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Preface

Many problems can be formulated as Constraint Satisfaction Problems (CSPs),
although researchers who are untrained in this field sometimes fail to recognize
them, and consequently, fail to make use of specialized techniques for solving them.
In recent years, constraint satisfaction has come to be seen as the core problem in
many applications, for example temporal reasoning, resource allocation, schedul-
ing. Its role in logic programming has also been recognized. The importance of con-
straint satisfaction is reflected by the abundance of publications made at recent
conferences such as IJCAI-89, AAAI-90, ECAI-92 and AAAI-92. A special vol-
ume of Artificial Intelligence was also dedicated to constraint reasoning in 1992
(Vol 58, Nos 1-3).

The scattering and lack of organization of material in the field of constraint satisfac-
tion, and the diversity of terminologies being used in different parts of the literature,
make this important topic more difficult to study than is necessary. One of the
objectives of this book is to consolidate the results of CSP research so far, and to
enable newcomers to the field to study this problem more easily. The aim here is to
organize and explain existing work in CSP, and to provide pointers to frontier
research in this field. This book is mainly about algorithms for solving CSPs.

The volume can be used as a reference by artificial intelligence researchers, or as a
textbook by students on advanced artificial intelligence courses. It should also help
knowledge engineers apply existing techniques to solve CSPs or problems which
embed CSPs. Most algorithms described in this book have been explained in pseudo
code, and sometimes illustrated with Prolog codes (to illustrate how the algorithms
could be implemented). Prolog has been chosen because, compared with other lan-
guages, one can show the logic of the algorithms more clearly. I have tried as much
as possible to stick to pure Prolog here, and avoid using non-logical constructs such
as assert and retract. The Edinburgh syntax has been adopted.

CSP is a growing research area, thus it has been hard to decide what material to
include in this book. I have decided to include work which I believe to be either fun-
damental or promising. Judgement has to be made, and it is inevitably subjective. It
is quite possible that important work, especially current research which I have not
been able to fully evaluate, have been mentioned too briefly, or completely missed
out.

An attempt has been made to make this book self-contained so that readers should
need to refer to as few other sources as possible. However, material which is too
lengthy to explain here, but which has been well documented elsewhere, has been
left out.
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Formal logic (mainly first order predicate calculus) is used in definitions to avoid
ambiguity. However, doing so leaves less room for error, therefore errors are inevi-
table. For them, I take full responsibility.

Edward Tsang
University of Essex, UK
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Chapter 1,
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Chapter 1

Introduction

Almost everybody who works in artificial intelligence should know something
about the Constraint Satisfaction Problem (CSP). CSPs appear in many areas, for
instance, vision, resource allocation in scheduling and temporal reasoning. The CSP
is worth studying in isolation because it is a general problem that has unique fea-
tures which can be exploited to arrive at solutions. The main objective of this book
is to identify these properties and explain techniques for tackling CSPs.

In this chapter, we shall first define the standard CSP and the important concepts
around it. To avoid ambiguity, concepts are defined both verbally and in first order
predicate calculus (FOPC). The verbal definitions alone should be sufficient for
readers who do not have enough knowledge of FOPC to understand the formal defi-
nitions.

1.1  What is a constraint satisfaction problem?

In this section, we shall give an informal definition of the Constraint Satisfaction
Problem (CSP), along with two examples.

Basically, a CSP is a problem composed of a finite set of variables, each of which is
associated with a finite domain, and a set of constraints that restricts the values the
variables can simultaneously take. The task is to assign a value to each variable sat-
isfying all the constraints.

1.1.1  Example 1 —The N-queens problem

The N-queens problem is a well known puzzle among computer scientists.
Although the N-queens problem has very specific features (explained below) which
can be exploited in solving it, it has been used extensively for illustrating CSP solv-
ing algorithms.
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Given any integer N, the problem is to place N queens on N distinct squares in an
N × N chess board, satisfying the constraint that no two queens should threaten each
other. The rule is such that a queen can threaten any other pieces on the same row,
column or diagonal. Figure 1.1 shows one possible solution to the 8-queens prob-
lem.

1

2

3

4

5

6

7

8

A B C D E F G H

Figure 1.1 A possible solution to the 8-queens problem. The problem
is to place eight queens on an 8×8 chessboard satisfying the constraint
that no two queens should be on the same row, column or diagonal
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One way to formalize the 8-queens problem as a CSP is to see it as a problem with
eight variables (i.e. a finite set of variables), each of which may take a value from A
to H. The task is to assign values to the variables satisfying the above-specified con-
straints.

1.1.2  Example 2 — The car sequencing problem

In modern car production, cars are placed on conveyor belts which move through
different work areas. Each of these work areas specializes to do a particular job,
such as fitting sunroofs, car radios or air-conditioners. When a car enters a work
area, a team of engineers in that area travels with the car while working on it. The
production line is designed so as to allow enough time for the engineers to finish
this job while the car is in their work area. For example, if the time taken to install a
sunroof is 20 minutes, and one car enters the conveyor belt every four minutes, then
the work area for sunroof installation will be given a capacity of carrying (20 ÷ 4 =)
five cars. Figure 1.2 shows a section of the production line.

A production line is normally required to produce cars of different models. The
number of cars required for each model is called the production requirement. Since
cars of different models require different options to be fitted, not every car requires
work to be done in every work area. For example, one model may need air-condi-
tioning and power brakes to be installed, but not a sunroof. The upper half of
Figure 1.2 shows an example of the production requirement and the options
required by four models. For example, 30 cars of model A are required, each of
which needs a radio cassette, air-conditioning and power brakes to be fitted, but not
a sunroof or anti-rust treatment.

Each work area is constrained by its resource constraint. For example, if three teams
of engineers are designated to fitting sunroofs, and the sunroof work area has a
space capacity for five cars, then the sunroof work area can cope with no more than
three out of five cars requiring the fitting of sunroofs in any sub-sequence of cars on
the conveyor belt. If more than three cars in any sequence of five cars require sun-
roofs, then the engineers would not have time to finish before the conveyor belt
takes the cars away. The ratio 3/5 is called the capacity constraint of the work area
for sunroof. In the example in Figure 1.2, the capacity constraints of the sunroof and
radio cassette work areas are 3/5 and 2/3, respectively. We have not specified the
capacity constraints of the other options there.

A car-sequencing problem is specified by the production and option requirements
and the capacity constraints. Given the production requirements, the scheduler’s
task is to order the cars in the conveyor belt so that the capacity constraint of all the
work areas are satisfied. In the above example, 120 cars of the four specified models
must be scheduled. The sub-sequence shown in Figure 1.2 is:

 ..., B, C, A, A, B, C, D, B, D, C, ...



Production Requirements:

Options (✓  = required, ✕  = not):
Sunroof
Radio cassette
Air-conditioning
Anti-rust treatment
Power brakes

✕
✓
✓
✕

✓
✕
✓
✓

✓
✓
✕
✓

✕
✓
✓
✓

✓ ✕ ✓ ✕

30 30 20 40Number of cars required:
Total:
120

Work area for sunroof
Work area for
radio cassette

Capacity Constraint: 2/3Capacity Constraint: 3/5

Model DModel CModel BModel A

CDBDCBAACB

Figure 1.2 Example of a car sequencing problem
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To check that it satisfies the capacity constraint of the sunroof work area, one has to
look at every sub-sequence of five cars, e.g.

B, C, A, A, B
C, A, A, B, C
A, A, B, C, D
.....

Careful examination should convince readers that the sub-sequence (C, A, A) in
Figure 1.2 actually violates the capacity constraints of the radio cassette work area.

The car-sequencing problem is difficult when a large number (say, hundreds) of cars
are to be scheduled. Failure has been reported in attempting to solve it using theo-
rem provers and expert system tools [PaKaWo86] [Parr88]. It has been shown that
this problem can be solved efficiently by formulating this problem as a CSP and
applying CSP solving techniques to it [DiSiVa88b].

We have already explained that a CSP is composed of variables, domains and con-
straints. The car-sequencing problem can be formulated as a CSP in the following
way. One variable is used to represent the car model of one position in the conveyor
belt (i.e. if there are n cars to be scheduled, the problem consists of n variables). The
domain of each variable is the set of car models, A to D in the above example. The
task is to assign a value (a car model) to each variable (a position in the conveyor
belt), satisfying both the production requirements and capacity constraints.

1.2  Formal Definition of the CSP

In this section, we shall give a more formal definition of the CSP. Before doing so,
we first define domains, assignments (which we call labels below), and the concept
of satisfying in terms of set relations.

1.2.1  Definitions of domain and labels

Definition 1-1:

The domain of a variable is a set of all possible values that can be assigned
to the variable. If x is a variable, then we use Dx to denote the domain of it. ■

When the domain contains numbers only, the variables are called numerical varia-
bles. The domain of a numerical variable may be further restricted to integers,
rational numbers or real numbers. For example, the domain of an integer variable is
an infinite set {1, 2, 3, ...}. The majority of this book focuses on CSPs with finite
domains.

When the domain contains boolean values only, the variables are called boolean
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variables. When the domain contains an enumerated type of objects, the variables
are called symbolic variables. For example, a variable that represents a day of the
week is a symbolic variable of which the domain is the finite set {Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday}.

Definition 1-2:

A label is a variable-value pair that represents the assignment of the value to
the variable. We use <x, v> to denote the label of assigning the value v to the
variable x. <x, v> is only meaningful if v is in the domain of x (i.e. v ∈ Dx).
■

Definition 1-3:

A compound label is the simultaneous assignment of values to a (possibly
empty) set of variables. We use (<x1,v1><x2,v2>...<xn,vn>) to denote the
compound label of assigning v1, v2, ..., vn to x1, x2, ..., xn respectively. ■

Since a compound label is seen as a set, the ordering of the labels in our representa-
tion is insignificant. In other words, (<x,a><y,b><z,c>) is treated as exactly the
same compound label as (<y,b><x,a><z,c>), (<z,c><x,a><y,b>), etc. Besides, it is
important to remember that a set does not have duplicate objects.

Definition 1-4:

A k-compound label is a compound label which assigns k values to k varia-
bles simultaneously. ■

Definition 1-5:

If m and n are integers such that m ≤ n, then a projection of an n-compound
label N to an m-compound label M, written as projection(N, M), (read as: M
is a projection of N) if the labels in M all appear in N.

∀  (<x1,v1>...<xm,vm>), (<z1,w1>...<zn,wn>): {x1, ..., xm} ⊆  {z1, ..., zn} :
projection((<z1,w1>...<zn,wn>),(<x1,v1>...<xm,vm>))  ≡

<x1,v1>, ..., <xm,vm> ∈ {< z1,w1>, ..., <zn,wn>} ■ 1

For example, (<a,1><c,3>) is a projection of (<a,1><b,2><c,3>), which means the
proposition projection((a,1><b,2><c,3>), (a,1><c,3>))  is true.

1. We use this notation to indicate that projection((<z1,w1>...<zn,wn>), (<x1,v1>...<xm,vm>))

is only defined if (<z1,w1>...<zn,wn>) and (<x1,v1>...<xm,vm>) are compound labels, and {x1,

..., xm} is a subset of {z1, ..., zn.}. It is undefined otherwise.
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Definition 1-6:

The variables of a compound label is the set of all variables which appear
in that compound label:

variables_of( (<x1,v1> <x2,v2> ... <xk,vk> ) )  ≡  { x1, x2, ..., xk } ■

1.2.2  Definitions of constraints

A constraint on a set of variables is a restriction on the values that they can take
simultaneously. Conceptually, a constraint can be seen as a set that contains all the
legal compound labels for the subject variables; though in practice, constraints can
be represented in many other ways, for example, functions, inequalities, matrices,
etc., which we shall discuss later.

Definition 1-7:

A constraint on a set of variables is conceptually a set of compound labels
for the subject variables. For convenience, we use CS to denote the con-
straint on the set of variables S. ■

Definition 1-8:

The variables of a constraint is the variables of the members of the con-
straint:

variables_of( )  ≡ { x1, x2, ..., xk } ■

“Subsumed-by” is a binary relationship on constraints.

Definition 1-9:

If m and n are integers such that m ≤ n, then an m-constraint M is subsumed-
by an n-constraint N (written as subsumed-by(M,N )) if for all elements c in
M there exists an element d in N such that c is a projection of d:

∀  CM, CN:  M  = m ∧  N  = n ∧ m ≤ n:
subsumed-by(CM, CN)  ≡

(∀  (<x1,v1>...<xm,vm>) ∈ CM:
(∃  (<z1,w1>...<zn,wn>) ∈ CN:

projection((<z1,w1>...<zn,wn>),(<x1,v1>...<xm,vm>)))) ■

Here  M  and  N  denote the number of variables in M and N respectively. If:

CM = {(<a,1><c,3>), (<a,4><c,6>)}

and CN = {(<a,1><b,2><c,3>), (<a,1><b,4><c,3>), (<a,4><b,5><c,6>)},

Cx1 x2 … xk, , ,
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then the proposition subsumed-by(CM, CN) is true. In other words, if constraint M is
subsumed by constraint N, then N is at least as restrictive as M. Apart from con-
straining the variables of M, N could possibly constrain other variables too (in the
above example, CM constrains variables a and c, while CN constrains a, b and c).

1.2.3  Definitions of satisfiability

Satisfies is a binary relationship between a label or a compound label and a con-
straint.

Definition 1-10a:

If the variables of the compound label X are the same as those variables of
the elements of the compound labels in constraint C, then X satisfies C if and
only if X is an element of C:

satisfies( (<x1,v1><x2,v2>...<xk,vk>) ,  )  ≡

(<x1,v1><x2,v2>...<xk,vk>) ∈ ■

For convenience, satisfies is also defined between labels and unary constraints.

Definition 1-10b:

satisfies( <x,v>, Cx )  ≡  (<x,v>) ∈ Cx ■

This allows us to write something like satisfies(<x,v>, Cx) as well as satis-

fies((<x,v>),Cx). Following Freuder [1978], the concept of satisfies(L,C) is
extended to the case when C is a constraint on a subset of the variables of the com-
pound label L.

Definition 1-11:

Given a compound label L and a constraint C such that the variables of C are
a subset of the variables of L, the compound label L satisfies constraint C if
and only if the projection of L onto the variables of C is an element of C:

∀ x1, x2, ..., xk: ∀ v1 ∈  , v2 ∈  , ... , vk ∈  :

(∀ S ⊆ {x1, x2, ..., xk}:

satisfies((<x1,v1> <x2,v2 >... <xk,vk>), ) ≡

(∃ cl ∈  : projection((<x1,v1> ... <xk,vk>), cl ))) ■

Cx1 x2 … xk, , ,

Cx1 x2 … xk, , ,

Dx1
Dx2

Dxk

CS

CS
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In other words, when we say that L satisfies C, we mean that if C is a constraint on
the variables {x1, x2, ..., xk} or its subset, then the labels for those variables in L are
legal as far as C is concerned. For example, (<a,1> <b,2> <c,3> <d,4>) satisfies the
constraint Cc,d if and only if (<c,3> <d,4>) is a member of Cc,d:

Cc,d = {..., (<c,3> <d,4>), ...}.

1.2.4  Formal definition of constraint satisfaction problems

We stated earlier that a CSP is a problem with a finite set of variables, each associ-
ated to a finite domain, and a set of constraints which restrict the values that these
variables can simultaneously take. Here we shall give this problem a more formal
definition.

Definition 1-12:

A constraint satisfaction problem is a triple:

(Z, D, C)

where Z = a finite set of variables {x1, x2, ..., xn};
D = a function which maps every variable in Z to a set of objects of arbitrary

type:
D: Z → finite set of objects (of any type)

We shall take  as the set of objects mapped from xi by D. We call

these objects possible values of xi and the set  the domain of xi;

C = a finite (possibly empty) set of constraints on an arbitrary subset of var-
iables in Z. In other words, C is a set of sets of compound labels.

We use csp(P) to denote that P is a constraint satisfaction problem. ■

 restricts the set of compound labels that x1, x2, ..., and xk can take

simultaneously. For example, if the variable x can only take the values a, b and c,
then we write Cx = {(<x,a>),(<x,b>),(<x,c>)}. (Note the difference between Cx and
Dx: Cx is a set of labels while Dx is a set of values.) The value that x can take may be
subject to constraints other than Cx. That means although <x,a> satisfies Cx, a may
not be a valid value for x in the overall problem. To qualify as a valid label, <x,a>
must satisfy all constraints which constrain x, including Cx,y, Cw,x,z, etc.

We focus on CSPs with finite number of variables and finite domains because, as
illustrated later, efficient algorithms which exploit these features can be developed.

Dxi

Dxi

Cx1 x2 … xk, , ,
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1.2.5  Task in a CSP

The task in a CSP is to assign a value to each variable such that all the constraints
are satisfied simultaneously.

Definition 1-13:

A solution tuple of a CSP is a compound label for all those variables which
satisfy all the constraints:

∀  csp((Z, D, C)): ∀ x1, x2, ..., xn ∈ Z: (∀ v1 ∈ , v2 ∈ , ...,vn ∈ :

solution_tuple( (<x1,v1> <x2,v2> ... <xn,vn>), (Z, D, C) )  ≡
((Z = {x1, x2, ..., xn}) ∧
(∀ c ∈ C: satisfies((<x1,v1> <x2,v2> ... <xn,vn>), c))) ■

A CSP is satisfiable if solution tuple exists. Depending on the requirements of an
application, CSPs can be classified into the following categories:

(1) CSPs in which one has to find any solution tuple.
(2) CSPs in which one has to find all solution tuples.
(3) CSPs in which one has to find optimal solutions, where optimality is defined

according to some domain knowledge. Optimal or near optimal solutions are
often required in scheduling. This kind of problem will be discussed in Chap-
ter 10.

1.2.6  Remarks on the definition of CSPs

The CSP defined above is sometimes referred to as the Finite Constraint Satisfac-
tion Problem or the Consistent Labelling Problem. The term “constraint satisfac-
tion” is often used loosely to describe problems which need not conform to the
above definition. In some problems, variables may have infinite domains (e.g.
numerical variables). There are also problems in which the set of variables could
change dynamically — depending on the value that one variable takes, different sets
of new variables could emerge. Though these problems are important, they belong
to another class of problems which demand a different set of specialized techniques
for solving them. We shall focus on the problems under the above definition until
Chapter 10, where extensions of this definition are examined.

1.3  Constraint Representation and Binary CSPs

We said earlier that if S = {x1, x2, ..., xk}, we use CS or  to denote the

constraint on S. CS restricts the compound labels that the variables in S can simulta-

Dx1
Dx2

Dxn

Cx1 x2 … xk, , ,
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neously take.

A constraint can be represented in a number of different ways. Constraints on
numerical variables can be represented by equations or inequalities; for example, a
binary constraint Cx,y may be x + y < 10. A constraint may also be viewed as a func-
tion which maps every compound label on the subject variables to true or false.
Alternatively, a constraint may be seen as the set of all legal compound labels for
the subject variables. This logical representation will be taken in this book as it
helps to explain the concept of problem reduction (explained in Chapters 2 and 3)
— where tightening a constraint means removing elements from the set. This
choice of representation should not affect the generality of our discussions.

One way in which to represent binary constraints is to use matrices of boolean val-
ues. For example, assume that variable x can take values 1, 2 and 3, and variable y
can take values 4, 5, 6 and 7. The constraint on x and y which states that “x + y must
be odd” can be represented by a matrix, as shown in Figure 1.3.

The matrix in Figure 1.3 represents the fact that:

(<x,1><y,4>)
(<x,1><y,6>)
(<x,2><y,5>)
(<x,2><y,7>)
(<x,3><y,4>)
(<x,3><y,6>)

are all the compound labels that variables x and y can take.

Since a lot of research focuses on problems with unary and binary constraints only,
we define the term binary constraint problem for future reference.

1

2

3

4 5 6 7
y

x

1 0 1 0

0 1 0 1

1 0 1 0

Cxy

Figure 1.3 matrix representing the constraint between x and y
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Definition 1-14:

A binary CSP, or binary constraint problem, is a CSP with unary and
binary constraints only. A CSP with constraints not limited to unary and
binary will be referred to as a general CSP. ■

It is worth pointing out that all problems can be transformed into binary constraint
problems, though whether one would benefit from doing so is another question. In
general, if x1, x2, ..., xk are k variables, and there exists a k-ary constraint CC on
them, then this constraint can be replaced by a new variable W and k binary con-
straints. The domain of W is the set of all compound labels in CC (we mentioned
earlier that we see constraints as sets of compound labels). Each of the k newly cre-
ated binary constraints connects W and one of the k variables x1 to xk. The binary
constraint which connects W and a variable xi requires xi to take a value which is
projected from some values in W. This could be illustrated by the example in
Figure 1.4. Let x, y and z be three variables in which the domains are all {1, 2}, and
there exists a 3-constraint insisting that not all three variables must take the same
value (as shown in Figure 1.4(a)). This problem can be transformed into the binary
constraint problem shown in Figure 1.4(b). In the transformed problem the variable
W is created. The domain of W is the set of compound labels in Cx,y,z:

(<x,1>,<y,1>,<z,2>)
(<x,1>,<y,2>,<z,2>)
(<x,1>,<y,2>,<z,1>)
(<x,2>,<y,1>,<z,2>)
(<x,2>,<y,1>,<z,1>)
(<x,2>,<y,2>,<z,1>)

The constraint between W and x, say, is that projection(vW , (<x,vx>)) must hold,
where vW and vx are the values that W and x take, respectively. For example, accord-
ing to this constraint, if W takes the value (<x,1>,<y,1>,<z,2>), then x must take the
value 1.

By removing k-ary constraints for all k > 2, we introduce new variables which have
large domains. Whether one could benefit from this transformation depends on what
we can do with the resulting problem. A number of CSP solving techniques which
we shall illustrate in this book are applicable only to binary CSPs.

In Chapter 7, we shall explain that every CSP is associated to a dual CSP, which is
also a binary CSP.

1.4  Graph-related Concepts

Since graph theory plays an important part in CSP research, we shall define some



{(<x, 1><y, 1><z, 2>), (<x, 1><y, 2><z, 1>)
(<x, 1><y, 2><z, 2>), (<x, 2><y, 1><z, 2>)
(<x, 2><y, 2><z, 1>), (<x, 2><y, 1><z, 1>)}

x y z{1, 2} {1, 2} {1, 2}

W
binary constraints —

3-constraint — legal combinations are:

x y z{1, 2} {1, 2} {1, 2}

{(<x, 1><y, 1><z, 2>), (<x,1><y, 2><z, 1>)
(<x, 1><y, 2><z, 2>), (<x, 2><y, 1><z, 2>)
(<x, 2><y, 2><z, 1>), (<x, 2><y, 1><z, 1>)}

new variable, which domain is:

requiring the label for
x to be a projection
of the value of W

Figure 1.4 Transformation of a 3-constraint problem into a binary
constraint

(a) A problem with the 3-constraint which disallows all of x, y and z
to take the same values simultaneously. The domains of all x, y and

z are {1, 2}

(b) A binary constraint problem which is transformed from (a). A new
variable W is created, in which the domain is the set of all compound
labels for x, y and z. The constraints between W and the other three
variables  require that labels for x, y and z must be projections of W ’s

value
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terminologies in graph theory which we shall refer to later in this book.

Definition 1-15:

A graph is a tuple (V, U) where V is a set of nodes and U (⊆ V × V) is a set of
arcs. A node can be an object of any type and an arc is a pair of nodes. For
convenience, we use graph(G) to denote that G is a graph.

An undirected graph is a tuple (V, E) where V is a set of nodes and E is a set
of edges, each of which being a collection of exactly two elements in V. ■

The nodes in an arc are ordered whereas the nodes in an edge are not. An edge can
be seen as a pair of arcs (x,y) and (y,x). A binary CSP is often visualized as a con-
straint graph, which is an undirected graph where the nodes represent variables and
each edge represents a binary constraint.

Definition 1-16:

For all graphs (V, E), node x is adjacent to node y if and only if (x, y) is in E:

∀  graph((V, E)): (∀x , y ∈ V: adjacent(x, y, (V, E)) ≡ (x, y) ∈ E) ■

Definition 1-17:

A hypergraph is a tuple (V, E) where V  is a set of nodes and E is a set of
hyperedges, each of which is a set of nodes. For convenience we use
hypergraph((V, E)) to denote that (V, E) is a hypergraph, hyperedges(F , V)
to denote that F is a set of hyperedges for the nodes V  (i.e. F  is a set of set
of nodes in V), and nodes_of(e) to denote the nodes involved in the hyper-

edge e. ■

Hypergraphs are a generalization of graphs. In a hypergraph, each hyperedge may
connect more than two nodes. In general, every CSP is associated with a constraint
hypergraph.

Definition 1-18:

The constraint hypergraph of a CSP (Z, D, C) is a hypergraph in which
each node represents a variable in Z, and each hyperedge represents a con-
straint in C. We denote the constraint hypergraph of a CSP P by H(P). If P
is a binary CSP and we exclude hyperedges on single nodes, then H(P) is a

graph. We denote the constraint graph of a CSP by G(P):

∀  csp((Z, D, C)):
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(V  , E ) = H((Z, D, C))  ≡
((V   = Z) ∧  (E = {S | ∃ c ∈ C ∧ S = variables_of(c)})) ■

What a constraint hypergraph does not show are those domains and the compound
labels which are allowed or disallowed by the constraints in the CSP.

Later we shall extend our definition of a constraint graph of a CSP to general CSPs
(see Definition 4-1 in Chapter 4).

Definition 1-19:

A path in a graph is a sequence of nodes drawn from it, where every pair of
adjacent nodes in this sequence is connected by an edge (or an arc, depend-
ing on whether the graph is directed or undirected) in the graph:

∀  graph((V, E)):
∀ x1, x2, ..., xk ∈ V:

(path((x1, x2, ..., xk), (V, E))  ≡ ((x1, x2) ∈ E) ∧  ... ∧  ((xk-1, xk) ∈ E)))
■

Definition 1-20:

A path of length n is a path which goes through n + 1 (not necessarily dis-
tinct) nodes:

length_of_path( (x1, x2, ..., xk) )  ≡ k - 1 ■

Definition 1-21:

A node y is accessible from another node x if there exists a path from x to y:

∀  graph((V, E)): (∀x , y ∈ V:
accessible(x, y, (V, E))  ≡

((x,y) ∈ E ∨  (∃ z1, z2, ..., zk: path((x, z1, z2, ..., zk, y), (V, E)))) ■

Definition 1-22:

A graph is connected if there exists a path between every pair of nodes:

∀  graph((V, E)):
(connected( (V, E) )  ≡  (∀ x, y ∈ V: accessible(x, y, (V, E)))) ■

A constraint graph need not be connected (some variables may not be constrained,
and sometimes variables may be partitioned into mutually unconstrained groups).
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Definition 1-23:

A loop in a graph is an edge or an arc which goes from a node to itself, i.e. a
loop is (x,x), where x is a node. ■

Definition 1-24:

A network is a graph which is connected and without loops:

∀  graph((V, E)):
(network( (V, E) )  ≡  (connected( (V, E) ) ∧  (∀ x ∈  V: (x, x) ∉ E)))) ■

Definition 1-25:

A cycle is a path on which end-points coincide:

∀  graph((V, E)): (∀x 0, x1, x2, ..., xk ∈ V:
(cycle((x0, x1, x2, ..., xk), (V, E))  ≡

(path((x0, x1, x2, ..., xk), (V, E)) ∧ x0 = xk))) ■

Definition 1-26:

An acyclic graph is a graph which has no cycles:

∀  graph(G): (acyclic(G)  ≡  (¬ ∃  path( p, G): cycle( p, G))) ■

Definition 1-27:

A tree is a connected acyclic graph:

∀  graph(G): (tree(G)  ≡  (network(G) ∧  (¬ ∃  path( p, G): cycle( p, G)))) ■

Definition 1-28:

A binary relation (<) on a set S is called an ordering of S when it is irreflex-
ive, asymmetric and transitive:

irreflexive(S, <): ∀ x ∈ S: ¬ x < x
asymmetric(S, <): ∀ x, y ∈ S: (x < y ⇒ ¬ y < x)
transitive(S, <): ∀ x, y, z ∈ S: (x < y ∧ y < z ⇒ x < z). ■

Definition 1-29:

A set S is totally ordered if every two elements in S are ordered. Such an
ordering is called a total ordering of the elements in S:
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total_ordering(S, <)  ≡  (∀ x, y ∈ S: x < y ∨ y < x). ■

1.5  Examples and Applications of CSPs

To help understand what a CSP is and where they appear, we shall look at some
examples and applications of CSPs in this section.

1.5.1  The N-queens problem

In this section, we shall formulate the N-queens problem that we introduced in
Section 1.1.1 according to the formal definition of CSP, and illustrate that a problem
can be formulated as a CSP in different ways.

1.5.1.1  Problem formalization

To formalize a problem as a CSP, we must identify a set of variables, a set of
domains and a set of constraints. One way to formalize the 8-queens problem as a
CSP is to make each of the eight rows in the 8-queens problem a variable: the set of
variables Z = {Q1, Q2, ..., Q8}. Each of these eight variables can take one of the
eight columns as its value. If we label the columns with values 1 to 8 (for computa-
tion purposes, which will be made clear below), then the domains of all the varia-
bles in this CSP are as follows:

 =  = ... =  = {1, 2, 3, 4, 5, 6, 7, 8}.

Now let us look at the set of constraints. The fact that we represent each row as a
variable has ensured that no two queens can be on the same row. To make sure that
no two queens are on the same column, we have the following constraint:

Constraint (1): ∀ i, j: Qi ≠ Qj

To make sure that no two queens are on the same diagonal, we can include the fol-
lowing constraint in our set of constraints:

Constraint (2): ∀ i, j, if Qi = a and Qj = b, then i − j  ≠  a − b, and i − j  ≠  b −a.

(Making the values integers allows us to do arithmetic with them.) To represent
these constraints, we could explicitly record the set of all compatible values
between each pair of variables. Alternatively, we can make them functions or proce-
dures — given a pair of labels, these functions or procedures return true or false,
depending on whether the given labels are compatible or not. Program 1.1 is a sim-
ple example of such a piece of code.

DQ1
DQ2

DQ8
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/*compatible1( X/Vx, Y/Vy )
X/Vx represents the X-th row, Vx-th column; and Y/Vy repre-

sents the Y-th row, Vy-th column (where Vx and Vy both
range from 1 to 8), compatible1/2 succeeds if and only if X/
Vx and Y/Vy are compatible according to the constraints in
the N-queens problem.

*/
compatible1( X/Vx, Y/Vy ) :-
Vx =\= Vy, /* Constraint (1) */
X - Y =\= Vx - Vy, /* Constraint (2) */
X - Y =\= Vy - Vx. /* Constraint (2) */

Program 1.1: Functional representation of a constraint in the N-
queens problem

Under this problem formalization, there are 88 combinations of values for the eight

variables to be considered. In general, an N-queens problem has NN candidate solu-
tions to be considered.

1.5.1.2  Alternative formalization of the N-queens problem

It is worth pointing out here that there is often more than one way to formalize a
problem as a CSP. The N-queens problem need not be formalized in the above way.
An alternative representation is to use Q1, Q2, ..., Q8 to represent the positions of the
queen (rather than the column of each queen in the above formalization). If the 64
squares in the 8 × 8 board are numbered 1 to 64, then the domain of each variable
becomes {1, 2, ..., 64}. In other words:

Z = {Q1, Q2, ..., Q8}

 =  = ... =  = {1, 2, 3, 4, ..., 64}.

Let us assume that we number the squares from left to right, top to bottom. Then
given a number which represents a square, the row and column of that square can be
computed as follows:

row = (number div 8) + 1
column = (number mod 8) + 1

Given the rows and columns of two squares, we can check whether they are com-
patible with each other using the codes shown in Program 1.2.

/*compatible2( N1, N2 )
given N1 and N2, which both range from 1 to 64, this predicate

succeeds if and only if N1 and N2 are compatible according

DQ1
DQ2

DQ8
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to the constraints in the 8-queens problem.
*/
compatible2( N1, N2 ) :-

R1 is (N1 div 8) + 1, C1 is (N1 mod 8) + 1,
R2 is (N2 div 8) + 1, C2 is (N2 mod 8) + 1,
R1  =\= R2,
C1  =\= C2,
R1 - R2  =\= C1 - C2,
R1 - R2  =\= C2 - C1.

Program 1.2: Alternative functional representation of a constraint in
the 8-queens problem

Some formalizations of a problem are easier to solve than others. The 8-queens

problem formalized in this section allows 648 combinations of 8-compound labels,
which makes the problem potentially more difficult to solve than the CSP formal-

ized in the preceding section (which allows only 88 combinations of 8-compound
labels). The formalization in the preceding section in fact has built into it the con-
straint that no two queens can be placed in the same row.

1.5.1.3  Caution about benchmarking using the N-queens problem

The N-queens problem will be used to illustrate a number of CSP solving algo-
rithms in this book, but it is worth pointing out that benchmarks on different algo-
rithms produced using this problem must be interpreted with caution. This is
because the N-queens problem has very specific features: firstly, it is a binary con-
straints problem; secondly, every variable is constrained by every other variable,
which need not be the case in other problems. More importantly, in the N-queens
problem, each label for every variable conflicts with at most three values of each
other variable, regardless of the number of variables (i.e. N) in the problem. For
example, <1,2> has conflict with <2,1>, <2,2> and <2,3>. In an 8-queens problem,
for example, when 2 is assigned to Queen 1, there are 5 out of 8 values that Queen 2
can take. But in the 1,000,000-queens problem, there are 999,997 out of 1,000,000
values that Queen 2 can take after <1,2> has been committed to. Therefore, con-
straints get looser as N grows larger (see formal definition of tightness in
Definition 2-13). Such features may not be shared by many other CSPs.

1.5.2  The graph colouring problem

Another problem which is often used to explain concepts and algorithms for the
CSP is the colouring problem. Given a graph and a number of colours, the problem
is to assign colours to those nodes satisfying the constraint that no adjacent nodes
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should have the same colour assigned to them. One instance of the colouring prob-
lem is the map colouring problem: the problem is to colour the different areas of a
given map with a limited number of colours, subject to the constraint that no adja-
cent areas in the map have the same colour. Figure 1.5(a) shows an example of a
map which is to be coloured. The map colouring problem is an instance of the gen-
eral graph colouring problem, as a map can be represented by a graph where each
node represents an area in the map, and every pair of nodes which represent two
adjacent areas in the map is connected by an edge (see Figure 1.5(b)).

The areas to be coloured in Figure 1.5(a) are w, x, y and z. Assume that we are
allowed to label the map with three colours only: r (for red), g (for green) and b (for
blue). The values in {} next to the nodes (i.e. variables) in Figure 1.5(b) specify the
domain. Each of the edges in the graph in Figure 1.5(b) represents a constraint
which states that the connected nodes must not take the same value. The constraint
on variables A and B (denoted CA,B) is conceptually seen as the set {(<A,r><B,g>),
(<A,r><B,b>), (<A,g><B,r>), (<A,g><B,b>), (<A,b><B,r>), (<A,b><B,g>)}. (In
practice, it can be represented by other means, e.g. a function). One solution tuple
for this problem is: (<A,r> <B,g> <C,b> <D,r>). To summarize, the CSP (Z, D, C)
for this problem is:

w

x

y z

w x

y z

{r, g, b}{r, g, b}

{r, g, b} {r, g, b}

Figure 1.5 Example of a map colouring problem

(b) constraint graph of the CSP in
(a): w, x, y and z are variables which
all have the same domain {r, g, b}

(a)  map to be coloured
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Z = {w, x, y, z}
Dw = Dx = Dy = Dz = {r, g, b}
C = {Cw,x, Cw,y, Cx,y, Cx,z, Cy,z}

1.5.3  The scene labelling problem

The scene labelling problem in computer vision is probably the first CSP to be for-
malized. In vision, the scenes are normally captured as images by cameras. After
some preprocessing, lines can be recognized from the images, then scenes like the
one shown in Figure 1.6 are generated.

To recognize the objects in the scene, one must first interpret the lines in the draw-
ings. One can categorize the lines in a scene into the following types:

(1) convex edges
A convex edge is an edge formed by two planes, both of which extend (from
the edge) away from the viewer. Convex edges are marked by “+”.

(2) concave edges
A concave edge is an edge formed by two planes both of which extend (from
the edge) towards the viewer. Concave edges are marked by “−”.

(3) occluding edges
An occluding edge is a convex edge where one of the planes is hidden behind
the other and therefore not seen by the viewer. Occluding edges are marked
by either “→” or “←”, depending on the situation. If one moves along an
occluding edge following the direction of the arrow, the area on the right rep-
resents the face of an object which can be seen by the viewer, and the area on
the left represents the background or some faces of the objects at the back.

Figure 1.6 Example of a scene to be labelled



Figure 1.7 The scene in Figure 1.6 with labelled edges
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Figure 1.8 Legal labels for junctions (from Huffman, 1971)
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The scene in Figure 1.6 can be labelled as shown in Figure 1.7. Given any junction
independent of the scene, there are limited choices of labels. These choices are
shown in Figure 1.8.

