Define Rα to be the subset of
vectors c = [B|a]⊙ s of range([B|a]) for which sj = α. Clearly, any vector
of Rα is the sum of a vector of range(B) and the vector a⊙ α; that is,

(4.3.7) Rα = {c | c = b⊕ (a⊙ α); b ∈ range(B)}

114 Chapter 4. System IB, Linear Algebra, and Matroids

Since R0 = range(B), we have

(4.3.8) range([B|a]) = R0 ∪R+1 ∪R−1 = range(B) ∪R+1 ∪R−1

If A = [B|a], we stop with range(A) = range([B|a]). Otherwise, we redefine
B to be [B|a] and repeat the above process with the new B and a new
column a of A.

At times, we are given the range of a matrix [B/D] and desire the
range of a second matrix A = [B|E]. Note that B is a submatrix of both
matrices. We allow for the situation where [B/D] has no columns, in which
case range([B/D]) contains only a zero vector of appropriate dimension.
We compute range([B|E]) in two steps.

First, we delete from each vector of range([B/D]) all entries corre-
sponding to the rows of D. The resulting set is range(B). We call this step
the projection of range([B/D]) onto range(B).

Second, we extend range(B) to range([B|E]) by processing each col-
umn of E as described above for the computation of range(A).

The sets subrange(A) and range(A, J) are found by computations that
are almost identical to those for range(A). It suffices that we discuss the
modifications for the case of range(A, J). Define J ′ (resp. J ′′) to be the
restriction of J to the column index of B (resp. [B|a]). In the modified
procedure, the projection step takes range([B/D], J ′) to range(B, J ′), the
sets Rα of (4.3.7) are replaced by

(4.3.9) Rα = {c | c = b⊕ (a⊙ α); b ∈ range(B, J ′)}

and the formula of (4.3.8) becomes

(4.3.10) range([B|a], J ′′) =

{

range(B, J ′) ∪R+1 ∪R−1 if j ∈ J
R+1 ∪R−1 otherwise

We summarize the procedure below.

(4.3.11) Algorithm RANGE. Finds range(A, J). If J is equal to the
column index set of A, then range(A, J) is equal to range(A). If J is empty,
then range(A, J) is equal to subrange(A).

Input: Matrix A = [B|E] over IB, of size m× n; a subset J of the column
index set of A; a second matrix [B/D] over IB and range([B/D], J ′), where
J ′ is the restriction of J to the column index set of B.

Output: range(A, J). If J is equal to the column index set of A (resp. is
empty), then range(A, J) is also range(A) (resp. subrange(A)).

Complexity: Polynomial in terms of the maximum of m and n and in terms
of the cardinalities of range(A) and range([B/D], J ′). Theorem (4.4.19)
given in the next section provides complexity formulas for two special cases.

4.3. System IB and Linear Algebra 115

Procedure:
1. If m = 0 or n = 0, declare range(A, J) to just contain the m× 1 zero

vector, and stop.
2. Delete from each vector of range([B/D], J ′) the entries indexed by the

row index set of D. The resulting set is range(B, J ′). Set R equal to
that set.

3. Do for each column vector a of E, say, with index j:
For α = +1,−1, compute Rα = {c | c = b⊕ (a⊙ α); b ∈ R}. If j ∈ J ,
update R to R ∪R+1 ∪R−1; otherwise, update R to R+1 ∪R−1.

4. Output range(A, J) = R, and stop.

Define a column j of E to be redundant if during the processing of that
column in Step 3 of Algorithm RANGE (4.3.11) the set R is not changed.
Note that the order in which the columns of E are processed may influence
whether a given column j of E is redundant. Of course, the term is well-
defined when the order of processing the columns is fixed. For such an
order, let F be E minus the redundant columns determined in Step 3. Let
K be the restriction of J to the index set of F . By definition of redundancy,
we have range([B|F], K) = range([B|E], J), a simple but useful fact.

By (4.3.6), range(A) (resp. subrange(A)) is the unique maximal (resp.
minimal) set among the possible range(A, J) sets. So if we have range(A) =
subrange(A), then, for all J , range(A) = range(A, J) as well. This happens,
for example, when A is a {0, 1} matrix. The sets R0 and R−1 defined by
(4.3.9) are then equal, and Step 3 of Algorithm RANGE (4.3.11) effectively
updates R to R ∪R+1 for any J .

There are situations where the cardinality of range(A) is much larger
than that of subrange(A). For example, let A be a square matrix of order
m having −1s on its diagonal and 1s in all off-diagonal positions. Then it is
not difficult to verify that range(A) contains 2m vectors, while subrange(A)
has m+1 vectors, each of which contains at most one 0 entry. In Chapter 7,
we define a class of matrices A over IB called closed where subrange(A) is
bounded by a linear function of n.

Range and Satisfiability

We show later, in Section 4.10, that deciding whether a given {0, 1} vector
b is in range(A, J) can be reduced to determining whether a certain sub-
matrix of A is satisfiable. When b = 1, the statement of that result and its
proof become very simple. We include details next.

(4.3.12) Lemma. The following statements are equivalent for a matrix A
over IB.

(i) A is satisfiable.

116 Chapter 4. System IB, Linear Algebra, and Matroids

(ii) |range(A)| = |range([A|1])|.
(iii) 1 ∈ range(A).

Statements (ii) and (iii) remain equivalent to (i) when range(A) is replaced
by subrange(A) or range(A, J), for some J .

Proof. By Lemma (2.6.21), A is satisfiable if and only if A ⊙ s = 1 has a
{±1} solution s. The latter statement is equivalent to (ii) and (iii), even
when range(A) in (ii) or (iii) is replaced by subrange(A) or range(A, J), for
some J .

According to the discussion of Section 2.7, deciding satisfiability of a
matrix A over IB is difficult in general. By Lemma (4.3.12), determining the
cardinality of range(A), subrange(A), or range(A, J), or deciding whether
the vector 1 is in range(A), subrange(A), or range(A, J), is difficult as well.

On the other hand, the polynomial bound on Algorithm RANGE
(4.3.11) implies that the latter problem is easy if the cardinality of any
one of the sets range(A), subrange(A), or range(A, J) is small. In the next
subsection, we look at simple cases of such matrices A.

Matrices with Small Range

The following theorem establishes the structure of matrices A over IB with
small range(A). Unless noted otherwise, the display of matrices of the
theorem relies on the following special convention. If the columns (resp.
rows) of a submatrix are explicitly indexed, then at least one column (resp.
row) of that submatrix must be present. Columns or rows not explicitly
indexed may be absent.

(4.3.13) Theorem. Let A be a matrix over IB with |range(A)| ≤ 4. Then
up to scaling of columns by {±1} factors and change of index sets, A is one
of the matrices of the applicable case of (a)–(d) below.

(a) |range(A)| = 1: A is a zero matrix.

(b) |range(A)| = 2: A is the following matrix.

(4.3.14)

0
A = X1

Y1

1s

Matrix A with |range(A)| = 2

(c) |range(A)| = 3: A is the matrix of (4.3.15) or (4.3.16) below.

4.3. System IB and Linear Algebra 117

(4.3.15)
X1 1

A =
-1 0X2

y

Matrix A with |range(A)| = 3, case 1

(4.3.16)

Y1 Y2

A =

0

X1

X2

1s

Matrix A with |range(A)| = 3, case 2

(d) |range(A)| = 4: A is one of the matrices of (4.3.17)–(4.3.19) below.

(4.3.17) A =

0

X1

X2

1s

Y1

1s-1s

Matrix A with |range(A)| = 4, case 1

where |Y1| ≥ 2.

(4.3.18) A =

0

X1

X2

1s

1s

X3

y Y2 Y3

1

-1

Matrix A with |range(A)| = 4, case 2

where X3, Y2, or Y3 may be empty, but Y2 ∪Y3 is nonempty, and where Y3

must be empty if X3 is nonempty.

118 Chapter 4. System IB, Linear Algebra, and Matroids

(4.3.19) A =

X1

X2

1s

X3 C

Y1 Y2 Y3

0

Matrix A with |range(A)| = 4, case 3

where the submatrix C is a zero matrix or contains only 1s. In the latter
case, X1 or Y1 may be empty.

We need some definitions and a lemma for the proof of Theorem
(4.3.13).

A matrix A is solid triangular if for all i < j, Aij = 0, and for all i ≥ j,
Aij = 1. When we add parallel or zero vectors any number of times to a
solid triangular matrix, we get a solid staircase matrix. A typical example
of such a matrix is given below.

(4.3.20) .

0

1s

..

Solid staircase matrix

The next lemma characterizes solid staircase matrices.

(4.3.21) Lemma. A {0, 1} matrix is a solid staircase matrix if and only
if it has no 2× 2 identity submatrix.

Proof. The “only if” part is elementary. The “if” part is proved by a
straightforward inductive argument. One removes a row with maximum
number of 1s, invokes induction, then adds that row again for the desired
conclusion.

Proof of Theorem (4.3.13). It is easy to check that the range of each
matrix A of (4.3.14)–(4.3.19) has the claimed cardinality. Hence, we assume
for (a)–(d) that range(A) has the appropriate cardinality, and we deduce
that A is one of the claimed matrices.

|range(A)| = 1: Then range(A) contains just the zero vector, and A
must be a zero matrix.

|range(A)| = 2: If A has a column with a +1 and a −1, or if A has a
2×2 submatrix that either is an identity or contains exactly three 1s, then
it is easily seen that |range(A)| ≥ 3, a contradiction. By Lemma (4.3.21),

4.3. System IB and Linear Algebra 119

we may therefore assume that A is a {0, 1} solid staircase matrix. Since
2× 2 submatrices with exactly three 1s are ruled out, (4.3.14) is the only
case.

|range(A)| = 3: If A has a column with a +1 and a −1, then it is
easily checked that A has no other nonzero column and thus is the matrix
of (4.3.15). Hence, we may assume that A is a {0, 1} matrix. If A has a
2 × 2 identity submatrix, then |range(A)| ≥ 4, which is not possible. By
Lemma (4.3.21), matrix A is a solid staircase matrix. Since |range(A)| = 3,
A must be the matrix of (4.3.16).

|range(A)| = 4: Given the detailed discussion of the previous cases,
we just summarize the proof here and leave it for the reader to fill in the
details. Let Y1 be the index set of the columns with both a +1 and a −1. If
|Y1| ≥ 2 (resp. Y1 = {y}), then A is the matrix of (4.3.17) (resp. (4.3.18)).
If Y1 = ∅, then A is given by (4.3.19).

We are ready to adapt several concepts of linear algebra to the system
IB.

Independence

In linear algebra, a collection of vectors is declared to be (linearly) indepen-
dent if any linear combination of the vectors involving at least one nonzero
coefficient is not zero. There is an equivalent definition that is more use-
ful for our purposes: A collection of vectors is independent if the vector
space generated by the vectors is reduced when one removes any one of
the vectors from the collection. We utilize the latter idea as follows. The
columns (resp. rows) of a matrix A over IB are IB-independent if, for any
column (resp. row) submatrix B of A, we have |range(B)| < |range(A)|. If
any columns or rows are not IB-independent, then they are IB-dependent.
We may abbreviate the terms IB-independence and IB-dependence to in-
dependence and dependence whenever confusion with other independence
concepts is unlikely.

Note that any m × 0 (resp. 0 × n) matrix over IB has independent
columns (resp. rows).

In linear algebra, subsets of independent columns or rows are also
independent. The next theorem establishes that result for system IB.

(4.3.22) Theorem. Let A be a matrix over IB.

(a) If A has independent columns (resp. rows), then every column (resp.
row) submatrix of A has independent columns (resp. rows) as well.

(b) If A has independent columns (resp. rows), then addition of any num-
ber of rows (resp. columns) preserves independence of columns (resp.
rows).

Proof. Let A have size m× n.

120 Chapter 4. System IB, Linear Algebra, and Matroids

We prove (a) by induction. Hence, we only need to show that inde-
pendence of columns (resp. rows) is preserved under deletion of column n
(resp. row m). In either case, denote the reduced matrix by B.

Assume the column case. If B has dependent columns, then deletion of
some column j reduces B to a matrix B′ for which |range(B′)| = |range(B)|.
Hence Algorithm RANGE (4.3.11) can skip column j when computing
range(B) or range(A). But then the columns of A are dependent, a con-
tradiction.

Assume the row case. Let i be any row index of B. Define A′ (resp.
B′) to be A (resp. B) minus row i. Since the rows of A are independent,
|range(A′)| < |range(A)|. Now range(A′) is obtained from range(A) by
projection, so |range(A′)| < |range(A)| implies that range(A) contains two
vectors a and b that differ only in element i. Define a′ (resp. b′) to be a
(resp. b) minus the element m. The vectors a′ and b′ occur in range(B).
They differ only in element i and thus establish |range(B′)| < |range(B)|.
Hence, the rows of B are independent.

The proof of (b) is also handled by induction. Hence, we only need to
show that independence of columns (resp. rows) is preserved under addition
of a single row (resp. column). In either case, denote the enlarged matrix
by C.

Assume the case of independent columns. If C has dependent columns,
then deletion of some column j reduces C to a matrix, say, C′, for which
|range(C′)| = |range(C)|. By projection, deletion of column j produces a
matrix A′ for which |range(A′)| = |range(A)|. But then the columns of A
are dependent, a contradiction.

Assume the case of independent rows. Let j be the index of the column
added to A. If C has dependent rows, then deletion of some row i reduces
C to a matrix C′ for which |range(C′)| = |range(C)|. Define A′ to be A
minus row i. Since |range(C′)| = |range(C)|, every vector of range(C′)
has a unique extension to a vector of C. This is particularly so for the
vectors C′ ⊙ s of range(C′) and C ⊙ s of range(C) where the entry of s
corresponding to column j is fixed to 0. But the latter vectors are those of
range(A′) and range(A), so |range(A′)| = |range(A)|. Hence, the rows of A
are dependent, a contradiction.

Basis

We translate the notion of basis from linear algebra as follows. A column
(resp. row) IB-basis of a matrix A over IB is a column (resp. row) subma-
trix B of A whose columns (resp. rows) are independent and for which
|range(B)| = |range(A)|. If confusion with other basis concepts is unlikely,
we may simply use column (resp. row) basis. These definitions imply that,
for any m, n ≥ 0, the m × n zero matrix has the m × 0 matrix as unique
column basis and the 0× n matrix as unique row basis.

4.3. System IB and Linear Algebra 121

Many fundamental results of linear algebra do not apply to the case
at hand. We cite two instances.

In linear algebra, the number of columns in any column basis is equal
to the number of rows in any row basis. We demonstrate with two matrices
that this important result does not hold here. The first example matrix is

(4.3.23)

b c d

1

-1

1
1-1

a

0

1
0

e f

A =
 0

0
1

1

 1
0

1

0
 1

1

Matrix A, example 1

It is easy to check that columns a and b form a column basis of A, as do
columns c, d, e, and f . Also, the three rows of A are independent, so A
itself is a row basis. Thus, A has a column basis with two columns, has
another column basis with four columns, and is itself a row basis with three
rows.

The second example matrix is

(4.3.24) A =
0 1 1 0
0
1

0 1 1
11 0

Matrix A, example 2

It is easily verified that the four columns as well as the three rows of A are
independent. Hence, A itself is a column basis with four columns and is a
row basis with three rows.

We turn to the second instance. In linear algebra, a maximal collection
of independent columns always constitutes a column basis. In contrast,
consider the matrix A over IB given by

(4.3.25)

b c d

0

0

0
1

1
0

a

1

0
0

e f

A =
 1

1
0

0

 1
1

1

0
1

Matrix A, example 3

Simple checking confirms that columns c, d, e, and f of A make up a
maximal independent column submatrix B with |range(B)| < |range(A)|.
Thus, B is not a column basis of A.

The above negative conclusions notwithstanding, some important re-
sults of linear algebra do carry over to IB. For example, in linear algebra

122 Chapter 4. System IB, Linear Algebra, and Matroids

any column basis of a matrix A intersects any row basis of A in a matrix
B with independent rows and columns. Indeed, such B is a minimal sub-
matrix of A generating the essentially same vector space as A. For this
reason, one could call B a basis of A. Analogously, we define a basis of a
matrix A over IB to be any submatrix B with independent columns and
rows satisfying |range(B)| = |range(A)|. Note that if A is any zero matrix,
then A has just one basis, which is the 0× 0 empty matrix.

The next theorem shows that the above linear algebra result for bases
carries over to IB.

(4.3.26) Theorem. Let A be a matrix over IB of the form

(4.3.27) A =
B

D F

E

Partitioned matrix A

Then the following statements are equivalent.

(i) The column submatrix [B/D] is a column basis of A, and the row
submatrix [B|E] is a row basis of A.

(ii) The submatrix B is a basis of A.
(iii) The submatrix B satisfies |range(B)| = |range(A)| and is minimal

subject to that condition.

Proof. We prove (i)⇒(ii) by inducting on the number of rows of D plus
the number of columns of E. If that number is 0, then A = B, and we are
done. So assume that number to be positive.

If D has at least one row, delete one such row i from A, say, changing
A, D, and F to A′, D′, and F ′, respectively. We are done by induction
once we show that [B/D′] is a column basis of A′ and [B|E] is a row basis
of A′.

We begin with [B|E]. We know that |range([B|E])| ≤ |range(A′)| ≤
|range(A)| = |range([B|E])|. Evidently, all inequalities must be tight, so
|range([B|E])| = |range(A′)| = |range(A)|. Since the rows of [B|E] are
independent, we conclude that [B|E] is a row basis of A′.

We turn to [B/D′]. Since |range([B/D])| = |range(A)|, we have by
projection |range([B/D′])| = |range(A′)|. Since |range(A′)| = |range(A)|,
we also have |range([B/D′])| = |range(A)|. By assumption, deletion of any
column j from [B/D] causes a reduction of range. By projection and the
fact that |range([B/D′])| = |range(A)| = |range([B/D])|, a reduction of
range must also occur when column j is deleted from [B/D′]. Thus, the
columns of [B/D′] are independent, and by |range([B/D′])| = |range(A′)|
they constitute a column basis of A′.

4.3. System IB and Linear Algebra 123

We are done with the case where D has a row, and we begin the case
where E has a column. Delete one such column j from A, say, changing A,
E, and F to A′, E′, and F ′, respectively. We are done by induction once
we show that [B/D] is a column basis of A′ and [B|E′] is a row basis of A′.

We start with [B/D]. We know that |range([B/D])| ≤ |range(A′)| ≤
|range(A)| = |range([B/D])|. Evidently, all inequalities must be tight, so
|range([B/D])| = |range(A′)| = |range(A)|. Since the columns of [B/D]
are independent, [B/D] is a column basis of A′.

We turn to [B|E′]. Since |range([B|E])| = |range(A)|, each vector
of range([B|E]) has a unique extension to a vector of range(A). This is
particularly so for the vectors [B|E] ⊙ s of range([B|E]) and A ⊙ s of
range(A) where the entry of s corresponding to column j is fixed to 0.
But such vectors are precisely those of range([B|E′]) and range(A′), so
|range([B|E′])| = |range(A′)|. It remains to be shown that [B|E′] has
independent rows. Suppose we delete any row i from [B|E], say, get-
ting [B′′|E′′]. By assumption, |range([B′′|E′′])| < |range([B|E])|. Since
|range([B|E])| = |range(A)| = |range(A′)| = |range([B|E′])|, we have
|range([B′′|E′′])| < |range([B|E′])|. Now deletion of row i from [B|E′]
results in a matrix whose range contains at most |range([B′′|E′′])| vectors
and thus strictly less than |range([B|E′])| vectors. Thus, the rows of [B|E′]
are independent, and by |range([B|E′])| = |range(A′)| they constitute a row
basis of A′.

Next, we show (i)⇐(ii). Thus we assume B to be a basis; that is, B
has independent columns and rows, and |range(B)| = |range(A)|. The lat-
ter condition implies that the following obvious inequalities |range(B)| ≤
|range([B/D])| ≤ |range(A)| as well as |range(B)| ≤ |range([B|E])| ≤
|range(A)| must all be tight. Hence, |range([B/D])| = |range([B|E])| =
|range(A)|. By Theorem (4.3.22)(b), any addition of rows (resp. columns)
to a matrix preserves independence of columns (resp. rows). Thus, inde-
pendence of the columns (resp. rows) of B implies independence of columns
of [B/D] (resp. rows of [B|E]). We conclude that [B/D] is a column basis
of A, and [B|E] is a row basis.

Finally, the proof of the implication (ii)⇔(iii) follows from the fact
that when |range(B)| = |range(A)|, independence of columns and rows of
B is equivalent to minimality of B.

We remark that the submatrix B of A of Theorem (4.3.26) need not be
square, in contrast to the linear algebra case. An example of a nonsquare
B is supplied by the matrix A of (4.3.23) when columns a and b are taken
as column basis and A itself as row basis.

Finding a Basis

We present an algorithm for finding a basis for a given matrix A over IB. The

124 Chapter 4. System IB, Linear Algebra, and Matroids

method is polynomial if |range(A)| is bounded by some constant. When
that assumption is removed, the task may become difficult as follows.

Let B be a basis of a matrix A over IB. By Theorem (4.3.26), the
column (resp. row) index set of B defines a column (resp. row) basis of
A. Thus, any algorithm for finding a basis may be employed to locate
a column or row basis. In the next subsection, we reduce the generally
difficult satisfiability problem for the matrices over IB to finding a column
basis for such matrices. We conclude that finding a column basis or a basis
is a generally difficult task.

(4.3.28) Algorithm BASIS. Finds a basis B for a matrix A over IB.

Input: Matrix A over IB, of size m× n.

Output: A partition of A of the form

(4.3.29) A =
B

D F

E

Partitioned version of A

such that B is a basis of A. Furthermore, the submatrix [B/D] (resp.
[B|E]) is a column (resp. row) basis of A.

Complexity: Polynomial if |range(A)| is bounded by some constant.

Procedure:
1. Compute range(A) with Algorithm RANGE (4.3.11). Define A0 to

be A minus the columns of A found to be redundant in Step 3 of
Algorithm RANGE. Thus range(A0) = range(A). Define n0 to be
the number of columns of A0. Let the rows (resp. columns) of A0 be
indexed by x1, x2 . . . , xm (resp. y1, y2 . . . , yn0

).
2. Do for j = 1, 2, . . . , n0:

Let C be Aj−1 minus column yj . Compute range(C) with Algorithm
RANGE. Define

(4.3.30) Aj =

{

Aj−1 if |range(C)| < |range(A)|
C otherwise

3. Output the column index set of An0 as the column index set of B of
(4.3.29). Redefine A0 to be equal to An0 .

4. Do for i = 1, 2, . . . , m:
Let C be Ai−1 minus row xi. Compute range(C) with Algorithm
RANGE. Define

(4.3.31) Ai =

{

Ai−1 if |range(C)| < |range(A)|
C otherwise

4.3. System IB and Linear Algebra 125

5. Output the row index set of Am as the row index set of B of (4.3.29),
and stop.

Proof of Validity. By Steps 1 and 2 and induction, the matrix An0 of
Step 3 satisfies |range(An0)| = |range(A)|. Let A′ be An0 minus an arbi-
trary column yj , and take C to be the matrix of Step 2 when column yj

was processed. Note that C has A′ as column submatrix.
Since column yj occurs in An0 , according to (4.3.30) we must have

|range(A′)| ≤ |range(C)| < |range(A)| = |range(An0)|. Hence, An0 has
independent columns, and by |range(An0)| = |range(A)| it is a column
basis of A.

The case for Am of Step 5 follows in the same manner once one observes
that a subset of rows of A is independent if and only if this is so for the
corresponding subset of A0 defined in Step 3.

By the definition of the index sets of B in Steps 3 and 5, the column
basis An0 of Step 3 is the submatrix [B/D] of A, while the row basis Am

of Step 5 is the submatrix [B|E]. By Theorem (4.3.26), the intersection of
these two matrices, which is B, is a basis of A.

The subrange of any column basis, row basis, or basis of A is related
to subrange(A) as follows.

(4.3.32) Theorem. Let A be a matrix over IB of the form

(4.3.33) A =
B

D F

E

Partitioned matrix A

where B is a basis of A. Then

(4.3.34)
|subrange(B)| = |subrange([B/D])| ≥ |subrange(A)|

|subrange(B)| ≥ |subrange([B|E])| = |subrange(A)|

Proof. Since B is a basis of A, the obvious inequalities |range(B)| ≤
|range([B/D])| ≤ |range(A)| must all be tight. Thus, every vector of
range(B) has a unique extension to a vector of range([B/D]). In par-
ticular, every vector of subrange(B) has a unique extension to a vector of
subrange([B/D]), so |subrange(B)| = |subrange([B/D])|.

To show |subrange([B/D])| ≥ |subrange(A)|, let b be any vector in
subrange(A). Thus, b = ([B/D]⊙ s)⊕ ([E/F]⊙ t) for some {±1} vectors
s and t, which implies [B/D]⊙ s ≤ b.

Since b is also in range(A), and since range([B/D]) = range(A), there
is a {0,±1} vector v for which b = [B/D] ⊙ v. Define a {±1} vector w

126 Chapter 4. System IB, Linear Algebra, and Matroids

from s and v by setting wj = vj if vj 6= 0, and wj = sj otherwise. Since
[B/D]⊙ s ≤ b and [B/D]⊙ v = b, we have [B/D] ⊙ w = b, which implies
b ∈ subrange([B/D]). Hence, |subrange([B/D])| ≥ |subrange(A)|.

Finally, we prove |subrange(B)| ≥ |subrange([B|E])| = |subrange(A)|
by adapting the above arguments and using the fact that, since B is a
basis, the inequalities |range(B)| ≤ |range([B|E])| ≤ |range(A)| must all
be tight.

The case |subrange(B)| > |subrange(A)| permitted by (4.3.34) is in-
deed possible. For example, let A be the matrix

(4.3.35)

a b c

A =

d

1 0 0 0 1

0 0 0 1
0 0 1 0
0 1 0 0 1

-1
-1

e

Matrix A

Define B to consist of columns a, b, c, and d. Let D be the 0 × 4 trivial
matrix, let E be column e, and let F be the 0 × 1 trivial matrix. The
column unit vectors of B are independent and |range(B)| = |range(A)|.
Due to the presence of column e in A, the four column unit vectors oc-
cur in subrange(B), but not in subrange(A). Hence, |subrange(B)| >
|subrange(A)|.

Theorem (4.3.32) supports the following bounds on the cardinality of
range(A) and subrange(A).

(4.3.36) Corollary. Let A be a matrix over IB of the form (4.3.33) such
that B, say, of size p× q, is a basis of A. Then

(4.3.37)
|range(A)| ≤ 3min{p,q}

|subrange(A)| ≤ 2min{p,q}

Proof. By the definition of range in (4.3.1), |range([B/D])| ≤ 3q. Since
[B|E] has p rows, |range([B|E])| ≤ 2p. By Theorem (4.3.26), [B/D]
is a column basis of A, and [B|E] is a row basis. Thus, |range(A)| =
|range([B/D])| = |range([B|E])|, so |range(A)| ≤ 3min{p,q}.

By the definition of subrange in (4.3.2), |subrange([B/D])| ≤ 2q.
Since [B|E] has p rows, |subrange([B|E])| ≤ 2p. By Theorem (4.3.32),
|subrange(A)| = |subrange([B|E])| ≤ |subrange([B/D])|. We conclude that
|subrange(A)| ≤ 2min{p,q}.

Satisfiability and Column Basis

Any algorithm for identifying a column basis for any matrix over IB may be
used to decide satisfiability of the matrices over IB as follows. For a given

4.3. System IB and Linear Algebra 127

matrix A over IB, we find a column basis B for A, then determine a column
basis C for [B|1]. Since the columns of B are independent, C cannot be a
proper submatrix of B. Thus, C = [B|1], or C = B, or C includes 1 and a
proper column submatrix, say, B′, of B.

In the first case, we have by the independence of the columns of C, 1 /∈
range(B) and thus 1 /∈ range(A). By Lemma (4.3.12), A is not satisfiable.

In the second case, C = B implies range(C) = range(B) = range(A)
and 1 ∈ range(C). Thus, 1 ∈ range(A), and A is satisfiable.

In the third case, range(C) = range([B|1]) and the given independence
of the columns of B imply 1 ∪ range(B′) = range([B′|1]) = range(C) ⊇
range(B) ⊃ range(B′). Thus, range(B) and range(B′) differ exactly by the
vector 1. Accordingly, 1 is in range(B) = range(A), and A is satisfiable.

Rank

There are several ways to adapt the rank concept of linear algebra to the
system IB. Each of the possible definitions seems advantageous for some
settings and not so useful for others. For our purposes, the following def-
inition seems suitable. Let A be a matrix over IB. Then the IB-rank of A,
denoted by IB-rank(A), is min{p, q | A has a basis B of size p × q}. Since
the 0× 0 matrix is the unique basis of any zero matrix, the IB-rank of any
such matrix is 0.

An alternate formula for IB-rank(A) is given in the next lemma.

(4.3.38) Lemma. Let q (resp. p) be the smallest integer such that a ma-
trix A over IB has a column (resp. row) basis with q columns (resp. p rows).
Then

(4.3.39) IB-rank(A) = min{p, q}

Proof. By Theorem (4.3.26), any column basis with q columns intersects
any row basis with p rows in a p× q basis. Thus, IB-rank(A) = min{p, q}
where the minimization is over p and q for which there is a p× q basis or,
equivalently, for which there are a column basis with q columns and a row
basis with p rows.

There is a polynomial algorithm for finding IB-rank(A) if |range(A)|
is bounded by a constant, but the scheme we have in mind is not so nice.
We omit details, since in the sequel we do not require an algorithm for
IB-rank(A).

Using (4.3.39), one may express the bounds for range and subrange of
Corollary (4.3.36) in terms of IB-rank as follows.

(4.3.40) Corollary.

(4.3.41)
|range(A)| ≤ 3IB- rank(A)

|subrange(A)| ≤ 2IB- rank(A)

128 Chapter 4. System IB, Linear Algebra, and Matroids

We may simply use the terms rank and rank(A) when confusion with
other concepts of rank is unlikely.

In linear algebra, the rank of a matrix cannot decrease as one adds
columns or rows. Unfortunately, this is not so here, as the next lemma
shows.

(4.3.42) Lemma. The rank of a matrix B over IB may drop if one adds
columns; this may be so even if B has independent rows.

Proof. We use the matrix A of (4.3.23). We define B to consist of columns
c, d, e, and f of A. The four columns of B are independent, as are the three
rows. Thus, rank(B) = 3. The matrix A is obtained from B by addition
of the columns a and b. The latter two columns are a column basis of A
and lead to rank(A) = 2 < rank(B).

Span

In linear algebra, a matrix B spans the columns of a matrix C if both B
and [B|C] produce the same vector space. The matrix B spans the rows
of a matrix C if the vector space produced by [B/C] may be viewed as a
higher-dimensional embedding of the vector space generated by B.

We replace the notion of vector space by that of range to arrive at
analogous definitions for IB. Let B and C be matrices over IB. Then B
IB-spans the columns of C if range(B) = range([B|C]), and B IB-spans the
rows of C if range(B) = range([B/C]). When it is clear from the context
whether the columns or rows of C are meant, we may simply say that B
IB-spans C.

If confusion with other concepts of span is unlikely, we may abbreviate
IB-span to span.

According to the next lemma, one may test whether B spans the
columns or rows of a matrix by testing one column or row at a time.

(4.3.43) Lemma. Let B and C be matrices over IB. If B spans each
column (resp. row) of C, taken one at a time, then B spans the columns
(resp. rows) of C.

Proof. For the column case, we apply Algorithm RANGE (4.3.11) to the
matrix [B|C]. Since B spans each column of C, that algorithm determines
range(B) as range for [B|C].

For the row case, consider an arbitrary vector b ∈ range(B). Let
S(b) = {s | b = B ⊙ s; sj ∈ {0,±1}, ∀ j}. By assumption, for any row c
of C, |range(B)| = |range([B/c])|. Thus, the set {d | d = [B/c] ⊙ s; s ∈
S(b)} contains just one vector. But then the set {e | e = [B/C] ⊙ s; s ∈
S(b)} contains just one vector as well. We conclude that |range(B)| =
|range([B/C])|.

4.3. System IB and Linear Algebra 129

We rely on Lemma (4.3.43) in the next algorithm, which determines
the columns or rows spanned by a matrix B.

(4.3.44) Algorithm SPAN. Finds the columns and rows of a matrix A
over IB that are spanned by a submatrix B of A.

Input: Matrix A over IB, partitioned as follows.

(4.3.45) A =
B

D F

E

Partitioned matrix A

Output: The unique maximal column (resp. row) submatrix of E (resp. D)
spanned by B.

Complexity: Polynomial if |range(B)| is bounded by some constant.

Procedure:
1. Use Algorithm RANGE (4.3.11) as if the range of A′ = [B|E] were to

be found. However, once processing of the columns of the submatrix
B of A′ in Step 3 of Algorithm RANGE has been completed, modify
Step 3 for the processing of the columns of E as follows.
Suppose column j of E is being considered in the current iteration of
Step 3 of Algorithm RANGE. If the set R on hand at the beginning of
that iteration is not equal to the set R ∪R+1 ∪R−1 of that iteration,
then label column j of E as not spanned by B. Otherwise, label
column j as spanned by B. In both cases, do not update R.
When Algorithm RANGE stops, let E′ consist of the columns of E
that are labeled as spanned by B. Output E′ as the maximal spanned
column submatrix of E.

2. Tentatively label each row of D as spanned by B. Use Algorithm
RANGE as if the range of A′′ = [B/D] were to be found. However,
modify Step 3 of that algorithm as follows.
Let R be the set on hand at the end of an arbitrary iteration of Step 3,
that is, after the updating. Consider each vector of R to be of the form
[b/c] where the partition agrees with that of [B/D]. If R contains two
vectors [b/c] and [b/c′] where c 6= c′, then relabel the rows i of D for
which ci 6= c′i as not spanned by B, and delete the vector [b/c′] from
R. Repeat the reduction process until no pair of vectors of R satisfies
the above condition. At that point, the iteration has been completed.
When Algorithm RANGE stops, let D′ consist of the rows of D that
are labeled as spanned by B. Output D′ as the maximal spanned row
submatrix of D, and stop.

130 Chapter 4. System IB, Linear Algebra, and Matroids

Proof of Validity. Lemma (4.3.43) directly proves validity of Step 1. The
lemma also implies that the rows of D labeled in Step 2 as not spanned
by B are correctly classified. Suppose that at least one of the remaining
rows of D is, contrary to its label, not spanned by B. Then range([B/D′])
contains two vectors [b/e] and [b/e′] where e 6= e′. But then in Step 2 at
least one additional row of D would have been relabeled as not spanned by
B, a contradiction.

We extend the definition of span to submatrices B of a given matrix
A in the following manner. Suppose A is a matrix over IB of the form

(4.3.46) A =
B

D F

E

Partitioned matrix A

Then the submatrix B IB-spans A if |range(B)| = |range(A)|.
Basic results about A spanned by B are summarized in the next the-

orem.

(4.3.47) Theorem. Let A be a matrix over IB that is partitioned as given
by (4.3.46). Then the following statements are equivalent.

(i) B spans A.
(ii) B spans the rows of D, and [B/D] spans the columns of [E/F].
(iii) B spans the columns of E, and [B|E] spans the rows of [D|F].
(iv) [B/D] spans the columns of [E/F], and [B|E] spans the rows of [D|F].

Furthermore, if B spans A, then D spans the columns of F , and E spans
the rows of F .

Proof. We show that (i) implies (ii), (iii), and (iv). Since B spans A, we
have |range(B)| = |range(A)|. The latter equation implies that the obvious
inequalities |range(B)| ≤ |range([B/D])| ≤ |range(A)| and |range(B)| ≤
|range([B|E])| ≤ |range(A)| must all be tight. Thus, we have |range(B)| =
|range([B/D])| = |range(A)|, which implies that B spans the rows of D and
[B/D] spans the columns of [E/F]. Also, |range(B)| = |range([B|E])| =
|range(A)|, which implies that B spans the columns of E and [B|E] spans
the rows of [D|F].

For the proof that (ii) or (iii) implies (i), one only needs to reverse the
above arguments.

We prove (iv)⇒(i). If B does not span the rows of D, then [B|E]
cannot span the rows of [D|F], a contradiction. Thus, B spans the rows of
D, and we may invoke the already proved implication (ii)⇒(i) to conclude
(i).

4.3. System IB and Linear Algebra 131

We establish the additional statement of the theorem using (i)⇒(iv).
By (iv), [B/D] spans the columns of [E/F], so by projection D spans the
columns of F . Also by (iv), [B|E] spans the rows of [D|F], so clearly E
spans the rows of F .

Basis and Span

The definitions of basis and span directly imply the following link between
these concepts.

(4.3.48) Lemma. Let A be a matrix over IB, and let B be a submatrix
of A.
(a) B is a column (resp. row) basis of A if and only if B is a column (resp.

row) submatrix with independent columns (resp. rows) that spans the
remaining columns (resp. rows) of A.

(b) B is a basis of A if and only if B spans A and has independent columns
and rows.

Theorem (4.3.32) relies on bases to link the range and subrange of a
matrix A to those of certain submatrices. We draw analogous conclusions
using span.

(4.3.49) Theorem. Let A be a matrix over IB of the form

(4.3.50) A =
B

D F

E

Partitioned matrix A

where the submatrix B spans A. Then

(4.3.51)
|subrange(B)| = |subrange([B/D])| ≥ |subrange(A)|

|subrange(B)| ≥ |subrange([B|E])| = |subrange(A)|

Proof. By Theorem (4.3.47), if B spans A, then B spans the rows of D
and the columns of E, [B/D] spans the columns of [E/F], and [B|E] spans
the rows of [D|F]. These relationships are precisely the facts used in the
proof of Theorem (4.3.32) to show (4.3.34), which is (4.3.51) here.

Rank and Span

In linear algebra, if a submatrix B of a matrix A spans A, then the two
matrices have the same rank. For system IB, one can only prove that
rank(A) cannot exceed rank(B), as shown in the next theorem.

132 Chapter 4. System IB, Linear Algebra, and Matroids

(4.3.52) Theorem. Let B be a submatrix of a matrix A over IB. If B
spans A, then

(4.3.53) rank(A) ≤ rank(B)

Proof. We may assume that A is the matrix of (4.3.50). Recall that the
rank of a matrix is defined by min{p, q}, where the minimum is taken over
p and q such that the matrix has a basis of size p × q. Thus, rank(A) ≤
rank(B) holds if each basis B′ of B is also a basis of A. We prove the latter
assumption as follows.

By Theorem (4.3.26), the basis B′ is a minimal submatrix of B satis-
fying |range(B′)| = |range(B)|. Since B spans A, |range(B)| = |range(A)|.
Hence, |range(B′)| = |range(A)|, and B′ is a basis of A.

(4.3.54) Corollary. Let B be a submatrix of a matrix A over IB. If B
spans A, then

(4.3.55)
|range(A)| ≤ 3IB- rank(B)

|subrange(A)| ≤ 2IB- rank(B)

Proof. The two inequalities |range(A)| ≤ 3IB-rank(A) and |subrange(A)| ≤
2IB-rank(A) of (4.3.41) plus rank(A) ≤ rank(B) of (4.3.53) yield the inequal-
ities of (4.3.55).

Satisfiability and Span

Lemma (4.3.12) plus the definition of span implies the following result.

(4.3.56) Lemma. A matrix A over IB is satisfiable if and only if A spans
1.

Proof. By Lemma (4.3.12) and the definition of span, the following state-
ments are equivalent: matrix A is satisfiable; 1 ∈ range(A); range(A) =
range([A|1]); A spans 1.

(4.3.57) Corollary. The following statements are equivalent for a matrix
A over IB.

(i) A is satisfiable.
(ii) Every column basis of A spans 1.
(iii) Some column submatrix of A with independent columns spans 1.

Proof. The equivalence follows from Lemma (4.3.56) and the definitions
of independence, column basis, and span.

4.4. IB-Independence System 133

Extension of System IB

According to (2.6.26) and (2.6.27), the system IB may be extended as fol-
lows. The set of elements {0,±1} is enlarged by

(4.3.58) U = {(α, β) | α, β ∈ {0, 1, 2}}

IB-multiplication is extended so that for (α, β) ∈ U and γ ∈ {0,±1},

(4.3.59) (α, β)⊙ γ =
{

1 if α ≥ 1 and γ = 1, or β ≥ 1 and γ = −1
0 otherwise

IB-addition and IB-subtraction are not affected.
A matrix over the extension of IB has its entries in {0,±1}∪U . Matrix

IB-multiplication is defined when such a matrix is postmultiplied with one
having {0,±1} entries. The rules for matrix IB-addition and matrix IB-
subtraction are unchanged.

Satisfiability of a matrix A is defined as before, via an equation of the
form A⊙ s = 1.

All definitions and results of this section for matrices A over IB that
do not specifically require A to be a {0,±1} matrix apply to the ex-
tended setting. In particular, the definitions of range(A), subrange(A),
and range(A, J) by (4.3.1)–(4.3.4) are appropriate, and these sets are cor-
rectly computed by Algorithm RANGE (4.3.11). Every one of the lemmas,
theorems, and corollaries following that algorithm remains valid except for
Theorem (4.3.13) and Lemma (4.3.21), which deal with {0,±1} and {0, 1}
matrices, respectively.

In the next section, we derive from the matrices over IB so-called IB-
independence systems. Subsequently, we adapt a number of matroid con-
cepts to such systems.

4.4 IB-Independence System

We deduce from the matrices over IB so-called IB-independence systems,
then link those systems to certain matroids of Chapter 3. We first review
relevant portions of Section 3.2.

Let E be a finite set. Define I to be a nonempty subset of the power
set of E; that is, each element of I is a subset of E. The pair (E, I) is an
independence system if the following axioms are satisfied.

(4.4.1)
(i) The null set is in I.
(ii) Every subset of any set in I is also in I.

134 Chapter 4. System IB, Linear Algebra, and Matroids

The set E is the groundset of the system, and I is the set of independent
subsets of E.

A matroid is an independence system M = (E, I) where, for any subset
E ⊆ E, all maximal independent subsets of E have the same cardinality.
Thus, a matroid consists of a finite set E and a subset I of the power set
of E satisfying the following axioms.

(4.4.2)

(i) The null set is in I.
(ii) Every subset of any set in I is also in I.
(iii) For any subset E ⊆ E, the maximal subsets of E

that are in I have the same cardinality.

Let B be a matrix over a field F , say, with row index set X and column
index set Y . Append an identity matrix I to B to get a matrix A = [I|B]
over F . Consistent with the indexing convention of Section 2.6, the rows
of A are indexed by X , and the columns of the submatrices I and B of A
are indexed by X and Y , respectively. Declare I to consist of the index
sets of the F -independent column submatrices of A. Then M = (X ∪Y, I)
is a matroid called the F -matroid represented by B over F . The matrix B
is an F -representation matrix of M .

Of particular interest is the case of F = GF(3), where M is the GF(3)-
matroid represented by B over GF(3).

The same construction applies when B is over the system BG. In that
case, M is the BG-matroid represented by B.

We have completed the review and now motivate in an informal dis-
cussion the definition of IB-independence systems yet to come.

Let B be a matrix over IB with row index set X and column index
set Y . By Corollary (4.3.57), B is satisfiable if and only if some column
submatrix B′ of B with independent columns spans 1. Hence, if B is
satisfiable, we can demonstrate this by exhibiting such a B′. But how
would we exhibit unsatisfiability of B?

An easy way out is to append an identity matrix I to B and to declare
the resulting matrix A = [I|B] to be over IB. The matrix I spans 1, so
A is satisfiable. Suppose we ask for a column submatrix A′ of A with
independent columns that spans 1 and that avoids as many columns of I
as possible. Since I is satisfiable, such an A′ must exist. Furthermore, B
is satisfiable if and only if A′ does not contain any column of I. Thus, A′

may be used to demonstrate satisfiability or unsatisfiability of B, whichever
applies.

When we originally followed this simple line of reasoning, we were
reminded of the construction of the representable matroids reviewed above,
and we wondered whether some matroid concepts or results are relevant for
the satisfiability problem. As we explored that question, it became evident
that matroids are indeed useful for the solution of that problem. In the

4.4. IB-Independence System 135

remainder of this chapter, we establish that connection with matroids and
prove basic results.

We are ready to define the IB-independence system for B. We let
X∪Y be the groundset E and let I contain the subsets of X∪Y that index
column submatrices of A = [I|B] over IB with IB-independent columns. By
Theorem (4.3.22), any subset of a set of IB-independent columns is also
IB-independent. Thus, I is maintained under subset taking. We conclude
that (X ∪ Y, I) satisfies the axioms of (4.4.1) and thus is an independence
system. We call it the IB-independence system represented by B.

One might hope that the IB-independence system (X ∪ Y, I) of B is a
matroid. But this is not necessarily so. A counterexample is given by

(4.4.3)

b c d

1

-1

1
1-1

a

0

1
0

e f

B =
 0

0
1

1

 1
0

1

0
 1

1
X

Y

Matrix B over IB

which essentially is the matrix of (4.3.23). As shown following (4.3.23),
the column submatrices indexed by {a, b} and {c, d, e, f} are two column
bases. Accordingly, these submatrices are maximal IB-independent col-
umn submatrices of the submatrix B of A = [I|B]. In the terminology of
independence systems, the sets {a, b} and {c, d, e, f} are maximal indepen-
dent subsets of the set Y = {a, b, c, d, e, f} of the IB-independence system
(X∪Y, I) of B. If (X∪Y, I) is a matroid, then by (4.4.2) the sets {a, b} and
{c, d, e, f} must have the same cardinality, which clearly is not the case.

Despite the nonmatroidal nature of IB-independence systems, we ven-
ture to adapt matroid concepts to these systems and attempt to build algo-
rithms for the satisfiability problem for B based on the insight so gained.
Also, if computations for IB-independence systems become too complex
or cumbersome, we approximate these systems by matroids for which the
corresponding computations are manageable. Of particular use are GF(3)-
matroids and BG-matroids.

For the approximations, we establish some basic inequalities linking
the system IB, the field GF(3), and the system BG.

We need an auxiliary result for connecting IB with GF(3).

(4.4.4) Lemma. Let E be a matrix over IB. Assume that for each column
vector of E, the matrix E also contains the negative of that column. Define
A to be any matrix over IB derived from E by first adding duplicate or zero
columns or rows and then taking a submatrix. Then

(4.4.5)
|range(A)| ≤ |range(E)|

|subrange(A)| ≤ max{|subrange(E′)|}

136 Chapter 4. System IB, Linear Algebra, and Matroids

where the maximum in the second inequality is taken over all column sub-
matrices E′ of E.

Proof. For any matrix A, |range(A)| and |subrange(A)| cannot decrease
when rows are added to A. Thus, we may assume that the row index set of
A contains the row index set of E. The addition of duplicate or zero rows
does not change |range(A)| or |subrange(A)|, so we may suppose that the
row index set of A is equal to the row index set of E.

For any matrix A, range(A) and subrange(A) do not change if one
adds a column vector e for which both e and −e are already present. Thus,
we may suppose that A is a column submatrix E′ of E.

These observations prove the inequality about subrange(A). Since the
addition of columns at most enlarges range(A), the inequality for range(A)
follows as well.

(4.4.6) Theorem. Let A be a {0,±1} matrix, to be viewed over IB or
GF(3) as appropriate. Then

(4.4.7) |range(A)| ≤

{

4 if GF(3)-rank(A) = 1
69 if GF(3)-rank(A) = 2

(4.4.8) |subrange(A)| ≤

{

3 if GF(3)-rank(A) = 1
15 if GF(3)-rank(A) = 2

Proof. If GF(3)-rank(A) = 1, then up to column scaling all nonzero
columns are identical, and clearly |range(A)| ≤ 4 and |subrange(A)| ≤ 3.

For the case of GF(3)-rank(A) = 2, let C be the matrix

(4.4.9)

a b c

C =

d

e 1 0 1 1

1 0
1 1 0
0 1 1f

g

h

-1

-1
-1

-1

Matrix C

Due to the 2 × 2 identity matrix in the top left corner of C, the first two
columns (resp. rows) of C are GF(3)-independent. The following claims
about the remaining columns and rows are easily checked. Column c (resp.
d) of C is the sum (resp. difference) of columns a and b. Row g (resp. h) of
C is the sum (resp. difference) of rows e and f . Thus, GF(3)-rank(C) = 2.

In two steps, we construct a larger matrix E with GF(3)-rank(E) = 2
from C. First, a matrix D is obtained by appending to C the negative of
each row of C; that is, D = [C/(−C)]. Second, the matrix E is obtained

4.4. IB-Independence System 137

from D by appending to D the negative of each column of D; that is,
E = [D|(−D)].

It is easy to see that any matrix A over GF(3) with GF(3)-rank(A) = 2
may be derived from E by repeatedly adding duplicate or zero rows or
columns and then taking a submatrix. By Lemma (4.4.4), |range(A)| ≤
|range(E)| and |subrange(A)| ≤ max{|subrange(E′)|}, where the maximum
is taken over all column submatrices E′ of E.

Direct but tedious calculations verify that |range(E)| = 69 and that
max{|subrange(E′)|} = 15. These equations plus the cited inequalities of
Lemma (4.4.4) prove (4.4.7) and (4.4.8).

We link IB with BG. Recall from Section 2.6 that a subregion is ob-
tained from a given matrix by first taking a submatrix and then replacing
some nonzero entries in that submatrix by zeros. Let A be a matrix over
IB. A subregion cover of A is a finite collection of subregions of A, say, A1,
A2, . . . , Ak, having the same size as A and observing the following con-
dition. For each nonzero entry Aij of A, there is at least one matrix Al

containing that entry. Any such matrix Al covers the entry Aij .
The following lemma relates the range and subrange of a matrix to

the range and subrange of the matrices of a subregion cover.

(4.4.10) Lemma. Let A be a matrix over IB. Define A1, A2, . . . , Ak to
be the matrices of a subregion cover of A. Then

(4.4.11)

|range(A)| ≤
k

∏

l=1

|range(Al)|

|subrange(A)| ≤
k

∏

l=1

|subrange(Al)|

Proof. We establish the inequality for |range(A)|. Let b be any vector of
range(A). Thus, for some {0,±1} vector s, b = A⊙ s. For l = 1, 2, . . . , k,
the vector bl = Al ⊙ s is in range(Al).

Since each nonzero entry of A is covered by some Al, one readily verifies
that b =

⊕k

l=1(A
l ⊙ s) =

⊕k

l=1 bl. Accordingly, each b ∈ range(A) may be
constructed by selecting for each l some bl ∈ range(Al) and adding up the

vectors so chosen. There are
∏k

l=1 |range(Al)| different ways of selecting

vectors bl, so |range(A)| is bounded from above by
∏k

l=1 |range(Al)|.
The inequality for |subrange(A)| is handled by the above arguments

once we consider the vector b to be in subrange(A), the vector s to be a
{±1} vector, and each vector bl to be in subrange(Al).

(4.4.12) Theorem. Let A be a {0,±1} matrix, viewed to be over IB or

138 Chapter 4. System IB, Linear Algebra, and Matroids

BG as appropriate. Then

(4.4.13)
|range(A)| ≤ 3BG-rank(A)

|subrange(A)| ≤ 2BG-rank(A)

Proof. By Theorem (2.6.14), BG-rank(A) is equal to the minimum num-
ber of rows and columns that must be deleted to reduce A to a zero matrix.
Hence, A has a subregion cover with two matrices A1 and A2 where A1

has p nonzero columns, A2 has q nonzero rows, and p + q = BG-rank(A).
Clearly, IB-rank(A1) ≤ p and IB-rank(A2) ≤ q.

For l = 1, 2, we have according to Corollary (4.3.40) |range(Al)| ≤

3IB-rank(Al) and |subrange(Al)| ≤ 2IB-rank(Al). Using IB-rank(A1) ≤ p and
IB-rank(A2) ≤ q, we conclude that |range(A1)| ≤ 3p, |range(A2)| ≤ 3q,
|subrange(A1)| ≤ 2p, and |subrange(A2)| ≤ 2q.

According to Lemma (4.4.10), the range and subrange of A and its sub-
matrices A1 and A2 are linked by the inequalities |range(A)| ≤ |range(A1)|·
|range(A2)| and |subrange(A)| ≤ |subrange(A1)| · |subrange(A2)|. We com-
bine these inequalities with the ones above to get |range(A)| ≤ 3p+q =
3BG-rank(A) and |subrange(A)| ≤ 2p+q = 2BG-rank(A).

The similarity between the inequalities |range(A)| ≤ 3IB-rank(A) and
|subrange(A)| ≤ 2IB-rank(A) of Corollary (4.3.40) on one hand and the in-
equalities |range(A)| ≤ 3BG-rank(A) and |subrange(A)| ≤ 2BG-rank(A) on the
other hand might induce one to conjecture that IB-rank and BG-rank, or
IB-rank and GF(3)-rank, are related by some simple inequality. For exam-
ple, one might conjecture that IB-rank(A) ≤ BG-rank(A) for all matrices
A.

We list four matrices A below that disprove all such conjectures in-
volving IB-rank and either GF(3)-rank or BG-rank. The first matrix A
is

(4.4.14) 1
-1

A =
-1
1

Matrix A, example 1

and has IB-rank(A) = 2 > GF(3)-rank(A) = 1. The second matrix A is

(4.4.15)

1

-1

1
1-1

0

1
0A =

1

Matrix A, example 2

and has IB-rank(A) = 2 < GF(3)-rank(A) = 3. We construct the third
matrix A using the following matrix C.

4.4. IB-Independence System 139

(4.4.16) C =

0 1 1 1

0 0
1 1 1 0
1 1 0 1
1 0 1 1

0-1

Matrix C

Direct checking establishes that both the 5 × 4 matrix C and its trans-
pose, Ct, have IB-independent columns and rows. Also, BG-rank(C) =
BG-rank(Ct) = 4. Then the 9× 9 matrix A

(4.4.17) A =
C

t
C

0

0

Matrix A, example 3

has IB-independent columns and rows. Accordingly, IB-rank(A) = 9 >
BG-rank(A) = 8. The fourth matrix A is

(4.4.18)
1
1

A =
1
1

Matrix A, example 4

and has IB-rank(A) = 1 < BG-rank(A) = 2.

Complexity of Algorithm RANGE (4.3.11)

We establish complexity formulas for Algorithm RANGE (4.3.11) using the
dimensions of the given matrix, as well as its BG-rank and IB-rank.

(4.4.19) Theorem. Let A be an m × n matrix over IB. Define k =
BG-rank(A) and l = IB-rank(A). The computational effort of Algorithm
RANGE (4.3.11) for finding range(A) of A is then O(2α · m · n), where
α = min{m, 1.6k, 1.6l}. The effort for finding subrange(A) is O(2β ·m · n),
where β = min{k, 1.6l}.

Proof. We assume the situation where just the input matrix A is given.
Thus, in the notation of Algorithm RANGE (4.3.11), we take the second
input matrix [B/D] to be trivial and take the input set J to be equal to
the column index set of A or to be empty, depending on whether range(A)
or subrange(A) is to be found. Below, we repeatedly use the fact that 21.6

is a bit larger than 3.

140 Chapter 4. System IB, Linear Algebra, and Matroids

Algorithm RANGE (4.3.11) processes the matrix A column by column,
each time producing the range or subrange of a larger column submatrix of
A. Let α′ (resp. β′) be real numbers such that 2α′

(resp. 2β′

) is equal to the
cardinality of the largest range (resp. subrange) set on hand during these
iterations. It is easily checked that, in the range (resp. subrange) case,
the effort for processing one column is then O(2α′

·m) (resp. O(2β′

·m)),
and that the effort for processing all columns of A is O(2α′

·m · n) (resp.
O(2β′

·m · n)). Hence, it suffices to show that α and β of the theorem are
upper bounds for α′ and β′, respectively.

Since the range or subrange sets on hand during any one iteration
consist of {0, 1} vectors with m entries, any such set cannot contain more
than 2m vectors. Accordingly, we know α′ ≤ m and β′ ≤ m.

By Theorem (4.4.12), |range(A)| ≤ 3BG-rank(A) and |subrange(A)| ≤
2BG-rank(A). Using k = BG-rank(A) ≤ m and the fact that the BG-rank
of a matrix cannot decrease as columns are added, we deduce that, for
any column submatrix B of A, we have |range(B)| ≤ 3k < 21.6k and
|subrange(B)| ≤ 2k. Hence, α′ ≤ min{m, 1.6k} and β′ ≤ min{m, k} = k.

Finally, we make use of l = IB-rank(A). Lemma (4.3.42) states that
the IB-rank of a matrix may drop as one adds columns. Hence, we cannot
argue as in the BG-rank case. However, range(A) does contain as subsets
the range and subrange of any column submatrix of A. Using that fact and
Corollary (4.3.40), which supplies |range(A)| ≤ 3IB-rank(A) < 21.6l, we im-
prove the bounds obtained so far for α′ and β′ to α′ ≤ min{m, 1.6k, 1.6l} =
α and β′ ≤ min{k, 1.6l} = β, as desired.

One might conjecture that the term 1.6l in the exponent β of the com-
plexity formula of Theorem (4.4.19) for subrange(A) is just an artifact of
the proof, and that that term can be reduced to l. It can be shown that
this is not possible, using arbitrarily large block diagonal matrices where
each block is a copy of the matrix of (4.3.23). We omit the straightfor-
ward arguments and only mention that one needs to arrange that, for any
such block diagonal matrix, Algorithm RANGE (4.3.11) first processes all
columns containing the block vectors labeled c, d, e, and f in (4.3.23).

Extension of System IB

As defined in Section 2.6 and again at the end of Section 4.3, the system
IB may be extended by enlarging the set of elements {0,±1} by

(4.4.20) U = {(α, β) | α, β ∈ {0, 1, 2}}

and by defining IB-multiplication of (α, β) ∈ U and γ ∈ {0,±1} by

(4.4.21) (α, β)⊙ γ =
{

1 if α ≥ 1 and γ = 1, or β ≥ 1 and γ = −1
0 otherwise

4.5. Connectivity 141

A matrix over the extension of IB has its entries in {0,±1}∪U . When such
a matrix is declared to be over BG, then any 0 or (0, 0) entry is considered
to be zero and any other entry is considered to be nonzero.

It is readily seen that the definition of IB-independence system intro-
duced earlier in this section also accommodates the extension of IB and
that all results except Theorem (4.4.6), which makes sense only for {0,±1}
matrices, remain valid.

In the next three sections, we adapt the matroid concepts and methods
of Chapter 3 to IB-independence systems.

4.5 Connectivity

We derive from the notion of matroid separations and connectivity the
concept of IB-separation and IB-connectivity for IB-independence systems.

We review relevant material of Section 3.4. In that section, matroid
separations and connectivity are defined for general matroids using the
matroid rank function. In Lemma (3.4.3), these definitions are shown for
representable matroids to be equivalent to certain conditions on representa-
tion matrices. To achieve a short review, we restate here just the conditions
of Lemma (3.4.3) as if they were the defining conditions for matroid sep-
arations of representable matroids. This is valid due to the equivalency
established in that lemma.

Let M be a matroid represented by a matrix B over a field F or over
the system BG. Let B have row index set X and column index set Y .
Suppose B is partitioned as follows.

(4.5.1) X1
B =

Y1

A1

D1X2

Y2

A2

D2

Partitioned version of B

Suppose the index sets X1, X2, Y1, Y2 and the submatrices D1, D2 of B
satisfy, for some k ≥ 1,

(4.5.2) |X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

as well as

(4.5.3) F -rank(D1) +F -rank(D2) ≤ k − 1

142 Chapter 4. System IB, Linear Algebra, and Matroids

for the case of the field F , and

(4.5.4) BG-rank(D1) + BG-rank(D2) ≤ k − 1

for the case of the system BG. Then (X1 ∪ Y1, X2 ∪ Y2) is a k-separation
of M . The k-separation is exact if the applicable inequality of (4.5.3) or
(4.5.4) holds with equality. For k ≥ 2, M is k-connected if it does not have
an l-separation for some 1 ≤ l ≤ k− 1. If M is 2-connected, then it is also
said to be connected.

The above terminology for matroid k-separations and k-connectivity is
applied to their representation matrices as follows. If a matrix B represents
a matroid M and if M has a k-separation (X1 ∪ Y1, X2 ∪ Y2) (resp. has
an exact k-separation, is k-connected, or is connected), then we declare
B to also have a k-separation (X1 ∪ Y1, X2 ∪ Y2) (resp. to have an exact
k-separation, to be k-connected, or to be connected). The matrix B may at
one time be over a field F and at another time be over BG. To differentiate
among the possible k-separations, we may say, for example, that B has an
F -k-separation or has a BG-k-separation. Terms such as F -k-connected
and BG-k-connected are to be analogously interpreted. Since F -rank(D1)+
F -rank(D2) = 0 or BG-rank(D1) + BG-rank(D2) = 0 if and only if both
D1 and D2 are zero matrices, the specification of F or BG is not needed
for the terms 1-separation, 2-connected, or connected.

We translate the above concepts to matrices over IB in the expected
way. Let B be such a matrix, with row index set X and column index set
Y . Assume B is partitioned as follows.

(4.5.5) X1
B =

Y1

A1

D1X2

Y2

A2

D2

Partitioned version of B

Suppose the index sets X1, X2, Y1, Y2 and the submatrices D1, D2 of B
satisfy, for some k ≥ 1,

(4.5.6) |X1 ∪ Y1|, |X2 ∪ Y2| ≥ k

and

(4.5.7) IB-rank(D1) + IB-rank(D2) ≤ k − 1

Then (X1 ∪ Y1, X2 ∪ Y2) is a k-separation of the IB-independence system
(X∪Y, I) represented by B, and of the matrix B itself. The k-separation is

4.5. Connectivity 143

exact if the inequality of (4.5.7) holds with equality. For k ≥ 2, (X ∪ Y, I)
and B are k-connected if they do not have an l-separation for some 1 ≤ l ≤
k−1. If (X ∪Y, I) or B is 2-connected, then it is also said to be connected.
Since IB-rank(D1)+IB-rank(D2) = 0 if and only if both D1 and D2 are zero
matrices, the specification of IB is not needed for the terms 1-separation,
2-connected, or connected. In fact, the usage of these terms for matrices
over IB fully agrees with that for matrices over F or BG.

At times, we view a matrix B to be over IB, over GF(3), or over BG.
To differentiate among the possible cases, we then call a k-separation of B
over IB a IB-k-separation. Terms like IB-k-connected are to be analogously
interpreted.

Since the IB-rank function is not easy to compute, we desire alternate,
more easily checked sufficient conditions that guarantee that a given parti-
tion of a matrix B over IB corresponds to a IB-separation. The next lemma
provides such conditions.

(4.5.8) Lemma. Let B be a matrix over IB that is partitioned as in (4.5.5).
Suppose that the submatrices D1 and D2 of B satisfy the following condi-
tions.

(4.5.9)

(i) The columns of D1 or the rows of D2 are IB-
dependent.

(ii) The rows of D1 or the columns of D2 are IB-
dependent.

Then for

(4.5.10) k = min{|X1 ∪ Y1|, |X2 ∪ Y2|}

(X1 ∪ Y1, X2 ∪ Y2) is a IB-k-separation of B.

Proof. For i = 1, 2, let Di be of size pi × qi. Then (4.5.9) and (4.5.10)
imply that k ≤ |X1 ∪ Y1| = p2 + q1 > IB-rank(D1) + IB-rank(D2), k ≤
|X2 ∪ Y2| = p1 + q2 > IB-rank(D1) + IB-rank(D2), and k = |X1 ∪ Y1| or
|X2∪Y2|. Thus, |X1∪Y1|, |X2∪Y2| ≥ k and IB-rank(D1)+IB-rank(D2) < k,
and both (4.5.6) and (4.5.7) are satisfied.

IB-separations are the central ingredients for the decompositions of
later chapters. We include an overview in Section 4.8. At this point, we only
mention that the range and certain structural properties of the submatrices
D1 and D2 of B of (4.5.5) are important for these decompositions. In
particular, upper bounds on the product of the cardinalities of the range of
D1 and D2; that is, upper bounds on |range(D1)| · |range(D2)|, are needed.
The next theorem supplies such bounds in terms of the IB-rank, BG-rank,
and GF(3)-rank of D1 and D2.

144 Chapter 4. System IB, Linear Algebra, and Matroids

(4.5.11) Theorem. Let B be a matrix over IB that is partitioned as
follows.

(4.5.12) X1
B =

Y1

A1

D1X2

Y2

A2

D2

Partitioned version of B

(a) If (X1 ∪ Y1, X2 ∪ Y2) is a IB-k-separation or a BG-k-separation, then

(4.5.13)
|range(D1)| · |range(D2)| ≤ 3k−1

|subrange(D1)| · |subrange(D2)| ≤ 2k−1

(b) If (X1 ∪ Y1, X2 ∪ Y2) is a GF(3)-k-separation with 1 ≤ k ≤ 3, then

(4.5.14) |range(D1)| · |range(D2)| ≤

{

1 if k = 1
4 if k = 2
69 if k = 3

and

(4.5.15) |subrange(D1)| · |subrange(D2)| ≤

{

1 if k = 1
3 if k = 2
15 if k = 3

Proof. By (4.3.41), we have, for i = 1 and 2, |range(Di)| ≤ 3IB- rank(B)

and |subrange(Di)| ≤ 2IB- rank(B). By condition (4.5.7) of IB-k-separations,
IB-rank(D1) + IB-rank(D2) ≤ k − 1. Hence, |range(D1)| · |range(D2)| ≤

3IB-rank(D1)+IB-rank(D2) ≤ 3k−1 as well as |subrange(D1)| · |subrange(D2)| ≤

2IB-rank(D1)+IB-rank(D2) ≤ 2k−1. Thus, (4.5.13) holds for B over IB.
The case of (4.5.13) for B over BG is handled analogously. Specif-

ically, (4.4.13) supplies |range(A)| ≤ 3BG-rank(A) and |subrange(A)| ≤
2BG-rank(A), and once more we conclude |range(D1)| · |range(D2)| ≤ 3k−1

and |subrange(D1)| · |subrange(D2)| ≤ 2k−1.
We turn to the claim about B over GF(3). By (4.4.7) and (4.4.8), for

any matrix A over GF(3),

(4.5.16) |range(A)| ≤

{

4 if GF(3)-rank(A) = 1
69 if GF(3)-rank(A) = 2

(4.5.17) |subrange(A)| ≤

{

3 if GF(3)-rank(A) = 1
15 if GF(3)-rank(A) = 2

4.6. Finding Separations 145

Since (X1∪Y1, X2∪Y2) is a GF(3)-k-separation for 1 ≤ k ≤ 3, we know by
(4.5.3) that GF(3)-rank(D1) + GF(3)-rank(D2) ≤ k − 1. Below, we argue
each one of the cases k = 1, 2, and 3. It suffices that we consider exact
GF(3)-k-separations, where GF(3)-rank(D1) + GF(3)-rank(D2) = k − 1.

If k = 1, then both D1 and D2 must be zero matrices, and both their
range and subrange sets contain just the zero vector. Hence, |range(D1)| ·
|range(D2)| = |subrange(D1)| · |subrange(D2)| = 1.

If k = 2, then one of D1 and D2 must have GF(3)-rank equal to 1,
while the other one has GF(3)-rank equal to 0. Using (4.5.16) and (4.5.17),
we verify the inequalities |range(D1)| · |range(D2)| ≤ 4 and |subrange(D1)| ·
|subrange(D2)| ≤ 3.

If k = 3, then one of D1 and D2 must have GF(3)-rank equal to 2
and the other one has GF(3)-rank equal to 0, or both D1 and D2 have
GF(3)-rank equal to 1. Once more using (4.5.16) and (4.5.17), we see
that |range(D1)| · |range(D2)| ≤ 69 and |subrange(D1)| · |subrange(D2)| ≤
15.

Extension of System IB

As defined in Section 2.6 and repeated in Sections 4.3 and 4.4, the system
IB may be extended by enlarging the set of elements {0,±1} by

(4.5.18) U = {(α, β) | α, β ∈ {0, 1, 2}}

and by defining IB-multiplication of (α, β) ∈ U and γ ∈ {0,±1} by

(4.5.19) (α, β)⊙ γ =
{

1 if α ≥ 1 and γ = 1, or β ≥ 1 and γ = −1
0 otherwise

A matrix over the extension of IB has its entries in {0,±1}∪U . When such
a matrix is declared to be over BG, then any 0 or (0, 0) entry is considered
to be zero and any other entry is considered to be nonzero.

The results of this section apply to the extension of IB except for the
inequalities of (4.5.14) and (4.5.15), which make sense only for {0,±1}
matrices. The proof of this claim follows directly from the fact that the
results of earlier sections invoked in this section, except those concerning
GF(3), also hold for the extension of IB.

4.6 Finding Separations

Chapter 3 includes several algorithms that find certain separations for ma-
trices over GF(3) or BG. In this section, we add to this arsenal an algorithm
that analogously to Algorithm INDUCED-F -SEPARATION (3.5.14) finds
so-called induced IB-separations.

146 Chapter 4. System IB, Linear Algebra, and Matroids

Induced Separation

We review relevant material of Section 3.5. For current purposes, it suffices
that we consider matrices over F and ignore matrices over BG. Thus, we
are given a matrix B over F , with row index set X and column index set
Y . Let B be a submatrix of B of the following form.

(4.6.1)

X2 A2D1

D2A1X1

Y2Y1

B =

Submatrix B of B

Assume that, for some l ≥ k,

(4.6.2) |X1 ∪ Y 1|, |X2 ∪ Y 2| ≥ l

and that

(4.6.3) F -rank(D1) +F -rank(D2) = k − 1

Hence, (X1 ∪ Y 1, X2 ∪ Y 2) is an exact k-separation of B where each side
has at least l elements.

If B has a k-separation (X1∪Y1, X2∪Y2) where, for i = 1, 2, Xi ⊇ Xi

and Yi ⊇ Y i, then the k-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B is said to
induce the k-separation (X1 ∪ Y1, X2 ∪ Y2) of B.

Define X3 = X − (X1 ∪ X2) and Y3 = Y − (Y 1 ∪ Y 2). We depict
B with the submatrix B and the index sets X1, X2, X3 and Y 1, Y 2, Y3

below.

(4.6.4)

A2

Y2Y1

X2

X1

Y3

X3B = any entry

D1

D2A1

Matrix B with submatrix B

By definition, an induced k-separation exists if and only if X3 and
Y3 can be partitioned into X31, X32 and Y31, Y32, respectively, such that

4.6. Finding Separations 147

(X1 ∪ Y 1 ∪ X31 ∪ Y31, X2 ∪ Y 2 ∪ X32 ∪ Y32) is a k-separation of B. We
display B with that k-separation below.

(4.6.5) A1 D2

A2D1

Y2Y1

X2 D1 A2

A1X1

Y31 Y32

B =

Y3

X3

X31

X32

D2

Partition of B induced by that of B

As argued in Section 3.5, an induced k-separation exists if and only if

(4.6.6) F -rank(Di) = F -rank(Di), i = 1, 2

Define a submatrix A of a matrix A over F to F -span A if A and A
have the same F -rank. The condition (4.6.6) can then be restated as

(4.6.7) Di F -spans Di, i = 1, 2

We are ready to adapt the induced separation concept to matrices over
IB. Let B be a matrix over IB that is partitioned as in (4.6.1). Assume that
the partition of B corresponds to a IB-separation; that is, for some l ≥ k

(4.6.8) |X1 ∪ Y 1|, |X2 ∪ Y 2| ≥ l

and

(4.6.9) IB-rank(D1) + IB-rank(D2) ≤ k − 1

Let B over IB have B as a submatrix and be the matrix of (4.6.4). Then
the IB-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B induces a IB-separation (X1 ∪
Y1, X2 ∪ Y2) if, for i = 1, 2, we have Xi ⊇ Xi and Yi ⊇ Y i and if for the
corresponding partition of B as given by (4.6.5) we have

(4.6.10) Di IB-spans Di, i = 1, 2

or, equivalently,

(4.6.11) |range(Di)| = |range(Di)|, i = 1, 2

148 Chapter 4. System IB, Linear Algebra, and Matroids

The reader may wonder why we have not used the condition IB-rank(Di) =
IB-rank(Di) analogously to (4.6.6), and why we have not enforced equality
in (4.6.9) analogously to (4.6.3). The changes are mainly due to Lemma
(4.3.42), according to which the IB-rank of a matrix may drop as columns
are added. That fact rules out a direct translation of (4.6.6) where F -rank
is replaced by IB-rank. In view of (4.6.7), which expresses the condition
for an induced F -separation in terms of F -span, the switch to IB-span
seems appropriate. Due to that change, it suffices that B has just a IB-k-
separation instead of an exact IB-k-separation. Indeed, for the discussion
of induced IB-separations, the particular value of k is irrelevant, and we
may omit its specification and simply say that the partition of B given by
(4.6.1) depicts a IB-separation (X1 ∪ Y 1, X2 ∪ Y 2).

We derive an algorithm for finding induced IB-separations from Algo-
rithm INDUCED F -SEPARATION (3.5.17) by almost trivial changes. For
a review of the latter method, we redraw B of (4.6.4) so that an arbitrary
row x ∈ X3 and an arbitrary column y ∈ Y3 are displayed.

(4.6.12)

X2

Y2Y1

D1 A2

A1X1

y

B =

g

e

h

Y3

X3

x f

D2

any entry

Matrix B with row x ∈ X3 and column y ∈ Y3

The recursive steps of Algorithm INDUCED F -SEPARATION (3.5.17) are
based on the following three observations.

First, suppose that the subvector e of row x is not F -spanned by the
rows of D1. If the subvector f of row x is F -spanned by the rows of D2,
we adjoin e to A1 and f to D2 and invoke recursion; otherwise, we declare
that an induced F -separation does not exist and stop.

Second, suppose that the subvector g of column y is not F -spanned
by the columns of D2. If the subvector h of column y is F -spanned by
the columns of D1, we adjoin g to A1 and h to D1 and invoke recursion;
otherwise, we declare that an induced F -separation does not exist and stop.

Third, suppose that, for all x ∈ X3 and all y ∈ Y3, neither of the
above two cases applies. Then (X1 ∪ Y 1, X2 ∪X3 ∪ Y 2 ∪ Y3) is an induced
F -separation of B, and we stop with that conclusion.

By Lemma (4.3.43) and Theorem (4.3.47), we may test whether a
submatrix IB-spans a matrix containing it by iteratively adding one column

4.6. Finding Separations 149

or row at a time, each time testing with Algorithm SPAN (4.3.44) whether
that additional column or row leaves the cardinality of range unchanged.
This nice behavior of IB-span parallels that of F -span and thus permits
a straightforward adaptation of Algorithm INDUCED F -SEPARATION
(3.5.14) to matrices over IB as follows.

(4.6.13) Algorithm INDUCED IB-SEPARATION. Finds a IB-sepa-
ration for a matrix B over IB that is induced by a IB-separation of a sub-
matrix B, or declares that such an induced separation does not exist.

Input: Matrix B over IB, with row index set X and column index set Y . A
submatrix B of B with a IB-separation (X1∪Y 1, X2∪Y 2) where, for i = 1,
2, Xi ⊆ X and Y i ⊆ Y . The IB-separation of B has at least l elements on
each side.

Output: Either: A IB-separation (X1 ∪ Y1, X2 ∪ Y2) of B induced by the
IB-separation (X1∪Y 1, X2∪Y 2) of B; the IB-separation of B has at least l
elements on each side. Or: “The given IB-separation of B does not induce
a IB-separation of B.”

Complexity: Polynomial if for the submatrices D1 and D2 of B, both
|range(D1)| and |range(D2)| are bounded by some constant.

Procedure:
1. Consider B partitioned as in (4.6.12). Assume that B has a row x ∈ X3

with the indicated row subvectors e and f such that |range([e/D1])| >
|range(D1)|. Then x must be in X31. Suppose, in addition, that
|range([D2/f])| > |range(D2)|. Then x must also be in X32; that is,
B cannot be partitioned, and we stop with that declaration. On the
other hand, suppose |range([D2/f])| = |range(D2)|. Since x must be
in X31, we adjoin e to A1 and f to D2. Then we start recursively
again with the new B.

2. Suppose B as shown in (4.6.12) has a column y ∈ Y3 with the indicated
column subvectors g and h such that |range([g|D2])| > |range(D2)|.
Then y must be in Y31. Suppose, in addition, |range([D1|h])| >
|range(D1)|. Then y must also be in Y32; that is, B cannot be parti-
tioned, and we stop with that declaration. On the other hand, suppose
|range([D1|h])| = |range(D1)|. Since y must be in Y31, we adjoin g to
A1 and h to D1. Then we start recursively again with the new B.

3. Finally, suppose that, for all rows x ∈ X3, the row subvector e satisfies
|range([e/D1])| = |range(D1)|, and suppose that, for all columns y ∈
Y3, the column subvector g satisfies |range([g|D2])| = |range(D2)|.
Then X1 = X1, X2 = X2 ∪X3, Y1 = Y 1, and Y2 = Y 2 ∪ Y3 are the
sets for the desired IB-separation (X1 ∪ Y1, X2 ∪ Y2) of B.

Analogously to part (a) of Lemma (3.5.15), we have the following conclusion
about the output of Algorithm INDUCED IB-SEPARATION (4.6.13).

150 Chapter 4. System IB, Linear Algebra, and Matroids

(4.6.14) Lemma. Any IB-separation produced by Algorithm INDUCED
IB-SEPARATION (4.6.13) has X1 ∪ Y1 minimal and X2 ∪ Y2 maximal, in
the sense that any other IB-separation (X ′

1 ∪ Y ′
1 , X ′

2 ∪ Y ′
2) of B induced by

the IB-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B observes X1 ⊆ X ′
1, X2 ⊇ X ′

2,
Y1 ⊆ Y ′

1 , and Y2 ⊇ Y ′
2 .

Proof. According to Steps 1 and 2 of Algorithm INDUCED IB-SEPA-
RATION (4.6.13), X1 (resp. Y 1) is enlarged by x ∈ X3 (resp. y ∈ Y3)
only if there is no induced IB-separation of B with x (resp. y) on the side
containing X2 (resp. Y 2). Thus, any x (resp. y) added to X1 (resp. Y 1)
must also be in X ′

1 (resp. Y ′
1). This implies the minimality of X1 ∪ Y1 and

the maximality of X2 ∪ Y2.

We discuss an application of Algorithm INDUCED IB-SEPARATION
(4.6.13). Recall from Section 3.5 that Algorithm k-SEPARATION (3.5.20)
finds k-separations with minimal k for matrices over F or BG as follows.
From a given input matrix B, all minimal submatrices B with certain
separations are selected. The conditions imposed on the submatrices B
are given by (3.5.19). Then, for each of these submatrices B, Algorithm
INDUCED F -SEPARATION (3.5.14) or Algorithm INDUCED BG-SEP-
ARATION (3.5.17) is used to check whether the separation of B induces a
separation of B. The process stops as soon as a separation of B has been
found or when all selected submatrices B have been tried.

We convert Algorithm k-SEPARATION (3.5.20) to a method for find-
ing IB-separations by invoking Algorithm INDUCED IB-SEPARATION
(4.6.13) instead of Algorithm INDUCED F -SEPARATION (3.5.14) or Al-
gorithm INDUCED BG-SEPARATION (3.5.17) and by making some no-
tational adjustments. We present details next.

The conditions (3.5.19) imposed on the submatrices B become those
of (4.6.15) below.

(4.6.15)

(i) (X1 ∪Y 1, X2 ∪Y 2) is an exact IB-k-separation of
B.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Y i.
(iii) For i = 1, 2, |Xi∪Y i| ≥ |Pi∪Qi|+max{k, mi}+1.
(iv) B is minimal with respect to (i)–(iii).

Here is the algorithm derived from Algorithm k-SEPARATION (3.5.20).

(4.6.16) Algorithm IB-k-SEPARATION. Finds an exact IB-k-separa-
tion of a matrix B over IB where the two sides contain specified sets and
have at least a certain size, or declares that such a separation does not
exist.

Input: Matrix B over IB, with row index set X and column index set Y .
Two disjoint subsets P1, P2 (resp. Q1, Q2) of X (resp. Y). Integers m1, m2,

4.6. Finding Separations 151

and n. For k = 1, the matrix B does not have a separation (X1∪Y1, X2∪Y2)
satisfying the following conditions.

(4.6.17)

(i) (X1 ∪ Y1, X2 ∪ Y2) is an exact IB-k-separation of
B with k ≤ n.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Yi.
(iii) For i = 1, 2, |Xi∪Yi| ≥ |Pi∪Qi|+max{k, mi}+1.

Output: Either: An exact IB-k-separation (X1 ∪ Y1, X2 ∪ Y2) of B satisfy-
ing the conditions of (4.6.17) and, subject to them, with k minimal. Or:
“B does not have an exact IB-k-separation (X1 ∪ Y1, X2 ∪ Y2) satisfying
(4.6.17).”

Complexity: Polynomial if m1, m2, and n are bounded by a constant.

Procedure:
1. Initialize k = 2.
2. Do for each submatrix B of (4.6.1) for which the sets X1, X2, Y 1, and

Y 2 satisfy (4.6.15):
Let B and B be the input matrices for Algorithm INDUCED IB-
SEPARATION (4.6.13). If the algorithm finds an induced IB-sepa-
ration (X1 ∪ Y1, X2 ∪ Y2), output that separation, and stop.

3. Increase k by 1. If k ≤ n, go to Step 2. Otherwise, declare that B and
M do not have a separation of the desired kind, and stop.

Proof of Validity. The arguments are almost identical to those validat-
ing Algorithm k-SEPARATION (3.5.20). We omit details except for the
discussion of one aspect. Suppose Algorithm INDUCED IB-SEPARATION
(4.6.13) finds an induced IB-separation for B in Step 2, using a submatrix
B with an exact IB-k-separation satisfying (4.6.15). The latter conditions,
Lemma (4.3.42), and the arguments validating Algorithm INDUCED IB-
SEPARATION (4.6.13) imply that the IB-separation for B so found satisfies
(4.6.17) except that it possibly is not exact. In the exceptional situation,
we have, for some l ≤ k − 1, an exact IB-l-separation for B that satisfies
a modified (4.6.17) where k has been replaced by l. But then an exact
IB-l-separation of B would have been found in an earlier iteration through
Step 2, a contradiction.

Extension of System IB

The definition of induced IB-separation and the related Algorithm IN-
DUCED IB-SEPARATION (4.6.13) and Algorithm IB-k-SEPARATION
(4.6.16) fully apply to the extension of IB where the set {0,±1} of ma-
trix elements is enlarged by

(4.6.18) U = {(α, β) | α, β ∈ {0, 1, 2}}

152 Chapter 4. System IB, Linear Algebra, and Matroids

and where IB-multiplication is extended so that for (α, β) ∈ U and γ ∈
{0,±1},

(4.6.19) (α, β)⊙ γ =
{

1 if α ≥ 1 and γ = 1, or β ≥ 1 and γ = −1
0 otherwise

Recall from Section 2.6 that Boolean minors of {0,±1} clause/variable
matrices B over IB are generalized clause/variable matrices B that one
may view to be over the above extension of IB. Any such minor is produced
by column scaling, shrinking, and column or row deletion, in that order.
Details about these operations are included in Sections 2.5 and 2.6. Suffice
it to say here that each column (resp. row) of B corresponds to a subset
of the columns (resp. rows) of B. Furthermore, the subsets of columns
(resp. rows) of B corresponding to any two distinct columns (resp. rows)
of B are disjoint. This implies that any submatrix of B—in particular, B
itself—uniquely corresponds to some submatrix of B.

Suppose that a Boolean minor B of a clause/variable matrix B has a
IB-separation (X1 ∪ Y 1, X2 ∪ Y 2) as displayed by (4.6.1). Let B̃ be the
submatrix of B corresponding to B, and, for i = 1, 2, let X̃i and Ỹi be
the index sets of B̃ corresponding to X i and Y i of B. Consistent with the
notation of (4.6.1), define D̃1 (resp. D̃2) to be the submatrix of B̃ indexed
by X̃2 and Ỹ1 (resp. X̃1 and Ỹ2). We say that the given IB-separation
(X1 ∪ Y 1, X2 ∪ Y 2) of B induces a IB-separation (X1 ∪ Y1, X2 ∪ Y2) of B
if the following two conditions are satisfied.

First, (X̃1 ∪ Ỹ1, X̃2 ∪ Ỹ2) must be a IB-separation of B̃ for which

(4.6.20) |range(Di)| = |range(D̃i)|, i = 1, 2

Second, the IB-separation (X̃1 ∪ Ỹ1, X̃2 ∪ Ỹ2) of B̃ must induce the IB-
separation (X1 ∪ Y1, X2 ∪ Y2) of B. Since the latter condition implies

(4.6.21) |range(D̃i)| = |range(Di)|, i = 1, 2

we thus have

(4.6.22) |range(Di)| = |range(D̃i| = |range(Di)|, i = 1, 2

In the next section, we decompose and compose the matrices over IB
in several ways.

4.7 Sums

In Section 3.6, a k-sum decomposition and composition is described for
matrices over GF(3) and the matroids represented by them. The k-sum

4.7. Sums 153

decomposition of a matrix B over GF(3) produces two submatrices B1 and
B2 according to (3.6.7) and (3.6.8). The inverse composition process is
given by (3.6.11)–(3.6.17). In this section, we adapt the main ideas of that
k-sum to the matrices over IB and thus obtain several sum decompositions
and compositions. We cover these sums in detail in subsequent chapters.
Here, we give an overview that should assist the reader to place the results
of those chapters in an overall context.

Each sum decomposition requires a particular separation of a given
matrix B over IB and, with one exception that we ignore here, results in
two matrices B1 and B2. The inverse sum composition of B1 and B2

creates B again. We say that B1 and B2 are the components of a sum
decomposition of B, and that B is obtained by a sum composition of B1

and B2. For an abbreviated terminology, we simply say that B is a sum of
B1 and B2, meaning both the sum decomposition and sum composition.

The separations involved in the sums are found by the separation al-
gorithms of Chapter 3 and of this chapter, as well as by special methods.
Details about the separations and the algorithms locating them are pro-
vided in later chapters.

We need some auxiliary definitions for a summarizing description of
the separations and sums. According to Lemma (2.6.21), solving the sat-
isfiability problem for a matrix A over IB is equivalent to finding a {0,±1}
vector s solving the equation A⊙ s = 1. We extend the latter problem by
considering for an arbitrary {0, 1} vector a the inequality A ⊙ s ≥ a. If
that inequality has a {0,±1} solution vector s, we declare the matrix A to
be a-satisfiable.

Let S be the CNF system producing A. We say that S is a-satisfiable
if an assignment of True/False values exists for the variables of S such
that at least the clauses i of S with ai = 1 evaluate to True. By these
definitions, 1-satisfiability of A or S is the same as satisfiability of A or S.

Analogously to Lemma (2.6.21), we have the following link between
a-satisfiability of A and S. We omit the elementary proof.

(4.7.1) Lemma. The following statements are equivalent for a CNF sys-
tem S with clause/variable matrix A, and a {0, 1} vector a. The matrix A
is to be viewed over IB whenever this is appropriate.

(i) S is a-satisfiable.
(ii) A is a-satisfiable.
(iii) One may assign True/False values to the Boolean variables of S such

that each clause i with ai = 1 has value True.
(iv) There is a {±1} vector s of scaling factors such that column scaling of

A with these factors produces a matrix where each row i with ai = 1
contains at least one 1.

(v) There exists a {±1} solution vector for A⊙ s ≥ a.
(vi) There exists a {0,±1} solution vector for A⊙ s ≥ a.

154 Chapter 4. System IB, Linear Algebra, and Matroids

The reader may wonder why we do not consider the equation A⊙s = a
instead of the inequality A⊙s ≥ a. It turns out that the inequality A⊙s ≥ a
is important for the sum decompositions, while the equation A ⊙ s = a is
not. We remark, though, that the equation A⊙ s = a comes up when one
wants to decide membership of a in any one of the sets range(A, J). Details
of that membership test are included in Section 4.10.

In subsequent chapters, it is shown that for each sum decomposition
of a matrix B over IB into B1 and B2 and for each {0, 1} vector b, the
matrix B is b-satisfiable if and only if, for i = 1, 2, there exists a {0, 1}
vector bi such that a certain column submatrix Bi of Bi is bi-satisfiable.
Assume that result. Furthermore, assume that we are given B and b, as
well as B1 and B2. We want to decide whether B is b-satisfiable. If we
knew b1 and b2, then we could reduce the b-satisfiability problem for B to
the b1-satisfiability problem for B1 and the b2-satisfiability problem for B2.
Unfortunately, b1 or b2 are not always easily determined. But it turns out
that we can always carry out the following alternate process.

First, we determine certain vectors b1 and solve for these vectors the
b1-satisfiability problem for B1.

Second, given the results of those computations, we construct certain
vectors b2 and solve for these vectors the b2-satisfiability problem for B2.
At that point, we can decide whether B is b-satisfiable.

Finally, if B is found to be b-satisfiable, we combine the solution of
one of the b2-satisfiability problems for B2 in a backtracking step with the
solution of one of the b1-satisfiability problems for B1 to a solution for the
b-satisfiability problem for B.

We classify each sum B according to worst-case upper bounds on the
number of b1- and b2-satisfiability problems for B1 and B2 that may have
to be solved by the SAT algorithm we have developed for that sum. If that
upper bound is 1 for both B1 and B2, the sum is said to be of type I. If the
upper bound is at least 2 for B1 and is 1 for B2, then the sum is of type II.
In the remaining case, where both upper bounds are at least 2, the sum is
of type III.

There are a total of five sums, called 1-sum, monotone sum, closed sum,
augmented sum, and linear sum. We sketch them shortly in the indicated
order. The respective separations are the 1-separation of Section 3.5 and
yet to be defined separations called monotone, closed, augmentable, and
linear. Below, we describe the separations and sums using a matrix B with
row index X and column index set Y . Each case involves a partition of X
(resp. Y) into X1, X2 (resp. Y1, Y2). We begin with the 1-sum.

1-Sum

If the matrix B has a 1-separation of the form

4.7. Sums 155

(4.7.2) X1
B =

Y1

A1

0X2

Y2

A2

0

Matrix B with 1-separation

then B is a 1-sum of B1 = A1 and B2 = A2, denoted by B = B1
+1 B2.

Let a given {0, 1} vector b be partitioned into b1 and b2 in agreement with
the partition of the rows of B. Evidently, B ⊙ s ≥ b has a solution if and
only if, for i = 1, 2, Bi ⊙ s ≥ bi. We conclude that the 1-sum is of type I.

Monotone Sum

Suppose that B has a partition of the form

(4.7.3) X1
B =

Y1

A1

DX2

Y2

A2

0

Matrix B with monotone separation

where each row of A1 has at most one +1 and where D ≤ 0. Then (X1 ∪
Y1, X2 ∪ Y2) is a monotone separation of B.

We decompose B by declaring B1 (resp. B2) to be equal to the sub-
matrix A1 (resp. [D | A2]) of the matrix of (4.7.3). Thus,

(4.7.4)
X1 A1

Y1 Y1 Y2

DX2 A2B2 =B1 =

Components B1 and B2 of monotone sum B

The matrix B is the monotone sum of B1 and B2, denoted by B =
B1

+m B2. Details of the monotone sum, including an explanation for
the probably puzzling conditions on A1 and D, are provided in Chapter 9.
There it is also shown that the monotone sum is of type I.

Closed Sum

Let B have a partition of the form

156 Chapter 4. System IB, Linear Algebra, and Matroids

(4.7.5) X1
B =

Y1

A1

DX2

Y2

A2

0

Matrix B with closed separation

where the submatrix D has a property called Boolean closedness. The
latter property is defined in Chapter 7. We declare (X1 ∪ Y1, X2 ∪ Y2) to
be a closed separation of B.

There are two ways to decompose B. In the first case, we take B1

(resp. B2) to be the column (resp. row) submatrix of B indexed by Y1

(resp. X2). Thus,

(4.7.6)
B1 =

X1

X2 D

Y1

A1

B2 = D

Y1 Y2

X2 A2

Components B1 and B2 of closed sum B, first case

In the second case, the roles of B1 and B2 of (4.7.6) are reversed. That
is, B1 (resp. B2) is the row (resp. column) submatrix of B indexed by X2

(resp. Y1). Thus,

(4.7.7) X1
D

X2

Y1 Y2

B2 =B1 = X2
D

Y1

A1

A2

Components B1 and B2 of closed sum B, second case

In both cases, B is the closed sum of B1 and B2, denoted by B = B1
+c B2.

Details about the closed sum are presented in Chapter 10. There it is
proved that the closed sum is of type II.

Augmented Sum

Let B be partitioned according to (4.7.8) below. Assume that the subma-
trices A1 and A2 are nonempty. We then declare (X1 ∪ Y1, X2 ∪ Y2) to be
an augmented separation of B.

4.7. Sums 157

(4.7.8) X1
B =

Y1

A1

DX2

Y2

A2

E

Matrix B with augmented separation

Define D1 to be the row submatrix of D that contains all nonzero rows
of D, say, indexed by X21 ⊆ X2. Analogously, define E1 to contain all
nonzero columns of E, say, indexed by Y21 ⊆ Y2. We deduce B1 from
B by replacing D by D1, E by E1, and A2 by a zero matrix of suitable
dimension.

To obtain B2, we replace in B the submatrices A1, D, and E by certain
new matrices F̃ , D̃, and Ẽ, respectively. The new D̃ (resp. Ẽ) has the same
number of rows (resp. columns) as D (resp. E), but the number of columns
(resp. rows) may be different. Accordingly, the submatrix F̃ may not be
of the same size as A1. Altogether, we have

(4.7.9) X1
~

X1

Y1

A1

D1X21

Y21

E1
B1 =

0 X2 A2
B2 =

D~
E~
Y2Y1

~

F~

Components B1 and B2 of augmented sum B

Then B is the augmented sum of B1 and B2, denoted by B = B1
+a B2.

The terminology is motivated by the fact that the submatrices F̃ , D̃, and
Ẽ of B2 need not be submatrices of B. Chapter 11 covers details of the
augmented sum, including a proof that it is of type II.

Linear Sum

Linear sums may involve any number of components. We summarize the
case with two components. Let B be partitioned as for the augmentable
separation. That is,

(4.7.10) X1
B =

Y1

A1

DX2

Y2

A2

E

Matrix B with linear separation

158 Chapter 4. System IB, Linear Algebra, and Matroids

Assume that both submatrices A1 and A2 are nonempty. We then call
(X1 ∪ Y1, X2 ∪ Y2) a linear separation of B. Note that the submatrices D
and E may have any form.

We deduce B1 (resp. B2) from B by replacing the submatrix A2 (resp.
A1) by a zero matrix. Thus,

(4.7.11) X1

Y1

A1

DX2

Y2

E

X2

Y2

A2
B1 = B2 =

0

X1

D

E

Y1

0

Components B1 and B2 of linear sum B

The matrix B is the linear sum of B1 and B2, denoted by B = B1
+ l B

2.
Details are covered in Chapter 12. There it is shown that the linear sum
with two components is of type III.

In the next section, we summarize how the above sums are used in
Chapter 13 to obtain solution algorithms for the problems SAT and MIN-
SAT.

4.8 A Glimpse Ahead

We project how the material developed so far plus the results of Chapters 5–
12 are employed in Chapter 13 to construct solution algorithms for SAT and
MINSAT. Since the two types of problems are handled by similar methods,
we focus here on the SAT case. For the purposes of this section, we define
the satisfiability problems of a matrix A over IB to be the a-satisfiability
problems for all column submatrices A of A arising from all possible {0, 1}
vectors a. We want an algorithm for solving the satisfiability problems of
A. Any such algorithm is a solution algorithm for A. We construct solution
algorithms with an analysis algorithm that generally proceeds as follows.

First, we explore whether some fast algorithm can directly decide the
satisfiability problems for A. Several such algorithms are presented in
Chapter 5. If one of those algorithms is applicable, we are done. Oth-
erwise, we check whether an extension of those algorithms, described in
Chapter 8, is capable of solving the satisfiability problems. If the answer is
affirmative, then once more we are done. Otherwise, we repeatedly carry
out the sum decompositions of Chapters 9–12, which are summarized in
Section 4.7 above, until A has been decomposed into sufficiently simple
component matrices such that each satisfiability problem of A can be re-
formulated in terms of certain satisfiability problems of the component

4.8. A Glimpse Ahead 159

matrices. The latter satisfiability problems are solved by the algorithms of
Chapter 5 or 8.

Let us look at the analysis algorithm in more detail. Inductively, we
assume that for given A over IB we have constructed, for some small n ≥ 1,
matrices B1, B2, . . . , Bn and have selected certain algorithms. Together,
the matrices and algorithms constitute a solution algorithm that can solve
any satisfiability problem of A. We sketch that algorithm. The input
consists of a column submatrix A of A and a {0, 1} vector a.

Define B1 to be a certain column submatrix of B1, and derive certain
vectors b1j from the given vector a. For i = 1, 2, . . . , n, carry out the
following steps. In iteration i, first solve for each vector bij on hand the
bij-satisfiability problem of Bi; second, if i < n, derive from these solutions
a column submatrix Bi+1 from Bi+1 and certain vectors bi+1,j for the next
iteration.

Stop if during any iteration i it is detected that A is not a-satisfiable.
Otherwise, upon solution of the bnj-satisfiability problems for Bn, back-
track through the problems in the order i = n, n− 1, . . . , 1, and assemble
a solution for the a-satisfiability problem of A.

We make three assumptions about the solution algorithm. First, we
suppose to have, for i = 1, 2, . . . , n, a worst-case bound αi on the num-
ber of bij vectors that might ever be produced by the solution algorithm.
Second, each bound αi is assumed not to exceed some given small con-
stant. Third, for i = 1, 2, . . . , n, a rational number βi is supposed to be
known that bounds the time for solving any one bij-satisfiability problem
for any column submatrix Bi of Bi. In contrast to the bounds αi, the βi

are allowed to be large.
The base case of the inductive assumption, where n = 1, involves

B1 = A and a single vector b11 = a. The solution algorithm is based on
one of the algorithms of Chapter 5 or 8. Clearly, the three assumptions
above are satisfied.

By these definitions and assumptions, the total run time of the so-
lution algorithm for answering any satisfiability problem of A is bounded
by

∑n

i=1 αi · βi. Suppose that time bound is unacceptably large. Since n
and the αi are small, at least one of the βi must be large. Let l be the
smallest index for which this is so. We then look for a sum decomposition
of Bl into Bl1 and Bl2 that allows us to replace Bl in the sequence B1,
B2, . . . , Bl, . . . , Bn by Bl1 and Bl2. Correspondingly, we strive for an
extension of the solution algorithm so that the inductive assumptions are
again satisfied. Chapter 13 contains the details of the search for such a de-
composition and the corresponding adjustment of the solution algorithm.
Here, we just mention that an alternate process is sometimes used where
we first compose Bl and Bl+1 and then carry out a decomposition of the
resulting matrix. The latter procedure may not make much sense at this
point, but it turns out to be useful.

160 Chapter 4. System IB, Linear Algebra, and Matroids

Suppose that the analysis algorithm eventually produces a solution
algorithm with a small time bound. Evidently, the latter algorithm consti-
tutes an efficient method for any satisfiability problem of A. It is shown in
Chapter 14 that this desirable situation prevails for large classes of matrices
A arising from real-world applications. On the other hand, if the analysis
algorithm does not produce a small time bound, we still have a potentially
useful solution algorithm for the satisfiability problems of A, except that
we do not have a tight bound on its performance.

In typical applications—for example, in expert systems—we are in-
terested in solving numerous satisfiability problems for a given matrix A.
Thus, it is appropriate that the solution algorithm be efficiently imple-
mented. Chapter 13 discusses this aspect in detail.

In the next section, we introduce the concept of ID-system, which
generalizes the system IB and its extension.

4.9 ID-System

The concepts and algorithms of this book can be generalized so that prob-
lems other than the logic problems SAT and MINSAT are handled. The
generalization builds on a relaxation of the axioms of the system IB that
replaces the sets {0,±1} and {0, 1} of IB by more general sets, among them
an index set X . At the same time, the operations ⊙, ⊕, and ⊖ of the system
IB are generalized to families of operations whose members are indexed by
the elements x of X and denoted by ⊙x, ⊕x, and ⊖x. We call any system
observing the new axioms a ID-system.

ID-systems may be employed in the following three-step solution pro-
cess for certain combinatorial problems. Given a problem instance, we first
define a particular ID-system by specifying the underlying sets and the op-
erations ⊙x, ⊕x, and ⊖x. Second, we formulate the problem instance as a
matrix inequality over that ID-system. Third, we solve the matrix inequal-
ity, and thus the problem instance, by adapting the solution approach of
the preceding section.

In this section, we define the axioms of ID-systems and discuss the
three-step solution process. We begin with the axioms.

Axioms

Let P , Q, R, and X be four nonempty sets. We suppose that the sets
Q and R contain an element called zero and denoted by 0, and that R is
totally ordered. We summarize these conditions below.

(4.9.1)
(i) P , Q, R, and X are nonempty.
(ii) 0 ∈ Q ∩R.
(iii) R is totally ordered.

4.9. ID-System 161

Analogously to the usual ordering of the reals, we call the elements of R
that are greater (resp. less) than 0 positive (resp. negative).

We need families of multiplication, addition, and subtraction opera-
tions, with members indexed by the elements of X and denoted by ⊙x, ⊕x,
and ⊖x, respectively. The domain and range for each ⊙x, ⊕x, and ⊖x are
defined as follows.

(4.9.2)

⊙x : P ×Q → R

⊕x : R×R → R

⊖x : R×R → R

In a moment, we will impose several axioms on these operations. For the
time being, it suffices that we demand the ⊕x operation to be associative
and commutative.

We extend the above operations to matrix multiplication, addition,
and subtraction analogously to the case of system IB. For this, we need a
convenient way of specifying that the elements of a given matrix or vector
are taken from one of the sets P , Q, or R. We accomplish this by the prefix
P , Q, or R. For example, we say P -matrix or P -vector when P is the set
in question.

Here are the definitions of the matrix operations. Let A be a P -matrix
of size m × n, with rows indexed by a given X ⊆ X . Define B to be a
Q-matrix of size n×p. If both A and B are nontrivial and nonempty, then
the matrix C = A⊙B is defined to be the m× p R-matrix whose elements
Cxj are given by Cxj = (Ax1⊙xB1j)⊕x(Ax2⊙xB2j)⊕x . . .⊕x (Axn⊙xBnj),
for x ∈ X and j = 1, 2, . . . , p. The definition relies on the fact that ⊕x is
associative and commutative. If at least one of A and B is trivial or empty,
then C = A⊙B is defined to be the m× p zero matrix.

Let A and B be m× n R-matrices, each having its rows indexed by a
given X ⊆ X . If A is nontrivial and nonempty, then so is B, and C = A⊕B
(resp. C = A ⊖ B) is defined to be the m × n R-matrix whose elements
Cxj are given by Cxj = Axj ⊕x Bxj (resp. Cxj = Axj ⊖x Bxj), for x ∈ X
and j = 1, 2, . . . , n. If A is trivial or empty, then B is of the same type,
and both C = A ⊕ B and C = A ⊖ B are defined to be equal to A or,
equivalently, B.

We need one additional set Z, which is a set of R-vectors satisfying
the following conditions.

(4.9.3)

(i) Each vector of Z is indexed by some subset X ⊆
X .

(ii) For all X ⊆ X , the set Z contains the 0 vector
indexed by X .

(iii) For any P -vector e indexed by any X ⊆ X , and
for any element α of Q, the vector e⊙ α is in Z.

(iv) For any two vectors a and b of Z indexed by any
X ⊆ X , both a⊕ b and a⊖ b are in Z.

162 Chapter 4. System IB, Linear Algebra, and Matroids

Let e be a P -vector, and let a, b, and c be vectors of Z. Suppose each
vector has its elements indexed by a given X ⊆ X . We impose the following
axioms on ⊙, ⊕, and ⊖. The axioms are nothing but the equations and
inequalities of (4.2.21)–(4.2.27), which, according to Section 4.2, hold for
the system IB.

(4.9.4) e⊙ 0 = 0

(4.9.5) a⊕ 0 = a

(4.9.6) a⊕ b = b⊕ a (⊕ is commutative)

(4.9.7) (a⊕ b)⊕ c = a⊕ (b⊕ c) (⊕ is associative)

(4.9.8) (a⊖ b)⊖ c = a⊖ (b⊕ c)

(4.9.9) (a⊖ b)⊕ (b⊖ c) ≥ a⊖ c

(4.9.10) a⊕ b ≥ c if and only if a ≥ c⊖ b

For any P -matrix A, say, with row index set X ⊆ X and column
index set Y , and for any subset J ⊆ Y , we define sets ID-range(A),
ID-subrange(A), and ID-range(A, J) analogously to the specification of the
sets range(A), subrange(A), and range(A, J) by (4.3.1)–(4.3.4). In the def-
initions below, s is assumed to be a Q-vector.

(4.9.11)

ID-range(A) = {b | b = A⊙ s}

ID-subrange(A) = {b | b = A⊙ s; sj 6= 0, ∀ j}

ID-range(A, J) = {b | b = A⊙ s; sj 6= 0, ∀ j /∈ J}

By the conditions of (4.9.3) for Z and by the above definition (4.9.11), each
one of the sets ID-range(A), ID-subrange(A), and ID-range(A, J) is a subset
of Z.

We need one additional axiom. It demands that, for any P -matrix A
with rows indexed by any X ⊆ X ,

(4.9.12) ID-range(A) is finite.

The definitions of (4.9.11) imply that |ID-range(A)| ≥ |ID-range(A, J)| ≥
|ID-subrange(A)|. Hence, the finiteness condition (4.9.12) for ID-range(A)
implies that ID-range(A, J) and ID-subrange(A) are finite as well.

We call any system observing the above definitions and axioms (4.9.1)–
(4.9.12) a ID-system.

The system IB is a particular ID-system as follows. We take P = Q =
{0,±1} and R = {0, 1}, omit the set X , since it is not needed, and declare
Z to be the set of all {0, 1} vectors. The element 1 ∈ R is defined to be
positive. Finally, we specify ⊙, ⊕, and ⊖ by (4.2.1)–(4.2.3). As argued

4.9. ID-System 163

in Section 4.2, the operations ⊙, ⊕, and ⊖ satisfy (4.2.21)–(4.2.27), which
are (4.9.4)–(4.9.10) here. The finiteness condition (4.9.12) on ID-range(A)
holds trivially, since R is finite. Thus, modulo a trivial adjustment of the
axioms (4.9.3) for Z that accounts for the absence of X , the system IB is
indeed a ID-system.

With similar ease one verifies that the extension of IB, listed several
times in this chapter, most recently under (4.6.18) and (4.6.19), is another
ID-system.

Solution Process

A number of combinatorial problems can be formulated and solved using
ID-systems with certain sets P , Q, R, X , and Z and with certain operations
⊙x, ⊕x, and ⊖x. The general approach is as follows.

For a given problem instance, one defines a ID-system and encodes the
instance by a P -matrix A, with rows indexed by some X ⊆ X , and by
an R-vector d. The ID-system and the arrays A and d are so selected that
solving the problem instance is equivalent to finding a Q-vector s satisfying
the inequality A⊙s ≥ d. Frequently, a cost is associated with each Q-vector
s. In that case, one wants a solution s for A ⊙ s ≥ d with least cost. The
SAT and MINSAT problems of logic are examples, since each instance can
be expressed in the above way using the ID-system IB.

Most of the definitions, ideas, and solution techniques described in this
book for SAT and MINSAT and the underlying system IB apply directly
or after some minor modification to combinatorial problems that may be
formulated via ID-systems. Thus, this book implicitly contains ideas and
constructs that are useful for the solution of those combinatorial problems.
In fact, the book could have been written using the more general frame-
work of ID-systems instead of that of system IB. We did not take that route
because it would have resulted in a rather abstract exposition that would
have masked the central ideas. Instead, we decided on a direct treatment of
SAT and MINSAT using the system IB, along with a summarizing discus-
sion about combinatorial problems involving ID-systems. That discussion
follows next.

We first adapt Lemma (4.2.14) to ID-systems. According to that
lemma, (4.2.9)–(4.2.13) imply (4.2.15)–(4.2.20). Since (4.2.9)–(4.2.13) are
identical to the axioms (4.9.6)–(4.9.10) for ID-systems, we have the follow-
ing result for such systems.

(4.9.13) Lemma. For a given ID-system, let a, b, c, and d be vectors of
the set Z indexed by some X ⊆ X . Then the following relationships hold.

(4.9.14) (a⊖ b)⊖ c = a⊖ (b⊕ c) = (a⊖ c)⊖ b

(4.9.15) a ≥ (a⊕ b)⊖ b

164 Chapter 4. System IB, Linear Algebra, and Matroids

(4.9.16) a ≤ (a⊖ b)⊕ b

(4.9.17) a ≥ b implies a⊖ c ≥ b⊖ c

(4.9.18) a ≥ b implies a⊕ c ≥ b⊕ c

(4.9.19) a ≥ b and c ≥ d imply a⊕c ≥ b⊕d and a⊖d ≥ b⊖c

Proof. For any ID-system, (4.9.6)–(4.9.10) hold, which are the equations
and inequalities (4.2.9)–(4.2.13) assumed in Lemma (4.2.14). That lemma
concludes (4.2.15)–(4.2.20), which are (4.9.14)–(4.9.19) here.

The definitions of (4.9.11) for the sets ID-range(A), ID-subrange(A),
and ID-range(A, J) of a ID-system correspond to the definitions of (4.3.1)–
(4.3.4) for the sets range(A), subrange(A), and range(A, J) of the system
IB. This fact plus the finiteness condition (4.9.12) on ID-range(A) allows
a direct translation of the results of Section 4.3 from the system IB to
arbitrary ID-systems. That way, we acquire notions of ID-independence,
ID-basis, ID-rank, and ID-span, as well as related algorithms, lemmas, and
theorems.

The link between ID-systems and matroids, which for the system IB
is established and utilized in Sections 4.4–4.6, is more complicated. Few
general results can be claimed here, and one must rely on particular features
of a given ID-system to prove useful relationships. This is particularly so
for results concerning separations and connectivity. The notion of sum
also requires specialization to particular ID-systems, except for the linear
sum. According to Chapter 12, the latter sum requires just the axioms
for ID-systems plus (4.9.14)–(4.9.19) of Lemma (4.9.13) and thus is always
applicable.

For the sake of discussion, suppose we have modified or extended the
notions of separation, connectivity, and sum so that they apply to a class of
ID-systems. Then the results of Section 4.8 can be readily translated to an
overall approach for solving the combinatorial problems formulated with
those ID-systems. In particular, the concept of algorithm construction,
which involves special algorithms, sum decomposition, and related bounds,
is fully applicable and leads to efficient algorithms for many problem in-
stances formulated with those ID-systems. In the next two subsections, we
present representative problems that can be so handled.

Covering Problem

As first example, we discuss the so-called covering problem. An instance
is expressed by integer arrays and an inequality using integer arithmetic.
The arrays are all nonnegative and consist of an m×n matrix A, an m× 1
vector d, and an n× 1 vector c. We must find an n× 1 {0, 1} vector s that

4.9. ID-System 165

satisfies A ·s ≥ d and that, subject to that condition, minimizes
∑n

j=1 cjsj.
To rule out trivial cases of infeasibility, we assume that A · 1 ≥ d.

We define the following ID-system for a given instance. The sets P
and R are the nonnegative integers, and Q = {0, 1}. The set X is defined
to be the index set of the rows of A. We assume that X also indexes the
elements of d.

The matrix operations ⊙, ⊕, and ⊖ are defined by scalar operations
⊙x, ⊕x, and ⊖x as follows. For α ∈ P and β ∈ Q, multiplication is specified
by

(4.9.20) α⊙x β = min{α · β, dx}

For α, β ∈ R, addition is given by

(4.9.21) α⊕x β = min{α + β, dx}

and subtraction is defined by

(4.9.22) α⊖x β = max{α− β, 0}

The set Z is the set of nonnegative integer vectors a indexed by any X ⊆ X
and satisfying, for all x ∈ X, ax ≤ dx. It is readily checked that Z obeys
the axioms of (4.9.3), that ⊙, ⊕, and ⊖ satisfy the axioms of (4.9.4)–
(4.9.10), and that the finiteness condition (4.9.12) holds. Thus, the sets P ,
Q, R, X , and Z plus the operations ⊙, ⊕, and ⊖ define a ID-system. We
encode a problem instance by the given P -matrix A, the R-vector d, and
the integer vector c. To solve the given instance, we must find a Q-vector
s that satisfies A ⊙ s ≥ d, and that, subject to that condition, minimizes
∑n

j=1 cjsj .
The covering problem where A is restricted to be a {0, 1} matrix and

where d = 1 is called the set covering problem. Each column of A may be
viewed as the incidence vector of a subset of X , and the covering problem
asks that a least cost collection of such subsets be determined whose union
is equal to and hence covers X . According to the above discussion, the set
covering problem may be expressed as the problem of finding a least cost
solution of A ⊙ s ≥ 1. Note that in this case we can reduce both P and
R to the set {0, 1}. Since P = Q = R = {0, 1} and d = 1, the definitions
of ⊙, ⊕, and ⊖ via (4.9.20)–(4.9.22) become a particular case of (4.2.1)–
(4.2.3). We conclude that the set covering problem can be handled by the
ID-system IB. In fact, it is nothing but a special case of MINSAT.

Packing Problem

Another example is the so-called packing problem. As for the covering
problem, an instance is given by nonnegative integer arrays A, d, and c of

166 Chapter 4. System IB, Linear Algebra, and Matroids

size m × n, m × 1, and n× 1, respectively. But this time, we must find a
{0, 1} vector s that satisfies A · s ≤ d and that, subject to that condition,
maximizes

∑n

j=1 cjsj. To rule out trivial inequalities in A · s ≤ d, we
assume that A · 1 > d.

We transform any instance of the packing problem to one of the cov-
ering problem by the variable transformation s = 1 − s′. Evidently, s′ is
a {0, 1} vector. The inequality A · s ≤ d becomes A · (1 − s′) ≤ d, which
may be rewritten as A · s′ ≥ (A · 1) − d. Using d′ = (A · 1) − d, we have
the inequality A · s′ ≥ d′ of the covering problem. The objective func-
tion

∑n
j=1 cjsj becomes

∑n
j=1 cj(1−s′j). Maximizing the latter function is

equivalent to minimizing
∑n

j=1 cjs
′
j. Thus, A, d′, and c define an instance

of the covering problem, as desired.
The special packing problem where A is a {0, 1} matrix and where

d = 1 is called the set packing problem. We interpret each column j of
A as the incidence vector of some X ⊆ X and assign cj as its value.
The problem demands that we find a disjoint union of these subsets with
maximum total value. Note that the transformation of an instance of the
set packing problem to one of the covering problem need not result in
an instance of the set covering problem. But there is a special situation,
treated next, where this is so.

We restrict A of the set packing problem by requiring exactly two 1s
in each row. Thus, A · 1 = 2 · 1. According to Section 3.2, the matrix A
may be viewed to be the transpose of the node/edge incidence matrix of
some undirected graph G. Declare a note subset J of G to be independent
if no two nodes of J are joined by an edge. The set packing problem for A
effectively demands that we find an independent node subset J of G that
maximizes

∑

j∈J cj . The latter problem is usually called the independent
node set problem. Since A ·1 = 2 ·1 and d = 1, the above transformation to
an instance of the covering problem results in d′ = (A ·1)−d = 2 ·1−1 = 1,
so we obtain an instance of the set covering problem. We have already
observed that the latter problem is a particular case of MINSAT.

According to the above definitions and transformations, the indepen-
dent node set problem essentially is also a covering problem, a set covering
problem, a packing problem, and a set packing problem. The independent
node set problem is known to be difficult in general, so the same conclusion
applies to each one of the other problems.

We stop the discussion of examples and uses of ID-systems and go on
to the final section, where we provide extensions and list references.

4.10 Extensions and References

It would be redundant to once more list the references of Chapter 3 con-
cerning the linear algebra and matroid material of Sections 4.3–4.7. But

4.10. Extensions and References 167

we do emphasize that the original approach of Whitney (1935) to matroids
plays the central role in the formulation of the basic definitions.

Indeed, Whitney begins with matrices over fields, expresses notions
such as independence, rank, etc. of linear algebra in terms of the column
index sets of such matrices, and finally defines matroids by postulating
certain axioms concerning independence, rank, etc. for the index sets.

We mimic Whitney’s approach in Sections 4.3–4.4. We begin with the
matrices over IB, adapt the notions of independence, rank, etc. from linear
algebra, and finally define IB-independence systems.

In Section 4.3, it is shown that several fundamental problems arising
from the independence concept for matrices over IB are difficult in general,
but become easy when range(A) is a small set. We show here that this
is also the case for the problem of deciding membership in range(A) or,
more generally, in range(A, J). By (4.3.3) and (4.3.4), the latter set may
be defined as

(4.10.1) range(A, J) = {b | b = A⊙ s; sj 6= 0, ∀ j /∈ J}

If range(A) is small, then Algorithm RANGE (4.3.11) efficiently de-
termines range(A, J), and deciding if a given vector b is in range(A, J) is
easy.

Now suppose that range(A, J) is large. We show that determining
membership of b in range(A, J) is equivalent to solving a certain SAT in-
stance. To answer the membership question, we must decide whether there
exists a vector {0,±1} s satisfying A⊙s = b and sj = ±1, for all j /∈ J . To
solve the latter problem, we first examine each row i of A for which bi = 0.
If that row of A has a 1 (resp. −1) in a column j /∈ J , then b ∈ range(A, J)
implies that there is a solution s for A⊙ s = b with sj = −1 (resp. sj = 1);
if j ∈ J , the conclusion becomes sj = 0 or −1 (resp. sj = 0 or 1). Thus, we
impose these conditions on s. When the conditions resulting from all rows
i with bi = 0 are simultaneously imposed on s, we get, for each column j,
a restriction of the values for sj to a set Sj that is empty or equal to {1},
{−1}, {0, 1}, {0,−1}, or {0,±1}.

If any Sj is empty, we know that b /∈ range(A, J). Assume otherwise.
We delete from the matrix equation A⊙ s = b all rows i for which bi = 0.
The resulting system, say, A ⊙ s = b = 1, has a solution s where each sj

is in Sj if and only if b ∈ range(A, J). Since the equation A ⊙ s = 1 is
equivalent to A ⊙ s ≥ 1, we may ignore, for each column j with Sj equal
to {0, 1}, {0,−1}, or {0,±1}, the possibility sj = 0. Thus, the problem
of determining whether b ∈ range(A, J) is a satisfiability problem for A
where some variables are fixed to the value 1 or −1. The latter problem is
an instance of SAT, which is difficult in general.

The material of Section 4.8 is discussed in detail in Chapter 13. Rele-
vant references are included at that time.

168 Chapter 4. System IB, Linear Algebra, and Matroids

In Chapter 2, it is indicated that the system IB is a generalization of
Boolean algebra. Here, we examine the relationship between ID-systems
and general algebraic systems. For details about the latter systems, the
reader may consult any text on algebra—for example, Cohn (1982), Lang
(1984), Jacobson (1985), or MacLane and Birkhoff (1988).

A monoid is an algebraic system given by a set S and an associative
operation : S × S → S. The set S has an identity α ∈ S; that is, for all
β ∈ S, α β = β α = β.

By (4.9.5)–(4.9.7), the addition of ID-systems is associative and com-
mutative and has the identity 0. Thus, the addition defines a commutative
monoid.

On the other hand, the multiplication of ID-systems is arbitrary except
for the simple condition of (4.9.4) concerning multiplication by 0, and the
subtraction must obey the equation and inequalities of (4.9.8)–(4.9.10).
One might reasonably say that, in terms of standard concepts of algebra,
the axioms for ID-systems are rather rudimentary. Nevertheless, there is
an interesting connection to the more structured abelian groups of algebra.
Such a group is given by a set S and an associative and commutative
operation : S× S → S. The set S has an identity α and, for each β ∈ S,
has an inverse element β−1; that is, β β−1 = β−1 β = α. We need a
few definitions to describe the relationship.

An integer program, abbreviated IP, is specified by integer arrays A,
c, and d of size m × n, n × 1, and m × 1, respectively. One must find an
n×1 solution vector s∗ for the following minimization problem. Below, s.t.
stands for “subject to.”

(4.10.2)

min ct · s
s. t. A · s = d

s ≥ 0
s integer

Without loss of generality, we may assume that the rows of A are linearly
independent.

The generally difficult example problems of Section 4.9 can be, and
indeed frequently are, formulated as IPs. Thus, IPs are generally difficult
as well.

A large body of theory exists for the solution of IPs. The so-called
group-theoretic approach proposed by Gomory (1965, 1967, 1969) represents
a particular way of attack. It is based on a relaxation of (4.10.2) where
the nonnegativity condition for the variables corresponding to a certain
basis B of A are omitted. We shall not attempt to even summarize the
known results for the group-theoretic approach. Details may be found in
standard texts on integer programming—for example, in Hu (1969), Salkin
(1975), Garfinkel and Nemhauser (1972), Schrijver (1986), or Nemhauser
and Wolsey (1988).

4.10. Extensions and References 169

Suffice it to say here that the relaxed version of (4.10.2) is formulated
as a minimization problem involving the following abelian group. The
operation of the group is the addition of rational vectors modulo 1; that
is, for any rational vectors a and b, the sum a b is the fractional part
of the rational sum of a and b. The set S of the group consists of the
vectors derived from the matrix A by the following process. Partition A as
A = [B|E], where B is the basis of A mentioned above. Then the elements
of S are the columns of the matrix B−1 ·E plus all vectors obtainable from
these columns by repeated use of the operation.

The minimization problem involving the abelian group is called the
group problem. In general, (4.10.2) is solved by solving a sequence of group
problems.

The definition of the abelian group in terms of the columns of the
matrix B−1 ·E is reminiscent of the range definition for ID-systems. Indeed,
the basic idea leading to the abelian group on one hand, and to the range
set of ID-systems on the other hand, is the same. That is, both systems are
used to represent the behavior of a given matrix. However, the goals are
quite different. In the group-theoretic approach, the abelian group leads
to the group problem, which is an approximation of the given IP instance.
In the ID-system case, one moves from the range set via an independence
system to matroids, which in turn are used to analyze the structure of
the given problem instance. That analysis and additional considerations
support the construction of a solution algorithm.

Chapter 5

Special Matrix Classes

5.1 Overview

So far, we have introduced basic concepts, results, and algorithms and are
now ready for the main developments. To set the stage, let us review our
goals and overall approach.

Assume the following situation. We want to construct an effective
expert system for a given problem domain. The axioms of the expert system
have been encoded as a CNF system S. Suppose that each query posed
to the expert system is equivalent to a theorem-proving problem where
some CNF clause is proved or disproved to be a theorem of S. According
to Section 2.2, the latter theorem-proving problem is nothing but a SAT
instance defined by some subsystem of S. Hence, if S is represented by a
matrix A over IB, then each theorem-proving problem is a SAT instance
involving some submatrix of A.

It seems appropriate that during the construction process of the expert
system we analyze A rather carefully, with the aim of identifying a fast
solution algorithm for the queries, that is, for the SAT instances of the
submatrices of A. The algorithm used for the investigation of A is the
analysis algorithm introduced in Section 1.5. Any algorithm produced by
the analysis algorithm for the solution of the SAT instances is a solution
algorithm for A.

From a theoretical viewpoint, we want the analysis algorithm to be
polynomial for the matrices over IB, and we want the solution algorithms
to be polynomial for large subclasses of the class of matrices over IB. For

170

5.1. Overview 171

practical use of the methods, we impose the additional requirement that
the coefficients and exponents of the bounding polynomials be reasonable
for the analysis algorithm and be small for the solution algorithms.

We subdivide the construction of a solution algorithm into two parts.
In the first part, we look for special matrix classes for which the SAT

instances are very easy and for which the recognition problem can be effi-
ciently answered. This chapter and Chapters 6 and 7 are concerned with
such matrix classes.

In the second part, we apply efficient decomposition methods that
repeatedly break down a given matrix until each component matrix is in
one of the classes identified in the first part. Chapters 8–12 contain these
methods and their use for solving SAT instances.

Taken together, the recognition algorithms for special matrix classes
plus the decomposition algorithms constitute the analysis algorithm, while
the solution algorithms for the special matrix classes plus certain methods
utilizing the various decompositions are the components of the solution
algorithms. Details of the analysis algorithm are given in Chapter 13.

The above discussion applies to MINSAT and not just SAT, once we
consider matrix/vector pairs instead of matrices as representing the ax-
ioms. The vectors are rational and nonnegative, and they represent the
costs encountered when variables are given the value True. The cost for
assigning False is assumed to be 0. The nonnegativity condition imposed
on the cost of True and the assumed zero cost for False do not impose a
restriction in view of the following reduction of the general logic cost min-
imization problem to MINSAT. We omit the elementary proof of validity
of the reduction.

If a variable has been assigned some cost value α for True and a nonzero
cost value β for False, then we declare the difference α − β to be the cost
for True and declare 0 to be the cost for False.

If the cost for assigning True to a variable is α < 0 and the cost for
assigning False is β = 0, then we replace that variable by its complement,
replace the cost for True by −α, and retain β = 0 as the cost for False.
The change essentially involves scaling of the corresponding column of the
clause/variable matrix and of the cost value α by −1.

According to the above reduction, nonnegativity of costs for the as-
signment of True and zero costs for the assignment of False can always
be achieved. We have imposed these conditions, since they simplify the
characterization of certain easily solved minimization problems as well as
the description of related solution algorithms.

We are ready for an overview of the remaining sections of this chapter.
In Section 5.2, we formalize the above discussion and define a class

of matrices over IB to be central for SAT, abbreviated SAT central, if the
class is maintained under submatrix taking and if there are polynomial
algorithms for recognition as well as for solution of the SAT instances. A

172 Chapter 5. Special Matrix Classes

similar definition, involving matrix/vector pairs, applies to MINSAT.

In Section 5.3, we establish some properties of centrality and derive
elementary reductions for SAT and MINSAT that produce so-called SAT
simple and MINSAT simple matrices.

In Sections 5.4–5.7, we establish several classes of matrices that are
central for SAT or MINSAT.

We begin in Section 5.4 with the SAT central class of 2SAT matrices,
which have at most two nonzero entries in each row. When 2SAT matri-
ces are paired with rational nonnegative cost vectors, then the resulting
MINSAT subclass becomes NP-hard. Accordingly, MINSAT centrality is
unlikely to hold for any class containing all such pairs.

In Section 5.5, we discuss the SAT central class of nearly negative
matrices, which have at most one +1 in each row. When we pair nearly
negative matrices with rational nonnegative cost vectors, we obtain a cen-
tral class for MINSAT.

In Section 5.6, we treat the SAT central class of hidden nearly nega-
tive matrices, which become nearly negative upon an appropriate column
scaling by {±1} factors. A pairing of the hidden nearly negative matrices
with rational nonnegative cost vectors that remain nonnegative under one
such scaling produces a central class for MINSAT.

In Section 5.7, we discuss the SAT central class of balanced matrices,
which do not contain certain circuit-type submatrices. Balanced matrices
may be paired with rational nonnegative cost vectors to yield a central
class for MINSAT.

In Section 5.8, we compare the above matrix classes and see that the
2SAT matrices and the nearly negative matrices essentially are subsumed
by the hidden nearly negative matrices.

The final section, 5.9, includes additional central classes, extensions,
and references.

5.2 Centrality

In this section, we make precise the intuitive notion of matrix classes for
which the SAT or MINSAT instances can be efficiently solved. We begin
with the SAT case.

SAT Centrality

Let C be a class of matrices over IB. Then C is central for SAT, abbreviated

5.2. Centrality 173

SAT central, if the following conditions are satisfied.

(5.2.1)

(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.
(iii) There is a polynomial algorithm for recognizing

the matrices of C.

The class C is semicentral for SAT, abbreviated SAT semicentral, if it
observes (5.2.1)(i) and (ii). Thus, semicentrality is like centrality, except
that we do not demand a polynomial algorithm for the recognition problem.

Some SAT semicentral classes C of later chapters are produced by cer-
tain compositions. In each case, it is assumed that the polynomial solution
algorithm for C receives the applicable composition information as part of
the input. If C is SAT central, then the polynomial recognition algorithm
derives the desired composition information as part of the membership test
for C.

As an example, we show that the class C of matrices over IB for which
the cardinality of the range is bounded by some constant k is SAT central.
Define A to be an arbitrary matrix in C.

According to Section 4.3, the range of any submatrix of A is obtained
from range(A) by projection and subset taking. Thus, the range of any
submatrix of A has cardinality of at most k, and (5.2.1)(i) holds.

By Lemma (4.3.12), A is satisfiable if and only if 1 ∈ range(A). Thus,
Algorithm RANGE (4.3.11), which determines the range of matrices, may
be used to determine satisfiability of A. The algorithm is polynomial, since
|range(A)| is bounded by k. If in Algorithm RANGE (4.3.11) we record
for each range vector b a solution vector for A⊙ s = b, then in the case of
satisfiability of A we also obtain a satisfying solution. We conclude that C
satisfies (5.2.1)(ii).

Upon the following modification, Algorithm RANGE (4.3.11) recog-
nizes the matrices of C in polynomial time and thus establishes (5.2.1)(iii).
During each iteration through Step 3 of Algorithm RANGE (4.3.11), it is
checked whether the set R of that step contains more than k vectors. If
this is so, the algorithm declares that the matrix in question is not in C
and stops. If no such termination occurs, then the given matrix has been
proved to be in C.

MINSAT Centrality

We turn to the centrality definitions for MINSAT. This time, we let C be
a set of matrix/vector pairs (A, c), where A is a matrix over IB and c is a
rational nonnegative vector. We assume that the column index set of A is
also the index set of the elements of c. We interpret each entry of c as the

174 Chapter 5. Special Matrix Classes

cost of assigning True to the variable associated with the corresponding
column of A. The cost for assigning False is assumed to be 0.

We define a submatrix pair of (A, c) to be any pair obtained from (A, c)
by deletion of some columns from A and of the corresponding elements
from c, and by deletion of some rows from A. We declare C to be central
for MINSAT, abbreviated MINSAT central, if the following conditions are
satisfied.

(5.2.2)

(i) If (A, c) ∈ C, then any submatrix pair of (A, c) is
also in C.

(ii) There is a polynomial algorithm for solving the
MINSAT instances given by the matrix/vector
pairs of C.

(iii) There is a polynomial algorithm for recognizing
the matrix/vector pairs of C.

The class C is semicentral for MINSAT, abbreviated MINSAT semicentral,
if it observes (5.2.2)(i) and (ii). Hence, semicentrality for MINSAT is like
centrality, except that we do not demand a polynomial membership test
for C.

Analogously to the SAT case, some MINSAT semicentral classes C of
later chapters are produced by certain compositions. In each case, it is
assumed that the polynomial solution algorithm for C receives the applica-
ble composition information as part of the input. If C is MINSAT central,
then the polynomial recognition algorithm derives the desired composition
information as part of the membership test for C.

We include an example of a MINSAT central class, using again the
matrices A over IB for which the cardinality of the range is bounded by
some constant k. Let C be the class of matrix/vector pairs (A, c) with such
matrices and with rational nonnegative vectors c.

We have already proved (5.2.2)(i) and (iii) for C in the context of the
SAT centrality example.

A polynomial solution algorithm establishing (5.2.2)(ii) may be de-
duced from Algorithm RANGE (4.3.11) as follows. Suppose we are at the
beginning of an arbitrary iteration through Step 3 of the algorithm. Define
B to be the submatrix of A containing the columns of A processed so far.
Thus, the set R at hand is equal to range(B). Define d to be the subvector
of c corresponding to B.

Inductively, assume that, for each b ∈ R, we have a solution vector
s = sb for the following problem.

(5.2.3)
min dt · s
s. t. B ⊙ s = b

Let zb = dt · sb. We say that sb produces b from B with minimal cost
zb. Let a be the column of A processed in the given iteration through

5.3. Properties of Centrality 175

Step 3. According to that step, each vector b′ ∈ range([B|a]) is of the
form b′ = b ⊕ (a ⊙ α), where b ∈ R and α ∈ {0,±1}. Using sb and
zb for the possible vectors b, plus the entry in c corresponding to a, we
obtain a solution vector that produces b′ from [B|a] with minimal cost.
By induction, we have at termination of the modified Algorithm RANGE
(4.3.11) solution vectors that produce the vectors b ∈ range(A) from A with
minimal cost. If A is satisfiable, the solution vector for b = 1 solves the
MINSAT problem for (A, c). Clearly, the entire procedure is polynomial,
so (5.2.3)(ii) holds and C is MINSAT central.

The solution algorithm described above for MINSAT is based on the
so-called principle of optimality of dynamic programming. Suppose a given
optimization problem has a certain decomposition into subproblems. Then
the principle of optimality roughly says that an optimal solution for the
problem can be built up from optimal solutions of the subproblems. For
details, the reader should consult the references given in Section 5.9.

5.3 Properties of Centrality

We establish basic properties of centrality and introduce some reductions
for SAT and MINSAT as well as an extension of central classes.

Basic Properties

The next two lemmas say that each type of centrality is preserved under
appropriate subclass taking and finite union and intersection of classes. We
omit the elementary proofs.

(5.3.1) Lemma. Let C be a class of matrices or matrix/vector pairs.
Define C to be a subclass of C that is maintained under submatrix taking.
Then (a) and (b) below hold.

(a) If C is SAT or MINSAT semicentral, then C also has that property.

(b) Suppose membership in C can be tested in polynomial time provided
that membership in C is known. If C is SAT or MINSAT central, then
C also has that property.

(5.3.2) Lemma. For given n ≥ 2, let C1, C2, . . . , Cn be classes of matrices
or matrix/vector pairs. Assume that the classes have a given centrality
property, that is, SAT or MINSAT centrality or semicentrality. Then the
union and the intersection of these classes also have that property.

176 Chapter 5. Special Matrix Classes

Reductions

Recall from Section 2.6 that an array over IB is monotone if all entries are
nonnegative or nonpositive, and that two columns over IB are parallel if
they are identical up to scaling. Define a matrix A over IB to be SAT simple
if A has no rows with less than two nonzeros, has no duplicate rows, and
has no parallel or monotone columns. The matrix A is MINSAT simple if
A has no rows with less than two nonzeros, has no duplicate rows, and has
no nonpositive columns. Note that A is SAT simple if it is IB-simple, as
defined in Section 2.6, and has no monotone columns.

The following algorithm deduces from a given matrix A over IB a SAT
or MINSAT simple submatrix A with attractive properties.

(5.3.3) Algorithm SIMPLE SUBMATRIX. Derives from a given ma-
trix A over IB a SAT or MINSAT simple submatrix A that essentially
contains all SAT or MINSAT simple submatrices of A.

Input: Matrix A over IB. Specification whether a SAT or MINSAT simple
submatrix A is desired.

Output: A SAT or MINSAT simple submatrix A of A, as demanded by
the input, and the sequence of row/column deletions of Step 2 below that
reduce A to A. The matrix A is maximum and unique in the following
sense. In the case of a SAT (resp. MINSAT) simple A, each SAT (resp.
MINSAT) simple submatrix of A is, up to column scaling and up to row
and column indices (resp. up to row indices), a submatrix of A.

Complexity: Polynomial.

Procedure:
1. Initialize A = A.
2. SAT case: Iteratively delete from A any row with at most one nonzero

entry, any monotone column, and, in the case of two duplicate rows or
of two parallel columns, one of the two rows or columns.
MINSAT case: Iteratively delete from A any row with at most one
nonzero entry, any nonpositive column, and, in the case of two dupli-
cate rows, one of the two rows.

3. Output the final matrix A and the sequence of row/column deletions
that were carried out in Step 2, and stop.

Proof of Validity. We confine ourselves to the SAT case, since the argu-
ments for the MINSAT case are similar.

By Step 2, the output matrix A is SAT simple. We show by induction
on the length of A that every SAT simple submatrix B of A is a submatrix of
A, up to column scaling and up to row and column indices. If A itself is SAT
simple—in particular, if A has length 0 and hence is the empty matrix—
then we have A = A, and the conclusion follows trivially. Otherwise,
examine the first reduction of A in Step 2. Several cases must be considered.

5.3. Properties of Centrality 177

Assume that the reduction involves a row with at most one nonzero,
or a monotone column. Clearly, A as well as B does not contain that row
or column. We delete that row or column from A and apply induction.

Assume that the reduction removes a column z from A that is parallel
to a column y. If B contains columns indexed by y and z, then, regardless
of the form of B, those two columns are parallel or are zero vectors. Either
case contradicts the fact that B is SAT simple. If B contains a column
indexed by z, and hence no column y, then we relabel that column z as
y and scale it if necessary so that it becomes a subvector of column y of
A. Thus, we may assume that B does not have z as column index, and we
may delete column z from A and apply induction.

The final case, where the reduction removes one of two duplicate rows,
is argued analogously to that for two parallel columns.

Since the SAT (resp. MINSAT) simple matrix A produced by Algorithm
SIMPLE SUBMATRIX (5.3.3) from a given matrix A contains, up to col-
umn scaling and indices, each SAT (resp. MINSAT) simple submatrix of
A, we refer to the matrix A, in a slight abuse of terms, as the maximum
SAT (resp. MINSAT) simple submatrix of A.

One may reduce any SAT or MINSAT instance involving a submatrix
of A to an instance involving a submatrix of the maximum SAT or MINSAT
simple submatrix A of A. Details are given next.

Reduction for SAT

The reduction for the SAT case is accomplished by the following algorithm.
The complexity claim of the algorithm refers to the function count(A),
which according to Section 2.6 is the number of nonzero entries in a matrix
A.

(5.3.4) Algorithm REDUCE SAT INSTANCE. Reduces the SAT
instance of a submatrix of a given matrix A over IB to one involving a
submatrix of the maximum SAT simple matrix A of A.

Input: Matrix A over IB, of size m × n. The maximum SAT simple sub-
matrix A of A, plus the sequence of row/column deletions that transform
A to A. A submatrix A′ of A for which the SAT problem is to be solved.

Output: Either: A′ is not satisfiable. Or: A submatrix A′′ of A such that
A′ is satisfiable if and only if A′′ is satisfiable. A method for deriving a
satisfying solution for A′ from one for A′′ is given following the algorithm.

Complexity: O(m + n + count(A)).

Procedure:
1. Initialize A′′ = A′.

178 Chapter 5. Special Matrix Classes

2. Process the reductions that transform A to A one by one. If the
reduction specifies

– deletion of a zero row x: If row x occurs in A′′, then declare A′

to be unsatisfiable, and stop.
– deletion of a unit row vector x: If row x occurs in A′′ and is zero,

then declare A′ to be unsatisfiable, and stop. If row x occurs in
A′′ and is a unit vector with a +1 (resp. −1) entry in a column y,
then assign the value True (resp. False) to column y, and reduce
A′′ by deleting all rows now satisfied and column y.

– deletion of a monotone column y: If column y occurs in A′′ and is
zero, arbitrarily assign True or False to column y, and update A′′

by deleting column y. If column y occurs in A′′ and is nonnega-
tive (resp. nonpositive) and nonzero, then assign the value True
(resp. False) to column y, and update A′′ by deleting all rows now
satisfied and column y.

– deletion of a column z parallel to a column y: If both columns y
and z occur in A′′ and are zero, arbitrarily assign True or False
to columns y and z of A′′, then update A′′ by deleting columns y
and z. If both columns y and z occur in A′′ and are nonzero, then
assign True/False values to columns y and z such that all rows of
A′′ with a nonzero entry in columns y and z become satisfied—
for example, if column y is a duplicate of column z, then assign
True to column y and False to column z—and finally reduce A′′

by deleting the now satisfied rows as well as columns y and z. If
column z occurs in A′′ but not column y, then change the label of
column z in A′′ to y; if in addition A has a column y, then scale
the column now labeled y in A′′ such that the resulting column
becomes a subvector of column y of A.

– deletion of a row z that is a duplicate of a row x: If both rows x
and z occur in A′′, then update A′′ by deleting row z. If row z
occurs in A′′ but not row x, then relabel row z of A′′ as row x.

Proof of Validity. The arguments validating Algorithm SIMPLE SUB-
MATRIX (5.3.3) may be used to show that the final A′′ is a submatrix of
A. Hence, we omit a detailed proof of that part.

During each iteration in Step 2, the specified True/False values, if any,
plus the reduction of A′′ correspond to an obvious problem reduction of
the SAT instance A′. Hence, A′ is satisfiable if and only if this is so for
A′′. The procedure clearly has the claimed complexity.

We sketch a method that converts a satisfying solution for A′′ to one for
A′. For this, we keep track of the following relationships during execution of
Algorithm REDUCE SAT INSTANCE (5.3.4). Let a be a column vector
that occurs in the final A′′ or that is deleted during some iteration of

5.3. Properties of Centrality 179

the algorithm. We need to record to which column of A′ the vector a
corresponds, and how often the algorithm scales that column with factor
−1. Assume this information as well as a satisfying solution for the final
A′′ is at hand. If the algorithm has scaled the column an even (resp.
odd) number of times with factor −1, then we assign to the column of A′

corresponding to vector a the True/False value that agrees with (resp. is
the opposite of) the value given to vector a in Algorithm REDUCE SAT
INSTANCE (5.3.4) or in the satisfying solution for A′′, whichever case
applies.

Reduction for MINSAT

The MINSAT case is handled by a very similar algorithm. We omit the
proof of validity, since it is almost identical to that for the SAT case.

(5.3.5) Algorithm REDUCE MINSAT INSTANCE. Reduces the
MINSAT instance of a submatrix pair of a given matrix/vector pair (A, c)
to a pair involving a submatrix of the maximum MINSAT simple matrix
A of A.

Input: Pair (A, c), where A is an m × n matrix over IB and where c is a
rational nonnegative cost vector with elements indexed by Y . The maxi-
mum MINSAT simple submatrix A of A, plus the sequence of row/column
deletions that transform A to A. A submatrix pair (A′, c′) of (A, c) for
which the MINSAT problem is to be solved.

Output: Either: A′ is not satisfiable. Or: A submatrix A′′ of A and a
vector c′′ such that A′ is satisfiable if and only if A′′ is satisfiable, and
such that a MINSAT solution for (A′, c′) may be readily derived from any
MINSAT solution of (A′′, c′′). The method for deriving such a solution is
a simplified version of the one already given for the SAT case.

Complexity: O(m + n + count(A)).

Procedure:
1. Initialize A′′ = A′ and c′′ = c′.
2. Process the reductions that transform A to A one by one. If the

reduction specifies
– deletion of a zero row x: If row x occurs in A′′, then declare A′

to be unsatisfiable, and stop.
– deletion of a nonpositive column y: If column y occurs in A′′,

then assign False to column y, reduce A′′ by deleting all rows now
satisfied and column y, and delete element y from c′′.

– deletion of a unit row vector x: If row x occurs in A′′ and is zero,
then declare A′ to be unsatisfiable, and stop. If row x occurs in
A′′ and is a unit vector with a +1 (resp. −1) entry in a column y,
then assign the value True (resp. False) to column y, reduce A′′

180 Chapter 5. Special Matrix Classes

by deleting column y and all rows now satisfied, and reduce c′′ by
deleting element y.

– deletion of a row z that is a duplicate of a row x: If both rows x
and z occur in A′′, then update A′′ by deleting row z. If row z
occurs in A′′ but not row x, then relabel row z of A′′ as row x.
Vector c′′ is not changed.

Extension of Central Classes

We use Algorithms SIMPLE SUBMATRIX (5.3.3), REDUCE SAT IN-
STANCE (5.3.4), and REDUCE MINSAT INSTANCE (5.3.5) in the proof
of the following extension result for central or semicentral classes.

(5.3.6) Theorem. Let C be a class of matrices that is maintained under
submatrix taking, and let C′ be a subclass of C. If C′ is SAT central (resp.
semicentral) and if C consists precisely of the matrices whose maximum
SAT simple matrix is in C′, then C is SAT central (resp. semicentral) as
well. The MINSAT version of the above statements also holds provided
that C and C′ are classes of matrix/vector pairs.

Proof. We show validity for the case of SAT centrality of C′. The case of
SAT semicentrality of C′ and the MINSAT version are handled similarly.

By assumption, C is maintained under submatrix taking, so (5.2.1)(i)
holds for C.

To solve the SAT problem for a given matrix A in C, we first identify
with Algorithm SIMPLE SUBMATRIX (5.3.3) the maximum SAT simple
submatrix A of A. By assumption, A and its submatrices are in C′. Thus,
we may use Algorithm REDUCE SAT INSTANCE (5.3.4) plus the assumed
polynomial solution algorithm for C′ to solve the SAT problem for A. This
proves (5.2.1)(ii) for C.

Finally, let A be a matrix for which membership in C is to be deter-
mined. We compute with Algorithm SIMPLE SUBMATRIX (5.3.3) the
maximum SAT simple submatrix A of A. Using the assumed polynomial
membership test for C′, we decide whether A is in C′. By assumption, this
is so if and only if A is in C, so (5.2.1)(iii) holds.

(5.3.7) Theorem. Given a class C′ with a certain centrality property,
there exists a unique maximum class C that, together with C′, satisfies the
assumptions of Theorem (5.3.6).

Proof. There exists a maximal class C that, together with C′, satisfies the
assumptions of Theorem (5.3.6), since C = C′ is a candidate. If there are
two maximal classes that satisfy these assumptions, then the union of those
two classes does so as well. Hence, there is a unique maximum C.

5.4. 2SAT Matrices 181

Given C′, one typically can describe an appealing construction of the
maximum C. As an example, we treat the case of a SAT central class C′

of matrices that is maintained under scaling of columns by {±1} factors
and changes of row/column indices. We construct the matrices A of the
maximum C for such C′ as follows. For each simple matrix A′ of C′, we
derive, in all possible ways, matrices A, each of which is obtained from A′

by addition of any number of vectors. Each such vector is a row with at
most one nonzero, a monotone column, a parallel column, or a duplicate
row. We leave it to the reader to verify that C is the desired maximum
class.

The construction of the maximum C from given C′ usually is easy.
Hence, in subsequent sections or chapters we shall not discuss that exten-
sion when covering central or semicentral classes. An exception is Chap-
ter 14, where we explicitly treat such extensions.

In the remainder of this chapter, we introduce several SAT or MIN-
SAT central classes of matrices or matrix/vector pairs as well as related
recognition and solution algorithms. We begin in the next section with a
class whose matrices have very simple structure. Nevertheless, the matrices
may be used to formulate a number of important combinatorial problems.

5.4 2SAT Matrices

Define 2SAT to be the subclass of SAT where each matrix instance has
at most two nonzeros in each row. In this section, we show that the class
2SAT is SAT central. We also prove that the MINSAT problem involving
2SAT matrices is generally difficult.

Evidently, the class 2SAT is maintained under submatrix taking, and
testing for membership in 2SAT is trivial. Thus, the conditions (5.2.1)(i)
and (iii) for SAT centrality are satisfied. The remaining condition (5.2.1)(ii)
is established by the following algorithm.

Solution Algorithm for 2SAT

Let A be a given 2SAT matrix for which the SAT problem is to be solved.
If A has no rows, then A is satisfiable, and any True/False values for the
columns constitute a satisfying solution. If A has a zero row, then A is
unsatisfiable. If A has a row with just one nonzero, then we carry out the
obvious reduction of A.

In the remaining case, each row of A has two nonzero entries. We
arbitrarily select a column of A, say, y, and fix its value to False. That
choice may satisfy any number of rows. We delete those rows and column
y. In turn, that reduction may produce rows with just one nonzero, which

182 Chapter 5. Special Matrix Classes

permit further reductions. We carry out all such reductions and finally ter-
minate with one of the following three situations. (1) The reduced matrix
has a zero row and thus is unsatisfiable. We then know that column y must
receive the value True in any satisfying solution. We repeat the above pro-
cess with column y fixed to True instead of False. Then either we detect
unsatisfiability again, in which case the original matrix is unsatisfiable, or
we terminate in one of the cases described next. (2) The reduced matrix
has no rows. We arbitrarily assign True/False to the columns. These values
plus those assigned earlier constitute a satisfying solution for the original
matrix. (3) In the remaining case, the reduced matrix has at least one row,
and each row has two nonzero entries. We claim that the reduced matrix
is satisfiable if and only if the original matrix is satisfiable. The “only if”
part follows from the derivation of the reduced matrix. The “if” part is
trivially true, since addition of zero columns to the reduced matrix results
in a row submatrix of the original matrix. We conclude that we may apply
the above process to the reduced matrix.

A formal description of the algorithm follows.

(5.4.1) Algorithm SOLVE 2SAT. Solves the SAT problem for a given
2SAT matrix A over IB.

Input: Matrix A over IB, of size m × n, with at most two nonzero entries
in each row.

Output: Either: A satisfying solution for A. Or: “A is unsatisfiable.”

Complexity: O(m + n) when properly implemented.

Procedure:
1. If A has a zero row: Declare A to be unsatisfiable, and stop.

If A has no rows: Assign arbitrary True/False values to the columns
of A. These values plus the earlier assigned True/False values, if any,
constitute a satisfying solution for the input matrix. Stop with that
solution.
If A has a row with just one nonzero, say, in column z: If that nonzero
is +1 (resp. −1), assign True (resp. False) to column z, delete from A
all rows now satisfied and column z, and repeat Step 1.

2. (A has two nonzeros in each row; try assignment of False to a column
y.) Retain A as a matrix A′. Arbitrarily select a column y of A. Assign
False to column y of A, and delete from A all rows now satisfied and
column y.

3. Apply the process of Step 1 to A, with two exceptions: If A becomes
a matrix with a zero row, go to Step 4; if A becomes a matrix with
two nonzeros in each row, go to Step 2.

4. (Restore A, and try alternate assignment of True to column y.) Rede-
fine A to be A′. Assign True to column y of A, and delete from A all
rows now satisfied and column y. Go to Step 1.

5.4. 2SAT Matrices 183

Proof of Validity. Given the previous discussion, we only need to estab-
lish the claimed complexity of O(m+n). When we assign the value False to
a column y in Step 2, we also assign, in a parallel execution, the value True
as specified in Step 4. We evaluate the consequences of the two choices
in parallel until in both cases we conclude unsatisfiability of A or until
one case would proceed to Step 2. In the first instance, the input matrix
has been proved to be unsatisfiable. In the second situation, we stop the
parallel evaluation and go with the applicable matrix to Step 2.

We record the SAT centrality of the class of 2SAT matrices for future
reference.

(5.4.2) Theorem. The class of 2SAT matrices is SAT central.

Applications of 2SAT

A number of interesting problems may be reduced to 2SAT. We present
three cases below and discuss others in subsequent sections.

The first such problem, which we call SELECT SET, is as follows.
Given are n ≥ 1 nonempty and disjoint sets R1, R2, . . . , Rn, with two
elements each, and two binary relations α and β on R = ∪n

i=1Ri. One
must decide whether there is a subset S ⊆ R such that, for all i, Ri ∩ S is
nonempty, and such that, for each r ∈ R and s ∈ S, r α s implies r ∈ S
and r β s implies r /∈ S.

We reduce a given instance of SELECT SET to one of 2SAT as follows.
We consider each element r ∈ R to be a Boolean variable. For each i, the
set Ri, say, Ri = {ri1, ri2}, produces the clause ri1∨ ri2. Each case of r α s
(resp. r β s) produces a clause s ⇒ r = ¬s ∨ r (resp. s ⇒ ¬r = ¬s ∨ ¬r).
We link any satisfying solution for the 2SAT instance with selection of a
set S for the SELECT SET instance by considering the assignment of True
to variable r ∈ R to be equivalent to placing r into S. The reader should
have no difficulty confirming that the 2SAT instance correctly represents
the SELECT SET instance.

The second example concerns n ≥ 1 unordered pairs of sets, say,
(R11, R12), (R21, R22), . . . , (Rn1, Rn2). From each pair, one must select
at least one set such that altogether the selected sets are pairwise disjoint.
We call this problem DISJOINT SETS.

We reduce an instance of DISJOINT SETS to one of 2SAT. Each Rij

is considered to be a Boolean variable. For each i, we require Ri1 ∨ Ri2.
Furthermore, for any two sets Rij and Rkl with nonempty intersection, we
enforce ¬Rij ∨ ¬Rkl. It is easily established that the assignment of True
to Rij in the 2SAT instance is equivalent to the selection of the set Rij in
the DISJOINT SETS instance.

For the third example, we define a subset of the nodes of an undirected
graph G to be independent if no edge of G connects any two nodes of the

184 Chapter 5. Special Matrix Classes

subset. The problem of deciding whether G has, for given k ≥ 1, at least
k independent nodes is called INDEPENDENT SET and is known to be
NP-complete in general. We treat a polynomially solvable case. Recall
from Section 2.5 that an edge incident at a node is said to cover that node,
and that a matching of G is a subset of the edge set such that any node of
G is covered by at most one edge of the subset.

Let F be a matching of G with maximum cardinality, and define l to
be the number of nodes of G not covered by F . Since at most one of the
endpoints of any matching edge can be in any independent set, G has at
most k = |F |+ l independent nodes. Thus, it makes sense to ask whether
G has k = |F | + l independent nodes. We reduce this special instance of
INDEPENDENT SET to an instance of 2SAT.

First, we note that the l nodes not covered by any edge of F are
independent and must be part of the solution set if it exists. Indeed, if
an edge connects two such nodes, then F is not maximal, a contradiction,
and if one of the l nodes is not selected, then due to F one cannot possibly
obtain a set of |F |+ l independent nodes.

Second, for each edge of F , at least one of the two endpoints must be
selected if a total of |F |+ l independent nodes is to be found.

These observations support the following 2SAT formulation. For each
node r of G, we define a Boolean variable r. The value True for that
variable implies that node r is selected as part of a set of independent
nodes.

For each of the l nodes r not covered by an edge of F , we demand
r = True. For each edge of G, say, connecting nodes r and s, we introduce
the clause ¬r ∨ ¬s. If that edge is in F , we also add the clause r ∨ s.

It is easy to check that the resulting 2SAT instance is satisfiable if and
only if G has at least |F |+ l independent nodes.

Resolution and 2SAT

It generally is interesting to check whether the resolution procedure intro-
duced in Section 1.4 maintains a given structural property of SAT instances.
For the case at hand, we show that the resolution procedure maintains the
property of being a 2SAT matrix. This fact is useful for the comparison of
matrix classes in Section 5.8.

We first review the resolution procedure. When applied to a CNF
system, the procedure eliminates one variable in each iteration, each time
obtaining an equivalent CNF system. The following algorithm carries out
one such iteration.

(5.4.3) Algorithm RESOLUTION FOR CNF SYSTEM. Converts
a given CNF system S to an equivalent CNF system S′ with one less
variable.

5.4. 2SAT Matrices 185

Input: CNF system S with a set Y of variables. A variable y ∈ Y .

Output: A CNF system S′ that has Y ′ = Y − {y} as set of variables and
that is equivalent to S in the following sense. Each satisfying solution for
S becomes upon deletion of the True/False value for variable y a satisfying
solution for S′. Conversely, for each satisfying solution for S′, there exists a
True/False value for variable y such that a satisfying solution for S results.

Complexity: Polynomial.

Procedure:
1. Delete from S any clause containing both y and ¬y. Initialize S′ as the

CNF system with variable set Y ′ = Y − {y} and without any clauses.
2. Add each clause of S that does not contain y or ¬y, to S′.
3. For each clause Ci of S containing y and for each clause Cj of S

containing ¬y, define Di = Ci − {y} and Dj = Cj − {¬y}, and add
the clause Di ∪Dj to S′.

Proof of Validity. Let a satisfying solution for S be given. By definition,
that solution satisfies the clauses added to S′ in Step 2. It also satisfies
the clauses Ci and Cj of S referenced in Step 3 and thus, regardless of
the True/False value assigned to y, at least one of Di = Ci − {y} and
Dj = Cj − {¬y}. Accordingly, the solution for S also satisfies the clause
Di ∪Dj added to S′ in Step 3.

Conversely, let a solution for S′ be given. Since that solution satisfies,
in the notation of Step 3, all clauses Di∪Dj , it also satisfies all Di or all Dj .
If both cases apply, we arbitrarily assign True or False to y. Otherwise,
if all Di (resp. Dj) are satisfied, we assign False (resp. True) to y. No
matter which case is at hand, we then have a satisfying solution for each
Ci = Di ∪{y}, for each Cj = Dj ∪{¬y}, and for each clause of S that does
not contain y or ¬y.

In Step 3 of Algorithm RESOLUTION FOR CNF SYSTEM (5.4.3), we
may omit from S′ any redundant clause Di ∪Dj that, for some variable z,
contains both z and ¬z. When this is done, the algorithm can be rephrased
for matrices of SAT instances as follows.

(5.4.4) Algorithm RESOLUTION FOR MATRIX. Converts a ma-
trix A over IB to an equivalent matrix A′ with one less column.

Input: Matrix A over IB with a column index set Y . A column index y ∈ Y .

Output: A matrix A′ that has Y ′ = Y − {y} as the set of variables, and
that is equivalent to A in the following sense. Each satisfying solution for
A becomes upon deletion of the True/False value for column y a satisfying
solution for A′. Conversely, for each satisfying solution for A′, there exists a
True/False value for column y such that a satisfying solution for A results.

Complexity: Polynomial.

186 Chapter 5. Special Matrix Classes

Procedure:
1. Initialize A′ as the trivial matrix with column index set Y ′ = Y −{y}

and without any rows.
2. For each row of A with a zero entry in column y: Remove that zero

entry from the row, and adjoin the reduced row to A′.
3. For any two rows i and j for which column y is the unique column

having nonzeros with opposite sign in rows i and j: Add a row to A′

where, for each z ∈ Y ′, the entry in column z is +1 (resp. −1, 0) if
the rows i and j of A contain at least one +1 (resp. at least one −1,
two 0s) in column z.

We have the following result for the processing of 2SAT matrices by Algo-
rithm RESOLUTION FOR MATRIX (5.4.4).

(5.4.5) Theorem. Algorithm RESOLUTION FOR MATRIX (5.4.4) re-
duces each 2SAT instance to another 2SAT instance.

Proof. By Steps 2 and 3 of Algorithm RESOLUTION FOR MATRIX
(5.4.4), each row of the output matrix A′ derived from a given 2SAT matrix
A is up to one zero entry a row of A, or is obtained from two rows of A
as follows. A +1 is deleted from one of the rows, a −1 is deleted from
the other row, and the remaining nonzeros of the two rows are combined
into one or two nonzeros of the row for A′. Thus, A′ is a 2SAT matrix as
claimed.

MIN2SAT Problem

Define MIN2SAT to be the subclass of MINSAT where the matrix A of
each matrix/vector pair has at most two nonzero entries in each row. In
contrast to the well-solved 2SAT subclass of SAT, the subclass MIN2SAT
of MINSAT is NP-hard. The easy proof relies on the following NP-hard
problem, which is known as VERTEX COVER. Given is an undirected
graph G. Let a vertex cover of G be a subset of the vertex set of G such
that each edge of G is covered by at least one node of the subset. For given
k ≥ 1, one must decide whether G has a vertex cover of cardinality at most
k.

We reduce an instance of VERTEX COVER to one of MIN2SAT as
follows. Let A be the transpose of the node/edge incidence matrix of the
given graph G. Thus, A has exactly two 1s in each row. View A to be over
IB, and declare it to be the matrix of a MIN2SAT instance where the cost
vector contains only 1s. Evidently, that instance is trivially satisfiable. A
least cost satisfying solution where at most k variables receive the value
True exists if and only if G has a vertex cover of cardinality at most k.

In Section 5.7, we establish a subclass of MIN2SAT that is MINSAT
central. For details, see Theorem (5.7.29).

We turn to the next matrix class.

5.5. Nearly Negative Matrices 187

5.5 Nearly Negative Matrices

Define a matrix A over IB to be nearly negative if each row of A contains
at most one +1. In this section, we prove that the class of nearly negative
matrices is SAT central and that the corresponding class of matrix/vector
pairs is MINSAT central. Clearly, the two classes are maintained under
submatrix taking, and testing for membership is elementary. Thus, the
conditions (5.2.1)(i) and (iii) for SAT centrality and (5.2.2)(i) and (iii)
for MINSAT centrality are satisfied by the respective classes. Below, we
provide an efficient algorithm that solves any instance of SAT or MINSAT
involving a nearly negative matrix and thus prove the remaining conditions
(5.2.1)(ii) and (5.2.2)(ii).

Solution Algorithm for Nearly Negative Matrices

We sketch the algorithm. Let A be the given matrix over IB. For the
MINSAT case, define c to be the rational nonnegative cost vector.

If A has a zero row, then the given instance of SAT or MINSAT is not
satisfiable. If A has a row with just one nonzero entry and if that entry is a
+1, say, in column y, then in any satisfying solution column y must receive
the value True. Hence, we assign that value to column y, delete from A all
rows now satisfied and column y, and apply the algorithm to the reduced
matrix.

Assume that neither of the two situations above applies. Since A is
nearly negative, each row of A must have at least one −1. Hence, we may
assign False to each column of A to obtain a satisfying solution.

We list the algorithm next and then prove that it solves not just the
SAT case, but also the MINSAT case.

(5.5.1) Algorithm SOLVE NEARLY NEGATIVE SAT OR MIN-
SAT. Solves the SAT or MINSAT problem involving a given nearly neg-
ative matrix A over IB. In the MINSAT case, the cost vector is a given
rational nonnegative vector c.

Input: Matrix A over IB, of size m × n. In the MINSAT case, rational
nonnegative vector c.

Output: Either: A solution for the SAT instance A or the MINSAT instance
(A, c), whichever applies. Or: “A is unsatisfiable.”

Complexity: O(m + n + count(A)).

Procedure:
1. If A has a zero row: Declare A to be unsatisfiable, and stop.

If A has no rows: Assign False to each column of A. These values plus
the earlier assigned True/False values, if any, constitute a solution for
the SAT or MINSAT instance, whichever applies.

188 Chapter 5. Special Matrix Classes

If A has a row with a +1, say, in column y, and without −1s: Assign
True to column y, delete from A all rows now satisfied and column y,
and repeat Step 1.

2. (A has at least one −1 in each row.) Assign False to each column of
A. These values plus the earlier assigned True/False values, if any,
constitute a solution for the SAT or MINSAT instance, whichever ap-
plies.

The algorithm is clearly valid for the SAT case. For discussion of the MIN-
SAT case, define a satisfying solution for A to be minimum with respect to
True if that solution has the value True for a column of A only if every sat-
isfying solution for A must have True for that column. The key observation
for the MINSAT case is given in the following result.

(5.5.2) Theorem. Let A be a nearly negative matrix that is satisfiable.
Then A has a satisfying solution that is minimum with respect to True,
and this solution is found by Algorithm SOLVE NEARLY NEGATIVE
SAT OR MINSAT (5.5.1).

Proof. The algorithm assigns True to a column y of A only if A has a row
with a +1 in column y and without −1s. Since A is nearly negative, this
+1 entry is the only nonzero entry of the row in question. Accordingly, the
value True must be assigned to column y in every satisfying solution. The
theorem follows from this fact and induction on the length of A.

(5.5.3) Corollary. Algorithm SOLVE NEARLY NEGATIVE SAT OR
MINSAT (5.5.1) is valid for the MINSAT case.

Proof. Assume that the matrix A of a MINSAT instance (A, c) is satisfi-
able. By Theorem (5.5.2), Algorithm SOLVE NEARLY NEGATIVE SAT
OR MINSAT (5.5.1) finds the satisfying solution for A that is minimum
with respect to True. Since the cost vector c for the assignment of True is
nonnegative while the cost for False is zero, this satisfying solution for A
must have least cost.

We record the SAT and MINSAT centrality results just proved.

(5.5.4) Theorem.
(a) The class of nearly negative matrices is SAT central.
(b) The class of matrix/vector pairs (A, c) where A is nearly negative and

c is a rational nonnegative vector is MINSAT central.

Note that Theorem (5.5.4) becomes invalid if the nonnegativity condition
on c is dropped. Indeed, theNP-hard problem VERTEX COVER discussed
in Section 5.4 can be formulated by pairs (A, c) where A is nonpositive and
thus nearly negative as follows. We take A to be the transpose of the
negated node/edge incidence matrix of the given graph G and define c
to be the vector containing only −1s. That formulation is equivalent to

5.5. Nearly Negative Matrices 189

the one given in Section 5.4, where A is the transpose of the node/edge
incidence matrix of G and where c contains only +1s.

Applications of Nearly Negative Matrices

Nearly negative matrices typically arise from logic problems where each
clause can be stated in one of the following two ways, using some variables
x1, x2, . . . , xn, and y: “If x1 and x2 and . . . and xn, then y” or “If x1 and
x2 and . . . and xn, then ¬y.” Indeed, the first statement is equivalent to
¬x1∨¬x2 . . . ∨¬xn∨y, and the second one to ¬x1∨¬x2 . . . ∨¬xn∨¬y.
In either case, the corresponding row of the clause/variable matrix contains
at most one +1. Thus, that matrix is nearly negative.

Section 2.3 discusses the following important application of MINSAT.
Let S be a CNF system with variables s1, s2, . . . , sn and t1, t2, . . . , tk. For
some disjoint subsets J+, J− of {1, 2, . . . , n} and for l = 1, 2, . . . , k, let
Tl be the statement [(

∧
j∈J+ sj)∧ (

∧
j∈J− ¬sj)] ⇒ tl, which is equal to the

CNF clause [(
∨

j∈J+ ¬sj)∨ (
∨

j∈J− sj)]∨ tl. We want to prove which of the
statements T1, T2, . . . , Tk are theorems of S. If one relies on the commonly
used method, k SAT instances must be solved. In another approach using
MINSAT, one assigns a cost of 1 to t1, t2, . . . , tk and a cost of 0 to the
remaining variables s1, s2, . . . , sn. Finally, one fixes the sj, j ∈ J+, to
True and the sj , j ∈ J−, to False. If the resulting MINSAT instance is
unsatisfiable, then each Tl is a theorem of S. So assume that a MINSAT
solution exists that, for some partition L+, L− of {1, 2, . . . , k}, assigns
True to tl, l ∈ L+, and False to tl, l ∈ L−. That solution proves that the
Tl, l ∈ L−, are not theorems of S, while the Tl, l ∈ L+, may be theorems.

If the underlying matrix A of S is nearly negative, then we may as-
sume that the MINSAT solution has been determined by Algorithm SOLVE
NEARLY NEGATIVE SAT OR MINSAT (5.5.1). By Theorem (5.5.2), this
solution is minimum with respect to True. In particular, the columns tl,
l ∈ L+, which have the value True in that solution, must have the value
True in every satisfying solution of A. Hence, each Tl, l ∈ L+, has been
proved to be a theorem. Evidently, we have reduced the k SAT instances
to one MINSAT instance that can be solved as efficiently as any one of
the SAT instances. This conclusion is substantially stronger than the one
drawn in Section 2.3 for the general case, where one MINSAT instance and
|L+| SAT instances are solved to decide which of the Tl are theorems of S.

Resolution and Nearly Negative Matrices

It turns out that the resolution procedure maintains near negativity of
matrices. We record and prove this result next.

190 Chapter 5. Special Matrix Classes

(5.5.5) Theorem. Algorithm RESOLUTION FOR MATRIX (5.4.4) re-
duces each nearly negative matrix to another nearly negative matrix.

Proof. Recall that by Steps 2 and 3 of Algorithm RESOLUTION FOR
MATRIX (5.4.4), each row of the output matrix A′ derived from a given
input matrix A is up to a zero entry a row of A, or is obtained from two
rows i and j of A as follows.

Without loss of generality, row i (resp. j) has a +1 (resp. −1) in the
column y that is to be eliminated, and no other column has nonzeros of
opposite sign in rows i and j. Then, for each column z 6= y, the resulting
row of A′ has a +1 (resp. −1, 0) in column z if the rows i and j of A contain
at least one +1 (resp. at least one −1, two 0s) in column z. Since A is nearly
negative, all entries of row i in columns other than y are nonpositive, while
row j contains at most one +1. Thus, the row of A′ resulting from rows i
and j has at most one +1.

We conclude that A′ is nearly negative.

In the next section, we generalize the notion of nearly negative matrices
to that of hidden nearly negative matrices.

5.6 Hidden Nearly Negative Matrices

Define a matrix A over IB to be hidden nearly negative if the matrix becomes
nearly negative upon an appropriate scaling of its columns by {±1} factors.
In this section, we show that the class C of hidden nearly negative matrices
A is SAT central and that a certain class C′ of pairs (A, c) with hidden
nearly negative matrix A and rational nonnegative vector c is MINSAT
central. Specifically, the matrix A of each pair (A, c) must become nearly
negative by a column scaling that is restricted to the columns of A for
which the corresponding entries of c are zero.

Evidently, the classes C and C′ are maintained under submatrix tak-
ing, so condition (5.2.1)(i) for SAT centrality and condition (5.2.2)(i) for
MINSAT centrality are satisfied. Below, we establish the remaining condi-
tions (ii) and (iii) of (5.2.1) and (5.2.2) by constructing polynomial recog-
nition and solution algorithms.

Recognition Algorithm for Hidden Nearly
Negative Matrices

The recognition problem for the classes C and C′ may be formulated as
the following scaling problem. Given is a partitioned matrix A = [D|E]
over IB. One must either scale the columns of the submatrix E with {±1}

5.6. Hidden Nearly Negative Matrices 191

factors such that A becomes a nearly negative matrix or conclude that such
scaling is not possible. When A can be so scaled, we say that A = [D|E]
is hidden nearly negative relative to E. When A = E, we simply say, in
agreement with the earlier definition, that A is hidden nearly negative.

We test membership of a matrix A in the class C by defining E to be
A itself. To decide membership of a pair (A, c) in the class C′, we let E
consist of the columns of A that correspond to the zero entries of c.

We first show that the scaling problem can be formulated as an in-
stance of 2SAT. Let A = [D|E] be given.

We declare each column index y of A to be a Boolean variable y of the
2SAT instance. A value of True (resp. False) for y means that column y of
A is to be scaled by the factor +1 (resp. −1).

The clauses of the 2SAT instance are as follows. For each column y of
D, we demand y = True and thus enforce +1 as scaling factor. For each
row x of A and for each pair of columns y and z for which the entries Axy

and Axz are nonzero, we introduce one clause with two literals using the
variables y and z. Specifically, if Axy = +1 (resp. Axy = −1), then the
literal arising from variable y is ¬y (resp. y). Correspondingly, if Axz = +1
(resp. Axz = −1), then the literal arising from variable z is ¬z (resp. z).

We claim that the 2SAT instance correctly represents the scaling prob-
lem. The proof is as follows.

Suppose we have scaling factors that transform A to a nearly negative
matrix. We claim that the corresponding True/False values satisfy all
clauses of the 2SAT instance. Take an arbitrary clause, say, defined from
nonzero Axy and Axz. Consider the case Axy = Axz = +1. According to
the above rules, the clause is ¬y ∨ ¬z. Since the scaling factors achieve a
nearly negative matrix, Axy = Axz = +1 implies that at least one of the
factors for columns y and z is −1. Correspondingly, at least one of the
variables y and z of the 2SAT instance has been assigned the value False,
and thus the clause ¬y ∨¬z is satisfied. The remaining three cases for Axy

and Axz are argued analogously.
Conversely, suppose that the 2SAT instance has a satisfying solution

and that we scale A with the corresponding scaling factors. If the resulting
matrix A′ is not nearly negative, then in some row x of A′ there are two +1
entries, say, A′

xy and A′

xz. But then it is easily checked that the assumed
solution for the 2SAT instance does not satisfy the clause arising from Axy

and Axz, a contradiction.
The 2SAT formulation of the scaling problem may seem attractive,

but it nevertheless is an inefficient way to formulate and solve the scaling
problem. By the definition of the 2SAT instance, the number of clauses
may be quadratic in count(A), the number of nonzeros of A. Thus, just
the formulation of the 2SAT instance may involve a computing effort that
is quadratic in count(A).

One can significantly improve on that performance by a direct attack

192 Chapter 5. Special Matrix Classes

on the scaling problem. We describe the main ideas next. As before, let
A = [D|E] be given.

If D is not nearly negative, then due to the scaling restriction A cannot
be scaled to become nearly negative, and we stop with that conclusion. So
suppose that D is nearly negative.

If A has no rows, then A is hidden nearly negative. Formally, we assign
arbitrary {±1} scaling factors to the columns of E and stop. So suppose
that A has at least one row.

If a column of D is nonpositive, then that column does not influence
the scaling of E, and we delete it from A and D.

If a row x of D is nonpositive and row x of E has at most one nonzero
entry or if a row x of D contains exactly one +1 and row x of E is zero,
then row x of A does not influence the choice of scaling factors, and we
delete it from A, D, and E.

If a row x of D contains exactly one +1 and row x of E has a nonzero
entry, say, in column z, then the latter entry Exz forces the scale factor
for column z as follows. If Exz = +1 (resp. Exz = −1), then column z
of E must be scaled with −1 (resp. +1) if a nearly negative matrix is to
result. Hence, we scale column z of E with that factor, then move the
scaled column from E to D.

We recursively apply the above rules until (1) the current D is found
to be not nearly negative, or (2) the current A has no rows, or (3) none of
the rules applies.

In case (1), the original matrix A has been demonstrated to be not
hidden nearly negative relative to the original submatrix E, and we stop
with that conclusion.

In case (2), we have determined scaling factors that turn the original
matrix A into a nearly negative matrix, and thus we may stop.

In case (3), additional processing is needed. We claim that the current
D has no columns and that each row of the current E has at least two
nonzero entries. The proof is as follows.

According to the reduction rules, the nearly negative D cannot have a
row with a +1, since otherwise that row is deleted or some column of E is
scaled and transferred to D. Hence, D is nonpositive. Since all nonpositive
columns must be deleted from D, that matrix cannot have any column at
all. Finally, since D has no columns, E cannot have a row with at most
one nonzero entry, since any such row must be deleted.

We continue with case (3), again using recursion. Note that the origi-
nal A = [D|E] has been reduced to a current A = [D|E] for which D has
no columns and E has at least two nonzero entries in each row. We store
a copy of A as a matrix A′.

We scale an arbitrarily selected column y of E by +1 (this has no
effect, of course), move the scaled column to D, and apply the earlier
process. When that process stops, we again have one of the cases (1)–(3).

5.6. Hidden Nearly Negative Matrices 193

As shown above, in case (2) we have the desired scaling factors, while
in case (3) the current A is smaller than A′ and we may invoke recursion.

In case (1), the current D is not nearly negative. We conclude that
the scaling factor +1 for column y cannot lead to a nearly negative matrix.
We restore A to the saved matrix A′. Then we scale column y of E by −1,
move the scaled column to D, and once more apply the earlier process. We
either terminate in case (1) again, in which situation the original matrix A
is not hidden nearly negative relative to the original submatrix E, or we
have one of the cases (2) or (3), which have already been treated.

We summarize the algorithm below.

(5.6.1) Algorithm TEST HIDDEN NEAR NEGATIVITY. Tests
whether a given matrix A = [D|E] over IB can be column scaled with {±1}
factors so that a nearly negative matrix results. The scaling is restricted
to the columns of E.

Input: Matrix A = [D|E] over IB, of size m× n.

Output: Either: Scaling factors for the columns of E that convert A to a
nearly negative matrix. Or: “A is not hidden nearly negative relative to
E.”

Complexity: O(m + n + count(A)) when properly implemented.

Procedure:
1. If D is not nearly negative: Declare that the input matrix A is not

hidden nearly negative relative to the input submatrix E, and stop.
If A has no rows: Assign arbitrary {±1} scaling factors to the columns
of E. These values plus the earlier assigned scaling factors, if any,
constitute the desired scaling factors for the input matrix A. Output
those factors, and stop.
If a column z of D is nonpositive: Delete column z from A and D, and
repeat Step 1.
If a row x of D is nonpositive and row x of E has at most one nonzero
entry or if a row x of D contains exactly one +1 and row x of E is
zero: Delete row x from A, D, and E, and repeat Step 1.
If a row x of D contains exactly one +1 and row x of E has a nonzero
entry, say, in column z: Scale column z of E by −1 (resp. +1) if
Exz = +1 (resp. Exz = −1), retain that scaling factor for possible
output, move the scaled column from E to D, and repeat Step 1.

2. (A = [D|E] where D has no columns and where each row of E has
at least two nonzero entries; try a scaling factor of +1 for a column
y of E.) Retain A as a matrix A′. Arbitrarily select a column y of
E. Move column y from E to D, and record +1 as scaling factor for
column y for possible output.

3. Apply the process of Step 1 to A = [D|E], with two exceptions: If
D becomes a matrix that is not nearly negative, go to Step 4; if D

194 Chapter 5. Special Matrix Classes

becomes a matrix without columns and E becomes a matrix where
each row has at least two nonzero entries, go to Step 2.

4. (Restore A, and try alternate scaling factor −1 for column y.) Redefine
A to be A′. Scale column y by −1, and move the scaled column from
E to D. Update the recorded scaling factor for column y to −1. Go
to Step 1.

Proof of Validity. We only need to establish the claimed complexity of
O(m+ n + count(A)). The proof mimics that for Algorithm SOLVE 2SAT
(5.4.1). When we use the scaling factor +1 for column y in Step 2, we also
assign, in a parallel execution, the scaling factor −1 as specified in Step 4.
We evaluate the consequences of the two choices in parallel until in both
cases a D is encountered that is not nearly negative or until one case would
proceed to Step 2. In the first instance, the input matrix A has been proved
to be not hidden nearly negative relative to the input submatrix E. In the
second situation, we stop the parallel evaluation and go with the applicable
matrix to Step 2.

We have already seen that the scaling problem for hidden nearly neg-
ative matrices can be formulated as an instance of 2SAT. There also is the
following, closely related result.

(5.6.2) Theorem. Let A be a matrix over IB.

(a) If A has at most two nonzero entries in each row and is satisfiable,
then A is hidden nearly negative.

(b) If A has exactly two nonzero entries in each row and is hidden nearly
negative, then it is satisfiable.

Proof.
To show part (a), we suppose that the matrix A is satisfiable. By

Lemma (2.6.21), there are {±1} scaling factors for the columns of A that
convert A to a matrix A′ where each row has at least one +1. Since A has
at most two nonzero entries in each row, we may equivalently say that each
row of A′ has at most one −1. When we scale each column of A′ by −1,
we obtain a matrix A′′ that contains in each row at most one +1. Thus,
A′′ is nearly negative, and A has been shown to be hidden nearly negative.

An almost trivial reversal of the above arguments establishes part
(b).

By Theorem (5.6.2), testing satisfiability of a 2SAT matrix A is es-
sentially equivalent to deciding whether A is hidden nearly negative. Ac-
cordingly, one might expect a close relationship between Algorithm SOLVE
2SAT (5.4.1) and Algorithm TEST HIDDEN NEAR NEGATIVITY (5.6.1)
when the latter scheme processes a 2SAT instance. Indeed, the latter algo-
rithm essentially becomes the former one when we declare a scaling factor of
+1 (resp. −1) in Algorithm TEST HIDDEN NEAR NEGATIVITY (5.6.1)

5.6. Hidden Nearly Negative Matrices 195

to correspond to the assignment of False (resp. True) in Algorithm SOLVE
2SAT (5.4.1). We leave the easy verification of this claim to the reader.

Solution Algorithm for Hidden Nearly
Negative Matrices

Construction of a solution algorithm is now simple. For the SAT case, we
assume that the given matrix A is hidden nearly negative. We use Algo-
rithm TEST HIDDEN NEAR NEGATIVITY (5.6.1) to find {±1} scaling
factors that convert A to a nearly negative matrix A′, then use Algorithm
SOLVE NEARLY NEGATIVE SAT OR MINSAT (5.5.1) to find a satisfy-
ing solution for A′ or to determine that no such solution exists.

In the first case, we use the scaling factors to convert the satisfying
solution for A′ to one for A, by switching a value of True (resp. False) for a
column y of A′ to a value of False (resp. True) for column y of A whenever
the scaling factor for that column is −1.

In the second case, unsatisfiability of A′ implies the same conclusion
for A.

The MINSAT case is handled almost identically. We assume that the
matrix A over IB of a given pair (A, c), with rational nonnegative c, is
hidden nearly negative relative to the column submatrix E of A whose
columns correspond to the zero entries of c.

We apply Algorithm TEST HIDDEN NEAR NEGATIVITY (5.6.1) to
determine {±1} scaling factors for E that convert A to a nearly negative
matrix A′. Since any column of A scaled by −1 corresponds to a zero entry
of c, the MINSAT instances (A, c) and (A′, c) are equivalent.

We use Algorithm SOLVE NEARLY NEGATIVE SAT OR MINSAT
(5.5.1) to solve the instance (A′, c). If (A′, c) is satisfiable, then we trans-
form the optimal solution for (A′, c) to one for (A, c) as in the SAT case.
If (A′, c) is unsatisfiable, then (A, c) is unsatisfiable as well.

The above discussion establishes the following algorithm.

(5.6.3) Algorithm SOLVE HIDDEN NEARLY NEGATIVE SAT
OR MINSAT. Solves the SAT or MINSAT problem involving a given
hidden nearly negative matrix A over IB. In the MINSAT case, the cost
vector is a given rational nonnegative vector c, and A is hidden nearly neg-
ative relative to the column submatrix E of A whose columns correspond
to the zero entries of c.

Input: Hidden nearly negative matrix A over IB, of size m × n. In the
MINSAT case, a rational nonnegative vector c is also given, and A is hidden
nearly negative relative to the column submatrix E of A whose columns
correspond to the zero entries of c.

196 Chapter 5. Special Matrix Classes

Output: Either: A solution for the SAT instance A or the MINSAT instance
(A, c), whichever applies. Or: “A is unsatisfiable.”

Complexity: O(m + n + count(A)).

Procedure:
1. Partition A as A = [D|E] where in the SAT case D has no columns

and thus A = E, and where in the MINSAT case the columns of E
correspond to the zero entries of c.

2. Use Algorithm TEST HIDDEN NEAR NEGATIVITY (5.6.1) to ob-
tain {±1} scaling factors for E that scale A to a nearly negative matrix
A′.

3. Apply Algorithm SOLVE NEARLY NEGATIVE SAT OR MINSAT
(5.5.1) to solve the SAT instance A′ or the MINSAT instance (A′, c).
If that instance is satisfiable, convert a solution for A′ or (A′, c) to one
for A or (A, c), by switching a value of True (resp. False) for a column
y of A′ to a value of False (resp. True) for column y of A whenever
column y occurs in E and the scaling factor is −1.
If A′ or (A′, c) is unsatisfiable, declare A or (A, c) to be unsatisfiable
as well.

We summarize the SAT and MINSAT centrality established by the above
algorithms.

(5.6.4) Theorem.

(a) The class of hidden nearly negative matrices A is SAT central.
(b) The class of the following matrix/vector pairs (A, c) is MINSAT cen-

tral. The vector c is rational nonnegative, and the matrix A is hidden
nearly negative relative to the column submatrix E of A whose columns
correspond to the zero entries of c.

Applications of Hidden Nearly Negative Matrices

The notion of hidden near negativity is obviously useful when satisfiability
or logic minimization problems are to be solved. It also is attractive in the
context of the theorem-proving problem posed and solved in Section 5.5
for nearly negative matrices. We summarize the discussion of that section.

For some disjoint index sets J+ and J− and for l = 1, 2, . . . , k, state-
ments Tl = [(

∧
j∈J+ sj) ∧ (

∧
j∈J− ¬sj)] ⇒ tl are given. We want to decide

which of these statements are theorems of a given CNF system S. Denote
by A the matrix over IB corresponding to S.

Let L be any nonempty subset of {t1, t2, . . . , tk}. Define c to be the
rational {0, 1} cost vector that assigns a cost of 1 to the columns tl ∈ L of A
and assigns a cost of 0 to all remaining columns. Partition A as A = [D|E]
where the columns of D are indexed by L.

5.6. Hidden Nearly Negative Matrices 197

The discussion in Section 5.5 implies the following. If A is hidden
nearly negative relative to E, then by solving the MINSAT instance (A, c)
we can ascertain which of the statements Tl, l ∈ L, are theorems of S.
Indeed, such a Tl is a theorem if and only if the MINSAT solution assigns
the value True to the column tl of A.

In the ideal situation, the above process works for L = {t1, t2, . . . , tk}.
We may not be as lucky, but the process might work for some subsets L
of {t1, t2, . . . , tk} whose union is {t1, t2, . . . , tk}. It is easy to see that such
subsets, say, L1, L2, . . . , Lm, may be considered to be disjoint. Indeed, if
A is hidden nearly negative relative to E defined via Li, then this is so for
any subset of Li.

With disjoint L1, L2, . . . , Lm at hand, one must solve m MINSAT
instances to settle which statements Tl are theorems. Accordingly, one
would like to choose a collection with small m. Let us call the problem of
finding a collection with minimum m PARTITION FOR MINSAT. Below,
we show that this problem is generally difficult.

Recall from Section 5.4 that a node subset of an undirected graph is
independent if no edge of G connects any two nodes of the subset. Define
PARTITION INTO INDEPENDENT NODE SUBSETS to be the problem
where, for a given undirected graph G, one must partition the node set
of G into a minimum number of independent subsets. This problem is
NP-hard, since it is the optimization version of the so-called GRAPH K-
COLORABILITY problem, which is known to be NP-complete.

We reduce an instance G of PARTITION INTO INDEPENDENT
NODE SETS to an instance of PARTITION FOR MINSAT.

We let A be the transpose of the node/edge incidence matrix of G.
Thus, each node (resp. edge) of G produces a column (resp. row) of A; if
an edge of G connects nodes i and j, then the corresponding row of A has
one 1 in column i and a second 1 in column j.

Let L be a node subset of G. Partition A = [D|E] so that the columns
of D correspond to the nodes in L. Since A is a {0, 1} matrix, the following
four statements are equivalent: A is hidden nearly negative relative to E;
A becomes nearly negative when each column of E is scaled with −1; D
has at most one +1 in each row; the node subset L of G is independent.

Thus, finding a minimum number of disjoint independent node subsets
of G whose union is equal to the node set of G is equivalent to finding a
minimum number of disjoint subsets of the column index set of A, say, L1,
L2, . . . , Lm, with the following property. For each Li, the matrix A must
be hidden nearly negative relative to the column submatrix whose indices
do not occur in Li, and the union of the Li must be the column index set
of A. The latter problem is an instance of PARTITION FOR MINSAT.

The NP-hardness of PARTITION FOR MINSAT should not deter us
from the use of the above ideas. For example, one might employ simple
heuristics to search for an attractive collection L1, L2, . . . , Lm.

198 Chapter 5. Special Matrix Classes

Resolution and Hidden Nearly Negative Matrices

Resolution maintains hidden near negativity according to the following
theorem.

(5.6.5) Theorem. Let A = [D|E] be a matrix over IB that is hidden
nearly negative relative to E. If Algorithm RESOLUTION FOR MATRIX
(5.4.4) reduces A to a matrix A = [D|E], where the columns of D (resp.
E) correspond to those of D (resp. E), then A is hidden nearly negative
relative to E.

Proof. By assumption, we may scale the columns of the submatrix E of
A such that A becomes a nearly negative matrix A′ = [D|E′]. Suppose we
apply Algorithm RESOLUTION FOR MATRIX (5.4.4) to A as well as A′,
getting A = [D|E] and A′ = [D′|E′], respectively.

By Theorem (5.5.5), the algorithm maintains near negativity, so A′ is
nearly negative. Elementary case checking verifies that D′ is equal to D
and that E′ is up to column scaling equal to E. Hence, A is hidden nearly
negative relative to E.

We turn to the fourth class of matrices covered in this chapter.

5.7 Balanced Matrices

For k ≥ 2, declare a k × k {0,±1} matrix to be a cycle matrix if it is
connected and has exactly two nonzeros in each row and column. Thus, a
cycle matrix has the following form.

(5.7.1) ±1
±1 ±1
±1 ±1

±1
±1±1

.

. .
.

0

0

Cycle matrix

Define a cycle matrix to be balanced if the integer sum of its entries is
divisible by 4, that is, if that sum is equal to 0(mod 4). Define a {0,±1}
matrix A to be balanced if every cycle submatrix of A is balanced.

In this section, we prove that the class of balanced matrices over IB is
SAT central and that the class of matrix/vector pairs (A, c) with balanced
A and rational nonnegative c is MINSAT central.

We claim that the nonnegativity condition on the vector c of a MIN-
SAT instance (A, c) effectively does not pose a restriction, in contrast to the
situation in Sections 5.5 or 5.6. The proof relies on the following lemma.

5.7. Balanced Matrices 199

(5.7.2) Lemma. Any matrix derived from a {0,±1} balanced matrix by
scaling of rows and columns with {±1} factors and submatrix taking is
balanced as well.

Proof. Scaling of a row or column of a cycle matrix evidently changes
the integer sum of its entries by a multiple of 4. Thus, balancedness of a
cycle matrix is preserved under scaling. Since balancedness of a general
{0,±1} matrix is defined via balancedness of its cycle submatrices, the
lemma follows.

Let a MINSAT instance (A, c) with balanced A be given. If the ratio-
nal vector c contains negative entries, then we scale these entries and the
corresponding columns of A by −1 and get an equivalent MINSAT instance
(A′, c′) where A′ is balanced by Lemma (5.7.2) and where c′ is nonnegative.

By Lemma (5.7.2), the SAT and MINSAT classes with balanced ma-
trices are maintained under submatrix taking, so condition (5.2.1)(i) for
SAT centrality and condition (5.2.2)(i) for MINSAT centrality are satis-
fied. Below, we establish the remaining conditions (ii) and (iii) of (5.2.1)
and (5.2.2) by polynomial recognition and solution algorithms. Some of
these algorithms are quite complicated. We also discuss special subclasses
for which somewhat simpler or even elementary recognition and solution
algorithms exist.

Recognition Algorithm for Balanced Matrices

Let A be a matrix over IB. There is a complicated but polynomial algo-
rithm by Conforti, Cornuéjols, Kapoor, and Vušković (1994b) for testing
balancedness of A. The algorithm is too long and complicated to be in-
cluded here in its entirety, so we settle for a summarizing description.

(5.7.3) Algorithm TEST BALANCEDNESS. Tests balancedness of
a given {0,±1} matrix A.

Input: {0,±1} matrix A.

Output: Either: “A is balanced.” Or: “A is not balanced.”

Complexity: Polynomial.

Procedure: (See Conforti, Cornuéjols, Kapoor, and Vušković (1994b) for
details.)

1. Initialize a candidate list L of matrices to L = {A}.
2. Remove a matrix, say, B, from L. Check if B contains as a submatrix

one of several nonbalanced matrices. If this is so, declare the input
matrix A to be nonbalanced, and stop.

3. Using several subroutines, verify that B is balanced, or decompose B
into several matrices, which are then added to L.

200 Chapter 5. Special Matrix Classes

4. If L is nonempty: Go to Step 2.
5. Declare the input matrix A to be balanced, and stop.

There are two important nested subclasses of balanced matrices. The larger
one of the two subclasses consists of the totally unimodular matrices. Each
square submatrix of such a matrix, when viewed to be over the rationals,
has determinant 0, +1, or −1.

The second subclass consists of the network matrices, which are the
totally unimodular matrices with at most two nonzero entries in each row
or in each column.

For the two subclasses, the following analogue of Lemma (5.7.2) holds.

(5.7.4) Lemma. Any matrix derived from a {0,±1} totally unimodular
(resp. network) matrix by scaling of rows and columns with {±1} factors
and submatrix taking is also a totally unimodular (resp. network) matrix.

Proof. Scaling of a row or column changes at most the sign of the deter-
minants of square submatrices. Submatrix taking at most reduces column
counts. Thus, total unimodularity and the network property are preserved
by scaling and submatrix taking.

The next lemma establishes that the totally unimodular matrices, and
hence the network matrices, are balanced.

(5.7.5) Lemma. Any {0,±1} totally unimodular matrix—in particular,
any network matrix—is balanced.

Proof. Let D be a cycle submatrix of a totally unimodular matrix. It is
easy to see from (5.7.1) that we can scale the rows and columns of D with
{±1} factors so that a matrix D′ of the form

(5.7.6) .-1
-1 1
1 α

1
1-1

. .
.0

0

Scaled cycle matrix

results where α is +1 or −1. By Lemma (5.7.4), total unimodularity is
maintained by scaling with {±1} factors and submatrix taking, so D′ has
determinant 0, +1, or −1.

By cofactor expansion and counting, we confirm that the determinant
of D′ is 2 (resp. 0) if and only if α = 1 (resp. α = −1), which holds if and
only if the entries of D′ sum to 2 (resp. 0).

Thus, the determinant of D′ must be 0, and its entries must sum to 0.
Hence, D′ is balanced, and by Lemma (5.7.1), D is balanced as well. We
conclude that A is balanced.

5.7. Balanced Matrices 201

We demonstrate that the class of balanced matrices properly contains
the class of totally unimodular matrices and that the latter class properly
contains the class of network matrices. We use the matrix

(5.7.7)

01
01 1

0

1 1 00
11 1 1

1
0

Balanced matrix

for this purpose. Straightforward checking confirms that the matrix is bal-
anced, has determinant equal to −2, and hence is not totally unimodular.
When the last row and the last column are deleted from the matrix, a
totally unimodular matrix results that is not a network matrix.

Recognition Algorithm for Totally Unimodular
Matrices

Algorithm TEST BALANCEDNESS (5.7.3) as described in Conforti, Co-
rnuéjols, Kapoor, and Vušković (1994b) is polynomial, but also contains
enumerative subroutines requiring substantial computational effort. There-
fore, that algorithm may require considerable time for processing large ma-
trices.

We next include a polynomial algorithm described in Truemper (1990)
for testing total unimodularity. That algorithm is also quite complicated,
so we just summarize the main steps. However, the algorithm is computa-
tionally quite efficient and handles large matrices with reasonable compu-
tational effort.

(5.7.8) Algorithm TEST TOTAL UNIMODULARITY. Tests total
unimodularity of a given {0,±1} matrix A.

Input: {0,±1} matrix A, of size m× n.

Output: Either: “A is totally unimodular.” Or: “A is not totally unimod-
ular.”

Complexity: O((m + n)3).

Procedure: (See Truemper (1990) for details.)
1. Derive a {0, 1} matrix A′ from A by replacing each −1 of A by +1.

View A′ to be over GF(2). Initialize a candidate list L of matrices to
L = {A′}.

2. Remove a matrix, say, B, from L.
If B can be decomposed in one of three ways into two component ma-
trices: Carry out one such decomposition, add the component matrices
to L, and repeat Step 2.

202 Chapter 5. Special Matrix Classes

3. Test if B is one of two special 5× 5 matrices, or if one can derive from
B a network matrix by certain operations. If neither case applies,
declare the input matrix A to be not totally unimodular, and stop.

4. If L is nonempty: Go to Step 2.
5. Sign the 1s of A′ so that a totally unimodular matrix A′′ results. Test

if A′′ can be transformed by row and column scaling with {±1} factors
to the input matrix A. The matrix A is totally unimodular if and only
if such scaling factors exist. Output the appropriate conclusion, and
stop.

Recognition Algorithm for Network Matrices

Testing for the network property turns out to be simple, as we see next.

(5.7.9) Algorithm TEST NETWORK PROPERTY. Tests whether
a given {0,±1} matrix A has the network property.

Input: {0,±1} matrix A, of size m× n.

Output: Either: “A is a network matrix.” Or: “A is not a network matrix.”

Complexity: O(m + n).

Procedure:
1. If A has at least three nonzeros in some row and at least three nonzeros

in some column, declare that A is not a network matrix, and stop.
If A has at least three nonzeros in some row, replace A by its transpose.

2. (A has at most two nonzeros in each row.) Derive from A a {0, 1}
matrix A′ by first deleting any row with at most one nonzero, and
then replacing in the remaining rows each −1 by +1.
If A′ has no rows, declare A to be a network matrix, and stop.

3. (A′ has exactly two nonzeros in each row.) Let G be the graph that
has the transpose of A′ as node/edge incidence matrix. Declare any
edge of G to be special if the corresponding row of A contains two +1s
or two −1s.

4. Contract each nonspecial edge of G, getting a minor G of G.
5. If G contains a loop, declare that A does not have the network prop-

erty, and stop. Otherwise, use breadth-first-search to test whether G
is bipartite. The matrix A is a network matrix if and only if G is
bipartite. Output the appropriate conclusion, and stop.

Proof of Validity. We may assume the case where A has exactly two
nonzeros in each row. We analyze two mutually exclusive cases, depending
on whether A is balanced.

Suppose A is not balanced and hence contains a cycle submatrix whose
entries sum to 2(mod 4). Thus, the number of rows of the submatrix

5.7. Balanced Matrices 203

containing two +1s or two −1s is odd. Correspondingly, the graph G
defined in Step 3 has a cycle with an odd number of special edges, and
the minor G defined in Step 4 has a loop or a cycle with an odd number
of edges. A graph is bipartite if and only if it has no cycle with an odd
number of edges. Hence, Step 5 determines G to have a loop or to be
nonbipartite, and it concludes that A is not a network matrix. By Lemma
(5.7.5), nonbalancedness of A implies that A is not totally unimodular, so
the conclusion of Step 5 is correct.

Suppose that A is balanced. Assume that a cycle C of G contains an
odd number of special edges. Select C to have a minimal number of nodes.

If C has a chord, then C plus that chord defines two cycles smaller
than C, and at least one of these cycles must have an odd number of special
edges. But then C is not minimal, a contradiction.

Thus, C has no chord and corresponds to a cycle submatrix of A whose
entries sum to 2(mod 4), a contradiction of the balancedness of A.

Hence, every cycle of G has an even number of special edges. Corre-
spondingly, Step 5 determines G to have no loops and to be bipartite, and
it declares A to be a network matrix.

It remains for us to show that A is totally unimodular. The nodes on
one side of the bipartite graph G define a column subset of A. Suppose
we scale the columns of A in that subset by −1, getting a matrix A′′. It is
easily checked that each row of A′′ contains one +1 and one −1.

We claim that each square submatrix D of A′′ has determinant 0, +1,
or −1 and, hence, that both A′′ and A are totally unimodular. The proof
is by induction on the size of D. If D contains a row with at most one
nonzero, then the determinant of D is 0, or we apply cofactor expansion
and induction. In the remaining case, each row of D contains two nonzeros,
that is, one +1 and one −1. But then the columns of D sum to 0, so the
determinant of D is 0.

The arguments validating Algorithm TEST NETWORK PROPERTY
(5.7.9) imply the following result.

(5.7.10) Theorem. Let A be a {0,±1} matrix with at most two nonze-
ros in each row or in each column. Then the following statements are
equivalent.

(i) A is balanced.

(ii) A is totally unimodular.

(iii) A is a network matrix.

(iv) If each row (resp. column) of A has at most two nonzeros, then the
columns (resp. rows) of A can be scaled by {±1} factors so that, in the
scaled matrix A′, each row (resp. column) with two nonzeros contains
one +1 and one −1.

204 Chapter 5. Special Matrix Classes

Proof. The arguments for Algorithm TEST NETWORK PROPERTY
(5.7.9) establish (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). We show (iv) ⇒ (i). Clearly, the
scaled matrix A′ of (iv) cannot contain a nonbalanced cycle submatrix and
thus is balanced. By Lemma (5.7.2), A is then balanced as well.

For later reference, we extract from Algorithm TEST NETWORK
PROPERTY (5.7.9) the scaling steps that produce the matrix A′ of The-
orem (5.7.10)(iv).

(5.7.11) Algorithm SCALE NETWORK MATRIX. Scales the
columns (resp. rows) of a given {0,±1} network matrix A having at most
two nonzeros in each row (resp. column) so that any row (resp. column)
with two nonzeros is turned into a row (resp. column) with one +1 and one
−1.

Input: {0,±1} network matrix A, of size m × n. The matrix has at most
two nonzeros in each row or in each column.

Output: A matrix A′ obtained from A by scaling with {±1} factors. The
scaling involves the columns (resp. rows) of A if A has at most two nonzeros
in each row (resp. column), and it results in an A′ where each row (resp.
column) with two nonzeros contains one +1 and one −1. In case both types
of scaling are possible, preference is given to column scaling.

Complexity: O(m + n).

Procedure:

1. If A has at least three nonzeros in some row: Replace A by its trans-
pose.

2. Apply Algorithm TEST NETWORK PROPERTY (5.7.9) to A. The
graph G of Step 5 of that algorithm necessarily has no loops and is
bipartite. Scale the columns of A corresponding to the nodes of one
side of G by −1 to obtain A′.