One way in which to formalize the scene labelling problem as a CSP is to use one
variable to represent the value of a line in the scene. For example, in the scene in
Figure 1.6 we have the following variables: {A, B, C, D, E, F, G, H, I}, as shown in
Figure 1.9. The domain of each variable is therefore the set {+, −, →, ←}.

The limited choices of label combinations in the junctions (as shown in Figure 1.8)
impose constraints on the variables. Since lines A, F, G form an arrow, according to
(g)-(i) in Figure 1.8, the values that these three variables can take simultaneously
are restricted to:

Similarly, every other junction posts constraints to the labelling of the lines which
form it. The task is to label all the variables, satisfying all the constraints. One may
want to find one or all solutions to this problem, depending on the need of subse-
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Figure 1.9 Variables in the scene labelling problem in Figure 1.6
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quent processing. Waltz introduced an algorithm, referred to as the Waltz filtering
algorithm, for solving this problem. The algorithm is based on constraint propaga-
tion, and is discussed in Chapter 4.

1.5.4  Temporal reasoning

Temporal reasoning, which involves constraint satisfaction, is an important area in
AI planning and many other applications (e.g. see Tsang, 1987b; Dechter et al.
1991). Events are all temporally related to each other. Depending on the time struc-
ture that one uses, different sets of temporal relations apply. In early research in
planning, the world is simplified in such a way that all events are assumed to be
instantaneous. In that case, three relations are possible between any two events A
and B: “A before B”, “B before A” or “A equals B”. Allen [1983] points out that
when durations in events are reasoned about, 13 relations are possible between any
two events. These relations are shown in Figure 1.10.

position of event B
position of event A

A before B

A meets B

A overlaps B

A finished by B

A contains B

A finishes B

A overlapped by B

A after B

A during B

A met by B

1

3

2

5

4

9

11

10

12

13

A starts B6

A equals B

A started by B

7

8

Figure 1.10 Thirteen possible temporal relations between two events
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In planning and scheduling, one has to determine the temporal relationship between
events. There are basically two approaches. One is to assume one temporal relation
per pair of events at a time, and backtrack when the hypothetical situation has been
proved to be over-constrained. Most conventional planners do this (for example, see
Fikes & Nilsson, 1971; Sacerdoti, 1974; Tate, 1977; and Wilkins, 1988). These
planners adopt the assumption that events are instantaneous, therefore their ability
to represent real life temporal knowledge is limited.

The other approach is to reason with all disjunctive temporal relations simultane-
ously. This approach is taken by Allen & Koomen [1983]. In order to schedule the
events, one has to assign one temporal relation between each pair of events
[Tsan86,87b]. The CSP in temporal reasoning under this approach is one where
each variable represents the temporal relationship between a pair or events. (Among
n events, there are n × (n − 1) ÷ 2 temporal relations, i.e. variables.) Each variable
may take one of the 13 primitive relations in Figure 1.10 as its value. The property
of time imposes constraints on the values that we can assign to each variable. For
example, if A is before B, and B is before C, then A must be before C. If A overlaps
B, and B overlaps C, then A must overlap, meet or be before C. The task is then to
find a consistent set of primitive relations between the intervals — a set which satis-
fies all the constraints.

1.5.5  Resource allocation in AI planning and scheduling

Resource allocation and scheduling are better known applications of CSP. The car
sequencing problem described in Section 1.1.2 is an example of a scheduling prob-
lem to which CSP solving techniques have been applied successfully. A typical
scheduling problem is a problem in which one is given a set of jobs and asked to
allocate resources to them. Each job may require a number of resources, which
include time (during which these jobs are finished), machines, tools, manpower, etc.

Resource allocation, especially when time and shared resources are involved, is
basically a CSP. Each variable in the CSP represents one shared resource require-
ment. For example, variable X may represent the machine requirement of a job. The
domain of a variable is the set of possible values that this variable can take. The
domain of X in the above example may be the set of machines available in the work-
shop which have the capacity to do the job, e.g. {machine-203, machine-208,
machine-209}. Assigning a value to a variable represents the allocation of a
resource to a job. The allocation of resources is normally constrained in many ways.
For example, among the M machines available to a job J, only machines P, Q and R
have the capacity to cope with job J. Very often, one machine can only process one
job at a time. Sometimes, if job J is to use machine M1, then it must also be given
certain tools and certain engineers. The task is to allocate to each variable a value
such that all the constraints are satisfied.
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1.5.6  Graph matching

In semantic networks, one may want to check whether a particular concept is
present. This problem can be seen as a graph matching problem, as defined below.
Given two graphs G1 and G2, the problem is to check whether G2 has a subgraph
which matches G1. Graph (V1, E1) contains graph (V2, E2) if:

(1) every node in V2 can be mapped to a distinct node in V1; and
(2) for all x1, y1 in V1 and x2, y2 in V2, if x2 and y2 are mapped to x1 and y1,

respectively, then whenever (x2,y2) is an edge in E2, then (x1,y1) is an edge in
E1.

Figure 1.11 shows an example of a graph matching problem. Given the graphs G1

and G2 (shown in Figures 1.11(a) and (b), respectively), the task is to find out
whether G2 contains a subgraph of G1. This can be formalized as a CSP where the
variables are A, B, C, D and E, and the domains for all of them are {a,b,c,d,e,f,-
g,h,i,j}. The constraint is that for all compound labels (<x,p><y,q>), if x and y are
connected in G1, then p and q must be connected in G2. For example, (<A,h><B,g>)
satisfies the constraint on A and B because (g,h) is an edge in G2. A little reflection
should convince the readers that the compound label (<A,h><B,g><C,e><D,-
d><E,b>) is a solution tuple to this problem.

1.5.7  Other applications

In natural language parsing, each word has a finite number of roles that it can play.
The language restricts the domain of roles (e.g. “noun”, “verb”, “adverb”, etc.) that
each word can play. The grammar of the language restricts the roles that a string of
words can take simultaneously. Part of the parsing task is to identify the roles of
each word. Rich & Knight [1991] advocate that this task is a CSP.

Database queries often have variables in them. Instantiating the variables in a data-
base query is a CSP. Query optimization is an important database research area in
which CSP solving techniques can be applied. On the other hand, techniques devel-
oped in query optimization research can be used in CSP solving. The tree-clustering
method described in Chapter 8 is one example of such cross-fertilization of the two
research disciplines.

CSP techniques have also been applied to parameter setting for greenhouses in agri-
cultural applications, and demonstrated to be successful [CroMar91]. Problem
reduction techniques in CSP (see Chapters 2 to 4) have been demonstrated as being
effective for cutting down search spaces for spatial reasoning [duVTsa91].
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1.6  Constraint Programming

The generality of the CSP has lead to the development of constraint programming
languages. These languages provide built-in functions (or predicates) for describing
commonly encountered constraints, and help users to solve problems by applying
techniques which have been developed in CSP research.

Many approaches for constraint programming are based on and extended from the
logic programming paradigm. Some of the better known constraint logic program-
ming languages and systems are CLP, PROLOG III and CHIP. In these languages,
unification in conventional logic programming is replaced by constraint satisfac-
tion. Numerical constraints are being focused on. The idea is to hide the constraint
solving techniques from the user.

One of the main objectives of developing CLP is to define a class of logic program-
ming languages with well defined semantics under a particular equational theory
(see Jaffar et al. [JaLaMa86]). An instance of CLP called CLP(R) (R here stands for
real numbers) has been implemented and proposed for applications such as electri-
cal engineering by Heintze et al. [HeMiSt87] and option trading by Lassez et al.
[LaMcYa87]. In CLP(R), constraints are handled incrementally using linear pro-

Figure 1.11 Example of a graph matching problem. Does graph G2
contain a subgraph which matches graph G1? (The answer is yes, if

A→h, B→g, C→e, D→d, E→b)
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gramming methods such as the simplex method.

Prolog III was developed with similar goals as CLP, but with refined manipulation
on trees (including infinite trees), lists and boolean variables. It has been developed
into a commercial product that has been demonstrated to be efficient and elegant in
problem solving. Like CLP, Prolog III basically uses the simplex method for han-
dling equations and inequalities with numerical variables.

CHIP is a logic programming language for handling symbolic, boolean as well as
numerical variables. Search techniques, discussed later, are used to instantiate sym-
bolic variables. The basic search strategy used in CHIP is called forward checking
(FC). It is used together with a heuristic called the fail first principle (FFP). FC and
FFP are discussed in Chapters 5 and 6 respectively. The combination of this search
strategy and heuristic has been found to be very effective. CHIP has been applied to
a number of problems, and success has been claimed. Some of the reported applica-
tions of CHIP include the car-sequencing problem [DiSiVa88b], the spares alloca-
tion problem [DVSAG88a], job-shop scheduling, warehouse location, circuit
verification (to verify that an implementation of a circuit meets its specifications)
[DVSAG88a] and the cut stock problem [DiSiVa88a].

The success of CHIP has led to the development of two other commercially availa-
ble languages, Charme and PECOS. The basic CSP solving techniques used in them
are no different from CHIP, and therefore the comparison among CHIP, Charme and
PECOS is down to the differences in their language types and their implementation
efficiency.

Charme uses the syntax of C, and one of its merits is that it can easily be integrated
into the users’ other C programs. Arrays (which have to be implemented by lists in
CHIP) are introduced in Charme. It has been applied to similar problems as CHIP
[Charme90]. PECOS uses LISP syntax. Both Charme and PECOS are mainly built
to handle symbolic but not numerical and boolean variables (boolean variables may
be represented by symbolic variables with specific constraints such as logical AND
and logical OR).

1.7  Structure Of Subsequent Chapters

We emphasized earlier that the CSP is an important problem not only because of its
generality, but also because it has specific features which allows one to develop spe-
cialized techniques to tackle it. The main features of CSPs will be studied in Chap-
ter 2. There we also propose a classification of CSP solving techniques, and give an
overview of them. The three classes of CSP solving techniques are: (1) problem
reduction; (2) searching; and (3) solution synthesis.

In Chapter 3, some of the most important concepts related to CSP solving will be
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introduced. These concepts are useful for describing the techniques in the chapters
that follow.

Chapter 4 covers problem reduction algorithms. These algorithms transform prob-
lems into equivalent problems which are hopefully easier to solve.

Chapters 5 to 8 are about searching techniques for CSPs. Chapter 5 describes basic
control strategies of searching which are relevant to CSP solving. Chapter 6 dis-
cusses the significance of ordering the variables, values and compatibility checking
in searching. Chapter 7 discusses specialized search techniques which gain their
efficiency by exploiting problem specific features. Chapter 8 discusses stochastic
search approaches (including hill climbing and connectionist approaches) for CSP
solving.

Chapter 9 discusses how solutions can be synthesized rather than searched for.

The definition of CSP in Definition 1.12 is extended in Chapter 10 to include the
notion of optimality. In many real life problems, certain solutions are preferred to
others. Besides, in problems which do not contain any solutions, one may want a
problem solver to find near solutions rather than simply reporting failure. These
problems will be formally defined in Chapter 10, and relevant research will be sum-
marized.

Pseudo code is used to explain most of the algorithms introduced in this book.
Implementations, which are presented to help in clarifying the algorithms to an exe-
cutable level, are included for those algorithms which are suitable to be imple-
mented in Prolog. These implementations are grouped together and placed at the
end of this book for easy reference.

1.8  Bibliographical Remarks

The CSP was first formalized in line labelling in vision research. The problem is
tackled in Huffman [1971], Clowes [1971] and Waltz [1975]. Mackworth [1992]
defines CSPs with finite domains as finite constraint satisfaction problems, and
gives an overview to such problems. Haralick & Shapiro [1979, 1980] discuss dif-
ferent aspects of the CSP — from problem formalization, applications to algo-
rithms. Meseguer [1989] and Kumar [1992] both give concise and comprehensive
overviews to CSP solving. Apart from studying the basic CSP and its general char-
acteristics, Guesgen & Hertzberg [1992] introduce the concept of dynamic con-
straints, which are constraints that are themselves subject to constraints. The
usefulness of this idea is demonstrated in spatial reasoning.

Mittal & Falkenhainer [1990] extend the standard CSP to dynamic CSPs (CSPs in
which constraints can be added and relaxed), and proposed the use of assumption-
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based TMS (ATMS) to solve them (see de Kleer, 1986a,b,c, 1989). Definitions on
graphs and networks are mainly due to Carré [1979].

The N-queens problem has been used to illustrate much CSP research, e.g. see
Mackworth [1977] and Haralick & Elliott [1980]. Abramson & Yung [1989] and
Bernhardsson [1991] independently present solutions to the N-queens problem
which exploit the properties of the problem (and require no searching at all). The
map colouring problem is a simplified version of the graph colouring problem,
which is discussed extensively by Nelson & Wilson [1990]. Tsang [1987b, 1988]
points out the CSP in temporal reasoning under Allen’s [1983] interval-based for-
malism. Dechter et al. [1991] look at the CSPs under point-based temporal reason-
ing. Kautz & Selman [1992] and Yang [1992] see constraint satisfaction as a crucial
part of AI planning. Tsang [1988c], Tsang & Wilby [1988b], Zweben & Eskey
[1989], Minton & Philips [1990] and Prosser [1990] all propose to formalize sched-
uling problems as CSPs, and demonstrate favourable consequences of doing so.
Other examples of CSPs are abundant. Rich & Knight [1991] and Haddock [1991]
both cast part of the natural language parsing problem as CSPs. Haddock [1992]
sees semantic evaluation as constraint satisfaction. Dechter & Pearl [1988b] point
out the relationship between query optimization in database research and CSP solv-
ing. Cros & Martin-Clouair [1991] apply CSP techniques to greenhouse manage-
ment and du Verdier & Tsang [1991] apply CSP techniques to spatial reasoning.

For constraint logic programming (CLP), see van Hentenryck et al. [1989a, 1992]
and Cohen [1990] for general overviews. Jaffar et al. [1987], Heintze et al. [1987]
and Lassez et al. [1987] summarize CLP, and Colmerauer [1990] summarizes Pro-
log III. Applications of CHIP are reported in Simonis & Dincbas [1987], Dincbas et
al. [DiSiVa88a,b] [DVSAG88a], van Hentenryck [1989b] and Perrett [1991].
[Charme90] gives an overview of Charme. A general purpose constraint language
called Bernard is described by Leler [1988].



Chapter 2

CSP solving — An overview

2.1  Introduction

This chapter gives an overview of CSP solving techniques, which can roughly be
classified into three categories: problem reduction, search and solution synthesis.
We shall also analyse the general characteristics of CSPs, and explain how these
characteristics could be exploited in solving CSPs. Finally, we shall look at features
of CSPs, as some of them could be exploited to develop specialized techniques for
solving CSPs efficiently.

2.1.1  Soundness and completeness of algorithms

Definition 2-1:

An algorithm is sound if every result that is returned by it is indeed a solu-
tion; in CSPs, that means any compound label which is returned by it con-
tains labels for every variable, and this compound label satisfies all the
constraints in the problem. ■

Definition 2-2:

An algorithm is complete if every solution can be found by it. ■

Soundness and completeness are desirable properties of algorithms. Most of the
algorithms described in this book are sound and complete unless otherwise speci-
fied. However, it is worth pointing out that some real life problems are intractable.
In that case, incomplete (and sometimes even unsound) but efficient algorithms are
sometimes considered acceptable. Examples of incomplete strategies are hill-climb-
ing algorithms, which we discuss in Chapters 8 and 10.
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2.1.2  Domain specific vs. general methods

It is generally believed that efficiency can be gained by encoding domain specific
knowledge into the problem solver. For example, after careful analysis of the N-
queens problem, one can find algorithms which solve it very efficiently [AbrYun89,
Bern91]. However, there are good reasons for studying general algorithms. First,
tailor made algorithms are costly. Second, tailored algorithms are limited to the
problems for which they are designed. A slight change of the problem specification
would render the algorithm inapplicable. Finally, general algorithms can often form
the basis for the development of specialized algorithms.

The CSP is worth studying because it appears in a large number of applications. It
also has specific characteristics which can be exploited for the development of spe-
cialized algorithms. This book is mainly concerned with CSP solving algorithms.

2.2  Problem Reduction

Problem reduction is a class of techniques for transforming a CSP into problems
which are hopefully easier to solve or recognizable as insoluble. Although problem
reduction alone does not normally produce solutions, it can be extremely useful
when used together with search or problem synthesis methods. As we shall see in
later chapters, problem reduction plays a very significant role in CSP solving.

2.2.1  Equivalence

Definition 2-3:

We call two CSPs equivalent if they have identical sets of variables and
identical sets of solution tuples:

∀  csp((Z, D, C)), csp((Z', D', C')):
equivalent((Z, D, C), (Z', D', C')) ≡

Z = Z' ∧ ∀ T : (solution_tuple(T , (Z, D, C)) ⇔
solution_tuple(T , (Z', D', C'))) ■

Definition 2-4:

A problem P = (Z, D, C) is reduced to P' = (Z', D', C') if (a) P and P' are
equivalent; (b) every variable’s domain in D' is a subset of its domain in D;
and (c) C' is more restrictive than, or as restrictive as, C (i.e. all compound
labels that satisfies C' will satisfy C). We write the relationship between P
and P' as reduced(P, P' ):
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∀  csp((Z, D, C)), csp((Z', D', C')):
reduced((Z, D, C), (Z', D', C')) ≡

equivalent((Z, D, C), (Z', D', C')) ∧
(∀ x ∈ Z: D'x ⊆ Dx) ∧
(∀ S ⊆ Z: (CS ∈  C ⇒ C'S ∈ C' ∧ C'S ⊆ CS)) ■

Since we see constraints as sets of compound labels, reducing a problem means
removing elements from the constraints those compound labels which appear in no
solution tuples. If constraints are seen as functions, then reducing a problem means
modifying the constraint functions. For convenience, we define redundancy of val-
ues and redundancy of compound labels below.

Definition 2-5:

A value in a domain is redundant if it is not part of any solution tuple:

∀  csp((Z, D, C)): ∀ x ∈ Z: ∀ v ∈ Dx:
redundant(v, x, (Z, D, C)) ≡

¬ ∃ T : (solution_tuple(T , (Z, D, C)) ∧  projection(T , (<x,v>))) ■

Such values are called “redundant” because the removal of them from their corre-
sponding domains does not affect the set of solution tuples in the problem.

Definition 2-6:

A compound label in a constraint is redundant if it is not a projection of
any solution tuple:

∀  csp((Z, D, C)): ∀ C S ∈ C: ∀ cl ∈ CS:
redundant(cl , (Z, D, C)) ≡

¬ ∃ T : (solution_tuple(T , (Z, D, C)) ∧  projection(T , cl )) ■

Similarly, such compound labels are called redundant because the removal of them
from their corresponding constraints does not affect the set of solution tuples in the
problem.

2.2.2  Reduction of a problem

Problem reduction techniques transform CSPs to equivalent but hopefully easier
problems by reducing the size of the domains and constraints in the problems. Prob-
lem reduction is possible in CSP solving because the domains and constraints are
specified in the problems, and that constraints can be propagated.

Problem reduction involves two possible tasks: (1) removing redundant values from
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the domains of the variables; and (2) tightening the constraints so that fewer com-
pound labels satisfy them; if constraints are seen as sets, then this means removing
redundant compound labels from the constraints. If the domain of any variable or
any constraint is reduced to an empty set, then one can conclude that the problem is
insoluble. Reduced problems are possibly, though not necessarily, easier to solve for
the following reasons. Firstly, the domains of the variables in the reduced problem
are no larger than the domains in the original problem. This leaves us with fewer
labels to consider. Secondly, the constraints of the reduced problem are at least as
tight as those in the original problem. This means that fewer compound labels need
to be considered in the reduced problem.

Problem reduction requires one to be able to recognize redundant values and redun-
dant compound labels. Such information can be deduced from the constraints. For
example, if x and y are variables, and a constraint requires x to be greater than y in
value, then we can remove from the domain of x all the values which are smaller
than the smallest value in the domain of y. Similarly, we can remove from the
domain of y all the values which are greater than the greatest value of x. Problem
reduction algorithms will be discussed in Chapter 4.

Problem reduction is often referred to as consistency maintenance in the literature.
Maintaining consistency of a problem means reducing a problem to one which has
certain properties. Maintaining a different consistency means maintaining different
properties in the problem, which will be explained in Chapter 3.

The use of the term consistency in the CSP literature may need some clarification.
In logical systems, we call a system inconsistent if absurdity can be derived from it;
for example, if x < 0 and x > 4 must both hold. In the CSP literature, a problem is
called inconsistent with regard to a property when that property does not hold in the
problem. Therefore, being inconsistent does not prevent a problem from being solv-
able. The use of the term inconsistency in these two different contexts should not be
confused.

2.2.3  Minimal problems

Definition 2-7:

A graph which is associated to a binary CSP is called a minimal graph1 if
no domain contains any redundant values and no constraint contains any
redundant compound labels. In other words, every compound label in every
binary constraint appears in some solution tuples:

1.  Montanari [1974] defines minimal networks in binary constraint problems. According to
our definitions of a graph and a network in Chapter 1, a binary CSP is in general associated with
a constraint graph rather than a constraint network. Therefore, we shall use the term minimal
graph instead of minimal network.
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∀  csp((Z, D, C)):
minimal_graph((Z, D, C)) ≡

(∀ x ∈ Z: (¬ ∃ v ∈ Dx: redundant(v, x, (Z, D, C)))) ∧
(∀ Cy,z ∈ C: (¬ ∃ cl ∈ Cy,x: redundant(cl , (Z, D, C)))) ■

Montanari points out that although reducing a problem to its minimal graph is
intractable in general, it may be feasible to reduce it to an approximation of its min-
imal graph — where some redundant values and redundant compound labels are
removed.

Graphs can only represent binary CSPs. General CSPs (CSPs with general con-
straints) must be represented by hypergraphs. Therefore, we extend the concept of
minimal graphs to general CSPs.

Definition 2-8:

A CSP is called a minimal problem if no domain contains any redundant
values and no constraint contains any redundant compound labels:

∀  csp((Z, D, C)):
minimal_problem((Z, D, C)) ≡

(∀ x ∈  Z: (¬ ∃ v ∈ Dx: redundant(v, x, (Z, D, C)))) ∧
(∀ CS ∈ C: (¬ ∃ cl ∈ CS: redundant(cl , (Z, D, C)))) ■

In principle, there is nothing to stop one from reducing a problem to its minimal
problem. This can be done by creating dummy constraints for all combinations of
variables whenever necessary, and tightening each constraint to the set of com-
pound labels which satisfy all the constraints (by checking all the compound labels
in all constraints). When that is done, the constraint CZ, where Z is the set of all var-
iables, contains nothing but solution tuples. However, doing so is in general NP-
hard, so most problem reduction algorithms limit their efforts to removing only
those redundant values and compound labels which can be recognized relatively
easily. Only in special cases will solutions be found by problem reduction alone. A
number of algorithms combine problem reduction and searching,  and these are dis-
cussed in Chapters 5.

2.3  Searching For Solution Tuples

Probably more research effort in CSP research has been spent on searching than in
other approaches. In this section, we first describe a basic search algorithm, then
analyse the properties of CSPs. Specialized search algorithms can be designed to
solve CSPs efficiently by exploiting those properties.
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2.3.1  Simple backtracking

The basic algorithm to search for solution tuples is simple backtracking, which is a
general search strategy which has been widely used in problem solving (e.g. Prolog
uses simple backtracking to answer queries). In the CSP context, the basic operation
is to pick one variable at a time, and consider one value for it at a time, making sure
that the newly picked label is compatible with all the labels picked so far. Assigning
a value to a variable is called labelling. If labelling the current variable with the
picked value violates certain constraints, then an alternative value, when available,
is picked. If all the variables are labelled, then the problem is solved. If at any stage
no value can be assigned to a variable without violating any constraints, the label
which was last picked is revised, and an alternative value, when available, is
assigned to that variable. This carries on until either a solution is found or all the
combinations of labels have been tried and have failed. Figure 2.1 shows the control
of BT.

Figure 2.1 Control of the chronological backtracking (BT) algorithm
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Since the BT algorithm will always backtrack to the last decision when it becomes
unable to proceed, it is also called chronological backtracking. The pseudo code for
the simple backtracking algorithm is shown in the Chronological_Backtracking and
BT-1 procedures below.

PROCEDURE Chronological_Backtracking( Z, D, C );
BEGIN

BT-1( Z, { }, D, C );
END

PROCEDURE BT-1( UNLABELLED, COMPOUND_LABEL, D, C );
/* UNLABELLED is a set of variables to be labelled; */
/* COMPOUND_LABEL is a set of labels already committed to */
BEGIN

IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx;
Delete v from Dx;
IF COMPOUND_LABEL + {<x,v>} violates no constraints
THEN BEGIN

Result ←
BT-1(UNLABELLED − {x}, COMPOUND_LABEL +

{<x,v>}, D, C);
IF (Result ≠ NIL) THEN return(Result);

END
UNTIL (Dx = { });
return(NIL); /* signifying no solution */

END /* of ELSE */
END /* of BT-1*/

Let n be the number of variables, e be the number of constraints, and a be the

domain sizes of the variables in a CSP. Since there are altogether an possible combi-
nations of n-tuples (candidate solutions), and for each candidate solution all the
constraints must be checked once in the worst case, the time complexity of this

backtracking algorithm is O(ane).

To store the domains of the problem requires O(na) space. The BT algorithm does
not require more temporary memory than O(n) to store the compound label. There-
fore, the space complexity of Chronological_Backtracking is O(na).
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The time complexity above shows that search efficiency could be improved if a can
be reduced. This could be achieved by problem reduction techniques, as mentioned
in the previous section. The combination of problem reduction and searching will
be discussed in greater detail later.

2.3.2  Search space of CSPs

The search space is the space of all those states which a search could possibly arrive
at. Since different sets of variables and search paths could be introduced in different
problem formalization, the search space could be different from one formalization
to another. The BT algorithm searches in the space of all compound labels. Its
search space is shown in Figure 2.2.
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Figure 2.2 Search space of BT in a CSP (Z, D, C) when the variables
are not ordered; here: Z = {x, y, z}, Dx = {a,b,c,d}, Dy = {e, f, g} and

Dz = {p, q}



2.3 Searching For Solution Tuples 39

The node marked ✽ in Figure 2.2 represents a state in the search space in which x is
labelled with a, and y is picked for labelling but not yet assigned a value. Note that
the constraints play no part in the definition of the search space, although, as it will
become clear later, it affects the search space that needs to be explored by an algo-
rithm. If we assume a fixed ordering among the variables in our search, then the
search space of BT is the tree shown in Figure 2.3.

Each node X in the search space represents a state in which a compound label is
committed to, and each of its children represents a state in which an extra label is
added into the compound label in X. For example, the node marked ✵  in Figure 2.3
represents a state in the search space in which x is assigned the value a, and y and z
are yet to be labelled. The search space is different if the variables are searched in
another fixed order. For example, Figure 2.4 shows the search space under the vari-
able ordering (z, y, x).

Figure 2.3 Search space for a CSP (Z, D, C), given the ordering (x, y,
z), where Z = {x, y, z}, Dx = {a, b, c, d}, Dy = {e, f, g} and Dz = {p, q}
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2.3.3  General characteristics of CSP’s search space

There are properties of CSPs which differentiate them from general search prob-
lems. It is the presence of these properties that makes problem reduction possible in
CSPs. Besides, specialized search techniques can be, and have been, developed to
exploit these properties so as to solve CSPs more efficiently. These algorithms will
be described in detail later in the book. To help understand why those techniques
work, we shall describe these properties here:

(1) The size of the search space is finite

The number of leaves of the search tree is L = , where

is the domain of variable xi, and  is the size of this domain. Notice that L

is not affected by the ordering in which we decide to label the variables.
However, this ordering does affect the number of internal nodes in the search
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Figure 2.4 Alternative organization of the search space for the csp (Z,
D, C) in Figure 2.3, given the ordering (z, y, x), where Z = {x, y, z}, Dx

= {a, b, c, d}, Dy = {e, f, g} and Dz = {p, q}
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space. For example, the total number of internal nodes in the search space in
Figure 2.3 is 16, as opposed to 8 in Figure 2.4. In general, if we assume that
the variables are ordered as x1, x2, ..., xn, the number of nodes in the search
tree is:

 1 + , or  1 +

With this formula, together with our examples in Figures 2.3 and 2.4, it is not
difficult to see that if the variables were ordered by their domain sizes in
descending order, then the number of nodes in the search space would be
maximal. That should also be the upper bound of the size of the search space.
If the variables were ordered by their domain sizes in ascending order, then
the number of nodes in the search space would be minimal. However, the size
of the problem is dominated by the last and most significant term,

.

(2) The depth of the tree is fixed
When the variables are ordered, the depth of the search tree is always equal to
the number of variables in the problem regardless of the ordering. In both
Figures 2.3 and 2.4, the depth of the search tree is 3. When the ordering of the
variables is not fixed, the depth of the tree is exactly 2n, where n is the
number of variables (see Figure 2.2).

(3) Subtrees are similar
If we fix the ordering of the variables, then the subtrees under each branch of
the same level are identical in their topology. In Figures 2.3 and 2.4, the same
choices are available in all sibling subtrees. Figure 2.2 shows that even when
the variables are not given a fixed ordering, similar choices are available in
sibling subtrees.
The fact that the subtrees are similar means that experiences in searching one
subtree may be useful in subsequently searching its siblings. This makes
learning possible (discussed in Chapter 5).

2.3.4  Combining problem reduction and search

Efficiency of a backtracking search can be improved if one can prune off search
spaces that contain no solution. This is precisely where problem reduction can help.
Earlier we said that problem reduction reduces the size of domains of the variables
and tightens constraints. Reducing the domain size of a variable is effectively the
same as pruning off branches in the search space. Tightening constraints potentially
helps us to reduce the search space at a later stage of the search. Problem reduction
could be performed at any stage of the search. Various search strategies combine
problem reduction and search in various ways (described in detail in Chapters 5 to
7). Some of these strategies have been proved to be extremely effective.
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In general, the more redundant values and compound labels one attempts to remove,
the more computation is required. One the other hand, the less redundant values and
compound labels one removes, the more time one is likely to spend in backtracking.
One often has to find a balance between the efforts made and the potential gains in
problem reduction. Figure 2.5 roughly shows the relationship between the two.

2.3.5  Choice points in searching

There are three sets of choice points in the chronological backtracking algorithm
above:
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Figure 2.5  Cost of problem reduction vs. cost of backtracking (the
more effort one spends on problem reduction, the less effort one needs

in searching)
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(1) which variable to look at next?
(2) which value to look at next?
(3) which constraint to examine next?

The first two choice points are shown in the flow chart in Figure 2.1. Different
search space will be explored under different ordering among the variables and val-
ues. Since constraints can be propagated, the different orderings in which the varia-
bles and values are considered could affect the efficiency of a search algorithm. This
is especially significant when a search is combined with problem reduction, as com-
mitting to different branches of the search tree may cause different amounts of the
search space to be pruned off.

For problems in which a single solution is required, search efficiency could be
improved by the use of heuristics — rules which guide us to look at those branches
in the search space that are more likely to lead to solutions.

In some problems, checking whether a constraint is satisfied is itself computation
expensive. In that case, the ordering in which the constraints are examined could
significantly affect the efficiency of an algorithm. If the situation is over-con-
strained, then the sooner the violated constraint is examined, the more computation
one could save.

2.3.6  Backtrack-free search

In Chapter 1, we defined the basic concepts of constraints and satisfiability. In this
section, we extend our discussion on these concepts.

Definition 2-9:

A constraint expression on a set of variables S, which we denote by CE(S),
is a collection of constraints on S and its subset of variables. ■

Definition 2-10:

A constraint expression on a subset of variables S in a CSP P, denoted

CE(S, P), is the collection of all the relevant constraints in P on S and its
subset of variables:

∀  csp((Z, D, C)): ∀ S ⊆ Z: (CE(S, (Z, D, C)) ≡ {CY | Y ⊆ S ∧ CY ∈ C}) ■

It should not be difficult to see that the problem designation (Z, D, C) can be written
as (Z, D, CE(Z, (Z, D, C))).
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Definition 2-11:

A compound label CL satisfies a constraint expression CE if CL satisfies
all the constraints in CE:

∀  csp((Z, D, C)): ∀ x1, x2, ..., xk ∈ Z: (∀ v1 ∈ , v2 ∈ , ...,vk ∈ :

∀ S ⊆  {x1, x2, ..., xk}:
satisfies((<x1,v1><x2,v2>...<xk,vk>), CE(S, (Z, D, C))) ≡

∀ CR: (CR ∈ CE( S, (Z, D, C)) ⇒
satisfies((<x1,v1><x2,v2>...<xk,vk>), CR))) ■

Definition 2-12:

A search in a CSP is backtrack-free in a depth first search under an ordering
of its variables if for every variable that is to be labelled, one can always find
for it a value which is compatible with all the labels committed to so far:

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <):
backtrack-free((Z, D, C), <) ≡

(∀ x1, x2, ..., xm ∈ Z: (x1 < x2 < ... < xm ⇒
(∀ v1 ∈ , v2 ∈ , ..., vm ∈ :

(satisfies( (<x1,v1>... <xm,vm>), CE({x1,,...,xm}, (Z, D, C))) ⇒
(∀ y ∈ Z: (xm < y ⇒ ∃ a ∈ Dy :

satisfies((<x1,v1>...<xm,vm><y,a>),
CE({x1,...,xm,y}, (Z, D, C)))))))) ■

A number of strategies have been developed to make search backtrack-free in CSPs.
They will be discussed later in this book.

2.4  Solution Synthesis

In this section, we shall give an overview of the solution synthesis approach in CSP
solving. Solution synthesis can be seen as search algorithms which explore multiple
branches simultaneously. It can also be seen as problem reduction in which the con-
straint for the set of all variables (i.e. the n-constraint for a problem with n varia-
bles) is created, and reduced to such a set that contains all the solution tuples, and
solution tuples only. The distinctive feature of solution synthesis is that solutions
are constructively generated.

In searching, one partial solution (which is a compound label) is looked at at a time.
A compound label is extended by adding one label to it at a time, until a solution
tuple is found or all the compound labels have been exhausted. The basic idea of
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solution synthesis is to collect the sets of all legal labels for larger and larger sets of
variables, until this is done for the set of all variables. To ensure soundness, a solu-
tion synthesis algorithm has to make sure that all illegal compound labels are
removed from this set. To ensure completeness, the algorithm has to make sure that
no legal compound label is removed from this set. A naive solution synthesis algo-
rithm is shown in the pseudo code Naive_synthesis, and the synthesis process is
shown in Figure 2.6.

partial_
solution[0]

partial_
solution[1]

partial_
solution[n]

partial_
solution[2]

Dx1

Dx2

Dxn

{}

Set of all (<x1,v1>)
which satisfy
CE({x1})

Set of all
(<x1,v1><x2,v2>)
which satisfy
CE({x1,x2})

Set of all
(<x1,v1>...<xn,vn>)
which satisfy
CE({x1,x2,...,xn});
i.e. set of all
solution tuples

Figure 2.6 A naive solution synthesis approach
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PROCEDURE Naive_synthesis(Z, D, C)
BEGIN

order the variables in Z as x1, x2, ..., xn;
partial_solution[0] ← {()};
FOR i = 1 to n DO

BEGIN
partial_solution[i] ← { cl + <xi, vi>  cl ∈  partial_solution[i−1]

∧ v i ∈ ∧  cl + <xi, vi> satisfies all the constraints on

variables_of(cl) + xi };
END

return(partial_solution[n]);
END /* of Naive_synthesis */

Solution synthesis was first introduced by Freuder [1978]. Freuder’s algorithm and
other solution synthesis algorithms will be explained in detail in Chapter 9.

2.5  Characteristics of Individual CSPs

CSPs are NP-hard in general, but every CSP is unique, and it is quite possible to
develop specialized techniques to exploit the specific features of individual CSPs.
Indeed, some such techniques have been developed, and they will be explained in
Chapter 7. In this section, we shall list some of the most commonly studied charac-
teristics of CSPs. This will help us to relate the different CSP solving techniques to
the problems for which they are particularly effective when these techniques are
introduced in subsequent chapters.

2.5.1  Number of solutions required

Some applications require a single solution and some require all solutions to be
found. Examples of problems which require single solutions are scene labelling in
vision, scheduling jobs to meet deadlines, and constructive proof of the consistency
of a temporal constraints network. Examples of problems where all solutions are
required are logic programming where all variable bindings are to be returned, and
scheduling where all possible schedules are to be returned for comparison.

Problems which require a single solution favour techniques which have a better
chance of finding solutions at an earlier stage. The ordering of the variables and the
values in searching is especially significant in solving such problems. Consequently,
heuristics for ordering variables and values could play an important role in solving
them. Solution synthesis techniques are normally used to generate all solutions.

Dxi
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2.5.2  Problem size

The size of a problem could be measured by the number of variables, the domain
sizes, the number of constraints, or a combination of all three.

We mentioned earlier that the number of variables determines the depth of the
search tree. The domain sizes determine the branching factors (number of branches)

at the nodes. The number of leaves in the search tree, , dominates

the size of the search tree (see Section 2.3.3). This is probably the most commonly
used criteria for measuring the size of a problem, but the number of constraints in a
problem should not be overlooked. The more constraints there are in a problem, the
more compatibility checks one is likely to require in solving it. On the other hand,
constraints could help one to prune off part of the search space, and therefore reduce
the total number of consistency checks.

Small problems are only difficult when compatibility checks are computationally
expensive. For such problems, techniques which minimize the number of compati-
bility checks necessary should be favoured.

2.5.3  Types of variables and constraints

The type of variable affects the techniques that one can apply. Most of the tech-
niques described in this book focus on symbolic variables. If all the variables in a
problem are numbers and all the constraints are conjunctive linear inequalities, then
integer programming or linear programming, both studied extensively in operations
research (OR), are appropriate tools for handling it.

A number of CSP solving techniques have been developed for binary CSPs. Nor-
mally, constraints can be propagated more effectively through binary constraints
rather than through general constraints. For example, if X + Y < 10 is a constraint,
then the values of X and Y determine one another. If one commits to X = 2, then one
can immediately remove from the domain of Y all the values which are greater than
7. But if the constraint is A + B + C < 10, then committing to A = 2 leaves us with B
+ C < 8, which will not allow us to reduce the domains of B and C until either B or
C is fixed.

2.5.4  Structure of the constraint graph in binary-constraint-problems

We mentioned in Chapter 1 that associated to each CSP is a hypergraph. Associated
to each binary CSP is a graph. We also mentioned that the efficiency of a search is
affected by the ordering of the variables in the search. In fact, the efficiency of a
search in an ordering is significantly affected by the connectivity of the nodes in the
constraint hypergraph. In Chapters 6 and 7, we shall explain that when the con-

Dxx Z∈( )∀∏
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straint graph/hypergraph is or can be transformed into a tree, the problem can be
solved in polynomial time. Some heuristics also exploit the connectivity of the
nodes.

Definition 2-13:

A complete graph is a graph in which an edge exists between every two
nodes:

∀  graph((V, E)): complete_graph((V, E)) ≡ E = { (x, y) | x, y ∈ V } ■

When the graph is not complete, the connectivity of the nodes (i.e. the structure of
the graph) can be exploited to improve search efficiency. One well known heuristic
is the adjacency heuristic, which suggests that after labelling a variable X, one
should choose a variable which is connected to X as the next variable to label. This
idea is extended to more complex heuristics such as the minimal bandwidth order-
ing heuristics, which will be discussed in Chapter 6 alongside other variable order-
ing techniques.

2.5.5  Tightness of a problem

Problems can be characterized by their tightness, which could be measured under
the following definition.

Definition 2-14:

The tightness of a constraint CS is measured by the number of compound
labels satisfying CS over the number of all compound labels on S:

∀  csp((Z, D, C)): ∀ ∈ C:

 tightness( , (Z, D, C)) ≡

where:
s = number of compound labels satisfying

=  {(<x1,v1>...<xk,vk>)   satisfies((<x1,v1>...<xk,vk>), )}

T = maximum number of compound labels for x1, .. xk = ■

Definition 2-15:

The tightness of a CSP is measured by the number of solution tuples over

Cx1 x2 … xk, , ,

Cx1 x2 … xk, , ,
s
T

Cx1 … xk, ,

Cx1 … xk, ,
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the number of all distinct compound labels for all variables:

∀  csp((Z, D, C)): tightness((Z, D, C)) ≡

where S = the set of all solution tuples = {T | solution_tuples(T , (Z,D,C))} ■

Tightness is a relative measure. Some CSP solving techniques are more suitable for
tighter problems, while others are suitable for looser problems. In principle, the
tighter the constraints, the more effectively can one propagate the constraints, which
makes problem reduction more effective. Partly because of this, problems with
tighter constraints need not be harder to solve than loosely constrained problems.
Whether a problem is easier or harder to solve depends on the tightness of the prob-
lem combined with the number of solutions required.

For loose problems, many leaves of the search space represent solutions. Therefore,
a simple backtracking algorithm like Chronological_Backtracking would not
require much backtracking before a solution can be found. A strategy which com-
bines searching and problem reduction is likely to spend its efforts unnecessarily in
attempting to reduce the problem. However, if all solutions are required, then a
loosely constrained problem becomes harder by its very nature. This is because of
the fact that, since the problem is loosely constrained, a large proportion of the
search space lead to solutions. Since all solutions are required, a larger search space
has to be explored.

The tighter a problem is, the more backtracking a naive backtracking algorithm is
likely to require to find solutions. Therefore, tighter problems are harder to solve if
a single solution is required. However, when all solutions are required, looser prob-
lems becomes harder to solve. The tighter a problem is, the more likely it becomes
that domains can be reduced through constraint propagation (see problem reduction
strategies in Chapters 3 and 4); consequently, a smaller space needs to be searched
to find all the solutions. Table 2.1 summarizes the conclusions made in this section.

2.5.6  Quality of solutions

In applications such as industrial scheduling, the objective is often to find single
solutions. However, not all solution tuples are as good as one another. For example,
assigning different machines (value) to the same job (variables) could incur differ-
ent costs. It might also affect the production time. Given an optimization function
(for instance, to minimize the cost or the production time) the requirement is to find
the optimal or near-optimal solution tuple(s), rather than finding any solution tuple.
If the variables are numbers, and the constraints are inequalities, then linear pro-
gramming or integer programming may be useful for finding optimal solutions.

S
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A CSP in which the optimal solution is required is akin to a problem in which all
solutions are required. A naive approach is to look at all the solutions in order to
choose the best. However, in some applications one may be able to find heuristics to
help pruning off search space which has no hope of containing solutions that are
better than the best solution found so far. When such heuristics are available, which
is the case in many applications, we can use search strategies called branch and
bound to solve the problem without looking at all solutions.

In industrial scheduling, the environment changes dynamically (e.g. machines may
break down from time to time, different jobs may be given different priority at dif-
ferent times, etc.). Under such situations, near-optimal solutions are often sufficient
because optimal solutions at the point when it is generated may become suboptimal
very soon. For such applications, stochastic search techniques are often used. Tech-
niques for finding optimal and near-optimal solutions will be discussed in
Chapters 8 and 10.

2.5.7  Partial solutions

Not every CSP is solvable. In many applications, problems are mostly over-con-
strained. When no solution exists, there are basically two things that one can do.
One is to relax the constraints, and the other is to satisfy as many of the require-
ments as possible. The latter solution could take different meanings. It could mean
labelling as many variables as possible without violating any constraints. It could
also mean labelling all the variables in such a way that as few constraints are vio-
lated as possible. Such compound labels are actually useful for constraint relaxation
because they indicate the minimum set of constraints which need to be violated.
Furthermore, weights could be added to the labelling of each variable or each con-
straint violation. In other words, the problems are:

Table 2.1 Relating difficulty of problems, tightness and number of solutions

Solutions
 required

Tightness of the problem

Loosely constrained Tightly constrained

Single
solution
required

Solutions can easily be found by
simple backtracking, hence such
problems are easy

Simple backtracking may
require a lot of backtracking,
hence harder compared with
loose problems

All
solutions
required

More space needs to be
searched, hence such problems
could be harder than tightly con-
strained problems

Less space needs to be searched,
hence, given the right tools,
could be easier than loosely
constrained problems
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(1) to maximize the number of variables labelled, where the variables are possi-
bly weighted by their importance;

(2) to minimize the number of constraints violated, where the constraints are pos-
sibly weighted by their costs.

These are optimization problems, which are different from the standard CSPs
defined in Definition 1-12. This class of problems is called the Partial CSP (PCSP),
and will be discussed in Chapter 10.

2.6  Summary

We have given an overview of Constraint Satisfaction Problem solving approaches,
and have proposed the classification of techniques in CSP solving into three catego-
ries:

(1) problem reduction: to reduce the problem to problems which are hopefully
easier to solve or recognizable as insoluble;

(2) search: to enumerate combinations of labels so as to find solutions. It is often
used together with problem reduction;

(3) solution synthesis: to construct and extend partial solutions in order to gener-
ate the set of all solution tuples.

Since domains in a CSP are known in advance, constraints can be used to identify
redundant values and redundant compound labels — values and compound labels
which will never appear in any solutions. Problem reduction is concerned with the
removal of redundant values and redundant compound labels (i.e. to tighten con-
straints). The reduced CSP is hopefully easier to solve.

Search is probably the most studied approach in CSP research. We have pointed out
that specialized search techniques can be developed to take advantage of properties
that are special to CSPs. Such properties include the fact that choice points are
known in advance (because the variables and their domains are fixed given any
CSP). This allows one to fix or shape the search space before searching starts.
Besides, in a search tree, all the sibling subtrees under a choice point are very simi-
lar. Since the search space is known in advance, it is possible to prune off search
spaces after committing to a certain branch (constraint propagation). This leads to
look ahead algorithms. Since sibling subtrees are very similar, one can learn from
failures in a search. Both look ahead algorithms and learning algorithms are
explained in Chapter 5.

Understandably, every CSP solving technique is applicable to and effective in a
subset of CSPs. In this chapter we have listed some of the most studied problem-
specific characteristics of CSPs, and outlined the classes of techniques which are
relevant to each of them. Being able to relate CSP solving techniques to problem-
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specific characteristics is important, because it allows one to pick the most relevant
techniques for a given problem. When discussing the CSP solving techniques in
detail, we shall also identify the problem-specific characteristics which when
present make these techniques applicable or effective.

2.7  Bibliographical Remarks

Meseguer [1989] and Kumar [1992] give overviews of CSP solving. The minimal
network (which we refer to as the minimal graph) concept is introduced by Montan-
ari [1974]. Mackworth [1977] elaborates on Montanari’s work, and introduces a
number of problem reduction strategies and algorithms. Later work such as Freuder
[1978, 1982, 1990], Mackworth & Freuder [1985], Cooper [1989] and Tsang [1989]
analyse and extend problem reduction concepts and techniques. Haralick & Elliott
[1980] summarize some of the most important search strategies for CSP solving.
Work on search techniques for CSPs is abundant (see bibliographical remarks in
Chapters 5 to 8).

Backtrack-free search is studied by Dechter & Pearl [1988a]. Freuder [1985]
extends the concept of backtrack-free search to backtrack-bound search. Examples
of incomplete search strategies are hill-climbing (e.g. see Nilsson, 1980 and Minton
et al., 1992), staged search [DorMic66], beam search, wave search [Fox87] and
stochastic search [Glov89,90, TsaWar90, WanTsa91,92, TsaWan92]. Work on solu-
tion synthesis include [Freu78], [Seid81] and [TsaFos90]. Bibel [1988] tackles
CSPs from a deductive viewpoint, which is closely related to solution synthesis.
Recently, Vempaty [1992] proposed tackling CSPs using finite state automata.



Chapter 3

Fundamental concepts in the CSP

3.1  Introduction

In the last chapter we explained that problem reduction serves two purposes: to
reduce the problem to one which is hopefully easier to solve, and to recognize insol-
uble problems. The whole idea of problem reduction is about removing redundant
values and redundant compound labels — values and compound labels which
appear in no solution tuples. The question is how to identify such values and com-
pound labels.

Over the years, a number of consistency concepts have been developed to help in
identifying redundant values and compound labels. These concepts are defined in
such a way that if the presence of a value in a domain or a compound label in a con-
straint falsifies them, then it can be deduced to be redundant. In this chapter we shall
look at these consistency concepts.

As mentioned in the last chapter, “consistency” in the CSP literature is neither a
necessary nor a sufficient condition for a problem to be solvable. In other words, a
problem can be inconsistent and yet have valid solutions. It can also be consistent
but insoluble. In CSP, “a CSP being consistent with regard to a certain property”
should be interpreted as “values and compound labels whose presence would cause
certain properties to be false have been removed from their corresponding domains
and constraints”. Different types of consistency guarantee different properties.

We continue to define concepts both verbally and in First Order Predicate Calculus
(FOPC). The former is easier to read, and the latter is unambiguous. Defining these
concepts with FOPC allows one to interpret them more precisely.
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3.2  Concepts Concerning Satisfiability and Consistency

In this section, we shall first extend the satisfiability concepts introduced in the last
two chapters. Then we shall introduce k-consistency, which are a concept in general
CSPs. Finally, we shall introduce some important consistency concepts for binary
CSPs.

3.2.1  Definition of satisfiability

In Chapter 1, we defined the satisfiability relationship between compound labels
and constraints when the variables of the compound label is a superset of the varia-
bles of the constraint (Definition 1-11). In Chapter 2, we introduced constraint
expressions, and defined the satisfiability relationship between compound label and
constraint expressions (Definitions 2-9 to 2-11). Here we extend these concepts to
k-satisfiability, which is a relationship between a k-compound label (Definition 1-
4) and a constraint expression.

Definition 3-1:

A k-compound label CL k-satisfies a constraint expression CE if and only if
CL satisfies all the constraints in CE1:

∀  csp((Z, D, C)): ∀ X ⊆  Z:
(∀ x1, x2, ..., xk ∈ Z: (∀ v1 ∈  , v2 ∈  , ... , vk ∈  :

k-satisfies((<x1,v1>...<xk,vk>), CE(X)) ≡
(∀ S: (S ⊆  {x1, x2, ..., xk} ∩ X ∧ CS ∈ CE( X)) ⇒

satisfies((<x1,v1> ... <xk,vk>), CS))) ■

Definition 3-2:

A CSP (Z, D, C) is k-satisfiable if and only if for all subsets of k variables in
Z there exists a set of labels for them which satisfies all the relevant con-
straints in CE(Z, (Z, D, C)):

∀  csp((Z, D, C)):
k-satisfiable( (Z, D, C) ) ≡

1.  Note that the k in the definition of k-satisfies is actually treated as an argument of the
predicate. A more accurate syntax in first order logic would be to put k between the brackets,
which makes satisfies(k, Compound_label, Cs). The present syntax is adopted for both simplicity
and conformation with the CSP literature. The same arrangement applies to the definition of k-
satisfiable (Definition 3-2), k-unsatisfiable (Definition 3-3), (i, j)-consistent (Definition 3-14),
strong-(i, j)-consistency (Definition 3-15), k-tree (Definition 3-26), partial-k-tree (Definition 3-
29) and weak partial-k-tree (Definition 3-30) in this chapter.

Dx1
Dx2

Dxk
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(∀ x1, x2, ..., xk ∈ Z: (∃ v1 ∈  , v2 ∈  , ... , vk ∈  :

k-satisfies((<x1,v1> ... <xk,vk>), CE({x1,x2,...,xk}, (Z, D, C))))) ■

For convenience, we define the satisfiability of a CSP below.

Definition 3-2(a):

A CSP which has n variables is satisfiable if it is n-satisfiable:

∀  csp((Z, D, C)): Z  = n:
satisfiable( (Z, D, C) ) ≡ n-satisfiable( (Z, D, C) ) ■

Definition 3-3:

A CSP is called k-unsatisfiable if it is not k-satisfiable:

∀  csp(P ): k-unsatisfiable(P ) ≡ ¬ k-satisfiable(P ) ■

3.2.2  Definition of k-consistency

In this section, we define the concept of k-consistency in CSPs. If a CSP has n
nodes, then k-consistency is defined when k is less than or equal to n.

Definition 3-4:

A CSP is 1-consistent if and only if every value in every domain satisfies
the unary constraints on the subject variable. A CSP is k-consistent for k
greater than 1 if and only if all (k − 1)-compound labels which satisfy all the
relevant constraints can be extended to include any additional variable to
form a k-compound label that satisfies all the relevant constraints:

When k = 1:
1-consistent( (Z, D, C) ) ≡ (∀ x ∈  Z: (∀ v ∈  Dx: satisfies((<x,v>), Cx))

When k ³ 2:
k-consistent( (Z, D, C) ) ≡

(∀ x1, ..., xk-1 ∈ Z: (∀ v1 ∈  , ... , vk-1 ∈ :

(k−1)-satisfies((<x1,v1>...<xk-1,vk-1>), CE({x1,...,xk-1}, (Z, D, C)))

⇒  (∀ xk ∈ Z: (∃ vk ∈ :

k-satisfies((<x1,v1>...<xk,vk>), CE({x1, ..., xk}, (Z, D, C)))
)))) ■

Trivial though it may be, it is worth emphasizing that a 1-satisfiable problem needs

Dx1
Dx2

Dxk

Dx1
Dxk 1−

Dxk
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not be 1-consistent. This will be the case when some values in some domains vio-
late the constraint on that variable. A 1-consistent problem can also be 1-unsatisfia-
ble. This will be the case when some domains are empty.

If for all variables x in a CSP we remove from Dx all the values which do not satisfy
Cx, then the resulting CSP must be equivalent to the original problem. This is
because we can be sure that no solutions will be added or deleted (any value that
does not appear in Cx cannot appear in the solution tuple). The resulting CSP is 1-
consistent by definition.

Definition 3-5:

A CSP which is not k-consistent is called k-inconsistent:

∀  csp(P ): k-inconsistent(P ) ≡ ¬ k-consistent(P ) ■

It may be tempting to believe that k-consistency implies (k − 1)-consistency. How-
ever, Freuder [1982] points out that a CSP which is k-consistent needs not be (k −
1)-consistent. Consider the problem CSP-1 shown in Figure 3.1. A counter-example
will show that CSP-1 is 2-inconsistent. The label <B,r> 1-satisfies CB, but no label
for A is compatible with <B,r> (i.e. no 2-compound labels for A and B which con-
tains <A,r> will 2-satisfy CE({A,B})). Therefore CSP-1 is 2-inconsistent by defini-
tion. However, CSP-1 is 3-consistent. This can be seen by observing that the only
compound labels that 2-satisfy the constraints are (<A,r><B,b>), (<A,r><C,r>) and
(<B,b><C,r>). They are all projections of (<A,r><B,b><C,r>), which 3-satisfies
CE({A,B,C}). Therefore, they can all be extended to include the missing variable to
form a 3-compound-label which 3-satisfies all the constraints; hence CSP-1 is 3-
consistent.

B

A C {r}

{r, b}

{r}

A ≠ B B ≠ C

Figure 3.1 CSP-1: example of a 3-consistent CSP which is not 2-con-
sistent (from Freuder [1982])
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In view of the weakness of k-consistency, Freuder [1982] introduces the concept of
strong k-consistency.

Definition 3-6:

A CSP is strong k-consistent if it is 1-, 2-, ..., up to k-consistent:

∀  csp(P ): strong k-consistent(P ) ≡ (∀ j: 1 ≤ j ≤ k: j-consistent(P )) ■

By definition, strong k-consistency entails strong (k − 1)-consistency.

3.2.3  Definition of node- and arc-consistency

In Chapter 1, we pointed out that associated to each binary constraint problem is an
undirected graph, where the nodes represent the variables and the edges represent
the binary constraints. Because of the importance of binary constraint problems, a
set of consistency concepts has been defined for them. Borrowing terminology from
graph theory, these concepts are called node-, arc- and path-consistency.

Definition 3-7:

A CSP is node-consistent (NC) if and only if for all variables all values in
its domain satisfy the constraints on that variable. We use NC(P) to denote
that P is node-consistent:

∀  csp((Z, D, C)):
node-consistent( (Z, D, C) ) ≡ (∀ x ∈  Z: (∀ v ∈  Dx: satisfies(<x,v>, Cx)) ■

The formal definition of node-consistency (NC) is exactly the same as 1-consist-
ency.

Recall that we take an arc as a pair of variables, and denote it with (a, b), where a
and b are the nodes joined by this arc. For undirected graphs, (a, b) is the same
object as (b, a). (An edge (x, y) can be seen as a pair of arcs (x, y) and (y, x) in a
directed graph.)

Definition 3-8:

An arc (x, y) in the constraint graph of a CSP (Z, D, C) is arc-consistent
(AC) if and only if for every value a in the domain of x which satisfies the
constraint on x, there exists a value in the domain of y which is compatible
with <x,a>:

∀  csp((Z, D, C)): ∀ x, y ∈ Z:
AC( (x, y), (Z, D, C) ) ≡ (∀ a ∈  Dx: satisfies((<x,a>), Cx) ⇒

∃ b ∈ D y: (satisfies((<y,b>), Cy)) ∧ satisfies((< x,a><y,b>), Cx,y))) ■
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Definition 3-9:

A CSP is arc-consistent (AC) if and only if every arc in its constraint graph
is arc-consistent:

∀  csp((Z, D, C)): AC( (Z, D, C) ) ≡ (∀ x, y ∈  Z: AC((x, y), (Z, D, C))) ■

In other words, a CSP is arc-consistent if and only if for every variable x, for every
label <x,a> that satisfies the constraints on x, there exists a value b for every varia-
ble y such that the compound label (<x,a> <y,b>) satisfies all the constraints on x
and y. This is exactly the same as the definition of 2-consistency defined in
Definition 3-4.

The concept of arc-consistency is useful in searching. Freuder [1982] points out that
in any binary CSP which constraint graph forms a tree, a search can be made back-
track-free if both node and arc-consistency are achieved in the problem. The Waltz
filtering algorithm that we mentioned in Chapter 1 is basically an algorithm which
maintains AC throughout the search. The Waltz algorithm and other algorithms for
maintaining AC will be discussed in Chapter 4. Here we shall formally state Freud-
er’s theorem.

Theorem 3-1 (mainly due to Freuder, 1982)

A search in a CSP is backtrack-free if the constraint graph of a problem
forms a tree and both node- and arc-consistency are achieved in the prob-
lem:

∀  csp(P ): P = (Z, D, C) ⇒
((tree(G(P )) ∧  NC(P ) ∧ AC( P )) ⇒

∃  <: total_ordering(Z, <): backtrack-free(P, <))

Proof

(1) assume that P = (Z, D, C) is a binary CSP which constraint graph

G(P ) forms a tree. Assume further that both NC(P ) and AC(P ) are
true.

(2) Since G(P ) forms a tree, and every node has at most one parent node

in a tree, there exists an ordering < such that every node x in G(P )
except the first node has exactly one node y such that y < x and (x,y) is

an edge in G(P ).

(3) Let the variables be labelled according to the ordering specified in (2).
When a variable x is to be labelled, there exists at most one variable y
which has already been labelled which label could possibly be in con-
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flict with x’s. But since P is arc-consistent, there is always a value vx

which x may take that is compatible with the label y has taken. Further-

more, since P is NC and vx is in the domain of x, the label <x,vx> must
satisfy Cx. Therefore, the search is backtrack-free.

(Q.E.D.)

3.2.4  Definition of path-consistency

Definition 3-10:

A path (x0, x1, ..., xm) in the constraint graph for a CSP is path-consistent
(PC) if and only if for any 2-compound label (<x0,v0> <xm, vm>) that satis-
fies all the constraints on x0 and xm there exists a label for each of the varia-
bles x1 to xm-1 such that every binary constraint on the adjacent variables in
the path is satisfied:

∀  csp((Z, D, C)): ∀x 0, x1, x2, ..., xm ∈  Z:
PC((x0, x1, x2, ..., xm), (Z, D, C)) ≡

(∀ v0 ∈ , vm ∈  :

(satisfies((<x0,v0>), ) ∧  satisfies((<xm,vm>), ) ∧

satisfies((<x0,v0><xm,vm>), ) ⇒

(∃ v1 ∈  , v2 ∈  , ... , vm-1 ∈  :

satisfies((<x1,v1>), }) ∧  ... ∧

satisfies((<xm-1,vm-1>), ) ∧

satisfies((<x0,v0><x1,v1>), ) ∧

satisfies((<x1,v1><x2,v2>), ) ∧  ... ∧

satisfies((<xm-1,vm-1><xm,vm>), )))) ■

Note carefully that the definition of path-consistency for the path (x0, x1, ..., xm)
does not require the values v0, v1, ..., vm to satisfy all the constraints in the constraint
expression CE({x0, x1, ..., xm}, (Z, D, C)). For example, since x3 and x5 are not adja-

cent variables in the path, (<x3,v3> <x5,v5>) needs not satisfy the constraint .

Dx0
Dxm

Cx0
Cxm

Cx0 xm,

Dx1
Dx2

Dxm 1−
Cx1

Cxm 1−
Cx0 x1,

Cx1 x2,

Cxm 1− xm,

Cx3 x5,
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Definition 3-11:

A CSP is said to be path-consistent if and only if every path in its graph is
consistent:

∀  csp((Z, D, C)):
PC( (Z, D, C) ) ≡ ∀ x0, x1, ..., xm ∈ Z: PC((x0, x1, ..., xm), (Z, D, C)) ■

This implies that if a CSP is path-consistent, then for all variables x and y, whenever
a compound label (<x,a> <y,b>) satisfies the constraints on both x and y, there exists
a label <z,c> for every variable z such that (<x,a> <y,b> <z,c>) satisfies all the con-
straints on x, y and z.

3.2.5  Refinement of PC

Montanari [1974] points out that if every path of length 2 of a complete constraint
graph is path consistent then the graph is path consistent. We shall prove this theo-
rem under the definitions given above.

Theorem 3-2 (due to Montanari, 1974)

A CSP is path-consistent if and only if all paths of length 2 are path-consist-
ent:

∀  csp(P ): P = (Z, D, C) ⇒
((∀ z1, z2, z3 ∈ Z: PC((z1, z2, z3), P )) ⇔

(∀ x1, x2, ..., xk ∈ Z: PC( (x1, x2, ..., xk), P )))

Proof

PC((z1, z2, z3), P ) is just a special case of PC((x1, x2, ..., xk), P ). So it is triv-
ially true that:

 (∀ z1, z2, z3 ∈ Z: PC((z1, z2, z3), P )) ⇐
(∀ x1, x2, ..., xk ∈ Z: PC( (x1, x2, ..., xk), P )).

To prove the ⇒  aspect of the theorem, let us first assume that:

(∀ z1 ∈ Z ∧ z2 ∈ Z ∧ z3 ∈ Z: PC((z1, z2, z3), P). (3.1)

Then we shall prove that all paths are path-consistent using strong induction
on the length of the path:

Base Step

When a path has length = 2, the above theorem holds (trivial).
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Induction step (by strong induction)

(1) Assume that (3.1) is true for all paths with length between 2 and some
integer m:

(∀  2 ≤ k ≤ m: ∀ x0, x1, ..., xk ∈ Z: PC((x0, x1, ..., xk), (Z, D, C))

(2) Pick any two variables x0 and xm+1. Assume that v0 and vm+1 are two
values such that:

v0 ∈  ∧ vm+1 ∈  ∧

(satisfies((<x0,v0>), ) ∧  satisfies((<xm+1,vm+1>), ) ∧

satisfies((<x0,v0><xm+1,vm+1>), ))

(3) Now pick any m variables x1, x2, ..., xm. It must be the case that:

∃ vm ∈ : (satisfies((<xm,vm>), ) ∧

satisfies((<x0,v0><xm,vm>), ) ∧

satisfies((<xm,vm><xm+1,vm+1>), )))

(the length of the path (x0, xm, xm+1) is 2; by the assumption made in
step (1), PC((x0, xm, xm+1), (Z, D, C)) holds)

(4) PC((x0, x1, ..., xm), (Z, D, C)) (by assumption in step (1))

(5) ∃ v1 ∈  , v2 ∈  , ... , vm-1 ∈ :

(satisfies((<x1,v1>), ) ∧  ... ∧  satisfies((<xm-1,vm-1>), ) ∧

satisfies((<x0,v0><x1,v1>), ) ∧  ... ∧

satisfies((<xm-1,vm-1><xm,vm>), )

(by step (4) and definition of PC)

(6) The compound label (<x0,v0><x1,v1>...<xm+1,vm+1>) satisfies ,

, ...,  and , , ..., ,

.

(by steps (2), (3) and (5))

(7) PC((x0,x1,...,xm+1), (Z, D, C)) (by step (6) and definition of PC)

(Q.E.D.)
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Therefore, we can redefine PC as follows.

Definition 3-10(R):

∀  csp((Z, D, C)): ∀ x, y , z ∈ Z:
PC( (x, y, z), (Z, D, C) ) ≡

(∀ vx ∈  Dx, vz ∈ D z:
(satisfies((<x,vx>), Cx) ∧ satisfies((< z,vz>), Cz) ∧

satisfies((<x,vx><z,vz>), Cx,z) ⇒
(∃ vy ∈  Dy: satisfies((<y,vy>), Cy) ∧

satisfies((<x,vx><y,vy>), Cx,y) ∧
satisfies((<y,vy><z,vz>), Cy,z))) ■

Definition 3-11(R):

∀  csp((Z, D, C)): PC((Z, D, C)) ≡ ∀ x, y, z ∈ Z: PC( (x, y, z), (Z, D, C) ) ■

Freuder [1982] points out that path-consistency is equivalent to 3-consistency in
binary CSPs. This is not too difficult to realize under the above definitions. Accord-
ing to our definition of k-consistency:

3-consistent((Z, D, C)) ≡ (3.2)
(∀ x, z ∈ Z : (∀ vx ∈  Dx, vz ∈  Dz:

(2-satisfies((<x,vx><z,vz>), CE({x, z}, (Z, D, C)))) ⇒
(∀ y ∈  Z: (∃ vy ∈  Dy:

3-satisfies((<x,vx><y,vy><z,vz>), CE({x, y, z}, (Z, D, C)))))))

We shall show that this is equivalent to PC((Z, D, C)) for binary CSPs. Firstly, the
universal quantifier for y in the definition of 3-consistency (3.2) can be moved to the
outmost level to make it comparable with the z in the definition in PC in
Definition 3-11(R). Secondly, by definition, 2-satisfies((<x,vx><z,vz>),
CE({x, z}, (Z, D, C))) in the definition of 3-consistency is equivalent to:

satisfies((<x,vx>),Cx) ∧ (3.3)
satisfies((<z,vz>),Cz) ∧
satisfies((<x,vx><z,vz>),Cx,z).

The proposition 3-satisfies((<x,vx><y,vy><z,vz>), CE({x, y, z}, (Z, D, C))) on the
right hand side of ⇒  of (3.2) is equivalent to:

satisfies((<x,vx>), Cx) ∧ (3.4)
satisfies((<y,vy>), Cy) ∧
satisfies((<z,vz>), Cz) ∧
satisfies((<x,vx><y,vy>),Cx,y) ∧
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satisfies((<x,vx><z,vz>),Cx,z) ∧
satisfies((<y,vy><z,vz>),Cy,z)

in binary CSPs. (Three of the terms in (3.4) appear in (3.3), or appear on the left
hand side of ⇒  in (3.2).) By comparing the two well form formulae 3-11(R) and
(3.2) after elaborating the definitions, it is not difficult to see that PC in Definition 3-
11(R) is equivalent to 3-consistency.

3.2.6  Directional arc- and path-consistency

Dechter & Pearl [1988a] observe that node- plus arc-consistency is stronger than
necessary for enabling backtrack-free search in CSPs which constraints form trees.
They propose the concept of directional arc-consistency, which is a sufficient condi-
tion for backtrack-free search in trees. Directional-arc-consistency is defined under
total ordering of the variables.

Definition 3-12:

A CSP is directional arc-consistent (DAC) under an ordering of the varia-
bles if and only if for every label <x,a> which satisfies the constraints on x,
there exists a compatible label <y,b> for every variable y which is after x
according to the ordering:

∀  csp((Z, D, C)): (∀ <: total_ordering(Z, <):
DAC((Z, D, C), <) ≡ (∀ x, y ∈  Z: x < y ⇒ AC(( x, y), (Z, D, C)))) ■

Here AC((x, y), (Z, D, C)) is defined in Definition 3-8 above. Notice that the differ-
ence between AC and DAC is in the qualification of y: all y’s in Z are considered in
AC, but only those y’s which satisfy x < y are considered in DAC. Similarly, we can
define directional path-consistent.

Definition 3-13:

A CSP P is directional path-consistent (DPC) under an ordering of the var-
iables if and only if for every 2-compound label on variables x and z,
PC((x, y, z), P ) holds for all variables y which is ordered after both x and z:

∀  csp((Z, D, C)):
(∀ <: total_ordering(Z, <):

DPC((Z, D, C), <) ≡
(∀ x, y, z ∈  Z: (x < y ∧ z < y) ⇒  PC((x, y, z), (Z, D, C))) ■

The use of NC, AC, DAC, PC and DPC concepts will be elaborated further in
Chapter 5.
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3.3  Relating Consistency to Satisfiability

Before we continue, let us examine the relationship between the satisfiability and
consistency concepts that we have introduced so far. In particular, is k-consistency,
or strong k-consistency, a sufficient or necessary condition for k-satisfiability? Is k-
consistency, or strong k-consistency, a sufficient or necessary condition for the satis-
fiability of a problem? These questions will be answered in this section.

It is not difficult to show that k-consistency is insufficient to guarantee satisfiability
of a CSP which has more than k variables. For example, the colouring problem
CSP-2 shown in Figure 3.2 is a 3-consistent but unsatisfiable CSP.

The domains of the variables are shown in curly brackets next to the variables in
Figure 3.2. On the edges, the compound labels allowed for the joined nodes are
shown. CSP-2 is 3-consistent because whatever combination of three variables that
we pick, assigning two of them any two different values from “r”, “g” and “b”
would allow one to assign the remaining value to the remaining variable without
violating any of the constraints on the three variables. But this problem is unsatisfi-
able because one needs four values to label all the variables without having any
adjacent variables taking the same value.

A

B

D

C

{r, g, b}

{r, g, b}

{r, g, b} {r, g, b}

Figure 3.2 CSP-2: example of a 3-consistent but unsatisfiable CSP
constraint: no adjacent nodes should take the same value (from

Freuder, 1978)

A ≠ B

B ≠ C

A ≠ C

D ≠ C

A
≠

D

B ≠ D
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The example CSP-3 in Figure 3.3 shows that 3-consistency is not a necessary con-
dition for satisfiability either. In CSP-3, if A = 1, then from CA,B we have to make
B = 2, which by CB,C forces C = 3, which by CC,D forces D = 4. Similarly, if A = 5,
then B = 6, which forces C = 7, which in turn forces D = 8. Therefore, two and only
two compound labels for the variables in the problem satisfy all the constraints:

(<A, 1><B, 2><C, 3><D, 4>)

and (<A, 5><B, 6><C, 7><D, 8>)

But consider the compound label (<A,1><C,7>): it satisfies all the constraints CA,
CC and CA,C (CA,C is not a constraint stated in the problem, and therefore not shown
in Figure 3.3). But no value for B is compatible with (<A,1><C,7>) (<B,2> violates
the constraint CB,C and <B,6> violates the constraint CA,B). Therefore PC((A, B, C),
CSP-3) is false; in other words, PC does not hold for CSP-3. This example shows
that path-consistency, or 3-consistency, is not a necessary condition for satisfiability
of a CSP. Therefore, k-consistency is neither a necessary nor a sufficient condition
for satisfiability.

A

B

D

C

{1, 5}

{3, 7}{2, 6}

{4, 8}

{(<A,1><B,2>),
 (<A,5><B,6>)}

{(<A,1><D,4>),

 (<A,5><D,8>)}

{(<B,2><C,3>),
 (<B,6><C,7>)}

{(<C,3><D,4>),
 (<C,7><D,8>)}

Figure 3.3 CSP-3: a problem which is satisfiable but not path-con-
sistent. The variables are A, B, C and D; their domains are shown next
to the nodes which represent them. The labels on the edges show the
sets of all compatible relations between the variables of the adjacent

nodes
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In fact, we can show that a CSP which is 1-consistent need not be 1-satisfiable. This
would be the case if there exist some variables which have empty domains, and all
the values in the nonempty domains satisfy the constraints of the corresponding var-
iables. Theorem 3-3 states that a CSP which has all the domains and constraints as
empty sets is strong k-consistent for all k.

Theorem 3-3

A CSP in which all the domains are empty sets is strong k-consistent for all
k:

∀  csp((Z, D, C)) ⇒
(∀ Dx ∈ D: Dx = {}) ⇒ (∀ k ≤Z : strong k-consistent((Z, D, C)))))

Proof

Let P = (Z, D, C) be a CSP in which all the domains are empty sets. It is 1-
unsatisfiable by definition. It is also h-unsatisfiable for all 1 ≤ h ≤  Z
because no h-compound label h-satisfies C. However, P is 1-consistent (by
definition of 1-consistency, since for all x, Dx is empty). For any k > 1, there

exists no (k − 1)-compound label which (k − 1)-satisfies the constraints of P,
and therefore the left hand side of the “⇒ ” in the definition of k-consistency
(Definition 3-4) is never satisfied. Therefore, the proposition k-consisten-

cy(P) is always true for all k, which means strong k-consistency(P) is
always true.

(Q.E.D.)

One significant implication of Theorem 3-3 is that strong n-consistency itself does
not guarantee n-satisfiability. Careful analysis shows that 1-satisfiability together
with strong k-consistency is a sufficient (but not necessary) condition to k-satisfia-
bility.