3. If in Step 1 the matrix A was replaced by its transpose: Replace A′

by its transpose.

4. Output A′, and stop.

Proof of Validity. Since A is assumed to be a network matrix, Algorithm
TEST NETWORK PROPERTY (5.7.9) invoked in Step 2 must derive a
bipartite graph G. As shown in the proof of validity for that algorithm,
the scaling of A based on the nodes of one side of G produces the desired
A′ or its transpose.

We turn to solution algorithms for the class of balanced matrices and
its two subclasses. We first describe, without proof, several basic results
of polyhedral combinatorics. Relevant references for that material are in-
cluded in Section 5.9.

5.7. Balanced Matrices 205

Some Results of Polyhedral Combinatorics

Define B to be an m × n rational matrix, and let b be an m × 1 rational
vector. Define P to be the set of n × 1 rational vectors r satisfying the
inequality system B · r ≥ b. Thus, P = {r | B · r ≥ b}. We say that P is
the polyhedron defined by B · r ≥ b.

A vector r ∈ P is an extreme point of P if for any two vectors r1,
r2 ∈ P satisfying r = (r1 + r2)/2, we necessarily have r = r1 = r2. A
bounded and nonempty polyhedron always has at least one extreme point.

A bounded polyhedron is integral if each extreme point of the polyhe-
dron is integral.

Suppose any solution for a given inequality system B′ · r ≥ b′ is also
a solution for the system B · r ≥ b defining P . If P is bounded and if all
extreme points of P satisfy B′ · r ≥ b′, then the latter system also defines
P .

For any k ≥ 1, rational vectors r0, r1, . . . , rk are affinely independent
if the vectors r1 − r0, r2 − r0, . . . , rk − r0 are linearly independent.

Let k be the largest integer such that P contains k affinely independent
vectors. Then P is said to have dimension k.

Recall that the size of the vectors r ∈ P is n× 1. If the dimension of
P is n, then P is said to be full dimensional. In that case, the inequality
system B ·r ≥ b contains a subsystem B′ ·r ≥ b′ with the following features:
B′ · r ≥ b′ defines P , and any system B′′ · r ≥ b′′ that also defines P must
contain B′ · r ≥ b′ as a subsystem, up to a scaling of the inequalities of
B′ · r ≥ b′ with positive factors. Thus, B′ · r ≥ b′ is up to such scaling the
unique minimal inequality system defining P .

A linear program, abbreviated LP, is specified by rational arrays B,
b, and c of size m × n, m × 1, and n × 1, respectively. One must find an
n × 1 rational solution vector r∗ that minimizes the linear function ct · r
over the polyhedron P = {r | B ·r ≥ b}, or one must conclude that no such
vector exists. The latter case arises in one of two ways. First, P may be
empty, in which case the LP is infeasible. Second, the function ct · r may
take on arbitrarily small values on P , in which case the LP is unbounded.
Note that unboundedness of the LP cannot occur when P is bounded.

We summarize the LP as follows, where s.t. stands for “subject to.”

(5.7.12)
min ct · r
s. t. B · r ≥ b

Assume that P is bounded and nonempty. Then P has an extreme point
that may serve as minimizing r∗.

In a special LP case, the vector c is 0. Solving the LP is then equivalent
to finding a vector in P or determining that P is empty.

The most popular method for solving LPs is the Simplex Method. The
method is not polynomial, but has been shown to be very efficient for most

206 Chapter 5. Special Matrix Classes

LPs arising from real-world problems. There also exist several polynomial
algorithms for solving LPs—for example, the Ellipsoid Method. If a given
LP has an extreme point solution, then such a solution can be found by
any one of the cited methods.

A number of combinatorial optimization problems may be expressed
as LPs where the underlying polyhedron is integral. In each such case, one
may solve the problem in polynomial time by finding an optimal extreme
point solution.

Integrality of the extreme points of the polyhedron P is obviously gov-
erned by the matrix B and the vector b. When B is a {0,±1} balanced
matrix and certain assumptions are satisfied, then integrality of the ex-
treme points is assured. The latter assumptions are not needed when B
is totally unimodular. Below, we summarize these results about balanced
and totally unimodular matrices. We omit the proofs. References are given
in Section 5.9.

Extreme Point Results

For a given m × n {0,±1} matrix A, define p(A) (resp. q(A)) to be the
m × 1 vector whose entry in position i is the number of +1s (resp. −1s)
in row i of A. Thus, p(A) + q(A) is the vector containing the number of
nonzeros in each row of A.

(5.7.13) Theorem. A {0,±1} matrix is balanced if and only if for each
submatrix A of that matrix, the polyhedron

(5.7.14) P (A) = {r | A · r ≥ 1− q(A); 0 ≤ r ≤ 1}

is integral.

Note the particular vector 1 − q(A) in the definition of P (A) of (5.7.14).
That vector may be replaced by an arbitrary integer vector b when one
considers total unimodularity instead of balancedness as follows.

(5.7.15) Theorem. A {0,±1} matrix is totally unimodular if and only
if for each submatrix A of that matrix and for each integral vector b, the
polyhedron

(5.7.16) P (A, b) = {r | A · r ≥ b; 0 ≤ r ≤ 1}

is integral.

It turns out that one may solve a given SAT instance A over IB very
easily when the polyhedron P (A) given by (5.7.14) is integral. Furthermore,
any MINSAT instance (A, c) with integral P (A) may be efficiently solved
via some LP. We provide details next.

5.7. Balanced Matrices 207

SAT, MINSAT, and Integral Polyhedra

We start with a simple SAT example. Consider the CNF system consisting
of the single clause

(5.7.17) ¬x1 ∨ x2 ∨ x3 ∨ ¬x4

The corresponding matrix A over IB is

(5.7.18) A = [−1, +1, +1,−1]

with column index set X = {x1, x2, x3, x4}. Declare A to be over the
rationals, and define r = [r1, r2, r3, r4]

t. For each ri, we interpret ri = 1
(resp. ri = 0) to mean that we assign the value True (resp. False) to xi.

Consider the inequality

(5.7.19) (−1) · (r1 − 1) + (+1) · r2 + (+1) · r3 + (−1) · (r4 − 1) ≥ 1

The clause (5.7.17) evaluates to True if and only if x1 is False, or x2 is
True, or x3 is True, or x4 is False. Correspondingly, the inequality (5.7.19)
is satisfied by {0, 1} ri values if and only if r1 = 0, or r2 = 1, or r3 = 1, or
r4 = 0.

We move the constant terms of the left-hand side of (5.7.19) to the
right-hand side and get

(5.7.20) (−1) · r1 + (+1) · r2 + (+1) · r3 + (−1) · r4 ≥ 1− 2

Using A of (5.7.18) and the earlier defined vector q(A), which here is equal
to 2, we may express (5.7.20) in matrix notation as

(5.7.21) A · r ≥ 1− q(A)

Our example is readily extended to the general SAT case. Let A over IB
be the given SAT instance. Then solving the SAT problem for A is equiv-
alent to finding a {0, 1} solution vector r for the inequality of (5.7.21) or
determining that no such vector exists. If the polyhedron P (A) of (5.7.14)
is integral, then the latter problem turns out to be very easy. The next
theorem gives the reason.

(5.7.22) Theorem. Let A with column index set X = {x1, x2, . . . , xn}
be a matrix over IB with at least two nonzeros in each row. Suppose that
the polyhedron P (A), which according to (5.7.14) is

(5.7.23) P (A) = {r | A · r ≥ 1− q(A); 0 ≤ r ≤ 1}

208 Chapter 5. Special Matrix Classes

is integral. Then, for each column index xj of A, there are two satisfying
solutions for A, one of which assigns True to column xj while the other one
assigns False to that column.

Proof. Recall that p(A) contains the number of +1s of each row of A.
Since A has at least two nonzeros in each row, we have A·1 = p(A)+q(A) ≥
2 · 1, which implies that A · (1

2 · 1) = 1
2 · [p(A)− q(A)] ≥ 1− q(A). For the

vector r = 1
2
· 1, we thus have A · r = A · (1

2
· 1) ≥ 1− q(A). Accordingly,

r = 1
2 · 1 is in the polyhedron P (A).
Consider the LP that asks for a vector r ∈ P (A) that minimizes a

given component rj . Since P (A) is bounded and nonempty, that LP has
an optimal extreme point solution, say, r∗. Since A is balanced, any such
extreme point is by Theorem (5.7.13) integral. Now the vector r = 1

2
· 1 is

in P (A), so the integral r∗ must have r∗j ≤
1
2 , which implies r∗j = 0. We

conclude that r∗ corresponds to a satisfying solution for A where column
xj receives the value False.

We repeat the above arguments, except that this time we use the LP
that demands a vector r ∈ P (A) with minimum −rj . We conclude that
there is an integral vector r∗ ∈ P with r∗j = 1. Hence, A has a satisfying

solution with the value True for column xj .

Theorem (5.7.22) supports the following elementary algorithm for the
SAT problem with integral P (A). Given A, we first carry out the usual
reductions. Hence, we may assume that each row of A has at least two
nonzero entries. By Theorem (5.7.22), A is satisfiable, and we may arbi-
trarily fix the value for some column y to True or False, delete all rows now
satisfied and column y, and solve the SAT problem for the reduced matrix.

The MINSAT case is a bit more complicated, but yields to the same
approach. Let a matrix A over IB and a rational nonnegative vector c
define an instance (A, c). We still assume that P (A) is integral. We solve
the MINSAT instance (A, c) by locating an optimal extreme point solution
for the LP

(5.7.24)

min ct · r
s. t. A · r ≥ 1− q(A)

−r ≥ −1
r ≥ 0

with the earlier mentioned Ellipsoid Method, or with the Simplex Method,
or with special methods applicable to particular matrices A. Since P (A) is
integral, that solution solves the MINSAT instance.

Solution Algorithms for Balanced, Totally
Unimodular, and Network Matrices

The preceding discussion of SAT and MINSAT instances with integral P (A)
fully applies to matrices that are balanced, are totally unimodular, or have

5.7. Balanced Matrices 209

the network property. Indeed, by Lemma (5.7.5), totally unimodular and
network matrices are balanced, and by Theorem (5.7.13), for any balanced
matrix A the polyhedron P (A) is integral. Thus, we may efficiently solve
any SAT instance or MINSAT instance involving a balanced, totally uni-
modular, or network matrix. When the matrix of a MINSAT instance has
the network property, then the LP (5.7.24) turns out to be equivalent to a
network flow problem that may be solved by any one of several highly effi-
cient network flow algorithms. References for these algorithms are included
in Section 5.9.

The above observations validate the following algorithm.

(5.7.25) Algorithm SOLVE BALANCED SAT OR MINSAT.
Solves the SAT or MINSAT problem involving a given balanced matrix
A over IB. In the MINSAT case, the cost vector is a given rational nonneg-
ative vector c.

Input: Balanced matrix A over IB, of size m × n. In the MINSAT case, a
rational nonnegative vector c is also given.

Output: Either: A solution for the SAT instance A or the MINSAT instance
(A, c), whichever applies. Or: “A is unsatisfiable.”

Complexity: SAT case: O(m + n + count(A)). MINSAT case: Polynomial
if a polynomial algorithm is used in Step 3.

Procedure:
1. If A has a zero row: Declare A to be unsatisfiable, and stop.

If A has no rows: Assign False to each column of A. These values plus
the earlier assigned True/False values, if any, constitute a solution for
the SAT or MINSAT instance, whichever applies.
If A has a row with just one nonzero, say, in column z: If that nonzero
is +1 (resp. −1), assign True (resp. False) to column z, delete from A
all rows now satisfied and column z, and repeat Step 1.

2. (A has at least two nonzeros in each row and by Theorem (5.7.22) is
satisfiable.) In the SAT case, arbitrarily assign True or False to some
column y of A, delete from A all rows now satisfied and column y, and
go to Step 1.

3. (We have MINSAT case.) Solve the LP

(5.7.26)

min ct · r
s. t. A · r ≥ 1− q(A)

−r ≥ −1
r ≥ 0

by a polynomial algorithm such as the Ellipsoid Method, or by the
Simplex Method, or by any special method that exploits the particular
structure of the LP. In particular, if A has exactly two nonzeros in each

210 Chapter 5. Special Matrix Classes

row, use the following polynomial method. First, apply Algorithm
SCALE NETWORK MATRIX (5.7.11) to scale the columns of A so
that in the scaled matrix each row with two nonzeros has one +1 and
one −1. Second, for each column y for which a −1 scale factor was
used, replace the element cy of c by −cy . Let A′ be the scaled matrix,
and c′ be the scaled vector. Then the LP

(5.7.27)

min (c′)t · r
s. t. A′ · r ≥ 1− q(A′)

−r ≥ −1
r ≥ 0

may be solved by any one of several highly efficient network flow algo-
rithms. For details, see the appropriate references given in Section 5.9.

The next theorem records the SAT and MINSAT centrality results proved
above for balanced matrices, totally unimodular matrices, and matrices
with the network property.

(5.7.28) Theorem.
(a) The three classes consisting of the balanced matrices, the totally uni-

modular matrices, and the matrices with the network property are
SAT central.

(b) The three classes of matrix/vector pairs where the matrices are bal-
anced, are totally unimodular, or have the network property are MIN-
SAT central.

We discuss some applications of balanced matrices.

Applications of Balanced Matrices

Recall that the MIN2SAT problem of Section 5.4 is the MINSAT prob-
lem involving matrices with at most two nonzeros in each row. As ar-
gued in Section 5.4, MIN2SAT is NP-hard. But when the matrix A of
a MIN2SAT instance (A, c) is known to be balanced, then according to
Algorithm SOLVE BALANCED SAT OR MINSAT (5.7.25) that instance
can be transformed to a polynomially solvable network flow problem. We
record this fact below.

(5.7.29) Theorem. Let (A, c) be a MIN2SAT instance; that is, A has at
most two nonzeros in each row, and c is a rational nonnegative vector. If A
is balanced, then (A, c) is solved in polynomial time by Algorithm SOLVE
BALANCED SAT OR MINSAT (5.7.25) as a network flow problem.

A second application of balanced matrices arises from the following
setting. Given is a complete bipartite graph G, say, with node subsets X

5.7. Balanced Matrices 211

and Y for the two sides of G. Let m = |X | and n = |Y |. We denote the
edge connecting x ∈ X with y ∈ Y by (x, y). We want a subset of the edge
set so that each node of X (resp. Y) has at most (resp. at least) one edge
of that subset incident.

It is well known that this problem may be formulated as a network flow
problem and thus may be efficiently solved. We present that formulation
shortly. When this problem occurs as part of a SAT or MINSAT instance,
the situation may be far from simple. We include details.

Let p(x, y) defined on X × Y be the predicate that is True if the edge
(x, y) is selected. The CNF system representing the constraints on the edge
selection contains two types of clauses. First, for each y ∈ Y , there must
be an x ∈ X such that p(x, y) has the value True. Thus, for each y ∈ Y ,
we have the clause

(5.7.30)
∨

x∈X

p(x, y)

Second, for each x ∈ X , at most one p(x, y) may have the value True. We
express that condition as follows. For each x ∈ X and for each pair of
distinct y, z ∈ Y , we require

(5.7.31) ¬p(x, y) ∨ ¬p(x, z)

Since |X | = m and |Y | = n, there are n clauses of type (5.7.30) and
1
2
·m ·n · (n− 1) clauses of type (5.7.31). Define A to be the matrix over IB

representing these clauses. Thus, A has m·n columns and n·[1+ 1
2 ·m·(n−1)]

rows. Note that the number of rows is quadratic in n and thus grows rather
rapidly with n.

If m = n − 1, then the desired edge subset cannot exist, and A is
unsatisfiable. That case is informally known as the pigeonhole problem,
where one is asked to fill n pigeonholes using at most m = n−1 pigeons, an
impossible task. Many satisfiability algorithms have a difficult time solving
the pigeonhole problem even for reasonably small values of m. Accordingly,
one may expect computational difficulties with these algorithms when that
problem or variants occur embedded in logic formulations.

Let r be the m × n {0, 1} vector with elements rxy, for each x ∈ X
and y ∈ Y . Interpret rxy = 0 (resp. rxy = 1) to mean that the edge (r, y) is
not (resp. is) selected. In terms of the vector r, the CNF system given by
(5.7.30) and (5.7.31) can be compactly formulated by the following linear
inequality system.

(5.7.32)

∑

x∈X

rxy ≥ 1, ∀y ∈ Y

∑

y∈Y

rxy ≤ 1, ∀x ∈ X

212 Chapter 5. Special Matrix Classes

Thus, the SAT problem for (5.7.30) and (5.7.31) is equivalent to finding
a {0, 1} vector r that satisfies (5.7.32) or concluding that no such vector
exists.

Suppose we replace the condition that r must be a {0, 1} vector by
the bounds 0 ≤ r ≤ 1. When these bounds plus (5.7.32) are written in
matrix notation, say, as a system B · r ≥ b, then B turns out to be totally
unimodular. Indeed, one may rewrite the problem of solving B · r ≥ b as
a network flow problem that may be solved by the aforementioned very
efficient algorithms. We conclude that the SAT problem, when seen this
way, becomes a rather easy problem. The same conclusion applies to the
MINSAT case of (5.7.30) and (5.7.31), so that problem may also be very
efficiently solved with network flow algorithms.

The above observations are well known, and the reader may won-
der why anyone would even consider the CNF formulation of (5.7.30) and
(5.7.31). The reason is that (5.7.30) and (5.7.31) may occur as part of
a larger logic formulation that defies translation to a network flow prob-
lem. But one might want to explore the following solution approach when
faced with such a logic formulation. One breaks out the portion consisting
of (5.7.30) and (5.7.31) using one of the decompositions of later chapters,
solves that subproblem via (5.7.32), and finally combines that solution with
one for the remainder of the problem. When properly implemented, that
approach may result in an attractive solution algorithm.

The above approach requires that one identify the portion of a given
CNF system corresponding to (5.7.30) and (5.7.31) and then define the
equivalent (5.7.32). That step is simplified when the SAT instance is refor-
mulated as an equivalent MINSAT instance where m new clauses play the
role of the 1

2 ·m · n · (n− 1) clauses of (5.7.31). Details are as follows.
Recall that the clauses of (5.7.31) enforce that, for each x ∈ X , there

is at most one y ∈ Y such that p(x, y) is True. We introduce an additional
predicate q(x) defined on X . We assign a cost of 1 to each p(x, y) and to
each q(x). Then we replace the 1

2
·m · n · (n− 1) clauses of (5.7.31) by the

following m clauses, one for each x ∈ X .

(5.7.33) (
∨

y∈Y

p(x, y)) ∨ q(x)

By (5.7.33), any satisfying solution for the SAT instance is also a satisfying
solution for the MINSAT instance. Indeed, due to the costs, any such
solution of the SAT instance is optimal for the MINSAT instance, with
total cost equal to m.

On the other hand, if the SAT instance is not satisfiable, then the
MINSAT instance either is unsatisfiable or has an optimal solution with
total cost greater than m.

The clauses of (5.7.30) and (5.7.33) and the costs are easily accommo-
dated by a network flow formulation. We use the vector r defined earlier

5.7. Balanced Matrices 213

and introduce an m × 1 vector s where, for each x ∈ X , the element sx

corresponds to q(x). We assign the costs of p(x, y) and q(x) to rxy and sx,
respectively, and represent (5.7.30) and (5.7.33) by the inequality system

(5.7.34)

∑

x∈X

rxy ≥ 1, ∀ y ∈ Y

(
∑

y∈Y

rxy) + sx ≥ 1, ∀ x ∈ X

That system, with costs as specified, defines a network flow problem that
has a solution with total cost equal to m if and only if (5.7.30) and (5.7.31)
are satisfiable. In the case of satisfiability, for each x ∈ X and each y ∈ Y ,
rxy = 1 (resp. rxy = 0) implies that p(x, y) is True (resp. False).

Resolution and Balanced Matrices

Resolution generally does not maintain balancedness. An example case
involves the following balanced, indeed totally unimodular, matrix.

(5.7.35)

y
1
1 1 0

-10-1
-1 0 0

1 1
a b

Balanced matrix

When Algorithm RESOLUTION FOR MATRIX (5.4.4) is applied to elim-
inate column y, the following nonbalanced matrix results.

(5.7.36)

a
1
1 -1

01

1
b

Nonbalanced matrix

The reader may object to the example matrix of (5.7.35), since it contains
a row with one nonzero entry and a monotone column. But it is easy to
embed that matrix into an example matrix that is balanced and does not
have these shortcomings.

The above negative result notwithstanding, balancedness implies an
important property of matrices A over IB that is maintained by resolution.
That property is the integrality of the polyhedron P (A) = {r | A · r ≥
1− q(A); 0 ≤ r ≤ 1}. Before we state and prove that result, we introduce
an algorithm for projecting polyhedra.

214 Chapter 5. Special Matrix Classes

(5.7.37) Algorithm PROJECT POLYHEDRON. Projects a polyhe-
dron into lower dimensional space. Specifically, for a given rational matrix
B, say, with column index set Y , and a given rational vector b, let P be the
polyhedron P = {r | B · r ≥ b}. For a specified index y ∈ Y , the algorithm
deduces a matrix B′ with column index set Y − {y} and a vector b′ such
that the polyhedron P ′ = {r′ | B′ · r′ ≥ b′} is a projection of P in the
following sense. Each vector r ∈ P becomes upon removal of the element
ry a vector r′ ∈ P ′, and each vector r′ ∈ P ′ can by addition of a suitable
ry be extended to a vector r ∈ P .

Input: Rational matrix B with column index set Y and rational vector b
defining P = {r | B · r ≥ b}. Column index y of B.

Output: Rational matrix B′ with column index set Y − {y} and rational
vector b′ defining P ′ = {r′ | B′ ·r′ ≥ b′}. The polyhedron P ′ is a projection
of P ; that is, each vector r ∈ P becomes upon removal of the element ry a
vector r′ ∈ P ′, and each vector r′ ∈ P ′ can by addition of a suitable ry be
extended to a vector r ∈ P .

Complexity: Polynomial.

Procedure:
1. Scale the inequalities B · r ≥ b with positive factors so that any term

involving ry becomes +ry or −ry. Denote the scaled system again by
B · r ≥ b.
Initialize B′ · r′ ≥ b′ as the trivial inequality system where B′ has no
rows.

2. For each inequality of B · r ≥ b that does not contain +ry or −ry:
Declare that inequality to be part of B′ · r′ ≥ b′.

3. For any two inequalities of B · r ≥ b of the form ry + dt · r′ ≥ α and
−ry + et · r′ ≥ β: Declare the inequality

(5.7.38) (dt + et) · r′ ≥ α + β

to be part of B′ · r′ ≥ b′.
4. Output B′ and b′ defining P ′ = {r′ | B′ · r′ ≥ b′}, and stop.

Proof of Validity. By the derivation of the inequality system B′ · r′ ≥ b′,
the polyhedron P ′ contains all vectors r′ derived from the vectors r ∈ P
by deletion of the element ry.

Conversely, let r′ ∈ P ′ be given. The inequality (dt + et) · r′ ≥ α + β
derived for B′ · r′ ≥ b′ in Step 3 implies that et · r′ − β ≥ −dt · r′ + α.
The latter inequality holds for the vectors d and e arising from any two
inequalities of B · r ≥ b with ry and −ry, respectively. Thus, there exists
a scalar ry such that, for all such d and e, et · r′ − β ≥ ry ≥ −dt · r′ + α,
which implies ry + dt · r′ ≥ α and −ry + et · r′ ≥ β. Thus, the vector r
composed of r′ and ry is in P .

5.7. Balanced Matrices 215

Projection preserves boundedness and integrality of polyhedra as fol-
lows.

(5.7.39) Theorem. Any polyhedron P ′ derived from a bounded inte-
gral polyhedron P by Algorithm PROJECT POLYHEDRON (5.7.37) is
bounded and integral.

Proof. Boundedness of P ′ directly follows from the boundedness of P .
Suppose P ′ has a fractional extreme point r′. Assign to ry the largest
possible value so that r composed of r′ and ry is in P . By this choice of ry

and the fact that r′ is an extreme point of P ′, the vector r is an extreme
point of P . But r is fractional, which contradicts the integrality of P .

We are ready to state and prove the main result of this subsection.

(5.7.40) Theorem. Let A be a matrix over IB. Suppose the polyhedron
P (A) given by

(5.7.41) P (A) = {r | A · r ≥ 1− q(A); 0 ≤ r ≤ 1}

is integral. Then, for any matrix A′ derived from A by Algorithm RESO-
LUTION FOR MATRIX (5.4.4), the polyhedron P (A′) is integral as well.

Proof. Let column y be eliminated by Algorithm RESOLUTION FOR
MATRIX (5.4.4).

Suppose we use Algorithm PROJECT POLYHEDRON (5.7.37) to
project out component ry of the vectors r of the bounded and integral
P (A), say, getting a polyhedron P ′ = {r′ | B′ · r′ ≥ b′}. By Theorem
(5.7.39), boundedness and integrality of P (A) implies that the polyhedron
P ′ is integral. Hence, we are done if we can prove that P (A′) = P ′.
We establish the latter equation by showing that the inequality system
B′ · r′ ≥ b′ computed by Algorithm PROJECT POLYHEDRON (5.7.37) is
essentially the same as the inequality system defining P (A′), which consists
of A′ · r′ ≥ 1− q(A′) and 0 ≤ r′ ≤ 1.

We say “essentially the same,” since we modify B′ · r′ ≥ b′ a bit
for the comparison. The changes involve the removal of some redundant
inequalities and a strengthening of some inequalities such that all extreme
points of the integral P ′ still satisfy the strengthened inequalities. Thus,
the system so derived from B′ · r′ ≥ b′ still defines P ′. Details of the
comparison are as follows.

Step 2 of Algorithm PROJECT POLYHEDRON (5.7.37) places all
inequalities of A · r ≥ 1− q(A) and 0 ≤ r ≤ 1 not involving +ry or −ry—
in particular, the inequalities 0 ≤ r′ ≤ 1—into B′ · r′ ≥ b′. By Step 2 of
Algorithm RESOLUTION FOR MATRIX (5.4.4), all such inequalities also
occur in the definition of P (A′).

Step 3 of Algorithm PROJECT POLYHEDRON (5.7.37) considers
pairs of inequalities, each of which is an inequality of A · r ≥ 1− q(A) with

216 Chapter 5. Special Matrix Classes

+ry or −ry or is one of the inequalities ry ≥ 0 and −ry ≥ −1. Three cases
of such pairings are possible.

In the first case, an inequality of A · r ≥ 1− q(A) containing +ry, say,
ry + dt · r′ ≥ 1− γ, is paired with one of A · r ≥ 1− q(A) containing −ry,
say, −ry + et · r′ ≥ 1− δ. According to (5.7.38), the following inequality is
then added to B′ · r′ ≥ b′.

(5.7.42) (dt + et) · r′ ≥ (1− γ) + (1− δ) = 1− (γ + δ − 1)

Note that γ+δ−1 is the number of −1s in d and e and thus is nonnegative.
We examine two particular subcases of (5.7.42).

If for some column index z, both dz and ez are nonzero and of opposite
sign, then −(γ+δ−1) is less than the sum of the negative entries of dt +et,
so (5.7.42) is satisfied by all {0, 1} vectors r. Accordingly, the inequality is
redundant and can be eliminated.

If dt + et contains a +2 (resp. −2), then we strengthen the inequality
by reducing the +2 to +1 (resp. by increasing the −2 to −1 and decreasing
γ +δ−1 by 1). It is easily checked that all extreme points of P ′ still satisfy
the strengthened inequality.

Second, consider any pairing of an inequality of A · r ≥ 1− q(A) with
one of the inequalities ry ≥ 0 or −ry ≥ −1. In each one of the two possible
cases, the resulting inequality holds for all {0, 1} vectors r. Thus, the
inequality is redundant and can be eliminated.

Third and last, the pairing of ry ≥ 0 with −ry ≥ −1 produces the
trivial inequality 0 ≥ −1, which can be eliminated.

Suppose the inequalities produced by Step 3 of Algorithm PROJECT
POLYHEDRON (5.7.37) have been revised as described above. The re-
sulting inequalities are readily seen to be the inequalities established by
Step 3 of Algorithm RESOLUTION FOR MATRIX (5.4.4) for P (A′).
Thus, P (A′) = P ′.

5.8 Comparison of Matrix Classes

The reader may wonder whether the matrix classes introduced in Sections
5.4–5.7 are really all that different. For example, one of the classes might
essentially subsume all other classes or at least several of them. We address
that concern in this section.

In the first part, we make precise the notion of one class of matrices
subsuming another class. In the second part, we use that concept to com-
pare the matrix classes of Sections 5.4–5.7. The conclusions are as follows.
The class of hidden nearly negative matrices subsumes the classes of 2SAT
and nearly negative matrices, and the class of balanced matrices subsumes

5.8. Comparison of Matrix Classes 217

the classes of totally unimodular and network matrices. Neither one of
the two classes of hidden nearly negative matrices and balanced matrices
subsumes the other one. So, effectively, there are just two matrix classes
that are basically different: the class of hidden nearly negative matrices
and the class of balanced matrices.

We begin the detailed discussion. Let S and S′ be two CNF systems.
We say that S subsumes S′ if

(5.8.1)

(i) All variables of S′ occur in S.
(ii) Each satisfying solution of S can, by deletion of

True/False values for the variables of S not oc-
curring in S′, be reduced to a satisfying solution
of S′.

(iii) Each satisfying solution of S′ can, by assignment
of certain True/False values to the variables of S
not occurring in S′, be extended to a satisfying
solution of S.

Conditions (ii) and (iii) of (5.8.1) imply that S and S′ are either both
satisfiable or both unsatisfiable.

A matrix A over IB subsumes a matrix A′ over IB if the CNF system
S producing A subsumes the CNF system S′ producing A′. By (5.8.1), A
subsumes A′ if and only if

(5.8.2)

(i) All column indices of A′ occur in A.
(ii) Each solution of A⊙s = 1 can, by deletion of the

entries corresponding to the column indices of A
not occurring in A′, be reduced to a solution for
A′ ⊙ s′ = 1.

(iii) Each solution of A′ ⊙ s = 1 can, by addition of
the entries corresponding to the column indices of
A not occurring in A′, be extended to a solution
for A⊙ s′ = 1.

Subsumption is related to resolution as follows.

(5.8.3) Lemma. A matrix A over IB subsumes another matrix A′ over
IB if and only if repeated applications of Algorithm RESOLUTION FOR
MATRIX (5.4.4) can reduce A to a matrix A′′ having the same set of
satisfying solutions as A′.

Proof. To show the “only if” part, we apply Algorithm RESOLUTION
FOR MATRIX (5.4.4) to A and eliminate all column indices not occurring
in A′. Let A′′ be the resulting matrix. If A subsumes A′, then by Algorithm
RESOLUTION FOR MATRIX (5.4.4) the matrix A′′ must have the same
set of satisfying solutions as A′.

218 Chapter 5. Special Matrix Classes

Conversely, if the latter fact holds, then again by Algorithm RESO-
LUTION FOR MATRIX (5.4.4) the matrix A subsumes A′.

We apply the notion of subsumption to classes of matrices over IB in
the following manner. Let C and C′ be two such classes. Then C subsumes
C′ if, for each matrix A′ ∈ C′, there exists a matrix A ∈ C that subsumes
A′.

We also define a notion of efficient subsumption. Let C and C′ be
as before. Then C polynomially subsumes C′ if there exists a polynomial
algorithm that, given a matrix A′ ∈ C′ as input, produces a matrix A ∈ C
that subsumes A′.

We view “subsumes” and “polynomially subsumes” as binary relations.
We include a few lemmas about these relations.

(5.8.4) Lemma. The two relations “subsumes” and “polynomially sub-
sumes” are transitive. That is, if C subsumes (resp. polynomially sub-
sumes) C′ and if in turn C′ subsumes (resp. polynomially subsumes) C′′,
the C subsumes (resp. polynomially subsumes) C′′.

Proof. Let A′′ be given. Since C′ subsumes C′′, there exists a matrix
A′ ∈ C′ that by repeated application of Algorithm RESOLUTION FOR
MATRIX (5.4.4) can be reduced to a matrix with the same set of satisfying
solutions as A′′. The analogous statement holds for some A ∈ C and the
matrix A′ just determined. But then A can by repeated application of
Algorithm RESOLUTION FOR MATRIX (5.4.4) be reduced to a matrix
with the same set of satisfying solutions as A′′. Hence, A subsumes A′′,
and C subsumes C′′.

If C polynomially subsumes C′ and if C′ polynomially subsumes C′′,
then the matrices A′ and A can be determined in polynomial time. Hence,
C polynomially subsumes C′′.

(5.8.5) Lemma. The class of hidden nearly negative matrices does not
subsume the class of network matrices.

Proof. Consider the network matrix A′ given by

(5.8.6)
1 1

-1-1
1

-1
A' =

Network matrix

Clearly, a True/False vector is a satisfying solution for A′ if and only if it
contains at least one True and one False. Suppose there exists a hidden
nearly negative matrix A that subsumes A′. Theorem (5.6.5) states that
Algorithm RESOLUTION FOR MATRIX (5.4.4) maintains the property
of being hidden nearly negative. Therefore, if A has more columns than
A′, then we may reduce A with Algorithm RESOLUTION FOR MATRIX

5.8. Comparison of Matrix Classes 219

(5.4.4) to a hidden nearly negative matrix that has as many columns as
A′ and that subsumes A′. Assume A already to be that reduced matrix.
Thus, A has three columns and the same set of satisfying solutions as A′.

If A contains a row with at least one zero, then that row is not satisfied
by a certain solution of A with at least one True and at least one False.
But this contradicts the fact that A and A′ have the same set of satisfying
solutions.

Hence, each row of A contains three nonzeros. If A has a row with at
least one +1 and at least one −1, then again that row is not satisfied by
a certain solution with at least one True and at least one False, another
contradiction.

Hence, each row of A has three +1s or three −1s. Indeed, for the
solution sets of A and A′ to match, both types of rows must occur in A.
But then A cannot be scaled to become nearly negative and thus is not
hidden nearly negative, a contradiction.

(5.8.7) Lemma. The class of balanced matrices does not subsume the
class of nearly negative 2SAT matrices.

Proof. We use the following nearly negative 2SAT matrix A′.

(5.8.8)
-1

-1

-1

0
-10

-1

0
-1A' =

Nearly negative 2SAT matrix

The satisfying solutions of A′ are characterized by the requirement that
they contain at most one True value. Let P be the integral polyhedron
that contains precisely the {0, 1} vectors r = [r1, r2, r3]

t corresponding to
the satisfying solutions of A′. It is easily checked that the inequalities

(5.8.9)
−1t · r ≥ −1

r ≥ 0

define P . Indeed, P is full-dimensional, and (5.8.9) is the unique minimal
description B · r ≥ b of P , up to scaling of the inequalities by positive
factors.

We claim that the inequality −1t · r ≥ −1 of (5.8.9) cannot occur as
part of an inequality system A · r ≥ 1 − q(A) with {0,±1} A. This is
because r of (5.8.9) is a 3 × 1 vector, and −1t · r ≥ −1 as inequality of a
system A · r ≥ 1 − q(A) would have the right-hand side value 1 − 3 = −2
and not −1.

We conclude that there is no matrix A over IB with three columns such
that P (A) is equal to P . Put differently, if a matrix A over IB produces a
polyhedron P (A) with the same set of integer solutions as P , then P (A)
cannot be integral.

220 Chapter 5. Special Matrix Classes

Suppose there exists a balanced matrix A that subsumes A′ of (5.8.8).
We reduce A with Algorithm RESOLUTION FOR MATRIX (5.4.4) to a
matrix A′′ with the same column index set and the same solution set as
A′.

Theorem (5.7.13) states that balancedness of A implies integrality of
P (A). According to Theorem (5.7.40), integrality of P (A) implies inte-
grality for P (A′′). Finally, Lemma (5.8.3) says that A′′ and A′ must have
the same set of satisfying solutions. But we have seen that the latter fact
implies that P (A′′) cannot be integral, a contradiction.

The main result of this section follows.

(5.8.10) Theorem.
(a) The class of hidden nearly negative matrices polynomially subsumes

both the class of 2SAT matrices and the class of nearly negative ma-
trices.

(b) The class of balanced matrices polynomially subsumes both the class
of totally unimodular matrices and the class of network matrices.

(c) Neither one of the two classes of hidden nearly negative matrices and
of balanced matrices subsumes the other one.

Proof. We show parts (a) and (b). Evidently, the class of nearly negative
matrices is contained in the class of hidden nearly negative matrices, and
the classes of totally unimodular matrices and network matrices are con-
tained in the class of balanced matrices. We complete the proof of parts
(a) and (b) by showing that the class of hidden nearly negative matrices
polynomially subsumes the class of 2SAT matrices. Let a 2SAT matrix A′

be given. We use the polynomial Algorithm SOLVE 2SAT (5.4.1) to find
a satisfying solution for A′ or to conclude that A′ is not satisfiable.

Assume the former case. Theorem (5.6.2) says that a satisfiable 2SAT
matrix—in particular, the given A′—is hidden nearly negative. Thus, we
choose A = A′ as the hidden nearly negative matrix that subsumes A′.

Suppose the latter case is at hand. We select as the hidden nearly
negative matrix A the zero matrix with one row and with the same column
index set as A′. The matrix A is unsatisfiable and thus subsumes A′.

We turn to part (c). According to Lemma (5.8.5), the class of hidden
nearly negative matrices does not subsume the class of network matrices.
On the other hand, the class of balanced matrices does subsume the class
of network matrices. Since Lemma (5.8.4) establishes transitivity of “sub-
sumes,” we conclude that the class of hidden nearly negative matrices does
not subsume the class of balanced matrices.

According to Lemma (5.8.7), the class of balanced matrices does not
subsume the class of nearly negative 2SAT matrices. However, the class of
hidden nearly negative matrices does subsume the class of nearly negative
2SAT matrices. Once more using the transitivity of “subsumes,” we see

5.9. Extensions and References 221

that the class of balanced matrices does not subsume the class of hidden
nearly negative matrices.

In the final section, we describe extensions and list references.

5.9 Extensions and References

The principle of dynamic programming mentioned in Section 5.2 is ex-
plained in any textbook on dynamic programming—for example, in Bell-
man (1957), Bellman and Dreyfus (1962), Dreyfus and Law (1977), or
Bertsekas (1987).

The elementary reduction steps of Section 5.3 involving rows with at
most one nonzero entry, monotone columns, etc. are used in virtually every
algorithm for the SAT problem. It is interesting that these reductions may
also be used in any analysis algorithm for SAT or MINSAT, as shown by
Algorithms REDUCE SAT INSTANCE (5.3.4) and REDUCE MINSAT
INSTANCE (5.3.5).

The linear time Algorithm SOLVE 2SAT (5.4.1) of Section 5.4 is due
to Evan, Itai, and Shamir (1976). For other 2SAT solution algorithms and
computational results, see Petreschi and Simeone (1980, 1991).

For the NP-completeness proofs concerning the problems GRAPH K-
COLORABILITY, INDEPENDENT SET, and VERTEX COVER, see Ga-
rey and Johnson (1979). The special case of INDEPENDENT SET solved
in Section 5.4 via 2SAT is discussed in somewhat different form by Simeone
(1985). Bagchi, Servatius, and Shi (1995) formulate the diagnosis of faulty
processors in massively parallel computing systems as a 2SAT problem.

References about resolution are given in Chapter 1. We do not know
who first stated Theorem (5.4.5), which says that resolution turns a given
2SAT instance into another 2SAT instance. At any rate, it is a well-known
observation.

An efficient algorithm for solving nested 2SAT instances is given by
Jaumard, Marchioro, Morgana, Petreschi, and Simeone (1990). The case of
uniquely solvable 2SAT instances is treated in Hansen and Jaumard (1985).

Aspvall, Plass, and Tarjan (1979) provide a linear time algorithm for
an extension of 2SAT where each clause is a CNF formula with quantifi-
cation and at most two literals per clause. Hansen, Jaumard, and Plateau
(1993) define a SAT-central class called Extended Nested Satisfiability. The
linear time solution algorithm employs the 2SAT algorithms of Aspvall,
Plass, and Tarjan (1979) and Hansen and Jaumard (1985) as subroutines.
The recognition algorithm is also linear time. The class Extended Nested
Satisfiability subsumes a class called Nested Satisfiability by Knuth (1990).
The latter reference includes a linear time solution algorithm, but does not
solve the recognition problem. In Chapter 11, it is shown that the class

222 Chapter 5. Special Matrix Classes

of Extended Nested Satisfiability is a particular case of augmented sum
decomposition. Also related to the Nested Satisfiability class is a subclass
of the MAXSAT problem discussed in Kratochv́ıl and Kr̆ivánek (1993).

Define MIN2SAT (resp. MAX2SAT) to be the subclass of MINSAT
(resp. MAXSAT) where the matrix has 2SAT form. Approximation algo-
rithms for MIN2SAT are discussed in Gusfield and Pitt (1992) and Hoch-
baum, Megiddo, Naor, and Tamir (1993). The latter reference includes
an interesting MIN2SAT formulation of integer programs with bounded
variables and with at most two variables occurring in each inequality. The
assumption of bounds on the variables is important, since integer programs
with at most two variables per inequality are shown in Lagarias (1985) to
be NP-complete. It is an open problem whether finding a feasible solu-
tion for such integer programs is difficult. Approximation algorithms for
MAX2SAT are given by Johnson (1974), Lieberherr and Specker (1981),
Poljak and Turźık (1982), Hansen and Jaumard (1990), Yannakakis (1992),
Feige and Goemans (1995), Goemans and Williamson (1995), and Cheri-
yan, Cunningham, Tunçel, and Wang (1996).

The clauses represented by the nearly negative matrices of Section 5.5
were first investigated by Horn (1951) and are usually called Horn clauses.
The SAT case of the linear Algorithm SOLVE NEARLY NEGATIVE SAT
OR MINSAT (5.5.1) was first published by Itai and Makowsky (1982, 1987).
Other linear time algorithms for that case are given by Dowling and Gallier
(1984); see also Minoux (1988), Scutellà (1990), and Ghallab and Escalada-
Imaz (1991). Dowling and Gallier (1984) also prove the minimality result
of Theorem (5.5.2).

Gallo and Urbani (1989) and Gallo and Pretolani (1995) rely on nearly
negative subproblems to prune the search tree while solving general SAT
instances.

Minoux (1992), Berman, Franco, and Schlipf (1995), and Pretolani
(1993b) give efficient algorithms for deciding unique satisfiability of nearly
negative matrices. The third reference contains the fastest algorithm, which
runs in linear time.

The problem of finding compact representations for satisfiability prob-
lems with nearly negative matrices is examined by Hammer and Kogan
(1992, 1993, 1995, 1996), Boros and Čepek (1994), and Čepek (1995).

Additional results about nearly negative matrices are in Henschen and
Wos (1974), Hooker (1989), Jeroslow and Wang (1989), Boros, Crama,
and Hammer (1990), Heusch (1994), Boros and Čepek (1995), and Ekin,
Hammer, and Peled (1997).

Further references for nearly negative matrices are included in Sec-
tion 8.7.

We do not know who first observed the well-known Theorems (5.5.5)
and (5.6.5), according to which resolution maintains near negativity and
hidden near negativity, respectively.

5.9. Extensions and References 223

Nearly negative matrices over the reals occur in areas quite removed
from logic. We mention two example classes.

The first class consists of the input–output matrices pioneered by Leon-
tief for economic analysis; see Dorfman, Samuelson, and Solow (1958), Le-
ontief (1986), and Jeroslow, Martin, Rardin, and Wang (1992).

The second class consists of the Z matrices of linear complementarity
theory. These matrices are real and square, and their off-diagonal elements
are nonpositive. The matrices were first investigated by Chandrasekaran
(1970), who gave a polynomial algorithm for the linear complementarity
problem involving such matrices. For a comprehensive discussion of Z ma-
trices, see Cottle, Pang, and Stone (1992).

We do not know who first proposed the use of column scaling as part
of theorem-proving methods. An early reference is Meltzer (1965).

Lewis (1978) first gave a polynomial, indeed quadratic, recognition
algorithm for the class of hidden nearly negative matrices of Section 5.6.
The method uses the 2SAT formulation of that section. An improved
linear algorithm, which also uses a 2SAT formulation, was subsequently
given by Aspvall (1980). That reference includes Theorem (5.6.2), which
links satisfiability of 2SAT instances with hidden near negativity.

Other recognition algorithms for hidden nearly negative matrices are
due to Mannila and Mehlhorn (1985), Lindhorst and Shahrokhi (1989),
and Hébrard (1994). A test for uniqueness of the column scaling factors
that convert a hidden nearly negative matrix to a nearly negative matrix
is presented by Hébrard (1995).

The characterization problem of hidden nearly negative matrices is
treated in Chapter 6. Related references are Chandru, Coullard, and Mon-
tañez (1988) and Chandru, Coullard, Hammer, Montañez, and Sun (1990).

An interesting class of SAT semicentral matrices called extended Horn
is given in Chandru and Hooker (1991). The class contains the class of
hidden nearly negative matrices. The reference does not give a polynomial
recognition algorithm for the class, but Swaminathan and Wagner (1995)
describe a polynomial recognition algorithm for a certain subclass that
properly includes the class of hidden nearly negative matrices. Thus, that
subclass is SAT central.

One may extend Algorithm SOLVE NEARLY NEGATIVE SAT OR
MINSAT (5.5.1) and Algorithm SOLVE HIDDEN NEARLY NEGATIVE
SAT OR MINSAT (5.6.3) so that certain generalizations of SAT and MIN-
SAT can be solved. Specifically, define SAT-b to be the following class of
satisfiability problems. Each instance is specified by a CNF system S and
an integral positive vector b. The elements of b are indexed by the clause
index set X of S. One must find True/False values for the variables of S
such that, for each x ∈ X , at least bx literals of clause x evaluate to True.
In matrix notation, an instance of SAT-b is given by a pair (A, b), where
A is over IB and has row index set X and where b is as before.

224 Chapter 5. Special Matrix Classes

Analogously, we extend MINSAT to MINSAT-b, where each instance
is given by a triple (A, b, c), where A and b are as before and where c is a
rational nonnegative cost vector whose elements are indexed by the column
index set Y of A.

When A is nearly negative, an elementary modification of Algorithm
SOLVE NEARLY NEGATIVE SAT OR MINSAT (5.5.1) gives a solution
algorithm for SAT-b and MINSAT-b. The changes of the steps of Algorithm
SOLVE NEARLY NEGATIVE SAT OR MINSAT (5.5.1) are as follows.

1. If A has a row x ∈ X with less than bx nonzero entries: Declare the
given SAT-b or MINSAT-b instance to be unsatisfiable, and stop.

If A has no rows: Assign False to each column of A. These values plus
the earlier assigned True/False values, if any, constitute a solution for
the SAT-b or MINSAT-b instance, whichever applies.

If A has a row x with exactly bx nonzero entries, say, in columns
y ∈ Y ⊆ Y : Assign True (resp. False) to each column y ∈ Y with a
+1 (resp. −1) in row x; for each z ∈ X , reduce bz by the number of
True values produced in row z by these assignments; delete all rows
z ∈ X for which the reduced bz value is nonpositive; delete all columns
y ∈ Y ; and repeat Step 1.

2. (A has in each row x more than bx nonzeros and thus at least bx

−1s.) Assign False to each column of A. These values plus the earlier
assigned True/False values, if any, constitute a solution for the SAT-b
or MINSAT-b instance, whichever applies.

Validity of the revised algorithm is argued almost exactly as for Algorithm
SOLVE NEARLY NEGATIVE SAT OR MINSAT (5.5.1). In particular,
the analogue of Theorem (5.5.2) holds.

Similarly, one may derive from Algorithm SOLVE HIDDEN NEARLY
NEGATIVE SAT OR MINSAT (5.6.3) a solution algorithm for SAT-b and
MINSAT-b with hidden nearly negative A.

Theorems (5.4.5), (5.5.5), and (5.6.5) state that resolution maintains
the 2SAT property, near negativity, and hidden near negativity, respec-
tively. There is a fundamental difference, though, between the first result
and the latter two. Since a 2SAT matrix with n columns has at most O(n2)
distinct rows, the growth of the number of rows for 2SAT matrices under
repeated application of resolution is polynomially bounded. Generally, this
is not so for nearly negative or hidden nearly negative matrices. We give
an example. For any n ≥ 1, let B be the (2n+2)×n {0,±1} matrix whose
nonzero entries are, for i = 1, 2 and j = 1, 2, . . . , n, Bi+2(j−1),j = 1 and
Bi+2(j−1)+2,j = −1. Adjoin to B a negated identity matrix of appropriate
size to get a nearly negative matrix A = [B|(−I)]. Apply resolution to A
to eliminate the columns of B. It is easy to check that the resulting matrix

5.9. Extensions and References 225

has 2n+1 distinct rows. Thus, the growth of the number of rows cannot be
bounded by a polynomial.

We turn to the balanced matrices of Section 5.7. Balancedness of
{0, 1} matrices was first defined and explored by Berge (1972, 1973). Early
results about such matrices include Fulkerson, Hoffman, and Oppenheim
(1974) and Truemper and Chandrasekaran (1978). A structure theory is
given in Conforti, Cornuéjols, and Rao (1997).

The extension of balancedness to {0,±1} matrices is introduced in
Truemper (1982); see also Truemper (1992). A structure theory of {0,±1}
balanced matrices is developed in Conforti, Cornuéjols, Kapoor, and Vuš-
ković (1994a, 1994b). The second reference includes the polynomial recog-
nition algorithm that in much abbreviated form is included as Algorithm
TEST BALANCEDNESS (5.7.3). Additional results for {0,±1} balanced
matrices are established in Conforti and Cornuéjols (1995). A comprehen-
sive survey of balancedness results is given in Conforti, Cornuéjols, Kapoor,
Vušković, and Rao (1994).

The pioneering decomposition of the so-called regular matroids by Sey-
mour (1980) implicitly contains a polynomial recognition algorithm for to-
tally unimodular matrices. An effective algorithm that uses the decompo-
sition result of Seymour (1980) is given in Truemper (1990) and is the basis
for Algorithm TEST TOTAL UNIMODULARITY (5.7.8).

Algorithm TEST NETWORK PROPERTY (5.7.9) is based on Heller
and Tompkins (1956). An alternate method is given in Truemper (1976).

The polyhedral results and the algorithms for LPs cited in Section 5.7
may be found in Chvátal (1983), Schrijver (1986), Grötschel, Lovász, and
Schrijver (1993), Nemhauser and Wolsey (1988), and Karloff (1991).

Theorem (5.7.13), which establishes the integrality of the polyhedron
P (A) = {r | A · r ≥ 1− q(A); 0 ≤ r ≤ 1}, was first proved by Conforti and
Cornuéjols (1992).

Theorem (5.7.15), which says that, for any totally unimodular matrix
A and for any integral vector b, the polyhedron P (A, b) = {r | A · r ≥
b; 0 ≤ r ≤ 1} is integral, is due to Hoffman and Kruskal (1956).

Both Theorems (5.7.13) and (5.7.15) are subsumed by a more general,
yet easily proved, result of Conforti, Cornuéjols, and Truemper (1994).
The result links balancedness and total unimodularity via the exclusion of
classes of minimal non-totally unimodular matrices. The proof is based
on Truemper and Chandrasekaran (1978), where the {0, 1} matrix case is
treated.

For a characterization of the integrality of the polyhedron P (A) = {r |
A · r ≥ 1− q(A); 0 ≤ r ≤ 1} for a certain class of matrices A over IB, see
Hooker (1996). Results related to that reference are in Boros and Čepek
(1995), Nobili and Sassano (1997), Conforti, Cornuéjols, and de Francesco
(1997), and Guenin (1997). For a summarizing treatment, see Conforti,
Cornuéjols, Kapoor, and Vušković (1996).

226 Chapter 5. Special Matrix Classes

Theorem (5.7.22), which establishes the existence of certain True/False
values for matrices A with integral polyhedron P (A) = {r | A · r ≥ 1 −
q(A); 0 ≤ r ≤ 1}, is due to Conforti and Cornuéjols (1992).

The basic reference for network flow matrices, problems, and algo-
rithms is the classic book by Ford and Fulkerson (1962). Since that book
appeared, a number of improved flow algorithms have been developed. For
a complete treatment, see Ahuja, Magnanti, and Orlin (1993).

One may generalize the network matrices with at most two nonze-
ros in each column by dropping the requirement of total unimodularity.
We call such matrices matching matrices, since the SAT and MINSAT
instances involving them belong to the well-known class of matching prob-
lems. The pioneering work on matching problems by Edmonds (1965a,
1965b) produced efficient algorithms and important structural results. For
a complete treatment, see Lawler (1976) and Lovász and Plummer (1986).
Very efficient solution algorithms are given by Derigs and Metz (1991) and
Applegate and Cook (1993).

Since SAT simple matrices do not have monotone columns and since a
matching matrix without monotone columns is a network matrix, any SAT
instance with a matching matrix can be reduced to one with a network
matrix. Such a reduction generally is not possible for MINSAT instances
involving matching matrices. Hence, such problems should be solved with
the efficient algorithms of the cited references.

Solution approaches to the pigeonhole problem that are different from
that of Section 5.7 are given by Cook (1976), Cook and Reckhow (1979),
Buss (1987), Cook, Coullard, and Turán (1987), and Bibel (1990). Other
results about the pigeonhole problem are given by Haken (1985), Buss and
Turán (1988), Paris, Wilkie, and Woods (1988), Cook and Pitassi (1990),
and Ajtai (1994).

Notions of SAT problem consequence and equivalence that are some-
what different from the concept of subsumption of Section 5.8 are provided
by Kleine Büning (1990).

Algorithm PROJECT POLYHEDRON (5.7.37) is one step of the so-
called Fourier–Motzkin elimination method. For a detailed discussion of
that method, see Schrijver (1986). The connection between Fourier–Motz-
kin elimination and resolution used in the proof of Theorem (5.7.40) is well
known. We do not know who established that result first.

Schlipf, Annexstein, Franco, and Swaminathan (1995) define a class
of matrices A over IB for which the SAT problem can be solved by a sim-
ple quadratic algorithm. The method can be made linear using parallel
checking of certain cases. The class of matrices handled by the algorithm
includes the extended Horn matrices of Chandru and Hooker (1991) and the
balanced matrices. However, the class is not maintained under submatrix
taking and thus is not SAT semicentral.

5.9. Extensions and References 227

Additional central and semicentral classes of matrices and related ref-
erences are included in Chapters 8–12. Chapter 14 summarizes and extends
these results.

The next chapter contains characterizations of the class of hidden
nearly negative matrices.

Chapter 6

Characterizations of Hidden Near

Negativity

6.1 Overview

This chapter establishes some characterizations for the class of hidden
nearly negative matrices. The results are not used in subsequent chap-
ters, so the reader may skip this chapter without loss of continuity.

A class of matrices, say, C, is typically specified in one of two ways.
First, C may be directly defined as the class of matrices having a certain
property. Second, C may be indirectly defined as the class of matrices
not having a certain other property. Regardless of the way C is defined,
one may seek additional specifications that are mathematically interesting.
Such alternate specifications usually are called characterizations. In par-
ticular, if one has a definition of the first (resp. second) kind, then it is
interesting to determine characterizations of the second (resp. first) kind.

We pursue this idea for the classes of central matrices of Chapter 5.
Theorem (5.8.10) says that those central classes are subsumed by the class
of hidden nearly negative matrices and the class of balanced matrices.
Hence, we restrict ourselves to the latter two classes.

Consider the class C of {0,±1} balanced matrices. Section 5.7 defines
that class by the exclusion of cycle submatrices for which the sum of the
entries is equal to 2(mod 4). Thus, we have a definition of C of the second
kind.

Theorem (5.7.13) says that a {0,±1} matrix is balanced if and only if,
for each submatrix A of that matrix, the polyhedron P (A) = {r | A · r ≥
1 − q(A); 0 ≤ r ≤ 1} is integral. Evidently, Theorem (5.7.13) supplies a
characterization of the first kind.

228

6.2. Minimal Excluded Boolean Minors 229

A more complicated characterization of C of the first kind is implicit
in Algorithm TEST BALANCEDNESS (5.7.3). That algorithm utilizes
certain decompositions. One may rewrite the underlying decomposition
results into a characterization of C of the first kind.

We turn to the hidden nearly negative matrices, that is, to the {0,±1}
matrices that can be column scaled to become nearly negative. Let C be
the class of those matrices. Clearly, the definition of C is of the first kind.

We want a characterization of C of the second kind, that is, a charac-
terization that demands a certain property to be absent. Specifically, we
desire a characterization that establishes membership in C by the exclusion
of certain matrix structures.

Since hidden near negativity is maintained under subregion taking and
since we would like to obtain a compact characterization, we take it as our
goal to identify the matrices that are not hidden nearly negative and that,
subject to that condition, are minimal under subregion taking. We call
these matrices the minimal excluded subregions of hidden near negativity.
Locating these minimal matrices is surprisingly difficult. We carry out that
task in the next two sections.

In Section 6.2, we review relevant definitions—in particular, the def-
inition of the labeled, directed, bipartite graph DBG(A) arising from any
{0,±1} matrix A and the definition of Boolean minor. We establish the
minimal Boolean minors of the graphs DBG(A) that must be excluded if
A is to be hidden nearly negative. These minors are the minimal excluded

Boolean minors of hidden near negativity.
In Section 6.3, we derive from the minimal excluded Boolean minors

the minimal excluded subregions of hidden near negativity. As a corollary,
we derive a characterization of the satisfiable 2SAT matrices.

The reader may wonder why we do not establish the excluded subre-
gion characterization of Section 6.3 directly, without the detour via minimal
excluded Boolean minors. We have two reasons. First, the characterization
of those minors is interesting in its own right. Second, the number of min-
imal excluded subregions is rather large. The detour via Boolean minors
significantly reduces the effort to establish these minimal matrices.

In the final section, 6.4, we discuss related material and list references.

6.2 Minimal Excluded Boolean Minors

Suppose a given {0,±1} matrix A is not hidden nearly negative. In this
section, we show that the labeled, directed, bipartite graph DBG(A) of A
has one or more minors of a certain form that certify A to be not hidden
nearly negative. The minors are minimal with respect to node deletion.
Collectively, the minors constitute the minimal excluded Boolean minors
of hidden near negativity. We first review relevant definitions.

230 Chapter 6. Hidden Near Negativity

Review of Definitions

According to Sections 5.5 and 5.6, a {0,±1} matrix A is nearly negative
if each row contains at most one +1, and it is hidden nearly negative if
A becomes nearly negative upon an appropriate column scaling by {±1}
factors.

By Section 2.6, the labeled, directed, bipartite graph DBG(A) is de-
rived from a {0,±1} matrix A as follows. We start with the bipartite
graph BG(A). In the latter graph, each edge represents a {±1} entry of
A. The graph BG(A) does not differentiate between +1 and −1 entries of
A. But we may encode that information for each nonzero entry Axy of A
by directing in BG(A) the corresponding edge, which connects row node x
with column node y. Specifically, if Axy = 1 (resp. Axy = −1), we direct
that edge from row node x to column node y (resp. column node y to row
node x). We convert the resulting directed, bipartite graph to a labeled,
directed, bipartite graph by assigning the label 1 to each arc. The latter
graph we declare to be DBG(A), the “D” indicating “directed.” Note that
DBG(A) has only 1s as arc labels, while a labeled, directed, bipartite graph
in general may have 1s and 2s assigned to its arcs.

Section 2.5 defines the operation of Boolean minor taking for labeled,
directed, bipartite graphs. Let H be such a graph. We scale a column
node of H by reversing the direction of the arcs incident at that node. The
labels of the arcs are not affected. Column scaling of H refers to possibly
repeated scaling of column nodes of H. Suppose G1, G2, . . . , Gn are the
strong components of H. Then we shrink H by first collapsing, for each
Gk, k = 1, 2, . . . , n, the row nodes of Gk to a new row node and collapsing
the column nodes of Gk to a new column node. Of course, Gk may not
have any row (resp. column) nodes. In that case, Gk has just one column
(resp. row) node, and that node is not affected according to the rule for
collapsing nodes. In the next step of the shrinking operation, we delete all
arc labels and replace any instance of multiple arcs with the same endpoints
and the same direction by just one arc each. Finally, in the reduced graph
we assign to each arc the label 1 or 2, where the case of a 1 corresponds
precisely to the following situation. Let the arc in question connect the row
node r and the column node c of the reduced graph. Define R (resp. C) to
be the set of row (resp. column) nodes of H that were collapsed to form r
(resp. c). If in the reduced graph the arc in question goes from node r to
node c (resp. from node c to node r), then that arc receives the label 1 if
and only if in H every row node of R has exactly one arc outgoing to (resp.
incoming from) the nodes of C and that arc has the label 1. The graph H
resulting from these steps is the graph produced by shrinking from H.

We reduce H to a Boolean minor H using column scaling, shrinking,
and deletion of column or row nodes. Any one of these operations may
be omitted. But, modulo such omissions, we always consider these opera-

6.2. Minimal Excluded Boolean Minors 231

tions done in the specified order. The inverse operations are the addition
of nodes, unshrinking, and column scaling, always done in that order. We
demand adherence to the specified order, since a resequencing of reduc-
tion steps may produce different minors or may even lead to undefined
situations.

Hidden Near Negativity of Graphs

We extend the notion of near negativity and hidden near negativity of
matrices to labeled, directed, bipartite graphs. Let H be such a graph.
Then H is nearly negative if the following condition is satisfied: Each row
node has at most one leaving arc, and if such an arc is present, then that
arc must have a 1 as label. The graph H is hidden nearly negative if it
becomes nearly negative by appropriate column scaling. We emphasize
that the above definitions apply not just to graphs of the form DBG(A),
where each arc has a 1 as label, but to general labeled, directed, bipartite
graphs, where both 1s and 2s may occur as arc labels.

The definitions of near negativity and hidden near negativity for la-
beled, directed, bipartite graphs are consistent with those for {0,±1} ma-
trices, as shown in the following lemma.

(6.2.1) Lemma. A {0,±1} matrix A is nearly negative (resp. hidden
nearly negative) if and only if the graph DBG(A) has the same property.

Proof. We prove the case of hidden near negativity. The matrix A has
that property if and only if A can be column scaled such that each row of
the scaled matrix contains at most one +1. The latter condition holds if
and only if DBG(A) can be column scaled such that each row node of the
scaled graph has at most one leaving arc. By the definition of DBG(A), any
such arc must have a 1 as label. Thus, the scaling condition for DBG(A)
is satisfied if and only if that graph is hidden nearly negative.

We desire a simplified notation for the discussion to follow. So for
the remainder of this chapter, we let H denote the labeled, directed, bi-
partite graph DBG(A) of a given {0,±1} matrix A. When the connection
between the graph H and the matrix A is to be emphasized, we say that
H corresponds to A. We also abbreviate “Boolean minor” to “minor.”

Basic Results for Minors

We establish some elementary results for the minors of a given graph H.

(6.2.2) Lemma. Let H be the minor of a graph H obtained by shrinking.
Then every strong component of H has one or two nodes.

232 Chapter 6. Hidden Near Negativity

Proof. Let H have a strong component with at least three nodes. Each
node of that component corresponds to a node subset of H, and the union of
these node subsets of H defines a strong component of H that is not among
the strong components used in the shrinking process. But this contradicts
the definition of the shrinking process.

(6.2.3) Lemma. Suppose a given graph H is column scaled and shrunk
so that the resulting graph H has as few nodes as possible. Let a graph H ′

be derived from H by column scaling. Then H can be column scaled to a
graph H ′ so that shrinking, when applied to H ′, produces H ′. Furthermore,
the node sets of the strong components of H ′ are precisely the node sets of
the strong components of H.

Proof. We may assume that H is obtained from H just by shrinking.
Suppose we column scale H, getting a graph H ′. We column scale H as
follows. Suppose a column c of H was produced by collapsing a node subset
C of H. We apply to each node of C in H the scale factor for node c of
H that was used in the derivation of H ′. Let H ′ be the graph so produced
from H. It is easily checked that any strong component of H corresponds
to a strongly connected subgraph of H ′.

Supppose H ′ contains a strong component that has no counterpart in

H. Then shrinking reduces H ′ to a minor H ′ that has fewer nodes than H.

Since H ′ is also a minor of H, we have a contradiction of the minimality
of H. Thus, the node sets of the strong components of H are precisely the
node sets of the strong components of H ′. This fact implies that shrinking
reduces H ′ to H ′and that the node sets of the strong components of H ′

are precisely the node sets of the strong components of H.

Near negativity is maintained by shrinking and unshrinking as follows.

(6.2.4) Lemma. Let H be a minor of a graph H obtained by shrinking.
Then H is nearly negative if and only if this is so for H.

Proof. For proof of the “only if” part, suppose that H is not nearly neg-
ative. Thus, H has a row node r with at least two leaving arcs, each with
the label 1, or with at least one leaving arc with the label 2. Let R be the
subset of row nodes of H defining r. By the rules for labels of H, the graph
H must contain a row node in R having at least two leaving arcs with the
label 1 or having at least one leaving arc with the label 2. Thus, H is not
nearly negative. The converse part can be proved similarly.

Theorem (6.2.6) below establishes that hidden near negativity holds
for a graph H if and only if it holds for certain minors of H. We need the
following lemma for the proof of that theorem.

(6.2.5) Lemma. Assume that a graph H can be column scaled to become
nearly negative. Suppose that a directed path of H begins at a column node

6.2. Minimal Excluded Boolean Minors 233

and that the scaling factor for that node is selected to be a −1. Then near
negativity can only be achieved if the scaling factor of each column node
of the path is equal to −1.

Proof. If the lemma is false, then the path has two successive arcs (i, k)
and (k, j) where i is a column node with scaling factor −1, k is a row node,
and j is a column node with scaling factor 1. The scaling converts the
arc (i, k) to an arc (k, i), and leaves the arc (k, j) unchanged. Thus, the
scaled graph has at least two arcs leaving row node k and cannot be nearly
negative, a contradiction.

(6.2.6) Theorem. Let H be a minor of H produced by shrinking. Then
H can be column scaled to become nearly negative if and only if this is so
for H.

Proof. For proof of the “if” part, suppose that H can be column scaled
to become a nearly negative graph, say, H ′. We convert the scaling factors
of H to ones for H as follows. Suppose a column node c of H is produced
from H by collapsing of a column node subset C. Then, to each node of C
in H, we assign as scaling factor the one for node c in H. We claim that
H ′, the graph derived from H by that scaling, is nearly negative, which
establishes the “if” part. Suppose this is not so. Thus, a row node i of H ′

has at least two outgoing arcs or exactly one outgoing arc with the label
2. That node is part of a row node subset R that in the shrinking of H
was collapsed to a row node r of H. By direct checking of the few possible
cases, we conclude that the row node r of H ′ has at least two outgoing arcs
or exactly one outgoing arc with the label 2, a contradiction.

We turn to the “only if” part. Thus, we assume that H can be column
scaled to become a nearly negative graph H ′. We claim that all column
nodes of a given strong component of H must be scaled with the same
factor. Indeed, each column node of a strong component is joined to any
other column node of that strong component by a directed path. By Lemma
(6.2.5), all nodes of such a path must be scaled by the same factor if a
nearly negative graph is to result. We thus may deduce scaling factors for
the column nodes of H from the scaling factors for Has follows. If a column
node subset C of H is collapsed to produce a column node c of H, then
we assign to node c the factor used for any one node of C in H. Direct
checking of the few possible cases for the row nodes of H then establishes
that these scaling factors convert H to a nearly negative graph.

(6.2.7) Corollary. If H is hidden nearly negative, then this is so for each
minor of H.

Proof. A minor of H is produced by column scaling, shrinking, and dele-
tion of nodes. Suppose H is hidden nearly negative. Clearly, column
scaling and deletion of nodes maintain that property. By Theorem (6.2.6),
shrinking does so as well.

234 Chapter 6. Hidden Near Negativity

Suppose that H is not hidden nearly negative. Then a given minor of
H may or may not be hidden nearly negative. Hence, it makes sense to ask
for a minor of H that is not hidden nearly negative and that, subject to
that condition, has the least number of nodes. Such a minor is a minimal

excluded Boolean minor of hidden near negativity, abbreviated minimal

minor.

Auxiliary Graphs

For a compact display of the minimal minors, we introduce the following
eight auxiliary graphs N ′

k and N ′′

k , 1 ≤ k ≤ 4. Here and later, we use the
convention that any arc shown without a label implicitly has a 1 as label,
and that row nodes are indicated by squares.

(6.2.8)

Ñα

q' z' p' z'
q'2

2
q' z'

N ′

1
N ′

2
N ′

3

q''
p'' z''

Ñα

2
q'' z''

2

q'' z''

N ′′

1
N ′′

2
N ′′

3

z'q'

P'

Ñα

P''

q'' z''
Ñα

N ′

4
N ′′

4

Auxiliary graphs N ′

k and N ′′

k , 1 ≤ k ≤ 4

Each arc label α may be equal to 1 or 2. Note that each N ′′

k is a column
scaled version of N ′

k. The following conditions apply to N ′

4 and N ′′

4 .

(6.2.9)

(i) Both N ′

4
and N ′′

4
have at least four nodes.

(ii) If the single arc of N ′

4
or N ′′

4
has arc label α = 2,

then the path P ′ of N ′

4
or P ′′ of N ′′

4
has just one

arc.

6.2. Minimal Excluded Boolean Minors 235

Characterization of Minimal Minors

The desired minimal minors are the graphs L0 and Lkl, 1 ≤ k, l ≤ 4, of
(6.2.10) below. Note that the two circles of the drawing for Lkl are labeled
N ′

k and N ′′

l . Those circles represent the graphs N ′

k and N ′′

l of (6.2.8). In
particular, the node z′ (resp. z′′) explicitly shown within the circle for N ′

k

(resp. N ′′

l) is the node z′ of N ′

k (resp. z′′ of N ′′

l) shown in (6.2.8).

(6.2.10)

Nl''Nk' z''z'

2

2

L0 Lkl

Graphs L0 and Lkl, 1 ≤ k, l ≤ 4

(6.2.11) Theorem.
(a) Let A be a {0,±1} matrix, and let H be the graph corresponding to

A. Then A is hidden nearly negative if and only if H does not have
any minors of type L0 or Lkl, 1 ≤ k, l ≤ 4, of (6.2.10).

(b) The graphs L0 and Lkl, 1 ≤ k, l ≤ 4, are minimal in the sense that
every proper subgraph obtained from these graphs by node deletions
is hidden nearly negative.

We accomplish the proof of Theorem (6.2.11) via a series of claims. We
desire an abbreviated terminology for the graphs L0 and Lkl, 1 ≤ k, l ≤ 4.
Thus, we refer to any one of these graphs as a graph of type L, or simply
as an L graph.

Proof of Part (b)

We first handle the easy part (b) of Theorem (6.2.11).

Claim 1. Each L graph cannot be column scaled to become nearly neg-
ative and is minimal with respect to that property.

Proof. The result clearly holds for L0. For Lkl, 1 ≤ k, l ≤ 4, we argue
as follows. First, N ′

k is nearly negative, while N ′′

l is not. Second, near
negativity of N ′

k is lost if we scale the column node z′ with a −1 factor,
and it cannot be restored by scaling of other column nodes of N ′

k. Third,
near negativity is attained for N ′′

l only if we scale column node z′′ plus
possibly other column nodes of N ′′

l with a −1 factor. Fourth, suppose we

236 Chapter 6. Hidden Near Negativity

scale the node z′′ of Lkl with a −1 factor. If further column scaling is to
result in a nearly negative graph, then by Lemma (6.2.5) we must also scale
all other column nodes of the path from z′′ to z′—in particular, the node
z′. But we have already seen that such scaling of z′ converts N ′

k to a graph
that cannot become nearly negative by additional column scaling. Thus,
each L graph cannot be scaled to become nearly negative.

We turn to the minimality claim. Since L0 has just two nodes, that
graph is clearly minimal. By the above discussion, deletion of any node
of the path of Lkl from z′′ to z′ results in a graph that can be column
scaled to become nearly negative. Simple case checking reveals that the
same conclusion is valid when we delete any one node of N ′

k or N ′′

l .

Proof of Part (a)

We turn to part (a) of Theorem (6.2.11). For proof of the “only if” portion,
we suppose that A is hidden nearly negative. Corollary (6.2.7) says that
each minor of the corresponding graph H is hidden nearly negative. By
part (b), each L graph is not hidden nearly negative and thus cannot be a
minor of H.

For proof of the “if” portion of part (a), we assume that H does not
have any L graph as minor, and we constructively show that H can be
column scaled to become nearly negative.

We first column scale the graph H such that shrinking produces a
minor H with minimum number of nodes. By Lemmas (6.2.2) and (6.2.3),
the node sets of the strong components of H have at most two nodes
and are precisely the node sets of the strong components of any graph H ′

derived by column scaling from H. Indeed, by Lemma (6.2.3), we may
freely column scale H, since any graph H ′ so obtained may be produced
from some scaled version H ′ of H and thus is a minor of H. As a matter of
notational convenience, we always consider any such H ′ to be relabeled as
H, and H ′ to be relabeled as H, without explicit mention. In agreement
with this scaling, we assume that the matrix A is column scaled to a matrix
which we refer to as A again. Thus, at any point in time, the current H
corresponds to the current A, and H may be obtained from H by shrinking
only.

Later, we encounter in some scaled version of H a strong component
with at least three nodes. We then say that we have found a large strong

component. Of course, such a component cannot exist by Lemmas (6.2.2)
and (6.2.3), and the situation at hand can be eliminated from consideration.
In addition, we call a directed cycle with more than two arcs a large directed

cycle. The existence of such a cycle in H also represents a contradiction.
Theorem (6.2.6) says that H can be column scaled to become nearly

negative if and only if this is so for H. Thus, we are done once we column
scale H to a nearly negative graph.

6.2. Minimal Excluded Boolean Minors 237

If H can be reduced to an L graph by deletion of nodes, then H has
that L graph as a minor. But this contradicts the assumed absence of L
minors. Thus, deletion of nodes cannot reduce H to an L graph. The next
claim strengthens that conclusion.

Claim 2. H cannot be reduced to an L graph by deletion of nodes and
arcs; that is, H does not have any L graph as subgraph.

Proof. It suffices to show that presence of an L subgraph in H implies
that an L graph may be obtained from H by column scaling and node
deletions. We prove this as follows. We consider the addition of an arc
to any one of the L graphs such that the arc does not have the same
endpoints and the same direction as an already existing arc. We then show
that, up to column scaling, the resulting graph either is again an L graph,
or contains an L graph with fewer nodes, or cannot possibly be a subgraph
of H. We establish the third case by scaling column nodes so that a large
strong component is created. A tedious but otherwise straightforward case
analysis of the possible arc additions to each L graph confirms that each
situation leads to one of the three conclusions.

In agreement with Claim 2, we suppose from now on that H and all
column scaled versions of H do not have L subgraphs.

In subsequent claims and proofs, we utilize the notation of (6.2.8) to
reference the nodes of the graphs N ′

1
–N ′

3
and N ′′

1
–N ′′

3
.

Claim 3. Without loss of generality, H does not contain N ′′

1
–N ′′

3
sub-

graphs.

Proof. Suppose there is such a subgraph, say, N . If a choice exists for
N , we prefer a case of N ′′

1
or N ′′

3
over one of N ′′

2
. Scale the node z′′ of N

with a −1 factor. We claim that this scaling does not introduce a new N ′′

1

or N ′′

3 (resp. N ′′

1 –N ′′

3) subgraph if N is of type N ′′

1 or N ′′

3 (resp. is of type
N ′′

2
). Suppose there is such a new subgraph. Let M be the corresponding

subgraph of H.
Suppose N is of type N ′′

1
or N ′′

3
. By assumption, the new subgraph

introduced by the scaling is of type N ′′

1 or N ′′

3 , so M must be an N ′

1 or N ′

3

subgraph, and the node z′′ of N must be the node z′ of M . Using M and
N , one readily confirms that H contains a large strong component or an L
subgraph, a contradiction.

In the remaining case, H has no N ′′

1
or N ′′

3
subgraphs, and N is of type

N ′′

2 . Straightforward checking confirms that M must be of type N ′

1, N ′

2, or
N ′

3
and that node z′′ of N must be the node z′ of M . Once more, one then

confirms that H contains a large strong component or an L subgraph, a
contradiction.

Repeated column scaling thus can eliminate all instances of N ′′

1 –N ′′

3

subgraphs from H.

238 Chapter 6. Hidden Near Negativity

Due to Claim 3, we assume from now on that H has no N ′′

1 –N ′′

3 sub-
graphs. Declare any node of H to be forced if it is the column node z′ of
a subgraph of type N ′

1–N ′

3. At this point, two situations must be consid-
ered, depending on whether H has at least one forced node. In Claims 4–7
we deal with the case where this is so. The second situation is treated in
Claims 8–12.

Presence of Forced Nodes

Until stated otherwise, we assume that H has at least one forced node.
To analyze H, we carry out a breadth first search (BFS) as follows. We
collect the forced nodes in a set called layer 1 and consider them processed.
Inductively, suppose we have disjoint node sets called layers 1, 2, ..., m−1.
Each layer contains just row nodes or just column nodes, and these nodes
are considered processed. Let i be a node not processed so far. If there is
an arc (i, j) connecting i with some node j of layer m − 1, then we place
node i into layer m and consider node i processed. We augment this rule
as follows. Suppose layer m − 1 is a layer of row nodes. Further, suppose
that a not yet processed column node i has at least one arc incoming from
the nodes of layer m−1, but has no arc outgoing to the latter nodes. Then
we scale node i and thus make it eligible to become part of layer m.

Note that by the definition of the BFS, all odd-numbered (resp. even-
numbered) layers consist of column (resp. row) nodes.

Claim 4.
(a) From any node of any layer m ≥ 1, there is a directed path to some

node of layer 1. Any shortest such path contains one node each of
layers m, m− 1, ..., 1, in that order, and each arc of such a path has
the label 1.

(b) For any odd m ≥ 3, the layers 1, 3, . . . , m of column nodes contain all
neighbors of the row nodes in layers 2, 4, . . . , m− 1.

(c) The column scaling of the BFS does not affect N ′

1–N ′

3 subgraphs and
cannot create N ′′

1
–N ′′

3
subgraphs.

Proof. Parts (a) and (b) follow directly from the rules of the BFS, except
for the claim about arc labels in (a). But any arc of H with the label 2,
say, outgoing from a node i, constitutes an N ′

3
subgraph, and thus i is a

forced column node and cannot be in any layer m > 1.
For part (c), we first note that the node z′ of any N ′

1
–N ′

3
subgraph is

in layer 1 and thus cannot be column scaled by the BFS. Only one other
column node must be considered for the possible loss of N ′

1
–N ′

3
subgraphs,

the node p′ of N ′

2. Suppose node p′ is not in layer 1. Then the arc (p′, q′)
of N ′

2
must have the label 1, since otherwise the nodes p′ and q′ define

an N ′

1 subgraph, which implies p′ to be in layer 1. But the label 1 of
(p′, q′) implies that p′ may be scaled by the BFS without affecting the N ′

2

6.2. Minimal Excluded Boolean Minors 239

subgraph. Thus, the column scaling of the BFS does not affect N ′

1–N ′

3

subgraphs. The above arguments also imply that the column scaling does
not introduce any N ′′

1 –N ′′

3 subgraphs.

Since by Claim 4(c) the column scaling of the BFS does not affect N ′

1–
N ′

3
subgraphs and does not introduce N ′′

1
–N ′′

3
subgraphs, we may assume

that the BFS does not involve any column scaling at all. When the BFS
stops, the processed nodes induce a subgraph of H, say, H1. If H1 6= H,
then the rules of the BFS imply that the last layer processed in the BFS,
say, layer m, must contain column nodes and that the arcs connecting these
nodes with not yet processed nodes must be incoming into the latter nodes.
Define H2 to be the graph induced by the not yet processed nodes. The
following sketch depicts a typical situation.

(6.2.12) ≥ 1H1 H2

≥ 1

≥ 1

Graph H when BFS stops

Claim 5. H1 is not nearly negative, or Theorem (6.2.11)(a) holds by
induction.

Proof. Suppose H1 is nearly negative. Let H1 (resp. H2) be the subgraphs
of H corresponding to H1 (resp. H2). Then the drawing of (6.2.12) applies
to H1 and H2 once we relabel H1 of the drawing to H1 and relabel H2

to H2. Lemma (6.2.4) says that a minor obtained by shrinking is nearly
negative if and only if the original graph has that property. Hence, the
near negativity of H1 implies that H1 is nearly negative. Define X1 (resp.
Y1) to be the set of row (resp. column) nodes of H1, and define X2 (resp.
Y2) to be the corresponding node sets of H2. We claim that the sets X1,
X2, Y1, and Y2 partition the current A as follows.

(6.2.13) X1
A =

Y1

A1

DX2

Y2

A2

0

Matrix A

Indeed, since only column nodes of H1 are linked to nodes of H2, the
submatrix indexed by X1 and Y2 is 0. Since H1 is nearly negative, the

240 Chapter 6. Hidden Near Negativity

submatrix A1 indexed by X1 and Y1 is nearly negative. Finally, since
all arcs connecting H1 and H2 are incoming into row nodes of H2, the
submatrix D indexed by X2 and Y1 does not contain any +1s. Hence,
the matrix A can be column scaled to become nearly negative if and only
if this is so for the submatrix A2. Theorem (6.2.11)(a) clearly holds for
small instances of A. Under an appropriate induction hypothesis, A2 can
be column scaled to become nearly negative, and thus Theorem (6.2.11)(a)
holds by induction.

Due to Claim 5, we assume from now on that H1 is not nearly negative.
Since H1 has no N ′′

2
subgraphs, it has a row node v with at least two

outgoing arcs, say, (v, i) and (v, j). By (6.2.12), i and j are in H1. By
Claim 4(a), there are directed paths from i and j to layer 1 nodes. Pick v,
i, j, and the two paths so that the union of the two paths has a minimum
number of nodes.

Suppose that node v occurs on one of the two paths, say, on the one
from node i to a layer 1 node. Due to the BFS rules, this is possible only if
node v is in some layer m > 1 and node i is in layer m +1. Thus, the path
has i and v as the first two nodes. Let w be the node on the path following
v. Then the arcs (v, i), (i, v), and (v, w) constitute an N ′′

2
subgraph, a

contradiction.
We enlarge the two paths on hand by adding arcs (v, i) and (v, j),

obtaining two directed paths P1 and P2 that have node v as common end-
point and that have layer 1 nodes as second endpoints. Two subcases are
possible, depending on whether the two paths have a common node other
than v. Claim 6 below deals with the subcase where such a common node
exists. Claim 7 handles the subcase when this is not so.

Claim 6. Assume that the two paths have a common node other than v.
Then, for some 1 ≤ k ≤ 3, H has an Lk4 subgraph.

Proof. Among the common nodes different from v, let z′′ be the one closest
to v. Relabel v to q′′. Let R be the subpath from z′′ to the layer 1 node,
say, z′, of one of the two paths. We may have z′′ = z′. Define P ′′ (resp.
Q′′) to be the subpath of P1 from q′′ to i to z′′ (resp. of P2 from q′′ to j to
z′′).

If z′′ is a row node, we column scale all nodes of P ′′ to convert P ′′∪Q′′

to a large directed cycle, a contradiction. Thus, z′′ is a column node. Then
P ′′ ∪ Q′′ constitutes an N ′′

4
subgraph whose node z′′ is connected by the

directed path R to the forced node z′. By definition, the latter node is part
of an N ′

1–N ′

3 subgraph, say, M . According to the drawing of Lkl in (6.2.10),
we thus have found, for some 1 ≤ k ≤ 3, an Lk4 subgraph, provided that
P ′′∪Q′′∪R has only the node z′ in common with M . The latter assumption
is easily proved. As an example, we include details for the situation where
M = N ′

1. If the node q′ of N ′

1 is in R, then the predecessor of q′ in R is a
forced node, a contradiction. If q′ is in P ′′ and z′ 6= z′′, then the arc (z′, q′),

6.2. Minimal Excluded Boolean Minors 241

plus a part of P ′′, plus R, defines a large directed cycle, a contradiction. If
q′ is in P ′′ and z′ = z′′, then scaling of all column nodes of Q′′ with a −1
factor produces a large directed cycle, again a contradiction.

Claim 7. Assume that the two paths are node disjoint except for v.
Then, for some 1 ≤ k, l ≤ 3, H has an Lkl subgraph, up to column scaling.

Proof. Let P1 and P2 be the two paths as before, and define z′

1
and z′

2
,

respectively, to be the layer 1 endpoints of these paths. By assumption,
z′

1
6= z′

2
.

Since z′

1 (resp. z′

2) is in layer 1, the graph H has an N ′

1–N ′

3 subgraph
M1 (resp. M2) with z′

1
(resp. z′

2
) as forced node.

Suppose that M1 (resp. M2) has only the node z′

1 (resp. z′

2) in common
with P1 ∪ P2, and that M1 and M2 are node disjoint. Then we scale all
column nodes of M1∪P1 with a −1 factor to get the desired Lkl subgraph.
Thus, we are done once we prove the two assumptions just made.

First, if M1 has a node other than z′

1
in common with P1 ∪ P2, then

one readily shows that H has an N ′′

2
minor, or that a node of P1∪P2 other

than z′

1
or z′

2
is forced, or that by column scaling one may obtain a large

strong component.
Second, if the single row node of M1 occurs also in M2, then column

scaling in M1 ∪M2 ∪ P1 ∪ P2 can create a large directed cycle. This leaves
one case where M1 and M2 are both N ′

2
subgraphs that share the column

node different from z′

1
and z′

2
. But then column scaling can create a large

directed cycle.

We have completed the proof of Theorem (6.2.11)(a) for the case where
H has at least one forced node.

Absence of Forced Nodes

From now on, we assume that H has no forced nodes.

Claim 8. H has no arc with the label 2. For any strong component of H
with two nodes, say, with row node q and column node p, the node q has
only node p as neighbor.

Proof. If H has an arc with the label 2, then H has an N ′

1
or N ′

3
subgraph.

If the row node p of a strong component of H with two nodes has a neighbor
other than p, then H has an N ′

2
or N ′′

2
subgraph. The N ′′

2
case is ruled

out by Claim 3. We conclude that, if Claim 8 does not hold, then H has
an N ′

1
–N ′

3
subgraph. But the absence of forced nodes rules out such a

subgraph.

By Claim 8, the strong components of H on two nodes have no influ-
ence on whether or not H can be scaled to become nearly negative. Thus,
for each such component, we delete its row node from H. It is convenient
for us to consider H itself to be that reduced graph.

242 Chapter 6. Hidden Near Negativity

Claim 9. H cannot be column scaled so that the resulting graph contains
a directed cycle.

Proof. The initial graph H was derived from H by scaling and shrinking so
that the resulting minor had a minimum number of nodes. Lemma (6.2.3)
says that scaling of such a minor cannot introduce new strong components.
The same conclusion must hold for the current graph H.

Claim 10. H has an N ′

4
subgraph, or Theorem (6.2.11)(a) holds by

induction.

Proof. We apply the BFS to H, except that this time we define layer 1
to contain just one arbitrarily selected column node s of H. As before,
the algorithm must stop with two subgraphs H1 and H2 as depicted in
(6.2.12), and Claim 5 applies. That is, if H1 is nearly negative, then
Theorem (6.2.11)(a) holds by induction. Hence, we assume that H1 is not
nearly negative. Proceeding as before, we locate a row node v and two
directed paths from v to the node s of layer 1. Let w be the node common
to the two paths and closest to v. If w is a row node, then by column scaling
we can obtain a directed cycle in H, a contradiction of Claim 9. Thus, w
is a column node. Evidently, the two subpaths from v to w constitute an
N ′′

4
graph. We scale all column nodes of that subgraph to get the desired

N ′

4
subgraph.

From now on, we suppose that H itself has N ′

4
as subgraph. Once

more we use the BFS. This time, layer 1 contains just the column node z′

of N ′

4
. Also, the BFS ignores all nodes of N ′

4
other than z′. Equivalently,

the BFS is done on the graph derived from H by deletion of all nodes of
N ′

4
other than z′.
When the BFS stops, we have a subgraph H1 of H of processed nodes

as well as a subgraph H2 containing the remaining nodes of H that are
not in N ′

4
. The relationships between H1 and H2 are correctly depicted in

(6.2.12). Note that Claim 4(a) and (b) apply to H1. Thus, from any node
of any layer m of H1, there is a directed path to the node z′ of layer 1.
Any shortest such path contains one node each of layers m, m − 1, ..., 1,
in that order.

Claim 11. Every arc of H having exactly one endpoint in H1 is of type
(s, t) where s is a column node of H1 and where t is a row node of H2 or
N ′

4
.

Proof. By the BFS, the statement holds for arcs connecting H1 and H2.
If an arc of H goes from a node s 6= z′ of N ′

4
to a node of H1, then that

arc and directed paths in H1 and N ′

4 constitute a large directed cycle, a
contradiction. Finally, if an arc of H goes from a row node s of H1 to a
column node t 6= z′ of N ′

4, then by column scaling a large directed cycle
can be produced, another contradiction.

6.2. Minimal Excluded Boolean Minors 243

Claim 12. H has an L44 subgraph, or Theorem (6.2.11)(a) holds by
induction.

Proof. If H1 is nearly negative, then we use Claim 11 and argue as in the
proof of Claim 5 that Theorem (6.2.11)(a) holds by induction. So assume
that H1 is not nearly negative. Thus, H1 has a row node v with two
leaving arcs. We carry out the path construction used earlier in the proof
of Claim 10, but without the final scaling step. Thus, we determine in H1

an N ′′

4
subgraph plus a directed path from the node z′′ of the N ′′

4
subgraph

to the node z′. The N ′′

4
subgraph, plus the directed path, plus the N ′

4

subgraph already on hand, comprises an L44 subgraph.

Finding a Minimal Minor

The above proof of Theorem (6.2.11) supports the following polynomial
algorithm for finding one of the excluded minors.

(6.2.14) Algorithm EXCLUDED MINOR OF HIDDEN NEAR
NEGATIVITY. Derives one of the minimal excluded Boolean minors
L0 and Lkl, 1 ≤ k, l ≤ 4, specified by (6.2.10) from the labeled, directed,
bipartite graph H = DBG(A) of a matrix A that is not hidden nearly
negative.

Input: Matrix A over IB that is not hidden nearly negative.

Output: A minor of the graph H = DBG(A) that is one of the minimal
excluded minors L0 and Lkl, 1 ≤ k, l ≤ 4, of hidden near negativity.

Complexity: Polynomial.

Procedure:
1. Carry out shrinking for H, obtaining a minor H.
2. Perform the steps implicit in the proofs of Claims 3–12 on H. If

during these steps it is determined that the graph H can by scaling
and shrinking be reduced to a graph H ′ with fewer nodes than H, then
declare H ′ to be H, and repeat the process with the new H.

Proof of Validity. The steps implicit in the proofs of Claims 3–12 can
clearly be carried out in polynomial time. If H is a minor with the least
number of nodes obtained by scaling and shrinking from H, then these
steps do produce the desired minor. Of course, we do not know that the
initial H has the least number of nodes, but we proceed anyway. If during
one of the steps it turns out that H does not have the least number of
nodes, then we switch to a new H with fewer nodes and repeat all steps.
The number of such repetitions is bounded by the number of nodes of H,
so the entire scheme is polynomial.

244 Chapter 6. Hidden Near Negativity

In the next section, we rely on Theorem (6.2.11) to characterize hid-
den near negativity of {0,±1} matrices in terms of minimal excluded sub-
regions.

6.3 Minimal Excluded Subregions

As before, let H be the labeled, directed, bipartite graph DBG(A) of a
{0,±1} matrix A. In this section, we derive from the excluded minors
of hidden near negativity for H given by Theorem (6.2.11) the minimal
excluded subregions of hidden near negativity for A. As a corollary, we
deduce a characterization of satisfiability for 2SAT matrices.

The characterization of the minimal excluded subregions is given by
Theorem (6.3.4) below and involves {0,±1} matrices called V1–V9. We
first describe the labeled, directed, bipartite graphs that correspond to
these matrices. These graphs are the minimal excluded subgraphs of hidden

near negativity and are called F1–F9. All arcs of the graphs have the label
1, as they must. The graphs contain a number of directed paths where
all intermediate nodes have the degree 2. For notational convenience, we
depict each such path by a line segment, with the direction of the path
indicated by an arrowhead placed at the center of the line segment. Each
such path contains at least one arc unless indicated otherwise.

Ladder

We need an auxiliary graph called a ladder with end node pairs (i′′, i′) and

(j′′, j′). Such a graph is of the form

(6.3.1)

j''

i'' j''j'

i' j'
7

or

6

1 5 84

32

Ladder

The paths drawn vertically in (6.3.1) are the rungs of the ladder. Note the
pattern of alternating directions of the rungs and of the horizontal paths
as one moves from left to right along the ladder. That pattern uniquely
determines which of the two right end cases must be present. The drawing
of (6.3.1) implies that the explicitly shown nodes are column nodes, and
that the row nodes, which are not shown, all have the degree 2. A contracted

6.3. Minimal Excluded Subregions 245

ladder with end node pairs (i′′, i′) and (j′′, j′) is obtained from the ladder
of (6.3.1) by contracting any number of rungs—possibly none—to one node
each that is declared to be a column node. Such contractions may involve
the rung connecting i′′ with i′ (resp. j′′ with j′), thus converting that rung
to a single node labeled by both i′′ and i′ (resp. j′′ and j′). Note that any
contracted ladder is strongly connected.

Minimal Subgraphs

We are ready to present F1–F9.

(6.3.2)

ij ij

F1 F2 F3

i

j

ij

F4 F5 F6

j'
ij

i''

j''

M
q''

i'

q'

F7 F8 F9

Graphs F1–F9

The following conditions are satisfied by the above graphs.

(6.3.3)

(i) Whenever nodes are labeled i and j, then i = j
is allowed; in that case, the displayed path i to j
consists of just one node.

(ii) In F9, the subgraph M is a contracted ladder with
end node pairs (i′′, i′), and (j′′, j′); the case i′ =
i′′ or j′ = j′′ is allowed.

It is easy to confirm that each graph of F1–F9 has an L0 or Lkl,
1 ≤ k, l ≤ 4, minor and thus is not hidden nearly negative. For example,
the graph F1 is strongly connected, and shrinking reduces that graph to
the graph L0.

246 Chapter 6. Hidden Near Negativity

Characterization of Minimal Subregions

We present the characterization of hidden near negativity in terms of min-
imal excluded subregions. Recall that the matrices producing the graphs
F1–F9 are called V1–V9.

(6.3.4) Theorem.
(a) A {0,±1}matrix A is hidden nearly negative if and only if each column

scaled version of A does not contain a subregion of type V1–V9.
(b) The matrices V1–V9 are minimal in the sense that every proper subre-

gion extracted from these matrices is hidden nearly negative.

Characterization of 2SAT Satisfiability

Before we prove Theorem (6.3.4), we establish a corollary that characterizes
2SAT satisfiability.

(6.3.5) Corollary. Let A be the matrix of a 2SAT system with exactly
two nonzero entries in each row. Then A is satisfiable if and only if no
column scaled version of A has a submatrix of type V6 or V9. The excluded
submatrices are minimal in the sense that every proper submatrix hav-
ing exactly two nonzeros in each row—for example, any proper submatrix
obtained by deletion of rows—is satisfiable.

Proof. Theorem (5.6.2) says that a 2SAT matrix with exactly two nonzero
entries in each row is satisfiable if and only if A is hidden nearly negative.
By Theorem (6.3.4), the latter conclusion is equivalent to the exclusion of
subregions of type V1–V9. Except for F6 and F9, each one of the graphs
F1–F9 has at least one row node of degree 3 or 4, so V1–V5, V7, or V8 cannot
occur as subregions in A. On the other hand, each row node of F6 and F9

has the degree 2, so V6 and V9 are possible subregions of A. Let H be the
graph corresponding to A. Since every row node of H has the degree 2,
every connected subgraph of H without degree 1 nodes—in particular, F6

and F9—can be obtained from H just by node deletions. Accordingly, V6

and V9 can be derived from A by submatrix taking.
Minimality of V6 and V9 is argued as follows. By Theorem (6.3.4)(b),

any proper submatrix of V6 or V9 is hidden nearly negative. If such a
submatrix has exactly two nonzeros in each row, then by Theorem (5.6.2)
it is satisfiable.

We prove Theorem (6.3.4) in a series of claims. Let A be a {0,±1} ma-
trix that is not hidden nearly negative and that is minimal in the sense that
all proper subregions of A have that property. Define H to be the graph
corresponding to A. By the proof of Theorem (6.2.11), column scaling and
shrinking can reduce H to a minor H that has as few nodes as possible

and that by subsequent node deletions becomes a graph H of type L0 or

6.3. Minimal Excluded Subregions 247

Lkl, 1 ≤ k, l ≤ 4. We need to show that H has, up to column scaling, one
of F1–F9 as a subgraph. For convenient reference, we call any one graph of
F1–F9 an F graph.

Partial and Complement Nodes

Lemma (6.2.2) says that each strong component of H has one or two nodes.

Suppose a strong component of H with two nodes has just one node in H.

Then we declare that node of H to be a partial node and call the second
node of that strong component a complement node. Note that the definition

of partial and complement nodes is relative to H.

Claim 1. Every node of H that is not in H is the complement node of a

unique partial node of H.

Proof. Let t be a node of H that is not in H. If t is not a complement

node, then a node set induced proper subgraph of H has H as a minor, a
contradiction of the minimality of A. Every strong component of H has at

most two nodes, so the partial node of H corresponding to t is unique.

Claim 2. Let t be the complement node of a partial node s of H, and

let R be the node set of a strong component of H − {s}. Then after any
column scaling in H, the subgraph of the scaled H induced by the node

subset ({nodes of H}−R)∪{t} cannot contain any L0 or Lkl, 1 ≤ k, l ≤ 4,
subgraph.

Proof. If after some column scaling there is such an L0 or Lkl, 1 ≤ k, l ≤ 4,
subgraph, then one such subgraph may be found by column scaling and just
node deletions. By the derivation, the nodes of R cannot be complement
nodes for that subgraph, which contradicts Claim 1.

Claim 3. If H has an L0 subgraph, then H is that subgraph and H = H.

Proof. Neither of the two nodes of an L0 subgraph can be partial relative

to that subgraph. By Claim 1, we have H = H.

Some Path Configurations

For several subsequent cases of H, we exhibit a certain configuration of
paths. The next two claims establish that any such configuration implies
an F subgraph in some column scaled version of H.

Claim 4. Let H ′ be a subgraph of H consisting of two row nodes r and
s, of two directed and internally node disjoint paths P1 and P2 from r to
s, and of a third directed path P3 from s to a node v 6= s of P1. Except for

248 Chapter 6. Hidden Near Negativity

s and v, the path P3 has no other node in common with P1 ∪ P2. If node
v is a row node, then H ′ is up to column scaling an F1 graph.

Proof. Scaling of the column nodes in the subpath of P1 from v to r proves
the result.

Claim 5. Let H ′, P1, P2, and P3 be as in Claim 4, but this time assume
v to be a column node. Suppose H contains a path P4 from a node u 6= r
of P1 ∪ P3 to a node w 6= s of P2. Except for u and w, the path P4 has
no other node in common with P1 ∪ P2 ∪ P3. Then, up to column scaling,
P1 ∪ P2 ∪ P3 ∪ P4 contains an F subgraph.

Proof. Enumeration of the few possible cases establishes the result.

Recall that H is equal to L0 or to some Lkl, 1 ≤ k, l ≤ 4. We analyze

the two cases separately, beginning with H = L0.

Case of H = L0

Until stated otherwise, we assume that H = L0. Claim 3 says that under

that assumption we have H = H. Hence, H is strongly connected and has
a row node r (resp. s) with at least two outgoing (resp. incoming) arcs.

Claim 6. We may assume that necessarily r = s.