Theorem 3-4 (The Satisfiability Theorem)

A CSP which is 1-satisfiable and strong k-consistent is k-satisfiable for all k:

∀  csp(P ): 1-satisfiable(P ) ∧ strong k-consistent(P ) ⇒ k-satisfiable(P )

Proof

Let P = (Z, D, C) be 1-satisfiable and strong k-consistent for some integer k.
Pick an arbitrary subset of k variables S = {z1, z2, ..., zk} from Z. We shall
prove that there exists at least one compound label for all the variables in S

which satisfies all the relevant constraints (i.e. CE(S, P )).
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Since P is 1-satisfiable, for any arbitrary element x1 that we pick from S, we
can at least find one value v1 from the domain of x1 such that satis-

fies(<x1,v1>, ) holds. Furthermore, since P is 2-consistent, for any other

variable x2 that we pick from S, we would be able to find a compound label

(<x1, v1><x2, v2>) which satisfies CE({x1,x2}, P). Since P is strong-k-con-
sistent, it should not be difficult to show by induction that for any 3rd, 4th,
..., kth variables in S that we pick, we shall be able to find 3-, 4-, ..., k-com-
pound labels that satisfy the corresponding constraints CE({x1, x2, ...,

xk}, P). Therefore, the subproblem on S is satisfiable, and so P is k-satisfia-
ble.

(Q.E.D.)

We summarize below the results that we have concluded so far:

(1) k-satisfiability subsumes (k − 1)-satisfiability (trivial).
(2) However, k-consistency does not entail (k − 1)-consistency. This is illustrated

by example CSP-1, which is 3-consistent but not 2-consistent. But some k-
consistent CSPs must be (k − 1)-consistent, and vice versa. This leads to the
definition of strong k-consistency, which entails strong (k − 1)-consistency.

(3) k-consistency does not guarantee 1-satisfiability. Consequently, k-consistency
does not guarantee h-satisfiability for any h. This is true for k ≤ h, as illus-
trated in the example CSP-2 which is 3-consistent but not 4-satisfiable. It is
also true for k > h, as it is illustrated by the colouring problem CSP-4 in
Figure 3.4, which is 3-consistent, but not 2-satisfiable.

Cx1

A

B C {r}

{r}

{r}

A ≠ B A ≠ C

B ≠ C

Figure 3.4 CSP-4: a CSP which is 1 satisfiable and 3-consistent, but
2-inconsistent and 2-unsatisfiable (it is 3-consistent because there is
no 2-compound label which satisfies any of the binary constraints)
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(4) Similarly, h-satisfiability does not guarantee k-consistency when k > 1. We
have shown in the CSP-3 example that a 4-satisfiable CSP need not be 3-con-
sistent.

(5) Neither does strong k-consistency guarantee k-satisfiability: Theorem 3-3
indicates that if the domain of all variables are empty, the problem is 2-con-
sistent.

(6) However (as proved in Theorem 3-4), 1-satisfiability plus strong k-consist-
ency guarantees k-satisfiability. A little reflection should convince the readers
that this means a strong k-consistent CSP without any empty domain is k-sat-
isfiable.

These results will be summarized in Figure 3.7 at the end of this chapter, after the
introduction of more consistency concepts.

3.4  (i, j)-consistency

The concept of k-consistency is generalized to (i, j)-consistency by Freuder.

Definition 3-14:

A CSP is (i, j)-consistent if, given any i-compound label that satisfies all the
constraints on a set of i variables I, and given any set of j or less variables K
which does not overlap with I, one can always find for the variables in K val-
ues which are compatible with the compound label for I. In other words, the
combined compound label for both I and K satisfies all the constraints on I
union K:

∀  csp((Z, D, C)): ∀ i, j:
(i, j)-consistent((Z, D, C)) ≡

(∀ x1, x2, ..., xi ∈ Z: ∀ v1 ∈ , v2 ∈ , ...,vi ∈ :

(satisfies((<x1,v1>...<xi,vi>), CE({x1, x2, ..., xi}, (Z, D, C))) ⇒
(∀ x'1, x'2, ..., x'k ∈ Z: k ≤ j:

 (({x1,x2,...,xi} ∩ {x'1, x'2, ..., x'k} = {}) ⇒
(∃ v'1 ∈ , v'2 ∈ , ...,v'k ∈ :

satisfies((<x1,v1>...<xi,vi><x'1,v'1>...<x'k,v'k>),
CE({x1, ..., xi, x'1, ..., x'k}, (Z, D, C)))))))) ■

It follows that k-consistency is equivalent to (k − 1, 1)-consistency.

Definition 3-15:

A CSP is strong (i, j)-consistent if it is (k, j)-consistent for all 1 ≤ k ≤ i:

Dx1
Dx2

Dxi

Dx ' 1
Dx ' 2

Dx ' k
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∀  csp(P ): ∀ i, j:

strong-(i, j)-consistent(P ) ≡ (∀ k: 1 ≤ k ≤ i: (k, j)-consistent(P )) ■

It should be pointed out that a CSP which is (i, j)-consistent need not be (i', j')-con-
sistent even though i + j = i' + j' may hold. (i, j)-consistency has interesting proper-
ties which is relevant to backtracking search. Interesting properties of (i, j)-
consistent CSPs are illustrated in Chapter 7, when we explain search techniques.

3.5  Redundancy of Constraints

In Chapter 2, we defined the concept of redundancy on values and compound labels.
Dechter & Dechter [1987] extend these concepts to the redundancy of constraints.
These concepts, which could help us to derive algorithms for removing constraints,
are defined in this section.

Definition 3-16:

A k-constraint in a CSP is redundant if it does not restrict the k-compound
labels of the subject variables further than the restrictions imposed by other
constraints in that problem. This means that the removal of it does not
change (increase) the set of solution tuples in the problem:

∀  csp((Z, D, C)): (∀ S ⊆ Z: CS ∈ C:
redundant(CS, (Z, D, C)) ≡

(∀ T : solution_tuple(T , (Z, D, C − {CS})) ⇔
solution_tuple(T , (Z, D, C)))) ■

For example, if x, y and z are integer variables, and x < y, x < z and y < z are three
constraints, then the constraint x < z is redundant because it imposes no more con-
straints to x and z than x < y and y < z together.

Redundancy is in general difficult to detect. However, some redundant constraints
could be detected quite easily. In Dechter & Dechter [1987], which focuses on
binary CSPs, a number of concepts for helping to identify redundant binary con-
straints are introduced.

Definition 3-17:

A 2-compound label CL is path-allowed by a path PA that begins and ends
with the variables of CL if in addition to the labels in CL, one can assign a
value to each of the variables in the path satisfying all the binary constraints
on adjacent nodes in the path:
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∀  csp((Z, D, C)): (∀ x0, x1, ..., xk ∈ Z: (∀ v0 ∈ , vk ∈ :

path-allowed((<x0,v0><xk,vk>), (x1, x2, ..., xk-1), (Z, D, C)) ≡
(∃ v1 ∈ , v2 ∈ , ..., vk-1 ∈ :

(∀ p: 0 ≤ p < k: satisfies((<xp,vp><xp+1,vp+1>), )))) ■

Definition 3-18:

A 2-compound label is path-induced in a problem if it is path-allowed by
every path in the graph which represents the problem:

∀  csp((Z, D, C)): ∀ x, y ∈ Z: ∀ a ∈ Dx, b ∈ Dy:
path-induced( (<x,a><y,b>), (Z, D, C) ) ≡

(∀ z1 ∈  Z, z2 ∈  Z, ..., zm ∈ Z :
path-allowed((<x,a><y,b>), (z1, z2, ..., zm), (Z, D, C)) ■

Definition 3-19:

A binary constraint is path-redundant if no 2-compound label which vio-
lates it is path induced. In other words, it does not restrict the choice of com-
pound labels for the subject variables more than the paths have already done
so:

∀  csp((Z, D, C)): ∀ C x,y ∈ C:
path-redundant(Cx,y, (Z, D, C)) ≡

(∀  a ∈ Dx, b ∈ Dy:
((<x,a><y,b>) ∉ Cx,y) ⇒

¬  path-induced((<x,a><y,b>), (Z, D, C))) ■

A binary constraint can be removed if it is path-redundant. Removal of path-redun-
dant constraints would change the topology of the constraint graph. This would be
desirable if the resulting topology of the constraint graph enables specialized algo-
rithms to be applied — e.g. when the resulting constraint graphs are unconnected or
acyclic. This will be elaborated further in Chapter 7.

3.6  More Graph-related Concepts

Every binary CSP is associated with a constraint graph. Many CSP solving tech-
niques are designed to exploit the topology of the constraint graphs of the problems.
To help in illustrating those techniques later in this book, we shall define the rele-
vant concepts in graph theory in this section. Readers may choose to skip this sec-
tion and refer to it for the relevant definitions when they are encountered in

Dx0
Dxk

Dx1
Dx2

Dxk 1−
Cxp xp 1+,
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subsequent chapters.

In this section, we shall continue to denote graphs by G, where G = (V, E), with V
being a set of nodes and E being a set of edges (see Definition 1-15). All graphs
referred to in this section are undirected graphs without loops.

The first group of definitions are about the width of a graph. These concepts are use-
ful for explaining the ordering of variables in searching, which will be discussed in
Chapter 6.

Definition 3-20:

Given a graph (V, E) and a total ordering on its nodes, the width of a node v
is the number of nodes that are before and adjacent to v:

∀  graph((V, E)): (∀ <: total_ordering( V, <): (∀ x ∈ V :

width(x, (V, E), <) ≡  {y | y < x ∧ ( x, y) ∈ E} )) ■

Definition 3-21:

The width of a graph under an ordering is the maximum width of all the
nodes in the in the graph under that ordering:

∀  graph((V, E)): (∀ <: total_ordering( V, <):
width((V, E), <) ≡ MAX width(x, (V, E), <): x ∈ V) ■

Definition 3-22:

The width of a graph is the minimum width of the graph under all possible
orderings of its nodes:

∀  graph((V, E)): width((V, E)) ≡ MIN width((V, E), <): total_ordering(V, <) ■

For example, Figure 3.5(a) shows a graph. If the ordering of the nodes is (A, B, C,
D, E, F, G), then the width of the nodes are 0, 1, 1, 1, 1, 2, 3, respectively
(Figure 3.5(b)). Therefore the width of this ordering is 3, which is the maximum
width among all nodes. Should the ordering be (G, F, E, D, C, B, A), the width of the
nodes would be 0, 1, 1, 2, 1, 2, 2 (Figure 3.5(c)). The width of this ordering is 2.

Definition 3-23:

A graph G' = (V', E') is induced by another graph G = (V, E) if V' is a subset
of V, and E' is the set of all the edges in E which join the nodes in V':

∀  graph((V, E)), graph((V', E')):
induced_by( (V', E'), (V, E) ) ≡
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Figure 3.5 Example of a constraint graph with the width of different
orderings shown

(a) A constraint graph to be labelled

(b) Width of the nodes given the order A, B, C, D, E, F, G

(c) Width of the nodes given the order G, F, E, D, C, B, A

ordering
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(V' ⊆ V) ∧ ( E' = {(a, b) | (a, b) ∈ E ∧ a ∈ V' ∧ b ∈  V'}) ■

Definition 3-24:

The neighbourhood of a node v in a graph G is the set of all the nodes in G
which are adjacent to v:

∀  graph((V, E)): (∀ v ∈ V :
neighbourhood(v, (V, E) ) ≡ {w | w ∈ V ∧ ( v, w) ∈ E}) ■

Definition 3-25:

The degree (which is sometimes called valency in the literature) of a
node in a graph is the number of nodes to which this node is adjacent:

∀  graph((V, E)): (∀ v ∈  V: degree(v, (V, E)) ≡  neighbourhood(v, (V, E)) ) ■

Definition 3-26:

A k-tree is either a complete graph with k nodes, or a graph in which one can
find a node v that satisfies three conditions: (1) that it is adjacent to k nodes;
(2) its neighbourhood (which has k nodes) forms a complete graph; and (3)
the graph without both v and the edges involving v forms a k-tree. A k-tree
which is a complete graph G with k nodes is called a trivial k-tree, denoted
trivial_k-tree(G):

∀  graph((V, E)):
k-tree((V, E)) ≡

(( V=  k ∧  complete_graph((V, E))) ∨
∃ v ∈ V : (degree(v, (V, E)) = k ∧

(G' = (neighbourhood(v, (V, E)), E') ⇒
induced_by(G', (V, E)) ∧ complete_graph( G')) ∧

(k-tree( (V − {v}, E − {(v, w) | (v, w) ∈ E}) )))) ■

Figure 3.6 shows examples and counter-examples of k-trees. The graph in
Figure 3.6(a) is a trivial 3-tree which is a complete graph with 3 nodes. The graph in
Figure 3.6(b) is the graph in Figure 3.6(a) with an extra node D added. It is a 3-tree
because there exists a node D which has a degree of 3, its neighbourhood {A, B, C}
forms a complete graph and the graph without D is a (trivial) 3-tree. In each of the
graphs in Figures 3.6(c) and (d), one more node is added. They are 3-trees as the
added nodes satisfy the above conditions. The graph in Figure 3.6(e) is not a 3-tree
because there exists only one node, F, which degree is 3. But the neighbourhood of
F, which is the set {C, D, E}, does not form a complete graph.
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Definition 3-27:

G' = (V', E') is a partial graph of G = (V, E) if V' is a subset of V and E' is a
subset of the edges in E which join the nodes in V'. Partial_graph(G', G)
reads “G' is a partial graph of G”:

∀  graph((V, E)), graph((V', E')):
partial_graph((V', E'), (V, E)) ≡

(V' ⊆ V ∧ E' ⊆  {(a, b) | a ∈ V' ∧ b ∈ V' ∧  (a, b) ∈  E}) ■

In the above definition, when E' equals the set of all the edges in E which join the
nodes in V', G' is induced by G.

Definition 3-28:

Graph G embeds graph G' if G' is a partial graph of G and G is a k-tree for
some integer k. Embedding(G, G') reads “G embeds G'”:

∀  graph(G), graph(G'): embedding(G, G') ≡
(partial_graph(G', G) ∧ (∃ k: k-tree(G))) ■

Definition 3-29:

G is a partial-k-tree if there exists a k-tree G' of which G is a partial graph:

∀  graph(G): ∀ k: partial-k-tree(G) ≡ (∃ G': partial_graph(G, G') ∧ k-tree(G'))
■

According to this definition, any graph is a partial-k-tree for a sufficiently large k.

Definition 3-30:

A weak-k-tree is either a complete graph with k or less nodes, or a graph in
which one can find a node v which satisfies three conditions: (1) that it is
adjacent to no more than k nodes; (2) its neighbourhood forms a complete
graph; and (3) the graph without v and edges involving v forms a weak-k-
tree:

∀  graph((V, E)):
weak-k-tree((V, E)) ≡

(( V ≤ k ∧  complete((V, E))) ∨
∃ v ∈ V : (degree(v, (V, E)) ≤ k ∧

(G'=(neighbourhood(v, (V, E)), E') ⇒
induced_by(G', (V, E)) ∧ complete( G')) ∧

(weak-k-tree( (V − {v}, E − {(v, w) | (v, w) ∈ E}) )))) ■
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The definition of weak-k-tree is similar to k-tree except that all “= k” are replaced
by “≤ k”.

3.7  Discussion and Summary

A number of concepts, many of which surround the notion of consistency, have
been defined in this chapter. Many of these concepts are directly related to problem
reduction and search methods, which we shall introduce in the coming chapters.

In this chapter, we first introduced the concept of k-satisfiability. Then we intro-
duced a number of consistency concepts that may help in identifying redundant val-
ues in the domains and redundant compound labels in the constraints. Node-, arc-,
path-, directional arc- and directional path-consistency are some of the best known
consistency concepts for binary constraint problems, while k-consistency and strong
k-consistency are concepts for general CSPs. Figure 3.7 summarizes the relation-
ship among the consistency concepts introduced in this chapter. In general, the
stronger the level of consistency one achieves, the more computation one requires,
but the more redundant values and redundant compound labels one can be expected
to remove.

We have pointed out in this chapter that not even strong-k-consistency is strong
enough to be a necessary condition for k-satisfiability. We have shown that 1-satisfi-
ability together with strong k-consistency guarantees k-satisfiability.

We have also introduced Freuder’s (i, j)-consistency, which is an extension of k-
consistency. The concept of redundancy in Chapter 2 is extended to constraints.
Finally, we introduced more concepts in graph theory. These concepts will be used
in the chapters to come.

3.8  Bibliographical Remarks

Although we suggest that problem reduction has a good chance of reducing the
problem to easier problems, Prosser [1992] points out that there are exceptions. The
ideas of node-, arc- and path-consistency originate from Montanari [1974]; these
terminologies are well summarized by Mackworth [1977]. Freuder [1978] first
introduced the more general concept of k-consistency, which is later extended to
strong-k-consistency. Freuder also points out the sufficient condition for backtrack-
free search, which lays the foundation for a number of specialized CSP solving
techniques which we shall introduce in Chapter 7. Although the maintenance of
directional arc-consistency (DAC) has long been proposed and analysed in search-
ing (e.g. see Haralick & Elliott, 1980), the concept was never formally defined until
Dechter & Pearl [1988a]. Freuder [1985] introduces the concept of (i, j)-consistency
and k-trees. The use of them in CSP solving will be explored in Chapter 7. Most of
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the above concepts have been defined verbally in the literature. Tsang [1989] makes
an attempt to define them in first order logic, as well as outlining the relationship
between consistency and satisfiability concepts.



Chapter 4

Problem reduction

4.1  Introduction

We explained in Chapter 2 that problem reduction is the process of removing values
from domains, and tightening constraints in a CSP, without ruling out solution
tuples from a CSP. The basic idea is that if we can deduce that a value or a com-
pound label is redundant, then it can be removed, as doing so will not result in rul-
ing out any solution tuples in a CSP. We shall continue to see a constraint on a set of
variables S as the set of all legal compound labels for S. By removing redundant val-
ues and compound labels, we reduce a CSP to an equivalent problem — a problem
which has the same solution tuples as the original problem (Definitions 2-3 and 2-4)
— which is hopefully easier to solve.

Although problem reduction alone rarely generates solutions, it can help to solve
CSPs in various ways. It can be used in preprocessing, which means reducing the
problem before any other techniques are applied to find solutions. It can also be
used during searches — by pruning off search spaces after each label has been com-
mitted to. Sometimes, a significant amount of search space can be pruned off by
problem reduction. Problem reduction can help one to make searches backtrack-
free. (For example, as pointed out in Chapter 3, that when the constraint graph of a
CSP forms a tree, achieving node- and directional arc-consistency enable back-
track-free searches.) Problem reduction can also help us in solutions synthesis,
which we shall discuss in Chapter 9.

To recapitulate, the following are possible gains from problem reduction when com-
bined with searching:

(1) Reducing the search space
Since the size of the search space is measured by the grand product of all the
domain sizes in the problem, problem reduction can help to reduce the search
space by reducing the domain sizes.
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(2) Avoiding repeatedly searching futile subtrees
Redundant values and compound labels represent branches and paths which
lead to subtrees that contain no solutions. If redundant values and redundant
compound labels can be removed through problem reduction, then one can
avoid repeatedly searching those futile subtrees.

(3) Detecting insoluble problems
If a (sound) problem reduction algorithm returns a CSP that has at least one
domain being reduced to an empty set, then one can conclude that the prob-
lem is unsatisfiable. In that case, no further effort needs to be spent on finding
solutions.

In the literature, problem reduction is often referred to as achieving consistency or
problem relaxation. By achieving certain consistency properties of a given CSP,
we mean reducing the problem by removing redundant values from the domains
and redundant compound labels in the constraints, so that the consistency property
holds in the reduced problem. For example, a procedure that “achieves arc-consist-

ency” of CSPs is a procedure which takes a CSP P and returns a CSP P' such that P
and P' are equivalent and AC(P' ) is true. The consistency properties are defined in

a way which guarantees that the resulting CSPs are equivalent to the original ones
(i.e. it has the same solution tuples as the original problem).

In the rest of this chapter, we shall describe a number of consistency achievement
algorithms and study their complexity. As we shall see, some algorithms are applied
to remove redundant values from domains, and some to remove redundant com-
pound labels from constraints.

4.2  Node and Arc-consistency Achieving Algorithms

Consistency achievement algorithms were first introduced for binary constraint
problems. As mentioned in Chapter 1, binary CSPs are associated with graphs,
where the nodes represent variables and the edges binary constraints. In Chapter 3,
we introduced concepts related to binary constraint problems, namely node-, arc-
and path-consistency. In this section, we shall look at algorithms which achieve
node- and arc-consistency.

4.2.1  Achieving NC

Achieving node-consistency (NC, see Definition 3-7) is trivial. All one needs to do
is go through each element in each domain and check whether that value satisfies
the unary-constraint of the variable concerned. All values which fail to satisfy the
unary-constraints are deleted from the domains. Procedure NC-1 presents the
pseudo code for node-consistency achievement:
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PROCEDURE NC-1(Z, D, C)
BEGIN

FOR each x in Z
FOR each v in Dx

IF NOT satisfies((<x,v>), Cx)
THEN Dx ← Dx − {v};

return(Z, D, C); /* certain Dx may be updated */
END /* of NC-1 */

When NC-1 terminates, the original problem is reduced to one which satisfies node-
consistency. This is obtained by removing from each domain values which do not
satisfy the unary constraint of the variable represented by that node. (If the domains
are represented by functions, then the role of NC-1 is to modify those functions.)
Let a be the maximum size of the domains and n be the number of variables in the
problem. Since every value is examined once, the time complexity of NC-1 is
O(an).

4.2.2  A naive algorithm for achieving AC

By achieving arc-consistency (AC, see Definition 3-9) one can potentially remove
more redundant values from the domains than in applying NC-1. The Waltz filtering
algorithm is basically an algorithm which achieves AC, and it has been demon-
strated to be effective in many applications. A naive AC achievement algorithm,
called AC-1 in the literature, is shown below:

PROCEDURE AC-1(Z, D, C)
BEGIN

NC-1(Z, D, C); /* D is possibly updated */
Q ← {x→y | Cx,y ∈ C}

/* x→y is an arc; Cy,x is the same object as Cx,y */
REPEAT

Changed ← False;
FOR each x→y ∈  Q DO

Changed ← (Revise_Domain(x→y, (Z, D, C)) OR
Changed);

/* side effect of Revise_Domain: Dx may be reduced */
UNTIL NOT Changed;
return(Z, D, C);

END /* of AC-1 */

Q is the list of binary-constraints to be examined, where the variables in the binary
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constraint are ordered. In other words, if Cx,y is a constraint in the problem, then
both x→y and y→x are put into Q. AC-1 examines every x→y in Q, and deletes
from Dx all those values which do not satisfy Cx,y. If any value is removed, all the
constraints will be examined again. AC-1 calls the procedure Revise_Domain,
which is shown below:

PROCEDURE Revise_Domain(x→y, (Z, D, C)):
/* side effect: Dx in the calling procedure may be reduced*/
BEGIN

Deleted ← False;
FOR each a ∈  Dx DO

IF there exists no b ∈ D y such that satisfies((<x,a><y,b>), Cx,y)
THEN
BEGIN

Dx ← Dx − {a};
Deleted ← True;

END
return(Deleted)

END /* of Revise_Domain */

Revise_Domain(x→y, (Z, D, C)) deletes all the values from the domain of x which
do not have compatible values in the domain of y. The domain of y will not be
changed by Revise_Domain(x→y, (Z, D, C)). The boolean value Deleted which is
returned by Revise_Domain indicates whether or not a value has been deleted.

The post-condition of the procedure AC-1 is more than AC. In fact, it achieves NC
and AC (i.e. AC-1 achieves strong 2-consistency).

When there are e edges in the constraint graph, the queue Q in AC-1 will have 2e
elements. The REPEAT loop in AC-1 will terminate only when no value is deleted
from any domain. In the worst case one element is deleted in each iteration of the
REPEAT loop. If a is the maximum number of elements in the domains and n is the
number of variables, then there are at most na elements to be deleted, and conse-
quently the REPEAT loop will terminate in no more than na iterations. Each itera-
tion requires in the worst case 2e calls to Revise_Domain. Each Revise_Domain

call examines a2 pairs of labels. Therefore, the worst case time complexity of AC-1

is O(a3ne). To represent a CSP, we need O(na) space to store the possible labels and
O(e) space to store the constraints. So the space complexity of AC-1 is O(e + na). If
constraints are represented by sets of compound labels, then in the worst case one

needs O(n2a2) space to store the constraints.
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4.2.3  Improved AC achievement algorithms

AC-1 could be very inefficient because the removal of any value from any domain
would cause all the elements of Q to be re-examined. This algorithm is improved to
AC-2, and AC-3 in the literature. The idea behind these algorithms is to examine
only those binary-constraints which could be affected by the removal of values. We
shall skip AC-2 (as it uses a similar principle but is inferior to AC-3 in time com-
plexity), and look at AC-3 below:

PROCEDURE AC-3((Z, D, C))
BEGIN

NC-1(Z, D, C);
Q ← {x→y | Cx,y ∈ C};

 /* x→y is an arc; Cy,x is the same object as Cx,y */
WHILE (Q ≠ { }) DO

BEGIN
delete any element x→y from Q;
IF Revise_Domain(x→y, (Z, D, C)) THEN

Q ← Q ∪  {z→x | Cz,x ∈ C ∧ z  ≠ x ∧ z  ≠ y};
/* side effect of Revise_Domain: Dx may be reduced */

END
return(Z, D, C);

END /* of AC-3 */

If Revise_Domain((x,y)) removes any value from the domain of x, then the domain
of any third variable z which is constrained by x must be examined. This is because
the removed value may be the only one which is compatible with some values c in
the domain of z (in which case, c has to be removed). That is why z→x (except
when z = y) is added to the queue Q if Revise_Domain(x→y, (Z, D, C)) returns True.
y→x is not added to Q as Dx was reduced because of y. This will not, in turn, cause
Dy to be reduced.

As mentioned above, the length of Q is 2e (where e is the number of edges in the

constraint graph), and in each call of Revise_Domain, a2 pairs of labels are exam-

ined. So the lower bound of the time complexity of AC-3 is Ω(a2e).

In the worst case, each call of Revise_Domain deletes one value from a domain.
Each arc x→y will be processed only when the domain of y is reduced. Since we
assume that the constraint graph has 2e arcs, and the maximum size of the domain
of the variables is a, a maximum of 2ea arcs will be added to Q. With each call of

Revise_Domain examining a2 pairs of labels, the upper bound of the time complex-
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ity of AC-3 is O(a3e). AC-3 does not require more data structure to be used, so like
AC-1 its space complexity is O(e + na). If constraints are represented by sets of

compound labels, then in the worst case one needs O(n2a2) space to store the con-
straints.

4.2.4  AC-4, an optimal algorithm for achieving AC

The AC-3 algorithm can be further improved. The idea behind AC-3 is based on the
notion of support; a value is supported if there exists a compatible value in the
domain of every other variable. When a value v is removed from the domain of the
variable x, it is not always necessary to examine all the binary constraints Cy,x. Pre-
cisely, we can ignore those values in Dy which do not rely on v for support (in other
words, cases where every value in Dy is compatible with some value in Dx other
than v). One can change the way in which Q is updated within the WHILE loop in
AC-3. The AC-4 algorithm is built upon this idea.

In order to identify the relevant labels that need to be re-examined, AC-4 keeps
three additional pieces of information. Firstly, for each value of every variable, AC-
4 keeps a set which contains all the variable-value pairs that it supports. We shall
refer to such sets as support sets (S). The second piece of information is a table of
Counters (C), which counts the number of supports that each label receives from
each binary-constraint involving the subject variable. When a support is reduced to
0, the corresponding value must be deleted from its domain. The third piece of addi-
tional information is a boolean matrix M (which can be referred to as the Marker)
which marks the labels that have been rejected. An entry M[x,v] is set to 1 if the
label <x,v> has already been rejected, and 0 otherwise. As an example, consider the
partial problem in Figure 4.1.

We shall focus on the variable x0 in this partial problem. The domain of x0 has two
values, 0 and 1. We assume that there is only one type of constraint in this part of
the problem, which is that the sum of the values of the constrained nodes must be
even. For x0, one has to construct two support sets, one for the value 0 and one for
the value 1:

 = {(1,2), (2,4), (2,6), (3,8)}

 = {(1,3), (2,5), (3,7)}

The support set  records the fact that the label <x0,0> supports <x1,2> in

variable x1, <x2,4> and <x2,6> in variable x2, and <x3,8> in variable x3. This set
helps to identify those labels which need to be examined should the value 0 be
removed from the domain of x0.

S x0 0,〈 〉

S x0 1,〈 〉

S x0 0,〈 〉
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A counter is maintained for each constraint and value of each variable. For <x0,0>,

the constraint  provides one support from x1 — namely <x1,2>. Therefore,

Counter[(0, 1), 0] = 1.

This counter stores the support to the label <x0,0> from the constraint . In

general, given variables x and y such that Cx,y is a constraint in the CSP, the Coun-

x0

x1

x2

x3

Other nodes of the graph

{0, 1}

{2, 3}

{4, 5, 6}

{7, 8}

Figure 4.1 Example of a partial constraint graph. Constraints: sum
of the values for the constrained variables must be even

Cx0 x1,

Cx0 x1,
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ter[(x,y),a] records the number of values b (in the domain of y) which are compati-
ble with <x,a>. So, we have:

Counter[(0, 1), 1] = 1

because <x1,3> is the only support that x1 gives to <x0,1>. Similarly, if x0 takes the
value 0, there are two values that x2 can take (which are 4 and 6). Therefore:

Counter[(0, 2), 0] = 2

According to this principle, other counters for variable x0 will be initialized to the
following values:

Counter[(0, 2), 1] = 1
Counter[(0, 3), 0] = 1
Counter[(0, 3), 1] = 1.

M is initialized in the following way: to start, every label <x,a> is examined using
every binary constraint Cx,y (for all y) in the problem. If there is no label <y,b> such
that (<x,a><y,b>) is legal, then a will be deleted from the domain of x, and M[x,a]
will be set to 1 (indicating that <x,a> has been deleted). All rejected labels are put
into a data structure called LIST to await further processing.

After initialization, all the labels <x,a> in LIST will be processed. Indexed by S, all
the labels which are supported by <x,a> will be examined. If, according to the
Counters, <x,a> is the only support for any label <y,b>, then b will be removed
from the domain of y. Any label which is rejected will be added to the LIST. A label
which has been processed will be deleted from LIST. This process terminates when
no more labels remain in LIST.

Back to the previous example: if the label <x0,1> is rejected for any reason, then
M[0, 1] will be set to 1 and the label <x0,1> will be added to the LIST. When this

label is processed, the support set  will be looked at. Since (1, 3) is in

, the Counter[(1, 0), 3], (not the Counter[(0, 1), 1]), which records the

support for the label <x1,3> through the constraint , will be reduced by 1. If

a counter is reduced to 0, then the value which is no longer supported will be
removed from its domain, and it is added to LIST for further processing. In this
example, if <x0,1> is rejected, then Counter[(1, 0), 3] will be reduced (from 1) to 0.
Therefore, 3 will be removed from the domain of x1, M[1, 3] will be set to 1, and
<x1,3> will be put into LIST to await further processing.

The pseudo code for AC-4 in shown below:

S x0 1,〈 〉

S x0 1,〈 〉

Cx1 x0,
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PROCEDURE AC-4(Z, D, C)
BEGIN

/* step 1: construction of M, S, Counter and LIST */
M ← 0; S ← { };
FOR each Ci,j in C DO /* Note: Ci,j and Cj,i are the same object */

FOR each b in Di DO /* examine <i,b> using variable j */
BEGIN

Total ← 0;
FOR each c in Dj DO

IF satisfies((<i,b><j,c>), CE({i,j})) THEN
BEGIN

Total ← Total + 1;
S<j,c> ← S<j,c> + {<i,b>};

/* <i,b> gives support to <j,c> */
END;

IF (Total = 0) THEN /* reject <i,b> */
BEGIN

M[i,b] ← 1;
Di ← Di − {b};

END
ELSE Counter[(i, j), b] ← Total;

/* support <i,b> receives from j */
END

 LIST ← {<i,b> | M[i,b] = 1} ;
/* LIST = set of rejected labels awaiting processing */

/* step 2: remove unsupported labels */
 WHILE LIST ≠ { } DO

BEGIN
 pick any label <j,c> from LIST; LIST ← LIST − {<j,c>};
 FOR each <i,b> in S<j,c> DO

BEGIN
Counter[(i, j), b] ← Counter[(i, j), b] − 1;
IF ((Counter[(i, j), b] = 0) AND (M[i, b] = 0)) THEN

BEGIN
LIST ← LIST + {<i,b>};
M[i,b] ← 1;
Di ← Di − {b};

END;
END

END
return(Z, D, C);

END /* of AC-4 */
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Step 1 of AC-4 initializes M (the labels that have been deleted), S (list of supporting
labels for each label), Counter (number of supports for each label under each con-
straint) and LIST (the list of rejected labels awaiting processing). It does so by going
through each constraint and looking at each pair of labels between the two subject
variables. If there is a maximum of a values in the domains, then there are a maxi-

mum a2 pairs of labels to consider per constraint. If there are a total of e constraints

in the problem, then there are no more than ea2 2-compound labels to look at. So the

time complexity of step 1 is O(ea2).

step 2 achieves AC by deleting labels which have no support. One rejected label
<j,c> in LIST is processed at a time. Indexed by S<j,c>, which records the list of
labels that <j,c> supports, all the Counters of the labels which are supported by
<j,c> are reduced by 1. If any counter is reduced to 0, the label which correspond to
that counter will be rejected.

The time complexity of step 2 can be measured by the number of reductions in the
counters. Since a counter always takes positive values, and it is reduced by 1 in each
iteration, the number of iterations in the WHILE loop in step 2 will not exceed the
summation of the values in the counters. In a CSP with a maximum of a values per
domain and e constraints, there are a total of ea counters. Each value in the domain
of each variable is supported by no more than a values in another variable. There-
fore, the value of each counter is bounded by a. Hence, the time complexity of

step 2 is ea2. Combining the analysis for steps 1 and 2, the time complexity of AC-

4 is therefore O(ea2), which is lower than that for both AC-1 and AC-3.

However, a large amount of space is required to record the support lists. If M is
implemented by an array of bits, then there are na bit patterns (since there are na
labels) to store M. The space complexity of AC-4 is dominated by S, the support
lists. One support list is built for each label. If ci represents the number of variables
that xi is adjacent to in the constraint graph, then there is a maximum of cia elements

in the support list of xi. There would be a maximum of  = 2a2e

elements in all the support lists. So the asymptotic space complexity of AC-4 is

O(a2e).

4.2.5  Achieving DAC

In Chapter 3, we introduced the concept of DAC (directional arc-consistency,
Definition 3-12), which is a weaker property than AC. We mentioned that by
achieving NC and DAC, a backtrack-free search can be obtained for binary con-
straint problems if the constraint graphs are trees. The following is an algorithm for
achieving DAC:

a cia( )
i 1=
n∑×
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PROCEDURE DAC-1(Z, D, C, <)
BEGIN

FOR i =  Z to 1 by −1 DO
FOR each variable xj where j < i AND Ci,j ∈ C DO

Revise_Domain(xj→xi, (Z, D, C));
return(Z, D, C);

END /* of DAC-1 */

DAC is defined under a total ordering (<) of the variables. The DAC-1 procedure
simply examines every arc xi→xj such that i < j, and remove any value from

(the domain of variable xi) which does not have a compatible value in  (the

domain of variable xj). The variables are processed in reverse order of < so that the

reduction of  would not require any  to be examined repeatedly (because

i < j).

In DAC-1, each arc is examined exactly once. Let a be the maximum number of

values for the domains. Since each call of Revise_Domain examines a2 pairs of

labels, the time complexity of DAC-1 is O(a2e), where e is the number of arcs in the
constraint graph. When the constraint graph is a tree of n nodes, the number of
edges is n − 1, and therefore, the time complexity of DAC-1 can also be expressed

as O(a2n).

The DAC-1 procedure potentially removes fewer redundant values than the algo-
rithms already mentioned above which achieve AC. However, DAC-1 requires less
computation than procedures AC-1 to AC-3, and less space than procedure AC-4.
The choice of achieving AC or DAC is domain dependent. In principle, more
redundant values and compound labels can be removed through constraint propaga-
tion in more tightly constrained problems. Thus, AC tends to be worth achieving in
more tightly constrained problems.

A CSP P is AC if, for any given ordering of the variables <, P is DAC under both
< and its reverse. Therefore, it is tempting to believe (wrongly) that AC could be

achieved by running DAC-1 in both directions for any given <.1 The simple exam-
ple in Figure 4.2 should show that this belief is a fallacy.

The variables involved in the problem in Figure 4.2 are A, B and C. Their domains
are {1, 2}, {1, 2} and {1, 4} respectively. The constraints are:

1.  For example, Dechter and Pearl [1985, 1988a] state that “if we apply DAC w.r.t. order d
and then DAC w.r.t. the reverse order we get a full arc consistency for trees”.

Dxi

Dxj

Dxi
Dxj
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(1) The value of A must be less than the value of C; and
(2) the sum of B and C must be even.

The constraint graph of this problem forms a tree. If we take the ordering (A, B, C),
then achieving DAC does not reduce any of the three domains (for all values in the
domain of B, there exists at least one value in the domain of C which is compatible
with it; similarly, for all values in the domain of A, there exists at least one value in
the domains of B and C which is compatible with it). Achieving DAC in the reverse
order (C, B, A), though, will remove 1 from the domain of C, since no value in the
domain of A which is less than 1 (constraint (1)). So only <C,1> is removed after
achieving DAC in the specified direction and its reverse. However, the reduced
problem is still not AC, because C has no compatible value with <B,1> — the only
value left for C is 4, but 1 + 4 is not even (hence constraint (2) is violated). To
achieve AC, <B,1> must be removed.

4.3  Path-consistency Achievement Algorithms

Algorithms which achieve path-consistency (PC) remove not only redundant values
from the domains, but also redundant compound labels from the constraints (con-
straints are represented as sets of compatible 2-compound labels in these algo-
rithms). Before we describe algorithms for achieving PC, we shall first introduce a
relations composition mechanism which removes local inconsistency. This mecha-
nism will be used by algorithms which achieve PC.

C

A B {1, 2}

{1, 4}

{1, 2}

A < C even(B + C)

Figure  4.2 An example showing that running DAC on both directions
for an arbitrary ordering does not achieve AC (After achieving DAC for
both orderings (A, B, C) and (C, B, A), only <C,1> will be removed, but
C has no compatible values with <B,1>, which means <B,1> should

have been removed should AC be achieved.)
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4.3.1  Relations composition

We mentioned in Chapter 1 that constraints can be represented by matrices of
boolean entries. If we give the values in each domain a fixed order, then each entry
in the matrix records the constraint on a 2-compound label. For example, let A and
B be variables in a map-colouring problem and the domain of both of them be r (for
red) and g (for green) in that order. The constraint CA,B, which specifies that A ≠ B,

can be represented by the matrix: , where A takes the rows and B takes the col-

umns, and 1 represents “legal” and 0 represents “illegal”. Given the ordering (r, g),
the upper right entry (row 1, column 2) represents the fact that <A,r> and <B,g> are
compatible with each other.

For uniformity, both the domain and the unary constraint of a variable X are repre-
sented in the form of a binary constraint CX,X. The domain is then represented by a
matrix with 1’s on no entries other than the upper left to lower right diagonal. For
example, if the domain of X is {r, g, b}, and the values are ordered as (r, g, b), then

the matrix which represents the domain of X is . If the unary constraint on X

disallows X to take the value b, then CX,X would be reduced to . The rela-

tions composition mechanism ensures that a compound label (<A,a><C,c>) is
allowed only if for all variables B there exists a value b such that satisfies(<B,b>,
CB), satisfies((<A,a><B,b>), CA,B) and satisfies((<B,b><C,c>), CB,C) all hold.

We shall use CX,Y,r,s to denote the r-th row, s-th column of CX,Y. We use “*” to
denote a composition operation. The composition mechanism is defined as follows:

if CX,Z = CX,Y * CY,Z,
then CX,Z,r,s = (CX,Y,r,1 ∧ CY,Z,1,s) ∨ (C X,Y,r,2 ∧ CY,Z,2,s) ∨ ... ∨

(CX,Y,r,t ∧ CY,Z,t,s)

where t is the cardinality of DY, and “∧” and “ ∨” are logical AND and logical OR.

For example, if CX,Y =  and CY,Z = , then CY,Z,1,1 = (1 ∧ 0) ∨  (0 ∧  1)

∨ (0 ∧ 1) = 0. The matrix CX,Z as composed by CX,Y and CY,Z is . The opera-

0 1
1 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 0

1 0 1
0 1 0
1 0 1

0 1 0
1 1 1
0 1 0

0 1 0
1 1 1
0 1 0
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tion is just like ordinary matrix multiplication except that number multiplication is
replaced by logical AND and addition is replaced by logical OR.

The value that A and C can take simultaneously is constrained by the constraint
CA,C, plus the conjunction of all CA,X * CX,X * CX,C for all X ∈  Z, i.e.:

CA,C = CA,C ∧ * * ∧

* * ∧ ... ∧ * *

where n is the number of variables in the problem. We call a matrix M composed by
CA,B, CB,B and CB,C if M = CA,B * CB,B * CB,C.

4.3.2  PC-1, a naive PC Algorithm

Path-consistency (PC, see Definition 3-11(R)) achievement involves removing
redundant values from domains and redundant 2-compound labels from the binary-
constraints (using the relation combination mechanism). We continue from the last
section to use CA,A to represent DA after NC is achieved. Deleting the i-th values
from the domain of A is effected by making CA,A,i,i 0. A naive PC-achieving algo-
rithm called PC-1 is shown below:

PROCEDURE PC-1(Z, D, C)
/* (Z, D, C) is a binary CSP */
BEGIN

n ←  Z ; Yn ← C;
REPEAT

Y0 ← Yn;
FOR k ← 1 TO n DO

FOR i ← 1 TO n DO
FOR j ← 1 TO n DO

Yi,j
k ← Yi,j

k-1 ∧  Yi,k
k-1 * Yk,k

k-1 * Yk,j
k-1;

UNTIL Yn = Y0;
C ← Yn;
return(Z, D, C);

END /* of PC-1 */

Input to PC-1 is a binary CSP (Z, D, C). The indices of the variables (1 to Z ) are
used to name the variables — i.e. any integer k (1 ≤ k ≤  Z) refers to the k-th vari-

able. All the variables Yk for all k are working variables, which are sets of con-

straints. Yk is only used to build Yk+1. Yi,j
k represents the constraint Ci,j in the set Yk.

CA X1, CX1 X1, CX1 C,

CA X2, CX2 X2, CX2 C, CA Xn, CXn Xn, CXn C,
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The basic idea is as follows: for every variable k, pick every constraint Ci,j from the

current set of constraints Yk and attempt to reduce it by means of relations composi-
tion using Ci,k, Ck,k and Ck,j. After this is done for all the variables, the set of con-
straints is examined to see if any constraint in it has been changed. The whole
process is repeated as long as some constraints have been changed.

The time complexity of PC-1 can be measured in terms of the number of binary
operations required. The REPEAT loop terminates only when no constraint can be
reduced. In the worst case, only one element in one constraint is deleted in one iter-

ation. If there are n variables in the problem, there is a maximum of n2 binary con-
straints. Let there be a maximum of a values in each domain. Then there will be at

most a2 elements in each constraint. So as a maximum there could be a2n2 iterations
in the REPEAT loop of PC-1. Each iteration considers all combinations of three var-
iables (allowing repetition of variables in the combinations). So relations composi-

tion is called n3 times in each iteration. In each relations composition call, all

combinations of 3-tuples for the three variables are considered. So a3 binary opera-
tions are required in each relations composition call. The time complexity of PC-1

is therefore O(a5n5). Apart from requiring n2a2 space to store the constraints, PC-1

needs space for the Yk’s. There are all together n3 Yi,j
k’s. If each of them requires

O(a2) space to store, the overall complexity of PC-1 is then O(n3a2).

4.3.3  PC-2, an improvement over PC-1

Like AC-1, PC-1 is very inefficient because even the change of just one single ele-
ment in one single constraint will cause the whole set of constraints to be re-exam-

ined. It is also very memory intensive as many working variables Yk are required.
PC-2 is an improved algorithm in which only relevant constraints are re-examined.
PC-2 assumes an ordering (<) among the variables:

PROCEDURE PC-2(Z, D, C, <)
BEGIN

Q ← {(i, k, j) | i, j, k ∈ Z ∧ i ≤  j ∧  (i ≠ k ≠ j)};
WHILE (Q ≠ { }) DO

BEGIN
pick and delete a path (i, k, j) from Q;
IF Revise_Constraint((i, k, j), (Z, D, C))
THEN Q ← Q ∪ RELATED_PATHS((i, k, j),  Z , <);
/* side effect of Revise_Constraint: Ci,j may be reduced */

END
return(Z, D, C);

END /* of PC-2 */
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As in PC-1, the indices to the variables are also used as their names (so n = Z  is
both the cardinality of the set of variables and the n-th variables). Here Q is a queue
of paths awaiting processing, and Revise_Constraint((i, k, j), (Z, D, C)) restricts Ci,j

using Ci,k and Ck,j:

PROCEDURE Revise_Constraint((i, k, j), (Z, D, C))
/* attempt to reduce Ci,j */
BEGIN

Temp = Ci,j ∧  Ci,k * Ck,k * Ck,j;
IF (Temp = Ci,j) THEN return (False)
ELSE BEGIN

Ci,j ← Temp; return (True) ;
END

END /* of Revise_Constraint */

RELATED_PATHS((i, k, j), n, <) in PC-2 returns the set of paths which need to be
re-examined when Ci,j is reduced. If i < j, then all the paths which contain (i, j) or
(j, i) are relevant, with the exception of (i, j, j) and (i, i, j) because Ci,j will not be
further restricted by these paths as a result of itself being reduced. If i = j, the path
restricted by Revise_Constraint was (i,k,i), then all the paths with i in it need to be
re-examined, with the exception of (i, i, i) and (k, i, k). This is because Ci,i will not
be further restricted. Ck,k will not be further restricted because it was the variable k

which has caused Ci,i to be reduced (for exactly the same reasons as those explained
in AC-3):

PROCEDURE RELATED_PATHS((i, k, j), n, <)
BEGIN

IF (i < j) THEN
S ← {(i, j, m) | (i ≤ m ≤ n) ∧  (m ≠ j)} ∪

{(m, i, j) | (1 ≤ m ≤ j) ∧  (m ≠ i)} ∪
{(j, i, m) | j < m ≤ n} ∪
{(m, j, i) | 1 ≤ m < i};

ELSE /* it is the case that i = j */
S ← {(p, i, m) | (1 ≤ p ≤ m) ∧ (1 ≤ m ≤ n)} − {(i, i, i), (k, i, k)};

return (S);
END /* of  Related_Paths */

If the CSP is already PC, then PC-2 needs to go through every path of length 2 to
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confirm that. For a problem with n variables and a values per variable, there are

a3n3 paths of length 2 to examine. So the lower bound of the time complexity of

PC-2 is Ω(a3n3).

The upper bound of the time complexity of PC-2 is determined by the number of
iterations in the WHILE loop and the complexity of Revise_Constraint. The number
of iterations required is limited by the number of paths that can go into Q. Paths are
added into Q only when Revise_Constraint deletes at least one element from Ci,j.

When i = j, at most n(n + 1) − 2 paths are added to Q. Since there are at most na

1’s in each of the Ci,j’s, at most na( n(n + 1) − 2) paths can be added to Q. When i

< j, 2n−2 paths are added to Q. Since there are nC2 = n(n − 1) combinations of i

and j, at most n(n − 1) a2 paths can be added to Q as a result of deleting an entry

from Ci,j. Thus, the number of new entries to Q is bounded by:

na( n(n + 1 − 2) + n(n − 1)a2(2n − 2)

= (a2 + a)n3 + ( a − 2a2)n2 + (a2 − 2a)n

which is O(a2n3). Since each call of Revise_Constraint goes through each path of

length 2, its worst case time complexity is O(a3). So the overall worst case time

complexity of PC-2 is O(a5n3).

The queue Q contains paths of length 2, and therefore Q’s size never exceeds n3.

There are no more than n2 binary constraints, each of which has exactly a2 ele-

ments. Therefore, the space complexity of PC-2 is O(n3+n2a2).

4.3.4  Further improvement of PC achievement algorithms

The efficiency of the PC-2 algorithm can be improved in the same way as AC-3 is
improved to AC-4. The improved algorithm is called PC-4. As is the case in AC-4,
counters are used to identify the relevant paths that need to be re-examined.

Similar to AC-4, PC-4 maintains four data structures:

(1) Sets of supports, S — one for each 2-compound label;
(2) Counters — one for each variable for each 2-compound label in which it is

involved;
(3) Markers, M — one for each 2-compound label; and
(4) LIST — the set of 2-compound labels to be processed

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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As before, unary constraints are represented by Ci,i for uniformity.

A support set S<i,b><j,c> is maintained for every 2-compound label (<i,b><j,c>).
Elements of S<i,b><j,c> are labels <k,d> (for some variable k) which is supported by
the compound label (<i,b><j,c>). Whenever (<i,b><j,c>) is removed from con-
straint Ci,j, the compound label (<i,b><k,d>) loses its support from <j,c>, and the
compound label (<j,c><k,d>) loses its support from <i,b>. If any compound label
loses all its supports from a variable, then it has to be rejected.

Counter[(i,a,j,b), k] is a counter for the 2-compound label (<i,a><j,b>) with regard
to variable k. It counts the number of labels that variable k may take in order to sup-
port (<i,a><j,b>) (i.e. possible labels <k,d> which satisfies Cik and Ckj).

A table of Markers M is maintained to mark those 2-compound labels which have
been rejected but not yet processed. M[i,b,j,c] is set to 1 if (<i,b><j,c>) has been
rejected but such a constraint has not been propagated to other compound labels; it
is set to 0 otherwise.

Finally, LIST is the set of 2-compound labels which have been rejected but not yet
processed.

The algorithm PC-4 is shown below:

PROCEDURE PC-4(Z, D, C)
BEGIN

/* step 1: initialization */
M ← 0; Counter ← 0; n =  Z ;
FOR all S DO S ← { };
FOR each Ci,j ∈ C

FOR k = 1 TO n DO
FOR each b ∈  Di DO

FOR each c ∈  Dj such that satisfies((<i,b><j,c>), Ci,j)
holds DO
BEGIN

Total ← 0;
FOR each d ∈  Dk DO

IF (satisfies((<i,b><k,d>), Ci,k) & satis-
fies((<k,d><j,c>), Ck,j))
THEN BEGIN

Total ← Total + 1;
S<i,b><k,d> ← S<i,b><k,d> + {<j,c>};
S<j,c><k,d> ← S<j,c><k,d> + {<i,b>};
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END
IF Total = 0 THEN

BEGIN
M[i,b,j,c] ← 1; M[j,c,i,b] ← 1;
Ci,j ← Ci,j − (<i,b><j,c>);

END;
ELSE BEGIN

Counter[(i,b,j,c),k] ← Total;
Counter[(j,c,i,b),k] ← Total;

END;
END

Give the variables an arbitrary order <;
LIST ← {(<i,b><j,c>) | (M[i,b,j,c] = M[j,c,i,b] = 1) ∧ (i < j)}
/* LIST = the set of 2-compound labels to be processed */

/* step 2: propagation */
WHILE LIST ≠ { } DO

BEGIN
pick and delete an element (k,d><l,e>) from LIST;
FOR each <j,c> in S<k,d><l,e> DO

PC-4-Update((<k,d><l,e>), <j,c>));
FOR each <j,c> in S<l,e><k,d> DO

PC-4-Update((<l,e><k,d>), <j,c>));
END /* of WHILE */

return(Z, D, C);
END /* of PC-4 */

PROCEDURE PC-4-Update((<i,b><j,c>), <k,d>)
/* This procedure updates Counter, S, M, LIST, which are all assumed

to be global variables, with respect to the rejection of the com-
pound label (<i,b><j,c>). It focuses on the edge Cik. */

BEGIN
Counter[(i,b,k,d), j] ← Counter[(i,b,k,d), j] − 1;
Counter[(k,d,i,b), j] ← Counter[(k,d,i,b), j] − 1;
S<i,b><j,c> ← S<i,b><j,c> − {<k,d>};
S<k,d><j,c> ← S<k,d><j,c> − {<i,b>};
IF (Counter[(i,b,k,d), j] = 0) AND (M[i,b,k,d] = 0) THEN

BEGIN
M[i,b,k,d] ← 1; M[k,d,i,b] ← 1;
LIST ← LIST + {(<i,b><k,d>)};
Ci,k ← Ci,k − {(<i,b><k,d>)};

END
END /* of PC-4-Update */
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Step 1 is the initialization stage. Initially, all the entries of M are set to 0 (meaning
that no 2-compound label has been rejected). All support lists S<i,a><j,b> are initial-
ized to empty lists. Then, in step 2, the procedure goes through each 2-compound
label which has been marked as illegal (2-compound labels where marker M has
been set to 1). PC-4-Update is called twice, which adds <j,c> to every support list
S<i,b><k,d> if <k,d> is compatible with both <i,b> and <j,c>. Similarly, <i,b> is
added to every support list S<j,c><k,d> if <k,d> is compatible with both <i,b> and
<j,c>. For each such <k,d>, the Counters indexed by both [(i,b,j,c),k] and [(j,c,i,b),k]
are increased by 1. If no such <k,d> exists, the 2-compound label (<i,b><j,c>) is
deleted from Ci,j. LIST is initialized to all the 2-compound labels which have been
deleted.

The time complexity of step 1 is O(n3a3), where n is the number of variables, and a

is the largest domain size for the variables. This is because there are n3 combina-

tions of variables i, j and k, and a3 combinations of values b, c and d.

step 2 achieves PC by deleting 2-compound labels which have no support. One
rejected 2-compound labels (<k,d><l,e>) in LIST is processed at a time. The support
lists S<k,d><l,e> and S<l,e><k,d> record the labels which are supported by
(<k,d><l,e>). Therefore, if <j,c> is in S<k,d><l,e> then <l,e> is no longer supported
by S<j,c><k,d>, and <k,d> is no longer supported by S<j,c><l,e>. The Counters
[(j,c,k,d),l], [(k,d,j,c),l], [(j,c,l,e),k] and [(l,e,j,c),k] are reduced accordingly. Any 2-
compound label which has at least one of its counters reduced to 0 will be rejected,
and it is added to LIST. This process terminates when no more 2-compound label is
left in LIST.

Since there are O(n3a2) counters, with each of which having a maximum of a val-

ues, the maximum number of times that the counters can be reduced is O(n3a3).
This would be the worst case time complexity of step 2. There is another way to

look at the time complexity of step 2. Since there are n2a2 2-compound labels that

one can delete, the WHILE loop in step 2 can only iterate O(n2a2) times. The
number of iterations in each of the FOR loops inside the WHILE loop are bounded
by the sizes of S<k,d><l,e> and S<l,e><k,d> (which are the same), which are bounded

by na. So the worst case time complexity of step 2 is O(n3a3). Combining the
results of the time complexity of step 1 discussed above and step 2 here, the worst

case time complexity of the whole algorithm is O(n3a3).

The space complexity of PC-4 is dominated by the number of support sets:

na ×

which is ≤ n3a3. So the space complexity of PC-4 is O(n3a3).

Di Dj×
i j,( ) N N×∈

∑
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4.3.5  GAC4: problem reduction for general CSPs

All the PC algorithms introduced so far are used to reduce unary and binary con-
straints only. Mohr & Masini [1988] propose an algorithm called GAC4, which is a
modification of AC-4, for removing redundant compound labels from general con-
straints. The algorithm basically works as follows. When a label or 2-compound
label CL is removed, GAC4 removes from all the constraints those tuples which
have CL as their projections. For example, if (<x,a><y,b>) is removed from Cx,y,
then for all variables z and values c (<x,a><y,b><z,c>) is removed from Cx,y,z when-
ever it exists. Besides, GAC4 removes all the labels and 2-compound labels which
are not subsumed by any element of the higher order constraints in which the sub-
ject variables are involved. For example, if (<x,a><y,b><z,c>) is removed from the
constraint Cx,y,z, and there exists no value d such that (<x,d><y,b><z,c>) is in Cx,y,z,

then (<y,b><z,c>) is removed from Cb,c.
2 Mohr & Masini [1988] also suggest that

GAC4 can be used to achieve PC. However, as they admit, GAC4 is unusable for
large networks because of its high complexity.

4.3.6  Achieving DPC

Directional Path-consistency (DPC, Definition 3-13) is weaker than PC, just as
DAC is weaker than AC. Achieving NC and DPC can help achieving backtrack-free
search in certain problems (Theorem 3-1). Here we shall look at a procedure, which
we shall call DPC-1, for achieving Directional Path-Consistency. The pseudo code
of DPC-1 is shown below:

PROCEDURE DPC-1(Z, D, C, <)
/* for simplicity, assuming that for all i, j, i < j ⇔ zi < zj */
BEGIN

E ← {x→y | Cx,y ∈ C ∧ x < y };
FOR k =  Z  to 1 by −1 DO

BEGIN

/* Step (a): remove redundant values from domains */
FOR i = 1 to k DO

IF ((zi→zk) ∈  E) THEN Ci,i ← Ci,i ∧  Ci,k * Ck,k * Ck,i;

/* Step (b): remove redundant 2-compound labels from con-
straints */

FOR i = 1 to k DO
FOR j = i to k DO

2.   That strategy first appeared in Freuder [1978] in solution synthesis. Freuder’s algorithm
will be described in Chapter 9.
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IF ((zi→zk) ∈  E AND (zj→zk) ∈ E) THEN
BEGIN

Ci,j ← Ci,j ∧  Ci,k * Ck,k * Ck,j;
E ← E + {zi→zj};

END
END /* of outer for loop */

return(Z, D, C);
END /* of DPC-1 */

The DPC-1 procedure basically performs the same operations as the PC algorithms
described above, except that only selected relations are examined and updated. The
algorithm goes through the variables in descending order (according to the ordering

<). When variable zk is focused on, step (a) removes values from  which have

no compatible values in , but only for those zi’s which are before zk (according

to <) and constrained by zk. In other words, it achieves DAC. step (b) removes 2-

compound labels from the constraints  which have no compatible values in

, but only those zi and zj which are constrained by zk, and that zi < zk and zj < zk.

If there are n variables, then the outer FOR loop of DPC-1 iterates n times. The

FOR loop in step (b) will go through O(n2) combinations of i and j. Each relations
composition in step (b) will examine each of the 3-compound labels. So if there is a

maximum of a values in the domains, there will be O(a3) 3-compound labels to
examine. Since step (a) goes through n variables only, and it does no more relations
composition than step (b), the complexity of the outer FOR loop is dominated by

step (b), which means the time complexity of DPC-1 is O(n3a3).

The length of the list E is bounded by n2. Therefore, the space complexity of DPC-1

is dominated by the binary constraints, which is O(n2a2), the space required to rep-
resent all the constraints in CSP in the worst case.

The DPC-1 procedure has a lower time and space complexity than PC-1 and PC-2,
and same time but lower space complexity than PC-4. But DPC-1 is unable to
remove as many redundant values and redundant 2-compound labels as PC achieve-
ment algorithms. The choice of achieving PC or DPC is domain dependent. In gen-
eral, more redundant values and compound labels can be removed through
constraint propagation in more tightly constrained problems. So in general, the
tighter a problem, the more worthwhile it is to achieve PC.

Dzi

Dzk

Czizj

Dzk
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4.4  Post-conditions of PC Algorithms

The post-condition of the PC-1, PC-2 and PC-4 procedures are in fact stronger than

PC. The post-condition of DPC-1 is also stronger than DPC. Given any problem P1
= (Z, D, C), the above PC achievement procedures return an equivalent problem P2
= (Z, D', C') which is NC, AC and PC (i.e. strong 3-consistent if P1 is a binary
CSP). We shall not formally prove the properties of these procedures, just sketch the
justification of this claim based on the PC-1 procedure:

(1) P2 is AC
Recall that Cx,x represents the domain of the variable x. Assume that Cx,x,i,i

(the entry on the i-th row, i-th column of Cx,x) is 1. We can refute the hypoth-

esis that in P2 there exists a variable y such that no value in D'y is compatible
with the label represented by C'x,x,i,i. If such a y exists, all the entries on the i-
th row of Cx,y must be 0’s. In that case, C'x,y = Cx,y * Cy,y will also be a matrix
in which all the entries on the i-th row are 0’s. Therefore, C'x,x = C'x,y * Cy,x

would also be a matrix in which all the entries on the i-th row are 0’s. Such
C'x,x would have made Cx,x,i,i 0 before the termination of PC-1, and this con-
tradicts the above assumption. Therefore, we can conclude that for every

label <x,i> which is allowed in P2, there exists no variable y such that no

value in D'y satisfies C'x,y. So P2 must be AC.
(2) P2 should be PC

For all variables x and y, constraint Cx,y is restricted by the relations composi-
tion of Cx,z and Cy,z for all variables z after termination of PC-1. Therefore, if
Cx,y,i,j is 1, there must be a k for every z such that both Cx,z,i,k and Cz,y,k,j are 1.

Therefore P2 should be PC by definition.
(3) All solution tuples for P2 satisfy P1

Constraints can only be restricted by the relations composition mechanism
(only 1’s can be changed to 0’s, not the other way round). Because of this, for
any subset of the variables S {x1, ..., xk} in the problem, C'S ⊆ CS. Therefore,
any solution tuple that satisfies C'S should satisfy CS.

(4) All solutions in P1 satisfy P2
To justify this we need to show that no solution is ruled out by the relations
composition mechanism, since this is the only operation which changes 1’s to
0’s in PC-1. We observe that any entry in any constraint Cx,y, say Cx,y,i,j,
would be changed from 1 to 0 only under the following three situations, but

in none of these situations will solution tuples in P1 be ruled out:
(i) When Cx,x,i,i is 0, Cx,x * Cx,y will force the entries in the whole i-th row

of Cx,y to 0 (including the entry Cx,y,i,j which is under our investigation

here). But in this case, no solution tuple in P1 should take the i-th
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value of x (as it will not satisfy Cx,x). Therefore, if Cx,y,i,j is changed
from 1 to 0 by such a composition, no solution tuple should have been
removed.

(ii) When Cy,y,j,j is 0, Cx,y * Cy,y will force the entries in the whole jth col-
umn of Cx,y to 0 (including the entry Cx,y,i,j which is under investiga-
tion here). This will not remove any solution tuple for the same reasons
as those explained in (i).

(iii) When there exists a variable w such that no k exists so that both Cx,w,i,k
and Cw,y,k,j are 1, Cx,w,i,k * Cw,y,k,j would change Cx,y,i,j from 1 to 0. But
in this case, the i-th value of x and the jth value of y will not be in the
same solution tuple because there is no value for w which is compatible
with them. Therefore, no solution tuple in P1 would have been deleted
by this composition.

Therefore, no solution tuples in P1 will be absent in P2.

We shall not attempt to prove or justify the correctness of algorithms PC-2 and PC-
4, but it is reasonable to assume that they have the same post-condition as PC-1.

Running PC-1 before a search starts (which is referred to as preprocessing in
searching) may improve search efficiency. By achieving NC, AC and PC, PC-1
removes local inconsistencies which would otherwise be repeatedly discovered in
backtracking search. If the problem is 1-unsatisfiable, all the entries in Cx,x for some
variable x will be turned to 0 by PC-1. Furthermore, since, according to Theorem 3-
4, 1-satisfiability and 3-consistency together are the necessary conditions for 3-sat-
isfiability, preprocessing with PC-1 can help to detect 3-unsatisfiability.

4.5  Algorithm for Achieving k-consistency

Node-, arc- and path-consistency and directional consistency algorithms are defined
for binary constraint problems only. Since the concept of k-consistency applies to
general CSPs, algorithms for achieving k-consistency could be valuable for some
applications.

Cooper [1989] proposes an algorithm, which we shall call KS-1 here, for achieving
k-consistency. It borrows its ideas from Freuder’s solution synthesis algorithm
(which will be described in Chapter 9) and Han & Lee’s PC-4 algorithm. The fol-
lowing is the pseudo-code of KS-1:

PROCEDURE KS-1( Z, D, C, k ) /* achieving k-consistency */
BEGIN

/* Step 1: initialization */
Set ← { }; M ← 0;
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FOR i = 1 to k DO
FOR each i-tuple Xi = (x1,...,xi) of variables x1 < ... < xi DO

FOR each i-tuple Vi = (v1,v2,...,vi) of values v1, ..., vi DO
BEGIN

FOR each y ∈  (Z − {x1,x2,...,xi}) DO

Counter[Xi,Vi,y] ←  Dy;
IF NOT satisfies((<x1,v1>...<xi,vi>), ) THEN

BEGIN Set ← Set + {(Xi,Vi,i)}; M[Xi , Vi] ← 1; END
END;

/* Set stores a set of redundant i-compound-labels, indexed by i */

/* Step 2: constraint propagation*/
WHILE Set ≠ { } DO

BEGIN
Remove any (Xi,Vi,i) from Set, where Xi = (x1,...,xi) and Vi =

(v1,...,vi);

KS_Upward_Propagate(Xi, Vi, i, k);
KS_Downward_Propagate(Xi, Vi, i, k)

END
return(Z, D, C);

END /* of KS-1 */

PROCEDURE KS_Upward_Propagate(Xi, Vi ,i, k)

/* Xi = (x1,...,xi) and Vi = (v1,...,vi), X
i and Vi together represents a

redundant compound label which has been rejected. KS_Up-
ward_Propagate examines i + 1 compound labels. Z, D, C, Set
and M are treated as global variables. */

BEGIN
IF (i < k) THEN

FOR each <x',v'> such that x' ∉ { x1,x2,...,xi}  DO
BEGIN

Xi+1 ← (x1,...,xi,x'); Vi+1 ← (v1,...,vi,v');

IF (M[Xi+1, Vi+1] = 0) THEN
BEGIN

Set ← Set + {(Xi+1,Vi+1,i+1)}; M[Xi+1, Vi+1] = 1;
← − {(<x1,v1>...<xi,vi><x',v'>)};

END
END

END  /* of KS_Upward_Propagate */

Cx1…xi

Cx1…xix' Cx1…xix'



PROCEDURE KS_Downward_Propagate(Xi, Vi, i, k)

/* Xi = (x1,...,xi) and Vi = (v1,...,vi), X
i and Vi together represents a

redundant compound label which has been rejected. KS_Down-
ward_Propagate examines i - 1 compound labels. Z, D, C, Coun-
ter, Set and M are treated as global variables. */

BEGIN
IF (i > 1) THEN

FOR j = 1 to i DO
BEGIN

Xi-1 ← Xi with xj removed; Vi-1 ← Vi with vj removed;

Counter[Xi-1,Vi-1,xj] ← Counter[Xi-1,Vi-1,xj] − 1;

IF (Counter[Xi-1,Vi-1,xj] = 0) AND (M[Xi-1, Vi-1] = 0) THEN
BEGIN

Set ← Set + {(Xi-1,Vi-1, i − 1)}; M[Xi-1, Vi-1] = 1;
← − {(<x1,v1>...<xi-1,vi-1>)};

END
END

END  /* of KS_Downward_Propagate */

The KS-1 algorithm is much simpler than it appears. The principle is that if a com-
pound label cl = (<x1,v1> ... <xi,vi>) is identified to be redundant and therefore
rejected, all compound labels in which cl is a projection will be rejected. Besides,
all projections of cl will be examined.

Similar data structures to those used in PC-4 are maintained in KS-1. Xi and Vi are
taken as i-tuples of variables and i-tuples of values respectively. Set is a set of

(Xi,Vi,i). For convenience, we can see (Xi,Vi) as the compound label of assigning the

i values in Vi to the i variables in Xi. Then Set stores the set of compound labels
which have been identified to be redundant, deleted from their corresponding con-
straints and awaiting further processing. Counters count the number of supports that
are given by each variable x to each compound label that does not include x. For
example, Counter[(x1,...,xi), (v1,...,vi), xj] records the number of supports that xj

gives to the compound label (<x1,v1>...<xi,vi>). All Counter’s are initialized to the
domain sizes of the supporting variables. The algorithm KS-1 makes
Counter[(x1,...,xi), (v1,...,vi), xj] equal to the number of vj’s such that

satisfies((<x1,v1>...<xi,vi><xj,vj>), ) holds. The Counters are only used

for propagating constraints to projections of the subject compound labels.

Note that in PC-4, path-consistency is achieved by restricting constraints Ci,j. When

Cxi 1−
Cxi 1−

Cx1…xixj
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i is equal to j, Ci,j represents a unary constraint. Otherwise, it represents a binary
constraint. In KS-1, consistency is achieved by restricting general constraints.
When KS-1 terminates, some k-constraints in C may have been tightened.

According to Cooper’s analysis, both the time and space complexity of KS-1 are

O( ).3 Obviously, to achieve k-consistency for a higher k requires

more computation. It is only worth doing if it results in removing enough redundant
compound labels to sufficiently increase search efficiency. This tends to be the case
in problems which are tightly constrained.

4.6  Adaptive-consistency

For general CSPs, one can ensure that a search is backtrack-free by achieving a
property called adaptive-consistency. The algorithm for achieving adaptive consist-
ency can probably be explained better with the help of the following terminology.
Firstly, we extend our definition of constraint graphs (Definition 1-18) to general
CSPs. Every CSP is associated with a primal graph, which is defined below.

Definition 4-1:

The constraint graph of a general CSP (Z, D, C) is an undirected graph in
which each node represents a variable in Z, and for every pair of distinct
nodes which corresponding variables are involved in any k-constraint in C
there is an edge between them. The constraint graph of a general CSP P is

also called a primal graph of P. We continue to use G(P) to denote the con-

straint graph of the CSP P:

∀  graph((V, E)):
(V, E) = G((Z, D, C)) ≡

((V = Z) ∧ E = {(x,y) | x, y ∈ Z ∧ (∃ CS ∈ C: x, y ∈ S)}) ■

Definition 4-2:

The Parents of a variable x under an ordering is the set of all nodes which
precede x according to the ordering and are adjacent to x in the primal graph:

∀  csp((Z, D, C)):
(∀  <: total_ordering(Z, <): (V, E) = primal_graph((Z, D, C)):

(∀ x ∈ V: parents(x, (V, E), <) ≡ {y | y < x ∧  (x,y) ∈ E} )) ■

3.  There are in fact nCi possible combinations of i-tuples, and therefore nCia
i+1 counters are

required. So the author suspects that the complexity of KS-1 is in fact .

Cn i ai⋅( )
i 1=
k∑

Cn i ai 1+⋅( )
i 1=
k∑
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Definition 4-3:

A CSP P  is adaptive-consistent under a total-ordering of its variables if for
all variables x, there exists a constraint CS on the parents of x (S), and every
compound label in CS satisfies all the relevant constraints on S.

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <):
(adaptive-consistent((Z, D, C), <) ≡

(∀ x ∈ Z: (S = {y | y < x ∧ ∃ CS' ∈ C: x, y ∈ S'} ⇒
∃ CS ∈ C: ∀ cl ∈ CS: satisfies(cl, CE(S, (Z, D, C))))))) ■

The concept of backtrack-free search involves an ordering of the variables
(Definitions 1-28, 1-29). To achieve adaptive-consistency, the variables are proc-
essed according to the reverse of this ordering. For each variable x that is being
processed, a k-constraint is created for its Parents, where k is the cardinality of x’s
parents in the primal graph. Compound labels in this constraint which are either
incompatible with each other or incompatible with all the values in Dx are removed.
Then edges are added between all pairs of nodes in the parents in the primal graph.
Figure 4.3 shows the change of an example primal graph during the achievement of
adaptive-consistency. The following is the pseudo code for achieving adaptive-con-
sistency:

PROCEDURE Adaptive_consistency(Z, D, C, <)
/* xi denotes the i-th variable in Z according to the ordering < */
BEGIN

FOR i =  Z to 1 by −1 DO
BEGIN

S ← {w | w ∈  Z ∧ w < x i ∧ (∃  CX ∈  C: w, xi ∈  X)};
CS ← {cl | cl = compound label for S such that ∃  vi ∈ :

satisfies(cl+<xi,vi>, CE(S + {xi}, (Z, D, C)))};
C ← C + {CS};

END;
return(Z, D, C, <);

END /* of Adaptive_consistency */

The Adaptive_consistency procedure assumes that the variables are given the order-
ing x1, x2, ..., xn, where n is the number of variables in the problem. These variables
are processed in reverse order. When xi is processed, the procedure removes from
the constraint for the parents of xi all those compound labels which either violate
some constraints on the parents or have no compatible values in xi. Therefore, this

Dxi



(a)  Ordered graph to be processed (from Figure 3.5)

F D B ACEG

F D B ACEG

nodes order: (G,F,E,D,C,B,A), process order: (A,B,C,D,E,F,G)

F D B ACEG

F D B ACEG

F D B ACEG

(b) Node A is processed, and edge (F, B) is added

(c) Node B is processed, and edges (G, C) and (F, C) are added

(d) Node C is processed, and edge (F, D) is added

(e) Node D is processed, and edge (G, E) is added

ordering

Figure  4.3 Example showing the change of a graph during adaptive-
consistency achievement (Processing of E, F and G add no more edges,
and therefore the graph shown in (e) is the induced graph.  Its width

is 3)
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procedure deals with j-constraints rather than just binary constraints. It may be
worth noting that the primal graph need not be represented and modified in the pro-
cedure. It was only mentioned above to help explain the algorithm.

Theorem 4.1

If adaptive-consistency is achieved in a CSP under an ordering, then a search
under this ordering is backtrack-free:

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <):
(adaptive-consistent((Z, D, C),<) ⇒  backtrack-free((Z, D, C), <)))

Proof (see [DecPea88a])

Assume that the variables are given the ordering x1, x2, ..., xn, and adaptive-
consistency has been achieved under this ordering. At any stage of a search,
a (possibly empty) sequence of variables x1, x2, ..., xk have been consistently
labelled. Let S be the set of parents of xk+1. When xk+1 is being labelled,
there are only two possibilities:

(1) The domain of xk+1 is an empty set, in which case the search may ter-
minate with failure being reported. Note that this can only be the case if
xk+1 has no parents (i.e. S is an empty set). This is because if S is non-
empty, then there must exist a constraint CS which is an empty set
(because no compound label for S is compatible with any value for
xk+1), and therefore S could not have been consistently labelled (which
contradicts the assumption).