Proof. Assume the situation where r 6= s. Since H is strongly connected,
there is a shortest directed path P1 from r to s. Since r has at least
two outgoing arcs and P1 is shortest, there is an arc (r, i) where i /∈ P1.
Similarly, there is an arc (j, s) where j /∈ P1. Since H is strongly connected,
there exists a path P 2 from i to j. Select r, s, P1, i, j, and P 2 so that P 2

avoids the nodes of P1 as much as possible.
Suppose P 2 includes a node of P1. Equivalently, we may assume that

no two row nodes of H are connected by two internally node disjoint paths
of the same direction. As we go from i to j along P 2, let v be the first
node of P1 encountered, and let w be the last one. Define P21 (resp. P22)
to be the arc (r, i), (resp. (j, s)) plus the subpath of P 2 from i to v (resp.
w to j). Direct checking confirms that in each one of the possible cases of
v and w, the graph P1 ∪P21 ∪P22 has, up to column scaling, an F6, F7, or
F8 subgraph, or r and s are joined by two internally node disjoint paths of
the same direction, a contradiction.

We consider the second situation, where P 2 is disjoint from P1; that
is, there exist two row nodes r and s that are joined by two internally
node disjoint paths P1 and P2 of the same direction. Since H is strongly
connected, there exists a path P3 from s to r. If P3 is internally node
disjoint from P1 and P2, then P1 ∪P2 ∪P3 is F1. Otherwise, P3 has proper
subpaths P31 and P32 so that P31 contains s and an internal node v of P1,

6.3. Minimal Excluded Subregions 249

say, and P32 contains a node u 6= r, s of P1 and a node w 6= s of P2. Except
for s, u, v, and w, the subpaths P31 and P32 have no node in common with
P1 ∪ P2. By Claim 4, we may assume v to be a column node of P1. Then,
by Claim 5, P1 ∪ P2 ∪ P31 ∪ P32 has an F subgraph.

Claim 7. H has F5 or F8 as subgraph.

Proof. By Claim 6, some row node r has at least two outgoing and at
least two incoming arcs, and every other row node has the degree 2. It is
then easily checked that H has F5, or F8 with i = j, as subgraph.

We have completed the proof for the case of H = L0 and turn to the

situation where, for some 1 ≤ k, l ≤ 4, H = Lkl.

Case of H = Lkl

From now on, we assume that H is a graph of type Lkl, 1 ≤ k, l ≤ 4. We

suppose H to be Lkl itself, and we use the notation of (6.2.8) and (6.2.10)
to refer to nodes and subgraphs of that graph. Due to the symmetry under
scaling, we may assume k ≤ l. By Claim 3, at most one of the two arcs of
any strong component of H on two nodes may have a 2 as label.

Claim 8. No row node of H can be partial.

Proof. Each instance of a partial row node is readily seen to contradict
Claim 2, except possibly for the cases where k or l = 3 and where the
row node of the subgraph N ′

3 or N ′′

3 is partial. By the symmetry, we only
need to treat the N ′

3
case. Let Q′ (resp. Z ′) be the node subsets of H

corresponding to the node q′ (resp. z′) of N ′

3
. Since in H the arc (z′, q′)

of N ′

3 has the label 2, there is in H a node s of Q′ having arcs incoming
from at least two nodes of Z ′. Except for s, delete all nodes of Q′ from H.

The resulting subgraph of H still has H as a minor, a contradiction of the
minimality of A.

Claim 9. Suppose a strong component of H has two nodes, one of which

is a partial column node of H. Then both arcs of that component have a
1 as label.

Proof. If one of the arcs has a 2 as label, then one readily produces a
contradiction of Claim 2. Indeed, in the notation of Claim 2, for each case
of Lkl, 1 ≤ k, l ≤ 4, one can define a set R that contains the nodes of a
strong component of N ′

k or N ′′

l .

By Claims 8 and 9, each partial node of H is a column node, and both
arcs of the corresponding strong component of H have a 1 as label.

250 Chapter 6. Hidden Near Negativity

Claim 10. Let s be a partial column node of H of degree 2 or 3; if
the degree is 3, then s is to have three neighbors. Then H has a proper

subgraph H ′ that in turn has a minor with the same structure as H, except

that the arcs formerly incident at s of H have been subdivided into directed
paths where each arc has the label 1.

Proof. Suppose s has the degree 2 in H. Let i and j be the neighbors of

s in H, and let t be the complement node of s. Suppose that (i, s) and

(s, j) are the two arcs of H incident at s. In H, let I, J , S, and T be the
node subsets corresponding to i, j, s, and t, respectively, of H. Since S∪T
defines a strong component of H, there is in H a directed path from some
node of I to some node of J where all intermediate nodes are in S ∪ T .
Except for the nodes and arcs of that path, delete from H the nodes of
S ∪ T and the arcs having at least one endpoint in S ∪ T . The resulting

proper subgraph of H has a minor like H except that the arcs (i, s) and
(s, j) have been subdivided into directed paths with label 1 arcs. Analogous
arguments handle the cases where the two arcs incident at node s are (i, s)

and (j, s) or where s is a degree 3 node of H.

We emphasize that the replacement of arcs by paths of Claim 10 may
replace an arc with the label 2 by a path where each arc has the label 1.
We rely on that fact next.

Claim 11. If H = Lk4, then the arc labeled “≥ 1” in N ′′

4
of (6.2.8) has

a 1 as label.

Proof. If the arc labeled with “≥ 1” in N ′′

4
has a 2 as label, then the

degree 2 column node of that arc must be partial. But then by Claim 10, H

has a proper subgraph with an H minor, a contradiction of the minimality
of A.

We analyze two subcases of H depending on whether z′ 6= z′′ or z′ =
z′′.

Subcase z′ 6= z′′

We begin with the case z′ 6= z′′.

Claim 12. If z′ 6= z′′, then, up to column scaling, H has an F subgraph.

Proof. By Claim 10 and the minimality of A, at most the nodes z′ and

z′′ of H may be partial, and then only if k = 3 in case of a partial z′, and
only if l = 3 in case of a partial z′′.

We show that the subgraph N ′

k of H gives rise to the left half of F6 or
F7. Application of analogous arguments to N ′′

l then proves the existence
of F6, F7, or F8. We examine the cases for k.

6.3. Minimal Excluded Subregions 251

k = 1: In the directed path of H from z′′ to z′, let r be the predecessor
node of z′. By Claim 8, the row node r is not partial. Let Q′ (resp. Z ′) be

the node subset of H corresponding to q′ (resp. z′) of H. We claim that
the subgraph H ′ of H induced by {r} ∪ Q′ ∪ Z ′ contains a directed path
P from r to a node z′ plus a cycle C, with the following structure: The
node z′ is the only node common to P and C; if z′ is a column node, then
C consists of two directed internally node disjoint paths from z′ to a row
node; if z′ is a row node, then C can be column scaled to become directed.
Put differently, P ∪ C is, up to column scaling of C, the left half of F6 or
F7. To prove the existence of P and C, we only note that the label 2 arc
(z′, q′) of N ′

1 implies that H ′ has a row node in Q′ with two incoming arcs,
say, with column nodes i and j as second endpoints. A simple analysis of
the directed paths in H ′ from r to i and j then confirms the claim.

k = 2: It is easy to see that N ′

2
of H leads to the left half of F7 in H.

k = 3: Due to the label 2 on the arc (z′, q′) of N ′

3
, the node z′ must be

partial. The arguments are then essentially those for k = 1, except that
we define Q′ to be the set of row nodes of H arising from q′ and from the
complement node of z′.

k = 4: By Claims 10 and 11, N ′

4
may be assumed to be the left-hand part

of F6.

A Result for Contracted Ladders

Before we turn to the case of H with z′ = z′′, we establish the structure
of a certain strongly connected graph M that we later need in connection
with F9.

Claim 13. Let M be the labeled, directed, bipartite graph corresponding
to a {0,±1} matrix. Suppose that M is strongly connected and that each
row node of M has the degree 2. Further suppose that M has column nodes
i′, i′′, j′, and j′′ that are distinct except that possibly i′ = i′′ or j′ = j′′.
Finally, assume that M has no proper subgraph containing directed paths
from each node of {i′′, j′′} to each node of {i′, j′}. Then, up to a relabeling
of i′′ to j′′ and of j′′ to i′′, M is a contracted ladder with end node pairs
(i′′, i′) and (j′′, j′).

Proof. We say that a subgraph of M satisfies the path condition if that
subgraph has directed paths from each node of {i′′, j′′} to each node of
{i′, j′}. We say that M is minimal when no proper subgraph of M satisfies
the path condition. Note that Claim 13 assumes M to be minimal.

Clearly, M has a directed path P1 from a node of {i′′, j′′} to one of
{i′, j′} where each internal node is different from i′, i′′, j′, and j′′. By the
relabeling condition of Claim 13, we may assume P1 to go from j′′ to j′.

252 Chapter 6. Hidden Near Negativity

Let P be any directed path of M from j′′ to i′. We claim that P must
visit j′ and i′′, in that order. Suppose P avoids i′′. Choose two shortest
directed paths, one from i′′ to i′ and the other one from i′′ to j′. Then
P1, P , and the two paths constitute a subgraph M of M that satisfies the
path condition and that is not strongly connected. Hence M is a proper
subgraph of M , and M is not minimal, a contradiction. Similar arguments
cover the situation where P avoids j′, or where i′′ is visited prior to j′.

Since P must visit j′ and i′′, in that order, we may consider P to be
the union of P1 and of two paths P2 and P3 going from j′ to i′′ and from i′′

to i′, respectively. Note that P1 (resp. P3) is just one node if j′ = j′′ (resp.
i′ = i′′). Since M is strongly connected, there is a directed path P4 from i′

to j′′. Indeed, by the minimality of M , we have M = P1 ∪ P2 ∪P3 ∪ P4. If
P4 has a node other than i′ and j′′ in common with P1∪P3, then we readily
see that M is not minimal. Since all row nodes of M have the degree 2, the
internal nodes common to P2 and P4 must be column nodes. Clearly, each
such node has the degree 3 or 4. We label these internal common nodes
as follows. We move from i′′ to j′ using the arcs of P2; that is, we move
against the direction of P2. The first internal common node different from
i′′ we label with a 1 if its degree is 3, and with both 1 and 2 if its degree
is 4. Suppose, inductively, that we most recently used the integer m, or
the integers m − 1 and m, for labeling an internal common node. Then
the next internal common node encountered receives the label m + 1 if its
degree is 3, and the labels m + 1 and m + 2 if its degree is 4.

Assume that we have the case i′ 6= i′′ and j′ 6= j′′ and that all internal
common nodes of P2 and P4 have the degree 3. It is then easily checked
that, by the minimality of M , we must encounter the internal common
nodes along P4 in the order 2, 1, 4, 3, 6, 5, . . . This fact implies that
M = P1 ∪ P2 ∪ P3 ∪ P4 is the ladder of (6.3.1). If i′ = i′′ or j′ = j′′, or
if some internal common nodes of P2 and P4 have the degree 4, then by
similar arguments one confirms that M may be obtained from the ladder
of (6.3.1) by the contraction of some rungs. Thus in all cases, M is a
contracted ladder with end node pairs (i′′, i′) and (j′′, j′).

Subcase z′ = z′′

We are ready for the subcase of H where z′ = z′′.

Claim 14. If z′ = z′′, then, up to column scaling, H has an F subgraph.

Proof. We examine the possible situations.

k = l = 1: This case is not possible, since then H has a large component.

k = 1, l = 2: L12 cannot have partial nodes. Then one easily exhibits in
H a scaled version of F7 or of F8.

6.3. Minimal Excluded Subregions 253

k = 1, l = 3: L13 cannot have partial nodes. The arguments are very

similar to those proving Claims 6 and 7 for the case H = L0. They establish
that, up to column scaling, an F graph must be present.

k = 1, l = 4: L14 cannot have partial nodes. Let Z ′ be the node subset of
H corresponding to z′ of L14. The two paths in N ′′

4 of L14 from the node
q′′ to z′′ = z′ correspond in H to two paths from q′ to Z ′. If there are two
such paths in H that terminate at just one node of Z ′, then one readily
deduces from H the graph F6 or a scaled version of F7. If two such paths
terminate at two nodes of Z ′, then arguments almost identical to those
for L13 provide the conclusion that, up to column scaling, an F graph is
present in H.

k = l = 2: The arguments are essentially the same as for the corresponding
case with z′ 6= z′′.

k = 2, l = 3: Due to the label 2 of the arc (q′′, z′′), the node z′ = z′′

must be partial. One then easily deduces from H the graph F7 or a scaled
version of F8.

k = 2, l = 4: The arguments are essentially the same as for the corre-
sponding case with z′ 6= z′′.

k = l = 3: The node z′ = z′′ must be partial. Thus, H clearly contains a
graph of the form F9 where i′ 6= i′′ and j′ 6= j′′ and where for the moment
the subgraph M of F9 satisfies the following conditions instead of (6.3.3)(ii):
M is strongly connected, and each row node of M has the degree 2.

We claim that M satisfies the assumptions of Claim 13. We only need
to show that M has no proper subgraph M satisfying the path condition.
Supppose such M exists. Delete all arcs from F9 that are in M but not
in M , obtaining a graph F 9. Suppose F 9 can be column scaled to become
nearly negative. Then at least one column neighbor of the row node q′′

(see (6.3.2)) must be scaled by −1. Since M satisfies the path condition,
there exist directed paths in F 9 from that column node to the two column
node neighbors of q′. By Lemma (6.2.5), the latter two column nodes must
also be scaled by −1, which implies that the resulting graph is not nearly
negative. Thus, F 9 cannot be column scaled to become nearly negative, a
contradiction of the minimality of A.

By Claim 13, M is thus a contracted ladder with end node pairs (i′′, i′)
and (j′′, j′), and F9 satisfies (6.3.3)(ii) as desired.

k = 3, l = 4: The node z′ = z′′ must be partial. Let Z ′ be the node subset
of H corresponding to z′. Then the two paths in N ′′

4 of L34 from q′′ to
z′ = z′′ correspond to two paths in H from q′′ to Z ′. If there are two paths
in H terminating at one node of Z ′, we readily exhibit an F6 subgraph.
Otherwise, by the arguments for k = l = 3, we have F9.

254 Chapter 6. Hidden Near Negativity

k = l = 4: If z′ = z′′ is not partial, we have F6. Otherwise, we argue
almost identically to the case k = 3, l = 4 to exhibit F6 or F9.

Claim 15. Theorem (6.3.4) holds.

Proof. Part (a) of Theorem (6.3.4) follows from Theorem (6.2.11)(a) and
Claims 7, 12, and 14. For part (b), we must show that every proper sub-
graph of F1–F9 can be column scaled to become nearly negative. Routine
checking completes the proof.

Finding a Minimal Subregion

The proof of Theorem (6.3.4) implies the following polynomial algorithm
that derives one of the excluded subregions from any matrix A that is not
hidden nearly negative.

(6.3.6) Algorithm EXCLUDED SUBREGION OF HIDDEN
NEAR NEGATIVITY. Derives one of the minimal excluded subregions
V1–V9 from a {0,±1}matrix A that is not hidden nearly negative. The sub-
regions V1–V9 are represented by the graphs F1–F9 of (6.3.2).

Input: Matrix A over IB that is not hidden nearly negative.

Output: A subregion of A that up to scaling is one of the minimal ex-
cluded subregions V1–V9 of hidden near negativity. The latter subregions
are represented by the graphs F1–F9 of (6.3.2).

Complexity: Polynomial.

Procedure:
1. Execute Algorithm EXCLUDED MINOR OF HIDDEN NEAR NEG-

ATIVITY (6.2.14) to H = DBG(A) to locate a minimal excluded
minor of hidden near negativity.

2. Apply the procedure that is implicit in the proof of Theorem (6.3.4), to
the minor determined in Step 1 to obtain a minimal excluded subgraph
from H. The subregion of A corresponding to that subgraph is up to
scaling one of the desired minimal excluded subregions V1–V9.

Proof of Validity. Algorithm EXCLUDED MINOR OF HIDDEN NEAR
NEGATIVITY (6.2.14) determines a minimal excluded minor in polyno-
mial time. The proof of Theorem (6.3.4) clearly contains a polynomial
procedure that deduces from that minor the desired subregion of A.

6.4 References

Chapter 5 contains basic material and references about hidden nearly neg-
ative matrices.

6.4. References 255

Chandru, Coullard, and Montañez (1988), and Chandru, Coullard,
Hammer, Montañez, and Sun (1990) contain an excluded subregion char-
acterization of hidden near negativity. In the notation of this chapter, that
subregion is defined by two path substructures of the graph H = DBG(A).
The subregion so determined may properly contain a subregion that also
is not hidden nearly negative and thus may not be minimal.

Aspvall, Plass, and Tarjan (1979) characterize satisfiability of 2SAT
systems using the following graph construction. Each variable x of a given
2SAT system produces two nodes labeled x and ¬x. Each clause of the
2SAT system is rewritten as two equivalent implications that in turn are
represented by two directed arcs. Specifically, let x ∨ y be an arbitrary
clause where x and y denote possibly negated variables. That clause is
equivalent to each one of the implications ¬x ⇒ y and ¬y ⇒ x, and the
corresponding directed arcs are (¬x, y) and (¬y, x). Aspvall, Plass, and
Tarjan (1979) show that a 2SAT system is unsatisfiable if and only if the
directed graph constructed from the 2SAT system has a strongly connected
component that contains, for some variable x, both the node x and the node
¬x.

The next chapter introduces a special class of matrices over IB called
Boolean closed.

Chapter 7

Boolean Closed Matrices

7.1 Overview

We introduce a class of matrices over IB called Boolean closed. The
matrices are used in Chapters 8 and 10. We begin with an informal dis-
cussion that motivates the subsequently given definition.

Suppose the satisfiability problem is to be solved for the following
partitioned matrix A.

(7.1.1) X1
A =

Y1

A1

DX2

Y2

A2

0

Partitioned matrix A

Thus, we want to find a {±1} solution s vector for the inequality

(7.1.2) A⊙ s ≥ 1

or ascertain that such a vector s does not exist.
Let s1 and s2 be the subvectors of s indexed by the column index sets

Y1 and Y2, respectively, of A. Using s1 and s2 instead of s, the inequality
of (7.1.2) can be rewritten as

(7.1.3)
A1 ⊙ s1 ≥ 1

(D ⊙ s1)⊕ (A2 ⊙ s2) ≥ 1

256

7.1. Overview 257

Suppose that s1∗ and s2∗ solve (7.1.3). Let d be the vector of subrange(D)
defined by

(7.1.4) d = D ⊙ s1∗

Since s1∗ and s2∗ solve (7.1.3), they also solve

(7.1.5)

A1 ⊙ s1 ≥ 1

D ⊙ s1 ≥ d

d⊕ (A2 ⊙ s2) ≥ 1

According to (4.2.13), for any {0, 1} vectors a, b, and c,

(7.1.6) a⊕ b ≥ c if and only if a ≥ c⊖ b

Thus, the inequality d⊕ (A2⊙ s2) ≥ 1 of (7.1.5) is equivalent to A2⊙ s2 ≥
1⊖ d, and (7.1.5) can be restated as

(7.1.7)

A1 ⊙ s1 ≥ 1

D ⊙ s1 ≥ d

A2 ⊙ s2 ≥ 1⊖ d

Conversely, suppose that for some d ∈ subrange(D), (7.1.7) is solved
by vectors s1∗∗ and s2∗∗. By (4.2.17) and (4.2.20), for any {0, 1} vectors a,
b, c, and d,

(7.1.8) a ≤ (a⊖ b)⊕ b

and

(7.1.9) a ≥ b and c ≥ d imply a⊕ c ≥ b⊕ d

We insert s1∗∗ and s2∗∗ into (7.1.7) and apply (7.1.8) and (7.1.9) to obtain

(7.1.10)
A1 ⊙ s1∗∗ ≥ 1

(D ⊙ s1∗∗)⊕ (A2 ⊙ s2∗∗) ≥ 1

Hence, s1∗∗ and s2∗∗ also solve the original inequality system (7.1.3).
The above observations support the following solution algorithm for

(7.1.3). For each d ∈ subrange(D), test whether

(7.1.11)
A1 ⊙ s1 ≥ 1

D ⊙ s1 ≥ d

258 Chapter 7. Boolean Closed Matrices

has a solution. Let R be the set of vectors d ∈ subrange(D) for which this
is so. If R is empty, then (7.1.3) is unsatisfiable. Otherwise, test whether

(7.1.12) A2 ⊙ s2 ≥ 1⊖ d

has a solution for some d ∈ R. If (7.1.12) is unsatisfiable for all d ∈ R,
then (7.1.3) is unsatisfiable. Otherwise, let (7.1.12) have a solution s2∗∗ for
some d ∈ R. Then s2∗∗ and the solution s1∗∗ of (7.1.11) with that d solve
(7.1.3).

Computational effort for the above algorithm is as follows. For the
determination of R, (7.1.11) must be solved for each d ∈ subrange(D).
Then (7.1.12) may have to be solved for each d ∈ R. Hence, (7.1.12) may
have to be solved r0 = |subrange(D)| times.

Suppose that the matrix A2 of (7.1.12) has a partition analogous to
that of A in (7.1.1), and that we solve each instance of (7.1.12) using that
partition of A2 in the manner described above. Each instance of (7.1.12)
is replaced by, say, r1 subproblems. Hence, the solution of (7.1.12) for all
d ∈ R may require solving r0 · r1 subproblems.

Continuing inductively, we see that repeated partitioning may result
in an exponential growth of the number of subproblems that potentially
must be solved. One is tempted to search for conditions on D and related
modifications of the algorithm which avoid that calamity. For example,
one might look for conditions under which, for any R, just one modified
version of (7.1.12) must be solved. Let us pursue this notion. As argued
earlier via (7.1.6), the inequality A2 ⊙ s2 ≥ 1 ⊖ d of (7.1.12) is equivalent
to

(7.1.13) d⊕ (A2 ⊙ s2) ≥ 1

Our goal is to decide whether, for a given R ⊆ subrange(D), (7.1.13) has a
solution for some d ∈ R. Suppose D has a column submatrix D such that
subrange(D) = R. Then (7.1.12) has a solution for some d ∈ R if and only
if the inequality

(7.1.14) (D ⊙ s)⊕ (A2 ⊙ s2) ≥ 1

has a solution. We have successfully reduced the r0 = |R| cases of (7.1.12)
to the problem (7.1.14), but at a price. That is, the approach works in
general only if for any subset R of subrange(D), there is a column submatrix
D such that subrange(D) = R. The latter condition is very severe and is
satisfied only by very simple matrices D. But maybe we can salvage the
main idea by checking what is really needed.

First, suppose R contains two nested vectors d1 and d2, say, where
d1 ≤ d2. If (7.1.13) is satisfiable for d = d1, then d1 ≤ d2 implies that it

7.1. Overview 259

is also satisfied for d = d2. Similarly, if subrange(D) contains two nested
vectors d1 and d2 with d1 ≤ d2, then occurrence of d1 in subrange(D)
is irrelevant for deciding satisfiability of (7.1.14). Thus, we only need to
assume that the maximal vectors of R are precisely the maximal vectors of
subrange(D).

Second, instead of subrange(D), we may consider other sets T that may
be generated from D and that include the subrange of column submatrices
as a special case. For example, we may partition the column index set of D

into disjoint subsets J0, J+, J−, and J±, define Q to be the set of vectors
s satisfying

(7.1.15) sj =

0 if j ∈ J0

1 if j ∈ J+

−1 if j ∈ J−
±1 if j ∈ J±

and obtain a set

(7.1.16) T = {d | d = D ⊙ s; s ∈ Q}

that might be substantially different from the subrange of any column
submatrix D of D.

We combine the two considerations. Suppose for a given subset R of
subrange(D), there exists a partition J0, J+, J−, and J± of the column
index set of D such that the maximal elements of R are precisely the
maximal elements of T of (7.1.16). Then at least one case of the |R| cases
of (7.1.13) has a solution if and only if

(7.1.17)
(D ⊙ s1)⊕ (A2 ⊙ s2) ≥ 1

s1 ∈ Q

has a solution.
When a matrix D observes the above condition for all subsets R of

subrange(D), we call it column closed. Similar arguments can be made for
the case of a matrix derived from A of (7.1.1) by replacing the submatrix D

by a zero matrix and by replacing the zero submatrix indexed by X1 and Y2

by a nonzero matrix E. The desired features of E constitute a property we
call row closedness. The reader interested in the corresponding satisfiability
algorithm should skip ahead to Chapter 10.

A matrix for which all submatrices are both column closed and row
closed is called Boolean closed. This chapter contains a detailed investiga-
tion of the Boolean closed matrices.

Section 7.2 states in compact form the definitions of the three types
of closedness.

260 Chapter 7. Boolean Closed Matrices

Section 7.3 provides characterizations of the Boolean closed matrices
by the exclusion of minimal submatrices and by a direct description.

Section 7.4 contains some properties of Boolean closed matrices. They
concern the range, the subrange, and the inverse image of subrange vectors.

Section 7.5 consists of several algorithms, including a method for de-
ciding whether a given matrix is Boolean closed.

Section 7.6 concludes the chapter with extensions.

7.2 Definitions

This section contains compact definitions of the three types of closedness
introduced in the preceding section.

Column Closedness

A matrix A over IB and with column index set Y is column closed if for
any nonempty subset R of subrange(A) the following holds. There exists a
partition of Y into sets J0, J+, J−, and J± such that the set Q of vectors
s satisfying

(7.2.1) sj =

0 if j ∈ J0

1 if j ∈ J+

−1 if j ∈ J−
±1 if j ∈ J±

produces a set

(7.2.2) T = {b | b = A⊙ s; s ∈ Q}

whose maximal vectors are precisely the maximal vectors of R.

Row Closedness

A matrix A over IB is row closed if, for any nonempty R ⊆ subrange(A),
there exists a {0, 1} vector b such that the set

(7.2.3) Sb = {s | A⊙ s ≥ b; sj ∈ {±1}, ∀ j}

is equal to the set

(7.2.4) SR = ∪f∈R{s | A⊙ s ≥ f ; sj ∈ {±1}, ∀ j}

Boolean Closedness

A matrix A over IB is Boolean closed if A and all submatrices of A are both
column closed and row closed.

One may use the above definitions to directly show that the empty
matrix as well as all trivial and zero matrices are Boolean closed. More
interesting examples are given later.

7.2. Definitions 261

Simplified Test for Row Closedness

The next lemma and corollary simplify testing for row closedness. The
lemma tells how the vector b specified in the definition of row closedness
may be chosen.

(7.2.5) Lemma. A nonempty matrix A over IB is row closed if and only

if the following holds. For any nonempty subset R of subrange(A) and for

b defined by

(7.2.6) bi = min
f∈R

{fi}

the set Sb of (7.2.3) must be equal to the set SR of (7.2.4).

Proof. The “if” part is trivial, since by assumption the vector b of (7.2.6)
results in the equality Sb = SR demanded in the definition of row closed-
ness.

For proof of the “only if” part, let R be any nonempty subset of
subrange(A), and define b by (7.2.6). Then, for all f ∈ R, we have b ≤ f ,
and the definitions (7.2.3) and (7.2.4) for Sb and SR imply that Sb ⊇ SR.

Since A is row closed, there exists a {0, 1} vector c such that the set
Sc defined analogously to Sb of (7.2.3) is equal to SR. We claim that b ≥ c.
Assume the contrary. Then there exists an index i for which ci = 1 and
bi = 0. Since bi = 0, the definition of b by (7.2.6) implies that there exists a
vector f ∈ R with fi = 0. Since R is a subset of subrange(A), there exists
a {±1} vector s such that A ⊙ s = f . That vector s is in SR, but not in
Sc, so Sc 6= SR, a contradiction. Hence, b ≥ c, and Sb ⊆ Sc. We already
know Sb ⊇ SR and Sc = SR, so Sb = Sc = SR.

One may weaken the conditions of Lemma (7.2.5) and obtain a simpler
test for row closedness.

(7.2.7) Corollary. A nonempty matrix A over IB is row closed if and only

if the following holds. For any subset R of subrange(A) satisfying |R| ≥ 2
and containing no nested vectors, for b defined by (7.2.6), and for any {±1}
vector s satisfying A ⊙ s ≥ b, the set R must contain a vector f such that

A⊙ s ≥ f .

Proof. We show that the conditions of the corollary are equivalent to the
related ones of Lemma (7.2.5).

Suppose R contains two nested vectors f and g, say, f ≥ g. If we
delete f from R, then the vector b of (7.2.6) as well as the sets Sb and SR

of (7.2.3) and (7.2.4) remain unchanged. Hence, we may suppose that R

does not contain nested vectors.
If |R| = 1, then b of (7.2.6) is equal to the single vector f ∈ R, and

Sb = SR holds trivially. Hence, we may assume that |R| ≥ 2.

262 Chapter 7. Boolean Closed Matrices

By the definitions of Sb and SR, the relation Sb ⊇ SR always holds.
Thus, demanding Sb ⊆ SR is equivalent to requiring Sb = SR.

Finally, a {±1} vector s satisfying A ⊙ s ≥ b also satisfies, for some
f ∈ R, A⊙ s ≥ f , if and only if Sb ⊆ SR.

7.3 Characterizations

We characterize the Boolean closed matrices by the exclusion of minimal
submatrices and by a direct description.

Minimal Excluded Matrices

The matrices N1–N4 below turn out to be, up to column scaling, the
minimal matrices whose exclusion produces Boolean closedness.

(7.3.1)
-1

1 0
1 1

1

1 0
0 1

-

1 1
1

11
-1 -

-

1 1
1

11 -
1

N1 N2 N3 N4

Minimal excluded matrices N1–N4

We need some definitions for the direct description of the Boolean closed
matrices.

Solid Staircase Matrix

According to Section 4.3, a {0, 1} matrix A is solid triangular if for all
i < j, Aij = 0, and for all i ≥ j, Aij = 1. When we add parallel or zero
vectors any number of times to a solid triangular matrix, we get a solid
staircase matrix.

We extend these definitions to {0,±1} matrices in the obvious way.
Thus, a {0,±1} matrix is a solid triangular or solid staircase matrix if
replacement of the −1s by +1s results in a {0, 1}matrix with the respective
property. A typical {0,±1} solid staircase matrix has the following form.

(7.3.2) .

0

1s

..

Solid staircase matrix

7.3. Characterizations 263

Double Staircase Matrix

A {0,±1} matrix A is a double staircase matrix if it is of the following form.

(7.3.3)

..

.

..

..

.
.

.

..

.

-1s

-1s

-1s

Y1 Y2 Yt Y0

Y

1s

0s

. . .

Double staircase matrix

Note that not all explicitly shown rows and columns need to be present.
However, if the matrix is not a zero matrix, then we demand that one of
the rows with maximum number of nonzero entries has no −1s. The latter
requirement implies that the property “is a double staircase matrix” may
not be maintained under submatrix taking. However, this is so for the
property “is up to column scaling a double staircase matrix,” as shown in
the next lemma.

(7.3.4) Lemma. If a {0,±1} matrix A is up to column scaling a double

staircase matrix, then every submatrix of A has that property.

Proof. We may assume that A itself is a double staircase matrix. Let A be
a submatrix of A. If A is derived from A by deletion of a column, then at
most a reordering of the rows of A proves A to be a double staircase matrix.
If A is derived by deletion of a row, then the same conclusion applies unless

264 Chapter 7. Boolean Closed Matrices

in A a {0, 1} row with a maximum number of nonzero entries is deleted.
The latter case may require column scaling plus a reordering of the rows
to prove the conclusion.

Characterization of Boolean Closedness

The double staircase matrices turn out to be, up to column scaling, the
Boolean closed matrices. That result plus the characterization of Boolean
closedness by exclusion of N1–N4 of (7.3.1) constitutes the main result of
this section. The precise statement is as follows.

(7.3.5) Theorem. The following statements are equivalent for any matrix

A over IB.

(i) Matrix A is Boolean closed.

(ii) Up to column scaling, A is a double staircase matrix.

(iii) Matrix A does not contain any column scaled version of any one of the

matrices N1–N4 of (7.3.1) as submatrix.

We prove Theorem (7.3.5) by showing (i)⇒(iii), (iii)⇒(ii), and (ii)⇒(i).

Part (i) implies (iii)

It suffices to show that a Boolean closed matrix cannot contain any one of
the matrices N1–N4 of (7.3.1). Claim 1 below implies that result.

Claim 1. The matrices N1–N4 of (7.3.1) are minimal matrices that are

not Boolean closed.

Proof. We use the notation employed in the definition of column and row
closedness.

Let A be the 2 × 2 identity matrix N1. Suppose A is Boolean closed
and hence column closed. Select R = {[1 0]t, [0 1]t}. It is easy to verify
that any sets J0, J+, J−, and J± resulting in a set T of (7.2.2) with the
same maximal vectors as R must satisfy J0 = J+ = J− = ∅ and J± = Y .
The set Q defined by the latter sets via (7.2.1) is the set of all {0, 1} vectors
with two entries, and the set T of (7.2.2) is equal to subrange(A). But then
the vector [1 1]t is the unique maximal vector of T , yet that vector does
not occur in R, a contradiction.

Similar arguments prove that N2–N4 are not column closed, using
R = {[1 1 0]t, [0 1 1]t} for N2 and N4 and using R = {[1 1 0]t, [1 0 1]t} for
N3.

Finally, it is straightforward to show that all proper submatrices of
N1–N4 are both column closed and row closed.

7.3. Characterizations 265

Part (iii) implies (ii)

Given is statement (iii), according to which A does not contain any column
scaled version of N1–N4 as submatrix. We must demonstrate that A is up
to column scaling a double staircase matrix. The next claim shows that A

must be a solid staircase matrix.

Claim 2. Matrix A is a solid staircase matrix.

Proof. Lemma (4.3.21) states that a {0, 1} matrix is a solid staircase ma-
trix if and only if it has no 2×2 identity submatrix. Hence, exclusion of all
scaled versions of the 2 × 2 identity matrix N1 assures A to be a {0,±1}
solid staircase matrix.

Due to Claim 2, column scaling, and trivial reductions, we may assume
that A is a solid staircase matrix, has no zero rows or columns, and has
only 1s in the last row. If A is a {0, 1} matrix, then it is a double staircase
matrix, and we are done. Assume that A contains −1s.

Sort the columns of A while enforcing the solid staircase form such that
each {0, 1} column is placed as far left as possible. Declare the resulting
matrix to be A. The next claim establishes that the 1s of A are contiguous
in a certain sense.

Claim 3. For each row i and each column l, Ail = 1 implies that, for all

k < l, Aik = 1.

Proof. If the claim does not hold, then there exist a row i and columns k

and l = k + 1 such that Ail = 1 and Aik = 0 or −1. The case of Aik = 0 is
not possible, since A is a solid staircase matrix. Thus, Aik = −1.

If column l has a −1, say, in row q, then the 3× 2 submatrix defined
by the intersection of columns k and l with row i, row q, and the last row,
is the matrix N3 or N4. Hence, column l of A is a {0, 1} vector. If columns
k and l have the same support, that is, if they agree on the 0 entries, then
column l must be to the left of column k due to the sorting assumption, a
contradiction of the fact that k < l. Thus, there exists a row q for which
Aql = 0 and Aqk = ±1. Then, up to column scaling, the 3 × 2 submatrix
of A defined by the intersection of columns k and l with row i, row q, and
the last row, is the matrix N2, a contradiction.

Claim 3 implies that A can be partitioned according to (7.3.6) below,
where the portions labeled B1, B2, . . . contain all −1s of A, possibly some
1s, but not 0s.

266 Chapter 7. Boolean Closed Matrices

(7.3.6)

.

..

..
B1

..

..

..1s

0s

B2

Structure of A

Choose B1, B2, . . . such that the number of nonzeros contained in them is
as small as possible.

Claim 4. Each row of each Bp contains only 1s or only −1s.

Proof. If the claim does not hold, then by Claim 3 there exist a row i

and columns k and l = k + 1 in a Bp such that B
p
ik = 1 and B

p
il = −1.

Arguing as in the proof of Claim 3, we must have, for all row indices q with
B

p
ql = ±1, B

p
qk = 1. Thus, Bp must be

(7.3.7)

1 . . .

. . .

1s

1s

1s

-1i

k l

Structure of Bp

But then Bp can be partitioned into, say, (Bp)′ and (Bp)′′ and a subma-
trix of 1s, which contradicts the minimality assumption of the number of
nonzeros contained in B1, B2, . . .

Claim 5. Matrix A is a double staircase matrix.

Proof. By Claim 4, each row of each Bp in A of (7.3.6) contains only 1s
or −1s. Thus, we may transfer the {0, 1} rows of A to the bottom of the
matrix to obtain the form of a double staircase matrix.

7.3. Characterizations 267

Part (ii) implies (i)

Statement (ii) says that A is up to column scaling a double staircase matrix.
We must prove that A is Boolean closed. Clearly, we may assume that A

itself is a double staircase matrix and thus is given by (7.3.3).
We suppose that the jth column of A is indexed by j. Thus, for some

n ≥ 1, the column index set Y of A is equal to {1, 2, . . . , n}, and the sets
Y1, Y2, . . . , Yt, and Y0 form a partition of that set. Due to this convention,
it makes sense to refer to the smallest element of any one of the subsets Yp

of Y ; that element is denoted by y(p).
We introduce a color classification of the vectors of subrange(A) that

simplifies later proofs.

Color Classification

For each vector b of subrange(A), we select a {±1} vector s such that
b = A ⊙ s. If several choices exist for s, we arbitrarily select one from the
possible candidates. The selected vector s is the vector assigned to b. The
arbitrariness with which we have selected s shall not trouble us, since any
one of the possible candidates would work for our purposes.

If the vector s assigned to b contains only −1s in the positions indexed
by Y − Y0, then b is declared to be brown.

Suppose s contains at least one 1 in the positions indexed by Y − Y0.
Let j be the smallest element of Y for which sj = 1. For some 1 ≤ p ≤ t,
j ∈ Yp. If j is equal to the smallest element y(p) of Yp, we declare b to be
a blue vector of Yp; otherwise, b is a red vector of Yp.

Note that at most one vector of subrange(A) is declared to be brown.
Using the display of A in (7.3.3), one readily verifies that a blue vector

b of Yp can be expressed either as

(7.3.8) b = [
⊕

j<y(p)

(A.j ⊙ (−1))]⊕ [A.y(p) ⊙ 1]

or, for some z ∈ Yp satisfying z > y(p), as

(7.3.9) b = [
⊕

j<y(p)

(A.j ⊙ (−1))]⊕ [
⊕

y(p)≤j<z

(A.j ⊙ 1)]⊕ [A.z ⊙ (−1)]

The second case applies if the vector s assigned to b contains at least one
−1 with index in Yp; the smallest such −1 of s is indexed by z.

Similarly, a red vector b of Yp can be computed as follows. For the
vector s assigned to b, let z be the smallest element of Yp satisfying sz = 1.
Since b is red, z > y(p). Then

(7.3.10) b = [
⊕

j<z

(A.j ⊙ (−1))]⊕ [A.z ⊙ 1]

268 Chapter 7. Boolean Closed Matrices

Finally, the brown vector is

(7.3.11) b = [
⊕

j<y(0)

(A.j ⊙ (−1))]

The color classification supports the following characterization of nest-
ed vectors of subrange(A).

Claim 6.
(a) For all 1 ≤ p ≤ t: Any two blue vectors of Yp are nested.

(b) For all 1 ≤ p < q ≤ t: Any red vector of Yp and any blue vector of Yq

are nested.

(c) Any two red vectors are nested.

(c) Any red vector and the brown vector are nested.

Proof. The result may be established by direct checking using the display
of A in (7.3.3).

Claim 6 implies the following result.

Claim 7. Let R be a subset of subrange(A) containing no nested vectors

and satisfying |R| ≥ 2. Then, for some r ≥ 1 and for some indices 1 ≤
p(1) < p(2) < · · · < p(r) ≤ t, R contains exactly one blue vector each of

Yp(1), Yp(2), . . . , Yp(r), plus possibly, for some q ≥ p(r), one red vector of Yq,

plus possibly the brown vector, provided that a red vector is not present.

Proof. Claim 6 narrows down the choices for R to the stated cases.

Boolean Closedness

We are ready to prove that A of (7.3.3) is Boolean closed. We first establish
column closedness.

Claim 8. Matrix A of (7.3.3) is column closed.

Proof. Let R be a nonempty subset of subrange(A) that does not contain
nested vectors. We must determine a partition of the column index set Y

into J0, J+, J−, and J± so that the set Q defined by these sets via (7.2.1)
produces an instance T of (7.2.2) whose maximal vectors are precisely the
vectors of R.

The following algorithm constructs the desired partition. It relies on
the characterization of R by Claim 7.

1. If R contains just one vector b: Take any {±1} solution s for A⊙s = b,
and define J+ = {j | sj = 1}, J− = {j | sj = −1}, J0 = J± = ∅, and
stop.

2. Assign to each vector b of R a {±1} vector s such that A ⊙ s = b.
Using the assigned vectors s, classify each vector of R either as a blue

7.3. Characterizations 269

vector of some Yp, or as a red vector of some Yq, or as brown. Let r

be the number of blue vectors. (At this point, R has been determined
to have, for some 1 ≤ p(1) < p(2) < · · · < p(r) ≤ t, one blue vector of
each of the sets Yp(1), Yp(2), . . . , Yp(r); possibly, for some q ≥ p(r), a
red vector of Yq; and, possibly, a brown vector.)

3. If R has no red vector, define q = p(r).
4. Initialize J+ = ∅, J− = {y(i) | 1 ≤ i ≤ q; i 6= p(1), p(2), . . . , p(r)},

and J± = {y(i) | i = p(1), p(2), . . . , p(r)}.
5. If q 6= p(r): Add y(q) to J−.
6. If R has only blue vectors: Remove y(p(r)) from J±, and add it to J+.
7. If there is a red vector: Let s be the vector assigned to that red vector.

Add the smallest index z of Yq for which sz = 1 to J+.
8. Do for i = p(1), p(2), . . . , p(r): Let s be the vector assigned to the

blue vector of Yi. Declare j(i) to be the smallest index of Yi with
sj(i) = −1. If j(i) is defined, add it to J−.

9. If z was defined in Step 7, and j(r) was defined in Step 8, and j(r) = z:
Remove z from J+, remove j(r) from J−, and add j(r) to J±.

10. If the brown vector is in R: For all i > p(r), add y(i) to J−.
11. Define J0 to contain the indices of Y not present in any one of the sets

J+, J−, and J±.

Simple but tedious checking proves that R is the set of maximal vectors
of the set T of (7.2.2). We cannot include details here, but should mention
a display of the vectors of R that we have found to be very helpful for
the proof and that the reader may want to employ as well. We draw the
blue, red, and brown vectors of R, in color, into the matrix A of (7.3.3).
Specifically, a blue vector of Yp overlays the column y(p) of A, the red
vector overlays the column z of A, and the brown vector is drawn as one
additional column to the right of A.

Let b ∈ T ; that is, for some s ∈ Q, b = A ⊙ s. It turns out that
the smallest index j for which sj = 1 completely determines b, with one
exception. In the exceptional case, z was defined in Step 7, j(r) was defined
in Step 8, and j(r) = z. In that situation, b is determined by the sign of
sz.

One then confirms by case analysis that each vector f ∈ R occurs in
T and that, for each b ∈ T , there exists an f ∈ R satisfying b ≤ f . Thus,
the vectors of R are precisely the maximal vectors of T .

Claim 9. Matrix A of (7.3.3) is row closed.

Proof. According to Corollary (7.2.7), A is row closed if and only if for
any subset R of subrange(A) satisfying |R| ≥ 2 and containing no nested
vectors, for b defined by

(7.3.12) bi = min
f∈R

{fi}

270 Chapter 7. Boolean Closed Matrices

and for any {±1} vector s satisfying A ⊙ s ≥ b, the set R must contain a
vector f such that A⊙ s ≥ f .

So let R be given, and define b by (7.3.12). Similarly to Claim 8,
the proof can be accomplished by a tedious case analysis that we omit
here. The combined display of the vectors of R as described in the proof
of Claim 8 should be very helpful.

The proof proceeds roughly as follows. Suppose a {±1} vector s sat-
isfies A ⊙ s ≥ b. Let g = A ⊙ s. Add g, in the color induced by s, to the
display of A, which already contains the blue, red, and brown vectors of R.
Since A ⊙ s ≥ b, we must have gi = 1 in every row i in which all vectors
f ∈ R have a 1. By an analysis of the possible cases, one then confirms
that, for some f ∈ R, g ≥ f and thus A ⊙ s ≥ f . That conclusion proves
A to be row closed.

The final claim establishes Boolean closedness of A.

Claim 10. Matrix A of (7.3.3) is Boolean closed.

Proof. We must show that every submatrix of A is both column closed
and row closed.

Lemma (7.3.4) states that the property of being column scalable to a
double staircase matrix is maintained under submatrix taking. Claims 8
and 9 say that any double staircase matrix is both column closed and row
closed. These facts imply that A is Boolean closed.

The next section establishes properties of Boolean closed matrices.

7.4 Properties

We describe properties of Boolean closed matrices that arise from a cer-
tain partial order of vectors, and we investigate the inverse image of the
subrange as well as the cardinalities of the range and subrange. We also
identify the {0,±1} matrices with low GF(3)-rank that are Boolean closed,
and we show that certain subregions of Boolean closed matrices are closed.

Doubly Nested Vectors

We begin with the partial order. Define a binary relation called “doubly
nests” on the set of all {0,±1} vectors as follows. Let a and b be two
{0,±1} vectors. Then a doubly nests b if a and b have the same length,
and if at least one of (7.4.1)(i) and (ii) below holds.

(7.4.1)

(i) There exists a δ = 1 or −1 such that, for all i,
bi 6= 0 implies ai = δ.

(ii) There exists a δ = 1 or −1 such that, for all i,
bi 6= 0 implies ai = δ · bi.

7.4. Properties 271

(7.4.2) Lemma. Suppose {0,±1} vectors a and b of the same length are

scaled by {±1} factors, resulting in a′ and b′, respectively. Then a doubly

nests b if and only if a′ doubly nests b′.

Proof. One only needs to verify that (7.4.1)(i) and (ii) are invariant under
scaling of a and b by {±1} factors.

(7.4.3) Theorem. The binary relation “doubly nests” is a partial order

for any set of {0,±1} vectors that does not contain parallel vectors.

Proof. We must show that “doubly nests” is reflexive, antisymmetric, and
transitive on the given set of vectors.

Reflexive: Let a be any vector. Condition (7.4.1)(ii) trivially holds if
b = a, so a doubly nests a.

Antisymmetric: For a 6= b, suppose that a doubly nests b and that b

doubly nests a. It is easy to deduce from (7.4.1) that a and b must have
the same support and indeed must be parallel. But this contradicts the
assumption that the given set of vectors does not contain parallel vectors.

Transitive: For distinct a, b, and c, suppose that a doubly nests b and b

doubly nests c. A straightforward analysis of the cases arising from (7.4.1)
proves that a doubly nests c.

The partial order “doubly nests” supports yet another characterization
of Boolean closedness.

(7.4.4) Theorem. Let A be a matrix over IB without parallel columns,

and define C to be the set consisting of the column vectors of A. Then

A is Boolean closed if and only if the partial order “doubly nests” when

restricted to C is a total order for C.

Proof. Let A be Boolean closed. Scale the columns of A so that the double
staircase matrix of (7.3.3) results. For any two consecutive column vectors
a and b of the latter matrix, clearly (7.4.1)(i) or (ii) holds, so a doubly
nests b. Lemma (7.4.2) says that scaling does not affect the ordering under
“doubly nests.” Hence, the set C is totally ordered.

Conversely, suppose “doubly nests” induces a total order for C. Theo-
rem (7.3.5) states that A is Boolean closed if and only if A does not contain
any column scaled version of N1–N4 of (7.3.1). Hence, we are done once
we show that no column scaled version of N1–N4 is present. Suppose this
is so, say, for columns a and b of A. Direct checking of (7.4.1) for the
matrices N1–N4 confirms that neither a doubly nests b nor b doubly nests
a, which contradicts the assumption that C is totally ordered.

(7.4.5) Corollary. Suppose the columns of a Boolean closed matrix A

are arranged in increasing order using “doubly nests,” with the smallest

column in the leftmost position. Then one can permute the rows and scale

the columns of A such that the double staircase matrix of (7.3.3) results.

272 Chapter 7. Boolean Closed Matrices

Proof. The ordering given by “doubly nests” is unique up to exchanges of
parallel columns or zero columns. The result then follows from the proof
of Theorem (7.4.4).

Representative Solutions

As the next topic, we investigate the inverse image of the subrange of
Boolean closed matrices. We begin with a definition.

Let A be a matrix over IB with n ≥ 1 columns. For some k ≥ 1, let
s1, s2, . . . , sk be {0,±1} vectors that have n entries each and satisfy the
following two conditions.

First, for any b ∈ subrange(A) and for any {±1} solution vector s of
A ⊙ s = b, there must exist at least one vector si such that each nonzero
element si

j of si satisfies si
j = sj and such that A⊙ si = b. Any such si is

said to represent s. Second, for any si, the vector b = A ⊙ si must be in
subrange(A).

Since the vectors s1, s2, . . . , sk collectively represent all vectors of the
inverse image of subrange(A), we call s1, s2, . . . , sk representative solution

vectors for subrange(A).
For a general matrix A over IB, a minimum set of representative vectors

for subrange(A) may have rather large cardinality even if subrange(A) is a
small set. For example, let A be the {0, 1} matrix with six rows and 6n ≥ 6
columns where each column is one of the six possible unit vectors and
where each such unit vector occurs exactly n times. Then |subrange(A)| =
64, while any set of representative solution vectors for subrange(A) has
cardinality larger than n6.

In contrast, the cardinality of a minimum set of representative vectors
for the subrange of any Boolean closed matrix cannot differ much from
the cardinality of the subrange. Details are given by the next theorem
and corollary. Recall from Section 2.6 that an array is monotone if the
entries are all nonnegative or all nonpositive. Evidently, the nonmonotone
columns of a double staircase matrix are precisely the columns containing
at least one −1.

(7.4.6) Theorem. Let A be a Boolean closed matrix with n1 nonzero

columns of which n2 are not monotone. Then there exists a set of repre-

sentative solution vectors for subrange(A) with cardinality at most n1 +
min{n2, 1}.

Proof. For the moment, assume that A is the double staircase matrix of
(7.3.3) and has n columns. Define s1 to be the vector that has −1s in the
positions indexed by Y − Y0 and that has 0s in all other positions. The
remaining si are constructed as follows.

For 1 ≤ p ≤ t, create the {0,±1} vectors with n entries that have
−1s in the positions j < y(p) and that have all remaining nonzero entries

7.4. Properties 273

indexed by some subset of Yp. The latter nonzero entries are defined ac-
cording to any one of the following three choices. Note that all vectors
satisfying any one of the choices must be constructed.

In the first choice, a 1 is assigned to the smallest position y(p) of Yp

and to all subsequent positions j ∈ Yp for which column j of A is not
monotone.

The second choice is possible only if A has at least two nonmonotone
columns with indices in Yp. In that choice, a nonempty sequence of 1s
starting at position y(p) is assigned and is followed by one −1; the sequence
must be so selected that the−1 occurs in a position j ∈ Yp for which column
j of A is not monotone.

The third choice requires that |Yp| ≥ 2. In that choice, a nonempty
sequence of −1s starting at position y(p) is assigned and is followed by one
1; the sequence must be so selected that the 1 occurs in a position j ∈ Yp.

Direct counting shows that the above process creates a total of k ≤
n1 + min{n2, 1} vectors s1, s2, . . . , sk. To show that these vectors are
representative solution vectors for subrange(A), let s be an {±1} vector
with n entries, and b = A⊙ s. View s as the vector assigned to b. Thus, s

induces the color brown, red, or blue for b.
If b is brown, then s has −1s in the positions indexed by Y − Y0, and

s1 represents s.
If b is a red vector, say, of Yp, let z be the smallest index of Yp satisfying

sz = 1. Since b is red, z > y(p). The third choice above produces, among
others, a vector si such that si

z = 1. For that si, each nonzero element si
j

satisfies si
j = sj. Using (7.3.3), it is easy to verify that b = A⊙ si.

The case of a blue b is handled analogously to the situation of red.
This time, the vector si is produced by the first or second choice above.

We still must show that, for each si, the vector b = A ⊙ si is in
subrange(A). To prove this, we arbitrarily replace the 0s of si by ±1s,
getting a vector s. It is easy to check that A⊙ si = A⊙ s, so b = A⊙ si is
in subrange(A).

We have completed the proof for the case of a double staircase matrix.
In the general case, the given Boolean closed matrix A can be column
scaled to become a staircase matrix. We carry out such scaling, derive
representative solution vectors for the subrange of the scaled matrix as
described above, and finally apply the same scaling factors to the elements
of the vectors. The result is a set of representative solution vectors for
subrange(A).

Cardinalities of Range and Subrange

In yet another change of topic, we examine the cardinalities of the range
and subrange of Boolean closed matrices.

274 Chapter 7. Boolean Closed Matrices

For arbitrary n ≥ 1, let A be the n × n matrix that has −1s on the
diagonal, 0s above the diagonal, and 1s below the diagonal. According to
the matrix of (7.3.3), A is a column scaled version of a double staircase
matrix and thus is Boolean closed. It is easy to see that, for any n × 1
{0, 1} vector b, the equation A ⊙ s = b has a {0,±1} solution s. Hence,
range(A) consists of all such b, and |range(A)| = 2n.

In contrast, the following corollary of Theorem (7.4.6) shows that the
subrange of any Boolean closed matrix is always a small set.

(7.4.7) Corollary. Let A be a Boolean closed matrix with n1 nonzero

columns of which n2 are not monotone. Then |subrange(A)| ≤ n1 +
min{n2, 1}.

Proof. Theorem (7.4.6) says that the Boolean closed matrix A has a set of
k ≤ n1+min{n2, 1} representative solution vectors for subrange(A). By the
definition of these vectors, there exists for each b ∈ subrange(A) a vector si

such that b = A⊙ si. Hence, |subrange(A)| ≤ k ≤ n1 + min{n2, 1}.

Closed GF(3) Matrices

Section 4.4 contains results linking the matrices over IB to the matrices over
GF(3). In the spirit of that investigation, we include a characterization of
the low rank matrices over GF(3) that are Boolean closed.

(7.4.8) Theorem. Let A be a {0,±1} matrix, considered to be over IB or

GF(3) as appropriate.

(a) If GF(3)-rank(A) ≤ 1, then A is Boolean closed.

(b) If GF(3)-rank(A) = 2, then A is Boolean closed if and only if column

scaling followed by deletion of duplicate columns and rows can reduce

A to a matrix that has GF(3)-rank equal to 2 and that is a submatrix

of one of the matrices F 1–F 3 below.

(7.4.9)

1

1 -1 0
1 1 1

-1 0
1 -1
1
1

1
0

-1 0
1 -1
1 1

0

-

F 1 F 2 F 3

Boolean closed matrices F 1–F 3

Proof. If A has GF(3)-rank(A) ≤ 1, then A is a zero matrix, or all nonzero
columns of A are identical up to column scaling. Thus, A can be column
scaled to become a double staircase matrix and is Boolean closed.

To prove part (b), we first observe that the matrices F 1–F 3 of (7.4.9)
are double staircase matrices. Let A be a matrix that by column scaling

7.5. Algorithms 275

and deletion of duplicate rows and columns can be reduced to a submatrix
of one of F 1–F 3. Then A itself can be column scaled to become a double
staircase matrix and is Boolean closed.

Conversely, suppose that A is a Boolean closed matrix and that GF(3)-
rank(A) = 2. Then A contains a 2× 2 GF(3)-nonsingular submatrix with
two, three, or four nonzeros. We analyze the three cases.

The first case implies that A contains a column scaled version of N1

of (7.3.1), which is not possible.
Straightforward enumeration shows that each matrix of the remaining

two cases can at most be extended to a column scaled version of F 1–F 3 of
(7.4.9) if one rules out duplicate rows, duplicate columns, and submatrices
that up to column scaling are equal to N2–N4 of (7.3.1).

Closed Subregions

By the very definition of Boolean closedness, that property is maintained
under submatrix taking. The next result shows that certain subregion
taking maintains that property as well.

(7.4.10) Theorem. Let A be a Boolean closed matrix with column index

set Y . Define αj , j ∈ Y , to be {±1} scaling factors that convert A to

a double staircase matrix. Suppose we replace all entries Aij satisfying

Aij = −αj , j ∈ Y , by 0s. Then the subregion of A so obtained is Boolean

closed.

Proof. Let B be the double staircase matrix derived from A by scaling
with the αj factors. Thus, any entry Bij of B satisfies Bij = αj ·Aij, and
that entry is equal to −1 if and only if Aij = −αj .

Suppose in B we replace all −1s by 0s. According to (7.3.3), this
change must result in a subregion B′ of B that is a solid staircase matrix.
Hence, B′ is Boolean closed.

Replace in A all entries Aij satisfying Aij = −αj by 0s, getting a
subregion A′. Since the −1s of B correspond to the entries of A satisfying
Aij = −αj , the Boolean closed B′ is a column scaled version of A′. Hence,
A′ is Boolean closed.

The next section presents several algorithms that solve problems con-
nected with Boolean closed matrices.

7.5 Algorithms

The results and proofs of the preceding sections imply efficient algorithms
that test for Boolean closedness, that partition a matrix into Boolean closed
column submatrices, and that compute certain vectors and sets connected
with Boolean closed matrices. We provide these algorithms here.

276 Chapter 7. Boolean Closed Matrices

Test Boolean Closedness

We begin with the test for Boolean closedness. Recall from Section 2.6 that
count(A) is the number of nonzero entries of A.

(7.5.1) Algorithm TEST BOOLEAN CLOSEDNESS. Tests a ma-

trix A over IB for Boolean closedness.

Input: Matrix A over IB, of size m× n.

Output: Either: “A is Boolean closed,” together with column scaling fac-
tors and permutations of rows and columns that convert A to an instance
of the double staircase matrix of (7.3.3). Or: “A is not Boolean closed.”

Complexity: O(m + n + count(A)).

Procedure:
1. Select a row of A with the largest number of nonzero entries. Scale

each column of A having a −1 in that row by −1.
2. Arrange the rows of A in increasing order of the number of nonzero

row entries. Thus, the first row has a minimum number of nonzeros.
Arrange the columns of the resulting matrix in decreasing order of the
number of nonzero entries and such that each {0, 1} column is placed
to the left of any nonmonotone column with the same support. Thus,
the first column has a maximum number of nonzeros.

3. Transfer the {0, 1} rows of A to the bottom of the matrix in inverted
order. Thus, a {0, 1} row with a minimum number of 1s becomes the
last row.

4. Either confirm that A is of the form (7.3.3), or declare that the input
matrix is not Boolean closed. In the former case, declare the input
matrix to be Boolean closed, and output the column scaling factors of
Step 1 and the row and column permutations of Step 2 that convert
the input matrix to an instance of (7.3.3).

Proof of Validity. The steps are a direct implementation of the proofs of
Claims 2–5, which are part of the proof of Theorem (7.3.5). The steps can
be accomplished with the claimed complexity when a bucket sort is used
for the sorting of rows and columns.

Partition into Closed Matrices

In Chapter 8, we desire a partition of an arbitrary matrix over IB into
Boolean closed column submatrices. Since each column of A constitutes
a Boolean closed column submatrix, the task is trivial unless additional
conditions are imposed. For example, one might demand that the number
of such column submatrices be minimum. That case is solved by the next
algorithm. Recall from Theorem (7.4.3) that the relation “doubly nests” is

7.5. Algorithms 277

a partial order for any set of {0,±1} vectors that does not contain parallel
vectors.

(7.5.2) Algorithm BOOLEAN CLOSED PARTITION. Partitions

a matrix A over IB into a minimum number of Boolean closed column

submatrices.

Input: Matrix A over IB, with column index set Y .

Output: A partition of A into Boolean closed column submatrices A1,
A2, . . . , Ak where k is minimum.

Complexity: Polynomial.

Procedure:
1. Do for each set of parallel columns of A: Delete the columns of that

set except one from A.
2. Construct a directed graph G as follows. Each column y of A defines a

node y of G. To determine the directed arcs of G, do for all distinct y

and z of Y : If column y of A doubly nests column z, then introduce a
directed arc from node y to node z. (Since “doubly nests” is a partial
order on the columns of A, the graph G is acyclic.)

3. Use Algorithm PATH COVER (2.5.17) to find a minimum number of
directed paths of G, say, P1, P2, . . . , Pk, that cover the nodes of G.

4. Let A1, A2, . . . , Ak be the column submatrices of A whose columns are
indexed by the nodes of P1, P2, . . . , Pk, respectively. Delete columns
from A1, A2, . . . , Ak until each column of A occurs in exactly one of
A1, A2, . . . , Ak.

5. Do for each column j deleted from the input matrix in Step 1: If Ai

contains a column that is parallel to column j, then add column j to
Ai. The resulting A1, A2, . . . , Ak constitute the desired output.

Proof of Validity. Suppose that the input matrix A does not have par-
allel columns. Theorem (7.4.4) implies that any column submatrix of A is
Boolean closed if and only if the binary relation “doubly nests” is a total
order of the columns of that submatrix. Thus, each Boolean closed sub-
matrix of A corresponds to a directed path of the graph G constructed in
Step 2.

Algorithm PATH COVER (2.5.17) finds a minimum number of di-
rected paths covering the nodes of G. The column submatrices correspond-
ing to these paths constitute a minimum number of column submatrices
that include all columns of A. Hence, the matrices A1, A2, . . . , Ak on hand
at the end of Step 4 constitute the desired partition of A.

If A has parallel columns, then Step 5 appropriately adjusts the A1,
A2, . . . , Ak.

Algorithm PATH COVER (2.5.17) used in Step 3 is polynomial. The
other steps clearly can be done with polynomial effort. Hence, the entire
algorithm is polynomial.

278 Chapter 7. Boolean Closed Matrices

Find Representative Solutions

The next algorithm assembles representative solution vectors for the sub-
range of Boolean closed matrices.

(7.5.3) Algorithm REPRESENTATIVE SOLUTIONS. Finds rep-

resentative solution vectors for the subrange of a Boolean closed matrix

A.

Input: Boolean closed matrix A of size m× n, with n1 nonzero columns of
which n2 are nonmonotone. (Below, the notation is that of Section 7.3. In
particular, Y = {1, 2, . . . , n} is assumed to be the column index set of A,
and, for 1 ≤ p ≤ t, y(p) is defined to be the smallest element of the subset
Yp of Y .)

Output: For some k ≤ n1 + min{n2, 1}, representative solution vectors s1,
s2, . . . , sk for subrange(A).

Complexity: O(m + n2 + count(A)).

Procedure:
1. Using Algorithm TEST BOOLEAN CLOSEDNESS (7.5.1), column

scale A so that A becomes the double staircase matrix of (7.3.3).
2. Define s1 to be the vector that has −1s in the positions indexed by

Y − Y0 and has 0s in all other positions.
3. Do for 1 ≤ p ≤ t: Create the {0,±1} vectors with n entries that have
−1s in the positions j < y(p) and that have all remaining nonzero
entries indexed by some subset of Yp. The latter nonzero entries are
defined according to any one of the following three choices. Note that
all vectors satisfying any one of the choices must be constructed.
First choice: Assign a 1 to the smallest position y(p) of Yp and to all
subsequent positions j ∈ Yp for which column j of A is not monotone.
Second choice (requires that A has at least two nonmonotone columns
with indices in Yp): Assign a nonempty sequence of 1s starting at
position y(p), then append one −1; the sequence must be so selected
that the −1 occurs in a position j ∈ Yp for which column j of A is not
monotone.
Third choice (requires |Yp| ≥ 2): Assign a nonempty sequence of −1s
starting at position y(p), then append one 1; the sequence must be so
selected that the 1 occurs in a position j ∈ Yp.

4. Scale the elements of the vectors created in Steps 2 and 3 by the column
scaling factors determined in Step 1. Declare the resulting vectors to
be s1, s2, . . . , sk. These vectors constitute the desired output.

Proof of Validity. The steps are taken almost verbatim from the proof
of Theorem (7.4.6), which establishes the existence of the desired represen-
tative solution vectors for subrange(A).

7.5. Algorithms 279

The claimed complexity is achieved by Algorithm TEST BOOLEAN
CLOSEDNESS (7.5.1) in Step 1 and by a suitable implementation of Steps
2–4.

Find Subrange

Algorithm REPRESENTATIVE SOLUTIONS (7.5.3) is utilized in the fol-
lowing scheme for computing the subrange of Boolean closed matrices.

(7.5.4) Algorithm SUBRANGE OF BOOLEAN CLOSED MA-
TRIX. Finds subrange(A) for a Boolean closed matrix A.

Input: Boolean closed matrix A of size m× n, with n1 nonzero columns of
which n2 are nonmonotone.

Output: subrange(A).

Complexity: O(m · n + n2).

Procedure:
1. Using Algorithm REPRESENTATIVE SOLUTIONS (7.5.3), find, for

some k ≤ n1 + min{n2, 1}, representative solution vectors s1, s2, . . . ,
sk for subrange(A).

2. For 1, 2, . . . , k, compute bi = A⊙ si.
3. Eliminate duplicate vectors from b1, b2, . . . , bk. The remaining vectors

constitute subrange(A).

Proof of Validity. By the definition of the representative solution vectors
for subrange(A), the vectors produced at the end of Step 3 are indeed the
vectors of subrange(A).

The claimed complexity is achieved by Algorithm REPRESENTA-
TIVE SOLUTIONS (7.5.3) in Step 1 and by a suitable implementation of
Steps 2 and 3.

Find J-Sets

The final algorithm carries out the construction of the sets J0, J+, J−, and
J± of Claim 8, which is part of the proof of Theorem (7.3.5).

(7.5.5) Algorithm J-SETS. Finds a partition J0, J+, J−, and J± for

the column index set Y of a double staircase matrix A over IB and for a

given subset R of subrange(A), such that the following holds. Let Q be the

set of {0,±1} vectors s observing

(7.5.6) sj =

0 if j ∈ J0

1 if j ∈ J+

−1 if j ∈ J−
±1 if j ∈ J±

280 Chapter 7. Boolean Closed Matrices

Then the maximal vectors of the set T given by

(7.5.7) T = {b | b = A⊙ s; s ∈ Q}

are precisely the maximal vectors of R.

Input: Double staircase matrix A over IB, of size m × n. A subset R of
subrange(A). For each b ∈ R, a {±1} vector s such that b = A⊙s. (Below,
the notation is that of Section 7.3. In particular, s is called the vector
assigned to b; Y = {1, 2, . . . , n} is assumed to be the column index set of
A; for 1 ≤ p ≤ t, y(p) is defined to be the smallest element of the subset
Yp of Y .)

Output: Partition J0, J+, J−, and J± of Y .

Complexity: O(m · n + n2).

Procedure:
1. Delete all nonmaximal vectors from R. If the reduced R contains just

one vector b, use the vector s assigned to b to define the output sets
J+ = {j | sj = 1}, J− = {j | sj = −1}, J0 = J± = ∅, and stop.

2. Using the assigned vectors s, classify each vector of R as follows.
If the vector s assigned to b contains only −1s in the positions indexed
by Y − Y0, then b is declared to be brown.
Suppose s contains at least one 1 in the positions indexed by Y − Y0.
Let j be the smallest element of Y for which sj = 1. For some 1 ≤
p ≤ t, j ∈ Yp. If j is equal to the smallest element y(p) of Yp, declare
b to be a blue vector of Yp; otherwise, b is a red vector of Yp.
Let r be the number of blue vectors. (At this point, R has been
determined to have, for some 1 ≤ p(1) < p(2) < · · · < p(r) ≤ t, one
blue vector of each of the sets Yp(1), Yp(2), . . . , Yp(r); possibly, for some
q ≥ p(r), a red vector of Yq; and, possibly, a brown vector.)

3. If R has no red vector, define q = p(r).
4. Initialize J+ = ∅, J− = {y(i) | 1 ≤ i ≤ q; i 6= p(1), p(2), . . . , p(r)},

and J± = {y(i) | i = p(1), p(2), . . . , p(r)}.
5. If q 6= p(r): Add y(q) to J−.
6. If R has only blue vectors: Remove y(p(r)) from J±, and add it to J+.
7. If there is a red vector: Let s be the vector assigned to that red vector.

Add the smallest index z of Yq for which sz = 1 to J+.
8. Do for i = p(1), p(2), . . . , p(r): Let s be the vector assigned to the

blue vector of Yi. Declare j(i) to be the smallest index of Yi with
sj(i) = −1. If j(i) is defined, add it to J−.

9. If z was defined in Step 7, and j(r) was defined in Step 8, and j(r) = z:
Remove z from J+, remove j(r) from J−, and add j(r) to J±.

10. If the brown vector is in R: For all i > p(r), add y(i) to J−.
11. Define J0 to contain the indices of Y not present in any one of the sets

J+, J−, and J±. The sets J0, J+, J−, and J± constitute the desired
partition of Y .

7.6. Extensions 281

Proof of Validity. The steps are taken from the proof of Claim 8, which
is part of the proof of Theorem (7.3.5).

The complexity can be attained by a suitable implementation of the
steps.

7.6 Extensions

The efficiency of Algorithms (7.5.3)–(7.5.5) can be significantly improved
by a special encoding of double staircase matrices and their subrange sets.
Instead of an explicit representation of each nonzero entry of a double stair-
case matrix, one stores for each row or column the first and last position of
each sequence of consecutive 1s or −1s contained in that row or column. It
is easily checked using (7.3.3) that each subrange vector of a double stair-
case matrix contains at most two sequences of consecutive 1s. Hence, the
subrange vectors can also be compactly encoded. The related modifications
of Algorithms (7.5.3)–(7.5.5) are straightforward, so we leave them to the
reader.

In the next chapter, we decompose matrices over IB into closed Boolean
matrices and matrices of the classes introduced in Chapter 5.

Chapter 8

Closed Subregion Decomposition

8.1 Overview

Suppose we are to solve the SAT problem for a matrix A that does not
belong to any well-solved class we already know, but that nevertheless is
similar to a matrix A′ of such a class. Because of the similarity of the
matrices, one would be tempted to modify the satisfiability algorithm for
A′ to obtain one for A. In this chapter, we formalize and extend this
intuitive notion. Before we go into details, we review some definitions and
material of earlier chapters.

SAT and MINSAT Centrality

According to (5.2.1), a class C of matrices over IB is SAT central if the
following conditions are satisfied.

(8.1.1)

(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.
(iii) There is a polynomial algorithm for recognizing

the matrices of C.

The class C is SAT semicentral if it observes (8.1.1)(i) and (ii).

282

8.1. Overview 283

According to (5.2.2), a class C of matrix/vector pairs (A, c) is MINSAT
central if (8.1.2) below holds.

(8.1.2)

(i) If (A, c) ∈ C, then any submatrix pair of (A, c) is
also in C.

(ii) There is a polynomial algorithm for solving the
MINSAT instances given by the matrix/vector
pairs of C.

(iii) There is a polynomial algorithm for recognizing
the matrix/vector pairs of C.

The class C is MINSAT semicentral if it observes (8.1.2)(i) and (ii).
Chapter 5 contains several SAT central and MINSAT central classes.

With the exception of two cases, which concern the classes of balanced or
totally unimodular matrices, both the solution algorithms and the recog-
nition algorithms for these classes are very fast.

Subregion Cover

According to Section 2.6, a subregion is obtained from a given matrix by
first taking a submatrix and then replacing in that submatrix some nonzero
entries by zeros.

Section 4.4 declares a subregion cover of a matrix A to be a finite
collection of subregions of A, say, A1, A2, . . . , Ak, having the same size as
A and observing the following condition. For each nonzero entry Aij of A,
there is at least one matrix Al containing that entry. Any such matrix Al

is said to cover the entry Aij .

Closed Subregion Decomposition

Section 7.2 defines the property of Boolean closedness of matrices. We shall
not repeat the rather technical definition here. We use the concept in the
following definition. Let A0, A1, . . . , Aq be a subregion cover of a given
matrix A. If A1, A2, . . . , Aq are Boolean closed, then A0, A1, . . . , Aq is a
closed subregion decomposition of A. Note that no conditions are imposed
on A0.

We are ready to sketch the main idea of this chapter. Suppose we
must solve the SAT problem for a matrix A that is similar to a matrix
of some SAT semicentral class C. The word “similar” admits numerous
interpretations. For present purposes, it is to mean that A has a closed
subregion decomposition A0, A1, . . . , Aq where A0 belongs to the SAT
semicentral class C and where the number of Boolean closed subregions,
q, is small. We show in this chapter that for any such decomposition
one can combine the satisfiability algorithm of C for A0 with algorithms

284 Chapter 8. Closed Subregion Decomposition

of Chapter 7 for the Boolean closed matrices A1, A2, . . . , Aq to obtain
a satisfiability algorithm for A. The complexity of the latter algorithm
depends on the complexity of the algorithm for A0, the number of columns
of A that are entirely contained in A0, and the number of Boolean closed
matrices, q. If q is considered bounded by a constant, then the algorithm
is polynomial.

The same ideas apply to the MINSAT problem. Let a matrix/vector
pair (A, c) be the given MINSAT instance. Analogously to the previous
situation, assume that a closed subregion decomposition A0, A1, . . . , Aq of
A is at hand where (A0, c) belongs to a MINSAT semicentral class C. The
solution algorithm of C for (A0, c) can then be combined with algorithms
of Chapter 7 for A1, A2, . . . , Aq to obtain a solution algorithm for (A, c).
The latter algorithm is polynomial if q is bounded by a constant.

Finding a closed subregion decomposition that leads to a fast solu-
tion algorithm may be quite difficult. Indeed, even if the given semicentral
class is one of the central classes of Chapter 5, the task of finding a best
decomposition is difficult. Yet, closed subregion decompositions where A0

is in one of the central classes of Chapter 5 are very useful from a prac-
tical viewpoint, so we feel compelled to devise polynomial and practically
effective algorithms that search for attractive but not necessarily optimal
decompositions.

We describe three such algorithms in detail and sketch others. Each
of the schemes is based on a heuristic method for solving certain integer
optimization problems called integer programs. The latter method has uses
that go beyond the decomposition task at hand. For example, we rely on
it in Chapter 13 to compute approximate solutions for MINSAT instances.

The presentation proceeds in the following manner. In Section 8.2,
we develop the solution algorithm for the SAT and MINSAT problems
involving matrices with a given closed subregion decomposition.

Section 8.3 contains the polynomial heuristic method for solving inte-
ger programs.

In Sections 8.4–8.6, we use that heuristic method to construct poly-
nomial algorithms for finding closed subregion decompositions where A0 is
a 2SAT matrix, or is hidden nearly negative relative to a given submatrix,
or is a network matrix. Recall that such matrices define certain SAT or
MINSAT central classes of Chapter 5.

The final section, 8.7, contains extensions and references.
In the discussion to follow, we repeatedly use equations and inequalities

of Lemmas (4.2.4), (4.2.8), and (4.2.14) without explicitly referencing them.
Of particular use are the following two results. For any {0, 1} vectors a, b,
c, and d, a ⊕ b ≥ c holds if and only if a ≥ c ⊖ b, and a ≥ b plus c ≥ d
implies a⊕ c ≥ b⊕ d.

8.2. Algorithm for SAT and MINSAT 285

8.2 Algorithm for SAT and MINSAT

The goal of this section is a solution algorithm for the SAT and MINSAT
instances where the matrix A over IB has a closed subregion decomposition.
For convenient reference, we repeat the definition of that decomposition.

Closed Subregion Decomposition

Let A be a matrix over IB. Then a collection of matrices A0, A1, . . . , Aq is a
closed subregion decomposition of A if the following conditions are satisfied.

(8.2.1)
(i) A0, A1, . . . , Aq constitute a subregion cover of A.
(ii) A1, A2, . . . , Aq are Boolean closed.

Representative Solutions

We review some results of Chapter 7. According to Section 7.4, any {0,±1}
vectors s1, s2, . . . , sk are representative solution vectors for the subrange
of a matrix A over IB if the following two conditions are satisfied.

First, for any b ∈ subrange(A) and for any {±1} solution vector s of
A ⊙ s = b, there must exist at least one vector si such that each nonzero
element si

j of si satisfies si
j = sj , and such that A⊙ si = b. Any such si is

said to represent s. Second, for any si, the vector b = A ⊙ si must be in
subrange(A).

Theorem (7.4.6) says that a Boolean closed matrix A, with n1 nonzero
columns of which n2 are not monotone, has a set of representative solution
vectors s1, s2, . . . , sk for subrange(A) where k ≤ n1 + min{n2, 1}. Al-
gorithm REPRESENTATIVE SOLUTIONS (7.5.3) efficiently constructs
such vectors.

Mutually Consistent Vectors

Let a collection of vectors of the same size be given. Then the vectors
are mutually consistent if for any two vectors a and b of the collection and
for any index j, aj 6= 0 and bj 6= 0 imply aj = bj . The first condition
listed above in the definition of representative solution vectors can then be
rephrased as follows. For any b ∈ subrange(A) and for any {±1} solution
vector s of A ⊙ s = b, there exists at least one vector si that is mutually
consistent with s and that satisfies A⊙ si = b.

Basic Inequality

The next theorem establishes an important inequality. It is the basis for
the solution algorithm to come.

286 Chapter 8. Closed Subregion Decomposition

(8.2.2) Theorem. Suppose a matrix A over IB has a closed subregion
decomposition into matrices A0, A1, . . . , Aq. For 1 ≤ p ≤ q, let sp,1,
sp,2, . . . , sp,k(p) be representative solution vectors for subrange(Ap). Let s
be a {±1} vector satisfying A⊙ s ≥ 1. Then, for 1 ≤ p ≤ q, one may select
one vector, say, sp,i(p), from the set of representative solution vectors for
subrange(Ap) such that the selected vectors s1,i(1), s2,i(2), . . . , sq,i(q) are
mutually consistent, and such that s and the vector

(8.2.3) b =

q
⊕

p=1

(Ap ⊙ sp,i(p))

satisfy

(8.2.4) A0 ⊙ s ≥ 1⊖ b

Proof. Since A0, A1, . . . , Aq are a subregion cover of A, each nonzero of
A occurs in at least one of the matrices A0, A1, . . . , Aq. Hence, A⊙ s ≥ 1
implies

(8.2.5) [A0 ⊙ s]⊕ [

q
⊕

p=1

(Ap ⊙ s)] ≥ 1

By the definition of representative solution vectors, for 1 ≤ p ≤ q,
there exists a representative solution vector sp,i(p) for subrange(Ap) that
is mutually consistent with s and that satisfies Ap ⊙ sp,i(p) = Ap ⊙ s. We
use the latter equation and the definition of b by (8.2.3) to deduce from
(8.2.5) the inequality (A0 ⊙ s) ⊕ b ≥ 1. That inequality is equivalent to
A0 ⊙ s ≥ 1⊖ b of (8.2.4).

Solution Algorithm

We are ready to present the solution algorithm. The scheme essentially
searches for the mutually consistent vectors s1,i(1), s2,i(2), . . . , sq,i(q) of
Theorem (8.2.2) by enumerating the possible combinations.

(8.2.6) Algorithm SOLVE CLOSED SUBREGION DECOMPO-
SITION SAT OR MINSAT. Solves the SAT or MINSAT problem in-
volving a given matrix A over IB that has a closed subregion decomposition.
In the MINSAT case, the cost vector is a given rational nonnegative vector
c.

Input: Matrix A over IB, of size m × n. In the MINSAT case, rational
nonnegative vector c.

8.2. Algorithm for SAT and MINSAT 287

Matrices A0, A1, . . . , Aq over IB that constitute a closed subregion decom-
position of A. For 1 ≤ p ≤ q, Ap has np1 nonzero columns of which np2 are
nonmonotone.
An algorithm for solving the SAT or MINSAT instances involving any sub-
matrix A0 of A0 and involving in the MINSAT case the corresponding
subvector c of c. The algorithm is assumed to require at most β (resp. γ)
effort in the SAT (resp. MINSAT) case.

Output: Either: A solution for the SAT instance A or the MINSAT instance
(A, c), whichever applies. Or: “A is unsatisfiable.”

Complexity: O(α(β+ϕ)) in the SAT case and O(α(γ+ϕ)) in the MINSAT
case, where α =

∏q

p=1(np1+min{np2, 1}) and ϕ = m+n+
∑q

p=1 count(Ap).
The effort is polynomial if β or γ, whichever applies, is polynomially
bounded and if q is bounded by a constant.

Procedure:
1. Declare L to be an empty list. MINSAT case only: Initialize an integer

z as z = ∞.
2. Use Algorithm REPRESENTATIVE SOLUTIONS (7.5.3) to deter-

mine, for 1 ≤ p ≤ q, representative solution vectors sp,1, sp,2, . . . ,
sp,k(p) for subrange(Ap).

3. Do for each q-tuple l = (i(1), i(2), . . . , i(q)) satisfying 1 ≤ i(p) ≤ k(p)
for 1 ≤ p ≤ q:
Check if s1,i(1), s2,i(2), . . . , sq,i(q) are mutually consistent. If this is so,
add l to L.

4. Do for each q-tuple l = (i(1), i(2), . . . , i(q)) of L: Compute

(8.2.7)

bl =

q
⊕

p=1

(Ap ⊙ sp,i(p))

J l
+ = {j | ∃p such that s

p,i(p)
j = 1}

J l
−

= {j | ∃p such that s
p,i(p)
j = −1}

Go to Step 5 (resp. Step 6) if a SAT (resp. MINSAT) problem is to be
solved.

5. (SAT case) Do for each q-tuple l = (i(1), i(2), . . . , i(q)) of L: With the
assumed SAT algorithm, either find a {±1} vector s that satisfies

(8.2.8)

A0 ⊙ s ≥ 1⊖ bl

sj = 1, j ∈ J l
+

sj = −1, j ∈ J l
−

or conclude that no such solution exists. As soon as the former case
is encountered, output s as the solution vector for the SAT problem

288 Chapter 8. Closed Subregion Decomposition

of A, and stop. If for all l ∈ L, (8.2.8) is found to have no satisfying
solution, declare A to be unsatisfiable, and stop.

6. (MINSAT case) Do for each q-tuple l = (i(1), i(2), . . . , i(q)) of L: With
the assumed MINSAT algorithm, either find a {±1} vector s that
satisfies (8.2.8) and that, subject to that condition, minimizes total
cost, or conclude that (8.2.8) has no solution. If the former case applies
and if total cost is less than z, then redefine z to be equal to the total
cost, and declare s to be the current solution candidate.

7. (MINSAT case) If z = ∞, declare A to be unsatisfiable, and stop. Oth-
erwise, output the current solution candidate as the optimal solution.
The total cost of that solution is z.

Proof of Validity. We first consider the SAT case. We must show that
a given matrix A has a satisfying solution if and only if the algorithm pro-
duces such a solution. For proof of the “only if” part, let s be a {±1}
solution vector. Theorem (8.2.2) says that there exist representative solu-
tion vectors s1,i(1), s2,i(2), . . . , sq,i(q) that are mutually consistent and that
for b =

⊕q

p=1(A
p⊙ sp,i(p)) satisfy A0⊙ s ≥ 1⊖ b. Hence, Step 3 places the

q-tuple l = (i(1), i(2), . . . , i(q)) into L. For this l, Step 4 computes a vector
bl that is equal to b, plus sets J l

+ and J l
−

. By the derivation of bl, J l
+, and

J l
−

, the given vector s satisfies the problem (8.2.8) in Step 5. Thus, Step 5
must output a vector that, for some q-tuple l of L, solves (8.2.8).

For proof of the “if” part, suppose that the algorithm produces in
Step 5, for some l = (i(1), i(2), . . . , i(q)) of L, a vector s satisfying (8.2.8).
The definition of bl in (8.2.7), plus the inequality A0⊙ s ≥ 1⊖ bl of (8.2.8),
implies that

(8.2.9) (A0 ⊙ s)⊕ [

q
⊕

p=1

(Ap ⊙ sp,i(p))] = (A0 ⊙ s)⊕ bl ≥ 1

By the construction of L in Step 3, the vectors s1,i(1), s2,i(2), . . . , sq,i(q)

are mutually consistent. The conditions imposed in (8.2.8) on the elements
of s by J l

+, and J l
−

guarantee that s and any one of the vectors sp,i(p) are

mutually consistent. Hence, for 1 ≤ p ≤ q, Ap⊙sp,i(p) ≤ Ap⊙s. The latter
inequality may be combined with (8.2.9) to

(8.2.10) (A0 ⊙ s)⊕ [

q
⊕

p=1

(Ap ⊙ s)] ≥ 1

Since A0, A1, . . . , Aq constitute a subregion cover of A, (8.2.10) implies
A⊙ s ≥ 1. We conclude that s is a satisfiable solution for the matrix A.

We have shown that the algorithm solves SAT instances correctly. For
the MINSAT case, the additional cost considerations are handled appro-
priately by Steps 1, 6, and 7.

8.2. Algorithm for SAT and MINSAT 289

We establish the claimed complexity. For 1 ≤ p ≤ q, Algorithm REP-
RESENTATIVE SOLUTIONS (7.5.3) used in Step 2 needs to focus only
on nonzero columns of Ap and thus finds at most np1 + min{np2, 1} rep-
resentative solution vectors for Ap with O(m + (np1)

2 + count(Ap)) effort.
Thus, Step 3 produces a set L having at most α =

∏q

p=1(np1+min{np2, 1})
q-tuples. The latter step as well as Step 4 can clearly be done with O(ϕ ·α)
effort, where ϕ = m + n +

∑q

p=1 count(Ap).
The SAT or MINSAT problem given by (8.2.8) and the cost vector

c, if applicable, is nothing but a SAT or MINSAT problem involving a
submatrix of A0 or (A0, c). Accordingly, total effort for Step 5 (resp. Step 6)
is bounded by |L| · β ≤ α · β (resp. |L| · γ ≤ α · γ). The overall bound
O(α(β + ϕ)) (resp. O(α(γ + ϕ))) stated for the SAT (resp. MINSAT) case
dominates the bounds derived above for the various steps and thus is valid.
That overall bound is clearly polynomial if β or γ, whichever applies, is
polynomially bounded and if q is bounded by a constant.

Semicentral Classes

Chapter 5 includes a number of SAT or MINSAT central classes. We use
the notion of closed subregion decomposition to extend these classes to
significantly larger SAT or MINSAT semicentral classes. We first treat the
general case.

(8.2.11) Theorem. Let C be a class of matrices A (resp. matrix/vector
pairs (A, c)) each of which belongs to a given SAT (resp. MINSAT) semicen-
tral class C′ or has, for some q bounded by a constant, a closed subregion
decomposition into A0, A1, . . . , Aq where A0 (resp. (A0, c)) is in C′. Then
C is SAT or MINSAT semicentral, whichever applies.

Proof. We first consider the SAT case. We must confirm (8.1.1)(i) and (ii).
That is, C must be maintained under submatrix taking, and there must be
a polynomial algorithm that solves the SAT problem for all matrices of C.

Let A be a matrix of C. In the nontrivial case, A has a closed subregion
decomposition into A0, A1, . . . , Aq where A0 is in C′, where A1, A2, . . . ,
Aq are Boolean closed, and where q is bounded by a constant. By the
very definition of Boolean closedness, that property is maintained under
submatrix taking.

Let A be a submatrix of A. Evidently, the corresponding submatrices
A0, A1, . . . , Aq of A0, A1, . . . , Aq constitute a subregion cover of A where
A0 is in C′, and where A1, A2, . . . , Aq are Boolean closed. Hence, A is in
C, and (8.1.1) holds.

The polynomial SAT algorithm for C′ given by the SAT semicentrality
of C′ and Algorithm SOLVE CLOSED SUBREGION DECOMPOSITION
SAT OR MINSAT (8.2.6) solve the SAT problem for A in polynomial time.
Hence, (8.1.1)(ii) holds, and C has been proved to be SAT semicentral.

290 Chapter 8. Closed Subregion Decomposition

The MINSAT case is handled by almost identical arguments using
(8.1.2)(i) and (ii).

(8.2.12) Corollary.
(a) Let C be the following class of matrices A over IB. Each A ∈ C is a

2SAT matrix, or is hidden nearly negative, or is balanced, or has a
closed subregion decomposition into A0, A1, . . . , Aq where A0 has one
of the first three properties and where q is bounded by a constant.
Then C is SAT semicentral.

(b) Let C be the following class of matrix/vector pairs (A, c) where A is
a matrix over IB and where c is a rational nonnegative vector. Each
(A, c) ∈ C is hidden nearly negative relative to the column submatrix
of A corresponding to the zero entries of c, or is balanced, or has a
closed subregion decomposition into A0, A1, . . . , Aq where A0 has one
of the first two properties and where q is bounded by a constant. Then
C is MINSAT semicentral.

Proof. The arguments for parts (a) and (b) are virtually identical, so we
just establish (a). Theorems (5.4.2), (5.6.4), and (5.7.28) say that the
classes of 2SAT matrices, hidden nearly negative matrices, and balanced
matrices are SAT central. Lemma (5.3.2) states that a union of a finite
number of SAT central classes is SAT central. These results plus Theorem
(8.2.11) prove that the class C of part (a) is SAT semicentral.

Finding Decompositions

So far, we have concentrated on solution algorithms for the SAT or MIN-
SAT instances where the matrix A has a suitable closed subregion decom-
position. We now turn to the problem of finding such decompositions.

Ideally, we would like to identify decompositions that result in min-
imum computational effort when Algorithm SOLVE CLOSED SUBRE-
GION DECOMPOSITION SAT OR MINSAT (8.2.6) solves the SAT or
MINSAT problem using that decomposition. The search for such decompo-
sitions seems very difficult. Instead, we might want to look for decomposi-
tions that minimize the complexity bound for Algorithm SOLVE CLOSED
SUBREGION DECOMPOSITION SAT OR MINSAT (8.2.6). That bound
is O(α(β + ϕ)) in the SAT case and is O(α(γ + ϕ)) in the MINSAT case,
where α =

∏q

p=1(np1 + min{np2, 1}) and ϕ = m + n +
∑q

p=1 count(Ap).
Finding best decompositions according to these bounds still seems to be
quite difficult. Hence, we simplify the situation even further and look for
decompositions A0, A1, . . . , Aq where A0 belongs to a given SAT central
class C or (A0, c) belongs to a given MINSAT central class C, where the
number of nonzero columns of A that are entirely contained in A0 is maxi-
mum, and where, subject to these conditions, q is minimum. Optimization

8.3. Heuristic for Integer Programs 291

according to the latter criteria may be viewed as approximate minimization
of the cited complexity bounds.

Optimal Decomposition

We call a decomposition that is best according to the above criteria optimal

relative to C. If C is characterized by a certain property P , we also say
that the decomposition is optimal for P . For example, if C is the class of
2SAT matrices, we say that the decomposition is optimal for 2SAT.

Our pragmatic approach has simplified the search for decompositions
somewhat. But we see later that finding a decomposition that is optimal ac-
cording to our definition may nevertheless be NP-hard. On the other hand,
real-world applications demand that we find decompositions for large ma-
trices rapidly and reliably. Hence, we opt for polynomial heuristic methods
for finding decompositions. We call such decompositions good, since they
may not be optimal.

In Sections 8.4–8.6, we develop such heuristic methods for three im-
portant classes of closed decompositions. They differ by the conditions
imposed on the matrix A0 of the decompositions. In Section 8.4, A0 is
required to be a 2SAT matrix. In Section 8.5, A0 must be hidden nearly
negative relative to a specified column submatrix of A0. In Section 8.5, A0

is demanded to be a network matrix.
The heuristic methods of Sections 8.4–8.6 rely on a general heuristic

scheme for a class of integer optimization problems called integer programs.
The next section provides details about that scheme.

8.3 Heuristic for Integer Programs

We consider integer optimization problems that are given by a rational
matrix B and rational vectors b and c. One is to find a {0, 1} vector r
that satisfies the inequality B · r ≥ b, and that, subject to that condition,
minimizes the objective function ct · r.

Integer Program

Let “s. t.” stand for “subject to.” The problem is therefore

(8.3.1)
min ct · r
s. t. B · r ≥ b

r is a {0, 1} vector

Each instance of such a problem is an integer program, abbreviated IP.

292 Chapter 8. Closed Subregion Decomposition

Later, we encounter IPs where the objective function calls for maxi-
mization and where some constraints are given by equations. Such cases
are brought into the form (8.3.1) by multiplying the objective function by
−1 and by replacing each equation by two inequalities. For example, max
r1 +r2 is replaced by min −r1−r2, and an equation r1 +r2 = β is replaced
by r1 + r2 ≥ β and −r1 − r2 ≥ −β.

Linear Program

When we weaken the requirement of (8.3.1) that r be a {0, 1} vector to the
inequality 0 ≤ r ≤ 1, we get the following linear program (LP).

(8.3.2)
min ct · r
s. t. B · r ≥ b

0 ≤ r ≤ 1

Linear Programming Results

We review and adapt some material about LPs given in Section 5.7.
A feasible solution r of the LP (8.3.2) is an extreme point solution if for

any feasible solutions r1 and r2 satisfying r = (r1 + r2)/2, we necessarily
have r = r1 = r2.

A basic linear programming result says that if the LP (8.3.2) has a
feasible solution, then it must have an optimal solution that is an extreme
point solution.

LPs are well solved. Most popular is the Simplex Method. It is not
polynomial, but has proven to efficiently solve most LPs arising from real-
world problems. There also exist polynomial solution methods—for ex-
ample, the Ellipsoid Method. If (8.3.2) has a feasible solution, then any
method producing an optimal solution is readily transformed into one pro-
ducing an optimal extreme point solution. The Simplex Method does this
naturally, since it examines extreme point solutions only. At any rate, we
assume that any method selected below for the solution of LPs produces
optimal extreme point solutions.

Assumptions about Integer Program

Numerous solution strategies for solving IPs of the form (8.3.1) have been
published. Appropriate references are included in Section 8.7. Many of
the schemes rely on the LP (8.3.2) or on modified versions of that LP. The
heuristic method described below does so as well. It uses a set J and a
subroutine Q that we define first.

8.3. Heuristic for Integer Programs 293

The set J may be any subset of the column index set of the matrix
B for which the following holds. If in the LP (8.3.2) the variables rj with
index j in J are fixed to arbitrary {0, 1} values and if the modified LP has
a feasible solution, then all extreme point solutions of that LP must be
integral.

The subroutine Q is needed for the following task. Suppose arbitrary
{0, 1} values have been assigned to the variables rj with index j in an
arbitrary subset J of J . Then subroutine Q is to decide whether one can
assign {0, 1} values to the remaining variables rj such that the resulting
{0, 1} vector r is a feasible solution for the IP (8.3.1).

Heuristic Solution Method

The heuristic method proceeds as follows. We determine with subroutine
Q whether (8.3.1) has a feasible solution. If this is not so, we declare (8.3.1)
to have no solution and stop. Assume that this case does not apply.

We solve the LP (8.3.2). If the optimal extreme point solution of the
LP is integral, we output it as an optimal solution of the IP (8.3.1) and
stop. Assume that the LP solution is not integral.

We select a nonempty subset J of J that indexes variables with frac-
tional solution values. The selection is such that fractional values close to
1
2

are preferred to values close to 0 or 1. For each possible way of fixing

the variables rj with index j in J to 0 or 1, we determine with subroutine
Q whether the fixed values can be extended to a feasible solution of the IP
(8.3.1). For each case where Q supplies an affirmative answer, we solve the
LP (8.3.2) with the additional constraint that the rj with index j in J must
have the given {0, 1} values. Using the solutions for the various LPs, we
select one variable rj∗ with index j∗ ∈ J and permanently fix that variable
to either 0 or 1. The fixing is done so that the IP (8.3.1) still has a feasible
solution. The permanent fixing of rj∗ allows us to effectively eliminate the
variable rj∗ from the IP (8.3.1) and from the LP (8.3.2).

We apply the above steps recursively to the reduced IP (8.3.1) and
the reduced LP (8.3.2), with two minor changes. First, the reduced IP
(8.3.1) has by its derivation a feasible solution, so we need not check for
this with subroutine Q. Second, if the optimal extreme point solution of
the reduced LP (8.3.2) is integral, then that solution plus the {0, 1} values
already assigned to variables constitutes a good but not necessarily optimal
solution for the original IP. The heuristic method outputs that solution and
then stops.

By the definition of the set J , the recursive process stops at the latest
when all variables rj with index j in J have been permanently fixed.

We can estimate the quality of the solution found for the IP (8.3.1) as
follows. When the original LP (8.3.2) has been solved, we save its optimal

294 Chapter 8. Closed Subregion Decomposition

objective function value. Denote that value by β. Clearly, β is a lower
bound on the optimal objective function value of the IP (8.3.1). When the
recursive process stops, we compare β with the objective function value of
the solution obtained for the IP (8.3.1). If the difference is small (resp. 0),
then that solution is close to optimal (resp. is indeed optimal).

Details of the method are presented next.

(8.3.3) Heuristic SOLVE IP. Finds a good but not necessarily optimal
solution for the IP

(8.3.4)
min ct · r
s. t. B · r ≥ b

r is a {0, 1} vector

or declares the IP to have no feasible solution.

Input: Rational matrix B with column index set Y , rational vectors b and
c, and a positive integer k.
A subset J of Y such that fixing of the variables rj with index j in J to
any {0, 1} values reduces the LP

(8.3.5)
min ct · r
s. t. B · r ≥ b

0 ≤ r ≤ 1

to an LP that either has no feasible solution or has only integral extreme
point solutions.
A subroutine Q that carries out the following task. Suppose arbitrary {0, 1}
values have been assigned to the variables rj with index j in some subset J
of J . Then subroutine Q is to decide whether one can assign {0, 1} values
to the remaining variables rj such that the resulting {0, 1} vector r is a
feasible solution for the IP (8.3.4). Subroutine Q is assumed to require at
most σ effort.
A subroutine R that finds an optimal extreme point solution for any one of
the following modified versions of the LP (8.3.5). Each version is obtained
from the LP (8.3.5) by fixing the variables rj with index j in some subset
J of J to some {0, 1} values such that the modified LP still has a feasible
solution. Subroutine R is assumed to require at most λ effort.

Output: Either: A good but not necessarily optimal solution for the IP
(8.3.4), plus a rational number β that is a lower bound on the optimal
objective function value of the IP (8.3.4). If the difference between β and
the objective function value of the solution is small (resp. 0), then that
solution is close to optimal (resp. is indeed optimal). Or: “The IP (8.3.4)
has no feasible solution.”

Complexity: O(2k · (|J |+ 1) · (σ + λ)). The effort is polynomial if σ and λ
are polynomially bounded and if k is bounded by a constant.

8.3. Heuristic for Integer Programs 295

Procedure:
1. (Check feasibility) Use subroutine Q to decide whether the IP (8.3.4)

has a feasible solution. If this is not so, output that conclusion, and
stop.

2. (Solve LP) Use subroutine R to solve the LP (8.3.5). Let r̃ be the
solution vector. If this is the first time this step is executed, define
β = ct · r̃.

3. (Termination test) If r̃ is integral, output r̃ plus the rj∗ values assigned
in earlier passes through Step 6, if any, as solution vector for the
original IP, and stop.

4. (Select variables) Place the indices j ∈ J for which γj = min{1−r̃j , r̃j}
is positive into a set J . If |J | > k, sort the indices j of J in decreasing
order of the values γj , then delete from J all indices except for the first
k indices of the sorted list. (We have 0 ≤ γj ≤

1
2
; the minimum (resp.

maximum) is attained if and only if r̃j = 0 or 1 (resp. r̃j = 1
2). Thus,

J contains up to k indices j for which r̃j is as close to 1
2 as possible.)

5. (Temporarily fix variables) Do for each possible way of defining a {0, 1}
value αj for each j ∈ J :
For each j ∈ J , fix rj to αj ; test with subroutine Q if the IP (8.3.4) with
these fixed values has a feasible solution; if this is so, use subroutine
R to solve the LP (8.3.5) while enforcing, for all j ∈ J , the value αj

for rj .
Number the LPs that have been solved in the do loop, say, as 1, 2, . . . ,
n. For 1 ≤ i ≤ n, declare βi to be the objective function value of the
ith LP. For each j ∈ J and for each 1 ≤ i ≤ n, let αi

j be the value to
which the variable rj was fixed in the ith LP.