(2) If the domain of xk+1 is nonempty, then since the parents of xk+1

(which could be an empty set) have been consistently labelled (by
assumption), there must exist a value for xk+1 which is compatible with
all its parents (because every compound label in CS has a compatible
value in xk+1).

In both cases, no backtracking is required.

(Q.E.D.)

Definition 4-4:

The primal graph of a CSP P after adaptive-consistency is achieved under
some ordering of the variables (i.e. possibly with new edges added) is called
the induced-graph of P under that ordering, denoted by induced-graph(P,
Ordering):
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∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <):
(∀  csp((Z, D', C')):

equivalent((Z,D,C), (Z,D',C')) ∧ adaptive-consistent(( Z,D',C'),<):
induced-graph((Z, D, C), <) ≡ G((Z,D',C')))) ■

Readers are reminded that two CSPs are equivalent if they have the identical sets of
variables and identical sets of solution tuples (Definition 2-3).

Definition 4-5:

The width of the induced graph of a CSP P under some orderings of its vari-

ables is called the induced-width of P under that ordering. It is denoted by

induced-width(P, <):

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <):
induced-width((Z, D, C), <) ≡ width(induced-graph((Z, D, C), <)))) ■

Definition 4-6:

The induced-width of a CSP P, denoted by induced-width(P), is the mini-

mum induced-width of P under all orderings:

∀  csp((Z, D, C)):
induced-width((Z, D, C)) ≡

MIN width(induced-graph((Z, D, C),<))): total_ordering(Z, <)) ■

If a is the maximum size of the domains in a CSP and W* is the induced-width of
the problem under some ordering <, then the time complexity of Adaptive_consist-

ency under < is O(aW*+1), and the space complexity is O(aW*). This can be seen as
follows. Let S be the largest parent set in the induced primal graph. By the definition
of width, W* must be equal to S  . To construct or reduce the constraint CS, W*+1
variables must be considered (the variables in S plus the variable of which they are
parents). That is equivalent to solving a CSP with W*+1 variables, which complex-

ity is O(aW*+1) in general. In the worst case, the size of the constraint CS is O(aW*),
which is the time and space complexity of Adaptive_consistency.

Unfortunately, the optimal ordering which gives W* (the minimum induced-width
of all possible orderings) is NP-hard to compute. Therefore, the actual time com-
plexity of the Adaptive_consistency algorithm is hard to compute. Partly because of
this, how useful this algorithm is for solving realistic problems is yet to be studied.
However, it does give us some insight into the complexity of CSP solving.
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4.7  Parallel/Distributed Consistency Achievement

As a result of advances in hardware, parallel processing becomes more and more
widely available. Therefore, in evaluating an algorithm, one may want to evaluate
their suitability for parallel processing. Although AC-1 and PC-1 have higher com-
plexity, they have more inherent parallelism than the AC-3 and PC-2 algorithm. In
the following sections, we introduce two algorithms designed for parallel achieve-
ment of arc-consistency.

4.7.1  A connectionist approach to AC achievement

A connectionist approach to problem solving is to represent the problem with a net-
work, where each node is implemented by a piece of hardware which is only
required to perform very simple tasks. Efficiency is gained by making use of a large
number of (simple) processors and the carefully chosen connections. Connectionist
approaches to CSP solving will be revisited in Section 8.3 of Chapter 8.

AC-3 and AC-4 are based on the notion of support. A label <x,a> is supported if for
every variable y there exists a value b such that <y,b> is legal and (<x,a><y,b>) sat-
isfies the constraint Cx,y. Swain & Cooper [1988] show how this logic can be built
into a hardware network, as explained below.

Given a binary CSP, a network is set up in the following way: a v-node is used to
represent each variable, and a c-node is use to represent each 2-compound label,
regardless of whether the 2-compound label satisfies the relevant constraints.
Figure 4.4 shows the network for a CSP with three variables x, y and z, which are all
assumed to have the same domain {a, b}. Each node in the network may take a
binary value (0 or 1), indicating whether this label or compound label is legal. For
variables x, x1 and x2 we use v(<x,a>) to denote the value taken by the v-node
which represents the label <x,a>, and c(<x1,v1> <x1,v2>) to denote the value taken
by the c-node which represents the 2-compound label (<x1,v1> <x2,v2>).

Each pair of v-nodes which represent the labels <x1,v1> and <x2,v2> such that x1 ≠
x2 are connected through an AND gate to the c-node which represents the 2-com-
pound label (<x1,v1><x2,v2>). For example, Figure 4.4 shows a connection from the
v-nodes which represent <x,a> and <y,a> to the c-node which represents (<x,a>
<y,a>), and a connection from <y,b> and <z,b> to (<y,b> <z,b>). In other words,
c(<x1,v1><x2,v2>) will be set to 0 if either of <x1,v1> or <x2,v2> is 0.

Each v-node <x1,v1> is connected by all the c-nodes which represent 2-compound
labels (<x1,v1> <x2,v2>) for some x2 (≠ x1) and v2 under the following logic:

v(<x1,v1>) ← v(<x1,v1>) ∧
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where Z is the set of variables in the problem and  is the domain of x2.

Figure 4.4 shows the input connections to the v-node for <x,a>.

v x2 v2,〈 〉( ) c x1 v1,〈 〉 x2 v2,〈 〉( )∧
v2 Dx2

∈
∪

 
 

x2 Z∈ x1 x2≠∧
∩

Dx2

x

y

z

a bvariables

values

<y,a> <y,b>

<x,a>

<x,b>

Constraint Cx,y

<z,a> <z,b>

<y,a>

<y,b>

Constraint Cy,z

<z,a> <z,b>

<x,a>

<x,b>

Constraint Cx,z

AND connection

OR connection

v-node
c-node

Figure 4.4 A connectionist representation of a binary CSP (Z, D, C),
where the variables Z = {x, y, z} and all the domains are {a, b} (only three

sets of connections are shown here)
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The network is initialized in such a way that all the v-nodes are set to 1 and all the c-
nodes are set to 1 if the compound label that it represents satisfies the constraint on
the variables; it is set to 0 otherwise.

After initialization, the network is allowed to converge to a stable stage. A network
will always converge because nodes can only be switched from 1 to 0, and there are
only a finite number of nodes. When the network converges, all the v-nodes which
are set to 0 represent labels that are incompatible with all the values of at least one
other variable (because of the set up of the network). The soundness and complete-
ness of this network follow trivially from the fact that its logic is built directly from

the definition of AC. The space complexity of this approach is O(n2a2), where n is
the number of variables and a is the largest domain size in the problem.

4.7.2  Extended parallel arc-consistency

After convergence, AC is achieved in the network described in the previous section.
Guesgen & Hertzberg [Gues91] [GueHer92] propose a method that stores informa-
tion in the network which can help in solving the CSP.

A few modifications are made to the network described in the previous section.
Firstly, each c-node is given a signature, which could, for example, be a unique
prime number. Secondly, instead of storing binary values, each v-node is made to
store a set of signatures. Although each c-node stores a binary value as before, what
it outputs is not this value, but a set of signatures, as explained later. For conven-
ience, we call the signatures of the c-node for the compound label (<x1,v1> <x2,v2>)
s(<x1,v1> <x2,v2>).

The connections remain the same as before. Each v-node representing <x,v> is ini-
tialized to the set of all signatures for all the c-nodes except those which represent
2-compound labels involving <x,v'> with v' ≠ v. In other words:

v(<x,v>) ← {s(<x,v><x',v'>) | x' ∈ Z & v' ∈ Dx' & x ≠ x'} ∪
{s(<x1,v1><x2,v2>) |

x1 ∈ Z & v1 ∈  & x1 ≠ x & x2 ∈ Z & v2 ∈  & x2 ≠ x}

where Z is the set of variables and Dx is the domain of the variable x. For example,
in the problem shown in Figure 4.4, there are three variables x, y and z, all of which
have the domain {a, b}. The v-node for <x,a> will be initialized to the set of signa-
tures {s(<x,a><y,a>), s(<x,a><y,b>), s(<x,a><z,a>), s(<x,a><z,b>), s(<y,a><z,a>),
s(<y,a><z,b>), s(<y,b><z,a>), s(<y,b><z,b>)}.

The initial values for the c-nodes are the same as the network described in the last
section, i.e. a c-node is set to 1 if the compound label that it represents is legal, and

Dx1
Dx2
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0 otherwise.

Guesgen calls the convergence mechanism graceful degradation. Each v-node out-
puts the signatures that it stores to its connected c-nodes. When a c-node is on, it
takes the intersection of the (two) input sets of signatures and outputs the result to
the v-nodes connected to it; an empty set is output if it is off. Therefore, input to
each v-node is sets of signatures from the c-nodes. These inputs will be combined
using the logic shown in Figure 4.4, with AND operations replaced by set union
operations, and OR operations replaced by set intersection operations. This com-
bined result is intersected with the value currently stored in the v-node. The input,
output and the values of each node are summarized in Figure 4.5.

The network will always converge because the number of signatures stored in the v-
nodes is finite and nonincreasing. After the network has converged, a solution W to
the CSP is a compound label such that:

input: v(<x, a>) ∩ v(<y, b>)

output: v(<x, a>) ∩ v(<y, b>)

For the c-node for  (<x, a> <y, b>):

if c( <x, a> <y, b>) = 1;
{} otherwise

For the v-node for <x, a>:

input: ∩  ∪  output of the c-node for (<x, a> <y, b>)

output:

value (static): 1
0

current value (i.e. v(<x, a>))

y ∈ Z b ∈ D y

value: current value ∩ input

Figure 4.5 Summary of the input, output and values of the nodes in
Guesgen’s network (Z = set of variables, Dy = domain of y)

if (<x, a> <y, b>) satisfies Cx,y ;
otherwise
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(1) W contains exactly one label per variable; and
(2) for every label w in W, v(w) contains the signatures of all the c-nodes which

represent some 2-compound labels which are projections of W. In other
words,∀ w ∈ W: P ⊆  v(w), where P = {s(l1,l2) | l1 ∈  W ∧ l2 ∈  W ∧ l1 ≠ l2}

How this compound label W can be found is not suggested by Guesgen & Hertz-
berg. However, if an algorithm does find Ws which satisfy the above conditions,
then this algorithm is sound and complete for binary CSPs. Soundness can be
proved by refutation. Let us assume that W is a compound label which satisfies the
above conditions, but that one of its projections (<x,a> <y,b>) violates the con-
straint Cx,y. The initialization stipulates that the signature s(<x,a> <y,b>) cannot be
stored in any v-node for <x,a'> and <y,b'> where a ≠ a' and b ≠ b'. Since c(<x,a>
<y,b>) is (initialized to) 0, a little reflection should convince the readers that s(<x,a>
<y,b>) can never find its way back to both the v-nodes for <x,a> and <y,b> via any
c-nodes. Therefore, condition 2 must be violated, which contradicts our assumption
above. Therefore, all the compound labels W which satisfy the above conditions
must be solutions to the binary CSP.

Let us assume that S is a solution to the binary CSP. We shall show that S must sat-
isfy the conditions set above. Since S is a solution, all the c-nodes that represent
some 2-compound labels which are projections of S must be initialized to 1. Pick
any label <x,a> in S. It is not difficult to see from the graceful degradation rules that
a signature will be ruled out from the v-node for <x,a> if and only if there exists
some variable y such that for all b in Dy, c(<x,a><y,b>) = 0. But if <x,a> is part of a
solution, there exists at least one compatible b for every y. So S must satisfy condi-
tion 2 above, hence any algorithm which finds all the Ws that satisfy the above con-
ditions is complete.

Let n be the number of variables and a be the maximum size of the domains. There

are na v-nodes, and n2a2 signatures, so the space complexity of Guesgen’s algo-

rithm for the network is n3a3.

The space requirement of Guesgen’s algorithm can be improved if the signatures
are made unique prime numbers. In that case, instead of asking each node to store a
set, they could be asked to store the grand product of the signatures input to it. Then
one may compute the greatest common divisor (gcd) instead of computing the set
intersections in the algorithm, and the least common multiples (lcm) instead of set
unions. Under this stipulation, a c-node whose value is 0 will be made to send 1
instead of an empty set. Space is traded with speed if gcd’s and lcm’s are more
expensive to compute than set intersections and unions. Another advantage of using
prime numbers as signatures is that a single integer (though it needs to be very large
for realistic problems) is sent through each connection. Had sets been used, a poten-
tially large set of signatures would have had to be sent.
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4.7.3  Intractability of parallel consistency

Kasif [1990] points out that the problem of achieving AC and the problem of testing
the satisfiability of propositional Horn clauses belong to the same class of problems
which are logarithmic-space complete. What this implies is that AC-consistency is
unlikely to be achievable in less than logarithmic time by massive parallelism. From
this, Kasif concludes intuitively that CSPs cannot be solved in logarithmic time by
using only a polynomial number of processors. This conjecture is supported inde-
pendently by other researchers (e.g. Collin et al., 1991) who have experimented in
using connectionist-type architectures for solving CSPs, but failed to find general
asynchronous models for solving even relatively simple constraint graphs for binary
CSPs.

However, such results do not preclude the possibility of achieving linear speed up
by solving CSPs using parallel architectures. Linear speed up is likely to be achiev-
able when the number of processors is significantly smaller than the size of the con-
straint graph (which is often true), as has been illustrated by Saletore & Kale
[1990].

4.8  Summary

In this chapter, we have described algorithms for problem reduction, which is done
by achieving consistency in the problems. Consistency can be achieved by either
removing redundant values from domains, or by removing redundant compound
labels from constraints.

In this chapter, we have introduced algorithms for achieving NC, AC, DAC, PC,
DPC, adaptive-consistency and k-consistency. Algorithms which achieve NC, AC
and DAC do so by removing redundant values from the domains. Algorithms which
achieve PC and DPC do so by removing redundant 2-compound labels from binary-
constraints. Algorithms for achieving adaptive-consistency remove compound-
labels from general constraints; and algorithms for achieving k-consistency remove
redundant compound-labels from m-constraints where m ≤ k.

The time and space complexity of the above algorithms could be expressed in terms
of the following parameters:

n = number of variables in the problem;
e = number of binary constraints in the problem;
a = size of the largest domain.

The time and space complexity of the above consistency achievement algorithms
are summarized in Table 4-1.

The removal of redundant values from domains and redundant compound labels
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from constraints in problem reduction is based on the notion of support. Such sup-
port can be built into networks in connectionist approaches. Swain & Cooper’s con-
nectionist approach implements the logic of AC in hardware. Each value in each
domain and each 2-compound label (whether constraint exist on the two subject
variables or not) is implemented by a resetable piece of hardware (a JK-flip-flop, to
be precise). The logic makes sure that the converged network represents a CSP
which is reduced to AC. Guesgen & Hertzberg extend Swain & Cooper’s approach
to allow solutions to be generated from the converged network, although the com-

Table 4.1 Summary of time and space complexity of problem reduction
algorithms

n = number of variables;
e = number of binary constraints;

a = size of the largest domain

Algorithm Time complexity Space complexity

NC-1 O(an) O(an)

AC-1 worst case: O(a3ne) O(e+na)

AC-3 lower bound: Ω(a2e)
upper bound: O(a3e)

O(e+na)

AC-4 worst case: O(a2e) O(a2e)

DAC-1 worst case: O(a2e); or O(a2n) when the
constraint graph forms a tree

O(e+na)

PC-1 worst case: O(a5n5) O(n3a2)

PC-2 lower bound: Ω(a3n3), upper bound:
O(a5n3)

O(n3+n2a2)

PC-4 worst case: O(a3n3) O(n3a3)

DPC-1 worst case: O(a3n3) O(n2a2)

KS-1
(to achieve k-
consistency)

worst case : O( )

Adaptive_
consistency

worst case: O(aW*+1), where W* =
induced-width of the constraint graph
(W* is NP-hard to compute)

O(aW*), where W*
= induced-width

O Cn i ai⋅( )
i 1=

k

∑ 
  Cn i ai⋅( )

i 1=

k

∑
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plexity of the solution finding process is unclear.

Kasif [1990] shows that problem reduction is inherently sequential, and conjectures
that it is unlikely to solve CSPs in logarithmic time by using only a polynomial
number of processors. This conjecture is supported by other researchers, (e.g. Col-
lin et al., 1991). However, linear speed-up is achievable in parallel processing.

4.9  Bibliographical Remarks

CSP solving algorithms based on problem reduction are also called relaxation
algorithms in the literature [CohFei82]. AC-1, AC-2 and AC-3 are summarized by
Mackworth [1977]. The Waltz filtering algorithm [Wins75] is also an algorithm
which achieves AC. AC-4, the improvement of these algorithms, is presented in
Mohr & Henderson [1986]. van Hentenryck and his colleagues generalize the arc-
consistency algorithms in a generic algorithm called AC-5 [DevHen91]
[VaDeTe92]. They have also demonstrated that the complexity of AC-5 on specific
types of constraints, namely functional and monotonic constraints, which are impor-
tant in logic programming, is O(ea), where e is the number of binary constraints and
a is the largest domain size. Recently, van Beek [1992] generalized Montanari’s and
Deville and van Hentenryck’s results to row-convex constraints, and showed that a
binary CSP in which constraints are row-convex can be reduced to a minimal prob-
lem by achieving path-consistency in it. DAC-1 and DPC-1 are based on the work
of Dechter & Pearl [1985b].

The relaxation algorithm PC-1 and PC-2 can be found in Mackworth [1977]. (The
PC-1 algorithm is called “Algorithm C” by Montanari [1974].) PC-2 is improved to
PC-3 by Mohr & Henderson [1986], in a same manner as AC-3 is improved to AC-
4. However, minor mistakes have been made in PC-3, which are corrected by Han
& Lee [1988], producing PC-4. GAC4 is proposed by Mohr & Masini [1988]. Bes-
sière [1992] extends GAC4 (to an algorithm called DnGAC4) to deal with dynamic
CSPs (in which constraints are added and removed dynamically). The algorithm for
achieving k-consistency is presented by Cooper [1989], and the concept of adap-
tive-consistency is introduced by Dechter & Pearl [1988a].

Complexity analysis of the above algorithms can be found in Mackworth & Freuder
[1985], Mohr & Henderson [1986], Dechter & Pearl [1988a], Han & Lee [1988]
and Cooper [1989]. For foundations of complexity theory, readers are referred to
textbooks such as Knuth [1973] and Azmoodeh [1988].

Mackworth & Freuder [1985] evaluate the suitability of parallel processing among
the arc-consistency achievement algorithms. Swain & Cooper [1988] propose to use
a connectionist approach to achieve arc-consistency, and Cooper [1988] applies this
technique to graph matching. Guesgen & Hertzberg [1991, 1992] extend Swain &
Cooper’s approach to facilitate the generation of solutions from the converged net-
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work. In Guesgen & Hertzberg’s work, unique prime numbers are being used as sig-
natures. Further discussion on applying connectionist approaches to CSP solving
can be found in Chapter 8.

Kasif’s work appears in [Kasi90]. Collin et al. [1991] use connectionist approaches
to CSP solving. van Hentenryck [1989b] studies parallel CSP solving in the context
of logic programming. Saletore & Kale [1990] show that linear speed up is possible
in using parallel algorithms to find single solutions for CSPs.

Some notations in the literature have been modified to either improve readability or
ensure consistency in this book.



Chapter 5

Basic search strategies for solving CSPs

5.1  Introduction

We mentioned in Chapter 2 that searching is one of the most researched techniques
in CSP solving. In this chapter, we shall look at some basic control search strate-
gies. These strategies will be further examined in the two chapters that follow.

In Chapter 2, we pointed out that CSPs have specific features which could be
exploited for solving them. Here, we shall introduce search strategies which exploit
such features, and explain in detail how they work.

Features of a CSP can also guide us in choosing from among the general search
strategies. For example, for problems with n variables, all solutions are located at
depth n of the search tree. This means that search strategies such as breadth-first
search, iterative deepening (ID) and IDA* cannot be very effective in CSP solving.

The strategies covered in this chapter can be classified into three categories:

(1) general search strategies
This includes the chronological backtracking strategy described in Chapter 2
and the iterative broadening search. These strategies were developed for gen-
eral applications, and do not make use of the constraints to improve their effi-
ciency.

(2) lookahead strategies
The general lookahead strategy is that following the commitment to a label,
the problem is reduced through constraint propagation. Such strategies
exploit the fact that variables and domains in CSPs are finite (hence can be
enumerated in a case analysis), and that constraints can be propagated.

(3) gather-information-while-searching strategies
The strategy is to identify and record the sources of failure whenever back-
tracking is required during the search, i.e. to gather information and analyse
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them during the search. Doing so allows one to avoid searching futile
branches repeatedly. This strategy exploits the fact that sibling subtrees are
very similar to each other in the search space of CSPs.

These strategies, and algorithms which use them, will be described in the following
sections. Throughout this chapter, the N-queens problem is used to help in illustrat-
ing how the algorithms work, and how they can be implemented in Prolog. How-
ever, as we pointed out in Chapter 1, the N-queens problem has very specific
features, and therefore one should not rely on it alone to benchmark algorithms.

5.2  General Search Strategies

General search strategies are strategies which do not make use of the fact that con-
straints can be propagated in CSPs. However, because of the specific feature of the
search spaces in CSPs, some general search strategies are more suitable than others.

5.2.1  Chronological backtracking

5.2.1.1  The BT algorithm

In Chapter 2 we described the chronological backtracking (BT) search algorithm.
The control of BT is to label one variable at a time. The current variable is assigned
an arbitrarily value. This label is checked for compatibility against all the labels
which have so far been committed to. If the current label is incompatible with any
of the so far committed labels, then it will be rejected, and an alternative label will
be tried. In the case when all the labels have been rejected, the last committed label
is considered unviable, and therefore rejected. Revising past committed labels is
called backtracking. This process goes on until either all the variables have been
labelled or there is no more label to backtrack to, i.e. all the labels for the first varia-
ble have been rejected. In the latter case, the problem is concluded as unsatisfiable.

In BT, no attempt is made to use the constraints. It is an exhaustive search which
systematically explores the whole search space. It is complete (all solutions could
be found) and sound (all solutions found by it will satisfy all the constraints as
required). No attempt is made to prune off any part of the search space.

5.2.1.2  Implementation of BT

Program 5.1, bt.plg, at the end of this book is an implementation of BT in Prolog for
solving the N-queens problem. The program can be called by queens(N, Result),
where N is the number of queens to be placed. The answer will be returned in
Result. Alternative results can be obtained under the usual Prolog practice, such as
by typing “;” after the solution given, or calling bagof:
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?- bagof( R, queens(N, R), Results ).

This program uses Prolog’s backtracking. The basic strategy is to pick one number
out of 1 to N at a time, and insert them in a working list representing a partial solu-
tion. Constraints are checked during the process. If any constraint is violated, Pro-
log backtracking is invoked to go back to the previous decision. If no constraint is
violated, the process carries on until all the numbers from 1 to N are inserted into
the working list, which will finally represent the solutions.

In the 8-queens problem, Chronological_Backtracking will search in the following
way:

1 A
2 ABC

3 ABCDE
4 AB

5 ABCD
6 ABCDEFGH (failed, and backtrack to 5)

5 EFGH (start from A in row 6)
6 ABCDEFGH (failed, and backtrack to 5)

5 (failed, and backtrack to 4)
4 CDEFG

5 AB (start from A in row 5)
6 ABCD

7 ABCDEF
8 ABCDEFGH (failed, and backtrack to 7)

.....

5.2.2  Iterative broadening

5.2.2.1  Observation and the IB algorithm

The chronological backtracking algorithm exhausts one branch of the search tree
before it turns to another when no solution is found. However, this may not be the
most efficient strategy if the requirement is to find the first solution. In BT, each
intermediate node in the search tree is a choice point, and each branch leading from
that node represents a choice. One thing to notice in BT is that the choice points are
ordered randomly. There is no reason to believe that earlier choices are more impor-
tant than later ones, hence there is no reason to invest heavily in terms of computa-
tional effort in earlier choices.

Based on this observation, Ginsberg & Harvey [1990] introduced the iterative
broadening algorithm (IB). The idea is to spread the computational effort across the
choices more evenly. The algorithm is basically the depth-first search with an artifi-
cial breadth cutoff threshold b. If a particular node has already been visited b times
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(which include the first visit plus backtracking), then unvisited children will be
ignored. If a solution is not found under the current threshold, then b is increased.
This process will terminate if a solution is found or (in order to ensure complete-
ness) if b is equal to or greater than the number of branches in all the nodes. An out-
line of the general IB algorithm (which, for simplicity, does not return the path) is
shown below:

PROCEDURE IB-1( Z, D, C );
BEGIN

b ← 1;
REPEAT

Result ← Breadth_bounded_dfs( Z, { }, D, C, b );
b ← b + 1

UNTIL ((b > maximum D x) OR (Result  ≠ NIL));
IF (Result ≠ NIL) THEN return(Result);
ELSE return( NIL );

END /* of IB-1 */

PROCEDURE Breadth_bounded_dfs( UNLABELLED, COM-
POUND_LABEL, D, C, b );

/* depth first search with bounded breadth b */
BEGIN

IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx;
Delete v from Dx;
IF (COMPOUND_LABEL + {<x,v>} violates no con-

straints)
THEN BEGIN

Result ← Breadth_bounded_dfs(UN-
LABELLED − {x}, COMPOUND_LA-
BEL + {<x,v>}, D, C, b);

IF (Result ≠ NIL) THEN return(Result);
END

UNTIL (Dx = { }) OR (b values in Dx have been tried);
return(NIL); /* signifying no solution */

END /* ELSE */
END /* of Breadth_bounded_dfs */
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5.2.2.2  Discussions on IB

Ginsberg & Harvey [1990] used probability theory to show the efficiency of IB.
They computed the probability of finding at least one goal node at any specific

depth,1 and concluded that when the depth is large, IB could lead to computational
speed-up over BT when there are enough solutions in the leaves of the search tree

— to be exact, when the total number of solutions at the leaves is greater than eb/2,
where b is the branching factor of the search tree. Empirically, IB is tested on ran-
domly generated problems. Results obtained agree with the theoretical analysis.

It should be noted that the above analysis is based on the assumption that the search
is totally uninformed (i.e. no heuristic exists). It is found that the performance of IB
can be improved significantly when heuristics are available, even if the heuristic
being used is very weak.

Although the idea of IB is simple and sound, and its efficiency is well supported, its
limitations as a general search method should be noted. Firstly, it is only useful for
problems in which a single solution is required. If all solutions have to be found, IB
will visit some solutions repeatedly and unnecessarily. Secondly, it has the same
limitation as depth-first search, in that it can be trapped in branches with an infinite
depth (in CSPs, all branches have a finite depth). Thirdly, the analysis is based on
the assumption of a uniform branching factor throughout the search tree. In some
problems, different subtrees may have different shapes (a different number of
choice points and choices), and therefore the number of branches may vary under
different subtrees. If A and B are two sibling nodes which have m and n children,
respectively, where m is much greater than n, then subtrees under B would be
searched repeatedly (futilely) at the stage when m < Bound ≤ n. IB need not be effi-
cient in such problems.

The application of IB to CSPs in which a single solution is required is worth study-
ing because in CSPs the depth of the search space is fixed; besides, all subtrees can
be made very similar to each other (by giving a fixed order to all the variables). IB
may have to be modified when the domain sizes of different variables vary signifi-
cantly. One possible modification is to search a certain proportion of branches rather
than a fixed number of branches at each level.

5.2.2.3  Implementation of IB

Program 5.2, ib.plg, (at the end of this book) shows an implementation of IB on the

1.   IB is developed for general search applications. In some problems, goals may locate at
any level of the search tree. In CSPs, goals are solution tuples and they can only be found at the
leaves of the search tree. Internal nodes represent compound labels for proper subsets of the var-
iables in the problem. Therefore, results in Ginsberg & Harvey [1990] must be modified before
they are applied to CSPs.
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N-queens problem. The program starts by setting the breadth cutoff threshold to 1,
and increments it by one at a time if a solution is not found. When the cutoff thresh-
old is set to c, up to c values will be tried for each queen. Apart from having a bound
on the number of times that a node is allowed to be backtracked to, IB behaves in
exactly the same way as BT in principle.

To be effective, IB should be made to pick the branches randomly (so that all
branches have some chance of being selected under different thresholds). Therefore,
a random number generator is used. Program 5.3, random.plg, is a naive pseudo
random number generator. One may consider to replace the seed of the random
number by the CPU time or real time which may be obtained from system calls.
This has not been implemented in Program 5.2 as such system calls are system
dependent.

The N-queens problem is a suitable application domain of IB because all variables
have the same (N) possible values, and all subtrees have the same depth.

5.3  Lookahead Strategies

By analysing the behaviour of Chronological_Backtracking in the N-queens prob-
lem carefully, one can see that some values can be rejected at earlier stages. For
example, as soon as column B is assigned to Queen 4, it is possible to see that back-
tracking is needed without searching through all values for Queen 5 for the follow-
ing reasons. Figure 5.1 shows the board after <4,B> is committed to. All the squares
which have conflict with at least one of the committed labels are marked by “x”.
One can easily see from Figure 5.1 that no square in row 6 is safe, and therefore, it
should not be necessary to go on with the current four committed queens. When BT
is used, columns D and H of Queen 5 will be tried before the program concludes
that no position is available to put a queen in row 6.

The basic strategy for lookahead algorithms, which is illustrated in 5.2, is to commit
to one label at a time, and reduce the problem at each step in order to reduce the
search space and detect unsatisfiability. In the following sections, we shall discuss
various ways of looking ahead.

5.3.1  Forward Checking

5.3.1.1  The FC algorithm

Forward Checking (FC) does exactly the same thing as BT except that it maintains
the invariance that for every unlabelled variable there exists at least one value in its
domain which is compatible with the labels that have been committed to. To ensure
that this is true, every time a label L is committed to, FC will remove values from
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the domains of the unlabelled variables which are incompatible with L. If the
domain of any of the unlabelled variables is reduced to an empty set, then L will be
rejected. Otherwise, FC would try to label the unlabelled variable, until all the vari-
ables have been labelled. In case all the labels of the current variable have been
rejected, FC will backtrack to the previous variable as BT does. If there is no varia-
ble to backtrack to, then the problem is insoluble. The pseudo code of FC is shown
below:
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Figure 5.1 Example showing the effect of FC: the label <4,B> should
be rejected because all the values for Queen 6 are incompatible with

the committed labels
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PROCEDURE Forward_Checking-1( Z, D, C );
BEGIN

FC-1( Z, { }, D, C );
END /* of Forward_Checking-1 */

PROCEDURE FC-1( UNLABELLED, COMPOUND_LABEL, D, C );
BEGIN

IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx; Delete v from Dx;
IF (COMPOUND_LABEL + {<x,v>} violates no constraints)
THEN BEGIN

D' ← Update-1(UNLABELLED − {x}, D, C, <x,v>);
IF (no domain in D' is empty)
THEN BEGIN

Result ← FC-1(UNLABELLED − {x}, COM-
POUND_LABEL + {<x,v>}, D', C);

IF (Result ≠ NIL) THEN return(Result);
END;

END
UNTIL (Dx = { });
return(NIL); /* signifying no solution */

END /* of ELSE */
END /* of FC-1 */

PROCEDURE Update-1(W, D, C, Label);
BEGIN /* it considers binary constraints only */

D' ← D;
FOR each variable y in W DO;

FOR each value v in D'y DO;
IF (<y,v> is incompatible with Label with respect to the con-

straints in C)
THEN D'y ← D'y − {v};

return(D');
END /* of Update-1 */

The main difference between FC-1 and BT-1 is that FC-1 calls Update-1 every time
after a label is committed to, which will update the domains of the unlabelled varia-
bles. If any domain is reduced to empty, then FC-1 will reject the current label
immediately.
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Notice that Update-1 considers binary constraints only. That is why although the
domains are examined after every label is committed to, FC-1 still needs to check
the compatibility between the newly picked label and the committed labels.

One variation of FC-1 is to maintain the invariance that for every unlabelled varia-
ble, there exists at least one value in its domain which is compatible with all the
labels that have so far been committed to. In that case, no checking is required
between any newly picked label and the compound label passed to FC-1. The
revised procedures are called FC-2 and Update-2:

PROCEDURE FC-2( UNLABELLED, COMPOUND_LABEL, D, C );
BEGIN

IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx; Delete v from Dx;
D' ← Update-2(UNLABELLED − {x}, D, C, COMPOUND_-

LABEL + {<x,v>});
IF (no domain in D' is empty)
THEN BEGIN

Result ← FC-2(UNLABELLED − {x}, COM-
POUND_LABEL + {<x,v>}, D', C);

IF (Result ≠ NIL) THEN return(Result);
END;

UNTIL (Dx = { });
return(NIL); /* signifying no solution */

END /* ELSE */
END /* of FC-2 */

PROCEDURE Update-2(W, D, C, COMPOUND_LABEL);
BEGIN /* it considers all constraints (not just binary constraints) */

D' ← D;
FOR each variable y in W DO;

FOR each value v in D'y DO;
IF (<y,v> is incompatible with COMPOUND_LABEL with

respect to constraints on y + variables of COMPOUND_-
LABEL)

THEN D'y ← D'y − {v};
return(D');

END /* of Update-2 */
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5.3.1.2  Implementation of FC

Program 5.4, fc.plg, shows an implementation of the Forward_Checking algorithm
for solving the N-queens problem. Since only binary constraints are present in this
formalization of the problem, Update-1 is used in the implementation. The main
data structures used are two lists, one containing the unlabelled variables (row num-
bers) and their available domains (columns), and the other containing labels which
have been committed to. For example, [1/[1,2], 2/[2,3]] represents the variables
Queen 1 and Queen 2, and their domains of legal columns [1,2] and [2,3] respec-
tively. Committed labels are represented by lists of assignments, where each assign-
ment takes the format Variable/Value (rather than <Variable, Value> as used in the
text so far). Example of a list of committed labels is [3/4, 4/2], which represents the
compound label (<Queen 3, Column 4> <Queen 4, Column 2>).

As in Program 5.1, this program makes use of Prolog’s backtracking. The predicate
propagate/3 enumerates the unlabelled variables and prop/3 eliminates the values
which are incompatible with the newly committed label. For the N-queens problem,
it is not necessary to check whether the chosen label is compatible with the commit-
ted labels once the propagation is done. This is because there are only binary con-
straints in this problem, and the constraints are bidirectional (if <x,a> is compatible
with <y,b>, then <y,b> is compatible with <x,a>).

The following is a trace of the decisions made by the forward checking algorithm in
solving the 8-queens problem (assuming that the variables are searched from
Queen 1 to Queen 8, and the values are ordered from A to H):

1 A
2 C

3 E
4 BG

5 B
6 D

5 D
4 H

5 B
6 D

7 F
6 (no more unrejected value)

5 D
4 (no more unrejected value)

3 F
.....

As soon as <4,B> is taken, it is found that no value is available for Queen 6. There-
fore, forward checking will backtrack and take an alternative value for Queen 4.
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5.3.2  The Directional AC-Lookahead algorithm

5.3.2.1  The DAC-L algorithm

In fact, by spending more computational effort in problem reduction, it is possible
to reject more redundant labels than forward checking. In forward checking, the
domains of the unlabelled variables are only checked against the committed labels.
It is possible to reduce the problem further by maintaining directional arc-consist-
ency (DAC, Definition 3-12) in each step after a label has been committed to. We
call this algorithm the DAC-Lookahead algorithm (DAC-L). This algorithm is also
called Partial Lookahead in the literature. The pseudo code DAC-L-1 below serves
to illustrate the DAC Lookahead algorithm:

PROCEDURE DAC-Lookahead-1( Z, D, C );
BEGIN

Give Z an arbitrary ordering <;
DAC-L-1( Z, { }, D, C, <);

END /* of DAC-Lookahead-1 */

PROCEDURE DAC-L-1( UNLABELLED, COMPOUND_LABEL, D,
C, <);

BEGIN
IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx; Delete v from Dx;
IF (COMPOUND_LABEL + {<x,v>} violates no constraints)
THEN BEGIN

D' ← Update-1(UNLABELLED − {x}, D, C, <x,v>);
(UNLABELLED − {x}, D", C) ← DAC-1(UNLABELLED −

{x}, D', C, <);
IF (no domain in D" is empty)
THEN BEGIN

Result ← DAC-L-1(UNLABELLED − {x}, COM-
POUND_LABEL + {<x,v>}, D", C, <);

IF (Result ≠ NIL) THEN return(Result);
END;

END /* of THEN */
UNTIL (Dx = { });
return(NIL); /* signifying no solution */

END /* of ELSE */
END /* of DAC-L-1 */
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The pseudo code of DAC-L-1 looks very much like Forward_Checking-1 except
that after calling Update-1, DAC-1 (which is described in Chapter 4) is called to
maintain DAC in the remaining problem. DAC-L-1 may be modified in a similar
way as FC-1: instead of calling Update-1, DAC-L-1 may be modified to call
Update-2 (see Section 5.3.1).

We shall use an example to show how DAC-L works. Figure 5.3 shows the situation
before the label <4,B> was chosen in the 8-queens problem. One should be able to
reject <4,B> before it is committed to. This is possible if we notice that <4,B> rules
out the only value for Queen 6, D.

The following is a trace of applying the DAC-Lookahead algorithm to the 8-queens
problem:

1 A
2 C

3 E (at this point, <4,B> and <5,D> are deleted)
4 GH

5 B (after maintaining DAC, no value for)
3 F (at this point, <6,D> and <6,E> are deleted)

4 BH (failed, and backtrack to 4)
3 G (at this point, <5,D> and <7,E> are deleted)

4 B
.....

In this trace, we have assumed that the Queens (variables) are ordered from 1 to 8.
The compound label (<1,A><2,C><3,E><4,G>) is rejected through constraint prop-
agation. This is because after <4,G> is introduced, the only values left for Queen 8
are B, D and F, none of which is compatible with <6,D>. Therefore, if DAC is
maintained, <6,D> will be eliminated after <4,G> is chosen. Since <6,D> is the
only value available for Queen 6, the domain of Queen 6 will be reduced to an
empty set, which would cause the committed compound label to be rejected.

By comparing the traces of Forward Checking and DAC-Lookahead, one can see
that a much smaller part of the search space is explored in the latter before <3,E> is
rejected. The price to pay for pruning off a larger part of the search space is the
maintenance of DAC among the unlabelled variables.

5.3.2.2  Implementation of DAC-L

Program 5.5, dac.lookahead.plg, is an implementation of the DAC-Lookahead
algorithm for solving the N-queens problem. For later reference, predicates for
maintaining AC and DAC are separated to form Program 5.6, ac.plg, and a predi-
cate for printing the result is placed in Program 5.7, print.queens.plg.

The data structure being used in Programs 5.5 to 5.7 is the same as in FC. The pred-
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icate dac_look_ahead_search/2 calls the predicate maintain_directional_arc_co-
nsistency/2 with two parameters: an input list of unlabelled variables and their
domains and an output list. The predicate maintain_directional_arc_consistency/2
maintains DAC among the unlabelled variables by removing redundant values from
their domains, and returns the result in the output list.
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Figure 5.3 Example showing the behaviour of DAC-Lookahead:
<4,B> will be rejected at this stage because all the available values

for Queen 6 are incompatible with it (squares marked o are rejected
after DAC is achieved)
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5.3.3  The AC-Lookahead algorithm

5.3.3.1  The algorithm AC-L

We already pointed out in Chapter 3 that AC is a stronger property than DAC. By
maintaining AC, one can expect to remove even more redundant values than in
maintaining DAC. AC-lookahead (AC-L) is a strategy which maintains AC after
committing to each label. It is also referred to as Full Lookahead in the literature.

In this strategy, when a variable is labelled one removes from the domains of all
unlabelled variables those values which are incompatible with the committed labels.
Furthermore, one maintains arc-consistency among the unlabelled variables. In
other words, one ensures that there exists a pair of compatible labels between every
pair of unlabelled variables. The pseudo code for AC-L is shown below.

The AC-L-1 procedure looks almost exactly like DAC-L-1, except that no ordering
is imposed among the variables, and it calls AC-X instead of DAC-1, where AC-X
can be any of the procedures AC-1, AC-2 or AC-4 introduced in Chapter 4. Like
FC-1 and DAC-L-1, Update-2 may be called instead of Update-1 in AC-L-1.

PROCEDURE AC-Lookahead-1( Z, D, C );
BEGIN

AC-L-1( Z, { }, D, C);
END /* of AC-Lookahead-1 */

PROCEDURE AC-L-1( UNLABELLED, COMPOUND_LABEL, D, C );
BEGIN

IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx; Delete v from Dx;
IF (COMPOUND_LABEL + {<x,v>} violates no constraints)
THEN BEGIN

D' ← Update-1(UNLABELLED − {x}, D, C, <x,v>);
(UNLABELLED − {x}, D", C) ← AC-X(UNLABELLED −

{x}, D', C);
IF (no domain in D" is empty)
THEN BEGIN

Result ← AC-L-1(UNLABELLED-{x}, COM-
POUND_LABEL + {<x,v>}, D", C);

IF (Result ≠ NIL) THEN return(Result);
END;
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END /* of THEN */
UNTIL (Dx = { });
return(NIL); /* signifying no solution */

END /* of ELSE */
END /* of AC-L-1 */

Compared with the DAC-Lookahead algorithm, AC-Lookahead spends more effort
in problem reduction. In return, it has the potential to remove more redundant val-
ues from the domains of the unlabelled variables; hence it is potentially capable of
pruning off a larger part of the search space and detecting dead-ends at earlier
stages.

The following is a trace of an arc-consistency lookahead algorithm in the 8-queens
problem:

1 A
2 C

3 E
3 F
3 G
3 H

2 D
3 B
3 F

.....

When the compound label (<1,A><2,C><3,E>) is considered, the remaining prob-
lem can be recognized as overconstrained by the maintenance of AC. This can be
illustrated with Figure 5.4, which shows the situation after the first three queens
have been placed. The order in which the domains are reduced depends on the pro-
cedure AC-X that is picked. However, this does not affect the end result of reduc-
tion, which is an equivalent CSP that is arc-consistent. The following is one
possible scenario after <1,A>, <2,C> and <3,E> have been committed to.

As in DAC-Lookahead, B can be removed from the domain of Queen 4, and D can
be removed from the domain of Queen 5 at this stage, as they are both incompatible
with the only value D for Queen 6. Unlike DAC-Lookahead, labels <7,D>, <8,B>,
<8,D> and <8,F> will be deleted at this stage as well, as they have no compatible
values in Queen 6. These four labels will not be deleted by DAC-Lookahead
because when the values for Queen i are examined, DAC-Lookahead will only
check to see if there are compatible values for all Queen j such that i < j according
to the given ordering <.

After <4,B> is deleted, G and H are the only values left for Queen 4. AC-Lookahead
will delete <5,H>, as it is incompatible with any of the remaining values for Queen
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4 (again, DAC-Lookahead will not do that, as Queen 5 is after Queen 4). With
<5,H> deleted, <5,B> is the only value for Queen 5, and therefore, <7,B> must be
deleted, leaving F to be the only value in the domain of Queen 7. However, after the
values B, D and F are deleted, the only value left for Queen 8, G, has no compatible
value with the only remaining value for Queen 7 (F). Therefore, <8,G>, the last
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Figure 5.4 Example showing the behaviour of AC-Lookahead: label
<3,E> will be rejected if AC is to be achieved. Labels marked O are

rejected for having no compatible values in Queen 6; then label <5,
H>  is rejected for having no compatible value for Queen 4; then <7,B>
will be removed for having no compatible value with Queen 5; and

finally, <7,F> conflicts with <8,G>, which are the only values left for
Queens 7 and 8, respectively
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value for Queen 8, must be deleted. This leaves the domain of Queen 8 to be empty.
This leads to the conclusion that the problem is over-constrained after
(<1,A><2,C><3,C>) is committed to. Therefore, the labelling <3,E> will be
undone. (In fact, in order to maintain AC, the AC-X procedure will continue to
reduce all the domains to empty sets).

5.3.3.2  Implementation of AC-Lookahead

Program 5.8, ac.lookahead.plg, is an implementation of the AC-Lookahead algo-
rithm for solving the N-queens problem. It uses the same data structure as the DAC-
L program (Program 5.5) and calls the predicate maintain_arc_consistency/2. The
predicate maintain_arc_consistency/2 takes two arguments:

(a) a list of unlabelled variables and their domains; and
(b) a variable for output.

It maintains AC among the unlabelled variables by removing redundant values from
their domains, and returns the result in the output list. The algorithm used in main-
tain_arc_consistency/2 is basically AC-1 modified to suit the Prolog style.

5.3.4  Remarks on lookahead algorithms

The DAC-Lookahead algorithm is called partial lookahead and the AC-Loohahead
algorithm is called full looking forward in the literature [HarEll80]. The name full
looking forward is quite misleading, as AC is not the limit of what one can achieve
in problem reduction. It is possible for algorithms to look further ahead by main-
taining properties which are stronger than AC, such as PC or k-consistency for
k > 2. In fact, if one maintains strong k-consistency when there are only k unlabelled
variables left, and no domain is left empty after doing so, then one can guarantee
that no backtracking is needed in the search. Whether it is justifiable to spend the
effort to do so is another matter, and the decision probably depends on the applica-
tion. In general, the more the variables constrain each other, and the tighter the con-
straints, the more return one can get by maintaining a greater level of consistency
(see Figure 3.7 for the strength of different consistency properties).

5.4  Gather-information-while-searching Strategies

The fact that sibling subtrees in the search space are similar in the search trees of
CSPs allows one to learn from experience in a search. When backtracking is
required, one could analyse the reason for the failure, so as to avoid making the
same mistake repeatedly in the future. In this section, we shall introduce a few such
algorithms.
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5.4.1  Dependency directed backtracking

Dependency directed backtracking (DDBT) is a general strategy that can be
applied to various problems. It has not only been applied to CSP, but also to plan-
ning and logic programming (where it is sometimes called intelligent backtracking).
The idea is to identify the culprit(s) when failures occur so that the algorithm can
backtrack to relevant decisions only. In some problems, DDBT could require a great
deal of overhead. In CSPs, the culprit(s) may be identifiable using the constraints in
the problem. Therefore, it is possible to apply DDBT to CSPs efficiently.

5.4.1.1  BackJumping

One algorithm which uses the DDBT concept to CSP is called Backjumping (BJ).
The control of BJ is exactly the same as BT, except when backtracking takes place.
Like BT, BJ picks one variable at a time. Given a variable, BJ finds a value for it,
making sure that the new assignment is compatible with the labels committed to so
far. It backtracks if no value can be assigned to the current variable. However, when
BJ needs to backtrack, it analyses the situation in order to identify the culprit deci-
sions (which are commitments to labels) which have jointly caused the failure. If
every value in the domain of the current variable is in conflict with some committed
labels, then BJ backtracks to the most recent culprit decision rather than the imme-
diate past variable as is the case in BT. In CSPs, the culprits can be identified by
enumerating the values in the current variable, and using the constraints as guidance
to find out why they are rejected. If the current variable was labelled and then back-
tracked to, then BJ will backtrack to the immediate past variable. This is because at
least one value in the domain of the current variable has passed all the compatibility
checking with the labels committed to so far.

We shall use the 8-queens problem to illustrate the BJ. Figure 5.5 shows a situation
after five queens have been placed onto the board. When Queen 6 is looked at, it is
found to be overconstrained. For each square in the domain of Queen 6, the earliest
queen which is incompatible with it is identified. (For future reference, we have
shown all the queens, rather than just the earliest queen, which are incompatible
with each square for Queen 6 in Figure 5.5.) We call those identified queens “culprit
queens”. For example, the culprit queen for <6,B> is Queen 3. BJ will then back-
track to the most recent of all the culprit queens. In this example, the queen that will
be backtracked to is Queen 4. Unlike BT, BJ will not look at <5,H>. If all the values
for Queen 4 have been exhausted after this backtracking, then BJ will backtrack to
Queen 3.

The algorithm is formally described as follows:
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PROCEDURE BackJumping( Z, D, C );
BEGIN

BJ-1( Z, { }, D, C, 1 );
END /* of BackJumping */
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1 213, 4 2, 5 3, 54, 5 3

Figure 5.5 A board situation in the 8-queens problem. The numbers
in row 6 indicate the labelled queens that the corresponding squares
are incompatible with. It is possible at this stage to realize that chang-
ing the value of Queen 5 will not resolve the conflicts, or learn incom-

patible compound labels
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PROCEDURE BJ-1( UNLABELLED, COMPOUND_LABEL, D, C, L );
/* Let Level_of be a global array of integers, one per variable, for

recording levels; BJ-1 either returns a solution tuple or a Level to
be backtracked to */

BEGIN
IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED; Level_of[x] ← L;
TDx ← Dx; /* TD is a copy of Dx, used as working storage */
REPEAT

v ← any value from TDx; TDx ← TDx − {x};
IF (COMPOUND_LABEL + {<x,v>} violates no con-

straints)
THEN BEGIN

Result ← BJ-1(UNLABELLED − {x}, COM-
POUND_LABEL + {<x,v>}, D, C, L + 1 );

IF (Result ≠ backtrack_to(Level)) /* back-
track_to(Level) is a data structure signify-
ing backtracking and where to */

THEN return(Result);
END /* of IF within the REPEAT loop */

UNTIL ((TDx = { }) OR (Result = backtrack_to(Level) AND
Level < L));

IF (Result = backtrack_to(Level) AND Level < L)
THEN return(backtrack_to(Level));
ELSE BEGIN /* all the values in Dx have been rejected */

Level ← Analyse_bt_level( x, COMPOUND_LA-
BEL, Dx, C, L );

return(backtrack_to(Level));
/* return a special data structure */

END
END /* of ELSE */

END /* of BJ-1 */

BJ-1 calls Analyse_bt_level in order to decide which variable to backtrack to. Dif-
ferent algorithms may be used in Analyse_bt_level. The following is a simple algo-
rithm:

PROCEDURE Analyse_bt_level( x, Compound_label, Dx, C, L );
BEGIN

Level ← −1;
FOR each (a ∈  Dx) DO
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BEGIN
Temp ← L − 1; NoConflict ← True;
FOR each <y,b> ∈  Compound_label DO

IF NOT satisfies((<x,a><y,b>), Cx,y)
THEN BEGIN

Temp ← Min( Temp, Level_of[y] );
NoConflict ← False;

END
IF (NoConflict) THEN return(Level_of[x] − 1)

ELSE Level ← Max( Level, Temp );
END

return( Level );
END /* of Analyse_bt_level */

Here we show part of the search space that BJ explores:

1 A
2 ABC

3 ABCDE
4 AB

5 ABCD
6 ABCDEFGH (failed, backtrack to Queen 4)

5 (skipped, as it is an irrelevant decision)
4 CDEFG

5 AB
6 ABCD

7 ABCDEF
8 ABCDEFGH (failed, backtrack to Queen 6)

7 (skipped, as it is an irrelevant decisions)
6 EFGH (failed, backtrack to Queen 5)

.....

5.4.1.2  Implementation of BJ

Program 5.9, bj.plg, demonstrates how BJ could be applied to the N-queens pro-
blem. In order to allow the reader to see the effect of BJ, Program 5.9 outputs a trace
of the labels that it commits to and labels which it rejects.

In Program 5.9, bj_search(Unlabelled, Result, Labels, BT_Level) finds one value
for one unlabelled variable at a time, and returns as Result the set of Labels if all the
variables have been labelled. If it cannot find a value for a particular variable, it will
return bt_to(BT_Level) as Result. BT_Level is always instantiated to the most recent
culprit decision, which is instantiated in find_earliest_conflict/3, or the last decision
when it cannot recognize a culprit decision.
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5.4.1.3  Graph-based BackJumping

The BJ algorithm jumps back to the most recent culprit decision rather than the pre-
vious variable. Graph-based BackJumping (GBJ) is another version of DDBT
which backtracks to the most recent variable that constrains the current variable if
all the values for the current variable are in conflict with some committed labels.
Like BJ, GBJ will backtrack to the last variable when the current variable has been
labelled and backtracked to (in which case, at least one value has passed all the
compatibility checking). Thus, graph-based backjumping requires very little com-
putation to identify the culprit decision (i.e. the task that the Analyse_bt_level pro-
cedure performs can be greatly simplified).

In the N-queens problem, every variable is constrained by every other variable.
Therefore, the constraint graph for the N-queens problem is a complete graph
(Definition 2-13). But for many problems, the constraint graphs are not complete. In
such cases, when analysing the cause of the rejection of each value, one need only
look at those labelled variables which constrain the current variable. Graph-based
backjumping will backtrack to the most recent variable which constrains the current
variable.

Figure 5.6 shows a hypothetical CSP. Figure 5.6(a) shows the constraint graph,
where the nodes represent variable and the edges represent constraints. The varia-
bles in the problem are A, B, C, D, E, F and G. Assume that the domains for all the
variables are {1, 2, 3}, and all the constraints except CA,G and CC,G require the con-
strained variables to take different values. The constraints CA,G requires the sum of
A and G to be even. Similarly, the sum of C and G is required to be even.

Let us assume that the variables are to be labelled in alphabetical order (from A to
G), as shown in Figure 5.6(b). Suppose that a value has been assigned to each of the
variables A to F, and G is currently looked at. Suppose further that no label which is
compatible with the labels committed to so far can be found for G. In that case, the
edges in the constraint graph indicate that one only needs to reconsider the labels
for A, C or E, as they are the only variables which constrain G. Revision of the
labels for B, D or F would not directly lead to any compatible value for G. (Note
that chronological backtracking (BT) will backtrack to F).

By making use of the constraints, graph-based backjumping manages to jump past
the decisions which are definitely irrelevant to the failure. Using the constraints
saves computational effort in the analysis. However, graph-based backjumping is
not guaranteed to identify the real culprit at all times. Continuing with the above
example, assume that the compound label committed to before G is labelled is:

(<A,1><B,3><C,2><D,1><E,2><F,1>)

Now no label for G satisfies all the constraints. As suggested, graph-based back-
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jumping will try an alternative value for E, which is the most recent variable con-
straining F. In fact, no alternative value for E would lead to any solution of the
problem from the current situation as the labels <A,1> and <C,2> together have
already ruled out all the possible values for G. (The BJ algorithm described above
would realize that C is the most recent culprit decision.)

5.4.2  Learning nogood compound labels algorithms

5.4.2.1  The LNCL algorithm

In lookahead strategies, the more resources (including computation time and space)
one invests in looking ahead, the more chance one can remove redundant values and
redundant compound labels. Similarly, if one invests more resources in analysing
failures, one could possibly obtain more information from the analysis.

DDBT analyses failure situations in order to identify culprit decisions which have
jointly caused the current variable to be over-constrained. But the only piece of
information that it uses after the analysis is the level to backtrack to. One could in
fact digest and retain the information about combinations of labels which caused the
problem to be overconstrained. We refer to one such combination as nogood sets,
and algorithms which attempt to identify them as Learning Nogood Compound
Labels (LNCL) algorithms.

We first formally define some of the terms that we shall use to describe the LNCL
algorithm.

Definition 5-1:

A set S is a covering set of a set of sets SS if and only if for every set S' in SS,
there exists at least one element in S' which is in S. In this case, we say that S
covers SS:

covering_set(S, SS) ≡ (∀ S' ∈ SS : (∃ m ∈ S': m ∈  S)) ■

For example, let SS be {{a, b, c}, {a, d}, {b, c, d}, {d, e, f}}. The sets {a, c, e}, {a,
b, d}, {a, d} and {b, d} are all covering sets of SS. It may worth pointing out that by
definition, if an empty set is present in the set of sets SS, then SS has no covering set.

Definition 5-2:

A set S is a minimal covering set of a set of sets SS if and only if S is a cov-
ering set of SS, and no subset of S is a covering set of SS.

minimal_covering_set(S, SS) ≡
(covering_set(S, SS) ∧  (∀ S' ⊆ S: ¬  covering_set(S', SS))) ■
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In the above example, {a, d}, {b, d} and {a, c, e} are minimal covering sets of SS.
The control of LNCL is basically the same as BJ, except that more analysis is car-
ried out when backtracking is required. The principle of LNCL is to identify the cul-
prit decisions for each rejected value of the current variable’s domain, and then find
the minimal covering sets of the set of culprit decisions for all the values. The prob-
lem of finding minimal sets is called a set covering problem. The Learn_Nogood_-
Compound_Labels procedure outlines the LNCL algorithm:

PROCEDURE Learn_Nogood_Compound_Labels( Z, D, C );
BEGIN

LNCL-1( Z, { }, D, C );
END

PROCEDURE LNCL-1( UNLABELLED, Compound_label, D, C );
BEGIN

IF (UNLABELLED = { }) THEN return(Compound_label);
ELSE BEGIN

Pick one variable x from UNLABELLED;
TDx ← Dx; /* TD is a copy of Dx, used as a working

variable */
REPEAT

v ← any value from TDx; TDx ← TDx − {x};
IF ((Compound_label + {<x,v>} violates no constraints)

AND (NOT Known_to_be_Nogood(Compound_label +
{<x,v>})))

THEN BEGIN
Result ← LNCL-1(UNLABELLED − {x}, Com-

pound_label + {<x,v>}, D, C);
IF (Result ≠ NIL) THEN return(Result);

END;
UNTIL ( TDx = { } OR Known_to_be_Nogood(Compound_la-

bel) );
IF (TDx = { }) THEN Analyse_nogood( x, Compound_label, Dx,

C );
return(NIL);

END /* of ELSE */
END /* of LNCL-1 */

PROCEDURE Analyse_nogood( x, Compound_label, Dx, C );
BEGIN

/* identify conflict sets for each value */
FOR each (a ∈  Dx) DO
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BEGIN
Conflict_set[a] ← { };
FOR each <y,b> ∈  Compound_label DO

IF (NOT satisfies( (<x,a><y,b>), Cx,y ))
THEN Conflict_set[a] ← Conflict_set[a] + <y,b>;

IF (Conflict_set[a] = { }) THEN return; /* no Nogood set
identified */

END
/* identify Nogood sets */
FOR each set of labels LS covering the cartesian set

 DO

IF NOT Known_to_be_Nogood(LS) THEN record nogood_-
set(LS);

END /* of Analyse_nogood */

PROCEDURE Known_to_be_Nogood( CL );
BEGIN

IF (there exists a compound label CL' such that (nogood_set(CL')
is recorded) AND (CL' is subset of CL))

THEN return( True )
ELSE return( False );

END /* of Known_to_be_Nogood */

The LNCL-1 procedure is similar to BT-1 and BJ-1, except that when it needs to
backtrack, the Analyse_nogood procedure is called. The REPEAT loop in LNCL-1
terminates if all the values are exhausted, or if it has been learned that the current
Compound_label is nogood.

Analyse_nogood first finds for each value of the current variable all the incompati-
ble labels in Compound_label. If any value has an empty set of incompatible labels,
then Analyse_nogood will terminate because this indicates that no covering set
exists (refer to Definition 5-1 above). It then enumerates all sets of labels which
cover all the conflict sets, and records them as nogood if they are minimal covering
sets. It uses the function Known_to_be_Nogood to determine whether a set is mini-
mal or not. For example, if (<x,a><y,b>) is nogood, then there is no need to record
(<x,a><y,b><z,c>) as nogood. However, the Analyse_nogood procedure shown
here makes no effort to delete nogood sets which have already been recorded, and
are later found to be supersets of newly found nogood sets.

We shall again use the N-queens problem to illustrate the Learn_Nogood_Com-
pound_Label algorithm. In Figure 5.5 (Section 5.4.1), the queens that constrain
each square of Queen 6 are shown. For example, <6,B> is constrained by both

Conflictset m[ ]m∀∪
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Queen 3 and Queen 4, and <6,E> is constrained by both Queen 3 and Queen 5.
LNCL identifies the minimal covering sets (which are subsets of all the Queens
{1, 2, 3, 4, 5}) that has caused the failure of Queen 6 and remember them as conflict
sets. In other words, we are trying to identify all minimum covering sets of the set:

{{1}, {3, 4}, {2, 5}, {4, 5}, {3, 5}, {1}, {2}, {3}}.

The elements of the singleton sets must participate in all covering sets, i.e. {1, 2, 3}
must be included in all covering sets. Further analysis reveals that only the set
{4, 5} is not covered by {1, 2, 3}. Therefore, to form a minimal covering set, one
requires just one of Queen 4 or Queen 5. So both of the sets
{<1,A><2,C><3,E><4,B>} and {<1,A><2,C><3,E><5,D>} are nogood sets and
will be recorded accordingly.

Since {<1,A><2,C><3,E><4,B>} is a conflict set, all other values of Queen 5 will
not be tried (i.e. <5,E> need not be considered). Besides, no matter what value one
assigns to Queen 4 later, the combination <1,A>, <2,C>, <3,E> and <5,D> will
never be tried. For example, the compound label (<1,A><2,C><3,E><4,G><5,D>)
will be not be considered at all.

Finding minimum covering sets is sometimes referred to as deep-learning. Dechter
[1986] points out that one could settle for non-minimal covering sets if that saves
computation — this is called shallow-learning. In general, the deeper one learns
(i.e. the smaller covering sets one identifies), the more computation is required. In
return, deep-learning allows one to prune off more search space than shallow-learn-
ing.

5.4.2.2  Implementation of LNCL

Program 5.10, lncl.plg, is an implementation of the LNCL algorithm for solving the
N-queens problem. In this program, nogood sets are asserted into the Prolog data-
base. Progress of the program is printed out to allow the reader to see the conflict
sets being recorded and how they help to reject compound labels. For ease of pro-
gramming, columns are numbered 1 to 8 instead of A to H.

When LNCL needs to backtrack, record_nogoods/3 is called. The predicate
record_nogoods(Domain, X, CL) first builds for each value V in the Domain of X a
list of labels from CL which are incompatible with <X,V>. All these lists are
grouped into a Conflicts List. In the above example, the Conflicts List is:

[[1], [3, 4], [2, 5], [4, 5], [3, 5], [1], [2], [3]].
Then record_nogoods/3 tries to find the minimal covering sets of the Conflicts List
(here sets are represented by lists in Prolog). The algorithm used in Program 5.10
simply enumerates all the combinations, and passes them to update_nogood_sets/1.
A nogood set will be stored if it has not yet been discovered, and it is not a superset
of a recorded nogood set.
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5.4.3  Backchecking and Backmarking

Both backchecking (BC) and its descendent backmarking (BM) are useful algo-
rithms for reducing the number of compatibility checks. We shall first describe BC,
and then BM.

5.4.3.1  Backchecking

For applications where compatibility checks are computationally expensive, we
want to reduce the number of compatibility checks as much as possible. Back-
checking (BC) is an algorithm which attempts to reduce this number.

The main control of BC is not too different from BT. When considering a label
<y,b>, BC checks whether it is compatible with all the labels committed to so far. If
<y,b> is found to be incompatible with the label <x,a>, then BC will remember this.
As long as <x,a> is still committed to, <y,b> will not be considered again.

BC behaves like FC in the way that values which are incompatible with the commit-
ted labels are rejected from the domains of the variables. The difference is that if
<x,a> and <y,b> are incompatible with each other, and x is labelled before y, then
FC will remove b from y’s domain when x is being labelled, whereas BC will
remove b from y’s domain when y is being labelled. Therefore, compared with FC,
BC defers compatibility checks which might be proved to be unnecessary (<x,a>
may have been backtracked to and revised before y is labelled). However, BC will
not be able to backtrack as soon as FC, which anticipates failures. In terms of the
number of backtracking, and the amount of compound labels being explored, BC is
inferior to FC.

Because of the similarity between BC and BM, and the fact that BC is inferior to
BM, we shall not present the pseudo code of BC here.

5.4.3.2  Backmarking

Backmarking (BM) is an improvement over BC. Like BC, it reduces the number of
compatibility checks by remembering for every label the incompatible labels which
have already been committed to. Furthermore, it avoids repeating compatibility
checks which have already been performed and which have succeeded.

For each variable, BM records the highest level that it last backtracked to. This
helps BM to avoid repeating those compatibility checks which are known to suc-
ceed or fail. The key is to perform compatibility checks according to the chronolog-
ical order of the variables — the earlier a label is committed to, the earlier it is
checked against the currently considered label.
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Suppose that when variable xj is being labelled, all its values have been tried and
failed. Assume that we have to backtrack all the way back to variable xi and assign
an alternative value to xi and then successfully label all the variables between xi and
xj-1. Like BC, when xj is to be labelled, BM would not consider any of the values for
xj which are incompatible with the committed labels for x1 to xj-1. Besides, any
value that we assign to xj now need only be checked against the labels for variable xi

to xj-1, as these are the only labels which could have been changed since the last
visit to xj. Compatibility checks between xj and x1, x2, ... up to xi-1 were successful,
and need not be checked again.

The algorithm BM for binary problems is illustrated in the Backmark-1 procedure
below. It is possible to extend this procedure to handle problems with general con-
straints. The following four sets of global variables are being used in Backmark-1.
Figure 5.7 helps in illustrating these variable sets.

(1) Assignments
For each variable x, Assignment(x) records the value assigned to x.

(2) Marks
For each label <x,v>, Mark(x,v) records the shallowest variable (according to
the chronological ordering of the variables) in which assignment is incompat-
ible with <x,v>.

(3) Ordering
The variables are ordered, and if x is the k-th variable, then Ordering(x) = k.

(4) LowUnits
For each variable x, LowUnit(x) records the ordering of the shallowest varia-
ble y which has had its Assignment changed since x was last visited.

PROCEDURE Backmark-1( Z, D, C );
BEGIN

i ← 1;
For each x in Z DO

BEGIN
LowUnit(x) ← 1;
FOR each v in Dx DO

Mark(x,v) ← 1;
Ordering(x) ← i; i ← i + 1;

END /* end of initialization */
BM-1( Z, { }, D, C, 1 );

END /* of Backmark-1 */
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PROCEDURE BM-1(UNLABELLED, COMPOUND_LABEL, D, C,
Level);

BEGIN
IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

x ← the variable in UNLABELLED which Ordering equals
Level;

Result ← NIL;
REPEAT

v ← any value from Dx; Dx ← Dx − {v};
IF Mark(x,v) ³  LowUnit(x) /* else reject v */
THEN BEGIN

IF Compatible( <x,v>, COMPOUND_LABEL )
THEN Result ← BM-1(UNLABELLED − {x}, COM-

POUND_LABEL + {<x,v>}, D, C, Level + 1);
END

UNTIL ((Dx = { }) OR (Result ≠ NIL));
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Figure 5.7 Variable sets used by Backmark-1. Assignment(x) = the
value assigned to variablex. Mark(x,v) = the lowest level at which <x,v>
failed. LowUnit(x) = the ordering of the lowest variable y which Assign-

ment has been changed since the last time x is visited
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IF (Result = NIL) THEN
/* all values tried and failed, so backtracking is required */
BEGIN

LowUnit(x) ← Level − 1;
FOR each y in UNLABELLED DO

LowUnit(y) ← Min( LowUnit(y), Level − 1 )
END

return(Result);
END

END /* of BM-1 */

PROCEDURE Compatible( <x,v>, COMPOUND_LABEL );
/* variables in COMPOUND_LABEL are ordered according to the glo-

bal variable Ordering */
BEGIN

Compatible ← True; y ← LowUnit(x);
WHILE ((Ordering(y) < Ordering(x)) AND Compatible) DO

BEGIN
<y,v'> ← projection of COMPOUND_LABEL to y;
IF satisfies( (<x,v><y,v'>), Cx,y )
THEN y ← successor of y according to the Ordering;
ELSE Compatible ← False;

END;
Mark(x,v) ← ordering(y); /* update global variable */
return( Compatible );

END /* of Compatible */

BM-1 differs from BT-1 at the points where compatibility is checked (the Compati-
ble procedure) and in backtracking. In the Backmark-1 procedure, Ordering(x) is
the order in which the variable x is labelled. Values of the Marks are only changed
in the Compatible procedure, and values of the LowUnits are only changed when
backtracking takes place.

Since global variables have to be manipulated, BM is better implemented in imper-
ative languages. Therefore, BM will not be implemented in Prolog here.

Figure 5.8 shows a state in running Backmarking on the 8-queens problem, assum-
ing that the variables are labelled from Queen 1 to Queen 8. At the state shown in
Figure 5.8, five queens have been labelled, and it has been found that no value for
Queen 6 is compatible with all the committed labels. Therefore, backtracking is
needed. As a result, the value of LowUnit(6) has been changed to 5 (Ordering(6) −
1). If and when all the values of Queen 5 are rejected, both LowUnit(5) and Low-
Unit(6) will be updated to 4.
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5.5  Hybrid Algorithms and Truth Maintenance

It is possible to combine the lookahead strategies and the gather-information-while-
searching strategies, although doing so may not always be straightforward. In this
section, we shall illustrate the possible difficulties by considering the amalgamation
of DAC-L (Section 5.3.2) and BJ (Section 5.4.1).
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The BJ algorithm is able to compute the culprits in the configuration shown in
Figure 5.5 because, by simply examining the constraints, it can identify the deci-
sions which have caused each of the values to be rejected for Queen 6. However, in
a lookahead algorithm such as the DAC-L, values are not only rejected because they
are incompatible with the current label, but also through problem reduction. There-
fore, the culprits may not be identifiable through simple examination of the con-
straints.

For example, DAC-L will remove the labels <4,B> and <5,D> in the configuration
shown in Figure 5.9. If and when all the values for Queen 4 are rejected, it is impor-
tant to know why <4,B> cannot be selected together with (<1,A><2,C><3,E>).
<4,B> is rejected because after committing to (<1,A><2,C><3,E>), DAC is main-
tained and <4,B> is found to be incompatible with all the remaining values for
Queen 6. Further analysis will reveal that it is Queens 1, 2 and 3 together which
forced <6,D> to be the only value for Queen 6. Therefore, the rejection of <4,B> is
in fact caused by decisions 1, 2 and 3 together (as it is shown in Figure 5.9).

Recognizing the cause of <4,B>’s rejection is not at all an easy task. (Although it
may be possible to invent some mechanisms specific to the N-queens problem,
doing it for general problems is not easy.) The more inferences one performs to
reduce a problem, the more difficult it is to identify the culprits in an ad hoc way.
One general solution to this problem is to attach the justifications to each inference
made. Attaching justifications or assumptions to the inferences is required by many
AI researches. Research in developing general techniques for doing so is known as
truth maintenance, and general purpose systems for this task are called Truth Main-
tenance Systems (TMS).

5.6  Comparison of Algorithms

Comparing the efficiency of the above algorithms is far from straightforward. In
terms of complexity, all the above algorithms have worst case complexity which is
exponential to the number of variables. Empirically, one needs to test them over a
large variety of problems in order to generalize any comparative results. In fact, it is
natural that different algorithms are efficient in problems with different features,
such as the number of variables, domain sizes, tightness, type of constraints (binary
or general), etc., which we discussed in Section 2.5 of Chapter 2.

To make comparison even more difficult, there are many dimensions in which an
algorithm’s efficiency can be measured. For a particular application, the most
important efficiency measure is probably run time. Unfortunately, the run time of a
program could be affected by many factors, including the choice of programming
language, the data structure, programming style, the machine used, etc. Some algo-
rithms could be implemented more efficiently in one language than in another, and
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comparing the run time of programs written in different languages is not very sig-
nificant in general. In the literature, the following aspects (in addition to run time)
have been used to compare the efficiency of different CSP solving algorithms:

(1) the number of nodes expanded in the search tree;
(2) the number of compatibility checks performed (sometimes referred to as con-
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sistency checks in the literature);
(3) the number of backtracking required.

Lookahead algorithms attempt to prune off search spaces, and therefore tend to
expand less nodes. The cost of doing so is to perform more compatibility checks at
the earlier stages of the search. DDBT and learning algorithms attempt to prune off
search spaces by jumping back to the culprit decisions and recording redundant
compound labels. Their overhead involves the analysis of failures. These algorithms
tend to expand less nodes in the search space and require less backtracking than BT.
BC and BM tend to require fewer compatibility checks than BT and the above algo-
rithms, at the cost of overhead in maintaining certain records. Whether the overhead
of all these algorithms is justifiable or not is very much problem-dependent.

One of the better known empirical comparisons of some of the above algorithms
was made by Haralick & Elliott [1980], in which two kinds of problems were used.
The first was the N-queens problem with N varying from 4 to 10. The second was
problems with randomly generated constraints, where the compatibility between
every pair of labels was determined biased randomly. Each pair of labels <x,a> and
<y,b> was given a probability of 0.65 of being compatible. Problems with up to 10
variables were tested, and in a problem with N variables, each domain contains N
values.

In Haralick & Elliott’s tests, the algorithms were asked to find all the solutions. The
number of compound labels explored, backtracking and compatibility checks were
counted, and the run times recorded. It was observed that for the problems tested,
lookahead algorithms in general explores fewer nodes in the search space than the
Backtracking, BC and BM algorithms. Among the lookahead algorithms, AC-
Lookahead explores fewer nodes than DAC-Lookahead, which explores fewer than
Forward Checking. Lookahead algorithms do more compatibility checking than
Backtracking, BC and BM in the earlier part of the search, but this helps them to
prune off search space where no solution could exist. As a result, the lookahead
algorithms needed less compatibility checking in total in the tested problems.

Among the lookahead algorithms, Forward Checking does significantly fewer com-
patibility checks in total than DAC-Lookahead in the problems tested, which in turn
does even less checking than AC-Lookahead.

However, in interpreting the above results, one must take into consideration the
characteristics of the problems being used in the tests. The N-queens problem is a
special CSP, in that it becomes looser (see Definitions 2-14 and 2-15) as N grows
bigger. Besides, the above results were derived from relatively small problems
(problems with 10 variables, 10 values each). In realistic applications, the number
of variables and domains could be much greater, and the picture needs not be simi-
lar.
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5.7  Summary

In this chapter, we have classified and summarized some of the best known search
algorithms for CSPs. These algorithms are classified as:

(1) general search strategies;
(2) lookahead strategies; and
(3) gather-information-while-searching strategies.