6. (Permanently fix one variable) Select an i∗, 1 ≤ i∗ ≤ n, such that
βi∗ = min{βi | 1 ≤ i ≤ n}. For each j ∈ J , define δj = ∞ if
there is no index i such that αi

j 6= αi∗

j , and define δj = min{βi |

i such that αi
j 6= αi∗

j } otherwise. Select a j∗ from J such that δj∗ =

max{δj |j ∈ J}. Permanently fix rj∗ to the value αi∗

j∗ . (Assume that
βi∗ is approximately equal to the optimal objective function value of
the IP (8.3.4). Then δj may be viewed to be a reasonable estimate
of the increase in objective function value of the IP (8.3.4) when the
variable rj is fixed to the {0, 1} value different from αi∗

j . So if δj is

large, then quite likely the variable rj has the value αi∗

j in any optimal
solution of the IP (8.3.4). The argument is most convincing for the
index j∗, since it maximizes δj . Accordingly, we fix rj∗ to αi∗

j∗ .)

7. (Reduce problem) Reduce the IP (8.3.4) and the LP (8.3.1) using rj∗ =
αi∗

j∗ , and go to Step 2.

Proof of Validity. We assume the nontrivial case where the subroutine Q
determines in Step 1 that the IP (8.3.4) has a feasible solution. Inductively,

296 Chapter 8. Closed Subregion Decomposition

assume that the IP on hand as Step 2 is entered has a feasible solution.

Step 2 produces an optimal solution r̃ for the LP (8.3.5). If this is the
first pass through Step 2, then the optimal objective function value of the
LP, which is recorded under β, is clearly a lower bound for the objective
function value of the IP (8.3.4). If r̃ is integral, then r̃ plus the rj∗ values
permanently assigned in earlier passes through Step 6 is a good solution
for the original IP (8.3.4), and we stop in Step 3. Assume that r̃ contains
noninteger entries.

We claim that at least one of the r̃j with j in J is fractional. If this
is not so, then by the assumption on J any optimal extreme point solution
of the LP (8.3.5)—in particular, r̃—must be integral, a contradiction.

Step 4 selects up to k indices for the subset J of J . The indices
correspond to fractional values of the solution that are as close to 1

2 as
possible.

Step 5 enumerates all possible ways of fixing the variables rj with
index j in J to 0 or 1. Recall the inductive assumption that the IP (8.3.4)
is feasible. Hence, for at least one such fixing of the rj variables, the
subroutine Q must determine that the corresponding IP has a solution.
The LP solutions are computed by the subroutine R.

Step 6 permanently fixes one variable rj∗ with index j∗ in J to the
value αi∗

j∗ . The selection of the index j∗ is based on heuristic arguments
that guess the IP (8.3.4) to have an optimal solution where rj∗ has the
assigned value.

By the determination of j∗ and of the value αi∗

j∗ for rj∗ , the IP (8.3.4)
does have a feasible solution where rj∗ takes on the assigned value. Hence,
we may reduce the IP (8.3.4) and the LP (8.3.5) according to that fixing of
rj∗ and are assured that the inductive assumption is satisfied as we return
to Step 2.

In the complexity formula O(2k · (|J | + 1) · (σ + λ)), the factor 2k is
a bound on the number of applications of the subroutines Q and R in a
given pass through Step 5. By the assumption on J , the LP solution r̃ of
Step 2 must be integral when all variables with index in J have been fixed
to {0, 1} values. Each pass through Steps 2–7 results in the permanent
fixing of exactly one variable, so the number of passes through these steps
is bounded by |J | + 1. Thus, total effort is O(2k · (|J | + 1) · (σ + λ)) as
claimed.

For computational efficiency, one would want to sequence the compu-
tations of Step 5 so that consecutive cases differ as little as possible. That
way, the optimal solution for one LP is an attractive starting solution for
the next LP. We show that such sequencing is easily determined.

Suppose we collect in a vector the {0, 1} values αj to which the vari-
ables rj are fixed in a given iteration of the do loop of Step 5. That vector
has n = |J | entries. Then each iteration of the do loop corresponds to a

8.4. Decomposition for 2SAT 297

{0, 1} vector with n entries, with all possible cases occurring. Furthermore,
sequencing the computations of Step 5 so that consecutive cases differ as
little as possible corresponds to sorting the {0, 1} vectors with n entries so
that consecutive vectors of the resulting sorted list differ by exactly one
entry. Such sorting may be done as follows.

Let n ≥ 2. Inductively, suppose a sorted list L is on hand that consists
of all {0, 1} vectors with n−1 entries, with consecutive vectors differing by
exactly one entry. We compute a list for the {0, 1} vectors with n entries
in two steps.

First, take each vector of L, and add a 1 as the nth entry. Collect the
resulting vectors with n entries in a list L′.

Second, process the vectors of L once more, but this time in reverse
order, and add to each vector a 0 as the nth entry. Adjoin the resulting
vectors, in the order of processing, at the bottom of L′. It is easily checked
that the resulting L′ is the desired sorted list of the {0, 1} vectors with n
entries.

With Heuristic SOLVE IP (8.3.3) at hand, we are ready to tackle
the problem of finding, for given A over IB, an attractive closed subregion
decomposition A0, A1, . . . , Aq where A0 belongs to one of the following
three matrix classes: the class of 2SAT matrices, the class of matrices that
are hidden nearly negative relative to a specified column submatrix, or the
class of network matrices. The three cases are treated in Sections 8.4–8.6.
Additional cases and extensions are covered in Section 8.7.

8.4 Decomposition for 2SAT

Recall from Sections 5.4 and 8.2 that a 2SAT matrix has at most two
nonzero entries in each row, and that a closed subregion decomposition
for 2SAT, say, A0, A1, . . . , Aq, is optimal if the following requirements are
met. The matrix A0 must be a 2SAT matrix that maximizes the number
of columns that are entirely contained in A0; subject to that condition, the
number of Boolean closed subregions, q, must be minimum.

We desire, for a given matrix A over IB, a good if not optimal closed
subregion decomposition for 2SAT.

Complexity

We first show that the problem of finding an optimal decomposition is NP-
hard, using the following result of Bartholdi (1982). Define a permutation

matrix to be a matrix that up to the permutation of rows—or, equivalently,
columns—is an identity matrix.

298 Chapter 8. Closed Subregion Decomposition

(8.4.1) Theorem. Let P be a property of {0, 1} matrices that is main-
tained under submatrix taking. Assume that P holds for all permutation
matrices and that it fails for an infinite number of {0, 1}matrices. Then the
problem of finding a maximum submatrix or a maximum column submatrix
that has P is NP-hard.

Clearly, the 2SAT property is maintained under submatrix taking, it
holds for all permutation matrices, and it fails for an infinite number of
{0, 1} matrices. Theorem (8.4.1) implies that under these conditions the
problem of finding a maximum 2SAT column submatrix in a given {0, 1}
matrix is NP-hard. The latter problem is solved by any optimal closed
subregion decomposition for 2SAT, so finding such decompositions is NP-
hard as well.

Decomposition Algorithm

We use a rather simple heuristic that in two steps finds good closed subre-
gion decompositions for 2SAT. In the first step, we search heuristically for
a 2SAT subregion A0 that contains a large number of nonzero columns of
A. In the second step, we divide up the remaining nonzero columns of A
among a minimum number of Boolean closed subregions, say, A1, A2, . . . ,
Aq.

We formulate the first step as an IP. Let Y be the column index set
of the given matrix A. Define D to be the support matrix of A. Thus,
D is the {0, 1} matrix of the same size as A whose 1s correspond to the
nonzeros of A. If a column y of A is placed into the subregion A0, we say
that the column is assigned to A0.

For each y ∈ Y , define a {0, 1} variable ry as follows.

(8.4.2) ry =

{

1 if column y is assigned to A0

0 otherwise

Collect the variables ry in a vector r. The condition that A0 is a 2SAT
matrix is equivalent to the requirement that

(8.4.3) D · r ≤ 2 · 1

Hence, we find a subregion A0 that contains as many nonzero columns of
A as possible, by determining a {0, 1} vector that solves

(8.4.4) max 1t · r

subject to (8.4.3). As we have seen, finding an optimal A0, and hence
solving the IP of (8.4.3) and (8.4.4), may be difficult. So we use Heuristic
SOLVE IP (8.3.3) to find a good but not necessarily optimal A0.

8.4. Decomposition for 2SAT 299

In the second step, we collect in a matrix E all nonzero columns of
A that do not occur in A0, and we apply Algorithm BOOLEAN CLOSED
PARTITION (7.5.2) to partition E into a minimum number of Boolean
closed submatrices, say, E1, E2, . . . , Eq. For p = 1, 2, . . . , q, we define
Ap to be the Boolean closed subregion of A whose nonzero columns are
precisely the nonzero columns of Ep. Then A0, A1, . . . , Aq is a good closed
subregion decomposition of A for 2SAT.

We summarize the above steps.

(8.4.5) Heuristic DECOMPOSITION FOR 2SAT. Finds a good but
not necessarily optimal closed subregion decomposition A0, A1, . . . , Aq of
a matrix A over IB where A0 is a 2SAT matrix.

Input: Matrix A over IB, with column index set Y .

Output: A good but not necessarily optimal closed subregion decomposi-
tion A0, A1, . . . , Aq of A where A0 is a 2SAT submatrix.

Complexity: Polynomial if in Step 1 a polynomial version of Heuristic
SOLVE IP (8.3.3) is used.

Procedure:

1. (Find A0) Let D be the support matrix of A. Use Heuristic SOLVE
IP (8.3.3) to obtain a good but not necessarily optimal solution for the
IP given by (8.4.3) and (8.4.4). The input for that heuristic method
consists of the IP, any k ≥ 1, J = Y , the subroutine Q specified next,
and a subroutine R for solving LPs. Subroutine Q decides whether
{0, 1} values assigned to some specified variables ry can be extended
to a feasible solution for the inequality D · r ≤ 2 · 1 of (8.4.3). Since
D ≥ 0, that task is simple. Indeed, subroutine Q declares that an
extension to a feasible solution is possible if and only if the given
values for the specified variables plus zeros for the remaining variables
constitute a feasible solution for (8.4.3).

Let r∗ be the solution produced by Heuristic SOLVE IP (8.3.3). Obtain
A0 from A by replacing each column y for which r∗y = 0 by a zero
column.

2. (Find A1, A2, . . . , Aq) Collect in a matrix E all nonzero columns
of A that do not occur in A0. Use Algorithm BOOLEAN CLOSED
PARTITION (7.5.2) to partition E into a minimum number of Boolean
closed column submatrices, say, E1, E2, . . . , Eq. For p = 1, 2, . . . , q,
define Ap to be the Boolean closed subregion of A whose nonzero
columns are precisely the nonzero columns of Ep. Output A0, A1, . . . ,
Aq as the desired decomposition, and stop.

Proof of Validity. As argued earlier, Steps 1 and 2 produce a closed
subregion decomposition for 2SAT. Since Algorithm BOOLEAN CLOSED

300 Chapter 8. Closed Subregion Decomposition

PARTITION (7.5.2) is polynomial, the entire procedure is polynomial if a
polynomial version of Heuristic SOLVE IP (8.3.3) is used in Step 1.

We turn to the situation where A0 is to be hidden nearly negative
relative to a given column submatrix.

8.5 Decomposition for Hidden Near

Negativity

By Section 5.5, a matrix A over IB is nearly negative if each row of A
contains at most one 1. Let D be any column submatrix of A. Section 5.6
defines A to be hidden nearly negative relative to D if scaling of the columns
of D with {±1} factors can convert A to a nearly negative matrix.

Let A with column submatrix D be given. We desire a good, if not
optimal, closed subregion decomposition of A into A0, A1, . . . , Aq where
A0 is hidden nearly negative relative to the submatrix of A0 indexed by
the column indices of D.

Complexity

We first show that finding an optimal decomposition isNP-hard, no matter
which columns of A occur in D. We reduce the problem EXACT COVER
BY 3-SETS, which is known to be NP-complete, to the problem at hand.
An instance of EXACT COVER BY 3-SETS is given by a set X , with
|X | = 3k, for some k ≥ 1, and a collection Y of 3-element subsets of X .
The question to be answered is: Does Y contain an exact cover of X?
That is, does Y contain disjoint subsets of X whose union is equal to X?
Evidently, an equivalent question is: Does Y contain k disjoint subsets of
X?

We encode a given instance by a matrix B with row index set X and
column index set Y . The entry of B in row x ∈ X and column y ∈ Y is
1 if y is a subset of X containing x and is 0 otherwise. In terms of B, the
question has become: Does B have a column submatrix with k columns
where each row of the submatrix contains exactly one 1 or, equivalently, at
most one 1?

Derive a matrix A from B by replacing each 0 entry of B by −1. The
question can now be rephrased as: Does A have a nearly negative column
submatrix with k columns?

Assume the nontrivial case where k ≥ 3. Let D be any column sub-
matrix of A. We claim that the question may be worded as: Does A have
a column submatrix with k columns that is hidden nearly negative relative

8.5. Decomposition for Hidden Near Negativity 301

to D? Indeed, if a column of any selected hidden nearly negative submatrix
requires scaling by −1 to achieve near negativity of the submatrix, then
the scaled column contains 3(k − 1) 1s. But then the submatrix contains
at most 2 < k columns. Thus, selecting a column submatrix of A with
k columns that is hidden nearly negative relative to D is equivalent to
choosing a nearly negative column submatrix of A with k columns.

Finally, suppose an optimal solution A0, A1, . . . , Aq of the decompo-
sition problem is at hand. The above arguments imply that, regardless of
the form of D, the matrix A0 is a nearly negative subregion of A that max-
imizes the number of columns of A entirely contained in A0. That number
is k if and only if Y contains an exact cover of X .

Decomposition Algorithm

Analogously to the 2SAT case of Section 8.4, we use a simple heuristic that
in two steps finds good closed subregion decompositions for hidden near
negativity. In the first step, we search heuristically for a hidden nearly
negative subregion A0 that contains a large number of nonzero columns of
A. In the second step, we divide up the remaining columns of A among a
minimum number of Boolean closed subregions, say, A1, A2, . . . , Aq.

We formulate the first step as an IP. Let A = [C | D] be the given
matrix, with row index set X . Suppose that the columns of A (resp. C,
D) are indexed by a set Y (resp. YC , YD). As in Section 8.4, we say that
a column y of A is assigned to A0 if that column is placed into A0.

The variables of the IP are

(8.5.1)

ry =

{

1 if column y is assigned to A0 and scaled by 1
0 otherwise

sy =

{

1 if column y is assigned to A0 and scaled by −1
0 otherwise

Collect the variables ry and sy in vectors r and s, respectively.
Since ry = 1 and sy = 1 correspond to mutually exclusive cases and

since the columns of C may not be scaled by −1, we enforce

(8.5.2)
r + s ≤ 1

sy = 0, ∀ y ∈ YC

The scaling must convert A0 to a nearly negative matrix. Thus, the scaled
matrix may have at most one 1 in each row. The latter requirement is
expressed by

(8.5.3)
∑

y∋Axy=1

ry +
∑

y∋Axy=−1

sy ≤ 1, ∀ x ∈ X

302 Chapter 8. Closed Subregion Decomposition

Since the goal is assignment of a maximum number of columns of A to A0,
the objective function is

(8.5.4) max 1t · (r + s)

We have seen that finding an optimal A0 may be difficult, so solving the
IP of (8.5.2)–(8.5.4) may be difficult as well. Accordingly, we use Heuristic
SOLVE IP (8.3.3) to find a good but not necessarily optimal A0.

The second step is the same as for the 2SAT case of Section 8.4. That
is, we collect in a matrix E all nonzero columns of A that do not occur in
A0, and we apply Algorithm BOOLEAN CLOSED PARTITION (7.5.2) to
partition E into a minimum number of Boolean closed submatrices, say,
E1, E2, . . . , Eq. For p = 1, 2, . . . , q, we define Ap to be the Boolean closed
subregion of A whose nonzero columns are precisely the nonzero columns
of Ep. Then A0, A1, . . . , Aq is a good closed subregion decomposition of
A for hidden near negativity.

We summarize the above steps.

(8.5.5) Heuristic DECOMPOSITION FOR HIDDEN NEAR
NEGATIVITY. Finds a good but not necessarily optimal closed sub-
region decomposition A0, A1, . . . , Aq of a matrix A over IB where A0 is
hidden nearly negative relative to a specified submatrix.

Input: Matrix A = [C | D] over IB, with row index set X and column
index set Y . Denote the column index sets of C and D by YC and YD,
respectively.

Output: A good but not necessarily optimal closed subregion decomposi-
tion A0, A1, . . . , Aq of A where A0 is hidden nearly negative relative to the
column submatrix indexed by YD.

Complexity: Polynomial if in Step 1 a polynomial version of Heuristic
SOLVE IP (8.3.3) is used.

Procedure:

1. (Find A0) Use Heuristic SOLVE IP (8.3.3) to obtain a good but not
necessarily optimal solution for the IP (8.5.2)–(8.5.4). The input for
that heuristic method consists of the IP, any k ≥ 1, a set J containing
the indices of all variables, the subroutine Q specified next, and a
subroutine R for solving LPs. Subroutine Q decides whether {0, 1}
values assigned to some specified variables ry and sy can be extended
to a feasible solution of the IP (8.5.2)–(8.5.4). That task is simple.
Indeed, subroutine Q declares that an extension to a feasible solution
is possible if and only if the given values for the specified variables plus
zeros for the remaining variables constitute a feasible solution for the
IP (8.5.2)–(8.5.4).

8.6. Decomposition for Network Property 303

Let r∗ and s∗ be the solution produced by Heuristic SOLVE IP (8.3.3).
Obtain A0 from A by replacing each column y for which r∗y = s∗y = 0
by a zero column.

2. (Find A1, A2, . . . , Aq) Collect in a matrix E all nonzero columns
of A that do not occur in A0. Use Algorithm BOOLEAN CLOSED
PARTITION (7.5.2) to partition E into a minimum number of Boolean
closed column submatrices, say, E1, E2, . . . , Eq. For p = 1, 2, . . . , q,
define Ap to be the Boolean closed subregion of A whose nonzero
columns are precisely the nonzero columns of Ep. Output A0, A1, . . . ,
Aq as the desired decomposition, and stop.

Proof of Validity. As argued earlier, Steps 1 and 2 produce a closed
subregion decomposition for hidden near negativity. Algorithm BOOLEAN
CLOSED PARTITION (7.5.2) is polynomial, so the entire procedure is
polynomial if a polynomial version of Heuristic SOLVE IP (8.3.3) is used
in Step 1.

The next section concerns the case where the matrix A0 of the decom-
position is to be a network matrix.

8.6 Decomposition for Network Property

By Section 5.7, a matrix A over IB is balanced if it does not contain certain
cycle submatrices, and it is totally unimodular if every square submatrix,
when viewed over the rationals, has its determinant in {0,±1}. A matrix
A over IB is a network matrix, or has the network property, if A is totally
unimodular and has at most two nonzero entries in each column or in each
row.

We desire, for a given matrix A over IB, a good, if not optimal, closed
subregion decomposition A0, A1, . . . , Aq where A0 is a network matrix.

The reader may wonder why we restrict ourselves to the network prop-
erty, and why we do not treat the more general case of balancedness or total
unimodularity. The reason is that we do not know of a compact represen-
tation of the latter properties by linear inequalities with {0, 1} variables.

Since any network matrix with at most two nonzeros in each row is a
2SAT matrix and since closed subregion decompositions for 2SAT have been
covered in Section 8.4, it may seem that we need not consider such network
matrices here. But according to Sections 5.4 and 5.7, the MINSAT problem
for 2SAT matrices is generally difficult, while the MINSAT problem for
network matrices is easy. Hence, for MINSAT instances one may want to
search for a decomposition A0, A1, . . . , Aq where A0 is a network matrix
with at most two nonzeros in each row.

304 Chapter 8. Closed Subregion Decomposition

Complexity

We first show that finding an optimal closed subregion decomposition for
the network property is NP-hard. Evidently, the network property is main-
tained under submatrix taking, it holds for all permutation matrices, and it
fails for an infinite number of {0, 1} matrices. Theorem (8.4.1) implies that
under these conditions the problem of finding in a given {0, 1} matrix a
maximum column submatrix with the network property is NP-hard. The
latter problem is solved by any optimal closed subregion decomposition
with the network property, so finding such decompositions is NP-hard as
well.

Decomposition Algorithm

Since the network property demands at most two nonzeros in each column
or in each row, we find a good but not necessarily optimal decomposition
with the network property by considering two cases. In the first (resp.
second) case, we demand that each column (resp. row) has at most two
nonzeros. We compare the two decompositions so determined and select
the more attractive one.

The IPs of the two cases rely on Theorem (5.7.10)(iii) and (iv), accord-
ing to which a matrix A is a network matrix if and only if the following
holds. If each row (resp. column) of A has at most two nonzeros, then the
columns (resp. rows) of A can be scaled by {±1} factors so that, in the
scaled matrix A′, each row (resp. column) with two nonzeros contains one
+1 and one −1.

First Integer Program

Let the given matrix A have row index set X and column index set Y . The
first IP treats the case where A0 is to be a network matrix with at most
two nonzeros in each column. The variables representing the assignment
of the columns y of A to A0 are

(8.6.1) ry =

{

1 if column y is assigned to A0

0 otherwise

Collect the variables ry in a vector r. We need variables that represent
{±1} scaling factors for the rows x ∈ X . Note that we actually never scale
A or A0 and that the variables specified next are solely used to enforce total
unimodularity of A0. For this reason, we call the scaling factors conceptual.
The variables are, for x ∈ X ,

(8.6.2) gx =

{

1 if row x is scaled by −1
0 if row x is scaled by 1

8.6. Decomposition for Network Property 305

Define Y1 to be the set of y ∈ Y for which column y of A contains
at most one nonzero entry. Define Y0 (resp. Y2) to be the subset of the
elements y ∈ Y satisfying the following conditions. Column y of A must
have exactly two nonzero entries, and in the case of Y0 (resp. Y2) these
entries must sum to 0 (resp. ±2). Let Y3 = Y − (Y0 ∪ Y1 ∪ Y2).

Each column y ∈ Y1 has at most one nonzero and thus can be assigned
to A0. Hence,

(8.6.3) ry = 1, ∀ y ∈ Y1

On the other hand, each column y ∈ Y3 has at least three nonzeros and
thus cannot be assigned to A0. Hence,

(8.6.4) ry = 0, ∀ y ∈ Y3

For the remaining columns y ∈ (Y0 ∪ Y2), we enforce the scaling condition
by the following inequalities, where we assume that the two nonzero en-
tries in column y reside in rows x(y) and z(y). We justify the equations
momentarily.

(8.6.5)

gx(y) − gz(y) + ry ≤ 1, ∀ y ∈ Y0

−gx(y) + gz(y) + ry ≤ 1, ∀ y ∈ Y0

−gx(y) − gz(y) + ry ≤ 0, ∀ y ∈ Y2

gx(y) + gz(y) + ry ≤ 2, ∀ y ∈ Y2

Suppose, for some y ∈ Y , gx(y) = gz(y) = 0 or gx(y) = gz(y) = 1. Then
both rows x(y) and z(y) are conceptually scaled by 1 or −1. Furthermore,
after the scaling, each column y ∈ Y0 (resp. y ∈ Y2) contains two nonzeros
with opposite signs (resp. the same sign). Accordingly, column y can be
assigned to A0 if and only if y ∈ Y0. The inequalities of (8.6.5) are readily
seen to enforce the latter condition. Similarly, if one of gx(y) and gz(y)

is equal to 0 while the other one is equal to 1, then (8.6.5) enforces that
column y can be assigned to A0 if and only if y ∈ Y2.

The objective function for the IP is

(8.6.6) max 1t · r

Second Integer Program

We turn to the second IP, where A0 is to be a network matrix with at most
two nonzeros in each row. Selection and conceptual scaling of the columns
y of A is handled by the variables

(8.6.7)

ry =

{

1 if column y is assigned to A0, with scaling factor 1
0 otherwise

sy =

{

1 if column y is assigned to A0, with scaling factor −1
0 otherwise

306 Chapter 8. Closed Subregion Decomposition

Denote the vector containing the ry (resp. sy) variables by r (resp. s).
Since ry = 1 and sy = 1 are mutually exclusive cases, we require

(8.6.8) r + s ≤ 1

Let D be the support matrix of A. Since A0 must have at most two nonzero
entries in each row, we enforce

(8.6.9) D · (r + s) ≤ 2 · 1

The conceptual column scaling must transform a row of A0 with two nonze-
ros into a row with one 1 and one −1. It is easy to confirm that this
condition is expressed by

(8.6.10) −1 ≤ A · (r − s) ≤ 1

The objective function for the IP is

(8.6.11) max 1t · (r + s)

The following heuristic algorithm uses the two IPs to determine a good
but not necessarily optimal closed subregion decomposition of a matrix A
into A0, A1, . . . , Aq where A0 is a network matrix.

(8.6.12) Heuristic DECOMPOSITION FOR NETWORK PROP-
ERTY. Finds a good but not necessarily optimal closed subregion decom-
position A0, A1, . . . , Aq of a matrix A over IB where A0 is a network
matrix.

Input: Matrix A over IB, with row index set X and column index set Y .

Output: A good but not necessarily optimal closed subregion decomposi-
tion A0, A1, . . . , Aq of A where A0 is a network matrix.

Complexity: Polynomial if in Step 1 a polynomial version of Heuristic
SOLVE IP (8.3.3) is used.

Procedure:
1. (Find A0 using first IP) Use Heuristic SOLVE IP (8.3.3) to obtain

a good but not necessarily optimal solution for the IP (8.6.3)–(8.6.6).
The input for that heuristic method consists of the IP, any k ≥ 1, a set
J containing the indices of the variables of type gx, and a subroutine
R for solving LPs. The subroutine Q is not needed.
Let r∗ be the solution produced by Heuristic SOLVE IP (8.3.3). Obtain
A0 from A by replacing each column y for which r∗y = 0 by a zero
column.

2. (Find A1, A2, . . . , Aq) Collect in a matrix E all nonzero columns
of A that do not occur in A0. Use Algorithm BOOLEAN CLOSED

8.7. Extensions and References 307

PARTITION (7.5.2) to partition E into a minimum number of Boolean
closed column submatrices, say, E1, E2, . . . , Eq. For p = 1, 2, . . . , q,
define Ap to be the Boolean closed subregion of A whose nonzero
columns are precisely the nonzero columns of Ep. Suppose for 1 ≤
p ≤ q, Ep has np1 columns in total and has np2 nonmonotone columns.
Compute α =

∏q

p=1(np1 + min{np2, 1}).

3. (Find A0, A1, . . . , Aq using second IP) Repeat Steps 1 and 2, except
that this time the IP of (8.6.8)–(8.6.11) is solved in Step 1. The set
J for the Heuristic SOLVE IP (8.3.3) is the index set of all variables,
and the subroutine Q consists of the following test. Given {0, 1} values
for some specified variables, subroutine Q checks whether these values
plus zeros assigned to the remaining variables constitute a solution
for (8.6.8)–(8.6.10). If this is so, the fixed values can be extended to a
feasible solution of the IP. Otherwise, such an extension is not possible.

4. (Select decomposition) Compare the closed subregion decomposition
of A produced by the two passes through Steps 1 and 2. If α of the
second pass is greater than or equal to (resp. is less than) α of the first
pass, output A0, A1, . . . , Aq obtained in the first (resp. second) pass
as the desired closed subregion decomposition of A.

Proof of Validity. It is easily verified that the omission of subroutine Q
in the first pass, as well as the use of the simple subroutine Q of the second
pass, is appropriate. Thus, Heuristic SOLVE IP (8.3.3) produces solu-
tions for the two IPs. The remaining arguments match those for Heuristic
DECOMPOSITION FOR 2SAT (8.4.5) or Heuristic DECOMPOSITION
FOR HIDDEN NEAR NEGATIVITY (8.5.5), except for the straightfor-
ward comparison of the results of the two passes using the two values for
α.

8.7 Extensions and References

Algorithms for solving the IP (8.3.1) or the LP (8.3.2) are given in Hu
(1969), Garfinkel and Nemhauser (1972), Chvátal (1983), Schrijver (1986),
Grötschel, Lovász, and Schrijver (1993), Nemhauser and Wolsey (1988),
and Karloff (1991).

Folklore has it that IPs such as (8.3.1) can be reasonably well solved
by rounding the LP solution of (8.3.2). That is, one iteratively solves the
LP and rounds down (resp. up) fractional values that are close to 0 (resp.
1). In contrast, Heuristic SOLVE IP (8.3.3) fixes variables whose fractional
LP solution values are as far as away from 0 and 1 as possible. Of course,
the fixing is done only when its effect has been established by a reasonable
enumerative effort. In computational comparisons of the two methods as

308 Chapter 8. Closed Subregion Decomposition

well as hybrid methods, we have found that the approach proposed here is
usually superior to the traditional rounding. We should mention, though,
that our test comparisons were confined to IPs arising from decomposi-
tion problems and MINSAT instances. Accordingly, the claim of superior
performance applies only to IPs arising from such problems. The test prob-
lems had up to several thousand variables and inequalities. In each case,
the Simplex Method was selected as subroutine R. The crucial parameter
k ranged from 1 to 5. Various aspects of integer rounding for the solution
of integer optimization problems are discussed in Nemhauser and Wolsey
(1988). A number of results are known for rounding of specially structured
IPs; for example, see Nemhauser and Trotter (1975), Bartholdi, Orlin,
and Ratliff (1980), Agarwal, Sharma, and Mittal (1982), Chandrasekaran
(1984), Hochbaum, Megiddo, Naor, and Tamir (1993), Lakshminarayanan
and Chandrasekaran (1994), and Chandrasekaran, Kabadi, and Lakshmi-
narayanan (1996). Chandru and Hooker (1991) use the rounding result
of Chandrasekaran (1984) to solve the SAT problem for extended Horn

matrices. Additional information about the latter matrices is included in
Section 5.9.

Theorem (8.4.1) is proved by Bartholdi (1982) using work of Lewis and
Yannakakis (1980) and of Yannakakis (1981). A {0,±1} matrix version of
Yannakakis (1981) is given in Crama, Ekin, and Hammer (1997). Chan-
dru and Hooker (1992) prove the result of Section 8.5 that the problem of
finding a maximum hidden nearly negative column submatrix is NP-hard.
For the NP-completeness proof of EXACT COVER BY 3-SETS, see Garey
and Johnson (1979).

The decomposition algorithms of Sections 8.4–8.6 can be refined by
allowing additional choices of taking subregions. We summarize the main
ideas of such refinements using the case of hidden near negativity. Thus, we
consider the situation where a decomposition of a given matrix A over IB
into A0, A1, . . . , Aq is desired where A0 is hidden nearly negative relative
to a specified submatrix.

We want a decomposition that minimizes the solution effort by Al-
gorithm SOLVE CLOSED SUBREGION DECOMPOSITION SAT OR
MINSAT (8.2.6). Let us take the upper bound on the performance of
that algorithm as an indicator of worst-case performance. That bound is
O(α(β +ϕ)) in the SAT case and O(α(γ +ϕ)) in the MINSAT case, where
α =

∏q

p=1(np1 + min{np2, 1}) and ϕ = m + n +
∑q

p=1 count(Ap). For the
case of hidden near negativity, the factor α essentially determines whether
the upper bound is small or not.

Heuristic DECOMPOSITION FOR HIDDEN NEAR NEGATIVITY
(8.5.5) searches for an A0 corresponding to a maximum hidden nearly neg-
ative column submatrix of A, in the hope that the resulting α is small.
Instead, one could search for an A0 corresponding to a submatrix that is

8.7. Extensions and References 309

derived from A by both column and row deletions. Let us pursue the latter
idea.

For the moment, we assume a worst-case α where each deleted column
and each deleted row produces one closed subregion. Thus, for each deleted
column, the corresponding factor in α is equal to 2, while for each deleted
row x, the factor is the number of nonzero entries in that row plus 1. We
denote the latter factor by nx.

Minimization of α is equivalent to minimization of the logarithm of α.
Declare log2(2), which is equal to 1, to be the cost of deleting any column.
Define log2(nx) to be the cost of deleting any row x. A submatrix A′ of
A then minimizes the logarithm of α if and only if the total cost of the
corresponding deletion of columns and rows is minimum.

We are ready to formulate the problem of selecting A′, and thus A0,
as an IP. In agreement with the terminology of Sections 8.4–8.6, we say
that the columns and rows defining the submatrix A′ are assigned to A0.
Note that a nonzero of A, say, in row x and column y, is present in A0 if
and only if both row x and column y have been assigned to A0.

Let A have row index set X and column index set Y . For a simplified
exposition, assume that each row of A is nonzero.

The variables of the IP consist of the variables ry and sy of (8.5.1);
that is, for y ∈ Y ,

(8.7.1)

ry =

{

1 if column y is assigned to A0 and scaled by 1
0 otherwise

sy =

{

1 if column y is assigned to A0 and scaled by −1
0 otherwise

plus, for each x ∈ X , a variable

(8.7.2) gx =

{

1 if row x is assigned to A0

0 otherwise

In agreement with (8.5.2), we enforce

(8.7.3)
r + s ≤ 1

sy = 0, ∀ y ∈ YC

The scaling must convert A0 to a nearly negative matrix. That requirement
is expressed by

(8.7.4)
∑

y∋Axy=1

ry +
∑

y∋Axy=−1

sy + nx · (gx − 1) ≤ 1, ∀ x ∈ X

The term nx · (gx − 1) in (8.7.4) assures that the inequality is effective if
and only if gx = 1.

310 Chapter 8. Closed Subregion Decomposition

The goal is an assignment of the columns and rows to A0 that min-
imizes the total cost of the deleted columns and rows. That total cost is
equal to

∑

y∈Y (1− ry − sy) +
∑

x∈X(log2(nx) · (1− gx)). Minimization of
that function is equivalent to

(8.7.5) max 1t · (r + s) +
∑

x∈X

log2(nx) · gx

The solution of the IP by Heuristic SOLVE IP (8.3.3) is straightforward,
so we omit details. Once a good solution is at hand, say, r∗, s∗, and g∗, we
deduce A′ from A by deleting all columns y with r∗y = s∗y = 0 and all rows
x with g∗x = 0. The nonzeros of A′ are then assigned to the subregion A0.

Let E be obtained from A by the replacement of all nonzeros that have
been assigned to A0, by zeros. As in Heuristic DECOMPOSITION FOR
HIDDEN NEAR NEGATIVITY (8.5.5), we use Algorithm BOOLEAN
CLOSED PARTITION (7.5.2) to partition E into a minimum number of
Boolean closed column submatrices, say, E1, E2, . . . , Eq. For p = 1, 2, . . . ,
q, we define Ap to be the Boolean closed subregion of A whose nonzero
columns are precisely the nonzero columns of Ep. The matrices A0, A1, . . . ,
Aq so obtained give the desired decomposition.

The above method may result in an unnecessarily large α, since a ju-
dicious transfer of some nonzeros from E to A0 might significantly reduce
α. Hence, one should optimize the choice of nonzeros that may be so trans-
ferred. This can be done approximately by the solution of yet another IP
that aims at minimizing α while maintaining A0 to be hidden nearly nega-
tive relative to the specified column submatrix. It would take up too much
space if we were to discuss details of that IP. Suffice it to say the following.
Algorithm BOOLEAN CLOSED PARTITION (7.5.2) essentially solves a
max flow problem when it invokes Algorithm PATH COVER (2.5.17). One
first formulates that flow problem as an IP. Then one enlarges that IP by
considering the effect of possible transfers of nonzeros from E to A0 to
obtain the desired formulation.

One could refine the above approach even further by formulating the
selection of all nonzeros of A for A0 as well as the selection of the Boolean
closed subregions A1, A2, . . . , Aq in one IP. Because of space limitations
we omit a detailed discussion. We should mention, though, that the latter
approach produces large IPs even for modestly sized matrices A and thus
may be of limited utility.

Analogously to the above discussion, one may enhance the heuristic
methods of Section 8.4 and 8.6. Given the above discussion, the reader
should have no difficulty constructing the improved algorithms.

Recall from Section 5.9 that a matching matrix is a {0,±1} matrix
with at most two nonzeros in each column. Matching matrices generalize
network matrices with at most two nonzeros in each column, since matching

8.7. Extensions and References 311

matrices do not demand total unimodularity. Section 5.9 shows that this
extension of network matrices is of interest only for the MINSAT problem
and not for the SAT problem. That section also references efficient algo-
rithms for solving such MINSAT instances. The above ideas and methods
are readily adapted so that one may determine closed subregion decompo-
sitions A0, A1, . . . , Aq where A0 is a matching matrix. Given the treatment
of the network case in Section 8.6 and the above discussion of extensions,
we omit details.

A special case of closed subregion decomposition is treated by Ya-
masaki and Doshita (1983) and is improved upon by Arvind and Biswas
(1987) and by Chandru, Coullard, Hammer, Montañez, and Sun (1990).
The matrix A is decomposed into a nearly negative matrix A0 and a {0, 1}
subregion A1 that is a solid staircase matrix as depicted in (7.3.2). Ac-
cording to Theorem (7.3.5), solid staircase matrices are Boolean closed, so
A0 and A1 are a special case of closed subregion decomposition of A. The
cited references contain efficient algorithms for finding such a decomposi-
tion if it exists and also include efficient solution algorithms for the SAT
case. The third reference also contains a compact characterization in terms
of excluded submatrices.

Gallo and Scutellà (1988) create a sequence of matrix classes based on
the above decomposition by Yamasaki and Doshita (1983). The classes are
indexed by the nonnegative integers. The class with index 0 consists of the
nearly negative matrices. The class with index 1 consists of the matrices
having the decomposition due to Yamasaki and Doshita (1983). For q ≥ 2,
the class with index q consists of matrices that, in our terminology, have
a closed subregion decomposition into A0, A1, . . . , Aq where A0 is nearly
negative and where A1, A2, . . . , Aq are solid staircase matrices. Gallo and
Scutellà (1988) supply, for any q ≥ 0, recognition and solution algorithms
for the matrices in the class with index q. The algorithms are polynomial if
q is bounded by a constant. For related results, see Kleine Büning (1993).

Suppose one enlarges the matrix classes of Gallo and Scutellà (1988)
so that the specification involves hidden nearly negative matrices instead
of nearly negative matrices. Eiter, Kilpeläinen, and Mannila (1995) show
that recognizing membership in any revised class with index q ≥ 1 is NP-
complete.

Dalal and Etherington (1992) as well as Pretolani (1993a, 1996) extend
the work of Gallo and Scutellà (1988) by enlarging the class numbered 0
and generalizing the definition of the other classes.

One may view the results of the latter references as decompositions
that sometimes are more elaborate than those of this chapter. On the
other hand, the decompositions of these references only apply to SAT, and
they may fail to uncover decompositions that are detected by the methods
described in this chapter and that may make solution of some SAT cases
very easy.

312 Chapter 8. Closed Subregion Decomposition

Gallo and Urbani (1989) rewrite any SAT instance into a formulation
that is equivalent to a closed subregion decomposition A0, A1, . . . , Aq where
A0 is nearly negative and where each matrix of A1, A2, . . . , Aq has exactly
one nonzero row.

The next four chapters treat several sums of matrices over IB. First,
we cover monotone sums.

Chapter 9

Monotone Sum

9.1 Overview

This chapter and Chapters 10–12 treat several sums of matrices over IB. We
rely on these sums to decompose SAT or MINSAT instances into smaller
instances. We summarize the main idea below. For a detailed discussion,
the reader should review Sections 4.7 and 4.8.

Let B be a matrix over IB, and let b be a {0, 1} vector. According
to Section 4.7, the matrix B is b-satisfiable if there exists a {±1} vector s
such that B ⊙ s ≥ b.

With one exception that we ignore for the moment, each sum decom-
position of B produces two component matrices, say, B1 and B2. The
components are so selected that, for any b, B is b-satisfiable if and only
if for i = 1, 2, there exists a {0, 1} vector bi such that a certain column
submatrix Bi of Bi is bi-satisfiable. Assume that we are given B and b,
as well as B1 and B2. We want to decide whether B is b-satisfiable. If
we knew b1 and b2, then we could reduce the b-satisfiability problem for B
to the b1-satisfiability problem for B1 and the b2-satisfiability problem for
B2. Unfortunately, b1 or b2 are not always easily determined. But it turns
out that we can always carry out the following alternate process.

First, we determine certain vectors b1 and solve for these vectors the
b1-satisfiability problem for B1.

Second, given the results of those computations, we construct certain
vectors b2 and solve for these vectors the b2-satisfiability problem for B2.
At that point, we can decide whether B is b-satisfiable.

313

314 Chapter 9. Monotone Sum

Finally, if B is found to be b-satisfiable, we combine the solution of
one of the b2-satisfiability problems for B2 in a backtracking step with the
solution of one of the b1-satisfiability problems for B1 to a solution for the
b-satisfiability problem for B.

Section 4.7 classifies each sum according to worst-case upper bounds
on the number of b1- and b2-satisfiability problems for B1 and B2 that may
have to be solved by the SAT algorithm we have developed for that sum. If
that upper bound is 1 for both B1 and B2, the sum is said to be of type I.
If the upper bound is at least 2 for B1 and is 1 for B2, then the sum is of
type II. In the remaining case, where both upper bounds are at least 2, the
sum is of type III.

It is important for our purposes that any sum be maintained under
submatrix taking. That is, if B is a certain sum, say, of B1 and B2, then
any submatrix of B must be a sum of the same type, and the component
matrices must be submatrices of B1 and B2. These requirements signif-
icantly restrict the choice of sums, but also support the construction of
large SAT and MINSAT central or semicentral matrix classes.

This chapter concerns sums called monotone. The presentation pro-
ceeds as follows. In Section 9.2, we define the monotone sum and the
related decomposition and composition and prove several properties.

In Section 9.3, we describe a polynomial algorithm for finding mono-
tone decompositions that are best in a certain sense.

In Section 9.4, we give a solution algorithm for the SAT or MINSAT
problem involving a monotone sum B with components B1 and B2. The
algorithm transforms a given problem into one SAT or MINSAT problem
involving B1 and into a second SAT or MINSAT problem involving B2.
Accordingly, the monotone sum is of type I.

The final section, 9.5, contains extensions and references.

9.2 Definitions and Properties

In this section, we define the monotone sum and the related monotone de-
composition and composition, and we prove basic properties. In particular,
we introduce a partial order for the possible monotone decompositions of
a given matrix B over IB, and we show that there is an essentially unique
monotone decomposition that is largest under that partial order.

Let B be a matrix over IB, with row index set X and column index Y .
By Section 5.5, B is nearly negative if each row of B contains at most one
1. Let C be a column submatrix of B. By Section 5.6, B is hidden nearly
negative relative to C if scaling of the columns of C with {±1} factors can
convert B to a nearly negative matrix.

9.2. Definitions and Properties 315

Monotone Decomposition and Separation

A monotone decomposition of B is achieved by the following three steps.
First, in B the columns of the submatrix C are scaled with {±1}

factors.
Second, the row index set X and column index set Y of the scaled

matrix are partitioned into X1, X2 and Y1, Y2, respectively, so that the
four submatrices defined by the partitions have the following properties.
The submatrix A1 indexed by X1 and Y1 is nearly negative. The submatrix
D defined by X2 and Y1 is nonpositive. The submatrix indexed by X1 and
Y2 is zero. Finally, no constraint is imposed on the submatrix A2 defined
by X2 and Y2; for this reason, we call A2 unconstrained and demand that
the scaling factors for the columns of B containing A2 are all equal to 1.
We display the partitioned matrix below.

(9.2.1) X1

Y1

A1

DX2

Y2

A2

0

Scaled and partitioned matrix

Note that any one of the submatrices of (9.2.1) is allowed to be trivial or
empty. Define (X1∪Y1, X2∪Y2) to be a monotone separation of B relative
to C.

Third, we decompose B by declaring the component B1 (resp. B2) to
be equal to the submatrix A1 (resp. [D|A2]) of the matrix of (9.2.1). Thus,

(9.2.2)
X1 A1

Y1 Y1 Y2

DX2 A2B2 =B1 =

Components B1 and B2 of monotone decomposition

We say that B has been decomposed by a monotone decomposition relative

to C.

Monotone Composition

Conversely, suppose B1 and B2 of (9.2.2) are given, where A1 is nearly
negative and D is nonpositive. We may combine these matrices to the
matrix of (9.2.1), scale in the latter matrix some columns by {±1} factors,
and obtain B again. We say that B has been created by a monotone

composition of B1 and B2.

316 Chapter 9. Monotone Sum

Monotone Sum

We say that B is a monotone sum of B1 and B2 if the latter matrices are
the components of a monotone decomposition of B or, equivalently, if B
is created from B1 and B2 by a monotone composition. We denote that
situation by B = B1

+m B2.
A monotone sum is proper if in the corresponding matrix (9.2.1) both

submatrices A1 and A2 are nontrivial and nonempty, that is, if both sub-
matrices contain at least one entry each.

Note that the definitions given above extend those of Section 4.7. In
particular, the latter definitions do not consider any scaling of B.

Maximum Monotone Decomposition and Separation

Let (X1∪Y1, X2∪Y2) and (X ′

1
∪Y ′

1
, X ′

2
∪Y ′

2
) be two monotone separations

of B relative to C. We say that the first separation is greater than or equal
to the second one if X1 ∪ Y1 ⊇ X ′

1
∪ Y ′

1
. The binary relation so defined is

reflexive, antisymmetric, and transitive and thus establishes a partial order
on the set of monotone separations relative to C. Evidently, (∅, X ∪ Y) is
the unique minimal separation under that partial order. Less obvious is
the following result.

(9.2.3) Theorem. Any matrix B over IB has a unique maximal monotone
separation relative to a given column submatrix C of B.

Proof. Suppose B has two distinct maximal monotone separations relative
to C, say, (X1 ∪ Y1, X2 ∪ Y2) and (X ′

1
∪ Y ′

1
, X ′

2
∪ Y ′

2
).

Each one of the two separations implies a certain column scaling and
partitioning of B. Suppose that we scale the columns of B indexed by Y1

as in the first decomposition and that we scale the columns indexed by
Y ′

1
− Y1 as in the second decomposition. For the matrix so scaled, it is

easily verified that X1∪X ′

1
and Y1∪Y ′

1
index a nearly negative submatrix,

that X − (X1 ∪X ′

1
) and Y1 ∪ Y ′

1
index a nonpositive submatrix, and that

X1 ∪X ′

1
and Y − (Y1 ∪ Y ′

1
) index a zero submatrix. Thus, (X1 ∪X ′

1
∪ Y1 ∪

Y ′

1
, (X ∪ Y)− (X1 ∪X ′

1
∪ Y1 ∪ Y ′

1
)) is a monotone separation relative to C

that is larger than (X1 ∪ Y1, X2 ∪ Y2), a contradiction.

Theorem (9.2.3) justifies that we call any maximal monotone separa-
tion of a matrix B relative to C the maximum monotone separation relative

to C. The monotone decomposition or sum corresponding to a maximum
monotone separation need not be unique due to possible differences in the
column scaling. But, up to column scaling, that monotone decomposition
or sum is unique and is called a maximum monotone decomposition or sum.

One may rephrase Theorem (9.2.3) in terms of monotone decomposi-
tions as follows.

9.3. Decomposition Algorithm 317

(9.2.4) Corollary. Suppose a given matrix B has a monotone decompo-
sition relative to some column submatrix C. Denote by A1 (resp. A2) the
nearly negative (resp. unconstrained) submatrix of the decomposition. Let

A1′ (resp. A2′) be the nearly negative (resp. unconstrained) submatrix of

any maximum monotone decomposition of B relative to C. Then, A2′ is a
submatrix of A2, and, up to column scaling, A1 is a submatrix of A1′.

Proof. By Theorem (9.2.3), A1 is up to column scaling a submatrix of

A1′. Hence, A2′ is a submatrix of A2.

Let P be a matrix property that is inherited under submatrix taking.
Corollary (9.2.4) supports the following result.

(9.2.5) Corollary. Suppose a given matrix B has a monotone decompo-
sition relative to some column submatrix C of B. If the unconstrained
submatrix of that decomposition has property P , then this is so for every
maximum monotone decomposition of B relative to C.

Proof. Let a monotone decomposition of B be given where the uncon-
strained matrix, say, A2, has property P . Let A2′ be the unconstrained
submatrix of a maximum monotone decomposition of B relative to C. By
Corollary (9.2.4), A2′ is a submatrix of A2, and it has P , since A2 has
P .

In the next section, we establish a polynomial algorithm for finding
maximum monotone decompositions.

9.3 Decomposition Algorithm

This section contains a polynomial algorithm that, for a given matrix B,
finds a maximum monotone decomposition relative to a given column sub-
matrix C of B. We outline the algorithm.

If B has zero rows, we first remove all such rows. The indices of these
rows will eventually be in the set X1 ⊆ X of the maximum monotone
decomposition of B.

From the matrix B on hand, we arbitrarily select a column y of B.
To simplify the discussion, we temporarily assume that column y is in C.
Hence, both 1 and −1 are permitted as scaling factors for that column. We
also assume that column y contains both 1s and −1s.

First, we define the scaling factor for column y to be 1 and check
whether y can possibly occur in the column index set Y1 of some monotone
decomposition of B. If the answer is yes, we reduce the decomposition to a
smaller case. If the answer is no, we change the scaling factor for column y
to −1 and again check whether y can possibly occur in the column index set

318 Chapter 9. Monotone Sum

Y1 of some monotone decomposition of B. If the answer is yes, we reduce
the decomposition problem. If the answer is no, we know that in any
monotone decomposition the index y must occur in the column index set
Y2. Hence, we select another column and repeat the above process. Once
all columns have been processed, a simple backtracking scheme constructs
the maximum monotone decomposition.

Straightforward implementation of the algorithm results in quadratic
run time. One may speed up performance as follows. When it has been
determined that an index y ∈ Y must be in the set Y2 of any monotone
decomposition, then the computations producing that conclusion imply
that certain other indices z must also be in Y2, or can only be in Y1 if
column z is scaled in a certain way. Using that additional information, one
streamlines the algorithm so that each column is examined at most twice.
Hence, the improved algorithm runs in linear time.

We present details of the algorithm. We delete all zero rows from B
and select an arbitrary column y ∈ Y of the resulting matrix.

We tentatively fix the scaling factor for column y to 1 and declare A1

to be the submatrix of B that precisely contains the 1s of column y. With
A1 so determined, we define D, E, and A2 according to (9.3.1) below.

(9.3.1) X1
B =

Y1

A1

DX2

Y2

A2

E

Scaled and partitioned matrix

Note that each row of A1 contains exactly one 1 and that D is nonpositive.
Below, we assume inductively that this condition is satisfied.

If E is zero, then we remove A1, D, and E from B and recursively apply
the algorithm to the reduced B. Hence, we suppose that E is nonzero.

Select any nonzero column z of E. For the time being, let us assume
that column z of E can be scaled to become nonpositive. We scale column
z of E so that the scaled column is nonpositive, and we scale the corre-
sponding column z of A2 with the same factor. We repartition B in two
steps. First, we shift the scaled column z of E to A1 and correspondingly
shift the scaled column z of A2 to D. Since D was nonpositive prior to
the shifting, the new D has at most one 1 in each row. In the second step,
we shift all rows of D containing one 1 from D to A1, and we shift the
corresponding rows of A2 from A2 to E. The new A1 has exactly one 1 in
each row, and the new D is nonpositive. Thus, the inductive assumption
is satisfied, and we may recursively continue with the new A1, D, E, and
A2. We check if E is nonzero, etc.

9.3. Decomposition Algorithm 319

So far, we have assumed that column z of E can be scaled to become
nonpositive. Now suppose that this is not so, either because that column
contains 1s and −1s or because that column is nonnegative and cannot be
scaled by −1. The next lemma establishes that certain monotone decompo-
sitions can be ruled out on the basis of the current partition of the current
matrix B. For any v ∈ Y , define v to be usable if there exists a monotone
decomposition of the current matrix B where, in the notation of (9.2.1), v
is scaled by 1 and is in Y1. We extend this terminology using the notation
v, by saying that v is usable if there exists a monotone decomposition of
the current matrix B where column v is scaled by −1 and is in Y1.

The scaling restriction imposed on the columns v outside the column
submatrix C of the current matrix B can now be rephrased. For each such
column v, we have v unusable.

(9.3.2) Lemma. Suppose the above algorithm reaches the situation where
a nonzero column z of E cannot be scaled to become nonpositive. Let
(9.3.1) display the matrix B on hand at that time. Then the following
statements hold.

(a) The submatrix A1 has exactly one 1 in each row.

(b) The submatrix D is nonpositive.
(c) y is unusable.
(d) Assume that y is unusable. Then, for each v ∈ (Y1−{y}), v is unusable,

and both z and z are unusable.

Proof. Parts (a) and (b) have already been established by the above dis-
cussion.

For the proof of part (c), consider y to be usable. One may view the
scaling and shifting of vectors of the above steps to be a direct consequence
of that assumption. But that scaling and shifting produces a contradictory
situation for column z, so y must be unusable.

We prove part (d) for the elements v ∈ (Y1 − {y}) by induction. The
base case, where Y1 − {y} is empty, is trivial. For the inductive step, we
once more apply the algorithm to the matrix B at hand. That is, we select
column y with scaling factor 1 and process the columns in the order in
which they were originally processed. Thus, the same steps are carried
out, except that all scaling factors are equal to 1.

Assume inductively that the claim holds for the columns processed up
to a certain point and that column v is processed next. The matrix on
hand is of the form (9.3.1). By parts (a) and (b), A1 has exactly one 1
in each row, and D is nonpositive. Since all scaling factors are equal to 1,
column v of E is nonzero and nonpositive.

Suppose v is usable. Thus, there is a monotone decomposition where
column v is scaled by −1 and where the scaled column v is in the nearly
negative column submatrix of the decomposition. The scaling converts the

320 Chapter 9. Monotone Sum

nonzero and nonpositive column v of E to a nonnegative vector, say, with
a 1 in row x. Since A1 has a 1 in each row, it has a 1 in row x, say, in
column w. The assumed monotone decomposition requires that column
w be scaled by −1 and that the scaled column be in the nearly negative
column submatrix of the decomposition. Thus w is usable. If w = y, then
w is not usable by the assumption of part (d), a contradiction. If w 6= y,
then w is not usable by induction, another contradiction.

It remains to be shown for part (d) that both z and z are unusable. We
know that column z of E on hand cannot be scaled to become nonpositive.
There are two possible causes.

First, column z of E may contain both 1s and −1s. We then argue
as in the inductive proof for v ∈ (Y1 − {y}) above that both z and z are
unusable.

Second, column z of E may be nonnegative, and the scaling restriction
on the original matrix rules out scaling by −1. Arguing as before, z is
unusable. The scaling restriction causes z to be unusable as well.

We continue the description of the algorithm. Lemma (9.3.2)(c) says
that y is unusable. If y is possibly usable, we scale column y by −1, apply
the above steps, and either reduce the matrix or determine y to be unusable.

Thus, at most two applications of the above steps yield a reduced
matrix or establish both y and y to be unusable.

Recursive application of the above scheme to all columns of the matrix
results in any number of reductions, plus eventually the conclusion that for
any column v of the remaining matrix, both v and v are unusable. At that
time, we declare the reduced matrix to be a column scaled version of the
unconstrained matrix of a maximum monotone decomposition. We undo
any scaling for that unconstrained matrix and adjoin the deleted columns
and rows to get the matrix (9.2.1) of the decomposition. From the latter
matrix, we define the components B1 and B2 of the decomposition via
(9.2.2).

The complexity of the algorithm as described is quadratic. We speed
up the scheme by the following changes. We determine whether y or y is
usable by carrying out the above process for column y and column y scaled
by −1 in parallel. If either case results in a reduction, we stop the parallel
processing, carry out the reduction, and begin with another column of the
reduced matrix. If neither case leads to a reduction, we record both y and
y as unusable. Assume the latter situation. Lemma (9.3.2)(d) implies that
for each one of the two cases certain v and v are unusable. Indeed, for each
column processed in the two cases, we have by Lemma (9.3.2)(d) at least
one such conclusion. We record that insight and later skip processing steps
for any column v for which v or v is already known to be unusable.

When these ideas are properly implemented, a linear algorithm results.
That algorithm records the unusable v or v in a set N . While processing

9.3. Decomposition Algorithm 321

column y, each v or v that is unusable according to Lemma (9.3.2)(d) is
stored in a set L.

In the case of a reduction, the set L is discarded. In the remaining
situation, where both y and y are proved to be unusable, the elements of
L as well as y and y are added to N .

The rules for handling N and L in the algorithm include that an
element v or v in N or L must be changed whenever column v is scaled
by −1. That way, the sets N and L remain correct relative to the current
matrix.

Finally, the interpretation of N is not affected by any reductions. In-
deed, if v (resp. v) is usable after a reduction, then v (resp. v) must have
been usable prior to that reduction.

We summarize the algorithm below.

(9.3.3) Algorithm MONOTONE DECOMPOSITION. Finds a
maximum monotone decomposition for a given matrix B over IB.

Input: Matrix B of size m × n, with row index set X and column index
set Y . A column submatrix C of B. The columns of C may be scaled by
{±1} factors, while columns outside C may only be scaled by 1.

Output: A maximum monotone decomposition of B relative to C.

Complexity: O(m + n + count(B)) if the two scaling cases for column y,
which are handled by Steps 5–10 below, are evaluated in parallel.

Procedure:

1. (Initialization) Initialize a set N as the set of elements y for which
column y is not in C.

2. (Remove zero rows.) Remove all zero rows from B.

3. (Termination) If, for each column y of the current B, both y and y
are in N : Undo any prior scaling for the current B, and declare the
resulting matrix to be A2, say, with row index set X2 and column
index set Y2. Adjoin to A2 the rows and columns deleted in earlier
passes through Step 2 or 6. Partition the resulting matrix into A1, D,
A2, and a zero submatrix in agreement with (9.2.1). The partitioned
matrix represents a maximum monotone decomposition of the original
matrix B relative to C. The component matrices B1 and B2 are given
by (9.2.2). Output that decomposition, and stop.

4. (Select candidate column y.) Select any column y of the current B
such that N does not contain both y and y. Initialize a set L as the
empty set. Define α = 1 (α denotes the current scaling factor for y.)
If N contains y, go to Step 11.

5. (Search for a decomposition where y ∈ Y1.) Declare A1 to be the
subvector of column y that precisely contains the 1s of column y. With
A1 determined, define D, E, and A2 according to (9.3.1).

322 Chapter 9. Monotone Sum

6. (D is nonpositive. E = 0 implies that a decomposition is at hand.) If
E = 0: Remove A1, D, and E from B, and go to Step 2.

7. (E is nonzero.) Select any nonzero column z of E.
8. (Shift column z from E if possible.) If z /∈ N , and if column z of E is

nonpositive: Shift column z of E from E to A1, and correspondingly
shift column z of A2 from A2 to D. Shift all rows of D with exactly
one 1 from D to A1, and shift the corresponding rows of A2 from A2

to E. Add z to L. Go to Step 6.
9. (Scale and shift column z from E if possible.) If z /∈ N , and if column

z of E is nonnegative: Scale column z of E and column z of A2 by
−1. Shift the scaled column z of E from E to A1, and correspondingly
shift the scaled column z of A2 from A2 to D. Shift all rows of D with
exactly one 1 from D to A1, and shift the corresponding rows of A2

from A2 to E. If z ∈ N , replace it by z. If z ∈ L, replace it by z. Add
z to L. Go to Step 6.

10. (Decomposition attempt is unsuccessful.) Add both z and z to L.
11. (Try alternate scaling factor.) If y /∈ N and α = 1: Scale column y by

−1. Set α = −1. If y ∈ N , replace it by y. Go to Step 5.
12. (Decomposition attempt is unsuccessful for both scaling cases of col-

umn y.) Add both y and y to N . Add all elements of L to N . Go to
Step 3.

We turn to the solution algorithm for the SAT or MINSAT instances where
the given matrix has a monotone decomposition.

9.4 Solution Algorithm

Let B be a monotone sum B = B1
+m B2. Let b be a {0, 1} vector of

appropriate size. From now on, we denote the SAT instance consisting of
the b-satisfiability problem for B by (B, b).

In this section, we develop an algorithm that solves the SAT instance
(B, b) by transforming it into a certain SAT instance (B1, b1) and into a
second SAT instance (B2, b2).

The algorithm also handles MINSAT instances where a b-satisfying
solution for B is to be found that minimizes costs given by a rational
nonnegative vector c. The MINSAT instance is min

∑
cy such that B⊙s ≥

b, where the summation is over the y ∈ Y for which sy = 1. From now on,
we denote that MINSAT instance by (B, b, c).

In our solution approach for (B, b, c), the vector c restricts the scaling
of the monotone decomposition. Specifically, the scaling of columns of B
in the decomposition must be confined to the columns y of B for which
cy = 0.

9.4. Solution Algorithm 323

The algorithm is based on Theorem (5.5.2), which we repeat below.
Recall from Section 5.5 that a satisfying solution for a given matrix A over
IB is minimum with respect to True if the following condition holds. If
the solution has the value True for a column of A, then every satisfying
solution for A must have True for that column.

(9.4.1) Theorem. Let A be a nearly negative matrix that is satisfiable.
Then A has a satisfying solution that is minimum with respect to True,
and this solution is found by Algorithm SOLVE NEARLY NEGATIVE
SAT OR MINSAT (5.5.1).

SAT Case

We first develop the algorithm for the SAT instance (B, b). Let X be the
row index set of B, and let Y be the column index set. Suppose B has a
monotone decomposition as given by (9.2.1) and (9.2.2). To simplify the
discussion, we assume that the decomposition does not involve any column
scaling. Thus, B itself has the form

(9.4.2) X1
B =

Y1

A1

DX2

Y2

A2

0

Partitioned matrix B

and has as submatrices the component matrices

(9.4.3)
X1 A1

Y1 Y1 Y2

DX2 A2B2 =B1 =

Components B1 and B2 of monotone decomposition

Recall that the submatrix A1 is nearly negative and that the submatrix D
is nonpositive.

The SAT instance (B, b) demands solution of B ⊙ s ≥ b. Partition b
into b1 and b2 corresponding to the index sets X1 and X2, respectively, of
(9.4.2), and partition s into s1 and s2 corresponding to the index sets Y1

and Y2, respectively. By (9.4.2) and (9.4.3), the inequality B ⊙ s ≥ b may
be rewritten as

(9.4.4)
B1 ⊙ s1 = A1 ⊙ s1 ≥ b1

B2 ⊙ [s1/s2] = (D ⊙ s1)⊕ (A2 ⊙ s2) ≥ b2

324 Chapter 9. Monotone Sum

Since B1 = A1 is nearly negative, we may use Algorithm SOLVE NEARLY
NEGATIVE SAT OR MINSAT (5.5.1) either to find a solution s1∗ for
B1 ⊙ s1 ≥ b1 or to conclude that (B1, b1) is unsatisfiable. By (9.4.4), the
latter case implies that B is unsatisfiable, and we stop with that conclusion.
In the former case, Theorem (9.4.1) says that the satisfying solution so
found for B1 is minimum with respect to True. Equivalently, one may say
that any element y of s1∗ is equal to 1 only if every solution of B1⊙s1 ≥ b1

has the value 1 for that element. The latter result and the nonpositivity of
D imply that, for any vector s1 satisfying B1 ⊙ s1 ≥ b1,

(9.4.5) D ⊙ s1∗ ≥ D ⊙ s1

By (4.2.19), the inequality of (9.4.5) and the second inequality of (9.4.4)
imply, for any vector s1 satisfying B1 ⊙ s1 ≥ b1,

(9.4.6) (D ⊙ s1∗)⊕ (A2 ⊙ s2) ≥ (D ⊙ s1)⊕ (A2 ⊙ s2) ≥ b2

Suppose we have an algorithm that, for any {0, 1} vector a2 of appro-
priate size, solves A2 ⊙ s2 ≥ a2. We use that algorithm to solve

(9.4.7) A2 ⊙ s2 ≥ b2 ⊖ (D ⊙ s1∗)

which, by (4.2.13), is equivalent to (D⊙s1∗)⊕(A2⊙s2) ≥ b2 of (9.4.6). If a
solution, say, s2∗, is found, then s∗ = [s1∗/s2∗] solves (9.4.4). If no solution
exists, then (9.4.6) has no solution for any s1 satisfying B1 ⊙ s1 ≥ b1, and
thus B ⊙ s ≥ b has no solution.

We may summarize the above process as follows. Solve the SAT in-
stance (A1, b1) with Algorithm SOLVE NEARLY NEGATIVE SAT OR
MINSAT (5.5.1). If no solution exists, then (B, b) has no solution. Other-
wise, let s1∗ be the solution. Next, solve the SAT instance (A2, b2 ⊖ (D ⊙
s1∗)). If no solution exists, (B, b) has no solution. Otherwise, s∗ = [s1∗/s2∗]
is a solution for (B, b).

MINSAT case

We turn to the MINSAT case. Let (B, b, c) be the given instance, where b is
as before and where c is a rational nonnegative vector. Define C to be the
column submatrix of B indexed by the y ∈ Y for which cy = 0. Suppose
B has a monotone decomposition relative to C. Thus, the columns of the
submatrix C of B may be scaled so that B becomes the matrix of (9.4.2).
As before, let us assume that B itself is the latter matrix. Partition c into
c1 and c2 corresponding to the index sets Y1 and Y2, respectively, of (9.4.2).
Arguments that are virtually identical to those for the SAT case justify the
following solution algorithm.

First, solve the MINSAT instance (A1, b1, c1) with Algorithm SOLVE
NEARLY NEGATIVE SAT OR MINSAT (5.5.1). If no solution exists,
(B, b, c) is unsatisfiable. Otherwise, let s1∗ be the solution. Next, solve the
MINSAT instance (A2, b2 ⊖ (D ⊙ s1∗), c2). If no solution exists, (B, b) has
no solution. Otherwise, s∗ = [s1∗/s2∗] solves (B, b, c).

9.4. Solution Algorithm 325

Solution Algorithm

The above discussion validates the following algorithm.

(9.4.8) Algorithm SOLVE MONOTONE SUM SAT OR MIN-
SAT. Solves SAT instance (B, b) or MINSAT instance (B, b, c) where B is
a monotone sum, b is a {0, 1} vector, and c is a rational nonnegative vector.

Input: Matrix B over IB of size m× n, with row index set X and column
index set Y . A {0, 1} vector b with m entries. In the MINSAT case, a
rational nonnegative vector c with n entries.
A monotone decomposition relative to the following column submatrix C
of B. In the SAT case, C = B. In the MINSAT case, C is the column
submatrix of B indexed by the y ∈ Y for which cy = 0. The decomposition
is displayed by (9.2.1) and (9.2.2). Consider b to be partitioned into b1 and
b2 according to the index sets X1 and X2, respectively, and c to be parti-
tioned into c1 and c2 according to the index sets Y1 and Y2, respectively,
of the decomposition.
An algorithm that in the SAT (resp. MINSAT) case solves, for any {0, 1}
vector a2 of appropriate size, the SAT instance (A2, a2) (resp. MINSAT
instance (A2, a2, c2)) in at most β (resp. γ) time.

Output: Either: A solution s∗ for (B, b) or (B, b, c), whichever applies. Or:
“The given instance has no solution.”

Complexity: O(m + n + count(B) + β) in the SAT case, and O(m + n +
count(B) + γ) in the MINSAT case.

Procedure:
1. In the SAT (resp. MINSAT) case, use Algorithm SOLVE NEARLY

NEGATIVE SAT OR MINSAT (5.5.1) to solve the SAT instance
(A1, b1) (resp. MINSAT instance (A1, b1, c1)). If the instance is un-
satisfiable, then declare the original problem to be unsatisfiable, and
stop. Otherwise, let s1∗ be the solution.

2. Using the algorithm given in the input, solve in the SAT (resp. MIN-
SAT) case the instance (A2, b2 ⊖ (D ⊙ s1∗)) (resp. (A2, b2 ⊖ (D ⊙
s1∗), c2)). If the instance is unsatisfiable, declare the original prob-
lem to be unsatisfiable, and stop. Otherwise, let s2∗ be the solution.

3. Let s∗ = [s1∗/s2∗]. Scale s∗ by the scaling factors that were used in
the monotone decomposition of B. Output the scaled vector as the
solution vector.

Proof of Validity. The prior arguments establish validity for Steps 1 and
2. The scaling of s∗ in Step 3 accounts for the scaling of B in the monotone
decomposition.

Algorithm SOLVE MONOTONE SUM SAT OR MINSAT (9.4.8) evi-
dently solves one SAT or MINSAT instance for each one of the components

326 Chapter 9. Monotone Sum

B1 and B2. Hence, the monotone sum is of type I. We record this fact for
future reference.

(9.4.9) Theorem. The monotone sum is of type I.

SAT and MINSAT Centrality

We establish a certain centrality result for monotone sums. We review
relevant definitions of Section 5.2.

Let C be a class of matrices over IB. Then C is SAT central if the
following conditions are satisfied.

(9.4.10)

(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.
(iii) There is a polynomial algorithm for recognizing

the matrices of C.

The class C is SAT semicentral if it observes (9.4.10)(i) and (ii).
Let C be a set of matrix/vector pairs (A, c), where A is a matrix over

IB and c is a rational nonnegative vector. We declare C to be MINSAT
central if the following conditions are satisfied.

(9.4.11)

(i) If (A, c) ∈ C, then any submatrix pair of (A, c) is
also in C.

(ii) There is a polynomial algorithm for solving the
MINSAT instances given by the matrix/vector
pairs of C.

(iii) There is a polynomial algorithm for recognizing
the matrix/vector pairs of C.

The class C is MINSAT semicentral if it observes (9.4.11)(i) and (ii).

(9.4.12) Theorem.
(a) Let C0 be a class of SAT central (resp. semicentral) matrices. Then

the class C of monotone sums B = B1
+m B2 where the submatrix A2

of B2 is in C0 is SAT central (resp. semicentral).
(b) Let C0 be a class of MINSAT central (resp. semicentral) matrix/vector

pairs. Then the class C of matrix/vector pairs (B, c) for which B is a
monotone sum B = B1

+m B2 and for which the submatrix A2 of B2

and the related subvector c2 of c form a matrix/vector pair (A2, c2) of
C0, is MINSAT central (resp. semicentral).

Proof. We establish part (a). First, assume that the class C0 is SAT cen-
tral. We prove (9.4.10), and thus SAT centrality, for C using the notation
of (9.2.1) and (9.2.2).

9.5. Extensions and References 327

Let B = B1
+m B2 be in C, and let B be any submatrix of B. Define

A2, B1, and B2 to be the submatrices of A2, B1, and B2, respectively,
that occur in B. Since the conditions imposed by the monotone sum on
the submatrices A1 and D are maintained under submatrix taking and
since A2 and A2 are in the SAT central C0, we have B = B1

+m B2 in C.
Thus, (9.4.10)(i) holds.

We solve the SAT problem for any B = B1
+m B2 in C in polynomial

time using the polynomial Algorithm SOLVE MONOTONE SUM SAT OR
MINSAT (9.4.8), with the polynomial SAT algorithm for the SAT central
C0 as subroutine. Thus, (9.4.10)(ii) holds.

We turn to (9.4.10)(iii). We decide membership in C in polynomial
time using the polynomial Algorithm MONOTONE DECOMPOSITION
(9.3.3) and the polynomial recognition algorithm for the SAT central C0

as follows. Let a matrix B be given. We apply Algorithm MONOTONE
DECOMPOSITION (9.3.3) to find a maximum monotone decomposition

of B, and test if the submatrix A2′ of that decomposition corresponding to
A2 of (9.2.1) is in C0. If this is so, we have proved B to be in C.

Assume that A2′ is not in C0. We claim that B is not in C. Indeed, if
B is in C, then it must have a monotone decomposition of the form (9.2.1)

where A2 is in C0. Corollary (9.2.4) says that A2′ is a submatrix of A2, so

by the SAT centrality of C0, A2′ is in C0, a contradiction.
We have proved that C is SAT central. A portion of the above argu-

ments proves SAT semicentrality of C if C0 is SAT semicentral. Judicious
modification of the arguments also proves part (b).

The final section covers extensions and references.

9.5 Extensions and References

Boros, Crama, and Hammer (1990), and Boros, Hammer, and Sun (1994)
treat the SAT case where, in our terminology, the given matrix B is a
monotone sum B = B1

+m B2 for which the submatrix A2 of B2 is a 2SAT
matrix. That is, A2 has at most two nonzero entries in each row. The
references define the CNF system represented by the matrix B to be q-
Horn. In the discussion below, we apply that term to the matrix B as
well.

The cited references give a linear algorithm for solving the SAT prob-
lem involving q-Horn CNF systems. In our terminology, the algorithm con-
sists of Algorithm SOLVE MONOTONE SUM SAT OR MINSAT (9.4.8)
and Algorithm SOLVE 2SAT (5.4.1).

Boros, Hammer, and Sun (1994) describe a linear algorithm for recog-
nizing q-Horn matrices. The more general Algorithm MONOTONE DE-

328 Chapter 9. Monotone Sum

COMPOSITION (9.3.3) detects maximum monotone decompositions in lin-
ear time, with no restriction imposed on the submatrix A2. On the other
hand, Corollary (9.2.5) implies that any maximum monotone decomposi-
tion determined with Algorithm MONOTONE DECOMPOSITION (9.3.3)
has a 2SAT submatrix A2 if and only if the given matrix is q-Horn. Thus,
the latter algorithm may be used to test for the q-Horn property in linear
time.

Boros, Crama, Hammer, and Saks (1994) base a complexity index
for SAT on the idea of q-Horn matrices. Pretolani (1993a) gives a linear
algorithm for deciding unique satisfiability for q-Horn matrices. Boros and
Čepek (1995) link q-Horn matrices and so-called perfect {0,±1} matrices.

Boros and Hammer (1992) use q-Horn matrices to effect a decompo-
sition of matrices that is more general than the monotone decomposition.
To simplify the discussion, let us assume that the given matrix has at least
two nonzero entries in each row. In our terminology, the decomposition of
Boros and Hammer (1992) involves column scaling and partitioning of the
given matrix, and results in

(9.5.1) X1

Y1

A1

DX2

Y2

A2

E

Scaled and partitioned matrix

where A1 is nearly negative and has in each row at least two nonzero entries
and where D is nonpositive. The matrices E and A2 are arbitrary. The
conditions imposed on A1 imply that A1 has at least one −1 in each row.
The latter fact and the requirement that D is nonpositive imply that one
may set all variables indexed by Y1 to False and thus obtain a reduced
matrix that is satisfiable if and only if the original matrix is satisfiable.

In contrast to monotone decompositions, the decomposition of (9.5.1)
generally is not maintained under submatrix taking. Thus, results anal-
ogous to the SAT or MINSAT centrality or semicentrality statements of
Theorem (9.4.12), which are crucial for our subsequent use of the mono-
tone decomposition, do not hold.

But suppose we want to obtain the decomposition (9.5.1) to reduce
SAT or MINSAT instances. Boros and Hammer (1992) describe an al-
gorithm that finds such a decomposition in linear time if certain choices
are made appropriately. It is easy to modify Algorithm MONOTONE DE-
COMPOSITION (9.3.3) so that it finds such decompositions in linear time,
too. We sketch the changes. In Step 6, the condition E = 0 is replaced by
the requirement that A1 has in each row at least two nonzero entries. In

9.5. Extensions and References 329

Step 7, a nonzero column z of E is selected according to some heuristic rule
with the following aim. When column z is scaled and shifted in Step 8 or
9, then the new A1 must be nearly negative and, subject to that condition,
should have at least two nonzeros in as many rows as possible.

Suppose we want to make the choices in the algorithm of Boros and
Hammer (1992) or in the modified version of Algorithm MONOTONE DE-
COMPOSITION (9.3.3) so that a decomposition of the form (9.5.1) is found
that is best according to some reasonable measure. For example, given a
decomposition of the form (9.5.1), let X ⊆ X1∪X2 index the nonzero rows
of the column submatrix [A1/D]. One might declare a decomposition of
the form (9.5.1) to be best if some monotone increasing function of |X| and
|Y1|—for example, |Y1| or |X|+ |Y1|—is maximum.

We show that finding a decomposition that is best according to any
one of these measures is NP-hard. Indeed, for {±1} matrices, the prob-
lem becomes one of finding a maximum hidden nearly negative column
submatrix, which in Section 8.5 is shown to be NP-hard. Accordingly,
making appropriate choices in the algorithm of Boros and Hammer (1992)
or making appropriate heuristic selections in the modified version of Algo-
rithm MONOTONE DECOMPOSITION (9.3.3), so that a decomposition
is found that is best according to any one of the above measures, isNP-hard
as well.

We should mention that choices can be specified in the algorithm of
Boros and Hammer (1992) so that it produces a maximum monotone de-
composition. However, such choices may result in quadratic run time.

The monotone decomposition may be defined and computed for any
class of matrices whose entries are classified as either positive, negative, or
zero. Therefore, the decomposition may be useful in other areas involving
nearly negative matrices. Section 5.9 mentions two such areas, economic
input–output analysis and linear complementarity theory.

The next chapter investigates a sum called closed sum.

Chapter 10

Closed Sum

10.1 Overview

In this chapter, we utilize the Boolean closed matrices of Chapter 7
to effect a composition and decomposition called closed sum. We have
already used Boolean closed matrices. In Chapter 8, we employed them
to obtain the closed subregion decomposition. The latter decomposition is
quite different from the closed sum discussed here.

Sections 4.7 and 4.8 include a general discussion of sums of matrices
and their uses. That material appears in condensed form in Section 9.1.
Given that presentation, we only mention that a sum decomposition of a
given matrix B, say, with components B1 and B2, permits us to solve any
b-satisfiability problem for B by solving some b1-satisfiability problems for
a certain column submatrix B1 of B1 and some b2-satisfiability problems
for a certain column submatrix B2 of B2. Some sums—for example, the
monotone sum of Chapter 9—may be used to solve MINSAT instances
analogously to the SAT case. But this is not so for the closed sum discussed
here.

Section 4.7 classifies each sum according to worst-case upper bounds
on the number of b1- and b2-satisfiability problems for B1 and B2 that may
have to be solved by the SAT algorithm we have developed for that sum. If
that upper bound is 1 for both B1 and B2, the sum is said to be of type I.
If the upper bound is at least 2 for B1 and is 1 for B2, then the sum is of
type II. In the remaining case, where both upper bounds are at least 2, the
sum is of type III. It turns out that the closed sum is of type II.

330

10.2. Review and Definitions 331

The chapter is organized as follows. In Section 10.2, we review Boolean
closed matrices and define the closed sum and related concepts.

In Section 10.3, we present algorithms for identifying certain closed
sums.

Section 10.4 concerns the solution algorithm for SAT instances involv-
ing closed sums.

The final section, 10.5, contains extensions.

10.2 Review and Definitions

We review relevant material of Chapter 7 and introduce the closed sum and
related concepts. We begin with the definition of Boolean closed matrices
given in Section 7.2.

Column Closedness

A matrix A over IB and with column index set Y is column closed if for
any nonempty subset R of subrange(A) the following holds. There exists a
partition of Y into sets J0, J+, J−, and J± such that the set Q of vectors
s satisfying

(10.2.1) sj =

0 if j ∈ J0

1 if j ∈ J+

−1 if j ∈ J−
±1 if j ∈ J±

produces a set

(10.2.2) T = {b | b = A⊙ s; s ∈ Q}

whose maximal vectors are precisely the maximal vectors of R.

Row Closedness

A matrix A over IB is row closed if, for any nonempty R ⊆ subrange(A),
there exists a {0, 1} vector b such that the set

(10.2.3) Sb = {s | A⊙ s ≥ b; sj ∈ {±1}, ∀ j}

is equal to the set

(10.2.4) SR = ∪f∈R{s | A⊙ s ≥ f ; sj ∈ {±1}, ∀ j}

332 Chapter 10. Closed Sum

Boolean Closedness

A matrix A over IB is Boolean closed if A and all submatrices of A are both
column closed and row closed. For such a matrix A, let R be an arbitrary
subset of subrange(A). Lemma (7.2.5) implies that the vector b for which
the set Sb of (10.2.3) is equal to the set SR of (10.2.4) is given by

(10.2.5) bi = min
f∈R

{fi}

Furthermore, Algorithm J-SETS (7.5.5) finds a partition J0, J+, J−, and
J± of the column index of A such that the maximal vectors of the set T
defined by (10.2.1) and (10.2.2) are precisely the maximal vectors of R.

We are ready to define the closed sum and related concepts. The
definitions given below extend those of Section 4.7.

Closed Decomposition and Separation

Let B be a matrix over IB of the form

(10.2.6) X1
B =

Y1

A1

DX2

Y2

A2

0

Matrix B with closed separation

where D is Boolean closed. Note that any one of the submatrices of B is
allowed to be trivial or empty. Define (X1 ∪ Y1, X2 ∪ Y2) to be a closed

separation of B.
We decompose B into components B1 and B2 in one of two ways.

In the first case, B1 (resp. B2) is the column (resp. row) submatrix of B
indexed by Y1 (resp. X2). Thus,

(10.2.7)
B1 =

X1

X2 D

Y1

A1

B2 = D

Y1 Y2

X2 A2

Components B1 and B2 of closed sum B, first case

In the second case, the roles of B1 and B2 of (10.2.7) are reversed. That
is, B1 (resp. B2) is the row (resp. column) submatrix of B indexed by X2

(resp. Y1). Thus,

10.2. Review and Definitions 333

(10.2.8) X1
D

X2

Y1 Y2

B2 =B1 = X2
D

Y1

A1

A2

Components B1 and B2 of closed sum B, second case

In both cases, we say that B has been decomposed by a closed decomposi-

tion.
The reader may wonder why we consider the two decomposition cases

(10.2.7) and (10.2.8), instead of just one of them, say, (10.2.7). The reason
is that the decompositions may be employed with different efficiency to
solve the SAT problem for B. Details are included in Section 10.4 below.

We emphasize that the closed decomposition is quite different from
the closed subregion decomposition of Chapter 8. In that decomposition, a
given matrix A is decomposed into a subregion cover A0, A1, . . . , Aq where
A1, A2, . . . , Aq are Boolean closed.

Closed Composition

Suppose that the matrices B1 and B2 of (10.2.7) or (10.2.8) are given, and
that the submatrix D present in both matrices is Boolean closed. In either
case, we may combine these matrices according to (10.2.6) and obtain B
again. We say that B has been created by a closed composition of B1 and
B2.

Closed Sum

We say that B is a closed sum of B1 and B2 if the latter matrices are the
components of a closed decomposition of B or, equivalently, if B is created
from B1 and B2 by a closed composition. We denote that situation by
B = B1

+c B2.
A closed sum is proper if the corresponding matrix (10.2.6) satisfies the

following condition. If the submatrix D is a zero (resp. nonzero) matrix,
then both submatrices A1 and A2 must be nonempty (resp. nontrivial and
nonempty). Equivalently, in the case of a zero matrix D, both sets X1∪Y1

and X2 ∪ Y2 must be nonempty, while in the case of a nonzero D the four
sets X1, X2, Y1, and Y2 must be nonempty.

Classification Using GF(3)

We classify proper closed sums using the field GF(3). The definitions are
based on the concepts of matroid separation and matroid sum discussed in

334 Chapter 10. Closed Sum

Sections 3.4 and 3.6. Suppose B is a proper closed sum given by (10.2.6).
If for some positive integer k

(10.2.9) GF(3)-rank(D) = k − 1

then B has a closed k-separation. The closed decomposition, composi-
tion, and sum that correspond to a closed k-separation are called closed

k-decomposition, closed k-composition, and closed k-sum, respectively. We
stress that these definitions are based on a closed sum that is proper.

If k = 1, then GF(3)-rank(D) = 0, and thus D = 0. For that case, the
closed 1-sum is the 1-sum of Section 4.7.

Submatrix Taking

Since we intend to employ closed sums for the solution of satisfiability
problems, we would want them to be maintained under submatrix taking.
Indeed, we have the following stronger conclusion.

(10.2.10) Theorem. Let B be a closed k-sum with components B1 and
B2. Then any submatrix B of B is contained in B1 or B2 or is, for some
k ≤ k, a closed k-sum whose components B1 and B2 are submatrices of
B1 and B2, respectively.

Proof. Let B be given by (10.2.6). We take B to have the structure of
(10.2.6), but with bars added to all symbols.

If B is contained in one of the submatrices [A1/D] or [D|A2] of B,
then, by (10.2.7) and (10.2.8), B is contained in B1 or B2.

Assume neither case applies. Thus, both index sets X1 and Y 2 of B
are nonempty.

If both index sets X2 and Y 1 are nonempty as well, then B clearly is a
closed k-sum for some k ≤ k. If at least one of the latter sets is empty, then
the submatrix D of D is trivial or empty, and B is a closed 1-sum.

In the next section, we establish polynomial algorithms for finding
certain closed k-separations.

10.3 Decomposition Algorithms

In this section and Section 10.5, we use algorithms and results of Section 3.5
to find closed k-separations for any given k. The resulting methods are
polynomially bounded provided that k is bounded by a constant. However,
the schemes are practically useful only if k = 1, 2, or 3. We cover details
for the latter cases here and treat the case of general k in Section 10.5.

We rely on Theorem (7.4.8), which we repeat below.

10.3. Decomposition Algorithms 335

(10.3.1) Theorem. Let A be a {0,±1} matrix, considered to be over IB
or GF(3) as appropriate.

(a) If GF(3)-rank(A) ≤ 1, then A is Boolean closed.
(b) If GF(3)-rank(A) = 2, then A is Boolean closed if and only if col-

umn scaling followed by deletion of duplicate columns and rows can
reduce A to a matrix which has GF(3)-rank equal to 2 and which is a
submatrix of one of the matrices F 1–F 3 below.

(10.3.2)

1

1 -1 0
1 1 1

-1 0
1 -1
1
1

1
0

-1 0
1 -1
1 1

0

-

F 1 F 2 F 3

Boolean closed matrices F 1–F 3

Closed 1-Separation

Since the closed 1-sum is the 1-sum of Section 3.5, the case k = 1, where
GF(3)-rank(D) = 0 and thus D = 0, is detected by Algorithm 1-SEPARA-
TION (3.5.1).

Closed 2-Separation

Finding a closed 2-separation for a given matrix B requires partitioning of
B as

(10.3.3) X1
B =

Y1

A1

DX2

Y2

A2

0

Matrix B with closed separation

such that D has GF(3)-rank(D) = 1 and is Boolean closed and such that
the submatrices A1 and A2 contain at least one entry each. According
to Theorem (10.3.1)(a), GF(3)-rank(D) = 1 implies that D is Boolean
closed. We conclude that the desired closed 2-separation is at hand if
GF(3)-rank(D) = 1 and if A1 and A2 observe the stated condition.

The algorithm introduced below for locating closed 2-separations is
similar to Algorithm GF(3)-2-SEPARATION (3.5.26). We decided on a

336 Chapter 10. Closed Sum

separate treatment for two reasons. First, the latter algorithm requires the
given matrix B to be connected and simple. That condition is not imposed
here. Second, the discussion motivating the algorithm of this section sets
the stage for the subsequent, more complicated case involving closed 3-
separations.

The main tool for finding the desired separation is Algorithm IN-
DUCED F -SEPARATION (3.5.14). We review that algorithm and related
material of Section 3.5. Let B be a matrix over a field F , with row index
set X and column index set Y . Define B to be a submatrix of B of the
form

(10.3.4)

X2 A2D1

D2A1X1

Y2Y1

B =

Submatrix B of B

Let k ≥ 1 be given. Assume that for some l ≥ k,

(10.3.5) |X1 ∪ Y 1|, |X2 ∪ Y 2| ≥ l

and that

(10.3.6) F -rank(D1) +F -rank(D2) = k − 1

Then (X1 ∪ Y 1, X2 ∪ Y 2) is an exact k-separation of B. That separation
of B induces one for B if X and Y can be partitioned into X1, X2 and Y1,
Y2, respectively, such that, for i = 1, 2, Xi ⊇ X i and Yi ⊇ Y i, and such
that (X1 ∪ Y1, X2 ∪ Y2) is an exact k-separation of B.

Algorithm INDUCED F -SEPARATION (3.5.14) decides whether a
given exact k-separation of B induces one for B. Lemma (3.5.15) contains
two observations about the output of that algorithm as follows.

(10.3.7) Lemma.
(a) Any k-separation produced by Algorithm INDUCED F -SEPARA-

TION (3.5.14) has X1 ∪ Y1 minimal and X2 ∪ Y2 maximal, in the
sense that any other k-separation (X ′

1 ∪ Y ′
1 , X ′

2 ∪ Y ′
2) of B induced by

the exact k-separation (X1 ∪ Y 1, X2 ∪ Y 2) of B observes X1 ⊆ X ′
1,

X2 ⊇ X ′
2, Y1 ⊆ Y ′

1 , and Y2 ⊇ Y ′
2 .

(b) Let (X1∪Y 1, X2∪Y 2) be an exact k-separation of B, except that |X2∪
Y 2| may be equal to k− 1. If B has a k-separation (X ′

1 ∪ Y ′
1 , X ′

2 ∪ Y ′
2)

where, for i = 1, 2, X i ⊆ X ′
i and Y i ⊆ Y ′

i , then one such k-separation
of B is found by Algorithm INDUCED F -SEPARATION (3.5.14).

10.3. Decomposition Algorithms 337

The algorithm for finding closed 2-separations views a given matrix
B over IB to be over GF(3). It enumerates all B submatrices of the form
(10.3.4) where GF(3)-rank(D1) = 1 and |X1| = |X2| = |Y 1| = |Y 2| = 1.
For each such B, it checks with Algorithm INDUCED F -SEPARATION
(3.5.14) if B induces a 2-separation of B. If no B induces a 2-separation
of B, then, in agreement with Lemma (10.3.7)(b), the algorithm declares
that B does not have a closed 2-separation. Otherwise, the algorithm stops
as soon as a 2-separation of B is found.

Using Lemma (10.3.7)(b), one may speed up the algorithm by replacing
the condition |Y 2| = 1 imposed on B by |Y 2| = 0. We have not done so to
simplify the subsequent discussion of a variant of the algorithm.

(10.3.8) Algorithm CLOSED 2-SEPARATION. Finds a closed 2-
separation for a matrix B over IB or declares that such a separation does
not exist.

Input: Matrix B over IB, with row index set X and column index set Y .

Output: Either: A closed 2-separation (X1 ∪ Y1, X2 ∪ Y2) of B. Or: “B
does not have a closed 2-separation.”

Complexity: Polynomial.

Procedure:
1. If |X | ≤ 1 or |Y | ≤ 1 or if B is a zero matrix, then declare that B does

not have a closed 2-separation, and stop.
2. (Enumerate all choices of B.)

Do for all possible disjoint sets |X1| ⊆ X , |X2| ⊆ X , |Y 1| ⊆ Y , and
|Y 2| ⊆ Y where each one of the sets has exactly one element, and
where the 1× 1 submatrix of B indexed by X2 and Y 1 (resp. X1 and
Y 2) is nonzero (resp. zero):
Let B be the submatrix of B defined by X1, X2, Y 1, and Y 2. Do
Algorithm INDUCED F -SEPARATION (3.5.14) with B and B as
input. If a 2-separation is found, output it as a closed 2-separation of
B, and stop.

3. Declare that B does not have a closed 2-separation, and stop.

Closed 3-Separation

The algorithm for finding closed 3-separations is a more complicated version
of Algorithm CLOSED 2-SEPARATION (10.3.8). As before, we view B to
be over GF(3) whenever this is appropriate.

Suppose a closed 3-separation is at hand, say, given by (10.3.3) with
GF(3)-rank(D) = 2. Theorem (10.3.1)(b) implies that column scaling fol-
lowed by deletion of duplicate rows and columns can reduce the submatrix
D of B to a matrix that has GF(3)-rank equal to 2 and that is a submatrix

338 Chapter 10. Closed Sum

of one of the matrices F 1–F 3 of (10.3.2), say, F i. That submatrix of F i

contains a 2×2 GF(3)-nonsingular submatrix, say, D1 indexed by some sets
X2 ⊆ X2 and Y 1 ⊆ Y1. Since the submatrix A1 (resp. A2) of B contains at
least one entry, the index set X1 (resp. Y2) is nonempty, and we may select
a subset X1 ⊆ X1 (resp. Y 2 ⊆ Y2) containing just one element. Define B
to be the submatrix of B with row index set X1∪X2 and column index set
Y 1 ∪ Y 2. Partition B as in (10.3.4). Thus, B consists of the submatrices
A1, A2, D1, and D2.

Suppose we know F i and B, but do not know the closed 3-separation
of B. Given that limited knowledge, we locate a closed 3-separation of B
by the following process.

First, we use Theorem (10.3.1)(b) to decide that certain rows and
columns of B cannot possibly intersect the yet to be found closed submatrix
D of the closed 3-separation. Accordingly, we enlarge A1, A2, and D2 and
redefine B.

Second, we use Algorithm INDUCED F -SEPARATION (3.5.14) to
find a 3-separation induced by B. That separation is the desired closed
3-separation of B.

Validity of the method follows directly from Theorem (10.3.1)(b) and
Lemma (10.3.7)(b).

Of course, the algorithm for finding closed 3-separations does not have
the prior knowledge of F i or B assumed above. Instead, the algorithm
enumerates all possible cases and applies the above process to each instance.

Analogously to Algorithm CLOSED 2-SEPARATION (10.3.8), the al-
gorithm can be speeded up by replacing the condition |Y 2| = 1 imposed on
B by |Y 2| = 0. We have not done so to simplify the discussion of a variant
of the algorithm.

Here is the algorithm.

(10.3.9) Algorithm CLOSED 3-SEPARATION. Finds a closed 3-
separation for a matrix B over IB or declares that such a separation does
not exist.

Input: Matrix B over IB, with row index set X and column index set Y .

Output: Either: A closed 3-separation (X1 ∪ Y1, X2 ∪ Y2) of B. Or: “B
does not have a closed 3-separation.”

Complexity: Polynomial.

Procedure:
1. If |X | ≤ 2 or |Y | ≤ 2, or if GF(3)-rank(B) ≤ 1, declare that B does

not have a closed 3-separation, and stop.
2. (Enumerate all choices of F i and B.) Do Steps 3–8 below for each

possible choice of F i, X1, X2, Y 1, and Y 2 satisfying the following
conditions: F i must be one of the matrices F 1–F 3 of (10.3.2); X1 ⊆ X
and Y 2 ⊆ Y must index a 1× 1 zero submatrix of B; X2 ⊆ (X −X1)

10.3. Decomposition Algorithms 339

and Y 1 ⊆ (Y − Y 2) must index a 2× 2 GF(3)-nonsingular submatrix
of B that up to column scaling is a submatrix of F i. For each such
choice, define B to be the submatrix of B with row index set X1 ∪X2

and column index set Y 1 ∪ Y 2. Partition B as in (10.3.4), so that B
consists of the submatrices A1, A2, D1, and D2.
If none of the choices produce a closed 3-separation of B in Steps 3–8,
declare that B does not have such a separation, and stop.

3. (Partition B.) Scale the two columns of B containing D1 such that
the new D1 is a submatrix of F i. Redefine A1 and B accordingly.
Partition B as

(10.3.10)

X2

Y2Y1

D1 A2

A1X1

y

B =

g

e

h

Y3

X3

x f

D2

any entry

Partition of B induced by A1, A2, D1, and D2 of B

4. (Shift rows based on Theorem (10.3.1)(b).) Shift each row x ∈ X3

from X3 to X1 for which the subvector e is nonzero, is not a duplicate
of a row of D1 if F i = F 1, and is not a duplicate of a row of F i if
F i = F 2 or F 3.

5. (Shift columns based on Theorem (10.3.1)(b).) Shift each column y ∈
Y3 from Y3 to Y 2 for which the subvector h is nonzero, is not a column
of F 1 up to column scaling if F i = F 1, and is not a column of D1 up
to column scaling if F i = F 2 or F 3.

6. (Redefine B.) Enlarge A1, A2, and D2 in agreement with the increases
of X1 and Y 2 in Steps 4 and 5. Redefine B so that it is composed of
the revised A1, A2, D1, and D2.

7. (Check sufficient condition for termination.) If D2 is nonzero, go to
Step 2, and select the next choice.

8. (Check for induced separation.) Applying Algorithm INDUCED F -
SEPARATION (3.5.14), either find a 3-separation induced by B or
conclude that no such induced separation exists. In the former case,
output the separation as a closed 3-separation of B, and stop. In the
latter case, begin the next choice of Step 2.

Proof of Validity. Given the above discussion, we only need to prove the
complexity claim. The number of possible choices in Step 2 is polynomial.

340 Chapter 10. Closed Sum

Algorithm INDUCED F -SEPARATION (3.5.14) is polynomial as well, so
the entire algorithm is polynomial as claimed.

Minimality of Closed Separations

Let i = 1 or 2, and define k to be a positive integer. Declare a closed k-
separation of B as in (10.3.3) to have Ai minimal (resp. maximal) relative
to a specified set of closed k-separations of B if, for any one of the specified
closed k-separations of B, the submatrix that corresponds to Ai is not
properly contained in (resp. does not properly contain) Ai. When Ai is
minimal (resp. maximal) relative to all closed k-separations of B, we simply
say that Ai is minimal (resp. maximal).

Clearly, minimality (resp. maximality) of A1 corresponds to maximal-
ity (resp. minimality) of A2.

The algorithms for finding closed 1-, 2-, and 3-separations are easily
modified so that they find all separations with minimal or maximal A1,
and hence with maximal or minimal A2. For the case k = 1, that task
is elementary. For k = 2 or 3, Theorems (10.3.11) and (10.3.12) below
provide details.

(10.3.11) Theorem. (Case of minimal A1 and maximal A2) Change Al-
gorithm CLOSED 2-SEPARATION (10.3.8) (resp. Algorithm CLOSED 3-
SEPARATION (10.3.9)) such that the modified scheme produces, for k = 2
(resp. k = 3), all closed k-separations of B that are induced by the possible
choices of B (resp. of F i and B) in Step 2 of the algorithm. Subsequently,
the scheme outputs the closed k-separations that have A1 minimal relative
to the closed k-separations so found. The scheme so constructed obtains,
for the applicable k = 2 or 3, all closed k-separations with A1 minimal and
A2 maximal. If properly implemented, the scheme is polynomial in the size
of B.

Proof. To prove the case k = 2, assume that a closed 2-separation of
the form (10.3.3) is at hand where A1 is minimal relative to all possible
closed 2-separations of B. Among the candidate submatrices that may be
chosen in Step 2 of Algorithm CLOSED 2-SEPARATION (10.3.8), there
is at least one, say, B, whose submatrices A1, A2, and D1 are contained in
A1, A2, and D, respectively, of B. Lemma (10.3.7)(a) says that Algorithm
INDUCED F -SEPARATION (3.5.14) produces a 2-separation where, given
the choice of B, the submatrix containing A1 is as small as possible. Thus,
A1 is contained in A1 and indeed must be equal to A1 due to the assumed
minimality of A1. We conclude that the modified scheme produces all 2-
separations of B having A1 minimal and A2 maximal. Clearly, the scheme
has an implementation that is polynomial in the size of B.

The proof for the case k = 3 and Algorithm CLOSED 3-SEPARA-
TION (10.3.9) is the same as for k = 2, except that one selects not only

10.4. Solution Algorithm 341

B, but also an appropriate F i for the assumed closed 3-separation with
minimal A1.

(10.3.12) Theorem. (Case of maximal A1 and minimal A2) Suppose Al-
gorithm CLOSED 2-SEPARATION (10.3.8) (resp. Algorithm CLOSED 3-
SEPARATION (10.3.9)) is changed as in Theorem (10.3.11) and is further
modified so that Step 2 (resp. Step 8) of the algorithm applies Algorithm
INDUCED F -SEPARATION (3.5.14) to a rearranged B and B where A1

and A2 have traded places and where D1 and D2 have traded places as
well. Then the revised scheme is polynomial in the size of B, and it finds,
for the applicable k = 2 or 3, all closed k-separations with A1 maximal and
A2 minimal.

Proof. The result follows from the proof of Theorem (10.3.11) and the fact
that, according to Lemma (10.3.7)(a), Algorithm INDUCED F -SEPARA-
TION (3.5.14), when given the modified input, searches for a separation
with maximal A1 and minimal A2.

The next section presents an algorithm that solves the SAT instances
B with a closed separation.

10.4 Solution Algorithm

Let B be a matrix over IB with a closed decomposition given by

(10.4.1) X1
B =

Y1

A1

DX2

Y2

A2

0

Matrix B with closed separation

For a given {0, 1} vector b, we want to solve the b-satisfiability problem for
B, which involves the solution of B ⊙ s ≥ b. We denote that SAT instance
by (B, b). In this section, we provide a solution method that utilizes one
of the two ways (10.2.7) and (10.2.8) of decomposing B.

Partition b into b1 and b2 corresponding to the index sets X1 and X2,
respectively, of (10.4.1), and partition s into s1 and s2 corresponding to
the index sets Y1 and Y2, respectively. With these vectors, the inequality
B ⊙ s ≥ b may be rewritten as

(10.4.2)
A1 ⊙ s1 ≥ b1

(D ⊙ s1)⊕ (A2 ⊙ s2) ≥ b2

342 Chapter 10. Closed Sum

Let d ∈ subrange(D). Consider the following inequality system.

(10.4.3)

A1 ⊙ s1 ≥ b1

D ⊙ s1 ≥ d

A2 ⊙ s2 ≥ b2 ⊖ d

The next lemma establishes a certain equivalence between the two
inequality systems (10.4.2) and (10.4.3).

(10.4.4) Lemma. The inequalities of (10.4.2) have a solution if and only
if, for some d ∈ subrange(D), this is so for the inequalities of (10.4.3).

Proof. If s1∗ and s2∗ solve (10.4.2), then d = D ⊙ s1∗ is in subrange(D),
and s1∗ and s2∗ solve (10.4.3) for this choice of d.

Conversely, let (10.4.3) have a solution s1∗ and s2∗ for some d ∈
subrange(D). Adding the second and third inequality of (10.4.3) with
s1 = s1∗ and s2 = s2∗, we obtain (D⊙s1∗)⊕ (A2⊙s2∗) ≥ d⊕ (b2⊖d) ≥ b2.
Thus, s1∗ and s2∗ solve (10.4.2).

First Decomposition Case

Consider B decomposed into B1 and B2 according to (10.2.7). Thus,

(10.4.5)
B1 =

X1

X2 D

Y1

A1

B2 = D

Y1 Y2

X2 A2

Components B1 and B2 of closed sum B, first case

We employ the following solution strategy. First, we find all vectors
d ∈ subrange(D) for which B1 ⊙ s1 ≥ [b1/d] or, equivalently,

(10.4.6)
A1 ⊙ s1 ≥ b1

D ⊙ s1 ≥ d

has a solution, say, s1(d). Let R ⊆ subrange(D) be the set of such vectors
d. If R is empty, then (10.4.3) has no solution, and we stop. Assume that
R is nonempty.

Second, we determine whether, for some d ∈ R, the inequality A2 ⊙
s2 ≥ b2 ⊖ d or, equivalently,

(10.4.7) d⊕ (A2 ⊙ s2) ≥ b2

10.4. Solution Algorithm 343

has a solution. If this is so, we have solved (10.4.3). Otherwise, (10.4.3)
has no solution.

It clearly is sufficient that we search for a solution of (10.4.7) using
just the maximal vectors of R. We use this fact and the Boolean closedness
of D to simplify that search. With Algorithm J-SETS (7.5.5), we produce
a partition J0, J+, J−, and J± of Y1 such that the set Q of vectors s1 given
by

(10.4.8) s1
j =

0 if j ∈ J0

1 if j ∈ J+

−1 if j ∈ J−
±1 if j ∈ J±

defines a set

(10.4.9) T = {d | d = D ⊙ s1; s1 ∈ Q}

whose maximal vectors are precisely the maximal vectors of R. Thus,
searching for a solution of (10.4.7) for some maximal vector of R is equiv-
alent to solving

(10.4.10) (D ⊙ s1)⊕ (A2 ⊙ s2) ≥ b2, s1 ∈ Q

The restriction s1 ∈ Q is equivalent to deleting the columns j ∈ J0

and fixing, for j ∈ J+ (resp. j ∈ J−), s1
j to 1 (resp. −1). Hence, (10.4.10)

represents just one SAT instance. If that instance has no solution, then
(10.4.3) has no solution either. Otherwise, let [s̃1/s2∗] be a solution. By
the above derivation of R and Q, (10.4.6) with d = D ⊙ s̃1 is solved by
s1(d). Then s1∗ = s1(d) and s2∗ solve (10.4.3) for that d.

Second Decomposition Case

A similar process works for the second decomposition case. Here,

(10.4.11) X1
D

X2

Y1 Y2

B2 =B1 = X2
D

Y1

A1

A2

Components B1 and B2 of closed sum B, second case

First, we find all vectors d ∈ subrange(D) for which

(10.4.12) A2 ⊙ s2 ≥ b2 ⊖ d

344 Chapter 10. Closed Sum

has a solution, say, s2(d). Let R ⊆ subrange(D) be the set of vectors d
for which this is so. As a matter of notational clarity, we use f below to
denote any vector of R. If R is empty, then (10.4.3) has no solution, and
we stop. Assume otherwise.

Second, we determine whether, for some f ∈ R,

(10.4.13)
A1 ⊙ s1 ≥ b1

D ⊙ s1 ≥ f

has a solution. If this is so, we have solved (10.4.3). Otherwise, (10.4.3)
has no solution.

A vector s1 satisfies the second inequality of (10.4.13) if and only if s1

is in the set

(10.4.14) SR = ∪f∈R{s
1 | D ⊙ s1 ≥ f ; s1 = {±1} vector}

Select a vector d by

(10.4.15) di = min
f∈R

{fi}

Since D is Boolean closed, Lemma (7.2.5) implies that SR is equal to the
set Sd given by

(10.4.16) Sd = {s1 | D ⊙ s1 ≥ d; s1
j ∈ {±1}, ∀ j}

Hence, (10.4.13) has a solution for some f ∈ R if and only if, for d defined
by (10.4.15),

(10.4.17)
A1 ⊙ s1 ≥ b1

D ⊙ s1 ≥ d

has a solution.
If (10.4.17) has no solution, then (10.4.3) has no solution either. Oth-

erwise, let s1∗ solve (10.4.17). By the above discussion, (10.4.12) with
d = D⊙ s1∗ is solved by s2(d). Then s1∗ and s2∗ = s2(d) solve (10.4.3) for
that d.

Solution Algorithm

We summarize the above solution processes for the two decomposition
cases.

10.4. Solution Algorithm 345

(10.4.18) Algorithm SOLVE CLOSED SUM SAT. Solves SAT in-
stance (B, b) where B is a closed sum and where b is a {0, 1} vector.

Input: Matrix B over IB of size m× n, with row index set X and column
index set Y . A {0, 1} vector b with m entries.
A closed separation of B as displayed by (10.4.1). Consider b to be parti-
tioned into b1 and b2 according to the index sets X1 and X2, respectively,
of the separation. For i = 1, 2, define mi = |Xi| and ni = |Yi|.
An algorithm that solves the SAT instance of any submatrix of [A1/D] in
at most β1 time.
If decomposition case (10.4.5) is selected: A second algorithm that solves
the SAT instance of any submatrix of [D|A2] in at most β

′

2 time.
If decomposition case (10.4.11) is selected: A second algorithm that solves
the SAT instance of any submatrix of A2 in at most β

′′

2 time.

Output: Either: A solution s∗ for (B, b). Or: “The given instance has no
solution.”

Complexity: If decomposition case (10.4.5) is selected: O(m2 · n1 + n2
1 +

n1 · β1 + β
′

2). If decomposition case (10.4.11) is selected: O(m2 · n1 + n2
1 +

n1 · β
′′

2 + β1).

Procedure:
1. Obtain subrange(D) with Algorithm SUBRANGE OF BOOLEAN

CLOSED MATRIX (7.5.4). If the decomposition case (10.4.11) is
selected, go to Step 5.

2. (Decomposition case (10.4.5)) For each d ∈ subrange(D), solve the
SAT instance ([A1/D], [b1/d]) with the appropriate given algorithm.
Let R ⊆ subrange(D) be the set of vectors d for which a solution, say,
s1(d), is found. If R is empty, declare that (B, b) has no solution, and
stop.

3. Use Algorithm J-SETS (7.5.5) to determine the sets J0, J+, J−, and
J±. From the latter sets, determine the set Q via (10.4.8).

4. Solve with the appropriate given SAT algorithm the SAT instance
([D|A2], b2) under the restriction that the component s1 corresponding
to the submatrix D must be in Q. If that SAT instance does not have
a solution, output that (B, b) has no solution, and stop. Otherwise,
let [s̃1/s2∗] be a solution for ([D|A2], b2). Define d = D ⊙ s̃1, and
s1∗ = s1(d). Output s∗ composed of s1∗ and s2∗ as a solution for
(B, b), and stop.

5. (Decomposition case (10.4.11)) For each d ∈ subrange(D), solve the
SAT instance (A2, b2 ⊖ d) with the appropriate given SAT algorithm.
Let R ∈ subrange(D) be the set of vectors d for which a solution, say,
s2(d), is found. If R is empty, declare that (B, b) has no solution, and
stop.

6. Define d by di = minf∈R{fi}.
7. Solve with the appropriate given SAT algorithm the SAT instance

346 Chapter 10. Closed Sum

([A1/D], [b1/d]). If that SAT instance does not have a solution, output
that (B, b) has no solution, and stop. Otherwise, let s1∗ be a solution
for ([A1/D], [b1/d]). Compute d = D ⊙ s1∗, and define s2∗ = s2(d).
Output s∗ composed of s1∗ and s2∗ as a solution for (B, b), and stop.

Proof of Validity. Given the prior discussion, we only need to establish
the claimed complexity. First, assume the decomposition case (10.4.5).

In Step 1, Algorithm SUBRANGE OF BOOLEAN CLOSED MA-
TRIX (7.5.4) determines subrange(D) in O(m2 · n1 + n2

1) time. Corollary
(7.4.7) implies that the cardinality of subrange(D) is O(n1). Thus, the
|subrange(D)| SAT instances of Step 2 are solved in O(n1 · β1) time. In
Step 3, Algorithm J-SETS (7.5.5) finds the J-sets for Q in O(m2 · n1 + n2

1)
time. The single SAT instance of Step 4 requires at most β

′

2 time.
Combining the above time bounds, we get for the decomposition case

(10.4.5) an overall bound of O(m2 · n1 + n2
1 + n1 · β1 + β

′

2).
The complexity for the decomposition case (10.4.11) is handled by very

similar arguments, so we omit details.

For the decomposition case (10.4.5) or (10.4.11), Algorithm SOLVE
CLOSED SUM SAT (10.4.18) generally solves several SAT instances in-
volving B1 and one SAT instance involving B2. Thus, the closed sum is of
type II. We record this fact below.

(10.4.19) Theorem. The closed sum is of type II.

SAT Centrality

We prove a SAT centrality result for closed sums. Recall from Section 5.2
that a class C of matrices over IB is SAT central if the following conditions
are satisfied.

(10.4.20)

(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.
(iii) There is a polynomial algorithm for recognizing

the matrices of C.

Let C0 be a given class of SAT central matrices. Construct a class C of
matrices over IB by the following recursive process. Initialize C = C0. In
the recursive step, select two matrices [A1/D] and [D|A2] such that one
of the two matrices is in C0, while the other one is in C. In addition, the
submatrix D occurring in the two matrices must be Boolean closed and,
for some k ≤ 3, must have GF(3)-rank(D) = k− 1. Add the closed sum of
the two matrices, as given by (10.4.1), to C. If the closed sum added to C
is larger than [A1/D] as well as [D|A2], then it is readily checked that the
closed sum is a closed k-sum with k ≤ 3.

10.4. Solution Algorithm 347

We associate a level with each matrix of C. The matrices of C that
are in C0 have level 0. For any other matrix B of C, the level is equal to
the least number of recursive construction steps needed to create B.

We mean the above construction process when we say that C is created

from C0 by repeated closed k-sum steps with k ≤ 3.
The next theorem provides a SAT centrality result for the class C

created from a given SAT central class C0 by repeated closed k-sum steps.

(10.4.21) Theorem. Let C0 be a SAT central class of matrices. Define C
to be the class of matrices created from C0 by repeated closed k-sum steps
with k ≤ 3. Then C is SAT central.

Proof. We must prove (10.4.20)(i)–(iii).
We begin with (10.4.20)(i). We must show that C is maintained under

submatrix taking. Let B ∈ C have level l. Define B to be an arbitrary
submatrix of B.

The proof is by induction on the level l of B. If l = 0, then B ∈ C0,
and the SAT centrality of C0 implies that B ∈ C0 ⊆ C.

For the inductive step, let l ≥ 1. By the recursive construction of C
and the definition of level, B is, for some k ≤ 3, a closed k-sum where one
component of the sum is in C0, while the other one is a matrix of C at level
l − 1.

If B is a submatrix of one of the two components, then B is in C by
induction. Otherwise, Theorem (10.2.10) confirms that B is, for some k ≤
k, a closed k-sum where the components are submatrices of the components
of the k-sum. Thus, one component of the k-sum is in C0, while the other
is by induction in C. We conclude that B is in C.

We skip ahead to the proof of (10.4.20)(iii), which demands a polyno-
mial recognition algorithm for membership in C. Since C0 is SAT central,
we are given a polynomial recognition algorithm for testing membership in
C0.

Let a matrix B be given. We test for membership of B in C0 with the
given algorithm. If B is determined to be in C0, then B ∈ C, and we are
done.

Otherwise, we apply Algorithm 1-SEPARATION (3.5.1) and the poly-
nomial schemes of Theorems (10.3.11) and (10.3.12) to find, for each k ≤
3, first all closed k-separations with minimal A1 and then all closed k-
separations with minimal A2. For each k-separation with minimal A1 (resp.
A2), we test the component [A1/D] (resp. [D|A2]) for membership in C0;
if [A1/D] (resp. [D|A2]) is in C0, then we reduce B to the remaining com-
ponent [D|A2] (resp. [A1/D]) and proceed recursively with the reduced
B.

Suppose the above method reduces the initial B to a matrix that is
not in C0 and that cannot be reduced by the above process. We claim that
B is not in C. Since C is closed under submatrix taking, we may assume,

348 Chapter 10. Closed Sum

for the purposes of the proof, that B itself is the irreducible matrix.
Suppose that B ∈ C. Since B /∈ C0, it is, for some k ≤ 3, a closed

k-sum where one of the two components is in C0. For example, let that
component be [A1/D]. Since C0 is maintained under submatrix taking, we
may pick the closed k-sum so that A1 is as small as possible. But then
the above process would have detected that closed k-sum and would have
reduced B. The case where the component [D|A2] is in C0 is argued using
a case with minimal A2.

We prove (10.4.20)(ii) with the following polynomial solution algo-
rithm. Let B ∈ C be given. If B ∈ C0, then the SAT centrality of C0

supplies a polynomial algorithm for the SAT problem for B. If B /∈ C0,
then B is, for some k ≤ 3, a closed k-sum where one of the components is
in C0. We solve the SAT instance for B with Algorithm SOLVE CLOSED
SUM SAT (10.4.18) by solving several SAT instances involving the compo-
nent in C0 and solving one SAT instance involving the second component.
Since any closed k-sum is proper, that second component is smaller than B,
and we can invoke recursion. The entire solution algorithm is polynomial,
since it invokes polynomial algorithms a polynomial number of times.

10.5 Extensions

Section 10.3 notes that Algorithm CLOSED 2-SEPARATION (10.3.8) and
Algorithm CLOSED 3-SEPARATION (10.3.9) may be speeded up by re-
placing the condition |Y 2| = 1 imposed on the candidate matrices B by
|Y 2| = 0. Validity of the change follows from Lemma (10.3.7)(b).

There is another algorithm for finding closed 2-separations that is
faster than Algorithm CLOSED 2-SEPARATION (10.3.8) even when the
above-mentioned improvement is made in the latter scheme. Recall from
Section 2.6 that a matrix is simple if no row or column has less than two
nonzeros and if there are no parallel rows or columns. Let us assume that
the given matrix B has no 1-separation. The alternate algorithm for find-
ing closed 2-separations consists of reduction of B to a simple matrix and
subsequent application of Algorithm GF(3)-2-SEPARATION (3.5.26). We
omit details, but point out that the reduction of B to a simple matrix may
already produce a closed 2-separation.

The reader may wonder why Section 10.3 does not give the above alter-
nate algorithm instead of Algorithm CLOSED 2-SEPARATION (10.3.8).
The alternate algorithm involves several special cases plus reduction and ex-
pansion steps, and it seemingly does not lend itself to a short description. In
addition, Algorithm CLOSED 2-SEPARATION (10.3.8) is a nice stepping
stone toward the more complicated Algorithm CLOSED 3-SEPARATION
(10.3.9), and it is convenient for the proof of the SAT centrality result of
Section 10.4.

10.5. Extensions 349

The algorithms of Section 10.3 for finding closed k-separations for k ≤
3, as well as the SAT centrality result of Section 10.4 for matrix classes
created by repeated closed k-sums with k ≤ 3, may be extended to the
case where k is bounded by some constant. We sketch the arguments.

The finiteness of the field GF(3) supports the following claim.

(10.5.1) Lemma. For any given k ≥ 1, there exist a finite number of
Boolean closed matrices over GF(3) with GF(3)-rank equal to k − 1, say,
F k,1, F k,2, . . . , F k,n(k), such that any Boolean closed matrix over GF(3)
with GF(3)-rank equal to k − 1 is, up to column scaling and removal of
duplicate rows and columns, a submatrix of at least one of the matrices
F k,i.

One may use the matrices F k,1, F k,2, . . . , F k,n(k) instead of the matri-
ces F 1, F 2, and F 3 of (10.3.2) in an appropriately adapted version of Algo-
rithm CLOSED 3-SEPARATION (10.3.9) to identify closed k-separations.
The algorithm is polynomial if k is bounded by a constant, but is not prac-
tically useful. We omit details of the algorithm, but record the claim of
polynomiality.

(10.5.2) Theorem. There is an algorithm that, for any k ≥ 1 bounded
by a constant, either finds a closed k-separation for a given input matrix
B or declares that B does not have such a separation. The algorithm is
polynomial in the size of B if k is bounded by a constant.

One may adapt Theorems (10.3.11) and (10.3.12) to the case at hand,
getting the following result. We omit the proof, since it is along the line of
the proofs of Theorems (10.3.11) and (10.3.12).

(10.5.3) Theorem. There is an algorithm that finds all closed k-separa-
tions of a given input matrix B with A1 minimal and A2 maximal, as well as
all closed k-separations with A1 maximal and A2 minimal. The algorithm
is polynomial in the size of B if k is bounded by a constant.

Theorem (10.5.3) and the discussion of Section 10.4 validate the fol-
lowing extension of Theorem (10.4.21).

(10.5.4) Theorem. Let C0 be a SAT central class of matrices. Define C
to be the class of matrices created from C0 by repeated closed k-sum steps
where k is bounded by a constant. Then C is SAT central.

In the next chapter, we meet a sum called augmented sum that is more
complex than the sums described so far.

Chapter 11

Augmented Sum

11.1 Overview

The component matrices of the sums of Chapters 9 and 10 are sub-
matrices of the given matrix B. In this chapter, we use a more elaborate
way of constructing the component matrices B1 and B2 from a partitioned
B. That is, we replace certain submatrices of B by other matrices. In the
case of B2, the replacement matrices generally do not occur in B. For this
reason, we call B an augmented sum of B1 and B2.

Section 4.7 classifies each sum according to worst-case upper bounds
on the number of b1- and b2-satisfiability problems for certain column sub-
matrices B1 and B2 of B1 and B2 that may have to be solved by the SAT
algorithm we have developed for that sum. If that upper bound is 1 for
both B1 and B2, the sum is said to be of type I. If the upper bound is at
least 2 for B1 and is 1 for B2, then the sum is of type II. In the remaining
case, where both upper bounds are at least 2, the sum is of type III. It
turns out that the augmented sum is of type II.

We emphasize that the augmented sum does not apply to the MINSAT
problem.

The presentation proceeds as follows. Section 11.2 contains precise
definitions of the augmented sum and related concepts.

Section 11.3 presents an algorithm for finding augmented sums.
Section 11.4 provides a solution algorithm for the SAT instances in-

volving augmented sums. There it is shown that the augmented sum is of
type II.

The final section, 11.5, supplies extensions and references.

350

11.2. Definitions 351

11.2 Definitions

We define the augmented sum and related concepts.

Augmented Separation

Let B be a matrix over IB of the form

(11.2.1) X1
B =

Y1

A1

DX2

Y2

A2

E

Matrix B with augmented separation

where the submatrices A1 and A2 are nonempty. Then (X1 ∪ Y1, X2 ∪ Y2)
constitutes an augmented separation of B.

Augmented Decomposition

Collect the nonzero rows of the submatrix D of B, say, indexed by X21 ⊆
X2, in a matrix D1, and collect the nonzero columns of E, say, indexed by
Y21 ⊆ Y2, in a matrix E1. Let X22 = X2−X21 and Y22 = Y2−Y21. Hence,

(11.2.2)
Y1

D1X21D =
0

X1E =

Y2

X22
X2

Y21

E1 0

Y22

Partition of D and E

Define k to be equal to the number of rows of D1, plus the number of
columns of E1, plus 1. Thus,

(11.2.3) k = |X21|+ |Y21|+ 1

Let D̃1 be the |X21| × |X21| identity matrix with rows indexed by X21

and with columns indexed by an arbitrarily selected set Ỹ1. Note that this
choice of D̃1 guarantees that, regardless of the form of D1, we have

(11.2.4) range(D̃1) ⊇ range(D1)

That feature is needed later.

352 Chapter 11. Augmented Sum

We adjoin an appropriately sized zero matrix to D̃1 to get the following
matrix D̃.

(11.2.5)

0

Y1
~

X21

X22
X2

D1~
D =~

Matrix D̃

Define F to be the {±1} matrix whose rows consist of all possible

{±1} vectors with |Ỹ1| + |Y21| entries. Clearly, F has 2|Ỹ1|+|Y21| rows. We
partition F into column submatrices F̃ and Ẽ1, then add index sets X̃1,
Ỹ1, and Y21, getting

(11.2.6)
E1~

Y1
~

Y21

F = X1
~

F~

Partitioned matrix F

We adjoin a zero matrix to the submatrix Ẽ1 of F to obtain the fol-
lowing matrix Ẽ.

(11.2.7)

E1~X1
~E =~

0

Y2

Y21Y22

Matrix Ẽ

Derive a matrix B1 from B of (11.2.1) by replacing the submatrices D
and E by D1 and E1, respectively, defined above and by replacing A2 by
a zero matrix of suitable size.

Obtain a matrix B2 from B by replacing the submatrices A1, D, and
E by the matrices F̃ , D̃, and Ẽ given by (11.2.6), (11.2.5), and (11.2.7),
respectively. Accordingly,

(11.2.8) X1
~

X1

Y1

A1

D1X21

Y21

E1
B1 =

0 X2 A2
B2 =

D~
E~
Y2Y1

~

F~

Matrices B1 and B2

11.2. Definitions 353

We pause to motivate the above definitions. Suppose for a given vec-
tor b we want to decide b-satisfiability of B. We prove in Section 11.4 that
this may be accomplished as follows. We solve a number of satisfiability
problems involving B1. Based on the outcomes of the latter satisfiability
problems, we construct and solve one satisfiability problem for B2. The
solution of the latter problem, plus the solution for one of the satisfia-
bility problems involving B1, turns out to be a solution for the original
satisfiability problem for B.

For the subsequent discussion, it is convenient that we display B, B1,
and B2 of (11.2.1) and (11.2.8) so that the relationships between these
matrices and the matrices D1, E1, D̃1, Ẽ1, F̃ are simultaneously exhibited.
The matrix B becomes

(11.2.9)

B =

A2

X1

Y1

A1

D1X21

0X22
X2

Y2
Y21

E1 0

Y22

Matrix B

The matrix B1 of (11.2.8) is unchanged, while B2 of (11.2.8) is subdivided.
We have

(11.2.10)
X1

Y1

A1

Y21

E1

D1X21

B1 =

0
A2

X1
~

Y1
~

F~

B2 = X21

0X22
X2

E1~
0

Y2

Y21Y22

D1~

Matrices B1 and B2

The matrices B1 and B2 are the components of an augmented decomposition

of B.

Augmented Composition

We may create B of (11.2.9) from B1 and B2 of (11.2.10). The matrix B
is then obtained by an augmented composition of B1 and B2.

354 Chapter 11. Augmented Sum

Augmented Sum

A matrix B is an augmented sum of B1 and B2 if the latter matrices are
the components of an augmented decomposition of B or, equivalently, if B
is created from B1 and B2 by an augmented composition. We denote that
situation by B = B1

+a B2.
We define proper augmented sums using k = |X21|+|Y21|+1 of (11.2.3).

If k = 1, we impose no additional conditions beyond those obeyed by aug-
mented sums. That is, the submatrices A1 and A2 of B must be nonempty.
If k ≥ 2, we enforce conditions that assure that both components B1 and
B2 have fewer rows and fewer columns than B. This is so for B1 if both
X22 and Y22 are nonempty. For B2, the situation is a bit more complicated.
The desired conditions are

(11.2.11)
|X1| > |X̃1|

|Y1| > |Ỹ1|

We want sufficient conditions that imply the inequalities of (11.2.11) and
that depend only on the index sets of B and related parameters. We
determine such conditions as follows.

Since D̃1 is an identity matrix and thus square, we have

(11.2.12) |X21| = |Ỹ1|

Recall that F has |X̃1| = 2|Ỹ1|+|Y21| rows. Using |X21| = |Ỹ 1| of
(11.2.12) and k = |X21|+ |Y21|+ 1 of (11.2.3), we conclude

(11.2.13) 2k−1 = 2|X21|+|Y21| = 2|Ỹ1|+|Y21| = |X̃1|

Suppose we enforce

(11.2.14)

|X1| > 2k−1

|Y1| > |X21|

|X22| > 0

|Y22| > 0

Then X22 and Y22 are nonempty, and by (11.2.12) and (11.2.13) the in-
equalities of (11.2.11) hold.

To summarize, an augmented sum with k = 1 is always proper, while
an augmented sum with k ≥ 2 is proper if the inequalities of (11.2.14) are
satisfied.

11.2. Definitions 355

Classification Using k

We define a proper augmented sum with k given by (11.2.3) to be an aug-

mented k-sum. The corresponding separation, decomposition, and com-
position are an augmented k-separation, augmented k-decomposition, and
augmented k-composition, respectively. Evidently, the augmented 1-sum is
the 1-sum of Section 4.7.

One may restate the conditions for an augmented k-separation of B
with k ≥ 2 in terms of the bipartite graph BG(B) as follows.

(11.2.15) Lemma. Let B be a matrix over IB, with row index set X and

column index set Y . For any k ≥ 2, B has an augmented k-separation if

and only if conditions (a)–(c) below are satisfied.

(a) The index sets X and Y of B can be partitioned into X1, X21, X22

and Y1, Y21, Y22, respectively, such that

(11.2.16)

|X1| > 2k−1

|Y1| > |X21|

|X22| > 0

|Y22| > 0

|X21|+ |Y21| = k − 1

(b) In the bipartite graph BG(B), each node of X21 ∪ Y21 is connected by

at least one arc to a node of X1 ∪ Y1.

(c) Deletion of the nodes of X21 ∪ Y21 from BG(B) disconnects the nodes

of X1 ∪ Y1 from those of X22 ∪ Y22.

Proof. For the proof of the “only if” part, assume that B has an aug-
mented k-separation. The corresponding partition given by (11.2.9) sup-
plies index sets X1, X21, X22, Y1, Y21, Y22. By the definition of augmented
k-separation, these index sets observe (11.2.16), so (a) holds. Also, the
submatrix D1 (resp. E1) of B does not have zero rows (resp. columns),
which implies (b). Finally, deletion of the rows indexed by X21 and of the
columns indexed by Y21 converts B into a block diagonal matrix where
each block resides within A1 or within the reduced A2. Hence, (c) holds.

The proof of the “if” part is just as easy, and we omit details.

Submatrix Taking

For the purpose of solving satisfiability problems, one would desire that
augmented sums are in some sense maintained under submatrix taking.
This is indeed so.

356 Chapter 11. Augmented Sum

(11.2.17) Theorem. Let B be an augmented sum with components B1

and B2. Then any submatrix B of B is contained in the submatrix A1 of B1

or in the submatrix A2 of B2, or is an augmented sum whose components

B1 and B2 are submatrices of B1 and B2, respectively. In the third case,

the index sets X21 and Y21 of B1 and B2 as shown in (11.2.8) and the

corresponding index sets X21 and Y 21 of B1 and B2 satisfy |X21 ∪ Y21| ≥
|X21 ∪ Y 21|.

Proof. We use the notation of (11.2.9) and (11.2.10). Suppose that B
intersects both submatrices A1 and A2 of B in nonempty submatrices, say,
A1 and A2, respectively. We must show that B is an augmented sum whose
components are submatrices of B1 and B2. Note that A1 or A2 may be
trivial.

Define D1 (resp. E1) to be the intersection of B with D1 (resp. E1),
minus all zero rows (resp. columns) of that intersection.

Let X21 ⊆ X21 be the row index set of D1, and let Y 21 ⊆ Y21 be the
column index set of E1. Thus, |X21 ∪ Y21| ≥ |X21 ∪ Y 21|.

Let D̃1 be the |X21| × |X21| identity submatrix of D̃1 with row index

set X21 ⊆ X21. Let Ỹ 1 ⊆ Ỹ 1 be the column index set of D̃1.

From the column submatrix of F indexed by Ỹ 1 ∪ Y 21, delete dupli-
cate rows to obtain a matrix F . Partition the latter matrix into column
submatrices F̃ and Ẽ1, where Ẽ1 is indexed by Y 21.

Analogously to (11.2.10), compose B1 from A1, D1, and E1, and com-

pose B2 from A2, D̃1, Ẽ1, and F̃ .
By the derivation, B1 and B2 are submatrices of B1 and B2, respec-

tively. It is easily checked that B is an augmented sum with components
B1 and B2.

Note that B of Theorem (11.2.17) need not be a proper augmented
sum even if this is so for B.

In the next section, we describe an algorithm for finding augmented
k-sums.

11.3 Decomposition Algorithm

Since the augmented 1-sum is the 1-sum of Section 4.7, Algorithm 1-
SEPARATION (3.5.1) may be used to determine whether a given matrix
has an augmented 1-separation.

Searching for augmented k-separations with k ≥ 2 is more complicated.
In this section, we provide a decomposition algorithm for that task. The
algorithm is polynomial if k is bounded by a constant.

For an augmented k-sum to be useful, the effort for solving the sat-
isfiability problems involving B1 and B2 should be less than that for the

11.3. Decomposition Algorithm 357

satisfiability problem involving B. Verifying that condition while search-
ing for augmented k-sums or, equivalently, for the related augmented k-
separations, seems to be a difficult task. So instead, one may want to
impose the restriction that k be small. Indeed, since the dense and difficult-
to-handle submatrix F = [F̃ |Ẽ1] of B2 has k − 1 columns and 2k−1 rows,
one should restrict the search in practical applications to augmented k-
separations where k ≤ 4. For that case, we include enhancements of the
decomposition algorithm that result in a fast and effective method.

We outline the decomposition algorithm. The main tool is the bi-
partite graph BG(B). Lemma (11.2.15) says that B has an augmented
k-separation for given k ≥ 2 if and only if a partition of the vertex set
of BG(B) into X1, X21, X22, Y1, Y21, and Y22 exists such that conditions
(a)–(c) of Lemma (11.2.15) are satisfied.

The algorithm enumerates all possible sets X21 ⊆ X and Y21 ⊆ Y
satisfying |X21∪Y21| = k−1. For a given case of X21 and Y21 satisfying that
condition, the algorithm analyzes the graph BG(B) and either determines
sets X1, X22, Y1, and Y22 such that these sets plus the already selected
X21 and Y21 fulfill Lemma (11.2.15)(a)–(c) or concludes that such sets X1,
X22, Y1, and Y22 do not exist. In the first case, the algorithm has found
an augmented k-separation and stops. In the latter case, it proceeds to the
next choice of X21 and Y21.

If none of the possible choices of X21 and Y21 results in an augmented
k-separation of B, the algorithm correctly concludes that B does not have
such a separation.

Details of the algorithm are as follows.

(11.3.1) Algorithm AUGMENTED k-SEPARATION. Finds an

augmented k-separation with k ≥ 2 for a matrix B over IB or declares

that such a separation does not exist.

Input: Matrix B over IB, with row index set X and column index set Y .
An integer k ≥ 2. It is known that, for any l ≤ k − 1, B does not have
an augmented l-separation. In particular, B does not have an augmented
1-separation and thus is connected.

Output: Either: An augmented k-separation (X1 ∪ Y1, X2 ∪ Y2) of B, plus
the component matrices B1 and B2 of the corresponding augmented k-
decomposition of B. Or: “B does not have an augmented k-separation.”

Complexity: Polynomial if k is bounded by a constant.

Procedure:
1. (Enumerate all choices of X21 and Y21.) Do Steps 2 and 3 below for

all subsets X21 ⊆ X and Y21 ⊆ Y satisfying |X21 ∪ Y21| = k − 1.
2. (Reduce BG(B).) Delete the nodes of X21 ∪ Y21 from BG(B), getting

a graph G.
3. (Find a partition of G.) Search for a partition of G into disjoint graphs

358 Chapter 11. Augmented Sum

H1 and H2, say, with node set X1∪Y1 (resp. X22∪Y22) where X1 ⊆ X ,
Y1 ⊆ Y (resp. X22 ⊆ X , Y22 ⊆ Y), such that |X1| > 2k−1, |Y1| > |X21|,
|X22| > 0, and |Y22| > 0. If such a partition is found, go to Step 5.

4. (B has no augmented k-separation.) Declare that B has no augmented
k-separation, and stop.

5. (Have augmented k-separation.) Partition B as in (11.2.9), using the
sets X1, X21, X22, Y1, Y21, and Y22 on hand. Define D̃1 to be the
|X21| × |X21| identity matrix with rows indexed by X21 and with
columns indexed by an arbitrarily selected set Ỹ 1. Define the sub-
matrices F̃ and Ẽ1 of B2 via F = [F̃ |Ẽ1], where F has column index
set Ỹ1 ∪ Y21 and where F consists of all possible {±1} row vectors
with |Ỹ1 ∪ Y21| entries. Output (X1 ∪ Y1, X2 ∪ Y2) as an augmented
k-separation of B, together with component matrices B1 and B2 de-
fined by the submatrices of B and the matrices D̃1, F̃ , and Ẽ1 just
computed, and stop.

Proof of Validity. We prove validity in four steps.
First, we show that any separation produced by the algorithm is indeed

an augmented k-separation by verifying that conditions (a)–(c) of Lemma
(11.2.15) hold. The selection of X21 and Y21 in Step 1 and the conditions
imposed in Step 3 on H1 and H2 assure that Lemma (11.2.15)(a) and (c)
are satisfied. Lemma (11.2.15)(b) demands that in BG(B) each node of
X21 ∪ Y21 is connected by at least one arc to a node of X1 ∪ Y1. Suppose
this is not so. We move all nodes of X21 ∪ Y21 that have no arc going to
X1∪Y1, from X21∪Y21 to X22∪Y22, getting, say, X ′

21∪Y ′
21 and X ′

22∪Y ′
22.

The sets X1, X ′
21, X ′

22, Y1, Y ′
21, and Y ′

22 define, for some l ≤ k − 1, an
augmented l-separation, which contradicts the assumption that the input
matrix B does not have such a separation.

Second, we show that termination in Step 4 implies that B does not
have an augmented k-separation. Assume otherwise. Let X1, X21, X22,
Y1, Y21, and Y22 define an augmented k-separation. The sets X21 and Y21

constitute one of the cases of Step 1, and the sets X1 ∪ Y1 and X22 ∪ Y22

define one of the possible partitions of G in Step 3. Hence, Step 3 must
determine an augmented k-separation, a contradiction.

Third, the construction of D̃1, F̃ , and Ẽ1 in Step 5 directly implies
that these matrices plus the submatrices of B define the desired component
matrices B1 and B2.

Fourth, if k is bounded by a constant, then clearly all steps can be
implemented in polynomial time.

We sketch enhancements of the algorithm for the practically important
cases 2 ≤ k ≤ 4. The improvements reduce the number of cases of X21∪Y21

that need to be evaluated in Steps 2 and 3, and they produce augmented
k-separations that are best in a certain sense.

11.3. Decomposition Algorithm 359

Reduction of the Number of Cases

If the graph G determined in Step 2 is to produce a separation, then accord-
ing to Step 3 G must be disconnected. Hence, Step 1 only needs to consider
cases of X21 ∪ Y21 resulting in a disconnected graph G. For 2 ≤ k ≤ 4, the
candidate sets X21∪Y21 satisfying that condition can be readily determined
as follows.

k = 2, 3: Step 1 must consider node sets X21 ∪ Y21 of BG(B) of
cardinality equal to 1 or 2 whose removal produces a disconnected graph.
The candidate node sets X21 ∪ Y21 may be found efficiently by depth first

search; see Tarjan (1972) and Hopcroft and Tarjan (1973).
k = 4: The candidate node sets of Step 1, which must have cardinality

equal to 3, may be efficiently found as follows. Iteratively remove one
node from BG(B), getting, say, G′, then find all node pairs whose removal
disconnects G′ by depth first search as for the case k = 3.

Finding a Best Augmented Separation

We still assume that 2 ≤ k ≤ 4. We define best augmented k-separations
via certain SAT central classes of matrices.

Let C be the class of matrices where each matrix is block diagonal
and where each block is in one of the SAT central classes of Chapter 5 with
very fast recognition algorithms. That is, each block is a 2SAT matrix, a
hidden nearly negative matrix, a network matrix, or an extension of one of
these matrices as described in Section 5.3.

Take each matrix A of C, and create from A all matrices that consist
of A plus up to k − 1 additional rows and columns. Let C′ be the class
of matrices so produced. One may solve SAT instances of C′ efficiently—
for example, employing subregion decomposition for the adjoined rows and
columns and using the SAT algorithms of Chapter 5 for the remaining
block diagonal submatrix. Theorem (8.2.11) says that the SAT centrality
of C implies that C′ is SAT semicentral. Clearly, membership in C′ can be
tested in polynomial time, so C′ is actually a SAT central class of matrices.

Define an augmented k-decomposition to be best if the corresponding
component matrix B1 has the submatrix A1 in C and if, subject to that
condition, the length of A1 is maximum. Note that A1 in C implies that
B1 is in the SAT central class C′. Thus, satisfiability of any submatrix of
B1 can be efficiently decided.

We describe how a best decomposition can be found. We may assume
that the given matrix B is connected, since otherwise we apply the method
described below to each block of B.

Assume that a candidate set X21∪Y21 has been selected in Step 1 and
that Step 2 has reduced BG(B) to G. Step 3 attempts to compose H1 and
H2 from the connected components of G while observing certain conditions.

360 Chapter 11. Augmented Sum

Note that the submatrices corresponding to the graph components in H1

make up A1 of B1.
We add to Step 3 the following requirement. The submatrix A1 of B

corresponding to H1 is to be in C, and, subject to that condition, H1 is to
have a maximum number of nodes. Clearly, H1 and H2 selected by these
rules correspond to an augmented k-decomposition that is best relative to
the choice of X21 ∪ Y21.

To find the overall best decomposition, we carry out Step 2 and the
revised Step 3 for all candidate sets X21 ∪ Y21, using the earlier described
method for an efficient selection of these sets.

If none of the candidate sets X21 ∪ Y21 produces an augmented k-
separation, then we declare that the input matrix B does not have an
augmented k-decomposition where the submatrix A1 of the component B1

is in C. Otherwise, from the augmented k-separations found, we choose
one for which the length of A1 is maximum, thus getting a best augmented
k-decomposition.

The revised Algorithm AUGMENTED k-SEPARATION (11.3.1) is
polynomial—in fact, very efficient—for any 2 ≤ k ≤ 4.

The next section presents an algorithm for solving the satisfiability
problem for augmented sums.

11.4 Solution Algorithm

Let B be an augmented sum with components B1 and B2, as given by
(11.2.9) and (11.2.10). In this section, we describe an algorithm that solves
any b-satisfiability problem of B by first solving several satisfiability prob-
lems involving B1 and then solving one satisfiability problem involving B2.
The proof of validity rests on a reduction theorem given next that links
any satisfiability problem involving B to one involving B2, using certain
sets and vectors that are defined via B1.

For convenient reference, we display again B, B1, and B2 of (11.2.9)
and (11.2.10).

(11.4.1)

B =

A2

X1

Y1

A1

D1X21

0X22
X2

Y2
Y21

E1 0

Y22

Matrix B

11.4. Solution Algorithm 361

(11.4.2)
X1

Y1

A1

Y21

E1

D1X21

B1 =

0
A2

X1
~

Y1
~

F~

B2 = X21

0X22
X2

E1~
0

Y2

Y21Y22

D1~

Matrices B1 and B2

Reduction Theorem

We need a few definitions to state the result. The definitions utilize the
index sets and submatrices of B of (11.4.1) and of B1 and B2 of (11.4.2).

Define b = [b1/b2] to be any {0, 1} vector whose subvectors b1 and b2

are indexed by X1 and X2, respectively.
Take R to be the set of {0, 1} vectors [d1/e1] with d1 ∈ subrange(D1)

and e1 ∈ subrange(E1) for which some {±1} vector s1 satisfies

(11.4.3)
A1 ⊙ s1 ≥ b1 ⊖ e1

D1 ⊙ s1 ≥ d1

Let S be the set of {±1} vectors [s̃1/s21] for which a vector [d1/e1] ∈ R
exists such that

(11.4.4)
D̃1 ⊙ s̃1 = d1

E1 ⊙ s21 = e1

Since D̃1 is an identity matrix, the determination of s̃1 is trivial.
Recall from (11.2.6) that F = [F̃ |Ẽ1]. Define f to be the following

{0, 1} vector. The elements fi of f are indexed by X̃1 and are determined
by the row vector Fi. of F and by S via

(11.4.5) fi =
{

0 if −(Fi.)
t ∈ S

1 otherwise

The theorem below links the b-satisfiability problem of B with a certain
satisfiability problem involving B2.

(11.4.6) Theorem. Let B, B1, and B2 be the matrices of (11.4.1) and

(11.4.2), and let b = [b1/b2] be a {0, 1} vector whose subvectors b1 and b2

are indexed by X1 and X2, respectively. Define a {0, 1} vector f via R and

S using (11.4.3)–(11.4.5). Then, for any {±1} vector s2 = [s21/s22], with

s21 and s22 indexed by Y21 and Y22, respectively, the following statements

are equivalent.

362 Chapter 11. Augmented Sum

(i) There exists a {±1} vector s1 such that

(11.4.7)
(A1 ⊙ s1)⊕ (E1 ⊙ s21) ≥ b1

([D1/0]⊙ s1)⊕ (A2 ⊙ s2) ≥ b2

(ii) There exists a {±1} vector s̃1 such that

(11.4.8)
(F̃ ⊙ s̃1)⊕ (Ẽ1 ⊙ s21) ≥ f

([D̃1/0]⊙ s̃1)⊕ (A2 ⊙ s2) ≥ b2

Proof. Assume that (i) holds. Let s = [s1/s2] = [s1/s21/s22]. Since s is
a {±1} vector, d1 = D1 ⊙ s1 is in subrange(D1), and e1 = E1 ⊙ s21 is in
subrange(E1). By (11.4.7), A1 ⊙ s1 ≥ b1 ⊖ e1, and trivially D1 ⊙ s1 ≥ d1.
Using (11.4.3), we conclude that the vector [d1/e1] is in R. Let s̃1 be the
unique {±1} vector satisfying D̃1 ⊙ s̃1 = d1.

To prove (ii), we show that s̃1 and s2 = [s21/s22] satisfy (11.4.8).
Since d1 = D1⊙ s1 = D̃1⊙ s̃1, the second inequality of (11.4.7) implies the
second inequality of (11.4.8). We confirm the first inequality of (11.4.8) as
follows. The facts [d1/e1] ∈ R, D̃1 ⊙ s̃1 = d1, and E1 ⊙ s21 = e1 imply
by (11.4.4) that the vector [s̃1/s21] is in S. By (11.4.5), the element fi

corresponding to the row vector Fi. of F for which −(Fi.)
t = [s̃1/s21] is

equal to 0. Since F contains all possible {±1} row vectors, we have, for
any j 6= i, −(Fj.)

t ⊙ [s̃1/s21] = 1. Hence, F ⊙ [s̃1/s21] ≥ f or, equivalently,

(F̃ ⊙ s̃1)⊕ (Ẽ1 ⊙ s21) ≥ f , so the first inequality of (11.4.8) is satisfied.
We have shown that (i) implies (ii). For the proof of the converse,

assume that (ii) holds. We claim that [s̃1/s21] is in S. Suppose that this
is not so. By (11.4.5), the row vector Fi. of F for which −(Fi.)

t = [s̃1/s21]
then defines fi to be equal to 1 and satisfies −(Fi.)

t ⊙ [s̃1/s21] = 0. Hence,
the first inequality of (11.4.8) is not satisfied, a contradiction.

Since [s̃1/s21] ∈ S, there exists by (11.4.4) a vector [d1/e1] ∈ R for
which D̃1 ⊙ s̃1 = d1 and E1 ⊙ s21 = e1. The definition of R via (11.4.3)
implies that there exists a {±1} vector s1 for which the two inequalities of
(11.4.3) hold. By (4.2.13), the first of the two inequalities of (11.4.3) and
E1 ⊙ s21 = e1 imply the first inequality of (11.4.7).

Using D̃1 ⊙ s̃1 = d1 and (4.2.13), we rewrite the second inequality of
(11.4.8) as A2⊙s2 ≥ b2⊖[d1/0]. Using (4.2.20), we add the latter inequality
to the inequality [D1/0]⊙ s1 ≥ [d1/0] implied by the second inequality of
(11.4.3). Simplification using (4.2.17) produces ([D1/0]⊙s1)⊕ (A2⊙s2) ≥
(b2 ⊖ [d1/0])⊕ [d1/0] ≥ b2, which proves the second inequality of (11.4.7).
Hence (i) holds.

(11.4.9) Corollary. Let B, b, R, and S be as in Theorem (11.4.6). If the

SAT instance (B, b) is satisfiable, then both R and S are nonempty.

11.4. Solution Algorithm 363

Proof. Assume that (B, b) is satisfiable. The first part of the proof of
Theorem (11.4.6) shows that R is nonempty. That conclusion and the
definition of S by (11.4.4) imply that S is nonempty as well.

In the first part of the proof of Theorem (11.4.6), we needed, for any
[d1/e1] ∈ R, a {±1} vector s̃1 satisfying D̃1 ⊙ s̃1 = d1. In the definition of
the augmented sum in Section 11.2, we declared D̃1 to be an identity matrix
to guarantee the existence of that solution vector. Suppose that instead we
let D̃1 be a {0, 1} matrix satisfying the condition range(D̃1) ⊇ range(D1)
of (11.2.4). Since the range of a matrix always contains the subrange,
with equality holding for {0, 1} matrices, we also have subrange(D̃1) ⊇
subrange(D1). The latter relation guarantees existence of the solution s̃1

for D̃1⊙ s̃1 = d1, as desired. Hence, one could generalize the results of this
chapter by replacing the definition that D̃1 is an identity matrix by the
requirement that D̃1 is a {0, 1} matrix satisfying range(D̃1) ⊇ range(D1).
We have not done so to simplify the presentation.

We are ready for the solution algorithm.

Solution Algorithm

The scheme accepts a given satisfiability problem for B of the form (11.4.7)
as input; computes the sets R, S, and the vector f of (11.4.3)–(11.4.5);
solves one satisfiability problem involving B2 of the form (11.4.8); and
finally deduces from that information a solution for the input problem.

(11.4.10) Algorithm SOLVE AUGMENTED SUM SAT. Solves

SAT instance (B, b) where B is an augmented sum and where b is a {0, 1}
vector.

Input: Matrix B over IB, with row index set X and column index set Y .
A {0, 1} vector b with |X | entries.
An augmented decomposition of B with components B1 and B2, as dis-
played by (11.4.1) and (11.4.2). Consider b to be partitioned into b1 and b2

according to the index sets X1 and X2, respectively, of the decomposition.
Define k = |X21|+ |Y21|+ 1.
An algorithm that solves the SAT instance of any submatrix of [A1/D1] of
B1 in at most β1 time. A second algorithm that solves the SAT instance
of any submatrix of B2 in at most β2 time.

Output: Either: A solution s∗ for (B, b). Or: “The given instance has no
solution.”

Complexity: O(2k · k · β1 + β2).

Procedure:
1. For the submatrices D1 and E1 of B, use Algorithm RANGE (4.3.11)

to determine subrange(D1) and subrange(E1). Initialize R = S = ∅.

364 Chapter 11. Augmented Sum

2. Do for all vectors d1 ∈ subrange(D1) and e1 ∈ subrange(E1):
Solve with the appropriate given SAT algorithm the SAT instance
([A1/D1], [(b1 ⊖ e1)/d1]). If the instance has a solution, then add
[d1/e1] to R, and store the solution as s1(d1, e1).

3. If R = ∅, declare that (B, b) has no solution, and stop.
4. Do for each [d1/e1] ∈ R:

Add to S all {±1} vectors [s̃1/s21] for which D̃1 ⊙ s̃1 = d1 and E1 ⊙
s21 = e1.

5. Determine the entries of a {±1} vector f indexed by X̃1 as follows.
For i ∈ X̃1, set fi = 0 if the row vector Fi. of F satisfies −(Fi.)

t ∈ S,
and set fi = 1 otherwise.

6. Solve with the appropriate given SAT algorithm the SAT instance
(B2, [f/b2]). If no solution exists, declare that (B, b) has no solution,
and stop. Otherwise, partition the solution vector as [s̃1∗/s2∗], where
s̃1∗ is indexed by Ỹ1 and where s2∗ is indexed by Y2. Let s21∗ be the
subvector of s2∗ indexed by Y21.

7. Compute d1 = D̃1 ⊙ s̃1∗ and e1 = E1 ⊙ s21∗. Define s1∗ = s1(d1, e1).
Output s∗ = [s1∗/s2∗] as a satisfying solution for (B, b), and stop.

Proof of Validity. Steps 1, 2, 4, and 5 compute R, S, and f in agreement
with (11.4.3)–(11.4.5).

Corollary (11.4.9) validates the claim of Step 3 that R = ∅ implies
(B, b) to be unsatisfiable.

Step 6 either finds a solution [s̃1∗/s2∗] for the inequality system (11.4.8)
of Theorem (11.4.6)(ii) or concludes that none exists. If that inequality
system has no solution, then by the equivalence of Theorem (11.4.6)(i) and
(ii), (B, b) has no solution. Suppose a solution is found in Step 6.

Step 7 relies on the second part of the proof of Theorem (11.4.6) to
deduce from the solution of Step 6 a solution for (B, b).

The complexity claim is argued as follows. By definition, k = |X21|+
|Y21|+ 1. Let A be an m× n matrix over IB. Since the BG-rank of A can-
not exceed min{m, n}, Theorem (4.4.19) implies that Algorithm RANGE
(4.3.11) determines the subrange of A with O(2min{m,n}·m·n) effort. We ap-
ply that conclusion to the computation of subrange(D1) and subrange(E1).
We observe that D1 has at most k rows, that E1 has at most k columns,
and that the number of columns of D1 and the number of rows of E1 must
be O(β1). Hence, Algorithm RANGE (4.3.11) calculates subrange(D1) and
subrange(E1) with O(2k · k · β1) effort.

By Corollary (4.3.36), the cardinality of the subrange of an m × n
matrix A is bounded from above by 2min{m,n}, so |subrange(D1)| ≤ 2|X21|,
|subrange(E1)| ≤ 2|Y21|, and |R| ≤ 2|X21|+|Y21| = 2k−1. Hence, Step 2
requires at most 2k−1 applications of the SAT algorithm for [A1/D1], and
total effort for that step is O(2k · β1).

Using standard techniques, the set S of Step 4 and the vector f of

11.4. Solution Algorithm 365

Step 5 are determined with O(2k · k · β1) effort. Step 6 requires O(β2)
effort, while the effort for Step 7 is clearly dominated by that for Step 4.
Total effort is therefore O(2k · k · β1 + β2).

In general, Algorithm SOLVE AUGMENTED SUM SAT (11.4.10)
solves several SAT instances involving B1 and one SAT instance involv-
ing B2. Hence, the augmented sum is of type II. We record this fact for
future reference.

(11.4.11) Theorem. The augmented sum is of type II.

SAT Semicentrality

Recall from (5.2.1) that a class C of matrices A over IB is SAT semicentral
if

(11.4.12)
(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.

Let C1 and C2 be two given classes of SAT semicentral matrices. We
use the following process to construct a class C of matrices over IB that
later we prove to be SAT semicentral.

Initialize C = C1 ∪ C2. In all possible ways, select matrices B1 ∈ C1

and B2 ∈ C2 of the form (11.4.2) such that the two matrices may be viewed
as the components of an augmented sum B for which |X21∪Y21| is bounded
by a constant. Add each B so constructed to C.

When C is constructed as described above, we say that C is created

from C1 and C2 by augmented sums where each |X21 ∪ Y21| is bounded by
a constant.

We should mention that the construction rules guarantee that the
length of B is larger than the length of B1. However, the length of B may
be less than that of B2. In the latter case, the difference of the two lengths
is well bounded. Let k = |X21∪Y21|+1. Then it is easily checked that the
length of B plus k + 2k−1 exceeds the length of B2.

The reader may wonder why we do not define C via augmented k-sums
from C1 and C2 instead of just augmented sums. The reason is that we
need C to be closed under submatrix taking and that a construction via
augmented k-sums does not satisfy that requirement.

We establish SAT semicentrality for the class C created from C1 and
C2.

(11.4.13) Lemma. Let C be the class of matrices created from given SAT
semicentral classes C1 and C2 by augmented sums where each |X21 ∪ Y21|
is bounded by a constant. Then C is SAT semicentral.

366 Chapter 11. Augmented Sum

Proof. We show (11.4.12)(i) and (ii). For (i), let B ∈ C, and define B to
be an arbitrary submatrix of B. We must show that B is in C.

If B ∈ C1 ∪ C2, then by the SAT semicentrality of C1 and C2, B ∈
C1 ∪ C2, and hence B ∈ C.

Assume that B /∈ C1 ∪ C2. By the construction of C, the matrix B
is an augmented sum with components B1 ∈ C1 and B2 ∈ C2. Theorem
(11.2.17) supplies the following conclusion. The submatrix B is contained
in the submatrix A1 of B1, or is contained in the submatrix A2 of B2, or
is an augmented sum whose components B1 and B2 are submatrices of B1

and B2, respectively. In the first two cases, B is in C1 ∪ C2 and hence is
in C. In the third case, we have B1 ∈ C1 and B2 ∈ C2, and Theorem
(11.2.17) establishes that |X21 ∪ Y21| ≥ |X21 ∪ Y 21|. Hence, B is in C as
well.

To prove (11.4.12)(ii), we construct a polynomial solution algorithm
for C, using the assumed polynomial solution algorithms for C1 and C2.
Let the latter algorithms have upper time bounds β1 and β2, respectively.

In the nontrivial case, the given B ∈ C is an augmented sum with
components in C1 and C2, and with |X21 ∪ Y21| bounded by a constant.
We invoke Algorithm SOLVE AUGMENTED SUM SAT (11.4.10) to solve
the SAT problem for B, using the solution algorithms for C1 and C2 as
subroutines. We argued earlier that the length of B is larger than the length
of B1 and that the length of B plus k+2k−1 exceeds the length of B2. These
observations and the fact that k is bounded by a constant prove Algorithm
SOLVE AUGMENTED SUM SAT (11.4.10) to be polynomial.

We use Lemma (11.4.13) to prove SAT semicentrality for a class of C
of matrices that is constructed recursively from a given SAT semicentral
class C0 by the following process.

Initialize C = C0. In the recursive step, define two classes C1 and C2

by declaring C1 to be C0 and C2 to be the current C. Then create the
next class C from C1 and C2 by augmented sums where each |X21 ∪ Y21|
is bounded by a constant. The process is stopped after a bounded number
of recursive steps.

We mean the above construction of C when we say that C is created

from C0 by augmented sums where each |X21 ∪ Y21| as well as the number
of recursive construction steps is bounded by a constant.

We establish SAT semicentrality for C just defined.

(11.4.14) Theorem. Let C0 be a SAT semicentral class of matrices. De-

fine C to be a class created from C0 by augmented sums where each

|X21 ∪ Y21| and the number of recursive construction steps are bounded

by constants. Then C is SAT semicentral.

Proof. The result follows by induction from Lemma (11.4.13).

We turn to extensions and references.

11.5. Extensions and References 367

11.5 Extensions and References

One may specialize the notion of augmented sum to obtain stronger results.
We present two cases.

In the first case, we consider augmented k-sums where k ≤ 3. In that
situation, the submatrix F of B2 has at most k − 1 ≤ 2 columns and
thus corresponds to 2SAT clauses. Suppose B1 belongs to a SAT central
class. Further suppose that B2 also is in that SAT central class or has
an augmented k-decomposition with k ≤ 3. Under suitable assumptions
that support recursion, the SAT problem for B is then easily solved. Us-
ing different concepts and terminology, one such class is constructed by
Knuth (1990) and then extended to a larger class by Hansen, Jaumard,
and Plateau (1993). In the latter class, the submatrix [A1|E1] of B repre-
sents 2SAT clauses plus at most one general CNF clause, the submatrix D1

is trivial, and the submatrix E1 consists of at most two columns. Then B
can be decomposed into B1 and B2 where B1 is a 2SAT matrix except for
one row and where B2 is obtained from a submatrix of B by the addition
of 2SAT rows. The conclusions remain valid if one demands that just A1,
and not [A1|E1], is a 2SAT matrix except for at most one general row.

In the second case, we assume that the submatrix [A1/D1] of an aug-
mented k-sum B can be column scaled such that A1 becomes nearly neg-
ative and D1 becomes nonpositive. To simplify the notation, we suppose
that A1 and D1 are already of that form. If E1 is zero, then B is a mono-
tone sum and should be treated as discussed in Chapter 9. Assume that
E1 is nonzero.

We make repeated use of the inequalities of (11.4.3), which are

(11.5.1)
A1 ⊙ s1 ≥ b1 ⊖ e1

D1 ⊙ s1 ≥ d1

Let e1 be any vector of subrange(E1). Suppose the inequality A1 ⊙ s1 ≥
b1 ⊖ e1 has a solution. By Theorem (5.5.2), Algorithm SOLVE NEARLY
NEGATIVE SAT OR MINSAT (5.5.1) finds one such solution, say, s1∗,
that, in the terminology of Section 5.5, is minimum with respect to True.
The latter feature and the nonpositivity of D1 imply the following conclu-
sions, where d1∗ = D1 ⊙ s1∗. First, s1 = s1∗ satisfies both inequalities of
(11.5.1) when d1 is chosen as d1 = d1∗. Second, for any d1 obeying, for
some row index i, d1

i > d1∗
i , the inequalities of (11.5.1) have no solution.

The conclusions support the following simplification of Steps 1, 2, and
7 of Algorithm SOLVE AUGMENTED SUM SAT (11.4.10) to Steps 1′,
2′, and 7′, respectively, below. Validity follows from a suitably adapted
Theorem (11.4.6).

1′. For the submatrix E1 of B, use Algorithm RANGE (4.3.11) to deter-
mine subrange(E1). Initialize R = S = ∅.

368 Chapter 11. Augmented Sum

2′. Do for all vectors e1 ∈ subrange(E1):
Solve with Algorithm SOLVE NEARLY NEGATIVE SAT OR MIN-
SAT (5.5.1) the SAT instance (A1, b1 ⊖ e1). If the instance has a
solution, then store it as s1(e1), compute d1 = D1 ⊙ s1(e1), and add
[d1/e1] to R.

7′. Compute e1 = E1 ⊙ s21∗. Define s1∗ = s1(e1). Output s∗ = [s1∗/s2∗]
as a satisfying solution for (B, b), and stop.

The next chapter concerns a sum called linear sum.

Chapter 12

Linear Sum

12.1 Overview

This chapter introduces a sum called linear sum. Such a sum may
have any number of components and may be used to solve both the SAT
and MINSAT problems. These facts, plus the ease with which one may
detect computationally attractive linear sums, make the linear sum the
most general and most versatile of the sums discussed in this book. In
fact, linear sums can be defined for any ID-system and thus are useful for
the solution of combinatorial problems whose instances can be formulated
as inequality systems over some ID-system.

Section 4.7 classifies sums with two components B1 and B2 accord-
ing to worst-case upper bounds on the number of b1- and b2-satisfiability
problems for certain column submatrices B1 and B2 of B1 and B2 that
may have to be solved by the SAT algorithm we have developed for that
sum. If that upper bound is 1 for both B1 and B2, the sum is said to be
of type I. If the upper bound is at least 2 for B1 and is 1 for B2, then the
sum is of type II. In the remaining case, where both upper bounds are at
least 2, the sum is of type III. It turns out that the linear sum with two
components is of type III. We proceed as follows.

In Section 12.2, we define the linear sum and related notions.
In Section 12.3, we develop algorithms for detecting linear sums.
In Section 12.4, we present an algorithm for solving SAT and MINSAT

instances involving linear sums. At that time, the linear sum with two
components is shown to be of type III.

The final section, 12.5, includes extensions.

369

370 Chapter 12. Linear Sum

12.2 Definitions

This section defines linear sums with any number of components by a direct
definition and also by a recursive construction. At the same time, a number
of related concepts are introduced.

We need a convention about sets to simplify the presentation. Let
p ≥ 1 be given. Suppose Z1, Z2, . . . , Zp are sets that have been introduced
by some definition. Then we take any set Zi for which i < 1 or i > p to be
empty.

Linear Separation

Let B be a matrix over IB, with row index set X and column index set
Y . Suppose that, for some p ≥ 2, X and Y have been partitioned into
X1, X2, . . . , Xp and Y1, Y2, . . . , Yp, respectively, where for all i, Xi ∪ Yi is
nonempty. Let these partitions induce the following partition of B.

(12.2.1)

X

X1

B =

Y1

A1

D
Xp

E

Ap

Ai

. . . .

. . . .

Yp

Xi

...

...

.
Y
Yi

Matrix B with linear separation

Then (X1 ∪ Y1, X2 ∪ Y2, . . . , Xp ∪ Yp) is a linear separation of B.
Note the two areas of B labeled D and E. They contain the entries of

B that are not part of any one of the submatrices A1, A2, . . . , Ap.

Linear Decomposition

For i = 1, 2, . . . , p, we introduce submatrices V i and W i of B. The matrix
V i (resp. W i) is indexed by ∪j<iXj and ∪j<iYj (resp. ∪j>iXj and ∪j>iYj).
Thus,

12.2. Definitions 371

(12.2.2)

. . .Y1

X1 A1

...
. . . .

0, _+1

0, _+1

. . . Yp

Xp Ap

. . . .
...

0, _+1

0, _+1
A -1i

Y -1i

X -1i

V =i

Xi +1

Yi +1

Ai +1

W =i

Submatrices V i and W i

According to the earlier established convention about sets, both V 1 and
W p have empty row and column index sets and thus are empty matrices.

For i = 1, 2, . . . , p, we derive a matrix Bi from B of (12.2.1) by
replacing the submatrices V i and W i by zero matrices and by partitioning
the unaffected portions of D and E into submatrices Di1, Di2, Di3 and
Ei1, Ei2, Ei3, respectively. The precise form of Bi is

(12.2.3)

..

X

. . .Y1

X1

Bi =

0

Xp

Yi

Ai

Yp

Xi

...

...

. .
Y

0

.

D 3i E 3i

E 2iE i1

Di1D 2i

Matrix Bi

We emphasize that any entry of Bi outside the explicitly shown zero ma-
trices is equal to the corresponding entry of B. The matrices B1, B2, . . . ,
Bp are the components of a linear decomposition of B.

For the case p = 2, the matrix B is

(12.2.4) X1
B =

Y1

A1

DX2

Y2

A2

E

Matrix B producing two components

372 Chapter 12. Linear Sum

Comparing Bi of (12.2.3) with B of (12.2.4), we see that for this special
case D11 = D23 = D and E13 = E21 = E. Hence, the components B1 and
B2 are

(12.2.5) X1

Y1

A1

DX2

Y2

E

X2

Y2

A2
B1 = B2 =

0

X1

D

E

Y1

0

Components B1 and B2

We list elementary facts about the components B1, B2, . . . , Bp.

(12.2.6) Lemma. For any p ≥ 2, the components B1, B2, . . . , Bp satisfy
(a) and (b) below.

(a) The following matrices are trivial or empty: the submatrices D12, D13,
E11, and E12 of B1 and the submatrices Dp1, Dp2, Ep2, and Ep3 of
Bp.

(b) For i = 1, 2, . . . , p− 1,

(12.2.7)
[Di+1,3/Di+1,2] = [Di2|Di1]

[Ei+1,1|Ei+1,2] = [Ei2/Ei3]

Proof. Since V 1 and W p are empty matrices, the submatrices of B1 and
Bp listed in part (a) must be trivial or empty.

A comparison of Bi of (12.2.3) with a correspondingly partitioned Bi+1

proves part (b).

Linear Composition

We may derive B of (12.2.1) from the matrices Bi of (12.2.3) in the obvious
way. The matrix B is then obtained by a linear composition of B1, B2, . . . ,
Bp.

Linear Sum

A matrix B is a linear sum of B1, B2, . . . , Bp if the latter matrices are the
components of a linear decomposition of B or, equivalently, if B is created
from B1, B2, . . . , Bp by a linear composition. We denote that situation by
B = B1

+ l B
2
+ l . . . + l B

p.
A linear sum is proper if, for i = 1, 2, . . . , p, the submatrix Ai of B is

nontrivial and nonempty, that is, if Ai has at least one entry.

12.2. Definitions 373

Classification Using BG

We classify a subset of the proper linear sums using the system BG. The
definitions are an extension of the concepts of matroid separation and ma-
troid sum discussed in Sections 3.4 and 3.6. Suppose B is a proper linear
sum given by (12.2.1). For i = 1, 2, . . . , p, we use the submatrices Di1,
Di2, Di3 and Ei1, Ei2, Ei3 of Bi of (12.2.3) to define

(12.2.8)
δi = BG-rank([Di3/Di2]) + BG-rank([Ei1|Ei2]) + 1

ǫi = BG-rank([Di2|Di1]) + BG-rank([Ei2/Ei3]) + 1

and

(12.2.9) k = max
i
{δi, ǫi}

Let B be a proper linear sum; that is, B is a linear sum where each Ai

contains at least one entry. If, for i = 1, 2, . . . , p, the length of Ai is larger
than both δi and ǫi, that is, if

(12.2.10) |Xi ∪ Yi| ≥ max{δi, ǫi}+ 1

then B has a linear k-separation. The linear decomposition, composi-
tion, and sum that correspond to a linear k-separation are called linear

k-decomposition, linear k-composition, and linear k-sum, respectively. We
stress that these definitions are based on a linear sum that is proper.

Suppose k = 1. By (12.2.8) and (12.2.9), for i = 1, 2, . . . , p, δi = ǫi =
1, so Di1, Di2, Di3, and Ei1, Ei2, Ei3 must be zero matrices. Equivalently,
the areas D and E in B of (12.2.1) contain zeros only. Hence, B is a block
diagonal matrix with A1, A2, . . . , Ap as blocks and may be constructed by
repeated 1-sums from the blocks.

We establish some facts about δi and ǫi of (12.2.8) and about k of
(12.2.9).

(12.2.11) Lemma. For i = 1, 2, . . . , p− 1,

(12.2.12) δi+1 = ǫi

Furthermore,

(12.2.13) δ1 = ǫp = 1

and

(12.2.14) k = max
i
{δi}

Proof. Lemma (12.2.6) plus the definition (12.2.8) of δi and ǫi establishes
(12.2.12) and (12.2.13). The definition (12.2.9) of k plus (12.2.12) and
(12.2.13) yields (12.2.14).

374 Chapter 12. Linear Sum

Recursive Construction

One may derive any linear sum with p ≥ 3 components by a recursive
construction that uses linear decompositions with two components. Con-
versely, one may reduce any linear sum with p ≥ 3 components to one with
fewer components by recursive composition involving two components at a
time.

We provide details for the latter process and thus implicitly for the
former one as well. In a typical situation, B is the matrix of (12.2.1) and
p ≥ 3. We arbitrarily select i such that 1 ≤ i ≤ p− 1. In B, we replace the
submatrices V i and W i+1 by zero matrices to get the following matrix C.

(12.2.15)

.Y1

X1

C =

0

Xp

Ai

Yp

Xi

Y

X

0, _+1

0, _+1
0

...

...

Yi

Xi +1 Ai +1

Yi +1

Matrix C

Comparing C with Bi and Bi+1 defined via (12.2.3), we see that C
is the linear sum of Bi and Bi+1. Furthermore, B is a linear sum with
components B1, . . . , Bi−1, C, Bi+2, . . . , Bp; if i = 1 (resp. i = p− 1), then
B1, . . . , Bi−1 (resp. Bi+2, . . . , Bp) should be omitted from the list. We
conclude that we may reduce a linear sum B with p components to one
with p − 1 components, by replacing two consecutive components Bi and
Bi+1 by the linear sum of those two components.

The next theorem extends the above observations and links them to
linear k sums.

(12.2.16) Theorem. For some p ≥ 3, let B be a linear sum with compo-
nents B1, B2, . . . , Bp. Suppose that i and j satisfy 1 ≤ i < j ≤ p and that
i > 1 or j < p. Then (a)–(c) below hold.

(a) The j − i + 1 component matrices Bi, Bi+1, . . . , Bj constitute by
themselves the components of some linear sum, say, C.

(b) The matrix B is a linear sum with p+ i− j components B1, . . . , Bi−1,
C, Bj+1, . . . , Bp; if i = 1 (resp. j = p), B1, . . . , Bi−1 (resp. Bj+1, . . . ,
Bp) should be omitted from the list.

12.2. Definitions 375

(c) Suppose B is a linear k-sum of B1, B2, . . . , Bp. Then, for some k′ ≤ k,
B is a linear k′-sum of B1, . . . , Bi−1, C, Bj+1, . . . , Bp; if i = 1 (resp.
j = p), B1, . . . , Bi−1 (resp. Bj+1, . . . , Bp) should be omitted from the
list.

Proof. Parts (a) and (b) follow from the earlier observations and induc-
tion.

We show part (c). Since B is a proper linear sum of B1, B2, . . . , Bp,
it is also a proper linear sum of B1, . . . , Bi−1, C, Bj+1, . . . , Bp.

Let δi and ǫi for Bi be given by (12.2.8), and, analogously, δj and ǫj

for Bj . It is easy to see that the corresponding values for C, say, δC and
ǫC , are equal to δi and ǫj , respectively. This implies that k of (12.2.14)
for B1, B2, . . . , Bp is at least as large as the corresponding k′ for B1, . . . ,
Bi−1, C, Bj+1, . . . , Bp. Furthermore, since the inequalities of (12.2.10)
hold for B1, B2, . . . , Bp, the corresponding inequalities are readily seen to
hold for B1, . . . , Bi−1, C, Bj+1, . . . , Bp.

The above arguments establish that B is a linear k′-sum of B1, . . . ,
Bi−1, C, Bj+1, . . . , Bp with k′ ≤ k.

We call the linear sum B with components B1, B2, . . . , Bp a refinement

of the linear sum with components B1, . . . , Bi−1, C, Bj+1, . . . , Bp. In
addition, the linear separation of B corresponding to B1, B2, . . . , Bp is
a refinement of the linear separation corresponding to B1, . . . , Bi−1, C,
Bj+1, . . . , Bp.

Submatrix Taking

For the purpose of solving the SAT or MINSAT problem, one would desire
that linear sums are in a certain sense maintained under submatrix taking.
This is indeed the case.

(12.2.17) Theorem. Let B be a linear sum with components B1, B2, . . . ,
Bp. Then any nonempty submatrix B of B either is contained in the
submatrix Ai of some component Bi or is a linear sum whose components
are submatrices of the components Bi for which the intersection of Ai and
B is a nonempty matrix.

Proof. For i = 1, 2, . . . , p, define Bi to be the submatrix of Bi having the
same row and column index sets as B. From B1, B2, . . . , Bp so obtained,
delete all matrices Bi for which the intersection of the submatrix Ai of B
with B is an empty matrix.

If at most one matrix remains, the first case of the theorem applies.
Otherwise, B is a linear sum having the remaining Bi as components.

In the next section, we develop decomposition algorithms for finding
linear k-sums.

376 Chapter 12. Linear Sum

12.3 Decomposition Algorithms

According to Section 12.2, a linear 1-sum B is a block diagonal matrix
where the blocks are the matrices A1, A2, . . . , Ap. We ignore this simple
case and concentrate on the situation where B is connected and where, for
some k ≥ 2, a linear k-sum with an arbitrary number of components is to
be found.

We develop algorithms for finding such linear sums. The methods rely
on the idea that linear sums may be obtained by a recursive construction.
In the base case of that construction, a matrix B is given, and one must
find a linear decomposition into two components. In the recursive step of
the construction, a linear decomposition of B is given, and one must find
a linear decomposition of a specified component C into two components to
obtain a refined linear decomposition of B.

Each algorithm for the base case or the recursive step views the given
matrix to be over BG and uses either Algorithm k-SEPARATION (3.5.20)
or Heuristic BG-k-SEPARATION (3.5.34) as a subroutine. We review
those two methods.

Let B be a matrix over BG, with row index set X and column index set
Y . Define P1, P2 (resp. Q1, Q2) to be two disjoint subsets of X (resp. Y).
Let m1, m2, and n be given integers. We want to find a BG-k-separation
(X1 ∪ Y1, X2 ∪ Y2) of B satisfying the following statements.

(12.3.1)

(i) (X1∪Y1, X2∪Y2) is an exact BG-k-separation of
B with k ≤ n.

(ii) For i = 1, 2, Pi ⊂ Xi and Qi ⊂ Yi.
(iii) For i = 1, 2, |Xi∪Yi| ≥ |Pi∪Qi|+max{k, mi}+1.

Both Algorithm k-SEPARATION (3.5.20) and Heuristic BG-k-SEPARA-
TION (3.5.34) search for such a separation while assuming that B does
not have a BG-k-separation (12.3.1) for k = 1. Both methods are polyno-
mial provided that m1, m2, and n are bounded by a constant. However,
there is one important difference between the two methods. Algorithm
k-SEPARATION (3.5.20) is theoretically satisfactory but practically not
usable, while Heuristic BG-k-SEPARATION (3.5.34) is practically useful,
but may fail to find a separation of the desired form even though one exists.

We are ready to present the algorithms that handle the base case of
the construction.

Base Case of Construction

We want a linear k-separation (X1∪Y1, X2∪Y2) for a given matrix B where,
for given n, k ≤ n. The associated partition of B and the corresponding
components B1 and B2 are given by (12.2.4) and (12.2.5), respectively.

12.3. Decomposition Algorithms 377

The conditions to be satisfied by the separation (X1 ∪ Y1, X2 ∪ Y2) may be
phrased as follows.

(12.3.2)

(i) (X1∪Y1, X2∪Y2) is an exact BG-k-separation of
B with k ≤ n.

(ii) For i = 1, 2, Xi and Yi are nonempty.
(iii) For i = 1, 2, |Xi ∪ Yi| ≥ k + 1.

Comparing (12.3.2) with (12.3.1), we see that the conditions (12.3.2)(i)–(iii)
are the special case of (12.3.1)(i)–(iii) where for i = 1, 2, Pi = Qi = ∅ and
mi = 0. Thus, we may solve the base case of the construction with Algo-
rithm k-SEPARATION (3.5.20) or Heuristic BG-k-SEPARATION (3.5.34)
using those values for Pi, Qi, and mi. Both methods impose the condition
that B does not have a k-separation satisfying (12.3.1) for k = 1. That
condition is clearly satisfied if B is a connected matrix.

We first give the method that solves the base case with Algorithm
k-SEPARATION (3.5.20). The method is theoretically satisfactory, but
practically unusable. Validity follows from the above discussion.

(12.3.3) Algorithm LINEAR k-SEPARATION. Finds a linear k-sep-
aration of a matrix B over IB or declares that such a separation does not
exist.

Input: Matrix B over IB, with row index set X and column index set Y .
An integer n. The matrix B is connected.

Output: Either: A linear k-separation (X1∪Y1, X2∪Y2) of B with minimal
k ≤ n. Or: “B does not have a linear k-separation (X1 ∪ Y1, X2 ∪ Y2) with
k ≤ n.”

Complexity: Polynomial if n is bounded by a constant.

Procedure:
1. Use Algorithm k-SEPARATION (3.5.20) with the following input. The

input matrix is B, viewed to be over BG. For i = 1, 2, define Pi =
Q = ∅ and mi = 0. The input integer n is the given n.

2. If Algorithm k-SEPARATION (3.5.20) does not output a separation
for B, then declare that B does not have a linear k-separation with
k ≤ n.

3. Output the separation (X1∪Y1, X2∪Y2) of Algorithm k-SEPARATION
(3.5.20) as the desired one, and stop.

When Heuristic BG-k-SEPARATION (3.5.34) is used instead of Al-
gorithm k-SEPARATION (3.5.20), we get the following heuristic method.

(12.3.4) Heuristic LINEAR k-SEPARATION. Finds a linear k-sep-
aration of a matrix B over IB or declares that the method cannot find such
a separation.

378 Chapter 12. Linear Sum

Input: Matrix B over IB, with row index set X and column index set Y .
An integer n. The matrix B is connected.

Output: Either: A linear k-separation (X1 ∪ Y1, X2 ∪ Y2) of B with k ≤ n.
Or: “The heuristic algorithm cannot locate a linear k-separation of B with
k ≤ n.”

Complexity: Polynomial if n is bounded by a constant.

Procedure:
1. Use Heuristic BG-k-SEPARATION (3.5.34) with the following input.

The input matrix is B, viewed to be over BG. For i = 1, 2, define
Pi = Q = ∅ and mi = 0. The input integer n is the given n.

2. If Heuristic BG-k-SEPARATION (3.5.34) does not output a separa-
tion for B, then declare that the algorithm cannot find the desired
separation of B, and stop.

3. Output the separation (X1∪Y1, X2∪Y2) of Heuristic BG-k-SEPARA-
TION (3.5.34) as the desired one, and stop.

We turn to the recursive step of the construction, where a given linear
sum is to be refined.

Recursive Step of Construction

Let B be a given linear k-sum with component matrices B1, . . . , Bi−1, C,
Bi+2, . . . , Bp. Also given is an integer n ≥ k. We want either to find a
linear decomposition of C into two components, say, Bi and Bi+1, such
that replacement of C by Bi and Bi+1 yields a linear k′-decomposition
with k′ ≤ n and with components B1, B2, . . . , Bp, or to conclude that
such Bi and Bi+1 do not exist.

The matrix C of (12.2.15) correctly shows the desired partition of C
producing Bi and Bi+1. We display that matrix again.

(12.3.5)

.Y1

X1

C =

0

Xp

Ai

Yp

Xi

Y

X

0, _+1

0, _+1
0

...

...

Yi

Xi +1 Ai +1

Yi +1

Matrix C

12.3. Decomposition Algorithms 379

Define P1 = ∪j<iXj , P2 = ∪j>i+1Xj, Q1 = ∪j<iYj , and Q2 =
∪j>i+1Yj . Declare XC = X − (P1 ∪ P2) and YC = Y − (Q1 ∪Q2). Let δC

and ǫC be defined for the component C of B using appropriately adapted
formulas of (12.2.8).

We rephrase the task at hand. We want to partition XC into Xi and
Xi+1, and YC into Yi and Yi+1, such that the separation (P1 ∪Q1 ∪Xi ∪
Yi, P2 ∪Q2 ∪Xi+1 ∪ Yi+1) of C satisfies the following three conditions.

First, to satisfy k′ ≤ n, ǫi defined by (12.2.8) must obey ǫi ≤ n.
Second, to assure that both submatrices Ai and Ai+1 of C are non-

trivial and nonempty, each one of the sets Xi, Xi+1, Yi, and Yi+1 must be
nonempty.

The third condition involves δi and ǫi of (12.2.8) as well as analo-
gously defined δi+1 and ǫi+1. We observe that δi = δC , ǫi+1 = ǫC , and,
by (12.2.12), δi+1 = ǫi. The third condition consists of the cardinality
requirements of (12.2.10) for the indices i and i + 1; that is, |Xi ∪ Yi| ≥
max{δi, ǫi}+1 = max{δC , ǫi}+1 and |Xi+1∪Yi+1| ≥ max{δi+1, ǫi+1}+1 =
max{ǫi, ǫC}+ 1.

In summary, we want a separation (P1∪Q1∪Xi∪Yi, P2∪Q2∪Xi+1∪
Yi+1) of C satisfying the following statements.

(12.3.6)

(i) (P1 ∪Q1 ∪Xi ∪ Yi, P2 ∪Q2 ∪Xi+1 ∪ Yi+1) is an
exact BG-ǫi-separation of C with ǫi ≤ n.

(ii) Xi, Xi+1, Yi, and Yi+1 are nonempty.
(iii) |Xi ∪ Yi| ≥ max{δC , ǫi}+ 1 and |Xi+1 ∪ Yi+1| ≥

max{ǫi, ǫC}+ 1.

We show that (12.3.6) is essentially (12.3.1) again. The sets P1, P2, Q1, Q2

of (12.3.6) correspond to the sets with same name in (12.3.1). The sets Xi,
Xi+1, Yi, and Yi+1 of (12.3.6) correspond to X1−P1, X2−P2, Y1−Q1, and
Y2 − Q2, respectively, in (12.3.1). The integers δC , ǫC , and n of (12.3.6)
correspond to m1, m2, and n of (12.3.1).

Both Algorithm k-SEPARATION (3.5.20) and Heuristic BG-k-SEPA-
RATION (3.5.34) require that the input matrix does not have a separation
satisfying (12.3.1) with k = 1. For the situation at hand, a k-separation of
C satisfying (12.3.6) with k = 1 is readily seen to be a 1-separation of B.
Hence, if B is connected, such a separation of B or C does not exist.

Algorithm k-SEPARATION (3.5.20) and Heuristic BG-k-SEPARA-
TION (3.5.34) are polynomial if m1, m2, and n are bounded by a constant.
For the situation at hand, we have m1 = δC ≤ k ≤ n and m2 = ǫC ≤ k ≤ n.
Hence, if n is bounded by a constant, then both methods are polynomial.

We present the algorithms for refining linear k-separations. The first
method uses Algorithm k-SEPARATION (3.5.20). Validity follows from
the above discussion.

(12.3.7) Algorithm REFINE LINEAR k-SEPARATION. Refines

380 Chapter 12. Linear Sum

a linear k-separation of a matrix B over IB by determining a linear separa-
tion for a specified component, or concludes that such a refinement is not
possible.

Input: Matrix B over IB, with a linear k-separation defining p − 1 ≥ 2
components B1, . . . , Bi−1, C, Bi+2, . . . , Bp. The matrix B (resp. any
component Bj, component C) has row index set X (resp. Xj , XC) and
column index set Y (resp. Yj , YC). An integer n ≥ k. The matrix B is
known to be connected.

Output: Either: For some k′ ≤ n, a linear k′-separation of B defining p
components. (Necessarily, k′ ≥ k.) The components are obtained from
the given components by replacing C by two components Bi and Bi+1.
Subject to these conditions, k′ is minimal. Or: “The linear k-separation
of B cannot be refined to a linear k′-separation with k′ ≤ n, using a linear
separation of C.”

Complexity: Polynomial if n is bounded by a constant.

Procedure:
1. Use Algorithm k-SEPARATION (3.5.20) with the following input. The

input matrix is C. The input sets P1, P2, Q1, and Q2 are P1 = ∪j<iXj,
P2 = ∪j>i+1Xj, Q1 = ∪j<iYj , and Q2 = ∪j>i+1Yj . The input integers
m1 and m2 are m1 = δC and m2 = ǫC , where δC and ǫC are calculated
for component C using appropriately adapted equations of (12.2.8).
The input n is the integer n at hand.

2. If Algorithm k-SEPARATION (3.5.20) does not output a separation
for C, then declare that the linear k-separation of B cannot be refined
under the given restrictions, and stop.

3. Let the output separation for C be a BG-l-separation of the form
(P1 ∪Q1 ∪Xi ∪ Yi, P2 ∪Q2 ∪Xi+1 ∪ Yi+1), where Xi, Xi+1 (resp. Yi,
Yi+1) partition XC (resp. YC). The index sets X1, X2, . . . , Xp and
Y1, Y2, . . . , Yp on hand provide the desired refined linear separation
of B. Compute the value k′ as k′ = max{k, l}. Output the refined
k′-separation, and stop.

The second algorithm utilizes Heuristic BG-k-SEPARATION (3.5.34).
Details are as follows.

(12.3.8) Heuristic REFINE LINEAR k-SEPARATION. Refines a
linear k-separation of a matrix B over IB by determining a linear separation
for a specified component, or concludes that the method cannot find such
a refinement.

Input: Matrix B over IB, with a linear k-separation defining p − 1 ≥ 2
components B1, . . . , Bi−1, C, Bi+2, . . . , Bp. The matrix B (resp. any
component Bj, component C) has row index set X (resp. Xj , XC) and
column index set Y (resp. Yj , YC). An integer n ≥ k. The matrix B is
known to be connected.

12.4. Solution Algorithm 381

Output: Either: For some k′ ≤ n, a linear k′-separation of B defining p
components. (Necessarily, k′ ≥ k.) The components are obtained from
the given components by replacing C by two components Bi and Bi+1.
Or: “The heuristic algorithm cannot locate a refinement of the linear k-
separation of B to a linear k′-separation with k′ ≤ n, using a linear sepa-
ration of C.”

Complexity: Polynomial if n is bounded by a constant.

Procedure:
1. Use Heuristic BG-k-SEPARATION (3.5.34) with the following input.

The input matrix is C. The input sets P1, P2, Q1, and Q2 are P1 =
∪j<iXj , P2 = ∪j>i+1Xj, Q1 = ∪j<iYj , and Q2 = ∪j>i+1Yj . The
input integers m1 and m2 are m1 = δC and m2 = ǫC , where δC

and ǫC are calculated for component C using appropriately adapted
equations of (12.2.8). The input n is the integer n at hand.

2. If Heuristic BG-k-SEPARATION (3.5.34) does not output a separa-
tion for C, then declare that the algorithm cannot refine the linear
k-separation of B under the given restrictions, and stop.

3. Let the output separation for C be a BG-l-separation of the form
(P1 ∪Q1 ∪Xi ∪ Yi, P2 ∪Q2 ∪Xi+1 ∪ Yi+1), where Xi, Xi+1 (resp. Yi,
Yi+1) partition XC (resp. YC). The index sets X1, X2, . . . , Xp and
Y1, Y2, . . . , Yp on hand provide the desired refined linear separation
of B. Compute the value k′ as k′ = max{k, l}. Output the refined
k′-separation, and stop.

The next section provides an algorithm for solving SAT and MINSAT
instances involving a given linear sum.

12.4 Solution Algorithm

In this section, we provide an algorithm that solves any SAT or MIN-
SAT instance involving a linear sum B, say, with component matrices B1,
B2, . . . , Bp.

The algorithm proceeds as follows. Given is a SAT or MINSAT in-
stance where a satisfying or least cost solution for an inequality system
B ⊙ s ≥ b is to be found. The algorithm solves that SAT or MINSAT in-
stance via p sets of SAT or MINSAT instances, where each SAT or MINSAT
instance of the ith set involves a certain column submatrix Bi of compo-
nent Bi and an inequality system of the form Bi ⊙ si ≥ bi. The vector
bi is composed from the vector b and vectors of subrange sets of certain
submatrices of Bi.

We present details following some preparations. For ease of reference,
we display the linear sum B of (12.2.1), the matrices V i and W i of (12.2.2),
and the component Bi of (12.2.3).

382 Chapter 12. Linear Sum

(12.4.1)

X

X1

B =

Y1

A1

D
Xp

E

Ap

Ai

. . . .

. . . .

Yp

Xi

...

...

.
Y
Yi

Matrix B with linear separation

(12.4.2)

. . .Y1

X1 A1

...
. . . .

0, _+1

0, _+1

. . . Yp

Xp Ap

. . . .
...

0, _+1

0, _+1
A -1i

Y -1i

X -1i

V =i

Xi +1

Yi +1

Ai +1

W =i

Submatrices V i and W i

(12.4.3)

..

X

. . .Y1

X1

Bi =

0

Xp

Yi

Ai

Yp

Xi

...

...

. .
Y

0

.

D 3i E 3i

E 2iE i1

Di1D 2i

Matrix Bi

For a fixed index i, 1 ≤ i ≤ p, we obtain a comprehensive display
of the relationships among the matrices when we partition B so that the

12.4. Solution Algorithm 383

submatrices Ai, Di1, Di2, Di3, Ei1, Ei2, Ei3 of Bi as well as V i and W i

are exhibited. That is,

(12.4.4)

W i

V i

..

X

. . .Y1

X1

B =

Xp

Yi

Ai

Yp

Xi

...

...

. .
Y

.

D 3i E 3i

E 2iE i1

Di1D 2i

Matrix B

We extend the above notation to simplify the subsequent discussion.
Specifically, we change the range of the index i from 1 ≤ i ≤ p to 1 ≤
i ≤ p + 1 and declare Xp+1 and Yp+1 to be empty sets. Hence, Ap+1

is an empty matrix, and the matrices V p+1, W p+1, Bp+1, as well as the
partitioning of B in (12.4.4) for i = p + 1, are well defined. The change
permits the following extension of Lemma (12.2.6). The proof essentially
is that of Lemma (12.2.6).

(12.4.5) Lemma. For any p ≥ 2, the components B1, B2, . . . , Bp+1

satisfy (a) and (b) below.

(a) The following matrices are trivial or empty: the submatrices D12, D13,
E11, and E12 of B1, the submatrices Dp1, Dp2, Ep2, and Ep3 of Bp,
and, for j = 1, 2, 3, the submatrices Dp+1,j and Ep+1,j of Bp+1.

(b) For i = 1, 2, . . . , p,

(12.4.6)
[Di+1,3/Di+1,2] = [Di2|Di1]

[Ei+1,1|Ei+1,2] = [Ei2/Ei3]

The solution algorithm to come is based on a reduction theorem that
links the satisfying solutions of a given SAT or MINSAT instance involving
B with the satisfying solutions of certain inequality systems involving the
components Bi. We develop that result next.

Reduction Theorem

We need some definitions. Let b be a {0, 1} vector indexed by X . For i = 1,
2, . . . , p + 1, we partition b as b = [bi1/bi2/bi3], where bi1, bi2, and bi3 are
indexed by ∪j<iXj , Xi, and ∪j>iXj , respectively.

384 Chapter 12. Linear Sum

We rely on the subrange of several submatrices of B of (12.4.4). Let
i be a given index, where 1 ≤ i ≤ p + 1. For j = 1, 2, 3, we define
dij (resp. eij) to be any vector in subrange(Dij) (resp. subrange(Eij)).
We denote by [di3/di2] (resp. [ei2/ei3]) any vector in subrange([Di3/Di2])
(resp. subrange([Ei2/Ei3])), where the partition of the vector is in agree-
ment with that of the matrix. We use di21 (resp. ei12) for any vector in
subrange([Di2|Di1]) (resp. subrange([Ei1|Ei2])).

For i = 2, 3, . . . , p+1, let Si be the set of all triples ([di3/di2], ei12, si)
where [di3/di2] ∈ subrange([Di3/Di2]) and ei12 ∈ subrange([Ei1|Ei2]) and
where si is a {±1} vector satisfying

(12.4.7)

V i ⊙ si ≥ bi1 ⊖ ei12

Di3 ⊙ si ≥ di3

Di2 ⊙ si ≥ di2

We give an alternate characterization of S2 and relate Sp+1 to the solutions
of B ⊙ s ≥ b.

(12.4.8) Lemma.
(a) For i = 2, the inequalities of (12.4.7) defining S2 may be restated as

A1 ⊙ s2 ≥ b12 ⊖ e13 and D11 ⊙ s2 ≥ d11, where d11 ∈ subrange(D11)
and e13 ∈ subrange(E13).

(b) The set Sp+1 consists precisely of the triples (0, 0, s) for which B⊙s ≥
b.

Proof. We show part (a). Lemma (12.4.5), the definition of V i by (12.4.2),
and the partitioning of b as b = [bi1/bi2/bi3] imply that V 2 = A1, b21 = b12,
[D23/D22] = D11, and [E21|E22] = E13. When these equations are used in
the above definition of Si for i = 2, then the characterization of S2 in part
(a) results.

We prove part (b). Lemma (12.4.5)(a) says that, for j = 1, 2, 3, Dp+1,j

and Ep+1,j are trivial or empty. Hence, both subrange([Dp+1,3/Dp+1,2])
and subrange([Ep+1,1|Ep+1,2]) consist of one zero vector each. In addition,
V p+1 = B, and bp+1,1 = b. Let s = sp+1. Then, for i = p + 1, (12.4.7)
effectively is the inequality B ⊙ s ≥ b, and the triples of Sp+1 must have
the claimed form.

For i = 2, 3, . . . , p, we define Ri to be the set of all 5-tuples of the form
([di3/di2], di21, ei12, [ei2/ei3], ri) where [di3/di2] ∈ subrange([Di3/Di2]),
di21 ∈ subrange([Di2|Di1]), ei12 ∈ subrange([Ei1|Ei2]), and [ei2/ei3] ∈
subrange([Ei2/Ei3]) and where ri is a {±1} vector satisfying

(12.4.9)

Ei1 ⊙ ri ≥ ei12 ⊖ ei2

Ai ⊙ ri ≥ bi2 ⊖ (di3 ⊕ ei3)

Di1 ⊙ ri ≥ di21 ⊖ di2

12.4. Solution Algorithm 385

The next lemma restates Si+1 in terms of vectors and matrices used
in the definition of Si and Ri.

(12.4.10) Lemma. For i = 1, 2, . . . , p, the set Si+1 is the set of triples
(di21, [ei2/ei3], [si/ri]) where di21 ∈ subrange([Di2|Di1]) and [ei2/ei3] ∈
subrange([Ei2/Ei3]) and where [si/ri] is a {±1} vector satisfying

(12.4.11)

(V i ⊙ si)⊕ (Ei1 ⊙ ri) ≥ bi1 ⊖ ei2

(Di3 ⊙ si)⊕ (Ai ⊙ ri) ≥ bi2 ⊖ ei3

(Di2 ⊙ si)⊕ (Di1 ⊙ ri) ≥ di21

Proof. Use (12.4.7) to state the definition of the triples of Si+1 in terms
of V i+1, si+1, and so on. Rewrite that definition using [Di+1,3/Di+1,2] =
[Di2|Di1] and [Ei+1,1|Ei+1,2] = [Ei2/Ei3] of Lemma (12.4.5)(b), as well as
the fact that V i+1 has by (12.4.2) and (12.4.4) a partition into two row
submatrices [V i|Ei1] and [Di3|Ai]. The resulting inequalities confirm the
lemma.

At long last, we are ready for the reduction theorem.

(12.4.12) Theorem. For i = 1, 2, . . . , p, statements (a) and (b) below
hold.

(a) If ([di3/di2], ei12, si) ∈ Si and ([di3/di2], di21, ei12, [ei2/ei3], ri) ∈ Ri,
then (di21, [ei2/ei3], [si/ri]) ∈ Si+1.

(b) If (di21, [ei2/ei3], [si/ri]) ∈ Si+1, where si is indexed by ∪j<iYj and
ri by Yi, then there exist vectors [di3/di2] ∈ subrange([Di3/Di2])
and ei12 ∈ subrange([Ei1|Ei2]) such that ([di3/di2], ei12, si) ∈ Si and
([di3/di2], di21, ei12, [ei2/ei3], ri) ∈ Ri.

Proof. For part (a), we add the inequalities of (12.4.7) pairwise to those
of (12.4.9) and simplify the resulting system to the form (12.4.11). Lemma
(12.4.10) then supports the desired conclusion. As an example for the
pairwise addition process, we carry out details for the second inequality of
(12.4.11). We add the second inequality of (12.4.7) to the second inequality
of (12.4.9), getting, by (4.2.20), (Di3⊙si)⊕(Ai⊙ri) ≥ di3⊕[bi2⊖(di3⊕ei3)].
Using (4.2.11) and (4.2.12), we rewrite the right-hand side of the latter
inequality as [(bi2 ⊖ ei3)⊖ di3] ⊕ di3 ≥ bi2 ⊖ ei3 and thus have proved the
second inequality of (12.4.11).

We turn to the proof of part (b). Lemma (12.4.10) says that the triple
(di21, [ei2/ei3], [si/ri]) of Si+1 satisfies the inequalities of (12.4.11). Us-
ing the vectors ri and si of the triple, define [di3/di2] = [Di3/Di2] ⊙ si,
ei1 = Ei1 ⊙ ri, and ei12 = ei1 ⊕ ei2. By these definitions, [di3/di2] ∈
subrange([Di3/Di2]) and ei12 ∈ subrange([Ei1|Ei2]). Appropriate substi-
tutions using those equations in the inequalities of (12.4.11) produce the
inequalities of (12.4.7) and (12.4.9). We demonstrate the process using the

386 Chapter 12. Linear Sum

first inequality of (12.4.11), which is (V i ⊙ si) ⊕ (Ei1 ⊙ ri) ≥ bi1 ⊖ ei2.
Since ei1 = Ei1 ⊙ ri, we have (V i ⊙ si) ⊕ ei1 ≥ bi1 ⊖ ei2. Using (4.2.11)
and (4.2.13), the inequality becomes V i ⊙ si ≥ bi1 ⊖ (ei1 ⊕ ei2). Since
ei12 = ei1 ⊕ ei2, the right-hand side of the inequality is equal to bi1 ⊖ ei12.
Thus, V i ⊙ si ≥ bi1 ⊖ ei12, which is the first inequality of (12.4.7).

Finally, since ei1 = Ei1⊙ri and ei12 = ei1⊕ei2, we have, using (4.2.13),
Ei1 ⊙ ri ≥ ei12 ⊖ ei2, which is the first inequality of (12.4.9).

Theorem (12.4.12) has the following corollary.

(12.4.13) Corollary. The following statements are equivalent.

(i) The inequality B ⊙ s ≥ b has a solution.
(ii) Sp+1 is nonempty.
(iii) For i = 2, 3, . . . , p, both Ri and Si are nonempty.

Proof. Lemma (12.4.8)(b) says that Sp+1 consists of the triples (0, 0, s)
for which s satisfies B ⊙ s ≥ b. Hence, (i)⇔(ii).

Theorem (12.4.12)(a) with i = p establishes (iii)⇒(ii). Finally, Theo-
rem (12.4.12)(b) and backward induction, with i = p as base case, prove
(ii)⇒(iii).

The solution algorithm for SAT and MINSAT instances with linear
sums determines certain subsets of the sets Si called S∗

i . The latter sets
satisfy the following conditions.

SAT case: Consider all triples of Si that are identical except for the
solution vector si; the set S∗

i contains precisely one representative of such
triples.

MINSAT case: Let c be the cost vector. Consider all triples of Si

that are identical except for the solution vector si; the set S∗

i contains
precisely one representative of such triples that minimizes

∑
cj , where the

summation is over the indices j for which si
j = 1.

We declare that any S∗

i observing the above conditions represents Si.
Clearly, any S∗

i representing Si is nonempty if and only if Si is non-
empty. That observation plus arguments almost identical to those proving
Corollary (12.4.13) establishes the following result.

(12.4.14) Corollary. The following statements are equivalent.

(i) The inequality B ⊙ s ≥ b has a solution.
(ii) Any S∗

p+1 representing Sp+1 is nonempty.
(iii) For i = 2, 3, . . . , p + 1, any S∗

i representing Si is nonempty.

Solution Algorithm

The algorithm first computes a set S∗

2 . Then, for i = 2, 3, . . . , p, the
method determines a set S∗

i+1 using the set S∗

i on hand. The final set S∗

p+1

supplies a solution vector for the SAT or MINSAT instance involving B.

12.4. Solution Algorithm 387

(12.4.15) Algorithm SOLVE LINEAR SUM SAT OR MINSAT.
Solves SAT instance (B, b) or MINSAT instance (B, b, c) where B is a linear
sum, b is a {0, 1} vector, and c is a rational nonnegative vector.

Input: Matrix B over IB of size m× n, with row index set X and column
index set Y . A {0, 1} vector b with m entries. In the MINSAT case, a
rational nonnegative vector c with n entries.
A linear decomposition of B with p ≥ 2 components B1, B2, . . . , Bp as
displayed by (12.4.1) and (12.4.3). For i = 1, 2, . . . , p, consider b to be
partitioned into bi1, bi2, and bi3, where bi1, bi2, and bi3 are indexed by
∪j<iXj , Xi, and ∪j>iXj , respectively. Consider c to be partitioned into
c1, c2, . . . , cp according to the index sets Y 1, Y 2, . . . , Y p, respectively.
A total of p SAT or MINSAT algorithms. For i = 1, 2, . . . , p, the ith SAT
(resp. MINSAT) algorithm solves, for any {0, 1} vector ai of appropri-
ate size, the SAT instance ([Ei1/Ai/Di1], ai) (resp. the MINSAT instance
([Ei1/Ai/Di1], ai, ci) in at most βi (resp. γi) time.

Output: Either: A solution s∗ for (B, b) or (B, b, c), whichever applies. Or:
“The given instance has no solution.”

Complexity: O(2k · p ·m ·n+4k
∑p

i=1
βi) in the SAT case and O(2k · p ·m ·

n + 4k
∑p

i=1
γi) in the MINSAT case, where k = max{δi} using, for i = 1,

2, . . . , p, δi = BG-rank([Di3/Di2]) + BG-rank([Ei1|Ei2]) + 1.

Procedure:
1. For i = 2, 3, . . . , p + 1, initialize S∗

i = ∅.
2. For i = 2, 3, . . . , p, use Algorithm RANGE (4.3.11) to compute

subrange([Di3/Di2]) and subrange([Ei1|Ei2]). (According to Lemma
(12.4.5), these calculations implicitly supply, for i = 1, 2, . . . , p − 1,
subrange([Di2|Di1]) and subrange([Ei2/Ei3]).)

3. Using the appropriate given SAT or MINSAT algorithm, solve for each
d11 ∈ subrange(D11) and for each e13 ∈ subrange(E13) the following
problem.
SAT case: The problem is ([A1/D11], [(b12 ⊖ e13)/d11]).
MINSAT case: The problem is ([A1/D11], [(b12 ⊖ e13)/d11], c1).
If the problem has a solution, say, s2∗, then add the triple (d11, e13, s2∗)
to S∗

2 .
4. If S∗

2 is empty, declare that the original problem has no solution, and
stop.

5. Do Steps 6–8 below for i = 2, 3, . . . , p.
6. Using the appropriate given SAT or MINSAT algorithm, do Step 7 for

each di21 ∈ subrange([Di2|Di1]) and [ei2/ei3] ∈ subrange([Ei2/Ei3]).
7. SAT case: Find a triple ([di3/di2], ei12, si∗) ∈ S∗

i such that the SAT
instance ([Ei1/Ai/Di1], [(ei12⊖ei2)/(bi2⊖(di3⊕ei3))/(di21⊖di2)]) has
a solution, say, ri∗, or determine that no such triple exists in S∗

i . If
ri∗ exists, add the triple (di21, [ei2/ei3], [si∗/ri∗]) to S∗

i+1.
MINSAT case: Let z∗ = ∞. Do for each triple ([di3/di2], ei12, si∗) ∈

388 Chapter 12. Linear Sum

S∗

i : Solve the MINSAT instance ([Ei1/Ai/Di1], [(ei12⊖ei2)/(bi2⊖(di3⊕
ei3))/(di21 ⊖ di2)], ci); if a solution, say, ri∗, is found, then compute
z =

∑
cj where the summation is over the indices j for which si∗

j = 1

or ri∗
j = 1; if in addition z < z∗, then declare z∗ to have value z

and si+1,∗ to be the vector [si∗/ri∗]. Once all triples of S∗

i have been
processed, and if z∗ < ∞, then add the triple (di21, [ei2/ei3], si+1,∗) to
S∗

i+1.
8. If S∗

i+1 is empty, then declare that the original problem has no solution,
and stop.

9. Output the vector s∗ of the single triple (0, 0, s∗) ∈ S∗

p+1 as a solution
of the input SAT or MINSAT instance, and stop.

Proof of Validity. We first deal with the SAT case.
In Step 3, the SAT instance ([A1/D11], [(b12 ⊖ e13)/d11]) involves the

inequalities A1⊙s2 ≥ b12⊖e13 and D11⊙s2 ≥ d11. By Lemma (12.4.8)(a),
those inequalities define S2. Hence, Step 3 determines a set S∗

2 that repre-
sents S2.

If S∗

2 is empty, then, in agreement with Corollary (12.4.14), Step 4
declares the input problem to be unsatisfiable.

We validate Steps 5–8 by induction. Suppose that, for some i ≥ 2, a
nonempty set S∗

i is on hand that represents Si. For the case i = 2, such
S∗

i is supplied by Step 3.
Let di21 and [ei2/ei3] be given by Step 6. Step 7 either finds a triple

([di3/di2], ei12, si∗) ∈ S∗

i such that the SAT instance ([Ei1/Ai/Di1], [(ei12⊖
ei2)/(bi2 ⊖ (di3 ⊕ ei3))/(di21 ⊖ di2)]) has a solution, say, ri∗, or determines
that no such triple exists in S∗

i . If ri∗ exists, the triple (di21, [ei2/ei3],
[si∗/ri∗]) is added to S∗

i+1.
Evidently, the inequalities of the SAT instance ([Ei1/Ai/Di1], [(ei12 ⊖

ei2)/(bi2 ⊖ (di3 ⊕ ei3))/(di21 ⊖ di2)]) are precisely those of (12.4.9), which
define Ri. Hence, if a solution ri∗ is found, then the 5-tuple ([di3/di2], di21,
ei12, [ei2/ei3], ri∗) is in Ri, and by Theorem (12.4.12)(a) the triple (di21,
[ei2/ei3], [si∗/ri∗]) is in Si+1. Since Step 7 adds that triple to S∗

i+1, we
conclude that the set S∗

i+1 on hand in Step 8 is a subset of a set that
represents Si+1.

We prove that S∗

i+1 of Step 8 indeed represents Si+1. Let Si+1 con-
tain a triple (di21, [ei2/ei3], [si/ri]). We must exhibit one such triple, say,
(di21, [ei2/ei3], [si∗/ri∗]), in S∗

i+1.
By Theorem (12.4.12)(b), (di21, [ei2/ei3], [si/ri]) ∈ Si+1 implies that

there exist [di3/di2] and ei12 such that ([di3/di2], ei12, si) ∈ Si and ([di3/di2],
di21, ei12, [ei2/ei3], ri) ∈ Ri. By the inductive assumption, S∗

i represents Si,
so for some si∗∗ there is a triple ([di3/di2], ei12, si∗∗) in S∗

i . Consider the
moment when the case of di21 and [ei2/ei3] comes up in Step 6 and is
processed in Step 7. Since ([di3/di2], di21, ei12, [ei2/ei3], ri) ∈ Ri, the SAT
instance ([Ei1/Ai/Di1], [(ei12 ⊖ ei2)/(bi2 ⊖ (di3 ⊕ ei3))/(di21 ⊖ di2)]) has a

12.4. Solution Algorithm 389

solution, say, ri∗∗. If that SAT instance, with the solution ri∗∗, was pro-
duced in Step 7, then the triple (di21, [ei2/ei3], [si∗∗/ri∗∗]) would be placed
into S∗

i+1. Of course, that SAT instance may not be processed by Step 7.
In that case, a satisfiable SAT instance arising from some other triple in
S∗

i is found in Step 7. So no matter which case applies, Step 7 does place,
for some si∗ and ri∗, a triple (di21, [ei2/ei3], [si∗/ri∗]) into S∗

i+1.
The above arguments validate the claim that the set S∗

i+1 on hand in
Step 8 represents Si+1. They also prove that if S∗

i+1 is empty, then Step 8
correctly concludes unsatisfiability of the input problem.

Finally, the single triple (0, 0, s∗) ∈ S∗

p+1 on hand in Step 9 must yield
s∗ as a solution for the input SAT instance.

The MINSAT case is argued almost identically, except that minimizing
solutions are involved in the construction of S∗

2 in Step 3 and of S∗

i+1 in
Steps 7. We leave the easy adaptation to the reader.

The complexity of the algorithm crucially depends on the effort for the
subrange calculations in Step 2 and for the solution of the SAT or MINSAT
instances in Steps 3 and 7. We prove that the given formulas bound the
effort of those steps.

Let A be any matrix over IB that, when viewed to be over BG, has
BG-rank(A) = l. Theorem (4.4.12) says that the cardinality of the sub-
range of such A is at most 2l. Theorem (4.4.19) establishes that Algorithm
RANGE (4.3.11) determines the subrange of A with O(2l ·m · n) effort.

We apply these formulas to the case at hand, using, for i = 1, 2, . . . , p,
δi = BG-rank([Di3/Di2])+BG-rank([Ei1|Ei2])+1 and using k = max{δi}.
Thus, 2δi−1 ≥ |subrange([Di3/Di2])| · |subrange([Ei1|Ei2])|, and the effort
for the subrange calculations of Step 2 is O(2k · p ·m · n).

We estimate the complexity of the effort for Steps 3 and 7. Define
δp+1 = 1. For i = 1, 2, . . . , p, let αi = 2δi+δi+1−2. Since k = max{δi}, we
have, for i = 1, 2, . . . , p, αi ≤ 4k.

By (12.2.8), (12.2.12), and the definition δp+1 = 1, we conclude, for
i = 1, 2, . . . , p, δi+1 = BG-rank([Di2|Di1]) + BG-rank([Ei2/Ei3]) + 1, and
2δi+1−1 ≥ |subrange([Di2|Di1])| · |subrange([Ei2/Ei3])|. For i = 1, 2, . . . , p,
αi = 2δi+δi+1−2, so we have αi = 2δi−1 · 2δi+1−1 ≥ |subrange([Di3/Di2])| ·
|subrange([Ei1|Ei2])| · |subrange([Di2|Di1])| · |subrange([Ei2/Ei3])|. Hence,
Step 3 solves at most α1 inequality systems of type (12.4.7), and, for fixed i,
Steps 7 solves at most αi inequality systems of type (12.4.9). We conclude
that the effort for Steps 3 and 7 is in the SAT case O(

∑p
i=1

αi · βi) and
in the MINSAT case O(

∑p
i=1

αi · γi). Using αi ≤ 4k, we simplify these
formulas to O(4k

∑p
i=1

βi) and O(4k
∑p

i=1
γi), respectively.

When the above bounds on the effort of Steps 2, 3, and 7 are com-
bined, one obtains the overall complexity formulas claimed for the algo-
rithm.

When Algorithm SOLVE LINEAR SUM SAT OR MINSAT (12.4.15)

390 Chapter 12. Linear Sum

solves SAT instances, then according to Steps 3, 6, and 7 several SAT
instances involving each component of the linear sum may have to be solved.
This implies that the linear sum with two components is of type III. The
next theorem states this fact.

(12.4.16) Theorem. The linear sum is of type III.

SAT and MINSAT Semicentrality

Recall from (5.2.1) and (5.2.2) the following definitions. A class C of ma-
trices A over IB is SAT semicentral if the following holds.

(12.4.17)
(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.

A class C of matrix/vector pairs (A, c), where A is over IB and c is a rational
nonnegative vector, is MINSAT semicentral if the following holds.

(12.4.18)

(i) If (A, c) ∈ C, then any submatrix pair of (A, c) is
also in C.

(ii) There is a polynomial algorithm for solving the
MINSAT instances given by the matrix/vector
pairs of C.

We have the following SAT and MINSAT semicentrality result for
linear sums.

(12.4.19) Theorem.
(a) Let C0 be a SAT semicentral class of matrices. Enlarge C0 to a class

C by adding all possible linear sums where, in the notation of (12.4.3),
the column submatrix [Ei1/Ai/Di1] of each component Bi is in C0

and where k defined by (12.2.14) is bounded by a constant. Then C
is SAT semicentral.

(b) Let C0 be a MINSAT semicentral class of matrix/vector pairs. Enlarge
C0 to a class C by adding all pairs (A, c) satisfying the following condi-
tions. The matrix A is a linear sum where, in the notation of (12.4.3),
the column submatrix [Ei1/Ai/Di1] of each component Bi and the
corresponding subvector ci of c constitute a pair ([Ei1/Ai/Di1], ci) in
C0 and where k defined by (12.2.14) is bounded by a constant. Then
C is MINSAT semicentral.

Proof. The arguments for parts (a) and (b) are essentially the same, so
we just establish part (a).

To prove (12.4.17)(i), we must show that, for given A ∈ C, any sub-
matrix A of A is also in C. If A ∈ C0, then by the SAT semicentrality

12.5. Extensions 391

of C0, we have A ∈ C0 and hence A ∈ C. So assume A /∈ C0. By the
construction of C, A is a linear sum where, for each component Bi, the
column submatrix [Ei1/Ai/Di1] is in C0 and where k defined by (12.2.14)
is bounded by a constant.

We use Theorem (12.2.17), which roughly says that linear sums are
maintained under submatrix taking. Specifically, that theorem implies that
any submatrix A of A is a linear sum whose components are submatrices
of some of the Bi, or that A is a submatrix of one of the [Ei1/Ai/Di1].

In the former case, the column submatrices of the components of the
linear sum corresponding to the [Ei1/Ai/Di1] are in C0, and k defined
analogously to k of (12.2.14) for the linear sum satisfies k ≤ k. Hence
A ∈ C.

In the latter case, by the SAT semicentrality of C, A is in C0 and
hence is in C as well.

To prove (12.4.17)(ii), we construct a polynomial solution algorithm
for C, using the assumed polynomial solution algorithm for C0. Suppose
that the latter algorithm requires at most β effort. Let A ∈ C be given.
In the nontrivial case, A is a linear sum with components in C0 where k of
(12.2.14) is bounded by a constant. We use Algorithm SOLVE LINEAR
SUM SAT OR MINSAT (12.4.15) to solve the SAT problem for A, with
the solution algorithm for C0 as subroutine. Using the complexity formula
for Algorithm SOLVE LINEAR SUM SAT OR MINSAT (12.4.15), the
complexity of the solution algorithm for A is O(2k · p ·m · n + 4k · p · β).
Since k is bounded by a constant, and since β is polynomially bounded,
the bound proves the solution algorithm to be polynomial.

12.5 Extensions

We discuss extensions and improvements of the algorithms of this chapter,
including their adaptation to inequality systems over ID-systems.

Section 12.2 defines the linear k-sum using BG-rank. Instead, one
could define such sums using IB-rank. Correspondingly, one could change
Algorithm LINEAR k-SEPARATION (12.3.3) and Algorithm REFINE
LINEAR k-SEPARATION (12.3.7) by replacing Algorithm k-SEPARA-
TION (3.5.20), which is used as a subroutine, by Algorithm IB-k-SEPARA-
TION (4.6.16). The change produces decomposition algorithms that avoid
the approximation via the system BG and seem appealing from a theoret-
ical standpoint. However, just like Algorithm LINEAR k-SEPARATION
(12.3.3) and Algorithm REFINE LINEAR k-SEPARATION (12.3.7), the
new algorithms are too inefficient to be practically usable.

The performance of Algorithm SOLVE LINEAR SUM SAT OR MIN-
SAT (12.4.15) can be significantly enhanced. We cover four improvements.

392 Chapter 12. Linear Sum

The first improvement applies only to the SAT problem. It rests on
the simple observation that, for any {0,±1} matrix A and for any {0, 1}
vectors a1 ≥ a2, any solution for A⊙s ≥ a1 is also a solution for A⊙s ≥ a2.
Hence, if one has to decide satisfiability for both SAT instances, one should
first solve the case A ⊙ s ≥ a1, and only if A ⊙ s ≥ a1 has no solution,
one must solve the case A⊙ s ≥ a2. The same consideration applies to the
SAT cases of Steps 3 and 7, so a judicious sequencing of those instances
may significantly reduce total computing effort.

The second improvement applies to both SAT and MINSAT instances.
As specified, Step 7 solves (12.4.9) for 4-tuples ([di3/di2], di21, ei12, [ei2/ei3])
where [di3/di2] ∈ subrange([Di3/Di2]), di21 ∈ subrange([Di2|Di1]), ei12 ∈
subrange([Ei1|Ei2]), and [ei2/ei3] ∈ subrange([Ei2/Ei3]), and where S∗

i

contains a triple ([di3/di2], ei12, si∗).
It turns out that these conditions may, and indeed typically do, admit

a large number of 4-tuples that actually need not be considered. Let S
be the set of {±1} vectors s satisfying B ⊙ s ≥ b. For fixed i, 1 ≤ i ≤ p,
partition any s ∈ S into si1, si2, and si3 according to the index sets ∪j<iYj,
Yi, and ∪j>iYj , respectively. Then it is not difficult to prove that one only
needs to consider 4-tuples in Step 7 that satisfy the above conditions plus
the requirement that, for some s ∈ S,

(12.5.1)

[di3/di2] = [Di3/Di2]⊙ si1

di21 = [Di2|Di1]⊙ [si1/si2]

ei12 = [Ei1|Ei2]⊙ [si2/si3]

[ei2/ei3] = [Ei2/Ei3]⊙ si3

Of course, when Step 7 is executed, we do not know S. But the above
observation remains valid when we enlarge S by adding any number of
{±1} vectors of appropriate size. For example, we may take S to be the
set of all {±1} vectors with |Y | entries. Use of that S in Step 7 may result
in a significant reduction of the number of 4-tuples to be considered. For
SAT instances, the change can be combined with the one outlined at the
beginning of this section.

A third improvement is possible when several SAT or MINSAT in-
stances must be solved, each of which involves some submatrix of one given
linear sum B. In that case, one may decide to replace the subrange compu-
tations of Step 2 plus the computations implementing the above reductions
by simpler and faster calculations that rely on some precomputed informa-
tion. Details are included in Chapter 13.

The fourth improvement assumes that one or more of the column sub-
matrices [Ei1/Ai/Di1] of a linear sum B can be column scaled to become
nearly negative, while one or both of the submatrices Di1 and Ei1 become
nonpositive. In the MINSAT case, such scaling must be restricted to the

12.5. Extensions 393

columns for which the corresponding entries of the cost vector are zero.
The simplifications of Algorithm SOLVE LINEAR SUM SAT OR MIN-
SAT (12.4.15) depend on which of the scaled submatrices Di1 and Ei1 are
nonpositive. The changes are analogous to those discussed in Section 11.5
for augmented sums, where it is assumed that the submatrix [A1/D1] of
an augmented sum B can be column scaled so that A1 becomes nearly
negative and D1 becomes nonpositive. Given that similarity, we leave it
to the reader to use the material of Section 11.5 as a guide and fill in the
details.

The proof of validity of Algorithm SOLVE LINEAR SUM SAT OR
MINSAT (12.4.15) rests on Theorem (12.4.12), which in turn holds due to
several results for the operators⊙, ⊕, and ⊖ established by Lemmas (4.2.4),
(4.2.8), and (4.2.14). In Section 4.2, some conclusions of these lemmas are
extracted as axioms (4.2.21)–(4.2.27) and are used in Section 4.9 under
(4.9.4)–(4.9.10) in the definition of ID-systems.

Given this link between Algorithm SOLVE LINEAR SUM SAT OR
MINSAT (12.4.15) and ID-systems, one might expect that some extension of
that algorithm should handle inequality systems over ID-systems whenever
the underlying matrix has an appropriately defined linear decomposition.

This is indeed so. The needed changes mostly concern definitions and
notation and are simple enough that we leave it to the reader to work out
the details. Similarly, one may extend the decomposition algorithms of
Section 12.3 so that the new methods locate appropriately defined linear
decompositions for matrices over ID-systems.

Recall from Section 4.9 that a number of combinatorial problems can
be formulated as inequality systems over some ID-system. Examples are
covering and packing problems. The extensions of the decomposition al-
gorithms of Section 12.3 and of Algorithm SOLVE LINEAR SUM SAT
OR MINSAT (12.4.15) to ID-systems may thus be employed to solve such
combinatorial problems.

The next chapter describes the analysis algorithm, which assembles
solution algorithms for the SAT and MINSAT problems.

Chapter 13

Analysis Algorithm

13.1 Overview

In this chapter, we assemble an analysis algorithm for the SAT and
MINSAT problems. In the SAT (resp. MINSAT) case, the analysis algo-
rithm accepts as input a matrix A over IB (resp. a matrix A over IB and
a rational nonnegative cost vector c). Given such input, the analysis al-
gorithm produces a solution algorithm M that, for any {0, 1} vector a of
appropriate size, for any column submatrix A of A, and, in the MINSAT
case, for the corresponding subvector c of c, solves the SAT instance (A, a)
or the MINSAT instance (A, a, c). Besides M, the analysis algorithm also
produces a rational number τ that is an upper bound on the run time of the
method M, no matter how the column submatrix A of A and the vector a
are selected.

The analysis algorithm creates M and τ as follows. Given A, and c if
applicable, the algorithm first finds a solution algorithm using the methods
of Chapters 5 and 8. If that solution algorithm is fast, the desired M and
τ are at hand. Otherwise, the analysis algorithm attempts to decompose
A into component matrices using the decomposition methods of Chapters
9–12. If a decomposition is found, then the analysis algorithm essentially
treats each component like another input matrix.

The analysis algorithm stops when, for each component, either a fast
solution algorithm is at hand or further decomposition of the component is
not possible. Regardless of the situation, a solution algorithm for the entire
SAT or MINSAT problem is then at hand, together with a time bound. In

394

13.2. Structure of Solution Algorithms 395

addition, if that solution algorithm specifies a fast solution algorithm for
each component, then the time bound is small.

For large subclasses of the SAT and MINSAT problems—in particu-
lar, for many classes of problems arising from real-world applications—the
analysis algorithm creates a solution algorithm M with polynomial, indeed
small, time bound τ . Whenever such a bound is obtained, M is certified
to handle all SAT or MINSAT instances reliably fast, a crucial feature for
real-world applications where a guaranteed fast response is needed.

In the language of computer science, the analysis algorithm is a com-
piler for the SAT and MINSAT problems. The matrix A and, if applicable,
the vector c constitute the input for the compiler, while the solution algo-
rithm M and the time bound τ are the output.

The presentation proceeds as follows.
Section 13.2 provides a summarizing description of the solution algo-

rithms M that are created by the analysis algorithm.
Section 13.3 covers the selection of a solution algorithm for a given

component matrix, using the algorithms of Chapters 5 and 8.
Section 13.4 describes the analysis algorithm, using the results of Sec-

tion 13.3 and the decomposition methods and results of Chapters 9–12.
Section 13.5 describes an algorithm for the approximate solution of

the MINSAT problem. The method relies on the integer programming
heuristic method of Chapter 8 and on an assumed solution algorithm for
the underlying SAT instances.

Section 13.6 presents pre- and postprocessing steps that may be added
to the analysis algorithm to significantly increase the computational effec-
tiveness of the solution algorithms.

The final section, 13.7, discusses extensions and lists references.

13.2 Structure of Solution Algorithms

This section describes the general structure of the solution algorithms
that are produced by the analysis algorithm. We first review and extend
some definitions of earlier chapters.

SAT and MINSAT Instances

Throughout this section, A is a matrix over IB, with row index set X and
column index set Y . Define a to be any {0, 1} vector indexed by X . Let c
be any rational nonnegative vector indexed by Y . For fixed A, the possible
pairs (A, a) are the SAT instances of A. Any such instance demands that
one either finds a {±1} vector s satisfying A ⊙ s ≥ a or determines that
no such s exists. For fixed A and c, the possible triples (A, a, c) are the

396 Chapter 13. Analysis Algorithm

MINSAT instances of A and c. For a given (A, a, c), the total cost of a
{±1} solution vector s for A⊙ s ≥ a is

∑
cj , where the summation is over

the indices j for which sj = 1. The MINSAT instance (A, a, c) demands
that one either finds a {±1} solution s for A ⊙ s ≥ a with minimum total
cost or declares that A⊙ s ≥ a has no solution.

The SAT instances arising from, or involving, the column submatrices
A of A are all possible SAT instances of the form (A, a). Similarly, the
MINSAT instances arising from, or involving, the column submatrices A
of A and the corresponding subvectors c of c are all possible MINSAT
instances of the form (A, a, c). In the subsequent discussion of MINSAT
cases, just one cost vector is encountered for any given matrix. Accordingly,
we typically simplify the above terminology by eliminating the explicit
reference to the cost subvectors, and we refer, for example, to the MINSAT
instances (A, a, c) as the MINSAT instances arising from, or involving, the
column submatrices A of A.

General Form of Solution Algorithms

Given A and, in the MINSAT case, c, we want a solution algorithm that
handles the SAT or MINSAT instances arising from the column submatrices
of A. We create such an algorithm in three steps.

First, we decompose A into any number of component matrices, say,
B1, B2, . . . , Bn. In the MINSAT case, we also derive from c certain cost
vectors for the components, say, c1, c2, . . . , cn. We permit the trivial case
of decomposition where n = 1, B1 = A, and, if applicable, c1 = c.

Second, we construct SAT or MINSAT solution algorithms for the
SAT or MINSAT instances involving certain column submatrices of the
component matrices.

Third, we combine the SAT or MINSAT solution algorithms for the
component matrices into an overall solution algorithm. The latter algo-
rithm approximately is as follows.

(13.2.1) Algorithm SOLVE SAT OR MINSAT. (Summarizing De-
scription) Solves the SAT or MINSAT instance arising from any column
submatrix A of a given matrix A over IB and, in the MINSAT case, aris-
ing from the corresponding subvector c of a rational nonnegative vector
c. Given are a decomposition of A into component matrices B1, B2, . . . ,
Bn and, in the MINSAT case, cost vectors c1, c2, . . . , cn. Also given are
solution algorithms for the SAT or MINSAT instances arising from certain
column submatrices of the component matrices.

Input: Matrix A over IB, with row index set X and column index set Y .
A column submatrix A of A. A {±1} vector a indexed by X , and, in the
MINSAT case, a rational nonnegative vector c indexed by Y .

13.3. Algorithm for Component Matrix 397

For some n ≥ 1, component matrices B1, B2, . . . , Bn and, in the MINSAT
case, cost vectors c1, c2, . . . , cn derived from c.
A total of n SAT or MINSAT algorithms. For i = 1, 2, . . . , n, the ith algo-
rithm handles the SAT or MINSAT instances arising from certain column
submatrices of Bi, using at most βi time in the SAT case and at most γi

time in the MINSAT case.
Integers α1, α2, . . . , αn such that, for i = 1, 2, . . . , n, Step 2 below never
processes more than αi SAT or MINSAT instances involving column sub-
matrices of Bi.

Output: Either: A {±1} solution vector s for the SAT instance (A, a) or the
MINSAT instance (A, a, c), whichever applies. Or: “(A, a) is unsatisfiable.”

Complexity: SAT case: O(
∑n

i=1
αi · βi). MINSAT case: O(

∑n

i=1
αi · γi).

Both formulas assume that the effort for Step 3 is dominated by that for
Step 2. (The assumption is always satisfied for the cases considered later.)

Procedure:
1. Using A, select a certain column submatrix B1 of B1. In the MINSAT

case, let c1 be the subvector of c1 corresponding to B1. Derive certain
{±1} vectors b1j from the vector a.

2. Do for i = 1, 2, . . . , n:
Using the matrix Bi, the vectors bij , and, in the MINSAT case, the
vector ci, solve the SAT instances (Bi, bij) or the MINSAT instances
(Bi, bij, ci), whichever applies. If none of these SAT or MINSAT in-
stances has a solution, declare that (A, a) is unsatisfiable, and stop.
Otherwise, if i < n, derive from these solutions for the next iteration a
certain column submatrix Bi+1 of Bi+1, the corresponding subvector
ci+1 of ci+1, and certain vectors bi+1,j.

3. Backtrack through the solutions for the SAT or MINSAT instances for
i = 1, 2, . . . , n to assemble a solution for the input SAT or MINSAT
instance. Output that solution, and stop.

The subsequent two sections describe how the decomposition of the
given matrix A into the component matrices B1, B2, . . . , Bn is determined,
and how the SAT or MINSAT solution algorithms for these component
matrices are found. The next section deals with the latter task.

13.3 Algorithm for Component Matrix

Algorithm SOLVE SAT OR MINSAT (13.2.1) requires solution algorithms
for SAT or MINSAT instances involving certain column submatrices of the
component matrices B1, B2, . . . , Bn. In the MINSAT case, cost vectors c1,
c2, . . . , cn are supplied with the components. In this section, we describe

398 Chapter 13. Analysis Algorithm

how these solution algorithms are found. Let Bi be an arbitrary component
matrix. In the MINSAT case, let ci be the cost vector for Bi.

In some decomposition cases, the column submatrices of Bi processed
in Algorithm SOLVE SAT OR MINSAT (13.2.1) are proper submatrices
of Bi. In such a situation, the column submatrices never involve certain
columns of Bi. Hence, it makes sense that we define Bi∗ to be the column
submatrix of Bi that contains all column submatrices of Bi that may pos-
sibly be processed by Algorithm SOLVE SAT OR MINSAT (13.2.1). In
the MINSAT case, let ci∗ be the corresponding subvector of ci.

For the moment, we are not concerned how Bi∗ is derived from Bi.
That task is described in the next section, where the decomposition of A
into B1, B2, . . . , Bn is covered.

We want a solution algorithm Mi that solves all SAT or MINSAT
instances arising from the column submatrices of Bi∗. Algorithm SE-
LECT COMPONENT METHOD (13.3.1) below produces that solution
algorithm, using the methods and techniques of Chapters 5 and 8. We
summarize the steps of Algorithm SELECT COMPONENT METHOD
(13.3.1).

Step 1 carries out certain reductions of the input matrix Bi∗, obtaining
another matrix, say, B.

Steps 2–4 check if one of the SAT or MINSAT solution algorithms of
Chapter 5 can handle B.

If that search is successful, a fast solution algorithm for the SAT or
MINSAT instances involving the column submatrices of B is at hand.

If that search is not successful, Step 5 uses algorithms of Chapter 8 to
find a solution algorithm based on closed subregion decomposition. Chap-
ter 8 contains three ways of selecting such a decomposition. Step 5 tries
all of them and settles for a decomposition that yields a solution algorithm
with the smallest bound on run time.

Regardless of the way a solution algorithm for the SAT or MINSAT in-
stances arising from the column submatrices of B is found, Step 6 combines
that solution algorithm with an algorithm that accounts for the reductions
in Step 1 and thus obtains the desired solution algorithm Mi.

Here are the details.

(13.3.1) Algorithm SELECT COMPONENT METHOD. Deter-
mines a SAT or MINSAT solution algorithm Mi for a specified column
submatrix Bi∗ of a component Bi and, in the MINSAT case, for the related
cost subvector ci∗ of Bi∗. Algorithm Mi handles all SAT or MINSAT
instances arising from the column submatrices of Bi∗.

Input: Matrix Bi∗ over IB. In the MINSAT case, rational nonnegative cost
vector ci∗ for Bi∗.

Output: A SAT or MINSAT solution algorithm Mi that solves all SAT or
MINSAT instances arising from the column submatrices of Bi∗. An upper

13.3. Algorithm for Component Matrix 399

bound τi on the run time of that solution algorithm.

Complexity: Polynomial if a polynomial version of Heuristic SOLVE IP
(8.3.3) is used. The scheme is invoked by the decomposition algorithms of
Step 5.

Procedure:
1. (Reduce Bi∗ to a SAT or MINSAT simple submatrix B.) Apply Algo-

rithm SIMPLE SUBMATRIX (5.3.3) to reduce Bi∗ to the maximum
SAT or MINSAT simple submatrix. Call the latter submatrix B. In
the MINSAT case, let cB be the subvector of ci∗ corresponding to B.
If this is a MINSAT case, go to Step 3.

2. (SAT case only: Test for 2SAT property.) Check if each row of B has
at most two nonzero entries. If this is so, declare Algorithm SOLVE
2SAT (5.4.1) to be the solution algorithm for B, use the complexity
formula for that algorithm to compute an upper bound δ on the run
time of the algorithm, and go to Step 6.

3. (Test for hidden near negativity.)
SAT case: Define a matrix D by D = B.
MINSAT case: Define D to be the column submatrix of B that con-
tains all columns j of B for which cj = 0.
Let E be the matrix containing the columns of B that do not occur
in D. Check with Algorithm TEST HIDDEN NEAR NEGATIVITY
(5.6.1) if B = [D|E] is hidden nearly negative relative to E. If this is so,
declare Algorithm SOLVE HIDDEN NEARLY NEGATIVE SAT OR
MINSAT (5.6.1) to be the solution algorithm for B, use the complexity
formula for that algorithm to compute an upper bound δ on the run
time of the algorithm, and go to Step 6.
(Algorithm SOLVE HIDDEN NEARLY NEGATIVE SAT OR MIN-
SAT (5.6.3) invokes Algorithm TEST HIDDEN NEAR NEGATIVITY
(5.6.1) to determine the scaling factors that scale B to a nearly nega-
tive matrix. Since Algorithm TEST HIDDEN NEAR NEGATIVITY
(5.6.1) has already been applied, one should pass these scaling fac-
tors to Algorithm SOLVE HIDDEN NEARLY NEGATIVE SAT OR
MINSAT (5.6.3) instead of recomputing them in the latter algorithm.)

4. (Test for balancedness, total unimodularity, or network property.) Use
Algorithm TEST BALANCEDNESS (5.7.3), Algorithm TEST TO-
TAL UNIMODULARITY (5.7.8), or Algorithm TEST NETWORK
PROPERTY (5.7.9) to check if B is balanced, is totally unimodular,
or has the network property. (The selection of the testing algorithm
depends on the speed of the implementation of these algorithms. If
speed is not important, then the balancedness test is preferred.)
If B has any one of the listed properties, then it is balanced. In
that case, declare Algorithm SOLVE BALANCED SAT OR MINSAT
(5.7.25) to be the solution algorithm for B, use the complexity formula

400 Chapter 13. Analysis Algorithm

for that algorithm to compute an upper bound δ on the run time of
the algorithm, and go to Step 6.

5. (Find a closed subregion decomposition for B.)
SAT case: Find three closed subregion decompositions of B using
Heuristic DECOMPOSITION FOR 2SAT (8.4.5), Heuristic DECOM-
POSITION FOR HIDDEN NEAR NEGATIVITY (8.5.5), and Heuris-
tic DECOMPOSITION FOR NETWORK PROPERTY (8.6.12).
MINSAT case: Find two closed subregion decompositions of B using
Heuristic DECOMPOSITION FOR HIDDEN NEAR NEGATIVITY
(8.5.5) and Heuristic DECOMPOSITION FOR NETWORK PROP-
ERTY (8.6.12).
Taking each of the just obtained decompositions in turn, let Algorithm
SOLVE CLOSED SUBREGION DECOMPOSITION SAT OR MIN-
SAT (8.2.6) be the solution algorithm, with the appropriate case of Al-
gorithm SOLVE 2SAT (5.4.1), Algorithm SOLVE HIDDEN NEARLY
NEGATIVE SAT OR MINSAT (5.6.1), or Algorithm SOLVE BAL-
ANCED SAT OR MINSAT (5.7.25) as subroutine.
For each decomposition, use the complexity formula of Algorithm
SOLVE CLOSED SUBREGION DECOMPOSITION SAT OR MIN-
SAT (8.2.6) and of the applicable subroutine to get an upper bound
on the run time of the solution algorithm. Select the decomposition
producing the smallest time bound. Define δ to be that time bound.
Declare Algorithm SOLVE CLOSED SUBREGION DECOMPOSI-
TION SAT OR MINSAT (8.2.6) with the selected decomposition to
be the solution algorithm for B. The algorithm uses as subroutine
the appropriate case of Algorithm SOLVE 2SAT (5.4.1), Algorithm
SOLVE HIDDEN NEARLY NEGATIVE SAT OR MINSAT (5.6.3),
or Algorithm SOLVE BALANCED SAT OR MINSAT (5.7.25).

6. (Assemble solution algorithm Mi.) In the SAT (resp. MINSAT) case,
derive from Algorithm REDUCE SAT INSTANCE (5.3.4) (resp. Algo-
rithm REDUCE MINSAT INSTANCE (5.3.5)) a reduction algorithm
that carries out the following task. Input is any column submatrix Bi

of Bi∗, any {±1} vector b of appropriate size, and, in the MINSAT
case, the subvector ci of ci∗ corresponding to Bi. The input defines a
SAT instance (Bi, b) or a MINSAT instance (Bi, b, ci). The output is
a SAT or MINSAT instance where the matrix is a submatrix of B.
Combine the reduction algorithm with the solution algorithm selected
in Step 2, 3, 4, or 5 for B to obtain the solution algorithm Mi for
all SAT or MINSAT instances arising from the column submatrices of
Bi∗. Compute a time bound τi for Mi by combining the complexity
bound for the reduction algorithm with the bound δ computed earlier.
Output the solution algorithm Mi and the time bound τi, and stop.

We have the following result for the solution algorithms Mi con-

13.4. Analysis Algorithm 401

structed by Algorithm SELECT COMPONENT METHOD (13.3.1).

(13.3.2) Theorem. Any solution algorithm Mi produced by Algorithm
SELECT COMPONENT METHOD (13.3.1) is polynomial if the following
conditions are satisfied.

(a) Suppose Mi is based on a closed subregion decomposition determined
in Step 5 of Algorithm SELECT COMPONENT METHOD (13.3.1).
Then the number of closed subregions of the decomposition must be
bounded by a constant.

(b) Suppose Mi involves solution of linear programs. Then a polynomial
algorithm for solving these linear programming problems must be used.

Proof. Algorithm REDUCE SAT INSTANCE (5.3.4) and Algorithm RE-
DUCE MINSAT INSTANCE (5.3.5) are polynomial. If conditions (a) and
(b) hold, then any solution algorithm determined in Steps 2–5 of Algorithm
SELECT COMPONENT METHOD (13.3.1) is polynomial as well.

Note that condition (b) of Theorem (13.3.2) applies only if Mi solves
MINSAT instances involving balanced matrices via linear programming.

The next section provides the analysis algorithm.

13.4 Analysis Algorithm

This section describes the analysis algorithm. That scheme accepts as input
a matrix A over IB and, in the MINSAT case, a rational nonnegative vector
c. The analysis algorithm produces a solution algorithm that handles the
SAT or MINSAT instances arising from the column submatrices of A.

The main tools of the analysis algorithm are Algorithm SELECT
COMPONENT METHOD (13.3.1) and the decomposition algorithms of
Chapters 9–12.

SAT Case

We sketch the analysis algorithm, using the SAT case of a matrix A as an
example.

First, we use Algorithm SELECT COMPONENT METHOD (13.3.1)
to determine a solution algorithm for the SAT instances arising from the
column submatrices of A, plus an upper time bound for the run time of the
solution algorithm. If that time bound is acceptable, we are done. Other-
wise, we decompose A in a recursive manner and apply Algorithm SELECT
COMPONENT METHOD (13.3.1) to each component, until either we have
an overall solution algorithm with an acceptable time bound or we cannot
improve the overall solution algorithm by further decompositions.

402 Chapter 13. Analysis Algorithm

The recursive decomposition process is guided by heuristic rules to
ensure the decompositions lead to an attractive overall solution algorithm.
The rules rely on some definitions and results for sums and decompositions
of earlier chapters. We review that material.

Types of Sums and Decompositions

Section 4.7 classifies sums with two components B1 and B2 according to
worst-case upper bounds on the number of b1- and b2-satisfiability problems
for certain column submatrices B1 and B2 of B1 and B2 that may have to
be solved by the SAT algorithm we have developed for that sum. If that
upper bound is 1 for both B1 and B2, the sum is said to be of type I. If
the upper bound is at least 2 for B1 and is 1 for B2, then the sum is of
type II. In the remaining case, where both upper bounds are at least 2, the
sum is of type III.

We apply the classification of sums as type I, II, or III to the related
decompositions and separations in the obvious way.

The sums of Chapters 9–12 are called monotone, closed, augmented,
and linear. There also is an elementary sum called 1-sum, which corre-
sponds to a block decomposition.

The types of these sums are as follows.

(13.4.1) Theorem.
(a) The monotone sum and the 1-sum are of type I.
(b) The closed sum and the augmented sum are of type II.
(c) The linear sum with two components is of type III.

Proof. The conclusion for the 1-sum is trivial. The remaining statements
represent Theorems (9.4.9), (10.4.19), (11.4.11), and (12.4.16).

Ranking of Decompositions

The analysis algorithm prefers type I sums to type II sums and, in turn,
prefers type II sums to type III sums. This heuristic rule is based on the
consideration that, all other things being equal, a SAT or MINSAT instance
of a type I (resp. type II) sum can be more efficiently solved than a type
II (resp. type III) sum.

Using the definitions of closed k-sum, augmented k-sum, and linear
k-sum in Chapters 10–12, it is easy to verify that any closed 1-sum, aug-
mented 1-sum, or linear 1-sum essentially is a 1-sum and that any aug-
mented 2-sum or linear 2-sum can be replaced by a closed 2-sum. Accord-
ingly, we only need to consider closed k-sums for k ≥ 2 and augmented
k-sums as well as linear k-sums for k ≥ 3.

Chapters 10–12 provide effective decomposition algorithms for closed
k-sums (resp. augmented k-sums, linear k-sums) for values of k satisfying

13.4. Analysis Algorithm 403

2 ≤ k ≤ 3 (resp. 3 ≤ k ≤ 4, any k ≥ 3). For a given k-sum of the above
variety, we prefer cases with small k values.

We combine the earlier ranking according to type I, II, and III with
the above observations concerning k-sums to the following overall ordering
of sums, where (i) is ranked highest and preferred and (v) is ranked lowest.
For ready reference, we add the sum type in parentheses.

(13.4.2)

(i) Monotone sum (type I)
(ii) 1-sum (type I)
(iii) Closed k-sum, 2 ≤ k ≤ 3 (type II)
(iv) Augmented k-sum, 3 ≤ k ≤ 4 (type II)
(v) Linear k-sum, k ≥ 3 (type III)

It may seem odd that the monotone sum is ranked higher than the
1-sum. That decision is based on the fact that, generally, it is more effi-
cient to first decompose a matrix according to a monotone sum, and then
to decompose the components of the monotone sum by repeated 1-sum
decompositions. Indeed, that approach is equivalent to the following, more
elaborate process. First, decompose by repeated 1-sum decompositions.
Next, decompose each component according to monotone decompositions.
Finally, decompose each component using 1-sum decompositions. Equiva-
lence of the two processes can be proved via Theorem (9.2.3), which asserts
uniqueness of maximal monotone decompositions. We leave it to the reader
to provide details of the straightforward proof.

Restrictions Imposed on Decompositions

The analysis algorithm selects decompositions in the order specified by
(13.4.2), but in addition imposes restrictions depending on the situation.
For the discussion of these restrictions, let B either be the original matrix A
or be a component obtained from A by any number of recursively applied
decompositions. We assume that the upper time bound for the solution
algorithm on hand for B is not attractive and that we want to decompose
B.

If B = A, then we search for a sum decomposition of B into two
components, in the order given by (13.4.2).

If B 6= A, then the decomposition cases considered for B depend on
the type of decomposition that produced B. The rules are as follows.

If a type I decomposition produced B, then the rules are the same as
for the case B = A.

Assume that a type II decomposition, say, of a matrix C, produced B.
Let (X1 ∪ Y1, X2 ∪ Y2) be the corresponding separation of C, and let B1

and B2 be the components of the decomposition. Thus, B is equal to B1

or B2.

404 Chapter 13. Analysis Algorithm

If B is the second component B2, then the rules are the same as for
B = A.

If B is the first component B1, we also treat it like the case B = A,
except that we do not search for any type II decomposition of B. However,
we do search for a type II separation (X ′

1 ∪ Y ′
1 , X ′

2 ∪ Y ′
2) of C that satisfies

X ′
1∪Y ′

1 ⊂ X1∪Y1. If that search is successful, we replace B (resp. B2) by the
first (resp. second) component of the new decomposition of C. The process
may be viewed as a two-step method where B1 and B2 are composed to
C, which then is decomposed again according to (X ′

1 ∪ Y ′
1 , X ′

2 ∪ Y ′
2). Since

X ′
1 ∪ Y ′

1 ⊂ X1 ∪ Y1, the first component of the new decomposition, which
is the new B, is smaller than the original B.

The above modification for the case B = B1 is introduced so that
recursively nested type II decompositions cannot occur. Such decomposi-
tions are undesirable, since they may result in an exponential number of
SAT subproblems in the solution algorithm for A. One could permit a
nonrecursive nesting. We have not done so to simplify the exposition. But
we do allow nesting of a type III decomposition into a type II decomposi-
tion, since otherwise the analysis algorithm would not be effective for large
classes of practical problems.

We turn to the final case, where B is a component of a type III decom-
position. There is just one such decomposition, the linear one. We demand
that one may decompose B only by a refinement of that linear decompo-
sition. We impose that rule to avoid nested type III decompositions, since
such nesting may produce an exponential number of SAT subproblems in
the solution algorithm for A.

MINSAT Case

We have covered the decomposition rules for the SAT problem. The MIN-
SAT problem is handled in essentially the same manner, except that sums
that apply just to SAT are ruled out. Thus, closed sums and augmented
sums are excluded, and the list of candidate sums (13.4.2) becomes (13.4.3)
below.

(13.4.3)
(i) Monotone sum (type I)
(ii) 1-sum (type I)
(v) Linear k-sum, k ≥ 2 (type III)

Structure of Analysis Algorithm

The analysis algorithm consists of a main routine, called Algorithm ANAL-
YSIS (13.4.4), and three subroutines, called Algorithm SELECT TYPE I
METHOD (13.4.5), Algorithm SELECT TYPE II METHOD (13.4.6), and
Algorithm SELECT TYPE III METHOD (13.4.7).

13.4. Analysis Algorithm 405

The three subroutines involve two global Boolean variables called Al-
low type II and Allow type III. These variables control the use of type II
and type III decompositions.

The three subroutines employ the term “small” in connection with the
time bounds τ of solution algorithms M for the SAT or MINSAT instances
arising from the column submatrices of a given matrix B. We define the
use of that term.

Let B, M, and τ be given. Define B′ to be any matrix over IB that has
the same size as B, has the same number of nonzeros as B, and is nearly
negative. Algorithm SOLVE NEARLY NEGATIVE SAT OR MINSAT
(5.5.1) can solve the SAT instance B′. Indeed, the complexity formula of
that algorithm supports a linear time bound τ ′ for checking satisfiability
of B′. That bound is valid regardless of the distribution of the nonzeros in
B′.

We use τ ′ to classify the time bound τ of the solution algorithm M.
Specifically, we say that the time bound τ for M is small if, for a fixed
positive integer α of moderate size, say, α = 8, we have τ ≤ α · τ ′.

In the summarizing description of solution algorithms given by Algo-
rithm SOLVE SAT OR MINSAT (13.2.1), a forward and a backward pass
are sketched. The analysis algorithm avoids explicit construction of these
two passes by nesting solution algorithms taken from Chapters 5 and 8–12.

Main Routine of Analysis Algorithm

We list Algorithm ANALYSIS (13.4.4) and the three subroutines next,
followed by the proof of validity.

(13.4.4) Algorithm ANALYSIS. Analyzes the structure of a matrix A
or a matrix/vector pair (A, c) where A is over IB and c is a rational non-
negative vector. Constructs a solution algorithm M that handles all SAT
or MINSAT instances arising from the column submatrices of A. Supplies
an upper time bound τ on the run time of M.

Input: Matrix A over IB, with row index set X and column index set Y .
In the MINSAT case, a rational nonnegative vector c indexed by Y .

Output: A SAT or MINSAT solution algorithm M, and an upper time
bound τ on its run time. Algorithm M handles all SAT or MINSAT
instances arising from the column submatrices of A. Algorithm M is poly-
nomial if the number of closed subregions of each closed subregion decom-
position used in the construction of M is bounded by a constant and if
solution of any linear programs by M is done by a polynomial method.

Complexity: Polynomial.

Procedure:

406 Chapter 13. Analysis Algorithm

1. (Initialize two Boolean variables Allow type II and Allow type III that
control the use of type II and type III decompositions.) In the SAT
(resp. MINSAT) case, declare a Boolean variable Allow type II to be
True (resp. False). Also declare a Boolean variable Allow type III to
be True.

2. (Determine solution algorithm M.) Do Algorithm SELECT TYPE I
METHOD (13.4.5). The input consists of the matrix A and, if ap-
plicable, the vector c. The output of Algorithm SELECT TYPE I
METHOD (13.4.5) is the desired solution algorithm M and the time
bound τ . Output M and τ , and stop.

First Subroutine of Analysis Algorithm

Algorithm SELECT TYPE I METHOD (13.4.5) below is the first subrou-
tine. It proceeds as follows.

Step 1 finds a monotone decomposition of the input matrix into B1

and B2.
Step 2 decomposes B2 into blocks.
Step 3 calls the subsequently listed Algorithm SELECT TYPE II

METHOD (13.4.6) and Algorithm SELECT TYPE III METHOD (13.4.7)
to get solution algorithms for the blocks.

Finally, Steps 4 and 5 combine the solution algorithms for the blocks
with Algorithm SOLVE MONOTONE SUM SAT OR MINSAT (9.4.8) to
obtain the desired solution algorithm for the input matrix.

(13.4.5) Algorithm SELECT TYPE I METHOD. Determines for an
input matrix B and, if applicable, for an input vector c a SAT or MINSAT
solution algorithm M that handles all SAT or MINSAT instances arising
from the column submatrices of B. Computes an upper time bound τ on
the run time of M. The construction of M is based on type I decomposi-
tions.

Input: Matrix B over IB, with row index set X and column index set Y .
In the MINSAT case, a rational nonnegative vector c indexed by Y .

Output: A SAT or MINSAT solution algorithm M and an upper time
bound τ on its run time. Algorithm M handles all SAT or MINSAT
instances arising from the column submatrices of B. Algorithm M is poly-
nomial if the number of closed subregions of each closed subregion decom-
position used in the construction of M is bounded by a constant and if
solution of any linear programs by M is done by a polynomial method.

Complexity: Polynomial.

Procedure:
1. (Monotone decomposition of B)

SAT case: Let C = B.

13.4. Analysis Algorithm 407

MINSAT case: Let C be the matrix containing the columns j of B for
which cj = 0.
Do Algorithm MONOTONE DECOMPOSITION (9.3.3) with B and
C as input. In the notation of (9.4.3), the output consists of the
components B1 = A1 and B2 = [D|A2], plus the {±1} scaling factors
that were used in the decomposition to achieve near negativity for B1

and D ≤ 0.
(We take Algorithm SOLVE MONOTONE SUM SAT OR MINSAT
(9.4.8) as the solution algorithmM. Algorithm SOLVE MONOTONE
SUM SAT OR MINSAT (9.4.8) requires a solution algorithm, say, M2,
for the SAT or MINSAT instances involving the column submatrices
of a matrix B2∗ derived from B2 as follows.)
Declare B2∗ to be the column submatrix A2 of B2 = [D|A2]. In the
MINSAT case, let c2∗ be the subvector of c corresponding to A2.

2. (1-Sum decomposition of B2∗) Use Algorithm 1-SEPARATION (3.5.1)
to determine 1-sum decompositions that derive from B2∗ the blocks of
B2∗, say, for some p ≥ 1, B21, B22, . . . , B2p.

3. (Construct solution algorithms for B21, B22, . . . , B2p.)
Do for i = 1, 2, . . . , p:
Define B2i∗ = B2i. In the MINSAT case, let c2i∗ be the subvector
of c2∗ corresponding to B2i∗. Find a solution algorithm M2i and a
time bound τ2i using the algorithm specified below, with B2i∗ and, if
applicable, with c2i∗ as input.
If Allow type III is False, use Algorithm SELECT COMPONENT
METHOD (13.3.1).
If Allow type II is True and Allow type III is True, use Algorithm SE-
LECT TYPE II METHOD (13.4.6).
If Allow type II is False and Allow type III is True, use Algorithm
SELECT TYPE III METHOD (13.4.7).

4. (Determine M2.) Construct M2 using M21, M22, . . . , M2p of Step 3,
plus the straightforward reduction of any SAT or MINSAT instance
arising from a column submatrix of B2∗ to one SAT or MINSAT in-
stance each for M21, M22, . . . , M2p. The upper time bound τ2 for
M2 is equal to

∑p

i=1
τ2i plus the time required for the reduction effort.

5. (Determine M.) Define M to be Algorithm SOLVE MONOTONE
SUM SAT OR MINSAT (9.4.8), with M2 of Step 4 as subroutine.
Compute the time bound τ for M using the time bound formula for
Algorithm SOLVE MONOTONE SUM SAT OR MINSAT (9.4.8) and
the time bound τ2 for M2. Output M and τ , and stop.

Second Subroutine of Analysis Algorithm

The second subroutine is Algorithm SELECT TYPE II METHOD (13.4.6)
presented next. It applies to SAT only. Since it is invoked by Step 3 of

408 Chapter 13. Analysis Algorithm

Algorithm SELECT TYPE I METHOD (13.4.5), it is known that the input
matrix is connected and does not have a proper monotone decomposition.
Algorithm SELECT TYPE II METHOD (13.4.6) proceeds as follows.

Step 1 uses the later given Algorithm SELECT TYPE III METHOD
(13.4.7) to construct a solution algorithm M0 that does not involve type
II decompositions.

If the time bound τ0 for M0 is small, a satisfactory solution algorithm
has been found, and the algorithm stops. Otherwise, Steps 2 and 3 search
for a type II decomposition.

If a type II decomposition is not found, the solution algorithm M0 of
Step 1 is accepted, and the algorithm stops.

If a type II decomposition is found, Step 4 constructs a solution algo-
rithm MII

1 for the first component of the decomposition using Algorithm
SELECT TYPE I METHOD (13.4.5). The latter solution algorithm is not
allowed to involve type II decompositions, but may involve type III decom-
positions. If the time bound τ II

1 for MII
1 algorithm is not small, we search

for another type II decomposition where the first component is smaller than
that of the decomposition on hand. If that search is successful, we repeat
Steps 3 and 4 to determine a new MII

1 , then continue as described above.
The iterative process stops when the MII

1 on hand has a small time bound
τ II
1 , or when another type II decomposition with smaller first component

cannot be found. At that time, we accept the current MII
1 as the solution

algorithm for the first component of the type II decomposition on hand.
In Step 5, we find a solution algorithm MII

2 for the second component
of the type II decomposition, using Algorithm SELECT TYPE I METHOD
(13.4.5).

Step 6 uses MII
1 , MII

2 , and the solution algorithm for the selected
type II decomposition to construct a solution algorithm MII for the input
matrix. Let τ II be the time bound for MII. Based on a comparison of τ II

and τ0 of Step 1, Step 6 outputs M0 or MII, plus the corresponding time
bound, as the solution algorithm and time bound for the input matrix.

(13.4.6) Algorithm SELECT TYPE II METHOD. Determines for
an input matrix B a SAT solution algorithm M that handles all SAT
instances arising from the column submatrices of B. Computes an upper
time bound τ on the run time of M. The construction of M is based on
type II decompositions.

Input: Matrix B over IB, with row index set X and column index set
Y . The matrix B is connected and does not have a proper monotone
decomposition.

Output: A SAT solution algorithm M and an upper time bound τ on its
run time. Algorithm M handles all SAT instances arising from the column
submatrices of B. Algorithm M is polynomial if the number of closed
subregions of each closed subregion decomposition used in the construction

13.4. Analysis Algorithm 409

of M is bounded by a constant and if solution of any linear programs by
M is done by a polynomial method.

Complexity: Polynomial.

Procedure:
1. (Find solution algorithm M0 without type II decompositions.) Do

Algorithm SELECT TYPE III METHOD (13.4.7) with B as input.
Declare the output solution algorithm to be M0, and declare the time
bound to be τ0. If the time bound τ0 is small, output M = M0 and
τ = τ0, and stop.

2. Using Algorithm CLOSED 2-SEPARATION (10.3.8), Algorithm
CLOSED 3-SEPARATION (10.3.9), or Algorithm AUGMENTED k-
SEPARATION (11.3.1), search for a closed k-separation with 2 ≤ k ≤
3 or for an augmented k-separation with 3 ≤ k ≤ 4, satisfying the fol-
lowing two conditions. First, any closed separation must be preferred
to any augmented separation. Second, the value of k must be as small
as possible.
If a k-separation, say, (X1 ∪ Y1, X2 ∪ Y2), with the desired features is
found, go to Step 3. Otherwise, output M = M0 and τ = τ0, and
stop.

3. (Select B1∗ and B2∗ from the type II decomposition.)
If (X1∪Y1, X2∪Y2) is a closed separation: Two decomposition cases are
possible, given by (10.4.5) and (10.4.11). If |X1∪X2∪Y1| ≤ |X2∪Y2|,
select case (10.4.5), and define B1∗ = [A1/D] and B2∗ = [D|A2]; oth-
erwise, select case (10.4.11), and define B1∗ = A2 and B2∗ = [A1/D].
(The selection and definition of B1∗ and B2∗ are based on Algo-
rithm SOLVE CLOSED SUM SAT (10.4.18) and produce B1∗ of least
length.) Define MII to be Algorithm SOLVE CLOSED SUM SAT
(10.4.18).
If (X1 ∪ Y1, X2 ∪ Y2) is an augmented separation: In the notation of
(11.4.2), define B1∗ = [A1/D] and B2∗ = B2. Define MII to be Algo-
rithm SOLVE AUGMENTED SUM SAT (11.4.10).
(Regardless of how MII is chosen, that algorithm requires two subrou-
tines, say, MII

1 and MII
2 , for solving SAT instances involving column

submatrices of B1∗ and B2∗, respectively.)
4. (Construct MII

1 .) Set Allow type II to False. Do Algorithm SELECT
TYPE I METHOD (13.4.5) with B1∗ as input. Declare the output
solution algorithm to be MII

1 , and declare the time bound to be τ II
1 .

Reset Allow type II to True. If τ II
1 is not small, go to Step 8 (to search

for a better type II decomposition).
5. (Construct MII

2 .) Do Algorithm SELECT TYPE I METHOD (13.4.5)
with B2∗ as input. Declare the output solution algorithm to be MII

2 ,
and declare the time bound to be τ II

2 .
6. (Construct time bound for MII.) Using τ II

1 and τ II
2 in the complexity

410 Chapter 13. Analysis Algorithm

formula for MII, compute a time bound τ II for the latter algorithm.
7. (Compare the time bound τ0 for M0 with τ II for MII to select the

solution algorithm M.) If τ0 ≤ τ II, then let M = M0 and τ = τ0.
Otherwise, let M = MII and τ = τ II. Output M and τ , and stop.

8. (Time bound τ II
1 is not small. Search for an improved type II decom-

position.) Select the appropriate decomposition algorithm from those
cited in Step 2, and search for a k′-separation (X ′

1 ∪ Y ′
1 , X ′

2 ∪ Y ′
2) of B

of the same kind as (X1 ∪ Y1, X2 ∪ Y2), that is, closed or augmented,
whichever applies, while enforcing X ′

1 ∪ Y ′
1 ⊂ X1 ∪ Y1. If such a sep-

aration is found, update X1 = X ′
1, X2 = X ′

2, Y1 = Y ′
1 , Y2 = Y ′

2 ,
and go to Step 3 with the new (X1 ∪ Y1, X2 ∪ Y2). Otherwise go to
Step 5. (If an improved separation is not found, we accept the current
(X1 ∪ Y1, X2 ∪ Y2) and the solution algorithm MII

1 on hand.)

Third Subroutine of Analysis Algorithm

The third subroutine is Algorithm SELECT TYPE III METHOD (13.4.7)
below. It applies to both SAT and MINSAT. Since it is invoked by Step 3 of
Algorithm SELECT TYPE I METHOD (13.4.5) or by Step 1 of Algorithm
SELECT TYPE II METHOD (13.4.6), it is known that the input matrix is
connected and does not have a proper monotone decomposition. We sketch
the steps of the algorithm.

Step 1 uses Algorithm SELECT COMPONENT METHOD (13.3.1)
to determine a solution algorithm M0 that does not involve a type III
decomposition. If the time bound for M0 is small, M0 is taken as the
desired solution algorithm. Otherwise, the remaining steps search for a
linear decomposition and solution algorithms for its components. Details
are as follows.

Steps 2 and 3 search for a linear decomposition with two components
and determine a solution algorithm for each component.

Steps 4 and 5 proceed recursively. If the time bound for the solution
algorithm of any one of the components is not small, then these steps
search for a refined linear decomposition where the component in question
is replaced by two components. The recursive process stops when each
component on hand has a small time bound or does not admit a linear
decomposition into two components.

The results of the recursive process of Steps 4 and 5 are recorded in
a binary tree T where each node represents a component and where the
linear decomposition of a component into two components is depicted by
a parent node with two immediate descendants. The name or label for
each node of T specifies the component matrix it represents, the solution
algorithm obtained for that component, and the related time bound.

Step 6 is a record keeping step that we need not discuss here.

13.4. Analysis Algorithm 411

Step 7 uses the time bounds and the complexity formula for Algorithm
SOLVE LINEAR SUM SAT OR MINSAT (12.4.15) to extract a linear
decomposition from the tree T that in a certain sense produces a best
solution algorithm.

Step 8 assembles that best solution algorithm and computes a time
bound for it. That solution algorithm and time bound constitute the out-
put.

(13.4.7) Algorithm SELECT TYPE III METHOD. Determines for
an input matrix B and, if applicable, for an input vector c a SAT or MIN-
SAT solution algorithmM that handles all SAT or MINSAT instances aris-
ing from the column submatrices of B. Computes an upper time bound
τ on the run time of M. The construction of M is based on type III
decompositions.

Input: Matrix B over IB, with row index set X and column index set Y .
In the MINSAT case, a rational nonnegative vector c indexed by Y . The
matrix B is connected and does not have a proper monotone decomposition.

Output: A SAT or MINSAT solution algorithm M and an upper time
bound τ on its run time. Algorithm M handles all SAT or MINSAT
instances arising from the column submatrices of B. Algorithm M is poly-
nomial if the number of closed subregions of each closed subregion decom-
position used in the construction of M is bounded by a constant and if
solution of any linear programs by M is done by a polynomial method.

Complexity: Polynomial.

Procedure:
1. (Find solution algorithm without type III decomposition.) Do Algo-

rithm SELECT COMPONENT METHOD (13.3.1) with B and, in the
MINSAT case, with vector c as input. Declare the output solution al-
gorithm to be M0 and the time bound to be τ0. If τ0 is small, output
M = M0 and τ = τ0, and stop.

2. (Find initial type III decomposition.) Use Algorithm LINEAR k-SEP-
ARATION (12.3.3) or Heuristic LINEAR k-SEPARATION (12.3.4) to
search for a linear k-separation of B where k is bounded by a given
constant n; for example, k ≤ n ≤ 8. If no decomposition is found,
output M = M0 and τ = τ0, and stop. Otherwise, let B1 and B2 be
the components of the decomposition, as given by (12.2.5).

3. (Find solution algorithms for the components of the initial type III
decomposition, and start the tree T .) Using the notation of (12.2.5) for
B1 and B2, define B1∗ = [A1/D] and B2∗ = [E/A2]. In the MINSAT
case, define c1∗ and c2∗ to be the subvectors of c corresponding to
B1∗ and B2∗, respectively. Set Allow type III to False. For i = 1,
2, do Algorithm SELECT TYPE I METHOD (13.4.5) with Bi∗ and,
in the MINSAT case, with ci∗ as input. Declare the output solution

412 Chapter 13. Analysis Algorithm

algorithm to be MIII
i , and declare the time bound to be τ III

i . Reset
Allow type III to True.
Construct a rooted T with three nodes. The root node is labeled
(B,M0, τ0). The two descendant nodes are labeled (B1,MIII

1 , τ III
1)

and (B2,MIII
2 , τ III

2). Declare the root node to be scanned, and declare
the two descendant nodes to be unscanned.

4. (The tip nodes of T correspond to a linear decomposition of B. Refine
that decomposition if needed and possible.) If all nodes of the tree
are scanned, go to Step 6. Otherwise, select one unscanned node, say,
(C,MIII

C , τ III
C), and declare it to be scanned.

If the time bound τ III
C is small, go to the beginning of this step to

process another unscanned node. Otherwise, use Algorithm REFINE
LINEAR k-SEPARATION (12.3.7) or Heuristic REFINE LINEAR k-
SEPARATION (12.3.8) to search for a refinement of the linear decom-
position given by the tip nodes of T where the component matrix C
is decomposed into, say, Bi and Bi+1. The value k for any such de-
composition must be bounded by a given constant n—for example, by
k ≤ n ≤ 8.
If a refinement is not found, go to the beginning of this step to process
another unscanned node. Otherwise, let the decomposition correspond
to the partition of C given by (12.3.5), and define Bi and Bi+1 via
(12.4.3).

5. (Update tree T .) Declare Bi∗ to be the matrix [Ei1/Ai/Di1], and de-
clare Bi+1∗ to be the matrix [Ei+1,1/Ai+1/Di+1,1]. In the MINSAT
case, let ci∗ and ci+1∗ be the subvectors of c corresponding to Bi∗ and
Bi+1∗.
Set Allow type III to False. Do SELECT TYPE I METHOD (13.4.5)
twice: once with input matrix Bi∗ and once with Bi+1∗, using cost
vectors ci∗ and ci+1∗ if applicable. Declare the respective output so-
lution algorithms to be MIII

i and MIII
i+1, with time bounds τ III

i and
τ III
i+1. Reset Allow type III to True.

Enlarge T by creating two descendant nodes (Bi,MIII
i , τ III

i) and (Bi+1,
MIII

i+1, τ
III
i+1) of (C,MIII

C , τ III
C). Declare the two new nodes to be un-

scanned. Go to Step 4.
6. (All nodes of the tree T are scanned. Prepare for the selection of the

linear decomposition.) Define all nontip nodes of T to be unscanned.
7. (Select linear decomposition.) If all nodes of T have been scanned, go

to Step 8. Otherwise, select any unscanned node, say, (C,MIII
C , τ III

C),
that is the parent of two scanned nodes.
Declare (C,MIII

C , τ III
C) to be scanned. Let TC be the subtree of T that

has (C,MIII
C , τ III

C) as root node and that contains all descendants of
that node. Consider two linear decompositions of B. The first decom-
position has as components the matrices of the tip nodes of T . The
second decomposition is derived from the first one by replacing the

13.4. Analysis Algorithm 413

components corresponding to the tip nodes of the subtree TC by the
matrix C.
Compute a time bound τ ′ (resp. τ ′′) for the first (resp. second) decom-
position, using the complexity formula for Algorithm SOLVE LINEAR
SUM SAT OR MINSAT (12.4.15) and the time bounds of the nodes
defining the components of the decomposition. (If τ ′ ≥ τ ′′, the second
decomposition is deemed superior to the first one.) If τ ′ ≥ τ ′′, rede-
fine T by deleting all descendants of node (C,MIII

C , τ III
C). Go to the

beginning of this step to process another unscanned node.
8. (The tip nodes of T give the desired decomposition. Construct M

using that decomposition.) If T consists of just the root node, out-
put M = M0 and τ = τ0, and stop. Otherwise, for some p ≥ 2, let
(B1,MIII

1 , τ III
1), (B2,MIII

2 , τ III
2), . . . , (Bp,MIII

p , τ III
p) be the tip nodes

of T , indexed in such a way that B1, B2, . . . , Bp are the compo-
nents of a linear decomposition of B. Declare MIII to be Algorithm
SOLVE LINEAR SUM SAT OR MINSAT (12.4.15), using the algo-
rithms MIII

1 , MIII
2 , . . . , MIII

p as subroutines. Compute a time bound

τ III for MIII using the complexity formula for Algorithm SOLVE LIN-
EAR SUM SAT OR MINSAT (12.4.15) and the time bounds τ III

1 ,
τ III
2 , . . . , τ III

p . Output M = MIII and τ = τ III, and stop.

We note that the calculations of τ ′ and τ ′′ in Step 7 are very similar.
Accordingly, the test whether τ ′ ≥ τ ′′ can be simplified. We leave it to the
reader to fill in details.

Proof of Validity of Algorithm ANALYSIS (13.4.4). Given the prior
discussion, we only need to confirm that the complexity of the analysis al-
gorithm is polynomial and that the algorithm produces polynomial solution
algorithms under the stated assumptions.

Each subroutine of the analysis algorithm by itself is polynomial. The
variables Allow type II and Allow type III are manipulated so that the fol-
lowing effects are achieved. The first component of a type II decomposition
cannot undergo another type II decomposition. The components of a type
III decomposition cannot undergo a type II decomposition, and they can
undergo a type III decomposition only if the latter decomposition is a re-
finement of the given type III decomposition. These restrictions imply that
the analysis algorithm is polynomial.

We turn to the polynomiality claim for solution algorithms. The anal-
ysis algorithm is so designed that any solution algorithm constructed by
it is polynomial if Algorithm SELECT COMPONENT METHOD (13.3.1)
supplies polynomial solution algorithms. Theorem (13.3.2) guarantees that
this is so under the assumptions stated in Algorithm ANALYSIS (13.4.4)
and its subroutines.

One may employ Algorithm ANALYSIS (13.4.4) to create approxima-
tion algorithms for MINSAT. The next section presents details.

414 Chapter 13. Analysis Algorithm

13.5 Approximate Minimization

Section 8.3 contains Heuristic SOLVE IP (8.3.3) for the approximate solu-
tion of integer programming problems. In this section, we specialize that
heuristic method to obtain an approximate solution algorithm for MINSAT.

Outline of Approach

Let the matrix A over IB and the rational nonnegative cost vector cA for
A be given. Suppose that the time bound of the solution algorithm con-
structed by Algorithm ANALYSIS (13.4.4) for the MINSAT instances aris-
ing from the column submatrices of A is too large to be acceptable. Assume
that we are willing to consider solution algorithms that solve these MIN-
SAT instances approximately. We construct a solution algorithm of the
latter kind in a two-step process.

First, we apply Algorithm ANALYSIS (13.4.4) to the matrix A and
obtain a solution algorithm, say, Q, for the SAT instances arising from
the column submatrices of A. If the time bound for Q is too large to be
acceptable, then the subsequent results of this section do not apply. So
assume that the time bound for Q is acceptable; that is, the bound is small
or at least reasonable.

Second, we use the SAT solution algorithm Q in Heuristic SOLVE
IP (8.3.3) to obtain an approximate solution algorithm that solves the
MINSAT instances arising from the column submatrices of A. The latter
solution algorithm proceeds as follows.

MINSAT Instance as Integer Program

Let the given MINSAT instance involve a column submatrix B of A, the
corresponding subvector c of cA, and a {0, 1} vector b. Suppose that B has
row index set X and column index set Y . We are to find a {±1} vector s
satisfying B ⊙ s ≥ b and minimizing

∑
j cj where the summation is over

the indices j ∈ Y for which sj = 1, or conclude that B ⊙ s ≥ b has no
solution.

We reformulate the MINSAT instance as an integer program (IP). Let
q(B) be the integer vector with elements indexed by X where, for each
x ∈ X , the element q(B)x is equal to the number of −1s in row x of B. Let
r be a {0, 1} vector indexed by Y . The vector r is related to s as follows.
For each j ∈ Y , rj = 0 (resp. rj = 1) if sj = −1 (resp. sj = 1).

According to the discussion of Section 5.7, we may formulate the MIN-
SAT instance involving B as the following IP, where B is viewed to be over
the integers.

(13.5.1)
min ct · r
s. t. B · r ≥ b− q(B)

r is a {0, 1} vector

13.5. Approximate Minimization 415

Heuristic Solution Algorithm for MINSAT

We use Heuristic SOLVE IP (8.3.3) to solve (13.5.1) approximately. That
method requires as input the arrays B, b− q(B), and c, a positive integer
k, a subset J of Y , and two subroutines Q and R. We select k, J , Q, and
R as follows.

The positive integer k controls the extent of the enumerative effort by
Heuristic SOLVE IP (8.3.3) and may be arbitrarily chosen.

We do not restate the conditions concerning the choice of J , but take
J = Y and note that this selection trivially satisfies those conditions.

Given J = Y , we may rephrase the required features of the subroutine
Q as follows. Suppose arbitrary {0, 1} values have been assigned to the
variables rj with index j in some subset of Y . Then subroutine Q is to
decide whether one can assign {0, 1} values to the remaining variables rj

such that the resulting {0, 1} vector r is a feasible solution for the IP
(13.5.1).

Given the link between the IP (13.5.1) and the MINSAT instance,
subroutine Q must effectively be able to solve all SAT instances arising
from the column submatrices of B. We have an algorithm for the latter
task, the SAT algorithm Q constructed by Algorithm ANALYSIS (13.4.4)
for B. Hence, we use that Q here. Let the time bound for that solution
algorithm Q be σ.

For the discussion of the subroutine R, we derive the following linear
program (LP) from the IP (13.5.1).

(13.5.2)
min ct · r
s. t. B · r ≥ b− q(B)

0 ≤ r ≤ 1

The subroutine R is to find an optimal extreme point solution for any one of
the following modified versions of the LP (13.5.2). Each version is obtained
from the LP (13.5.2) by fixing the variables rj with index j in some subset
of Y to some {0, 1} values such that the modified LP still has a feasible
solution. Subroutine R is assumed to require at most λ effort.

Heuristic SOLVE IP (8.3.3) either provides a good but not necessarily
optimal solution for the IP (13.5.1), plus a rational number β that is a
lower bound on the optimal objective function value of the IP (13.5.1), or
concludes that the IP (13.5.1) has no feasible solution.

In MINSAT terminology, Heuristic SOLVE IP (8.3.3) either provides a
good but not necessarily optimal solution for the MINSAT instance defined
by B, b, and c or concludes that the MINSAT instance is unsatisfiable. In
addition, the value of β is a lower bound on the optimal objective function
value of the MINSAT instance. Thus, if the difference between β and the
objective function value of the solution is small (resp. 0), then that solution
is close to optimal (resp. is indeed optimal).

416 Chapter 13. Analysis Algorithm

The effort of Heuristic SOLVE IP (8.3.3) is O(2k · (|J |+ 1) · (σ + λ))
and thus is polynomial if k is bounded by a constant and if both σ and λ
are polynomially bounded.

We summarize the above heuristic method for MINSAT.

(13.5.3) Heuristic SOLVE MINSAT. Finds a good but not necessarily
optimal solution for the MINSAT instance arising from any column sub-
matrix of a matrix A and from the corresponding subvector of a rational
nonnegative cost vector cA.

Input: Matrix A over IB. A column submatrix B of A. The matrix B has
row index set X and column index set Y . A {0, 1} vector b with entries
indexed by X . A rational nonnegative cost vector cA for A. Let c be the
subvector of cA corresponding to B.
A positive integer k.
A solution algorithm Q obtained by Algorithm ANALYSIS (13.4.4) that
solves the SAT instances arising from the column submatrices of A. Let
the time bound for Q be σ.
A subroutine R that for any column submatrix A of A, for any {0, 1} vector
a of appropriate size, and for the subvector c of cA corresponding to A, finds
an optimal extreme point solution for the LP

(13.5.4)
min ct · r
s. t. A · r ≥ a− q(A)

0 ≤ r ≤ 1

as well as for modified versions of that LP where some variables have been
fixed to some {±1} values. In each case, it is known that the LP has a
feasible solution. Subroutine R is assumed to require at most λ effort.

Output: Either: A good but not necessarily optimal solution for the MIN-
SAT instance (B, b, c), plus a rational number β that is a lower bound on
the optimal objective function value of that instance. (If the difference
between β and the objective function value of the solution is small (resp.
0), then that solution is close to optimal (resp. is indeed optimal)). Or:
“The MINSAT instance (B, b, c) is unsatisfiable.”

Complexity: O(2k · (|Y |+ 1) · (σ + λ)). The effort is polynomial if σ and λ
are polynomially bounded and if k is bounded by a constant.

Procedure:
1. Apply Heuristic SOLVE IP (8.3.3) to the IP

(13.5.5)
min ct · r
s. t. B · r ≥ b− q(B)

r is a {0, 1} vector

The input consists of B, b−q(B), c, k, a set J defined to be J = Y , and
the input subroutines Q and R. The use of Q requires the translation

13.6. Pre- and Postprocessing 417

of vectors r for the IP to solution vectors s for SAT instances, and vice
versa. The relationship is rj = 0 (resp. rj = 1) if and only if sj = −1
(resp. sj = 1).

2. If Heuristic SOLVE IP (8.3.3) does not produce a solution, declare that
the MINSAT instance (B, b, c) is unsatisfiable, and stop. Otherwise, let
r∗ be the solution vector. Define for all j ∈ Y , s∗j = −1 (resp. s∗j = 1)
if r∗j = 0 (resp. r∗j = 1). Output s∗ as a good but not necessarily
optimal solution for the MINSAT instance (B, b, c), together with the
lower bound β, and stop.

The next section provides pre- and postprocessing steps that improve
the solution algorithms produced by Algorithm ANALYSIS (13.4.4).

13.6 Pre- and Postprocessing

When Algorithm ANALYSIS (13.4.4) processes the matrix A of a SAT
problem or the matrix/vector pair (A, c) of a MINSAT problem arising from
real-world applications, one typically has additional information about the
SAT or MINSAT instances to be solved. In this section, we show how such
information can sometimes be utilized to improve the solution algorithms
produced by Algorithm ANALYSIS (13.4.4).

The improvements we have in mind are of two types. Improvements of
the first type reduce or simplify the matrix A before Algorithm ANALYSIS
(13.4.4) is applied and thus are considered preprocessing.

Improvements of the second type streamline the solution algorithms
generated by Algorithm ANALYSIS (13.4.4) and thus constitute postpro-
cessing.

Preprocessing

Let A be a matrix over IB. Consider the SAT instances arising from the
column submatrices B of A. Any such instance is defined by B and a
{0, 1} vector b and requires solution of the inequality system B ⊙ s ≥
b. We reformulate that instance. We drop from B the rows i for which
bi = 0, getting a submatrix A of B, and declare that A is a SAT instance
demanding solution of the inequality A ⊙ s ≥ 1. Under this viewpoint,
the SAT instances are completely specified by the submatrices A of A.
Analogously, one may restate MINSAT instances. For the discussion below,
we consider SAT or MINSAT instances to be so reformulated.

Suppose we know in advance that certain rows and columns of A will be
part of every SAT or MINSAT instance that is to be solved. Specifically,
define V ⊆ X (resp. W ⊆ Y) to be the index set of these rows (resp.
columns). We utilize V and W for two reductions of A.

418 Chapter 13. Analysis Algorithm

Reduction Using Resolution

The first reduction applies to SAT only. Suppose a column y of A has its
1s (resp. −1s) in rows indexed by a subset X+ (resp. X−) of X . Further
suppose that for any x ∈ X+ and any z ∈ X−, there exists a column
w ∈ W , w 6= y, that has, for some {±1} value α, an entry equal to α in
row x and an entry equal to −α in row z.

Assume that we must solve a SAT instance given by a submatrix A of
A. Let A have row index set X and column index set Y . By assumption,
W ⊆ Y . We invoke Algorithm RESOLUTION FOR MATRIX (5.4.4) to
eliminate column y from A. We skip details of that algorithm and simply
claim that, due to the assumption about nonzero entries in the submatrix
of A indexed by (X+ ∪ X−) ∩ X and Y − {y}, the algorithm eliminates
column y and all rows indexed by (X+ ∪X−) ∩X and does not add any
new rows. Since this conclusion is independent of the particular form of A,
we might as well proceed as follows.

We delete column y from A and find for the reduced matrix a solution
algorithm with Algorithm ANALYSIS (13.4.4). If a SAT instance A arising
from A and indexed by X and Y does not involve column y, then that
solution algorithm is appropriate. Otherwise, we delete column y and all
rows of (X+ ∪X−) ∩X from A and solve the reduced SAT instance, say,
A′, with the solution algorithm. If the latter problem is unsatisfiable, so is
the SAT instance A. Otherwise, we extend the satisfying solution for A′

to one for A by assigning an appropriate True/False value to column y.

Reduction Using Special Row Submatrices

The second reduction applies to both SAT and MINSAT. Let A, X , Y , V ,
and W be as before. We determine constraints imposed by row submatri-
ces of A that have 2SAT form, are nearly negative, or have the network
property.

Collect in a matrix A all rows v ∈ V of A satisfying the following
conditions. Each such row must have at most two nonzero entries, and
these entries must occur in columns indexed by W .

By repeated use of Algorithm SOLVE 2SAT (5.4.1), we determine
which values sy of the solution vector s for A · s ≥ 1 are unique.

The analogous process can be carried out for the largest submatrix A
of A where each row v ∈ V has all nonzero entries in columns with index
in W and where A is nearly negative or has the network property. This
time, we repeatedly use Algorithm SOLVE NEARLY NEGATIVE SAT
OR MINSAT (5.5.1) or Algorithm SOLVE BALANCED SAT OR MINSAT
(5.7.25) to determine the sy with unique solution value for A · s ≥ 1.

As soon as an sy with unique value has been found for A, we record
that value, reduce A accordingly, and repeat the above process.

13.6. Pre- and Postprocessing 419

Postprocessing

We revert to our customary way of stating SAT and MINSAT instances.
That is, each SAT instance involves a column submatrix B of the given
matrix A and a {0, 1} vector b and demands solution of the inequality
system B ⊙ s ≥ b. MINSAT instances are formulated correspondingly.

Let A have row index set X and column index set Y . As in the
preprocessing case, we assume to have a set W ⊆ Y that indexes the
columns of A that will be part of every SAT or MINSAT instance to be
solved. Note that we do not need the set V of the preprocessing case.

Postprocessing is done once Algorithm ANALYSIS (13.4.4) has pro-
duced a solution algorithm. The improvements apply to the use of Al-
gorithm SOLVE CLOSED SUM SAT (10.4.18), Algorithm SOLVE AUG-
MENTED SUM SAT (11.4.10), and Algorithm SOLVE LINEAR SUM SAT
OR MINSAT (12.4.15) as subroutines in the solution algorithm. We discuss
each case.

Closed Sum Case

Algorithm SOLVE CLOSED SUM SAT (10.4.18) determines in Step 1 one
subrange set and may compute in Step 3 sets J0, J+, J−, and J±. According
to Algorithm SELECT TYPE II METHOD (13.4.6) invoked by Algorithm
ANALYSIS (13.4.4), the underlying closed k-sum has k ≤ 3. Hence, we
may compute the subrange set and the sets J0, J+, J−, and J± in advance
for all possible cases, and later just look up the appropriate sets.

Augmented Sum Case

Steps 1, 4, and 5 of Algorithm SOLVE AUGMENTED SUM SAT (11.4.10)
compute two subrange sets, a set S, and a vector f . According to Algorithm
SELECT TYPE II METHOD (13.4.6) invoked by Algorithm ANALYSIS
(13.4.4), the underlying augmented k-sum has k ≤ 4. Hence, one may
compute the subrange sets, the set S, and the vector f in advance for all
possible cases and may replace the computations of Steps 1, 4, and 5 by
straightforward lookups.

Linear Sum Case

Step 2 of Algorithm SOLVE LINEAR SUM SAT OR MINSAT (12.4.15)
computes, for i = 2, 3, . . . , p, subrange([Di3/Di2]) and subrange([Ei1|Ei2]).
If k is not small, computation of these subrange sets may require consider-
able effort. Hence, one would want to compute the subrange sets one time,
prior to solving SAT or MINSAT instances. This is possible if we know

420 Chapter 13. Analysis Algorithm

that the column submatrix B of A of any SAT or MINSAT instance is A
itself, that is, if W = Y .

Suppose we do not have such assurance, but that the set Y − W ,
which contains the indices of the columns of A that might be deleted, is
small. We then precompute certain sets that take the place of the sets
subrange([Di3/Di2]) and subrange([Ei1|Ei2]).

We present details in a moment, but first note that validity of the
change crucially depends on the fact that Algorithm SOLVE LINEAR SUM
SAT OR MINSAT (12.4.15) remains valid if any subrange set computed in
Step 2 is replaced by some set containing it. For a proof, one only needs
to check that all results supporting Algorithm SOLVE LINEAR SUM SAT
OR MINSAT (12.4.15) remain valid upon such a substitution. We leave it
to the reader to confirm the correctness of this claim.

We describe the sets to be precomputed. Let 2 ≤ i ≤ p. We partition
A like B of (12.4.4), except that we add the hat symbol to each submatrix
to differentiate it from the corresponding submatrix of B. For example,
D̂i3 and D̂i2 are the submatrices of A that correspond to the submatrices
Di3 and Di2, respectively, of B.

We first create the set that contains subrange([Di3/Di2]). By the
above definitions, the submatrix [D̂i3/D̂i2] of A has [Di3/Di2] as a column
submatrix. Let Zi be the column index set of [D̂i3/D̂i2], and Ji = Zi−W .
Thus, Ji contains the indices of the columns of [D̂i3/D̂i2] that are not
present in [Di3/Di2].

Define Si to be the set

(13.6.1) Si = {s | sj ∈ {0,±1}, j ∈ Ji; sj ∈ {±1}, j ∈ Zi − Ji}

and let

(13.6.2) range([D̂i3/D̂i2], Ji) = {b | b = [D̂i3/D̂i2]⊙ s; s ∈ Si}

Evidently, range([D̂i3/D̂i2], Ji) ⊇ subrange([Di3/Di2]), regardless of the
choice of B. Thus, we take range([D̂i3/D̂i2], Ji) as the desired set.

For i = 2, 3, . . . , p, we compute range([D̂i3/D̂i2], Ji) with Algorithm
RANGE (4.3.11) as follows. First, we handle the case i = 2 by one ap-
plication of that algorithm. Inductively, assume that, for some 2 ≤ i < p,
we have range([D̂i3/D̂i2], Ji). Since (12.2.7) says that [Di+1,3/Di+1,2] =
[Di2|Di1], we analogously have

(13.6.3) [D̂i+1,3/D̂i+1,2] = [D̂i2|D̂i1]

Thus, range([D̂i+1,3/D̂i+1,2], Ji+1) is equal to range([D̂i2|D̂i1], Ji+1) and
may be obtained from range([D̂i3/D̂i2], Ji) by projecting out the entries
corresponding to D̂i3 and then extending the resulting set of vectors to

13.7. Extensions and References 421

range([D̂i2|D̂i1], Ji+1). Algorithm RANGE (4.3.11) is designed to perform
these operations efficiently.

Computation of the sets that contain the sets subrange([Ei1|Ei2]) is
handled in an analogous manner, except that we start with i = p and
reduce the index i iteratively until i = 2.

The final section presents extensions and references.

13.7 Extensions and References

A number of improvements of Algorithm ANALYSIS (13.4.4) and its sub-
routines are possible.

One can enhance the subregion decomposition approach of Algorithm
SELECT COMPONENT METHOD (13.3.1), using the ideas of Section 8.7.
In addition, for MINSAT cases, one may consider Heuristic SOLVE MIN-
SAT (13.5.3) as a possible solution algorithm in Algorithm SELECT COM-
PONENT METHOD (13.3.1).

One may add other, possibly specialized, decompositions of type I, II,
or III and related subroutines to Algorithm ANALYSIS (13.4.4), without
changing the basic structure of that algorithm.

The resolution-based preprocessing of Section 13.6, which deals with
one variable at a time, can be extended so that links between any two
variables are discovered and used to simplify the given matrix. Related
material is discussed in Hansen (1976), Johnson and Padberg (1982), and
Hansen, Jaumard, and Minoux (1986).

The postprocessing may, indeed should, include the improvements for
linear decompositions presented in Section 12.5.

One can speed up the solution algorithms produced by Algorithm
ANALYSIS (13.4.4) by inserting various heuristic methods—for example,
the reduction scheme of Section 9.5.

Chapter 14

Central and Semicentral Classes

14.1 Overview

In this chapter, we construct large matrix classes that are SAT central
or semicentral, as well as large matrix/vector classes that are MINSAT cen-
tral or semicentral. Using an abbreviated terminology that simultaneously
covers both the SAT and MINSAT cases, we refer to these classes simply
as central or semicentral classes.

The chapter proceeds as follows. Section 14.2 provides an overview
over the centrality and semicentrality results of the preceding chapters.

Section 14.3 assembles from the results of Section 14.2 two central and
two semicentral classes.

Section 14.4 offers empirical evidence that the classes of Section 14.3
are of practical importance.

Finally, Section 14.5 provides extensions and references.

14.2 Review of Centrality and

Semicentrality Results

A number of centrality and semicentrality results are contained in the pre-
ceding chapters. We collect them here for ready reference.

422

14.2. Review of Centrality and Semicentrality 423

Definitions

Recall from Section 5.2 that a class of matrices A over IB is SAT central if
the following holds.

(14.2.1)

(i) If A ∈ C, then any submatrix of A is also in C.
(ii) There is a polynomial algorithm for solving the

SAT instances given by the matrices of C.
(iii) There is a polynomial algorithm for recognizing

the matrices of C.

The class C is SAT semicentral if it observes (14.2.1)(i) and (ii).
A class C of matrix/vector pairs (A, c), where A is over IB and c is a

rational nonnegative vector, is MINSAT central if the following holds.

(14.2.2)

(i) If (A, c) ∈ C, then any submatrix pair of (A, c) is
also in C.

(ii) There is a polynomial algorithm for solving the
MINSAT instances given by the matrix/vector
pairs of C.

(iii) There is a polynomial algorithm for recognizing
the matrix/vector pairs of C.

The class C is MINSAT semicentral if it observes (14.2.2)(i) and (ii).

Subclasses, Union, and Intersection

Centrality and semicentrality are preserved under certain reductions and
under finite union and intersection of classes.

(14.2.3) Lemma. (See Lemma (5.3.1).) Let C be a class of matrices or
matrix/vector pairs. Define C to be a subclass of C that is maintained
under submatrix taking. Then (a) and (b) below hold.

(a) If C is SAT or MINSAT semicentral, then C also has that property.
(b) Suppose membership in C can be tested in polynomial time provided

that membership in C is known. If C is SAT or MINSAT central, then
C also has that property.

(14.2.4) Lemma. (See Lemma (5.3.2).) For given n ≥ 2, let C1, C2, . . . ,
Cn be classes of matrices or matrix/vector pairs. Assume that the classes
have a given centrality property, that is, SAT or MINSAT centrality or
semicentrality. Then the union and the intersection of these classes also
have that property.

424 Chapter 14. Central and Semicentral Classes

Elementary Extensions

The next result concerns extensions of central or semicentral classes. Ac-
cording to Section 5.3, a matrix A over IB is SAT simple if A has no rows
with less than two nonzeros, no duplicate rows, and no parallel or mono-
tone columns. The matrix A is MINSAT simple if A has no rows with less
than two nonzeros, no duplicate rows, and no nonpositive columns.

A maximum SAT or MINSAT simple submatrix of a given matrix A is
the submatrix derived by Algorithm SIMPLE SUBMATRIX (5.3.3) from
A.

(14.2.5) Theorem. (See Theorem (5.3.6).) Let C be a class of matrices
that is maintained under submatrix taking, and let C′ be a subclass of
C. If C′ is SAT central (resp. semicentral) and if C consists precisely
of the matrices whose maximum SAT simple matrix is in C′, then C is
SAT central (resp. semicentral) as well. The MINSAT version of the above
statements also holds provided that C and C′ are classes of matrix/vector
pairs.

Special Matrix Classes

Sections 5.4–5.7 define the following special matrices and related classes.
A 2SAT matrix has at most two nonzeros in each row.
A nearly negative matrix has at most one +1 in each row. A hidden

nearly negative matrix can be column scaled to become nearly negative.
A balanced matrix does not have any cycle submatrix whose entries

sum to 2(mod 4). In a totally unimodular matrix, the determinant of any
square submatrix is 0, +1, or −1. A network matrix is, up to transposition,
a totally unimodular 2SAT matrix.

Chapter 5 establishes the following centrality results for these matrix
classes.

(14.2.6) Theorem. (See Theorem (5.4.2).) The class of 2SAT matrices
is SAT central.

(14.2.7) Theorem. (See Theorem (5.5.4).)
(a) The class of nearly negative matrices is SAT central.
(b) The class of matrix/vector pairs (A, c) where A is nearly negative and

c is a rational nonnegative vector is MINSAT central.

(14.2.8) Theorem. (See Theorem (5.6.4).)
(a) The class of hidden nearly negative matrices A is SAT central.
(b) The class of the following matrix/vector pairs (A, c) is MINSAT cen-

tral. The vector c is rational nonnegative, and the matrix A is hidden
nearly negative relative to the column submatrix E of A whose columns
correspond to the zero entries of c.

14.2. Review of Centrality and Semicentrality 425

(14.2.9) Theorem. (See Theorem (5.7.28).)
(a) The three classes consisting of the balanced matrices, the totally uni-

modular matrices, and the matrices with the network property are
SAT central.

(b) The three classes of matrix/vector pairs where the matrices are bal-
anced, are totally unimodular, or have the network property are MIN-
SAT central.

Chapters 8–12 describe a number of decompositions and sums. The
centrality and semicentrality results of those chapters are listed next.

Classes Based on Closed Subregion Decomposition

We begin with a theorem for the closed subregion decompositions of Chap-
ter 8.

(14.2.10) Theorem. (See Theorem (8.2.11).) Let C be a class of matrices
A (resp. matrix/vector pairs (A, c)) each of which belongs to a given SAT
(resp. MINSAT) semicentral class C′ or has, for some q bounded by a
constant, a closed subregion decomposition into A0, A1, . . . , Aq where A0

(resp. (A0, c)) is in C′. Then C is SAT or MINSAT semicentral, whichever
applies.

Classes Based on Monotone Sums

For the monotone sums of Chapter 9, we have the following result.

(14.2.11) Theorem. (See Theorem (9.4.12).)
(a) Let C0 be a class of SAT central (resp. semicentral) matrices. Then

the class C of monotone sums B = B1
+m B2 where the submatrix A2

of B2 is in C0 is SAT central (resp. semicentral).
(b) Let C0 be a class of MINSAT central (resp. semicentral) matrix/vector

pairs. Then the class C of matrix/vector pairs (B, c) for which B is a
monotone sum B = B1

+m B2 and for which the submatrix A2 of B2

and the related subvector c2 of c form a matrix/vector pair (A2, c2) of
C0, is MINSAT central (resp. semicentral).

Classes Based on Closed Sums

The closed sums of Chapter 10 are treated next.

(14.2.12) Theorem. (See Theorem (10.5.4).) Let C0 be a SAT central
class of matrices. Define C to be the class of matrices created from C0 by
repeated closed k-sum steps where k is bounded by a constant. Then C is
SAT central.

426 Chapter 14. Central and Semicentral Classes

Classes Based on Augmented Sums

We turn to the augmented sums of Chapter 11.

(14.2.13) Theorem. (See Theorem (11.4.14).) Let C0 be a SAT semicen-
tral class of matrices. Define C to be a class created from C0 by augmented
sums where each |X21∪Y21| and the number of recursive construction steps
are bounded by constants. Then C is SAT semicentral.

Classes Based on Linear Sums

Finally, we cover the linear sums of Chapter 12.

(14.2.14) Theorem. (See Theorem (12.4.19).)
(a) Let C0 be a SAT semicentral class of matrices. Enlarge C0 to a class

C by adding all possible linear sums where, in the notation of (12.4.3),
the column submatrix [Ei1/Ai/Di1] of each component Bi is in C0

and where k defined by (12.2.14) is bounded by a constant. Then C
is SAT semicentral.

(b) Let C0 be a MINSAT semicentral class of matrix/vector pairs. Enlarge
C0 to a class C by adding all pairs (A, c) satisfying the following condi-
tions. The matrix A is a linear sum where, in the notation of (12.4.3),
the column submatrix [Ei1/Ai/Di1] of each component Bi and the
corresponding subvector ci of c constitute a pair ([Ei1/Ai/Di1], ci) in
C0 and where k defined by (12.2.14) is bounded by a constant. Then
C is MINSAT semicentral.

14.3 Construction of Central and

Semicentral Classes

We construct several central and semicentral classes.

SAT Central Classes

Let S0 be the union of the classes of 2SAT matrices, hidden nearly negative
matrices, and balanced matrices.

Extend S0 to a class S1 by enlarging each A ∈ S0 by the following
operations, applied in all possible ways. Add to A duplicate rows, rows
with at most one nonzero entry, and monotone or parallel columns.

Extend S1 to S2 by composing matrices of S1 in repeated 1-sum com-
position steps, in all possible ways.

14.3. Construction of Classes 427

Extend S2 to S3 by monotone sum compositions, in all possible ways
where, in the notation of (9.2.1), the matrix A2 is taken from S2.

In subsequent constructions, we repeatedly use the 1-sum and mono-
tone compositions that extend S1 to S3. To describe this process, we then
simply say that a given class is extended to another class by 1-sum and
monotone sum compositions.

Create S4 from S3 by repeated closed k-sum steps where k is bounded
by a constant.

Extend S4 to S5 by 1-sum and monotone sum compositions.

(14.3.1) Theorem. The classes S0–S5 are SAT central.

Proof. The applicable results of Section 14.2 prove the claim.

MINSAT Central Classes

We use a more restricted construction for MINSAT central classes. Let M0

be the class of pairs (A, c) where A is balanced or hidden nearly negative
relative to the column submatrix of A whose columns correspond to the
zero entries of c.

Extend M0 to M1 by enlarging each (A, c) ∈ M0 by the following
operations, applied in all possible ways. Add to A duplicate rows, rows
with at most one nonzero entry, and nonpositive columns. Extend c to
another nonnegative rational vector.

Extend M1 to M2 by 1-sum and monotone sum compositions analo-
gously to the extension of S1 to S3.

(14.3.2) Theorem. The classes M0–M2 are MINSAT central.

Proof. The applicable results of Section 14.2 prove the theorem.

We proceed to larger matrix or matrix/vector classes, this time aiming
at semicentrality.

SAT Semicentral Classes

Define T0 = S0.
Extend T0 to T1 by adding all possible matrices with closed subregion

decompositions A0, A1, . . . , Aq where A0 is taken from T0 and where q is
bounded by a constant.

Extend T1 to T2 by enlarging each A ∈ T1 by the following operations,
applied in all possible ways. Add to A duplicate rows, rows with at most
one nonzero entry, and monotone or parallel columns.

Extend T2 to T3 by 1-sum and monotone sum compositions.
Extend T3 to T4 by adding linear sums B where, in the notation of

(12.2.3), the column submatrix [Ei1/Ai/Di1] of each component Bi is in
T3 and where k defined by (12.2.14) is bounded by a constant.

428 Chapter 14. Central and Semicentral Classes

Extend T4 to T5 by 1-sum and monotone sum compositions.
Create T6 from T5 by repeated closed k-sum steps and augmented sum

steps. The construction process is nothing but a mixing of the two recursive
construction processes described in Chapters 10 and 11. Thus, in each step
one either carries out a closed k-sum composition or an augmented sum
composition. The parameter k of the closed sum case and |X21 ∪ Y21| of
the augmented sum case must be bounded by a constant. In addition, the
number of augmented sum compositions used to create any matrix must
be bounded by a constant.

Extend T6 to T7 by 1-sum and monotone sum compositions.

(14.3.3) Theorem. The classes T0–T7 are SAT semicentral.

Proof. The applicable results of Section 14.2 prove the claim for T0–T5

and T7. The SAT semicentrality of T6 follows easily from the proofs of
Theorems (10.5.4) and (11.4.14).

MINSAT Semicentral Classes

We restrict the above construction of T0–T7 to obtain MINSAT semicentral
classes. Let N0 = M0.

Extend N0 to N1 using closed subregion decompositions analogously
to the extension of T0 to T1.

Extend N1 to N2 using duplicate rows, rows with at most one nonzero
entry, and nonpositive columns, as in the extension of M0 to M1.

Extend N2 to N3 by 1-sum and monotone compositions as in the ex-
tension of M1 to M2.

Extend N3 to N4 using linear sums analogously to the extension of T3

to T4.
Extend N4 to N5 using 1-sum and monotone sum compositions.

(14.3.4) Theorem. The classes N0–N5 are MINSAT semicentral.

Proof. The applicable results of Section 14.2 supply the conclusion.

14.4 Link to Analysis Algorithm

The construction of the central and semicentral classes of Section 14.3 is
inverse to the way in which decomposition and recognition algorithms are
employed in Algorithm ANALYSIS (13.4.4). It would be pleasing if we
could show that the matrices or matrix/vector pairs for which Algorithm
ANALYSIS (13.4.4) produces attractive solution algorithms correspond to
classes of Section 14.3. But that is not possible, since, for example, Algo-
rithm ANALYSIS (13.4.4) relies on some heuristics and restricts the search

14.4. Link to Analysis Algorithm 429

for certain k-sum decompositions to small values of k. However, one can
prove a somewhat weaker result, which says that the SAT or MINSAT
instances for which Algorithm ANALYSIS (13.4.4) produces fast solution
algorithms belong to the semicentral classes of Section 14.3. In this section,
we derive that result and use it along with some empirical evidence to argue
that the semicentral classes of Section 14.3 are of practical importance.

We begin with a definition. A solution algorithm M produced by
Algorithm ANALYSIS (13.4.4) is attractive if the time bound computed
for M is small enough to guarantee fast or at least reasonable execution
times. The definition implies that a solution algorithm M that today is
judged to be unattractive may become attractive in the future due to an
improved performance of computers. This is perfectly reasonable.

The constructions of the semicentral classes T0–T7 and N0–N5 assume
bounds on the parameter q of closed subregions decompositions, on the
parameter k of closed k-sums and linear sums, and on the value of |X21∪Y21|
of augmented sums. For present purposes, we assume that the bounds on
k and |X21 ∪ Y21| are sufficiently large so that they do not exclude cases
for which the corresponding decomposition case is accepted by Algorithm
ANALYSIS (13.4.4). We also assume that the bound on q is of reasonable
size.

Since T7 contains S0–S5 and T0–T6 and since N5 contains M0–M2 and
N0–N4, we just link T7 and N5 to the SAT and MINSAT instances for which
Algorithm ANALYSIS (13.4.4) generates attractive solution algorithmsM.

(14.4.1) Theorem. Suppose Algorithm ANALYSIS (13.4.4) produces an
attractive solution algorithmM for a given SAT or MINSAT instance. If it
is a SAT case, assume that the number of augmented sum decompositions
employed by M is bounded by the same constant used for such decompo-
sitions in the definition of T7. Then that instance is in T7 or N5, whichever
is applicable.

Proof. We sketch the arguments, using the material of Sections 13.3 and
13.4. In the general case, M utilizes monotone, 1-sum, closed, augmented,
linear, and closed subregion decompositions and the related solution algo-
rithms of Chapters 8–12, as well as the solution algorithms for the special
matrix classes of Chapter 5.

Regardless of the case of M, it is straightforward to check that the de-
composition sequences utilized by M correspond to composition sequences
used in the construction of T7 or N5, whichever is applicable.

Since M is attractive, the values of q of the closed subregion decom-
positions must be small or at least reasonable. The proof of the theorem
utilizes that fact; the earlier made assumption on the bounds on q, k, and
|X21∪Y21| used in the construction of T7 or N5; the assumption of the the-
orem on the number of augmented sums used in SAT cases; and the above
observation linking the sequences of decompositions in the construction of

430 Chapter 14. Central and Semicentral Classes

M to the composition sequences creating T7 or N5.

A number of years ago, we began to implement Algorithm ANALY-
SIS (13.4.4). We call the resulting software the Leibniz System, to honor
G. W. Leibniz (1646–1716), who first proposed that logic computations
should be employed to solve real-world problems. The implementation
effort is not yet finished and is continuing as we write this book. Neverthe-
less, the present version of the Leibniz System is sufficiently powerful to be
practically useful. That version has been used to create solution algorithms
for hundreds of SAT and MINSAT instances. In almost all cases, the solu-
tion algorithm produced by the Leibniz System has turned out to have a
small upper time bound and thus to be attractive. According to Theorem
(14.4.1), the underlying matrices or matrix/vector pairs of these cases are
in T7 or N5, respectively, assuming in the SAT case that an appropriate
bound on the number of augmented sums is used in the construction of T7.

These results constitute empirical evidence that T7 and N5 contain a
large number of SAT and MINSAT instances of real-world applications and
that Algorithm ANALYSIS (13.4.4) produces effective solution algorithms
for these applications.

14.5 Extensions and References

Section 13.7 mentions that Algorithm ANALYSIS (13.4.4) may be en-
hanced by additional, possibly specialized, decompositions and related sub-
routines, without changing the basic structure of that algorithm. Similarly,
one may enlarge the central and semicentral classes of this chapter by
adding the compositions corresponding to such additional decompositions.

A number of previously published SAT matrix classes are contained in
some of the classes described in this chapter—in particular, the matrices
with bounded bandwidth of Monien and Sudborough (1985), where the rows
are indexed by 1, 2, 3 . . . , and where any two nonzero entries of any column,
say, in rows indexed by i and j, must have |i−j| bounded by some constant;
the instances of Gallo and Scutellà (1988), which are based on a class of
Yamasaki and Doshita (1983); the instances given indirectly by Gallo and
Urbani (1989) according to a rewrite rule; and the q-Horn instances of Bo-
ros, Crama, and Hammer (1990). Except for the first reference, details
about the cited classes are included in Sections 8.7 and 9.5.

Related to, but not contained in, the classes of this chapter are the
classes of Dalal and Etherington (1992) and of Pretolani (1993a, 1996).
The cited classes are discussed in Section 8.7.

References

Agarwal, S., Sharma, P., and Mittal, A. K. (1982), An extension of the
edge covering problem, Mathematical Programming 23 (1982) 353–356.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows,
Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

Aigner, M. (1979), Combinatorial Theory, Springer-Verlag, Berlin, 1979.

Ajtai, M. (1994), The complexity of the pigeonhole principle, Combinator-
ica 14 (1994) 417–433.

Applegate, D., and Cook, W. (1993), Solving large-scale matching prob-
lems, in: Network Flows and Matching: First DIMACS Implementation
Challenge (D. S. Johnson and C. C. McGeoch, eds.), DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 12, Amer-
ican Mathematical Society, Providence, Rhode Island, 1993, pp. 557–576.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. (1992),
Proof verification and hardness of approximation problems, in: Proceed-
ings of 33rd Symposium on Foundations of Computer Science, Pitts-
burgh, Pennsylvania, 1992, IEEE Computer Society Press, Los Alamitos,
California, 1992, pp. 14–23.

Arvind, V., and Biswas, S. (1987), An O(n2) algorithm for the satisfiability
problem of a subset of propositional sentences in CNF that includes all
Horn sentences, Information Processing Letters 24 (1987) 67–69.

Aspvall, B. (1980), Recognizing disguised NR(1) instances of the satisfia-
bility problem, Journal of Algorithms 1 (1980) 97–103.

Aspvall, B., Plass, M. F., and Tarjan, R. E. (1979), A linear-time algorithm
for testing the truth of certain quantified Boolean formulas, Information
Processing Letters 8 (1979) 121–123.

431

432 References

Avron, A. (1993), Gentzen-type systems, resolution and tableaux, Journal
of Automated Reasoning 10 (1993) 265–281.

Bagchi, A., Servatius, B., and Shi, W. (1995), 2-satisfiability and diagnos-
ing faulty processors in massively parallel computing systems, Discrete
Applied Mathematics 60 (1995) 25–37.

Bartholdi, J. J., III (1982), A good submatrix is hard to find, Operations
Research Letters 1 (1982) 190–193.

Bartholdi, J. J., III, Orlin, J. B., and Ratliff, H. D. (1980), Cyclic schedul-
ing via integer programs with circular ones, Operations Research 28
(1980) 1074–1085.

Bellman, R. (1957), Dynamic Programming, Princeton University Press,
Princeton, New Jersey, 1957.

Bellman, R. E., and Dreyfus, S. E. (1962), Applied Dynamic Programming,
Princeton University Press, Princeton, New Jersey, 1962.

Ben-Ari, M. (1980), A simplified proof that regular resolution is exponen-
tial, Information Processing Letters 10 (1980) 96–98.

Berge, C. (1972), Balanced matrices, Mathematical Programming 2 (1972)
19–31.

Berge, C. (1973), Graphs and Hypergraphs, North-Holland, Amsterdam,
1973.

Berman, K. A., Franco, J. V., and Schlipf, J. S. (1995), Unique satisfia-
bility of Horn sets can be solved in nearly linear time, Discrete Applied
Mathematics 60 (1995) 77–91.

Bertsekas, D. P. (1987), Dynamic Programming, Prentice-Hall, Englewood
Cliffs, New Jersey, 1987.

Bibel, W. (1990), Short proofs of the pigeonhole formulas based on the
connection method, Journal of Automated Reasoning 6 (1990) 287–297.

Bibel, W. (1993), Deduction, Academic Press, London, 1993.

Billionnet, A., and Sutter, A. (1992), An efficient algorithm for the 3-
satisfiability problem, Operations Research Letters 12 (1992) 29–36.

Blair, C. E., Jeroslow, R. G., and Lowe, J. K. (1986), Some results and ex-
periments in programming techniques for propositional logic, Computers
and Operations Research 13 (1986) 633–645.

Blass, A., and Gurevich, Y. (1982), On the unique satisfiability problem,
Information and Control 55 (1982) 80–88.

Böhm, M. (1996), Verteilte Lösung harter Probleme: Schneller Lastaus-
gleich, thesis, University of Cologne, published by Shaker-Verlag, Aachen,
Germany, 1996.

Böhm, M., and Speckenmeyer, E. (1996), A fast parallel SAT-solver – effi-
cient workload balancing, Annals of Mathematics and Artificial Intelli-
gence 9 (1996) 1–20.

References 433

Bondy, J. A., and Murty, U. S. R. (1976), Graph Theory with Applications,
Macmillan, London, 1976.

Boros, E., and Čepek, O. (1994), On the complexity of Horn minimization,
RUTCOR Research Report RRR 1-94, Rutgers University, 1994.

Boros, E., and Čepek, O. (1995), Perfect 0,±1 matrices, Discrete Mathe-
matics, to appear.

Boros, E., Crama, Y., and Hammer, P. L. (1990), Polynomial-time infer-
ence of all valid implications for Horn and related formulae, Annals of
Mathematics and Artificial Intelligence 1 (1990) 21–32.

Boros, E., Crama, Y., Hammer, P. L., and Saks, M. (1994), A complexity
index for satisfiability problems, SIAM Journal on Computing 23 (1994)
45-49.

Boros, E., and Hammer, P. L. (1992), A generalization of the pure literal
rule for the satisfiability problem, RUTCOR Research Report RRR 20-
92, Rutgers University, 1992.

Boros, E., Hammer, P. L., and Sun, X. (1994), Recognition of q-Horn for-
mulae in linear time, Discrete Applied Mathematics 55 (1994) 1–13.

Brown, C. A., and Purdom, P. W., Jr. (1981), An average time analysis of
backtracking, SIAM Journal on Computing 10 (1981) 583–593.

Bryant, R. E. (1986), Graph-based algorithms for Boolean function manip-
ulation, IEEE Transactions on Computers C-35 (1986) 677–691.

Bugrara, K. M., Pan, Y., and Purdom, P. W., Jr. (1989), Exponential
average time for the pure literal rule, SIAM Journal on Computing 18
(1989) 409–418.

Bugrara, K. M., and Purdom, P. W. (1988), An exponential lower bound
for the pure literal rule, Information Processing Letters 27 (1988) 215–
219.

Buro, M., and Kleine Büning, H. (1993), Report on a SAT competition,
Bulletin of the European Association for Theoretical Computer Science
49 (1993) 143–151.

Buss, S. R. (1987), Polynomial size proofs of the propositional pigeonhole
principle, Journal of Symbolic Logic 52 (1987) 916–927.

Buss, S. R., and Turán, G. (1988), Resolution proofs of generalized pigeon-
hole principles, Theoretical Computer Science 62 (1988) 311–317.

Carraresi, P., Gallo, G., and Rago, G. (1993), A hypergraph model for
constraint logic programming and applications to bus drivers’ scheduling,
Annals of Mathematics and Artificial Intelligence 8 (1993) 247–270.

Čepek, O. (1995), Structural properties and minimization of Horn Boolean
functions, thesis, Rutgers University, 1995.

434 References

Chandrasekaran, R. (1970), A special case of the complementary pivot
problem, Opsearch 7 (1970) 263–268.

Chandrasekaran, R. (1984), Integer programming problems for which a
simple rounding type algorithm works, in: Progress in Combinatorial
Optimization (W. R. Pulleyblank, ed.), Proceedings of the first week of
the Silver Jubilee Conference on Combinatorics, University of Waterloo,
1982, Academic Press Canada, Toronto, 1984, pp. 101–106.

Chandrasekaran, R., Kabadi, S. N., and Lakshminarayanan, S. (1996), An
extension of a theorem of Fulkerson and Gross, Linear Algebra and Its
Applications 246 (1996) 23–29.

Chandru, V., Coullard, C. R., and Montañez, M. (1988), On Horn and re-
lated structures in propositional logic, working paper CC-88-32, Purdue
University, 1988.

Chandru, V., Coullard, C. R., Hammer, P. L., Montañez, M., and Sun, X.
(1990), On renamable Horn and generalized Horn functions, Annals of
Mathematics and Artificial Intelligence 1 (1990) 33–47.

Chandru, V., and Hooker, J. N. (1991), Extended Horn sets in propo-
sitional logic, Journal of the Association for Computing Machinery 38
(1991) 205–221.

Chandru, V., and Hooker, J. N. (1992), Detecting embedded Horn struc-
ture in propositional logic, Information Processing Letters 42 (1992) 109–
111.

Chandru, V., and Hooker, J. N. (1997), Optimization Methods for Logical
Inference, in preparation.

Chang, C. L. (1970), The unit proof and the input proof in theorem prov-
ing, Journal of the Association for Computing Machinery 17 (1970) 698–
707.

Chang, C.-L., and Lee, R. C.-T. (1973), Symbolic Logic and Mechanical
Theorem Proving, Academic Press, New York, 1973.

Cheriyan, J., Cunningham, W. H., Tunçel, L., and Wang, Y. (1996), A
linear programming and rounding approach to Max 2-SAT, in: Cliques,
Coloring, and Satisfiability: Second DIMACS Implementation Challenge
(D. S. Johnson and M. A. Trick, eds.), DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, Vol. 26, American Mathemat-
ical Society, Providence, Rhode Island, 1996, pp. 395–414.

Chvátal, V. (1983), Linear Programming, Freeman, New York, 1983.

Chvátal, V., and Szemerédi, E. (1988), Many hard examples for resolution,
Journal of the Association for Computing Machinery 35 (1988) 759–768.

Cohn, P. M. (1982), Algebra, Vol. 1 (2nd edition), Wiley, Chichester, 1982.

References 435

Conforti, M., and Cornuéjols, G. (1992), A class of logic problems solvable
by linear programming, in: Proceedings of 33rd Symposium on Founda-
tions of Computer Science, Pittsburgh, Pennsylvania, 1992, IEEE Com-
puter Society Press, Los Alamitos, California, 1992, pp. 670–675. Also,
Journal of the Association for Computing Machinery 42 (1995) 1107–
1113.

Conforti, M., and Cornuéjols, G. (1995), Balanced 0,±1 matrices, bicolor-
ing and total dual integrality, Mathematical Programming (A) 71 (1995)
249–258.

Conforti, M., Cornuéjols, G., and de Francesco, C. (1997), Perfect 0,±1
matrices, Linear Algebra and Its Applications 253 (1997) 299–309.

Conforti, M., Cornuéjols, G., Kapoor, A., and Vušković, K. (1994a), Bal-
anced {0,±1} matrices. I. Decomposition, working paper, Carnegie-
Mellon University, 1994.

Conforti, M., Cornuéjols, G., Kapoor, A., and Vušković, K. (1994b), Bal-
anced {0,±1}matrices. II. Recognition Algorithm, working paper, Carn-
egie-Mellon University, 1994.

Conforti, M., Cornuéjols, G., Kapoor, A., and Vušković, K. (1996), Perfect,
ideal and balanced matrices, Ricerca Operativa 26 (1996) 66–80. Also
appeared in Annotated Bibliographies in Combinatorial Optimization (M.
Dell’Amico, F. Maffioli, and S. Martello, eds.), 1997, pp. 81–94.

Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K., Rao, M. R. (1994),
Balanced matrices, in: Mathematical Programming: State of the Art
1994 (J. R. Birge and K. G. Murty, eds.), Proceedings of 15th Interna-
tional Symposium on Mathematical Programming, University of Michi-
gan, 1994, pp. 1–33.

Conforti, M., Cornuéjols, G., and Rao, M. R. (1997), Decomposition of
balanced matrices, working paper, Carnegie-Mellon University, 1997.

Conforti, M., Cornuéjols, G., and Truemper, K. (1994), From totally uni-
modular to balanced {0,±1} matrices: A family of integer polytopes,
Mathematics of Operations Research 19 (1994) 21–23.

Cook, S. A. (1971), The complexity of theorem-proving procedures, in:
Proceedings of Third Annual ACM Symposium on Theory of Computing,
Shaker Heights, Ohio, 1971. ACM, New York, 1971, pp. 151–158.

Cook, S. A. (1976), A short proof of the pigeon principle using extended
resolution, ACM SIGACT News 8 (1976) 28–32.

Cook, S., and Pitassi, T. (1990), A feasibly constructive lower bound for
resolution proofs, Information Processing Letters 34 (1990) 81–85.

Cook, S. A., and Reckhow, R. A. (1979), The relative efficiency of propo-
sitional proof systems, Journal of Symbolic Logic 44 (1979) 36–50.

436 References

Cook, W., Coullard, C. R., and Turán, G. (1987), On the complexity of
cutting-plane proofs, Discrete Applied Mathematics 18 (1987) 25–38.

Cottle, R. W., Pang, J.-S., and Stone, R. E. (1992), The Linear Comple-
mentarity Problem, Academic Press, Boston, 1992.

Crama, Y., Ekin, O., and Hammer, P. L. (1997), Variable and term removal
from Boolean formulae, Discrete Applied Mathematics 75 (1997) 217–230.

Crawford, J. M., and Auton, L. D. (1996), Experimental results on the
crossover point in random 3-SAT, Artificial Intelligence 81 (1996) 31–57.

Cunningham, W. H., and Edmonds, J. (1980), A combinatorial decompo-
sition theory, Canadian Journal of Mathematics 32 (1980) 734–765.

Dalal, M., and Etherington, D. W. (1992), A hierarchy of tractable satisfi-
ability problems, Information Processing Letters 44 (1992) 173–180.

Davis, M., and Putnam, H. (1960), A computing procedure for quantifi-
cation theory, Journal of the Association for Computing Machinery 7
(1960) 201–215.

Davis, M., Logemann, G., and Loveland, D. W. (1962), A machine program
for theorem-proving, Communications of the Association for Computing
Machinery 5 (1962) 394–397.

Derigs, U., and Metz, A. (1991), Solving (large scale) matching problems
combinatorially, Mathematical Programming (A) 50 (1991) 113–121.

Dilworth, R. P. (1950), A decomposition theorem for partially ordered sets,
Annals of Mathematics 51 (1950) 161–166.

Dorfman, R., Samuelson, P. A., and Solow, R. M. (1958), Linear Program-
ming and Economic Analysis, McGraw-Hill, New York, 1958.

Dowling, W. F., and Gallier, J. H. (1984), Linear-time algorithms for test-
ing the satisfiability of propositional Horn formulae, Journal of Logic
Programming 1 (1984) 267–284.

Dreyfus, S. E., and Law, A. M. (1977), The Art and Theory of Dynamic
Programming, Academic Press, New York, 1977.

Dubois, O. (1991), Counting the number of solutions for instances of sat-
isfiability, Theoretical Computer Science 81 (1991) 49–64.

Dubois, O., and Carlier, J. (1991), Probabilistic approach to the satisfia-
bility problem, Theoretical Computer Science 81 (1991) 65–75.

Edmonds, J. (1965a), Maximum matching and a polyhedron with {0, 1}
vertices, Journal of Research of the National Bureau of Standards (B)
69B (1965) 125–130.

Edmonds, J. (1965b), Paths, trees, and flowers, Canadian Journal of Math-
ematics 17 (1965) 449–467.

Edmonds, J. (1967), Systems of distinct representatives and linear algebra,
Journal of Research of the National Bureau of Standards (B) 71B (1967)
241–245.

References 437

Eiter, T., Kilpeläinen, P., and Mannila, H. (1995), Recognizing renam-
able generalized propositional Horn formulas is NP-complete, Discrete
Applied Mathematics 59 (1995) 23–31.

Ekin, O., Hammer, P. L., and Peled, U. N. (1997), Horn functions and
submodular Boolean functions, Theoretical Computer Science 175 (1997)
257–270.

Elias, P., Feinstein, A., and Shannon, C. E. (1956), A note on the maximum
flow through a network, IRE Transactions on Information Theory IT-2
(1956) 117-119.

Evan, S. A., Itai, A., and Shamir, A. (1976), On the complexity of timetable
and multicommodity flow problems, SIAM Journal on Computing 5
(1976) 691–703.

Faddeev, D. K., and Faddeeva, V. N. (1963), Computational Methods of
Linear Algebra, Freeman, San Francisco, 1963.

Feige, U., and Goemans, M. X. (1995), Approximating the value of two
prover proof systems, with applications to MAX2SAT and MAXDICUT,
in: Proceedings of the 3rd Israel Symposium on the Theory of Computing
and Systems, 1995, pp. 182–189.

Fitting, M. (1990), First-Order Logic and Automated Theorem Proving,
Springer-Verlag, New York, 1990.

Ford, L. R., Jr., and Fulkerson, D. R. (1956), Maximal flow through a
network, Canadian Journal of Mathematics 8 (1956) 399–404.

Ford, L. R., Jr., and Fulkerson, D. R. (1962), Flows in Networks, Princeton
University Press, Princeton, New Jersey, 1962.

Fouks, J.-D. (1992), Tseitin’s formulas revisited, Theoretical Computer Sci-
ence 99 (1992) 315–326.

Franco, J. (1983), Probabilistic analysis of the Davis Putnam procedure for
solving the satisfiability problem, Discrete Applied Mathematics 5 (1983)
77–87.

Franco, J. (1986), On the probabilistic performance of algorithms for the
satisfiability problem, Information Processing Letters 23 (1986) 103–106.

Franco, J. (1991), Elimination of infrequent variables improves average case
performance of satisfiability algorithms, SIAM Journal on Computing 20
(1991) 1119–1127.

Franco, J. (1993), On the occurrence of null clauses in random instances of
satisfiability, Discrete Applied Mathematics 41 (1993) 203–209.

Franco, J., and Ho, Y. C. (1988), Probabilistic performance of a heuristic
for the satisfiability problem, Discrete Applied Mathematics 22 (1988/89)
35–51.

438 References

Franco, J., and Paull, M. (1983), Probabilistic analysis of the Davis Put-
nam procedure for solving the satisfiability problem, Discrete Applied
Mathematics 5 (1983) 77–87.

Franco, J., and Swaminathan, R. P. (1997a), Average case results for sat-
isfiability algorithms under the random clause width model, Annals of
Mathematics and Artificial Intelligence 20 (1997) 357–391.

Franco, J., and Swaminathan, R. P. (1997b), Toward a good algorithm for
determining unsatisfiability of propositional formulas, Journal of Com-
binatorial Optimization, to appear.

Freeman, J. W. (1996), Hard random 3-SAT problems and the Davis–
Putnam procedure, Artificial Intelligence 81 (1996) 183–198.

Fulkerson, D. R., Hoffman, A. J., and Oppenheim, R. (1974), On balanced
matrices, Mathematical Programming Study 1 (1974) 120–132.

Galil, Z. (1977a), On the complexity of regular resolution and the Davis–
Putnam procedure, Theoretical Computer Science 4 (1977) 23–46.

Galil, Z. (1977b), On resolution with clauses of bounded size, SIAM Journal
on Computing 6 (1977) 444–459.

Gallo, G., Gentile, C., Pretolani, D., and Rago, G. (1997), Max Horn SAT
and the minimum cut problem in directed hypergraphs, Mathematical
Programming (A), to appear.

Gallo, G., and Pretolani, D. (1995), A new algorithm for the propositional
satisfiability problem, Discrete Applied Mathematics 60 (1995) 159–179.

Gallo, G., and Rago, G. (1994), The satisfiability problem for the Schöenfin-
kel-Bernays fragment: Partial instantiation and hypergraph algorithms,
working paper TR-4/94, Department of Computer Science, University of
Pisa, Italy, 1994.

Gallo, G., and Scutellà, M. G. (1988), Polynomially Solvable Satisfiability
Problems, Information Processing Letters 29 (1988) 221–227.

Gallo, G., and Urbani, G. (1989), Algorithms for testing the satisfiability
of propositional formulae, Journal of Logic Programming 7 (1989) 45–61.

Garey, M. R., and Johnson, D. S. (1979), Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976), Some simplified
NP-complete graph problems, Theoretical Computer Science 1 (1976)
237–267.

Garfinkel, R. S., and Nemhauser, G. L. (1972), Integer Programming, Wi-
ley, New York, 1972.

van Gelder, A. (1988), A satisfiability tester for non-clausal propositional
calculus, Information and Computation 79 (1988) 1–21.

References 439

Genesereth, M. R., and Nilsson, N. J. (1987), Logical Foundations of Arti-
ficial Intelligence, Morgan Kaufmann, Los Altos, California, 1987.

Gent, I. P., and Walsh, T. (1996), The satisfiability constraint gap, Artifi-
cial Intelligence 81 (1996) 59–80.

Ghallab, M., and Escalada-Imaz, E. (1991), A linear control algorithm for
a class of rule-based systems, Journal of Logic Programming 11 (1991)
117–132.

Goemans, M. X., and Williamson, D. P. (1994), New 3

4
-approximation al-

gorithms for the maximum satisfiability problem, SIAM Journal on Dis-
crete Mathematics 7 (1994) 656–666.

Goemans, M. X., and Williamson, D. P. (1995), Improved approximation
algorithms for maximum cut and satisfiability problems using semidefi-
nite programming, Journal of the Association for Computing Machinery
42 (1995) 1115–1145.

Goerdt, A. (1992a), Davis–Putnam resolution versus unrestricted resolu-
tion, Annals of Mathematics and Artificial Intelligence 6 (1992) 169–184.

Goerdt, A. (1992b), Unrestricted resolution versus N-resolution, Theoreti-
cal Computer Science 93 (1992) 159–167.

Goerdt, A. (1993), Regular resolution versus unrestricted resolution, SIAM
Journal on Computing 22 (1993) 661–683.

Goldberg, A., Purdom, P. W., Jr., and Brown, C. A. (1982), Average time
analysis of simplified Davis–Putnam procedures, Information Processing
Letters 15 (1982) 72–75. Corrigendum, Information Processing Letters
16 (1983) 213.

Gomory, R. E. (1965), On the relation between integer and noninteger
solutions to linear programs, Proceedings of the National Academy of
Sciences 53 (1965) 260–265.

Gomory, R. E. (1967), Faces of an integer polyhedron, Proceedings of the
National Academy of Sciences 57 (1967) 16–18.

Gomory, R. E. (1969), Some polyhedra related to combinatorial problems,
Linear Algebra and Its Applications 2 (1969) 451–558.

Grötschel, M., Lovász, L., and Schrijver, A. (1993), Geometric Algorithms
and Combinatorial Optimization (2nd edition), Springer-Verlag, Heidel-
berg, 1993.

Guan, J. W., and Bell, D. A. (1991), Evidence Theory and Its Applications,
Vol. 1, (Studies in Computer Science and Artificial Intelligence No. 7),
North-Holland, Amsterdam, 1991.

Guenin, B. (1997), Perfect and ideal 0,±1 matrices, Mathematics of Oper-
ations Research, to appear.

Gusfield, D., and Pitt, L. (1992), A bounded approximation for the mini-
mum cost 2-Sat problem, Algorithmica 8 (1992) 103–117.

440 References

Hailperin, T. (1986), Boole’s Logic and Probability (2nd edition), (Studies
in Computer Science and Artificial Intelligence No. 85), North-Holland,
Amsterdam, 1986.

Haken, A. (1985), The intractability of resolution, Theoretical Computer
Science 39 (1985) 297–308.

Hall, P. (1935), On representatives of subsets, Journal of the London Math-
ematical Society 10 (1935) 26–30.

Hamilton, A. G. (1988), Logic for Mathematicians, Cambridge University
Press, Cambridge, 1988.

Hammer, P. L., and Kogan, A. (1992), Horn functions and their DNFs,
Information Processing Letters 44 (1992) 23–29.

Hammer, P. L., and Kogan, A. (1993), Optimal compression of proposi-
tional Horn knowledge bases: Complexity and approximation, Artificial
Intelligence 64 (1993) 131–145.

Hammer, P. L., and Kogan, A. (1995), Quasi-acyclic propositional Horn
knowledge bases: Optimal compression, IEEE Transactions on Knowl-
edge and Data Engineering 7 (1995) 751–762.

Hammer, P. L., and Kogan, A. (1996), Essential and redundant rules in
Horn knowledge bases, Decision Support Systems 16 (1996) 119–130.

Hansen, P. (1976), A cascade algorithm for the logical closure of a set of
binary relations, Information Processing Letters 5 (1976) 50–54.

Hansen, P., and Jaumard, B. (1985), Uniquely solvable quadratic Boolean
equations, Discrete Applied Mathematics 12 (1985) 147–154.

Hansen, P., and Jaumard, B. (1990), Algorithms for the maximum satisfi-
ability problem, Computing 44 (1990) 279–303.

Hansen, P., Jaumard, B., and Minoux, M. (1986), A linear expected-time
algorithm for deriving all logical conclusions implied by a set of Boolean
inequalities, Mathematical Programming 34 (1986) 223–231.

Hansen, P., Jaumard, B., and Plateau, G. (1993), An extension of nested
satisfiability, GERAD Research Report G-93-27, McGill University, 1993,
and RUTCOR Research Report RRR 29-93, Rutgers University, 1993.

Harary, F. (1969), Graph Theory, Addison-Wesley, Reading, Massachu-
setts, 1969.

Harche, F., Hooker, J. N., and Thompson, G. L. (1994), A computational
study of satisfiability algorithms for propositional logic, ORSA Journal
on Computing 6 (1994) 423–435.

Harche, F., and Thompson, G. L. (1994), The column subtraction algo-
rithm: An exact method for solving weighted set covering, packing, and
partitioning problems, Computers and Operations Research 21 (1994)
689–705.

References 441

Hébrard, J.-J. (1994), A linear algorithm for renaming a set of clauses as
a Horn set, Theoretical Computer Science 124 (1994) 343–350.

Hébrard, J.-J. (1995), Unique Horn renaming and unique 2-satisfiability,
Information Processing Letters 54 (1995) 235–239.

Heller, I., and Tompkins, C. B. (1956), An extension of a theorem of
Dantzig’s, in: Linear Inequalities and Related Systems (H. W. Kuhn and
A. W. Tucker, eds.), Princeton University Press, Princeton, New Jersey,
1956, pp. 247–254.

Henschen, L., and Wos, L. (1974), Unit refutation and Horn sets, Journal
of the Association for Computing Machinery 21 (1974) 590–605.

Heusch, P. (1994), Implikation der Implikation, thesis, University of Düssel-
dorf, Germany, 1994.

Hochbaum, D. S., Megiddo, N., Naor, J., and Tamir, A. (1993), Tight
bounds and 2-approximation algorithms for integer programs with two
variables per inequality, Mathematical Programming 62 (1993) 69–83.

Hoffman, A. J., and Kruskal, J. B. (1956), Integral boundary points of con-
vex polyhedra, in: Linear Inequalities and Related Systems (H. W. Kuhn
and A. W. Tucker, eds.), Princeton University Press, Princeton, New
Jersey, 1956, pp. 223–246.

Hooker, J. N. (1988a), Resolution vs. cutting plane solution of inference
problems: Some computational experience, Operations Research Letters
7 (1988) 1–7.

Hooker, J. N. (1988b), A quantitative approach to logical inference, Deci-
sion Support Systems 4 (1988) 45–69.

Hooker, J. N. (1988c), Generalized resolution and cutting planes, Annals
of Operations Research 12 (1988) 217–239.

Hooker, J. N. (1989), Input proofs and rank one cutting planes, ORSA
Journal on Computing 1 (1989) 137–145.

Hooker, J. N. (1992), Generalized resolution for 0-1 linear inequalities, An-
nals of Mathematics and Artificial Intelligence 6 (1992) 271–286.

Hooker, J. N. (1993), Solving the incremental satisfiability problem, Jour-
nal of Logic Programming 15 (1993) 177–186.

Hooker, J. N. (1996), Resolution and the integrality of satisfiability poly-
topes, Mathematical Programming 74 (1996) 1–10.

Hooker, J. N., and Fedjki, C. (1990), Branch-and-cut solution of inference
problems in propositional logic, Annals of Mathematics and Artificial
Intelligence 1 (1990) 123–139.

Hooker, J. N., and Vinay, V. (1995), Branching rules for satisfiability, Jour-
nal of Automated Reasoning 15 (1995) 359–383.

442 References

Hopcroft, J. E., and Tarjan, R. E. (1973), Dividing a graph into tricon-
nected components, SIAM Journal on Computing 2 (1973) 135–158.

Horn, A. (1951), On sentences which are true of direct unions of algebras,
Journal of Symbolic Logic 16 (1951) 14–21.

Hu, T. C. (1969), Integer Programming and Network Flows, Addison-Wes-
ley, Reading, Massachusetts, 1969.

Hunt, H. B., III, and Stearns, R. E. (1990), The complexity of very simple
Boolean formulas with applications, SIAM Journal on Computing 19
(1990) 44–70.

Itai, A., and Makowsky, J. A. (1982), On the complexity of Herbrand’s
theorem, working paper 243, Department of Computer Science, Israel
Institute of Technology, 1982.

Itai, A., and Makowsky, J. A. (1987), Unification as a complexity measure
for logic programming, Journal of Logic Programming 4 (1987) 105–117.

Iwama, K. (1989), CNF satisfiability test by counting and polynomial av-
erage time, SIAM Journal on Computing 18 (1989) 385–391.

Jacobson, N. (1985), Basic Algebra, Vol. 1 (2nd edition), Freeman, New
York, 1985.

Jaumard, B., Marchioro, P., Morgana, A., Petreschi, R., and Simeone,
B. (1990), On-line 2-satisfiability, Annals of Mathematics and Artificial
Intelligence 1 (1990) 155–165.

Jaumard, B., and Simeone, B. (1987), On the complexity of the maximum
satisfiability problem for Horn formulas, Information Processing Letters
26 (1987/88) 1–4.

Jeroslow, R. G. (1989), Logic-Based Decision Support - Mixed Integer Model
Formulation, monograph, published as vol. 40 of Annals of Discrete
Mathematics, 1989.

Jeroslow, R. G., Martin, K., Rardin, R. L., Wang, J. (1992), Gainfree Leon-
tief substitution flow problems, Mathematical Programming 57 (1992)
375–414.

Jeroslow, R. G., and Wang, J. (1989), Dynamic programming, integral
polyhedra, and Horn clause knowledge bases, ORSA Journal on Com-
puting 1 (1989) 7–19.

Jeroslow, R. G., and Wang, J. (1990), Solving propositional satisfiability
problems, Annals of Mathematics and Artificial Intelligence 1 (1990)
167–187.

Johnson, D. S. (1974), Approximation algorithms for combinatorial prob-
lems, Journal of Computer and Systems Sciences 9 (1974) 256–278.

Johnson, E. L., and Padberg, M. W. (1982), Degree-two inequalities, clique
facets, and biperfect graphs, Annals of Discrete Mathematics 16 (1982)
169–187.

References 443

Kamath, A. P., Karmarkar, N. K., Ramakrishnan, K. G., and Resende,
M. G. C. (1990), Computational experience with an interior point algo-
rithm on the satisfiability problem, Annals of Operations Research 25
(1990) 43–58.

Kamath, A. P., Karmarkar, N. K., Ramakrishnan, K. G., and Resende,
M. G. C. (1992), A continuous approach to inductive inference, Mathe-
matical Programming 57 (1992) 215–238.

Karloff, H. (1991), Linear Programming, Birkhäuser, Boston, 1991.

Kleine Büning, H. (1990), Existence of simple propositional formulas, In-
formation Processing Letters 36 (1990) 177–182.

Kleine Büning, H. (1993), On generalized Horn formulas and k-resolution,
Theoretical Computer Science 116 (1993) 405–413.

Kleine Büning, H., and Lettmann, T. (1994), Aussagenlogik: Deduktion
und Algorithmen, Teubner, Stuttgart, Germany, 1994.

Kleine Büning, H., and Löwen, U. (1989), Optimizing propositional calcu-
lus formulas with regard to questions of deducibility, Information and
Computation 80 (1989) 18–43.

Kneale, W., and Kneale, M. (1984), The Development of Logic, Clarendon
Press, Oxford, 1984.

Knuth, D. E. (1990), Nested satisfiability, Acta Informatica 28 (1990) 1–6.

König, D. (1936), Theorie der endlichen und unendlichen Graphen, Akade-
mische Verlagsgesellschaft, Leipzig, 1936 (reprinted: Chelsea, New York,
1950, and Teubner, Leipzig, 1986).

Koutsoupias, E., and Papadimitriou, C. H. (1992), On the greedy algorithm
for satisfiability, Information Processing Letters 43 (1992) 53–55.

Kratochv́ıl, J. (1994), A special planar satisfiability problem and a conse-
quence of its NP-completeness, Discrete Applied Mathematics 52 (1994)
233–252.

Kratochv́ıl, J., and Kr̆ivánek, M. (1993), Satisfiability of co-nested formu-
las, Acta Informatica 30 (1993) 397–403.

Kratochv́ıl, J., Savický, P., and Tuza, Z. (1993), One more occurrence of
variables makes satisfiability jump from trivial to NP-complete, SIAM
Journal on Computing 22 (1993) 203–210.

Kullmann, O. (1997a), A generalization of extended resolution, Discrete
Applied Mathematics, to appear.

Kullmann, O. (1997b), Worst-case analysis, 3-SAT decision and lower
bounds: Approaches for improved SAT algorithms, in: The Satisfiability
(SAT) Problem (D. Du, J. Gu, and P. Pardalos, eds.), DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 35, Amer-
ican Mathematical Society, Providence, Rhode Island, 1997, pp. 261–313.

444 References

Kullmann, O. (1997c), A systematical approach to 3-SAT-decision, yielding
3-SAT-decision in less than 1.5045n steps, Theoretical Computer Science,
to appear.

Kullmann, O., and Luckhardt, H. (1997), Deciding propositional tautolo-
gies: Algorithms and their complexity, working paper, University of
Frankfurt, Germany, 1997.

Kung, J. P. S. (1986), A Source Book in Matroid Theory, Birkhäuser, Bos-
ton, 1986.

Lagarias, J. C. (1985), The computational complexity of simultaneous dio-
phantine approximation problems, Siam Journal on Computing 14 (1985)
196–209.

Lakshminarayanan, S. and Chandrasekaran, R. (1994), A rounding algo-
rithm for integer programs, Discrete Applied Mathematics 50 (1994) 267–
282.

Lancaster, P., and Tismenetsky, M. (1985), The Theory of Matrices with
Applications, Academic Press, Orlando, Florida, 1985.

Lang, S. (1984), Algebra, Addison-Wesley, Reading, Massachusetts, 1984.

Larrabee, T. (1992), Test pattern generation using Boolean satisfiability,
IEEE Transactions on Computer-Aided Design 11 (1992) 4–15.

Lawler, E. L. (1976), Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

Leontief, W. (1986), Input-Output Economics (2nd edition), Oxford Uni-
versity Press, New York, 1986.

Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992), SETHEO: A
high-performance theorem prover, Journal of Automated Reasoning 8
(1992) 183–212.

Lewis, H. R. (1978), Renaming a set of clauses as a Horn set, Journal of
the Association for Computing Machinery 25 (1978) 134–135.

Lewis, J. M., and Yannakakis, M. (1980), The node-deletion problem for
hereditary properties is NP-complete, Journal of Computer and System
Sciences 20 (1980) 219–230.

Lichtenstein, D. (1982), Planar formulae and their uses, SIAM Journal on
Computing 11 (1982) 329–343.

Lieberherr, K. J. (1982), Algorithmic extremal problems in combinatorial
optimization, Journal of Algorithms 3 (1982) 225–244.

Lieberherr, K. J., and Specker, E. (1981), Complexity of partial satisfac-
tion, Journal of the Association for Computing Machinery 28 (1981)
411–421.

Lindhorst, G., and Shahrokhi, F. (1989), On renaming a set of clauses as
a Horn set, Information Processing Letters 30 (1989) 289–293.

References 445

Lloyd, J. W. (1987), Foundations of Logic Programming (2nd edition),
Springer-Verlag, Berlin, 1987.

Lovász, L., and Plummer, M. D. (1986), Matching Theory, Akadémiai
Kiadó, Budapest, 1986.

Loveland, D. W. (1978), Automated Theorem Proving: A Logical Basis,
North-Holland, Amsterdam, 1978.

Loveland, D. W. (1984), Automated theorem-proving: A quarter-century
review, Contemporary Mathematics 29 (1984) 1–45.

MacLane, S., and Birkhoff, G. (1988), Algebra (3rd edition), Macmillan,
New York, 1988.

Mannila, H., and Mehlhorn, K. (1985), A fast algorithm for renaming a
set of clauses as a Horn set, Information Processing Letters 21 (1985)
269–272.

Mayer, J., Mitterreiter, I., and Radermacher, F. J. (1995), Running time
experiments on some algorithms for solving propositional satisfiability
problems, Annals of Operations Research 55 (1995) 139–178.

Meltzer, B. (1965), Theorem-proving for computers: Some results on reso-
lution and renaming, Computer Journal 8 (1965/66) 341–343.

Minoux, M. (1988), LTUR: A simplified linear-time unit resolution al-
gorithm for Horn formulae and computer implementation, Information
Processing Letters 29 (1988) 1–12.

Minoux, M. (1992), The unique Horn-satisfiability problem and quadratic
Boolean equations, Annals of Mathematics and Artificial Intelligence 6
(1992) 253–266.

Mitchell, D. G., and Levesque, H. J. (1996), Some pitfalls for experimenters
with random SAT, Artificial Intelligence 81 (1996) 111–125.

Monien, B., and Speckenmeyer, E. (1985), Solving satisfiability in less than
2n steps, Discrete Applied Mathematics 10 (1985) 287–295.

Monien, B., and Sudborough, I. H. (1985), Bandwidth constrained NP-
complete problems, Theoretical Computer Science 41 (1985) 141–167.

Nemhauser, G. L., and Trotter, L. E., Jr. (1975), Vertex packings: Struc-
tural properties and algorithms, Mathematical Programming 8 (1975)
232–248.

Nemhauser, G. L., and Wolsey, L. A. (1988), Integer and Combinatorial
Optimization, Wiley, New York, 1988.

Nerode, A., and Shore, R. (1993), Logic for Applications, Springer-Verlag,
New York, 1993.

Newman, J. R. (1956), The World of Mathematics, Vols. 3 and 4, Simon
and Schuster, New York, 1956.

446 References

Nobili, P., and Sassano, A. (1997), (0,±1) ideal matrices, Mathematical
Programming (A) 80 (1997) 253–270.

Ore, O. (1962), Theory of Graphs (American Mathematical Society Col-
loquium Publications, Vol. 38), American Mathematical Society, Provi-
dence, Rhode Island, 1962.

Oxley, J. G. (1992), Matroid Theory, Oxford University Press, Oxford,
1992.

Paris, J. B., Wilkie, A. J., and Woods, A. R. (1988), Provability of the
pigeonhole principle and the existence of infinitely many primes, Journal
of Symbolic Logic 53 (1988) 1235–1244.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, San Mateo, California, 1988.

Petreschi, R., and Simeone, B. (1980), A switching algorithm for the solu-
tion of quadratic Boolean equations, Information Processing Letters 11
(1980) 193–198.

Petreschi, R., and Simeone, B. (1991), Experimental comparison of 2-satis-
fiability algorithms, Operations Research 25 (1991) 241–264.

Poljak, S., and Turźık, D. (1982), A polynomial algorithm for constructing
a large bipartite graph, with an application to a satisfiability problem,
Canadian Journal of Mathematics 34 (1982) 519–524.

Pretolani, D. (1993a), Satisfiability and Hypergraphs, thesis TD-12/93, De-
partment of Computer Science, University of Pisa, Italy, 1993.

Pretolani, D. (1993b), A linear time algorithm for unique Horn satisfiability,
Information Processing Letters 48 (1993) 61–66.

Pretolani, D. (1994), Hierarchies of polynomially solvable satisfiability prob-
lems, Annals of Mathematics and Artificial Intelligence 17 (1996) 339–
357.

Pretolani, D. (1996), Efficiency and stability of hypergraph SAT algo-
rithms, in: Cliques, Coloring, and Satisfiability: Second DIMACS Im-
plementation Challenge (D. S. Johnson and M. A. Trick, eds.), DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Vol. 26, American Mathematical Society, Providence, Rhode Is-
land, 1996, pp. 479–498.

Purdom, P. W., Jr. (1984), Solving satisfiability with less searching, IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-6
(1984) 510–513.

Purdom, P. W., Jr. (1990), A survey of average time analysis of satisfiability
algorithms, Journal of Information Processing 13 (1990) 449–455.

Purdom, P. W., Jr., and Brown, C. A. (1985a), The pure literal rule and
polynomial average time, SIAM Journal on Computing 14 (1985) 943–
953.

References 447

Purdom, P. W., Jr., and Brown, C. A. (1985b), The Analysis of Algorithms,
Holt, Rinehart and Winston, New York, 1985.

Purdom, P. W., Jr., and Brown, C. A. (1987), Polynomial-average-time
satisfiability problems, Information Sciences 41 (1987) 23–42.

Rago, G. (1994), Optimization, Hypergraphs and Logical Inference, thesis
TD-4/94, Department of Computer Science, University of Pisa, Italy,
1994.

Recski, A. (1989), Matroid Theory and Its Applications in Electrical Net-
works and Statics, Springer-Verlag, Heidelberg, 1989.

Robinson, J. A. (1965a), A machine-oriented logic based on the resolution
principle, Journal of the Association for Computing Machinery 12 (1965)
23–41.

Robinson, J. A. (1965b), Automatic deduction with hyper-resolution, In-
ternational Journal of Computer Mathematics 1 (1965) 227–234.

Rodošek, R. (1996), A new approach on solving 3-satisfiability, in: Artificial
Intelligence and Symbolic Mathematical Computation (J. Calmet, J. A.
Campbell, and J. Pfalzgraf, eds.), Proceedings of AISMC-3 International
Conference, Steyr, Austria, 1996, published as vol. 1138 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1996, pp. 197–212.

Rodošek, R., and Schiermeyer, I. (1997), Binary decisions for solving 3-
satisfiability problems, Discrete Applied Mathematics, to appear.

Salkin, H. M. (1975), Integer Programming, Addison-Wesley, Reading Mas-
sachusetts, 1975.

Schiermeyer, I. (1993), Solving 3-satisfiability in less than 1, 579n steps, in:
Computer Science Logic (E. Börger, G. Jäger, H. Kleine Büning, S. Mar-
tini, M. M. Richter, eds.), Selected Papers of CSL ’92 6th Workshop, San
Miniato, Italy, 1992, published as vol. 702 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1993, pp. 379–394.

Schiermeyer, I. (1996), Pure literal look ahead: An O(1, 497n) 3-satisfiabili-
ty algorithm, in: Workshop on the Satisfiability Problem (J. Franco, G.
Gallo, H. Kleine Büning, E. Speckenmeyer, and C. Spera, eds.), Technical
Report 96-230, University of Cologne, Germany, 1996, pp. 127–136.

Schlipf, J. S., Annexstein, F. S., Franco, J. V., and Swaminathan, R. P.
(1995), On finding solutions for extended Horn formulas, Information
Processing Letters 54 (1995) 133–137.

Schrag, R., and Crawford, J. M. (1996), Implicates and prime implicates
in random 3-SAT, Artificial Intelligence 81 (1996) 199–222.

448 References

Schrijver, A. (1986), Theory of Linear and Integer Programming, Wiley,
Chichester, 1986.

Scutellà, M. G. (1990), A note on Dowling and Gallier’s top-down algo-
rithm for propositional Horn satisfiability, Journal of Logic Programming
8 (1990) 265–273.

Selman, B., and Kirkpatrick, S. (1996), Critical behavior in the computa-
tional cost of satisfiability testing, Artificial Intelligence 81 (1996) 273–
295.

Selman, B., Mitchell, D. G., and Levesque, H. J. (1996), Generating hard
satisfiability problems, Artificial Intelligence 81 (1996) 17–29.

Seymour, P. D. (1980), Decomposition of regular matroids, Journal of
Combinatorial Theory (B) 28 (1980) 305–359.

Simeone, B. (1985), Consistency of quadratic Boolean equations and the
König-Egerváry property for graphs, Annals of Discrete Mathematics 25
(1985) 281–290.

Speckenmeyer, E., Böhm, M., and Heusch, P. (1997), On the imbalance of
distributions of solutions of CNF-formulas and its impact on satisfiability
solvers, in: The Satisfiability (SAT) Problem (D. Du, J. Gu, and P.
Pardalos, eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 35, American Mathematical Society, Providence,
Rhode Island, 1997, pp. 669–676.

Speckenmeyer, E., Monien, B., and Vornberger, O. (1988), Superlinear
speedup for parallel backtracking, in: Proceedings of 1st International
Conference on Supercomputing (E. N. Houstis, T. S. Papatheodorou,
C. D. Polychronopoulos, eds.), Athens, Greece, 1987, published as vol.
297 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1988,
pp. 985–993.

Strang, G. (1980), Linear Algebra and Its Applications (2nd edition), Aca-
demic Press, New York, 1980.

Swaminathan, R. P., and Wagner, D. K. (1995), The arborescence-realiza-
tion problem, Discrete Applied Mathematics 59 (1995) 267–283.

Tanaka, Y. (1991), A dual algorithm for the satisfiability problem, Infor-
mation Processing Letters 37 (1991) 85–89.

Tarjan, R. E. (1972), Depth-first search and linear graph algorithms, SIAM
Journal on Computing 1 (1972) 146–160.

Tovey, C. A. (1984), A simplified NP-complete satisfiability problem, Dis-
crete Applied Mathematics 8 (1984) 85–89.

Truemper, K. (1976), An Efficient Scaling Procedure for Gain Networks,
Networks 6 (1976) 151–159.

References 449

Truemper, K. (1982), Alpha-balanced graphs and matrices and GF(3)-
representability of matroids, Journal of Combinatorial Theory (B) 32
(1982) 112–139.

Truemper, K. (1990), A decomposition theory for matroids. V. Testing
of matrix total unimodularity, Journal of Combinatorial Theory (B) 49
(1990) 241–281.

Truemper, K. (1992), Matroid Decomposition, Academic Press, Boston,
1992, and Leibniz, Plano, Texas, 1998.

Truemper, K., and Chandrasekaran, R. (1978), Local unimodularity of
matrix-vector pairs, Linear Algebra and Its Applications 22 (1978) 65–
78.

Tseitin, G. S. (1968), On the complexity of derivations in the propositional
calculus, in: Structures in Constructive Mathematics and Mathematical
Logic (A. O. Slisenko, ed.), Part II (translated from Russian), Consul-
tants Bureau, New York, 1968, pp. 115–125.

Tutte, W. T. (1966), Connectivity in matroids, Canadian Journal of Math-
ematics 18 (1966) 1301–1324.

Tutte, W. T. (1971), Introduction to the Theory of Matroids, American
Elsevier, New York, 1971.

Urquhart, A. (1987), Hard examples for resolution, Journal of the Associ-
ation for Computing Machinery 34 (1987) 209–219.

Vlach, F. (1993), Simplification in a satisfiability checker for VLSI appli-
cations, Journal of Automated Reasoning 10 (1993) 115–136.

Wang, J. (1993), Inference flexibility in Horn clause knowledge bases and
the simplex method, Journal of Automated Reasoning 11 (1993) 269–288.

Whitney, H. (1935), On the abstract properties of linear dependence, Amer-
ican Journal of Mathematics 57 (1935) 509–533.

Wilson, R. J. (1972), Introduction to Graph Theory, Longman Group Lim-
ited, London, 1972.

Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1992), Automated Reason-
ing (2nd edition), McGraw-Hill, New York, 1992.

Yamasaki, S., and Doshita, S. (1983), The satisfiability problem for a class
consisting of Horn sentences and some non-Horn sentences in proposi-
tional logic, Information and Control 59 (1983) 1–12.

Yannakakis, M. (1981), Node-deletion problems on bipartite graphs, SIAM
Journal on Computing 10 (1981) 310–327.

450 References

Yannakakis, M. (1992), On the Approximation of Maximum Satisfiability,
in: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete
Algorithms, Association for Computing Machinery and Society for Indus-
trial and Applied Mathematics, Orlando Florida, 1992, pp. 1–9. Also,
Journal of Algorithms 17 (1994) 475–502.

Zhang, H. (1993), Sato: A decision procedure for propositional logic, As-
sociation of Automated Reasoning Newsletter No. 22 (1993) 1–3.

Zhang, W. (1996), Number of models and satisfiability of sets of clauses,
Theoretical Computer Science 155 (1996) 277–288.

Author Index

A

Agarwal, S., 308
Ahuja, R. K., 68, 226
Aigner, M., 107
Ajtai, M., 226
Annexstein, F. S., 226
Applegate, D., 226
Aristotle, 5
Arora, S., 16
Arvind, V., 311
Aspvall, B., 221, 223, 255
Auton, L. D., 15
Avron, A., 11

B

Bagchi, A., 221
Bartholdi J. J., III, 297, 308
Bayerl, S., 12, 15
Bell, D. A., 9
Bellman, R. (E.), 221
Ben-Ari, M., 11
Berge, C., 225
Berman, K. A., 222
Bertsekas, D. P., 221

Bibel, W., 9, 12, 15, 226
Billionnet, A., 12, 15
Birkhoff, G., 168
Biswas, S., 311
Blair, C. E., 12, 14, 15
Blass, A., 8
Böhm, M., 12, 15
Bondy, J. A., 68
Boole, G., 5
Boros, E., 8, 222, 225, 327, 328,

329, 430
Boyle, J., 9, 68
Brown, C. A., 12
Bryant, R. E., 14, 15
Bugrara, K. M., 12
Buro, M., 15
Buss, S. R., 11, 226

C

Carlier, J., 9, 12
Carraresi, P., 17
Čepek, O., 222, 225, 328
Chandrasekaran, R., 223, 225,

308
Chandru, V., 14, 223, 226, 255,

451

452 Author Index

308, 311
Chang, C. L., 9, 11, 68
Cheriyan, J., 16, 222
Chvátal, V., 11, 225, 307
Cohn, P. M., 168
Conforti, M., 199, 201, 225, 226
Cook, S. (A.), 8, 11, 226
Cook, W., 11, 226
Cornuéjols, G., 199, 201, 225,

226
Cottle, R. W., 223
Coullard, C. R., 11, 223, 226,

255, 311
Crama, Y., 8, 222, 308, 327,

328, 430
Crawford, J. M., 15
Cunningham, W. H., 16, 107,

222

D

Dalal, M., 311, 430
Davis, M., 10, 11, 12
Derigs, U., 226
Dilworth, R. P., 68
Dorfman, R., 223
Doshita, S., 311, 430
Dowling, W. F., 222
Dreyfus, S. E., 221
Dubois, O., 9, 12

E

Edmonds, J., 68, 107, 226
Eiter, T., 311
Ekin, O., 222, 308
Elias, P., 68
Escalada-Imaz, E., 222
Etherington, D. W., 311, 430
Evan, S. A., 221

F

Faddeev, D. K., 68
Faddeeva, V. N., 68
Fedjki, C., 14, 15
Feige, U., 16, 222
Feinstein, A., 68
Fitting, M., 9
Ford L. R., Jr., 68, 226
Fouks, J.-D., 11
de Francesco, C., 225
Franco, J. (V.), 9, 12, 222, 226
Freeman, J. W., 12, 15
Frege, G., 6
Fulkerson, D. R., 68, 225, 226

G

Galil, Z., 11
Gallier, J. H., 222
Gallo, G., 12, 15, 16, 17, 222,

311, 312, 430
Garey, M. R., 8, 16, 68, 221,

308
Garfinkel, R. S., 168, 307
van Gelder, A., 12
Genesereth, M. R., 9, 68
Gent, I. P., 15
Gentile, C., 16
Ghallab, M., 222
Gödel, K., 6
Goemans, M. X., 16, 222
Goerdt, A., 11
Goldberg, A., 12
Gomory, R. E., 168
Grötschel, M., 225, 307
Guan, J. W., 9
Guenin, B., 225
Gurevich, Y., 8
Gusfield, D., 16, 222

Author Index 453

H

Hailperin, T., 9
Haken, A., 11, 226
Hall, P., 68
Hamilton, A. G., 68
Hammer, P. L., 8, 222, 223, 255,

308, 311, 327, 328, 329, 430
Hansen, P., 16, 221, 222, 367,

421
Harary, F., 68
Harche, F., 14, 15
Hébrard, J.-J., 223
Heller, I., 225
Henschen, L., 222
Heusch, P., 11, 12, 222
Hilbert, D., 6
Ho, Y. C., 12
Hochbaum, D. S., 16, 222, 308
Hoffman, A. J., 225
Hooker, J. N., 11, 12, 14, 15,

222, 223, 225, 226, 308
Hopcroft, J. E., 359
Horn, A., 222
Hu, T. C., 168, 307
Hunt H. B., III, 8

I

Itai, A., 221, 222
Iwama, K., 12

J

Jacobson, N., 168
Jaumard, B., 16, 221, 222, 367,

421
Jeroslow, R. G., 12, 14, 15, 222,

223
Johnson, D. S., 8, 16, 68, 221,

222, 308
Johnson, E. L., 421

K

Kabadi, S. N., 308
Kamath, A. P., 9
Kapoor, A., 199, 201, 225
Karloff, H., 225, 307
Karmarkar, N. K., 9
Kilpeläinen, P., 311
Kirkpatrick, S., 15
Kleine Büning, H., 9, 11, 15,

226, 311
Kneale, M., 5
Kneale, W., 5
Knuth, D. E., 221, 367
Kogan, A., 222
König, D., 68
Koutsoupias, E., 9
Kratochv́ıl, J., 8, 16, 222
Kr̆ivánek, M., 16, 222
Kruskal, J. B., 225
Kullmann, O., 11, 12
Kung, J. P. S., 107

L

Lagarias, J. C., 222
Lakshminarayanan, S., 308
Lancaster, P., 68
Lang, S., 168
Larrabee, T., 12, 15
Law, A. M., 221
Lawler, E. L., 107, 226
Lee, R. C.-T., 9, 68
Leibniz, G. W., 2, 5
Leontief, W., 223
Lettmann, T., 9
Letz, R., 12, 15
Levesque, H. J., 15
Lewis, H. R., 223
Lewis, J. M., 308
Lichtenstein, D., 8
Lieberherr, K. J., 16, 222
Lindhorst, G., 223

454 Author Index

Lloyd, J. W., 68
Logemann, G., 11, 12
Lovász, L., 68, 225, 226, 307
Loveland, D. W., 7, 9, 11, 12,

68
Lowe, J. K., 12, 14, 15
Löwen, U., 11
Luckhardt, H., 12
Lund, C., 16
Lusk, E., 9, 68

M

MacLane, S., 168
Magnanti, T. L., 68, 226
Makowsky, J. A., 222
Mannila, H., 223, 311
Marchioro, P., 221
Martin, K., 223
Mayer, J., 15
Megiddo, N., 16, 222, 308
Mehlhorn, K., 223
Meltzer, B., 223
Menger, K., 68
Metz, A., 226
Minoux, M., 222, 421
Mitchell, D. G., 15
Mittal, A. K., 308
Mitterreiter, I., 15
Monien, B., 12, 430
Montañez, M., 223, 255, 311
Morgana, A., 221
Motwani, R., 16
Murty, U. S. R., 68

N

Naor, J., 16, 222, 308
Nemhauser, G. L., 14, 168, 225,

307, 308
Nerode, A., 9
Newman, J. R., 5

Nilsson, N. J., 9, 68
Nobili, P., 225

O

Oppenheim, R., 225
Ore, O., 68
Orlin, J. B., 68, 226, 308
Overbeek, R., 9, 68
Oxley, J. G., 107

P

Padberg, M. W., 421
Pan, Y., 12
Pang, J.-S., 223
Papadimitriou, C. H., 9
Paris, J. B., 226
Paull, M., 12
Pearl, J., 9
Peled, U. N., 222
Petreschi, R., 221
Pitassi, T., 11, 226
Pitt, L., 16, 222
Plass, M. F., 221, 255
Plateau, G., 221, 367
Plummer, M. D., 68, 226
Poljak, S., 16, 222
Pretolani, D., 12, 15, 16, 222,

311, 328, 430
Purdom, P. W., Jr., 12
Putnam, H., 10, 11

R

Radermacher, F. J., 15
Rago, G., 16, 17
Ramakrishnan, K. G., 9
Rao, M. R., 225
Rardin, R. L., 223
Ratliff, H. D., 308

Author Index 455

Reckhow, R. A., 226
Recski, A., 107
Resende, M. G. C., 9
Robinson, J. A., 11
Rodošek, R., 12
Russell, B., 6

S

Saks, M., 8, 328
Salkin, H. M., 168
Samuelson, P. A., 223
Sassano, A., 225
Savický, P., 8
Schiermeyer, I., 12
Schlipf, J. S., 222, 226
Schrag, R., 15
Schrijver, A., 11, 168, 225, 226,

307
Schumann, J., 12, 15
Scutellà, M. G., 222, 311, 430
Selman, B., 15
Servatius, B., 221
Seymour, P. D., 107, 225
Shahrokhi, F., 223
Shamir, A., 221
Shannon, C. E., 68
Sharma, P., 308
Shi, W., 221
Shore, R., 9
Simeone, B., 16, 221
Solow, R. M., 223
Speckenmeyer, E., 12, 15
Specker, E., 16, 222
Stearns, R. E., 8
Stockmeyer, L., 16
Stone, R. E., 223
Strang, G., 68
Sudan, M., 16
Sudborough, I. H., 430
Sun, X., 223, 255, 311, 327
Sutter, A., 12, 15
Swaminathan, R. P., 9, 12, 223,

226
Szegedy, M., 16
Szemerédi, E., 11

T

Tamir, A., 16, 222, 308
Tanaka, Y., 12, 15
Tarjan, R. E., 221, 255, 359
Thompson, G. L., 14, 15
Tismenetsky, M., 68
Tompkins, C. B., 225
Tovey, C. A., 8
Trotter, L. E., Jr., 308
Truemper, K., 107, 201, 225
Tseitin, G. S., 11
Tunçel, L., 16, 222
Turán, G., 11, 226
Turźık, D., 16, 222
Tutte, W. T., 107
Tuza, Z., 8

U

Urbani, G., 12, 15, 222, 312,
430
Urquhart, A., 11

V

Vinay, V., 12, 15
Vlach, F., 12, 15
Vornberger, O., 12
Vušković, K., 199, 201, 225

W

Wagner, D. K., 223
Walsh, T., 15
Wang, J., 12, 14, 15, 222, 223

456 Author Index

Wang, Y., 16, 222
Whitehead, A. N., 6
Whitney, H., 106
Wilkie, A. J., 226
Williamson, D. P., 16, 222
Wilson, R. J., 68
Wolsey, L. A., 14, 168, 225, 307,

308
Woods, A. R., 226
Wos, L., 9, 68, 222

Y

Yamasaki, S., 311, 430
Yannakakis, M., 16, 222, 308

Z

Zhang, H., 12, 15
Zhang, W., 12

Subject Index

A

Abelian group, 168
Acyclic graph, 37
Addition

Boolean minor, 42
graph

edge, 35
node, 35

matroid, 78
Adjacent node, 34
Affine independence (vectors),

205
Algorithm, see also Heuristic

ANALYSIS, 405
AUGMENTED

k-SEPARATION, 357
BASIS, 124
BG-RANK, 58
IB-k-SEPARATION, 150
BOOLEAN CLOSED

PARTITION, 277
CLOSED

2-SEPARATION, 337
3-SEPARATION, 338

3-CONNECTED
COMPONENTS, 98

DISJOINT PATHS, 46
EXCLUDED

MINOR OF HIDDEN
NEAR NEGATIVITY,
243

SUBREGION OF
HIDDEN NEAR
NEGATIVITY, 254

GF(3)-2-SEPARATION, 94
INDUCED

BG-SEPARATION, 89
IB-SEPARATION, 149
F -SEPARATION, 87

J-SETS, 279
k-SEPARATION, 91
LINEAR k-SEPARATION,

377
MAX FLOW, 45
MONOTONE

DECOMPOSITION, 321
PATH COVER, 48
PROJECT POLYHEDRON,

214
RANGE, 114
REDUCE

MINSAT INSTANCE, 179
SAT INSTANCE, 177

457

458 Subject Index

REFINE LINEAR
k-SEPARATION, 379

REPRESENTATIVE
SOLUTIONS, 278

RESOLUTION FOR
CNF SYSTEM, 184
MATRIX, 185

SCALE NETWORK
MATRIX, 204

SELECT
COMPONENT METHOD,

398
TYPE I METHOD, 406
TYPE II METHOD, 408
TYPE III METHOD, 411

1-SEPARATION, 83
SIMPLE SUBMATRIX, 176
SOLVE

AUGMENTED SUM SAT,
363

BALANCED SAT OR
MINSAT, 209

CLOSED SUBREGION
DECOMPOSITION
SAT OR MINSAT, 286

CLOSED SUM SAT, 345
HIDDEN NEARLY

NEGATIVE SAT OR
MINSAT, 195

LINEAR SUM SAT OR
MINSAT, 387

MONOTONE SUM SAT
OR MINSAT, 325

NEARLY NEGATIVE SAT
OR MINSAT, 187

2SAT, 182
SAT OR MINSAT, 396

SPAN, 129
SUBRANGE OF BOOLEAN

CLOSED MATRIX, 279
TEST

BALANCEDNESS, 199
BOOLEAN

CLOSEDNESS, 276

HIDDEN NEAR
NEGATIVITY, 193

NETWORK PROPERTY,
202

TOTAL
UNIMODULARITY,
201

VERTEX CONNECTIVITY,
47

Analysis, 3, 158, 170, 394,
428, see also Component,
Decomposition, Separation,
Solution, Sum

Algorithm
ANALYSIS, 405
SELECT

COMPONENT
METHOD, 398

TYPE I METHOD, 406
TYPE II METHOD, 408
TYPE III METHOD,

411
Postprocessing, 417
Preprocessing, 417

“and” operator, see Operator
Appended identity (matrix), see

Matrix
Application

balanced matrix, 210
hidden nearly negative

matrix, 196
MINSAT, 30, 212
nearly negative matrix, 189
2SAT, 183

Arc (graph), 34
Articulation point, 37
a-satisfiable, see Satisfiable
Assignment of vectors (closed

subregion decomposition),
298, 309

Attractive solution algorithm,
see Solution

Augmented, see also Separation,
Solution

Subject Index 459

component, 353
composition, 353
decomposition, 353
k-composition, 355
k-decomposition, 355

best, 359
k-separation, 355
k-sum, 355
proper sum, 354
separation, 156, 351
special case, 367
sum, 157, 354

Auxiliary variable, see Variable
Axiomatic method, 6
Axioms

expressing facts, 26
matrix decompositions,

compositions, algorithms,
112

matroid, 70, 71
operators of IB, 111

B

IB (system), 60, 108, see also

ID, Separation
-addition (⊕), see Operator
Algorithm

BASIS, 124
RANGE, 114
SPAN, 129

axioms, see Axioms
basis, 122
column IB-basis, 120
-column simple, 62
-dependence, 119
extension, 66, 133, 145, 151
-independence, 119

system, 135
-k-connected, 143
-k-separation, 143
-multiplication (⊙), see

Operator

-rank, 127
row IB-basis, 120
-row simple, 62
-simple, 62
-span, 128

by submatrix, 130
-subtraction (⊖), see

Operator
Balanced, see also Solution,

Test
application, see Application
cycle matrix, 198
extension, 225
matrix, 16, 198

Balancedness, see Balanced
Base

independence system, 70
matroid, 71

Basis
IB, 120, 122
BG, 57
Boolean, 19
F , 52
linear algebra, 122

Best augmented k-
decomposition, see

Augmented
BFS (breadth first search), 238
BG (system), 57, see also

Separation
Algorithm BG-RANK, 58
-basis, 57
-determinant, 57
-independence, 57
-k-connected, 82
-k-separation, 82
-matroid, 73
-nonsingular, 57
-rank, 57
-representation matrix, 73
-singular, 57
-span, 57

Bipartite graph, 34
Blue vector of Yp (Boolean

460 Subject Index

closed matrix), 267
Boolean, see also IB, Operator

algebra, 6
basis, see Basis
closed matrix, see Closed
closedness, see Closed
formula, see Formula
independence, see

Independence
minor, see Minor
operator, see Operator
rank, see Rank
variable, see Variable

Bounded bandwidth (matrix),
430

Branch and cut, 14
Breadth first search (BFS), 238
Bridge (graph), 39
Brown vector (Boolean closed

matrix), 267

C

Capacity
cut (graph), 44
edge, 44

Cardinality (set), 23
Centrality, see Central,

Semicentral
Central

classes, 426, 427
extension, 180
MINSAT, 173, 174
properties, 175
SAT, 172, 173

Certification of theorem, 27
Chain rule (logic), 11
Characteristic vector, 51

column, 51
row, 51

Characterization (matrix), 228
Algorithm EXCLUDED

MINOR OF HIDDEN

NEAR NEGATIVITY,
243

SUBREGION OF
HIDDEN NEAR
NEGATIVITY, 254

closed
GF(3) matrix, 274
matrix, 264

hidden nearly negative
matrix, 235, 246, 255

satisfiable 2SAT, 246, 255
Circuit (matroid), 71

fundamental, 76
Clause, 7
Clause/variable matrix, 59

generalized, 63
Closed, see also Separation,

Solution, Test
characterization, see

Characterization
component, 332
composition, 333
decomposition, 333
extension, 349
GF(3) matrix, see

Characterization
k-composition, 334
k-decomposition, 334
k-separation, 334
k-sum, 334

level, 347
matrix, 259, 260
partition, 276
proper sum, 333
separation, 156, 332
special case, 311
subregion, 275

decomposition, 283, 285
good, 291
optimal, 291

sum, 156, 333
Closedness, see Closed
CNF (conjunctive normal

form), 2, 7, 24

Subject Index 461

clause, 7, 24
proper subsystem, 25
set notation, 24
subsystem, 25
system, 7, 24

Cobase (matroid), 76
Cocircuit (matroid), 76
Cocycle (graph), 39
Coloop

graph, 39
matroid, 76

Color classification (Boolean
closed matrix), 267

Column
IB-basis, 120
basis (matrix over IB), 120
closed matrix, 259, 260
node, 35
scaling

Boolean minor, 42
graph, 40
matrix, 51

terminology, 50
Compiler, 4, 395
Complement node (labeled,

directed, bipartite graph),
247

Complete
bipartite graph, 34
graph, 34

Completed formula (first-order
logic), see Formula

Component, see also

Decomposition, Separation,
Sum

Algorithm 3-CONNECTED
COMPONENTS, 98

augmented decomposition,
see Augmented

closed decomposition, see

Closed
3-connected component

matrix, 97
matroid, 98

decomposition (general), 153
linear decomposition, see

Linear
monotone decomposition, see

Monotone
Composition, see also

Component,
Decomposition, Separation,
Sum

augmented, see Augmented
closed, see Closed
general, 153
k-composition

augmented, see Augmented
closed, see Closed
linear, see Linear

linear, see Linear
monotone, see Monotone

Computational logic, 5
Conceptual scaling factors, 304
Conjunction, see Operator
Conjunctive normal form, see

CNF
Connected

block (matrix), 58
component (graph), 37
graph, 37
k-connected

graph, 42, 43
matrix over

IB, 143
BG, 82
F , 82

matroid, 80
matrix, 58, 143
matroid, 80
strongly connected (graph),

37
Connecting node, 43
Connectivity, see Connected,

Cycle, Tutte, Vertex
Construction (formula), see

Formula
Contracted ladder, see Ladder

462 Subject Index

Contraction,
graph, 35
matroid, 77

Contradiction, 26
Coparallel

class
graph, 39
matroid, 76

edges, 39
elements (matroid), 76

Corresponding graph (to
matrix), 231

Cost
assigned to variable, 2
MINSAT, 30

Cotree (graph), 38
Cotriangle (matroid), 76
Count (matrix), 49
Cover, see also Covering, Path

matrix by subregions, 137
node by edge, 34
nodes by paths, 37

Covering, see also Cover, Path
paths (acyclic graph), 37
problem (sets), 164

Creation of a matrix class using
augmented sums, 365, 366
closed k-sums, 347

Cut (inequality for polyhedron),
14

Cycle (graph), 37
connectivity, 42, 43
k-connected, 43
k-separable/separation, 43
length, see Length
matrix, 198

D

ID (class of systems), see also IB
-range, 162
-subrange, 162
-system, 19, 160, 162

Davis–Putnam algorithm, 10
Davis–Putnam–Logemann–

Loveland algorithm, 12
Decomposition, see also

Component, Separation,
Sum

Algorithm MONOTONE
DECOMPOSITION, 321

augmented, see Augmented
closed, see Closed
general, 153
Heuristic DECOMPOSITION

FOR
HIDDEN NEAR

NEGATIVITY, 302
NETWORK PROPERTY,

306
2SAT, 299

k-decomposition
augmented, see Augmented
closed, see Closed
linear, see Linear

linear, see Linear
monotone, see Monotone

Degree (node), 36
Deletion

Boolean minor, 42
graph

edge, 35
node, 35

matroid, 77
Dependence, see Independence
Dependent, see Independent
Depth first search, 359
Determinant

det2 (field GF(2)), 52
det3 (field GF(3)), 52
detBG (system BG), 57
detF (field F), 52

Difference (sets), 23
Dilworth’s theorem, 44
Dimension (polyhedron), 205
Directed

cycle, 37

Subject Index 463

edge, 33
graph, 33
path, 36

Disconnecting set (nodes), 89
Disguised Horn system, see

Horn
Disjoint

paths, see Path
union of cocycles, 39

DISJOINT SETS problem, 183
Disjunction, see Operator
Disjunctive normal form, see

DNF
Display (matrix), 66
DNF (disjunctive normal form)

clause, 24
system, 24

Domain (matrix as function),
112

Double staircase matrix, see

Staircase
Doubly nest, 270
DPLL algorithm, 12
Dual matroid, 76
Dynamic programming, 175,

221

E

Edge (graph), 33
Element (set), 22
Ellipsoid Method, 206, 292
Empty

CNF system, 25
clause, 10, 25
graph, 38
matrix, 49
set, 23

Encoding (solution space), see

Solution
Endpoints

edge, 34
path, 36

Enumeration, see Solution
Equality

Boolean formulas, 26
matrices, 50

Exact k-separation, see

Separation
Exclusive “or” operator, see

Operator
Existence, algorithm, 68
Existential quantifier, see

Operator
Expansion

graph, 35
matroid, 78

Extended Horn matrix, see

Horn
Extended Nested Satisfiability

(matrix class), 221
Extension

IB, see IB
balanced, see Balanced
central, see Central
closed, see Closed
hidden nearly negative, see

Hidden
Horn, see Horn
MINSAT, see MINSAT
monotone, see Monotone
nearly negative, see Nearly

negative
2SAT, see 2SAT
SAT, see SAT
semicentral, see Semicentral

Extreme point
polyhedron, 205
solution (LP), 292

F

F (field), see also Separation
-basis, 52
-independence, 52
-k-connected, 82

464 Subject Index

-k-separation, 82
-matroid, 73
-pivot, 53

properties, 55
-rank, 52
-representation matrix, 73
-span, 52

by submatrix, 147
F graph (excluded subregion

of hidden near negativity),
247

Field
F , see F

GF(2), see GF(2)
GF(3), see GF(3)
IR, see IR

First-order logic, 8
existential quantifier, see

Operator
formula, see Formula
free variable, see Variable
predicate, 8, 31
restricted finite

quantification, 33
universal quantifier, see

Operator
universe, 8, 31

Flow value (max flow problem),
44

Forced node (labeled, directed,
bipartite graph), 238

Forest (graph), 38
principal, 38

Formula
Boolean, 23
completed, 32
construction, 23, 32
first-order logic, 32
transformation, 32
value, 25

Fourier–Motzkin elimination
method, 11, 226

Free variable (first-order logic),
32

Full dimensional polyhedron,
205

Fundamental circuit (matroid),
76

G

Generalized clause/variable
matrix, 63

GF(2) (field), 52, see also

Separation
-matroid, 73

GF(3) (field), 52, see also

Separation
-matroid, 73

Good closed subregion
decomposition, see Closed

Graph, 33
addition, see Addition
arc, 34
cocycle, 39
coloop, see Coloop
connectivity, see Connected
contraction, see Contraction
cycle, see Cycle
deletion, see Deletion
edge, 33
expansion, see Expansion
homeomorphism, 42
isomorphism, see

Isomorphism
isthmus, 39
leaf, see Leaf
loop, see Loop
minor, see Minor
node, 33
path, see Path
point, 34
rank, see Rank
scaling, see Scaling
separation, see Separation
strong component, 37
terminology for cotree, cycle,

Subject Index 465

path, tree, 37
vertex, 34

GRAPH K-COLORABILITY
problem, 197

Graphic matroid, 72
Groundset (independence

system), 70
Group

abelian, 168
problem (IP), see IP
-theoretic approach (IP), see

IP

H

Hall’s theorem, 44
Heuristic, see also Algorithm

BG-k-SEPARATION, 99
DECOMPOSITION FOR

HIDDEN NEAR
NEGATIVITY, 302

NETWORK PROPERTY,
306

2SAT, 299
LINEAR k-SEPARATION,

377
REFINE LINEAR

k-SEPARATION, 380
SOLVE

IP, 294
MINSAT, 416

Hidden, see also Decomposition,
Solution, Test

Algorithm EXCLUDED
MINOR OF HIDDEN

NEAR NEGATIVITY,
243

SUBREGION OF
HIDDEN NEAR
NEGATIVITY, 254

Horn system, 16
nearly negative

application, see Application

characterization, see

Characterization
extension, 311
graph, 231
matrix, 16, 190, 191
unique scaling, 223

Homeomorphism (graph), 42
Horn, see also Hidden

clause, 222
disguised system, 16
extended Horn matrix, 223,

308
extension, 223, 308, 311, 327,

328
hidden, see Hidden
q-Horn, 327, 328
system, 16
uniquely satisfiable q-Horn,

328

I

Identification (nodes), see Node
Identity (matrix), see Matrix
“if and only if” operator, see

Operator
“if” operator, see Operator
Implementation, 15, see also

Leibniz
Incidence (edge at node), 34
Inclusive “or” operator, see

Operator
Incomparable nodes, 37
Incompleteness theorem, 7
Indegree (node), 36
Independence

Boolean, 19
system, 70

groundset, 70
represented by matrix over

IB, 135
vectors over

IB, 119

466 Subject Index

BG, 57
F , 52

Independent
node set, 166, 183

problem, 166
subset, 70

INDEPENDENT SET problem,
184

Induced
IB-separation, 147

extension of IB, 152
k-separation (BG or F), 84
subgraph by

edge subset, 36
node subset, 36

Infeasible LP, see LP
Input–output matrix

(economics), 223
Integer

program, see IP
rounding, see IP

Integral polyhedron, 205
Internally node-disjoint paths,

see Path
Intersection (sets), 23
IP (integer program), 168, 291

group
problem, 169
-theoretic approach, 168

Heuristic SOLVE IP, 294
rounding, 308

Isolated node, 36
Isomorphism

graph, 42
matrix, 50

Isthmus (graph), 39

J

J-set (Boolean closed matrix),
260, 268, 279

Algorithm J-SETS, 279

K

k

-composition, see

Composition
-connected, see Connected
-decomposition, see

Decomposition
-separable, see Separation
-separation, see Separation
-sum, see Sum

Key variable, see Variable
König’s theorem, 44

L

L graph (excluded Boolean
minor of hidden near
negativity), 235

Labeled, directed, bipartite
graph, 35, see also Large,
Path

large directed cycle, 236
strong component, 236

Ladder, 244
contracted, 245

Large
directed cycle (labeled,

directed, bipartite
graph), 236

strong component (labeled,
directed, bipartite
graph), 236

Law of
conjunction argument, 11
constructive dilemma, 11
destructive dilemma, 11
detachment, 11
disjunctive inference, 11
syllogism, 11

Layer (BFS), 238
Leaf (tree)

edge, 38

Subject Index 467

node, 38
Leibniz System, 2, 430
Length

cycle, 37
matrix, 49
path, 36

Level (closed k-sum), 347
Linear, see also Separation,

Solution
complementarity problem,

223
component, 371
composition, 372
decomposition, 371
k-composition, 373
k-decomposition, 373
k-separation, 373
k-sum, 373
program, see LP
proper sum, 372
refinement (separation, sum),

375
separation, 158, 370
sum, 158, 372

Literal (Boolean formula), 23
Loop

graph, 34
matroid, 75

LP (linear program), 205, 292
infeasible, 205
unbounded, 205

M

Matching, 39
matrix, 226
perfect, 40
problem, 226
X into Y (bipartite graph),

40
Matrix

appended identity, 50
bounded bandwidth, 430

characterization (matrix
properties), 228

column, see Column
component, see Component
connectivity, see Connected
count, 49
cover (by subregions), see

Cover
display, 66
domain, 112
identity, 50
isomorphism, see

Isomorphism
length, see Length
order, see Order
over

IB, 60
BG, 57
extension of IB, 66, 133,

145, 151
F , 52
P , Q, or R (ID-system),

161
P -matrix (ID-system), 161
Q-matrix (ID-system), 161
R-matrix (ID-system), 161
range, see Range
rank, see Rank
row, see Row
scaling, see Scaling
separation, see Separation
small range, see Range
special classes, see Balanced,

Hidden, Nearly negative,
2SAT

sum, see Sum
support, 51
vector, see Vector

Matrix/vector pair, 3, see also

Submatrix
Matroid

addition, see Addition
axioms, see Axioms
base, see Base

468 Subject Index

circuit, 71
cobase, 76
cocircuit, 76
coloop, see Coloop
connectivity, see Connected
contraction, see Contraction
cotriangle, 76
deletion, see Deletion
dual, 76
expansion, see Expansion
loop, see Loop
minor, see Minor
rank, see Rank
reduction, see Reduction
representation, see

Representation,
Nonrepresentable

separation, see Separation
sum, see Sum
triad, 76
triangle, 76

Max
Algorithm MAX FLOW, 45
combination (vectors), 65
flow min cut theorem, 45
flow problem, 44

Maximal
Ai (closed k-separation), 340
matrix under

submatrix taking, 52
subregion taking, 52

set, 23
subgraph, 36
submatrix, 52
subregion, 52

Maximum
MINSAT simple submatrix,

177
monotone

decomposition, 316
separation, 316
sum, 316

SAT simple submatrix, 177
MAX2SAT, 16, 222, see also

MIN2SAT
MAXSAT, 16, see also

MAX2SAT, MINSAT
equivalence to MINSAT, 30

Menger’s theorem, 36, 43
Meta-mathematics, 6
Min cut problem (graph), 44
Minimal

Ai (closed k-separation), 340
cutset, 39
excluded

Boolean minor (hidden
near negativity), 229,
234

subgraph (hidden near
negativity), 244

subregion (hidden near
negativity), 229

graph (under path condition),
251

matrix under
submatrix taking, 52
subregion taking, 52

set, 23
subgraph, 36
submatrix, 52
subregion, 52

Minimum
cost satisfiability problem

first-order logic, 8
propositional logic, see

MINSAT
solution (with respect to

True), 188
Minor

Boolean, 42, 66
excluded, see Hidden

graph, 35
terminology, 42

matroid, 77
proper

graph, 35
matroid, 78

MIN2SAT, 16, 186, 222 see also

Subject Index 469

MAX2SAT
special case, 210

MINSAT, 2, 8, see also

MAXSAT, MIN2SAT,
Solution

application, see Application
-b, 224
central, see Central
extension, 224
instances, 396

arising from or involving
a matrix/vector pair,
396

reduction, see Reduction
semicentral, see Semicentral
simple, 176

Modus ponens, 11
Monoid, 168
Monotone, see also

Decomposition, Solution
component, 315

unconstrained submatrix,
315

composition, 315
decomposition, 315, 316
extension, 328
matrix, 51
proper sum, 316
separation, 155, 315, 316
special case, 327
sum, 155, 316

Mutually consistent vectors, 285

N

Nearly negative, see also

Hidden, Horn, Solution
application, see Application
compact representation, 222
extension, 311
graph, 231
matrix, 15, 187
uniquely satisfiable, 222

Negation (logic), see Operator
Negative elements (set R of ID-

system), 161
Nested

matrices, 51
2SAT instances, see 2SAT
Satisfiability (matrix class),

221
Network, see also

Decomposition, Test
Algorithm

SCALE NETWORK
MATRIX, 204

flow problem, 209
matrix, 200
property, 202

Node (graph), 33
identification, 40

Node-disjoint paths, see Path
Node/edge incidence matrix, 73
Nonrepresentable matroid, 75
Nonstandard representation

matrix (matroid), 72
NP (class of problems), 67

-complete problem, 67

O

“only if” operator, see Operator
Operator

“and,” 5, 23
IB

-addition (⊕), 18, 60
-multiplication (⊙), 18, 60
-subtraction (⊖), 18, 60

exclusive “or,” 5
existential quantifier, 8, 31
“if,” 26
“if and only if,” 26
inclusive “or,” 5, 23
negation, 23
“only if,” 26
universal quantifier, 8, 31

470 Subject Index

Optimal closed subregion
decomposition, see Closed

Order
algorithm, 67
matrix, 49

Outdegree (node), 36

P

Packing problem, 165
Parallel

class
graph, 39
matroid, 76

edges, 39
elements (matroid), 75
vectors, 51

Parse tree, 6
Partial node (labeled, directed,

bipartite graph), 247
PARTITION

FOR MINSAT problem,
197

INTO INDEPENDENT
NODE SUBSETS
problem, 197

Path (graph), 36
Algorithm

DISJOINT PATHS, 46
PATH COVER, 48

condition (strongly connected
labeled, directed,
bipartite graph), 251

internally node-disjoint paths,
36

length, see Length
node-disjoint paths, 46

Perfect matching, see Matching
Permutation matrix, 297
Pigeonhole problem, 211, 226
Pivot, 53

element, 53
P -matrix (ID-system), 161

Point (graph), 34
Polyhedral

combinatorics, 14
techniques, see Solution

Polyhedron, 13, 205
cut, 14
dimension, 205
extreme point, see Extreme
full dimensional, 205
integral, 205
projection, see Projection
unique minimal inequality

system, 205
Polynomial

algorithm, 67
reduction, 67
subsumption (matrix class),

218
time, 20

algorithm, 67
Positive elements (set R of ID-

system), 161
Postprocessing, 417
Power set, 23
Predicate, 8, 31
Preprocessing, 417, 421
Principal forest, see Forest
Principle of optimality

(dynamic programming),
175

Problem
computational, 67
instance, 67
size, 67

Processed node (BFS), 238
Product (sets), 8, 31
Project, see Projection
Projection

Algorithm PROJECT
POLYHEDRON, 214

polyhedron, 214
range computation, 114

Proper
augmented sum, see

Subject Index 471

Augmented
closed sum, see Closed
CNF subsystem, see CNF
linear sum, see Linear
minor, see Minor
monotone sum, see Monotone
subgraph, 36
submatrix, see Submatrix
subregion, see Subregion
subset, 23

Properties
centrality, see Central
resolution, see Resolution

Propositional logic, 6
P -vector (ID-system), 161

Q

q-Horn, see Horn
Q-matrix (ID-system), 161
Q-vector (ID-system), 161

R

IR (field of reals), 52
Range

Algorithm RANGE, 114
matrix as function, 112
membership problem, 167
set, 112, 113
small, 116

Rank
Boolean, 19
graph, 38
independence system, 70
matrix over

IB, 128
BG, 57
F , 52

matroid, 71
Real numbers, see IR
Recognition, see Test

Red vector of Yp (Boolean
closed matrix), 267

Reduce, see Reduction
Reduction

Algorithm
REDUCE

MINSAT INSTANCE,
179

SAT INSTANCE, 177
SIMPLE SUBMATRIX,

176
CNF system, 25
logic minimization problem to

MINSAT, 171
matroid, 77
MINSAT, 179, 418
SAT, 177, 418
simple matrix, 176

Redundant column (Algorithm
RANGE), 115

Refinement (linear case), see

Linear
Regular matroid, 225
Representation

Boolean formula, 28
matrix

IB-independence system,
135

matroid, 72, 73, 76
s by si (Boolean closed

matrix), 272
Si by S∗i (linear sum), 386

Representative solution vectors
(subrange of matrix), 272

Algorithm
REPRESENTATIVE
SOLUTIONS, 278

Resolution, 10
algorithm, 10
Algorithm RESOLUTION

FOR
CNF SYSTEM, 184
MATRIX, 185

principle, 11

472 Subject Index

properties, 184, 189, 198, 213
Restricted finite quantification,

33
Rim (wheel), 38
R-matrix (ID-system), 161
IR-matroid, 73
Rounding, see IP
Row

IB-basis, 120
basis (matrix over IB), 120
closed matrix, 259, 260
node, 35
scaling

graph, 40
matrix, 51

terminology, 50
Rung (ladder), 244
R-vector (ID-system), 161

S

2SAT, 181 see also

Decomposition, MAX2SAT,
MIN2SAT, Solution

application, see Application
characterization, see

Characterization
extension, 221
matrix, 15
nested instances, 221
uniquely satisfiable, 221

SAT, 2, 7, 8, 27, see also

MAXSAT, MINSAT,
2SAT, Satisfiable, Solution

-b, 223
central, see Central
equivalence, 28
extension, 223
instances, 395

arising from or involving a
matrix, 396

reduction, see Reduction

semicentral, see Semicentral
simple, 176

Satisfiability, see Satisfiable
Satisfiable, 2, 7, see also SAT

a-satisfiable, 153, 158
Boolean formula, 26
characterization (2SAT), see

Characterization
clause, 2, 7, 27
clause/variable matrix, 59
CNF system, 7
generalized clause/variable

matrix, 66
matrix over IB, 61

Satisfied, see Satisfiable
Satisfying

solution, 7
vector (clause/variable

matrix), 59
Scaling

factor, 40, 51
graph, 40
matrix, 51

Select solution method, see

Analysis
SELECT SET problem, 183
Semicentral

classes, 427, 428
extension, 180
MINSAT, 174
properties, 175
SAT, 173

Semicentrality, see Semicentral
Separable, see Separation
Separation, see also

Component,
Decomposition, Sum

Algorithm
AUGMENTED

k-SEPARATION, 357
IB-k-SEPARATION, 150
CLOSED

2-SEPARATION, 337
3-SEPARATION, 338

Subject Index 473

GF(3)-2-SEPARATION, 94
INDUCED

BG-SEPARATION, 89
IB-SEPARATION, 149
F -SEPARATION, 87

k-SEPARATION, 91
LINEAR k-SEPARATION,

377
REFINE LINEAR

k-SEPARATION, 379
1-SEPARATION, 83

augmented, see Augmented
closed, see Closed
exact k-separation

matrix over
IB, 143
BG, 82
F , 82

matroid, 80, 82
Heuristic

BG-k-SEPARATION, 99
LINEAR k-SEPARATION,

377
REFINE LINEAR

k-SEPARATION, 380
induced, see Induced
linear, see Linear
k-separable/separation

augmented, see Augmented
closed, see Closed
graph, 43
linear, see Linear
matrix over

IB, 142
BG, 82
F , 82

matroid, 80
monotone, see Monotone
refinement (linear case), see

Linear
Series

class
graph, 39
matroid, 76

edges, 39
elements (matroid), 76

Set, 22
covering problem, 165
notation (CNF system), see

CNF
packing problem, 166

Shrinking (Boolean minor), 42
Side (k-separation), 80
Simple matrix, 51, see also

Reduction
Simplex Method, 205, 292
Sink node (max flow problem),

45
Size (problem), see Problem
Small

range, see Range
time bound (based on

comparison with nearly
negative case), 405

Solid
staircase matrix, 118, 262
triangular matrix, 118, 262

Solution, see also Reduction
algorithm, 3, 158, 170
Algorithm

SOLVE
AUGMENTED SUM

SAT, 363
BALANCED SAT OR

MINSAT, 209
CLOSED SUBREGION

DECOMPOSITION
SAT OR MINSAT,
286

CLOSED SUM SAT, 345
HIDDEN NEARLY

NEGATIVE SAT
OR MINSAT, 195

LINEAR SUM SAT OR
MINSAT, 387

MONOTONE SUM SAT
OR MINSAT, 325

NEARLY NEGATIVE

474 Subject Index

SAT OR MINSAT,
187

2SAT, 182
SAT OR MINSAT, 396

attractive algorithm, 429
encoding, 14
enumeration, 11
Heuristic SOLVE

IP, 294
MINSAT, 416

polyhedral techniques, 12
space encoding, 14
vector (equation over IB), 61

Solve, see Solution
Source node (max flow

problem), 45
Span

IB, 128
BG, 57
F , 52
set by independent subset,

70, 71
Spanning tree, 38
Special

edge (max flow problem), 44
matrix class, see Balanced,

Hidden, Nearly negative,
2SAT

Spoke (wheel), 38
Staircase matrix

double, 263
solid, 118, 262

Standard representation matrix
(matroid), 73

Strong component (graph), 37
Strongly connected (graph), see

Connected
Subdivision (edge), 42
Subgraph, 36

proper, 36
Submatrix, 51

pair (matrix/vector pair), 174
proper, 51
taking, 52

Subrange, 112, see also Range
Algorithm

RANGE, 114
SUBRANGE OF

BOOLEAN CLOSED
MATRIX, 279

Subregion, 51
cover, 137
excluded, see Hidden
proper, 52
taking, 52

Subset, 23
proper, 23

Subsumption
CNF system, 217
matrix, 217, 218

1-Sum, see Sum
2-Sum, see Sum
Sum, 153, see also Component,

Decomposition, Separation
augmented, see Augmented
closed, see Closed
composition (general), 153
k-sum

augmented, see Augmented
closed, see Closed
linear, see Linear
matroid, 105, 106

linear, see Linear
monotone, see Monotone
refinement (linear case), see

Linear
1-Sum

matrix, 101, 155
matroid, 102

2-Sum
matrix, 102, 103
matroid, 102, 103

Type I, II, or III, 154
Support (matrix), 51
Syllogism, 11
System, see also ID

IB, see IB
BG, see BG

Subject Index 475

T

Tautology, 26
Terminology for cotree, cycle,

path, tree, 37
Test

Algorithm TEST
BALANCEDNESS, 199
BOOLEAN

CLOSEDNESS, 276
HIDDEN NEAR

NEGATIVITY, 193
NETWORK PROPERTY,

202
TOTAL

UNIMODULARITY,
201

Theorem, 27
proving, 26

Tip node (tree), 38
Total unimodularity, see Totally

unimodular
Totally unimodular, 200, see

also Test
Transitive closure (graph), 48
Transpose (matrix), 49
Tree (graph), 38
Triad (matroid), 76
Triangle (matroid), 76
Trivial

CNF system, 25
matrix, 49

Truth function, 8, 31
Tutte

connectivity, 42, 43
k-connected, 43
k-separable/separation, 43

Type I, II, or III (sum), see

Sum

U

Unbounded LP, see LP

Unconstrained submatrix
(monotone decomposition),
315

Undirected
edge, 33
graph, 33

Union (sets), 23
Unique

minimal inequality system
(polyhedron), 205

scaling (hidden nearly
negative matrix), see

Hidden
Uniquely satisfiable

nearly negative, see Nearly
negative

q-Horn, see Horn
2SAT, see 2SAT

Universal quantifier, see

Operator
Universe (first-order logic), 8,

31
Unsatisfiable, see also

Satisfiable
clause/variable matrix, 59
CNF system, 7

Unshrinking (Boolean minor),
42

Unused edge (max flow
algorithm), 46

Usable index (monotone
decomposition), 319

Used edge (max flow
algorithm), 46

V

Value (formula), see Formula
Variable

auxiliary, 28
Boolean, 7, 23
free, 32
key, 28

476 Subject Index

Vector, see also Matrix
assigned to b (Boolean closed

matrix), 267
over P , Q, or R (ID-system),

161
P -vector (ID-system), 161
Q-vector (ID-system), 161
R-vector (ID-system), 161
terminology, 50

Vertex (graph), 34
Algorithm VERTEX

CONNECTIVITY, 47
connectivity, 42, 43
cover, 186
k-connected, 43
k-separable/separation, 43

VERTEX COVER problem, 186

W

Weight (MAXSAT), 30
Wheel (graph), 38

Z

Z matrix, 223

	Preface
	Chapter 1 Introduction
	1.1 Overview
	1.2 History
	1.3 Logic Problems
	1.4 Prior Results
	1.5 Overall Approach
	1.6 Reading Guide

	Chapter 2 Basic Concepts
	2.1 Overview
	2.2 Sets
	2.3 Propositional Logic
	2.4 First-Order Logic
	2.5 Graphs
	2.6 Matrices
	2.7 Complexity of Algorithms
	2.8 References

	Chapter 3 Some Matroid Theory
	3.1 Overview
	3.2 Definitions
	3.3 Minor
	3.4 Connectivity
	3.5 Finding Separations
	3.6 Sums
	3.7 Extensions and References

	Chapter 4 System B, Linear Algebra, and Matroids
	4.1 Overview
	4.2 Basic Equations and Inequalities
	4.3 System B and Linear Algebra
	4.4 B-Independence System
	4.5 Connectivity
	4.6 Finding Separations
	4.7 Sums
	4.8 A Glimpse Ahead
	4.9 D-System
	4.10 Extensions and References

	Chapter 5 Special Matrix Classes
	5.1 Overview
	5.2 Centrality
	5.3 Properties of Centrality
	5.4 2SAT Matrices
	5.5 Nearly Negative Matrices
	5.6 Hidden Nearly Negative Matrices
	5.7 Balanced Matrices
	5.8 Comparison of Matrix Classes
	5.9 Extensions and References

	Chapter 6 Characterizations of Hidden Near Negativity
	6.1 Overview
	6.2 Minimal Excluded Boolean Minors
	6.3 Minimal Excluded Subregions
	6.4 References

	Chapter 7 Boolean Closed Matrices
	7.1 Overview
	7.2 Definitions
	7.3 Characterizations
	7.4 Properties
	7.5 Algorithms
	7.6 Extensions

	Chapter 8 Closed Subregion Decomposition
	8.1 Overview
	8.2 Algorithm for SAT and MINSAT
	8.3 Heuristic for Integer Programs
	8.4 Decomposition for 2SAT
	8.5 Decomposition for Hidden Near Negativity
	8.6 Decomposition for Network Property
	8.7 Extensions and References

	Chapter 9 Monotone Sum
	9.1 Overview
	9.2 Definitions and Properties
	9.3 Decomposition Algorithm
	9.4 Solution Algorithm
	9.5 Extensions and References

	Chapter 10 Closed Sum
	10.1 Overview
	10.2 Review and Definitions
	10.3 Decomposition Algorithms
	10.4 Solution Algorithm
	10.5 Extensions

	Chapter 11 Augmented Sum
	11.1 Overview
	11.2 Definitions
	11.3 Decomposition Algorithm
	11.4 Solution Algorithm
	11.5 Extensions and References

	Chapter 12 Linear Sum
	12.1 Overview
	12.2 Definitions
	12.3 Decomposition Algorithms
	12.4 Solution Algorithm
	12.5 Extensions

	Chapter 13 Analysis Algorithm
	13.1 Overview
	13.2 Structure of Solution Algorithms
	13.3 Algorithm for Component Matrix
	13.4 Analysis Algorithm
	13.5 Approximate Minimization
	13.6 Pre- and Postprocessing
	13.7 Extensions and References

	Chapter 14 Central and Semicentral Classes
	14.1 Overview
	14.2 Review of Centrality and Semicentrality Results
	14.3 Construction of Central and Semicentral Classes
	14.4 Link to Analysis Algorithm
	14.5 Extensions and References

	References
	Author Index
	Subject Index