General search strategies summarized are chronological backtracking (BT, which
was introduced in Chapter 2) and iterative broadening (IB). IB is derived from the
principle that no branch in the search tree should receive more attention than others.
BT and IB both make no use of the constraints in CSPs to prune the search space.

Algorithms introduced in this chapter which use lookahead strategies are forward
checking (FC), directional arc-consistency lookahead (DAC-L) and arc-consistency
lookahead (AC-L). In these algorithms, problem reduction is combined with search-
ing. Constraints are propagated to unlabelled variables to reduce the unsolved part
of the problem. This allows one to prune off futile branches and detect failure at an
earlier stage.

Algorithms introduced in this chapter which use gather-information-while-search-
ing strategies are dependency-directed backtracking (DDBT), learning nogood
compound labels (LNCL), backchecking (BC) and backmarking (BM). These algo-
rithms analyse the courses of failures so as to jump back to the culprit decisions,
remember and deduce redundant compound labels or reduce the number of compat-
ibility checks. They exploit the fact that the subtrees in the search space are similar
and known — hence failure experience can help in future search.

To help in understanding these algorithms, Prolog programs have been used to show
how most of the above algorithms can be applied to the N-queens problem.

In our discussion of the above strategies, we have assumed random ordering of the
variables and values. In fact, efficiency of the algorithms could be significantly
affected by the order in which the variables and values are picked. This topic will be
discussed in the next chapter. Besides, by exploiting their specific characteristics,
some problems can be solved efficiently. This topic will be discussed in Chapter 7.

5.8  Bibliographical Remarks

For general search strategies, see Nilsson [1980], Bratko [1990], Rich & Knight
[1991], Thornton & du Boulay [1992] and Winston [1992]. See Korf [1985] for iter-
ative deepening (ID) and iterative deepening A* (IDA*). Iterative Broadening (IB)
was introduced by Ginsberg & Harvey [1990]. The basic Lookahead algorithms,
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BC and BM are explained in Haralick & Elliott [1980]. FC-1 and Update-1 are basi-
cally procedures from [HarEll80]. They have been extended to FC-2 and Update-2
here. DDBT as a general strategy is described in Barr et al. [BaFeCo81]. It has been
applied to planning (see Hayes, 1979), logic programming (see Bruynooghe &
Pereira [1984] and Dilger & Janson [1986]), and other areas. The set covering prob-
lem is a well defined problem which has been tackled in operations research for a
long time, e.g. see Balas & Ho [1980a,b]. The terms deep- and shallow-learning are
used by Dechter [1986]. BM was introduced by Gaschnig [1977, 1978]. BackJump-
ing was introduced in Gaschnig [1979a]. Haralick & Elliott [1980] empirically
tested and compared the efficiency of those algorithms in terms of the number of
nodes explored, and the number of compatibility checks performed in them. Com-
plexity of these algorithms is analysed by Nudel [1983a,b,c]. Prosser [1991]
describes a number of jumping back strategies, and illustrates the fact that in some
cases backjumping may become less efficient after reduction of the problem. Litera-
ture in truth maintenance is abundant; for example, see de Kleer [1986a,b,c], Doyle
[1979a,b,c], Smith & Kelleher [1988] and Martins [1991].



Chapter 6

Search orders in CSPs

6.1  Introduction

In the last chapter, we looked at some basic search strategies for finding solution
tuples. One important issue that we have not yet discussed is the ordering in which
the variables are labelled and the ordering in which the values are assigned to each
variable. Decisions in these orderings could affect the efficiency of the search strat-
egies significantly. The ordering in which the variables are labelled and the values
chosen could affect the number of backtracks required in a search, which is one of
the most important factors affecting the efficiency of an algorithm. In lookahead
algorithms, the ordering in which the variables are labelled could also affect the
amount of search space pruned. Besides, when the compatibility checks are compu-
tationally expensive, the efficiency of an algorithm could be significantly affected
by the ordering of the compatibility checks. We shall discuss these topics in this
chapter.

6.2  Ordering of Variables in Searching

In Chapter 2, we have shown that by ordering the variables differently, we create
different search spaces (see Figures 2.2 and 2.3). We mentioned that the size of the

search space is , where  is the domain of variable xi and

is the size of , and n is the number of variables in the problem. The ordering of

the variables will change the number of internal nodes in the search tree, but not the
complexity of the problem. The following are some of the ways in which the order-
ing of the variables could affect the efficiency of a search:

(a) In lookahead algorithms, failures could be detected earlier under some order-
ings than others;

O Dxjj 1=
n∏( ) Dxi

Dxi

Dxi
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(b) In lookahead algorithms, larger portions of the search space can be pruned off
under some orderings than others;

(c) In learning algorithms, smaller nogood sets could be discovered under certain
orderings, which could lead to the pruning of larger parts of a search space;

(d) When one needs to backtrack, it is only useful to backtrack to the decisions
which have caused the failure; Backtracking to the culprit decisions involves
undoing some labels. Less of this is necessary in some orderings than others.

We shall explain the following heuristics for ordering the variables below. This is
by no means an exhaustive list:

(1) the minimal width ordering (MWO) heuristic — by exploiting the topology
of the nodes in the primal graph of the problem (Definition 4-1), the MWO
heuristic orders the variables before the search starts. The intention is to
reduce the need for backtracking;

(2) the minimal bandwidth ordering (MBO) heuristic — by exploiting the struc-
ture of the primal graph of the problem, the MBO heuristic aims at reducing
the number of labels that need to be undone when backtracking is required;

(3) the fail first principle (FFP) — the variables may be ordered dynamically dur-
ing the search, in the hope that failure could be detected as soon as possible;

(4) the maximum cardinality ordering (MCO) heuristic — MCO can be seen as a
crude approximation of MWO.

6.2.1  The Minimal Width Ordering Heuristic

The minimal width ordering (MWO) of variables is applicable to problems in
which some variables are constrained by more variables than others. It exploits the
topology of the nodes in the constraint primal graph (Definition 4.1). (Since every
CSP has associated with it a primal graph, application of the MWO heuristic is not
limited to binary problems.) The heuristic is to first give the variables a total order-
ing (Definition 1-29) which has the minimal width (Definition 3-21), and then label
the variables according to that ordering. Roughly speaking, the strategy is to leave
those variables which are constrained by fewer other variables to be labelled last, in
the hope that less backtracking is required.

6.2.1.1  Definitions and motivation

In Chapter 3, we defined a number of concepts related to the width of a graph
(Definitions 3-20 to 3-22). To recapitulate, given a total ordering < on the nodes of a
graph, the width of a node v is the number of nodes before v (according to the order-
ing <) and adjacent to v. The width of an ordering is the maximum width of all the
nodes under that ordering. The width of the graph is the minimal width of all possi-
ble orderings. To help our discussions below, Figure 3.5 is reproduced here in
Figure 6.1.
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By labelling the variables under an ordering with a smaller width, the chance of
backtracking can be reduced. This is because the variables which have more unla-
belled variables depending on them are labelled first. So the variables at the front of
the ordering are in general more constrained by other variables and the variables at
the back normally have more freedom in the values that they can take.

This point can be illustrated by a simple example. Consider the constraint graph in
Figure 6.2(a). If the variables are labelled in the ordering (B, C, A), there is a chance
that <B,r> and <C,b> are chosen for B and C. When that is the case, no value for A
will satisfy all the constraints. In order to find a solution tuple, label <C,b> must be
revised. Had we labelled variable A first, there is no need for backtracking, no mat-
ter what value we assign to A. If we look at the orderings more carefully, we find
that (B, C, A) has a width of 2, and both (A, B, C) and (A, C, B) have width of 1 (see
Figure 6.2(b, c, d)). The search space explored by Chronological Backtracking (BT)
and Forward Checking (FC) are shown in Figure 6.3. In both BT and FC, the
number of branches explored in the search space are smaller under the ordering
(A, B, C).

The following theorems are mainly due to Freuder [1982] (with minor modifica-
tions here).

Theorem 6.1 (mainly due to Freuder, 1982)

Given a general CSP:
(i) A depth first search ordering is backtrack-free if the level of strong k-

consistency in the problem (k) is greater than the width of the corre-
sponding ordered constraint graph:

∀ csp((Z, D, C)): (∀  <: total_ordering(Z, <):
strong k-consistent((Z, D, C)) ∧ width(G(Z, D, C), <) < k ⇒

backtrack-free((Z, D, C), <)

(ii) There exists a backtrack-free depth first search ordering for the prob-
lem if the level of strong k-consistency in the problem (k) is greater
than the width of the constraint graph.

∀ csp((Z, D, C)):
strong k-consistent((Z, D, C)) ∧ width(G( Z, D, C)) < k ⇒

(∃  <: total_ordering(Z, <): backtrack-free((Z, D, C), <)

Proof

(i) Assume that we label the variables in a CSP P according to an ordering
< under which the width of the constraint graph is w. Assume further
that strong k-consistency has been achieved in P, where k is greater
than w. If some domains have been reduced to empty, then the problem
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is insoluble, and therefore no search is needed. Otherwise, every
domain is non-empty, which means the problem is 1-satisfiable. We
shall prove by induction that when this is the case, for all sequence of
variables in the ordering, compatible labels can be found. The first var-
iable can always be labelled legally, as the graph is strong 1-satisfiable.
Suppose that we have labelled a sequence of variables according to the
ordering < without violating any constraints. The next variable X that
we are going to label is constrained by at most w variables before it (by
assumption that width = w). By our inductive assumption, the com-
pound label cl for those w or less variables is legal. Given that the graph
is strong k-consistent, and k is greater than w, we can always find a
value for X which is compatible with cl. By mathematical induction, we
conclude that a sequence of any length under the ordering < can be
labelled consistently. This implies that no backtracking is required in
the search.

(ii) By definition, the ordering of a constraint graph is the ordering with the
minimal width. If we order the variables according to the minimal
width ordering, and the level of strong k-consistent in the graph is
greater than this width, then, according to (i), we can always label the
variables consistently without backtracking.

(Q.E.D.)

Theorem 6.1 extends the results of Theorem 3.1. It not only explains the motivation
for achieving consistency, it also indicates the maximum k that strong k-consistency
needs be achieved in order to make searches backtrack-free. It suggests that if a
constraint graph has width w, then we should never need to achieve strong k-con-
sistency for any k > w + 1. When k ≤ w + 1, backtracking may be required. In gen-
eral, the smaller (w − k) is, the less backtracking can be expected.

Theorem 6.2

A connected constraint graph (with more than one node) has width 1 if it is a
tree.

∀  graph(G): width(G) = 1 ⇔ tree(G)

Proof

Every node in a tree has at most one parent node. Therefore, we can order
the nodes in a tree in such a way that all the nodes are placed after their par-
ent in the tree (not necessarily immediately after). Since every node has at
most one parent, the width of this ordering is necessarily 1. On the other
hand, the width of a tree with more than one node will not be less than 1
(obvious). So the width of a tree is exactly 1.

(Q.E.D.)
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Since trees have width 1, CSPs which primal graph are in tree structure (only binary
CSPs will have this property) can be solved by backtrack-free searches.

6.2.1.2  Finding minimal width ordering

In the last section, we explained the motivation for finding the minimum width of a
primal graph of a CSP. In this section, we shall explain how an ordering with the
minimum width can be found. The procedure Find_Minimal_Width_Ordering
below is due to Freuder [1982]:

PROCEDURE Find_Minimal_Width_Ordering( (V, E) )
/* (V, E) is a graph where V, E are the set of nodes and edges,

respectively */
BEGIN

Q = ( ); /* Q is initialized to an empty sequence */
REPEAT

N ← the node in V joined by the least number of edges in E;
/* in case of a tie, make an arbitrary choice */
V ← V − {N};
remove all the edges from E which join N to other nodes in V;
Q ← N:Q; /* make N the head of the sequence */

UNTIL (V = { });
return(Q); /* Q = sequence of nodes in minimal width ordering */

END /* of Find_Minimal_Width_Ordering */

The Find_Minimal_Width_Ordering procedure returns a sequence which has the
minimal width of the graph. In other words, the width of the returned ordering is the
width of the constraint graph. The proof of this post-condition of the procedure will
not be presented here; interested readers are referred to Freuder [1982]. Figure 6.4
illustrates the steps taken by the Find_Minimal_Width_Ordering algorithm finding
the MWO. At the start, nodes A, C and E all have a degree of 2 (i.e. all of them have
two links). Therefore, one of them should be removed. A was chosen as an arbitrary
choice. As a consequence, edges (A, B) and (A, F) are removed. Next, all the nodes
B, C, E and F have degrees equal to 2. B is removed as an arbitrary choice. At this
point, the sequence Q contains B and A in that order. Then C is removed (as it has
only one link), and so on. Finally, all the nodes are removed, and Q contains the
nodes with the MWO. This ordering Q = (A, B, C, D, E, F, G) has a width of 2.

Let the time to find the degree of a node be constant. The algorithm Find_Mini-
mal_Width_Ordering will iterate n times, where n is the number of nodes in the
graph. In each iteration, one has to go through all the remaining nodes once to find
the node with the minimum degree, and the complexity of doing so is O(n). There-

fore, the time complexity of the algorithm is O(n2).
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A similar ordering method is called the max-degree ordering, which simply orders
the nodes by their degrees. The motivation is the same as the MWO, i.e. to find an
ordering which could reduce the need to backtrack. The max-degree ordering is an
approximation of the MWO, but requires less computation.

6.2.1.3  Implementation of MWO

Program 6.1, mwo.plg, shows how the Find_Minimum_Width_Ordering algorithm
could be implemented. It assumes that the graph is represented by unit clauses node/
1 and edge/2, where node(N) records a node N, and edge(X, Y) records an edge
between nodes X and Y. The graph is undirected, and therefore edge(X, Y) is treated
as the same object as edge(Y, X). The algorithm removes one node from the list of
nodes at a time, and puts it to the head of an accumulative parameter (the third
parameter of mwo/3). The removed node has the least number of links to the
remaining nodes (this node is instantiated in least_connections/5). The program
mwo.plg allows backtracking to alternative orderings. minimum_width_ordering/1
can also be called with an instantiated list to check if the ordering of the elements in
the list is a minimum_width_ordering.

6.2.2  The Minimal Bandwidth Ordering Heuristic

The minimal bandwidth ordering (MBO) heuristic of variables is applicable to
CSPs in which the constraint graph is not complete. Like the MWO heuristic, the
MBO heuristic is used for preprocessing: the variables are given a total ordering
with the minimal bandwidth (Definition 6-2 below) before search starts. The intui-
tion behind this heuristic is that the closer the constrained variables are placed to
each other, the less distance one has to backtrack in case of failure.

6.2.2.1  Notations and definitions

Let h be an ordering of the nodes in a graph, and h maps every node v in the graph to
the position that v is at under the ordering h. For example, if the set of nodes is
{a, b, c, d}, and the ordering h is (a, b, c, d), then h(c) = 3, because c comes third in
the ordering.

Definition 6-1:

The bandwidth of a node v in an ordered graph is the maximum distance
between v and any other node which is adjacent to v according to the order-
ing:

∀  graph((V, E)):
bandwidth(v, (V, E), h) ≡

MAX  h(v) − h(w): w ∈  neighbourhood(v, (V, E))
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where h(x) returns the position of the node x according to the ordering h,
h (v) − h(w) denotes the absolute value between h(v) and h(w), and neigh-
bourhood is defined in Definition 3-24. ■

Definition 6-2:

The bandwidth of an ordering h is the maximum bandwidth of all the
nodes in the graph under the ordering h:

∀  graph((V, E)): (bandwidth((V, E), h) ≡
MAX bandwidth(v, (V, E), h)): v ∈ V) ■

Definition 6-3:

The bandwidth of a graph is the minimal bandwidth of all orderings in the
graph:

∀  graph((V, E)): (bandwidth((V, E)) ≡ MIN bandwidth((V, E), h): total_or-
dering(V, h)) ■

Figure 6.5(a) shows the same graph as Figure 6.1(a). Figure 6.5(b) shows the band-
width of the nodes under the ordering shown in Figure 6.1(c). The bandwidth of the
ordering (G, F, E, D, C, B, A) is the maximum of the bandwidth of all the nodes,
which is 5 (all nodes A, B, F and G have bandwidth equal to 5). Figure 6.5(c) shows
an alternative ordering (B, C, A, G, D, F, E), and the bandwidth of each node under
this ordering. The bandwidth of this ordering is equal to the maximum bandwidth of
all the nodes, which is 3. In fact, careful analysis should reveal that this is the small-
est bandwidth that one can get for the graph. In other words, the bandwidth of the
graph in Figure 6.5(a) is 3. Below we shall first explain the usefulness of the MBOs,
and then explain how they can be found.

6.2.2.2  Use of MBO

The concept of the MBO heuristic is used in ordering the variables before back-
tracking search starts. In general, the smaller the bandwidth of an ordering is, the
sooner one could backtrack to relevant decisions in an algorithm which backtracks
chronologically, such as the lookahead algorithms that we described in Chapter 5.

In the following we shall show that when the bandwidth of a graph is small, the
worst case time complexity of solving the problem could be improved over simple
backtracking and lookahead algorithms. The following two theorems are due to
Zabih [1990]:
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Theorem 6.3 (due to Zabih [1990])

For any graph G and any ordering < on its nodes, the bandwidth of G under
< is always greater than or equal to the width of G under <.

∀  graph((V, E)):

(∀  <: total_ordering(V, <): bandwidth((V, E), <) ³ width(( V, E), <)

Proof

For any graph (V, E) and any ordering <, let b = bandwidth((V, E), <). For
any node v, all the nodes that are before and adjacent to v must be within a
distance of b according to the ordering < (by definition of bandwidth).
Therefore, there can at most be b nodes which are before and adjacent to v.

(Q.E.D.)

Theorem 6.4 (due to Zabih [1990])

For any CSP P, if (V, E) is its primal graph and < is a total ordering of the
nodes V, then the bandwidth of (V, E) under < is always greater than the
induced-width of P under < (Definition 4.5).

∀  graph((V, E)): (∀  <: total_ordering(V, <):
bandwidth((V, E), <) ³ induced-width(( V, E), <)

Proof

Given any CSP P, if the nodes of its constraint graph (V, E) are given an
ordering <, let b = bandwidth((V, E), <). For any node v in V, the Adaptive-
consistency procedure will only add edges between the nodes which are
before and adjacent to v. Since all the nodes which are before and adjacent to
v are within a distance of b to v, the added edges between them will not
increase the bandwidth of the induced graph (see Figure 4.3, for example).
So the bandwidth of the induced graph is the same as bandwidth((V, E), <),
which is greater than or equal to the width of the induced graph (by
Theorem 6.3).

(Q.E.D.)

It is shown below that if the bandwidth of a graph is b, then a minimal bandwidth

ordering can be found in both time and space O(nb), where n is the number of varia-
bles in the problem.

Let (V, E) be a graph, and < be an ordering of the nodes V. Let W* be the induced
width — i.e. the width of the induced graph produced by the Adaptive-consistency
procedure under the ordering <. It is shown in Section 4.6 that the resulting CSP can
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be solved in time O(aW*+1) and space O(aW*), where a is the maximum size of all
the domains. By Theorem 6.4, bandwidth((V, E), <) is always greater than or equal
to W*. So any CSP which constraint primal graph has a bandwidth b or below can

be solved in time O(nb + ab+1) and space O(nb + ab). For problems with small b,

this could be better than O(an), which is the worst case time complexity of back-
tracking algorithms for general CSPs.

Preliminary empirical result supports the effectiveness of the MBO heuristic
[Zabi90]. Tested on the graph-colouring problem alone, there is positive correlation
between the bandwidth of the ordering and the size of the tree searched by a chron-
ological backtracking strategy. However, the full potential of the MBO heuristic in
other search strategies is yet to be explored.

6.2.2.3  Finding MBOs

Saxe [1980] presented an algorithm with time and space complexity O(nk+1) for
determining whether a graph (with n nodes) has bandwidth k for any given integer
k. This algorithm was improved by Gurari & Sudborough [1984], who presented an

algorithm with time and space complexity O(nk). Their algorithm requires the graph
to be connected (Definition 1-22). This is not a severe limitation because any graph
can be partitioned into its connected components by depth first search in
O(max(n, e)), where n is the number of nodes and e is the number of edges (see
Chapter 7).

Later in this section, we shall describe a procedure called
Determine_Bandwidth((V, E), k), which is based on Gurari and Sudborough’s algo-
rithm. For any given graph (V, E) and any integer k, Determine_Bandwidth returns
an ordering with bandwidth ≤ k if such ordering exists. But before this algorithm is
introduced, we shall first define a few terminologies, make some observations and
explain the data structures to be used.

Definition 6-4:

A partial layout of a graph G is a total ordering of a subset of the nodes in
G:

∀  graph((V, E)): (∀ Z ⊆ V:
(∀  <: total_ordering(Z, <): partial_layout((Z, <), (V, E)))) ■

Definition 6-5:

Given a partial layout (Z, <) of a graph (V, E), a dangling edge is an edge
which joins a node in Z to a node which is in V but not in Z:
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∀  graph((V, E)):
(∀ Z ⊆ V: (∀  <: total_ordering(Z, <):

(∀  (a, b) ∈ E: dangling_edge((a, b), (Z, <), (V, E)) ≡
(a ∈ Z ∧ b ∈ V ∧ b ∉ Z)))) ■

The fact that Z is a subset of V and < is a total ordering of Z implies that (Z, <) is a
partial layout of (V, E) in Definition 6-5.

Definition 6-6:

A conquered node is a node in a partial layout which is not joined by any
dangling edges:

∀  graph((V, E)):
(∀ Z ⊆ V: (∀ <: total_ordering( Z, <):

(∀ a ∈ Z: conquered_node(a, (Z, <), (V, E)) ≡ ∀  (a, b) ∈ E: b ∈ Z)))
■

Definition 6-7:

If (V, E) is a graph of which (Z, <) is a partial layout, then an active node in
(Z, <) is a node which is adjacent to some nodes in V which are not in Z:

∀  graph((V, E)):
(∀ Z ⊆ V: (∀  <: total_ordering(Z, <):

(∀ a ∈ Z: active_node(a, (Z, <), (V, E)) ≡ ∃  (a, b) ∈ E: b ∉ Z))) ■

In other words, if (Z, <) is a partial layout of any graph G, then any node in Z is
either conquered or active. Observe that if a partial layout can be extended to an
ordering of all the nodes in the graph with bandwidth ≤ k, the following must be
true:

(a) The bandwidth of the partial layout is less than or equal to k;
(b) for all edges (x, y), if x is in the partial layout and y is not, then x must be

among the last k elements in the partial layout (otherwise the distance
between x and y in any ordering extended from this partial layout must be
greater than k).

Therefore, we can focus on the last k elements of the partial layout. Furthermore, if
(v1, v2, ..., vk) are the last k elements in the partial layout, and all nodes v1, v2, ..., vi,
where i ≤ k, have no dangling edges, then we can separate all the nodes into three
sets: the conquered nodes, the active nodes, and the unordered nodes. Figure 6.6
shows an example.

The set of all active nodes plus the ordering under which they are defined is called
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the active region. Since the graph is connected (by assumption), the active region
plus the dangling edges together determines the conquered nodes and unordered
nodes — all unordered nodes are either connected by some dangling edges, or adja-
cent to some other unordered nodes.

Based on these observations, the Determine_Bandwidth algorithm, which we shall
explain later, works by continuously extending the partial layout and updating the
pair (r, d), where r is the active region and d is the set of dangling edges, until d is
empty or it is provable that no ordering of bandwidth ≤ k can be generated. It makes
use of two data structures:

(1) a first in first out (fifo) queue Q whose elements are (r, d) pairs, each of which
representing a partial layout;

(2) a boolean array T, with one element per each (r, d) pair, recording whether
this pair has been processed.

For any pair (r, d) and any node s, where r = (v1,v2,...,vi) is an active region and d is
a set of dangling edges for r, the procedure Update_active_area((r, d), s) below
returns a new pair (r',d') where:

Ordered nodes:

Unordered nodes:

Conquered
nodes

Active
nodes

Dangling
edges

No
linkage

Figure 6.6 Node partitioning in bandwidth determination
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(a) r' is the sequence r with s appended to the end of it, and the sub-subsequence
(v1, v2, ..., vj) removed from it, where j ≤ i and all the nodes v1, v2, ..., vj have
no dangling edges in d except those which join them to s;

(b) d' is the set of dangling edges for the nodes in r'.

PROCEDURE Update_active_area( (r, d), s )
/* r = (v1, v2, ..., vi) */
/* Update_active_area appends a new node s to the end of r, and dis-

cards all the nodes at the front of r which are no longer adjacent to
any unordered nodes (via dangling edges) after s is added. */

BEGIN
FOR each e in d DO

IF (s is an end point of e) THEN d ← d − {e};
j ← 1;
WHILE ((vj is NOT joined by any edge in d) AND (j ≤ i)) DO

j ← j + 1;
FOR each edge e' in the graph which connects s DO

IF (e' does not join s to any node in r) THEN d ← d + {e'};
/* s will never be adjacent to any conquered nodes */

return( (vj, vj+1, ..., vi, s), d );
END /* of Update_active_area */

The Plausible((r, d), k) procedure below returns False if it can be proved that the
pair (r, d) cannot be part of an ordering with bandwidth ≤ k; it returns True other-
wise:

PROCEDURE Plausible( (r,d), k )
/* r = (v1, v2, ..., vi), which is a (possibly empty) sequence of nodes */
/* d = nonempty set of dangling edges */
/* Plausible checks to see if r can possibly be extended to an ordering

with bandwidth ≤ k: return False if any node in r has more dangling
edges than limit, return True otherwise */

BEGIN
IF ( r > k) THEN return(False)
ELSE BEGIN

Limit ← k −r   + 1; j ← 1;
/* look at the first node in r; set its limit */

WHILE (j < r ) DO
BEGIN

IF (vj is joined by more than Limit edges in d)
THEN return(False)
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ELSE BEGIN Limit ← Limit + 1; j ← j + 1; END
END

return(True);
END

END /* of Plausible */

Note that Plausible is only called when d is a nonempty set of dangling edges. The
following is the procedure Determine_Bandwidth.

PROCEDURE Determine_Bandwidth((V, E), k)
/* to determine whether there exists an ordering for the nodes of the

graph (V, E) which bandwidth is ≤ k */
/* r and d are active regions and dangling edges, respectively, Q is a

fifo queue of (r, d) pairs, T is a boolean array which records the
(r, d) pairs processed */

BEGIN
add ((), { }) to Q;
set all elements in T to False;
WHILE (Q ≠ { }) DO /* basically a breadth-first search */

BEGIN
remove the head (r, d) from Q;
/* r = (v1, v2, ..., vi), which is a (possibly empty) sequence of

nodes */
IF (r is a sequence of k nodes)
THEN BEGIN

find any s such that (s, v1) ∈ d;
/* note that (s,v1) is the same object as (v1,s);

Update_active_area guarantees the exist-
ence of such s */

(r', d') ← Update_active_area( (r, d), s );
IF (d' = { }) THEN return(True);
ELSE IF (Plausible((r', d'), k) AND NOT T((r', d')))
THEN BEGIN

T((r', d')) ← True; add (r', d') to end of Q;
END

END /* of then */
ELSE FOR each unordered node s DO

BEGIN
(r', d') ← Update_active_area( (r, d), s );
IF (d' = { }) THEN return(True);
ELSE IF (Plausible((r', d'), k) AND NOT T((r', d')))
THEN BEGIN

T((r', d')) ← True; add (r', d') to end of Q;
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END
END

END /* of WHILE loop */
return(False);

END /* of Determine_Bandwidth */

Update_active_area is the only procedure which adds and removes nodes from the
active region. When a node is appended to the end of the input active region, all the
edges which join it to other nodes, apart from those which join it to nodes that are
already in the active region, will be added into the set of dangling edges. When a
node is removed from the active region, it ensures that it is connected by no dan-
gling edges. Therefore, Update_active_area guarantees that all conquered nodes are
not adjacent to any unordered nodes. On the other hand, Update_active_area
removes any node from the front of the active region which is no longer joined by
any dangling edges after the new node is added into the region.

Determine_Bandwidth basically performs a breadth-first search in the space of
active-region-dangling-edges pairs. Figure 6.7 shows part of the space searched by
Determine_Bandwidth in an example graph.

To find an ordering with the minimal bandwidth for a graph, one may call Deter-
mine_Bandwidth iteratively, increasing k by 1 at a time.

Gurari & Sudborough assume that the unordered nodes are computed rather than
explicitly recorded in their analysis of space complexity. For a connected graph, all
unordered nodes are accessible from some active nodes via the dangling edges. So y
is an unordered node if and only if there exists a node x in the active area such that
either (a) (x, y) is a dangling edge; or (b) there exists a path (x, v1, v2, ..., vi, y) in the
graph, such that (x, v1) is a dangling edge and all v1, v2, ..., vi are unordered nodes.

For a graph with n nodes, the time and space complexity of Determine_Bandwidth

is O(nk) for the following reasons:

(1) There are at most O(nk) pairs of (r, d) in which r consists of k nodes. With the
help of T, each such pair is processed no more than once. When r has k nodes,
Update_active_area and Plausible together ensure that there is exactly one
edge connected to the first node of r. Therefore, the focal layout can be
extended to a unique partial layout, and this extension takes constant time.

(2) There are at most O(nk-1) pairs of (r, d) in which r is composed of fewer than
k nodes. Again, each such pair will be processed no more than once. When r
has fewer than k nodes, there are at most n nodes to be added to the partial
layout. Therefore, the time complexity of processing (r, d)’s with less than k
nodes in r is also O(nk).
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Combining (1) and (2), the time complexity of Determine_Bandwidth is O(nk). The
array T dominates the space complexity. If we assume that each pair (r, d) occupies

constant space, at most O(nk) space would be needed for T.

6.2.2.4  Implementation of MBO algorithms

Program 6.2, mbwo1.plg, shows a Prolog implementation of the above algorithm. It
finds the minimum bandwidth and minimal bandwidth orderings for any connected
undirected graph which is represented in the format specified by it (see the header
of the program). Like Program 6.1, it assumes that the graph is represented by unit
clauses node/1 and edge/2, where node(N) records a node N, and edge(X, Y) records
an edge between nodes X and Y. To return a minimal bandwidth ordering,
Program 6.2 keeps not only the active region and the dangling edges, but also the
conquered nodes. Plausible pairs (active region plus the dangling edges) which have
been considered are asserted into the Prolog database. The algorithm iteratively
generates k’s from 1 to n − 1 (where n is the number of nodes in the graph), and calls
the bw/3 predicate to check whether there exists an ordering which bandwidth is k.

Program 6.3, mbwo2.plg, shows the implementation of an algorithm which is more
natural for Prolog. This algorithm makes use of Prolog’s backtracking, and it finds
all the orderings which have the minimum bandwidth. The set of nodes in the prob-
lem is divided into three lists: the Passed (Conquered) list, the Active list and the
Unplaced (Unordered) list. The Passed and the Active lists are lists of nodes which
have already been ordered. The algorithm generates the integer k from 1 to n, where
n is the total number of variables in the graph. It then checks to see if there exists
any ordering which has bandwidth k. The Active list is always kept as a list of k ele-
ments. In each iteration, one element is picked from the Unplaced list, and
appended to the end of the Active list. The head of the Active list is taken out and
appended to the end of the Passed list. The invariance is maintained that firstly, the
bandwidth of the ordered elements have bandwidth less than k, and secondly, that
no element in the Passed list is adjacent to any element in the Unplaced list.

The Active list is introduced to help identifying failure situations. When the head of
the Active list is removed, it is checked against the Unplaced list to make sure that
no link exists (otherwise, the present ordering will not lead to one which has the
subject bandwidth k). We can actually use the lookahead introduced in the last chap-
ter in mbwo2.plg. Apart from checking that the head of the Active list has no link
with the elements in the Unplaced list, we can make sure that no more than k ele-
ments in the Unplaced list are adjacent to the elements in the Active list. Whether
the overhead of the extra testing is justifiable is probably implementation-depend-
ent.
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6.2.3  The Fail First Principle

The Fail First Principle (FFP) is a general heuristic for searching. It suggests that
the task which is most likely to fail should be performed first. This heuristic aims at
recognizing dead-ends as soon as possible so that search effort can be saved.

According to this strategy, the next variable to be labelled should be the variable
which is the most constrained. The level difficulty in labelling a variable can be
measured in different ways, one simple measure being the size of the domain.
Under this measure, the variable which has the smallest domain should be labelled
next. The FFP is being employed by the constraint programming language CHIP,
and impressive results have been reported.

6.2.3.1  The principle

In a simple backtracking algorithm such as the BT introduced in Chapter 5, the
domain of the variables are static. Therefore, applying the FFP means sorting the
variables in ascending order according to their domain size before search starts.

When the FFP is used together with lookahead algorithms, the ordering becomes
dynamic. In a lookahead algorithm, after a variable is labelled constraints are prop-
agated and values are possibly removed from the domains of unlabelled variables.
In other words, the domain size of the unlabelled variables could change dynami-
cally. Therefore, when the FFP is applied, the search order must be determined
dynamically. After assigning a value to each variable and propagating the con-
straints, the domains of all the unlabelled variables are compared and the variable
which has the smallest domain will be selected.

Despite its simplicity, the FFP has been demonstrated to be quite effective in
improving search efficiency. The FFP is effective because with it, one has a better
chance of detecting failure sooner. By using probability theories, Haralick & Elliott
[1980] show that “by always choosing the next unit (variable) having smallest
number of label choices we can minimize the expected branch depth”. However, it
is important to point out that this analysis assumes uniform probability of finding a
legal label for every variable. Furthermore, success or failure of labelling one varia-
ble is independent of another variable’s success or failure.

6.2.3.2  Implementation of FFP in lookahead algorithms

Programs 6.4 to 6.6 show how the FFP could be incorporated in the FC, DAC-
Lookahead and AC-Lookahead algorithms explained in Chapter 5.

Program 6.4, ffp-fc.plg, is basically a modification of Program 5.4, fc.plg (which
implements FC) in Chapter 5. The main difference is in the call of select_variables/
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5 which returns the variable with the smallest domain. The call select_value/4 will
return a value which is not incompatible with all the values of any unlabelled varia-
bles. Constraint propagation is performed in select_value/4.

Program 6.5, ffp-dac.plg, is basically a modification of Program 5.5, dac.looka-
head.plg (which implements DAC-Lookahead). A point must be clarified here.
When achieving DAC, an ordering of the variables is assumed (DAC is defined
over a CSP with an ordering in its variables). But with FFP, the variables are
ordered dynamically in the search. At first sight, there seems to be incompatibility
between the DAC-Lookahead control strategy and the FFP heuristic. The fact is,
DAC can be achieved in an ordering which is independent of the ordering under
which the variables are labelled. When DAC is achieved in the program ffp-dac.plg,
the ordering in which the variables and their domains are stored is used. This order-
ing is changed by maintain_directed_arc_consistency/2, which is called by select_-
value/4.

Program 6.6, ffp-ac.plg, is basically a modification of Program 5.8, ac.lookahead.-
plg (which implements AC-Lookahead). Like ffp-fc.plg and ffp-dac.plg, select_var-
iable/5 selects the variable with the smallest domain. Unlike ffp-dac.plg,
select_value/4 calls maintain_arc_consistency/2 instead of maintain_directed_ar-
c_consistency/2.

6.2.4  The maximum cardinality ordering

The max-cardinality ordering (MCO) heuristic can be seen as a crude approxima-
tion of the MWO heuristic. Although this ordering itself has been shown to be
effective in certain problems, it is mentioned here mainly because it has useful
properties that will be used by the tree-clustering method in Chapter 7.

The MCO can be obtained by picking the nodes in reverse order using the following
step. To start, an arbitrary node is made the last node of the ordering. Then among
all the unordered nodes, the one which is adjacent to the maximum number of
already ordered nodes will be made the last, with ties broken arbitrarily. The pseudo
code of the Max_cardinality algorithm is shown below:

PROCEDURE Max_cardinality(V, E)
/* given a graph (V, E), return a maximum cardinality ordering of the

nodes V. “Ordering” here is an array of nodes in V */
BEGIN

N ← number of elements in V;
Ordering[N] ← an arbitrary element of V; V ← V − Ordering[N];
FOR i = N − 1 to 1 by −1 DO

BEGIN
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Ordering[i] ← node in V which is adjacent to the maximum
number of nodes between Ordering[i + 1] and Order-
ing[N];

V ← V − Ordering[i];
END

return(Ordering);
END /* of Max_cardinality */

If we assume that finding the node which is adjacent to the maximum number of
ordered nodes takes a constant time, then the procedure Max_cardinality takes O(n)
time to compute, where n equals the number of nodes in the graph.

Figure 6.8 shows the steps in finding a MCO in an example graph. Node A is chosen
arbitrarily. Nodes B, C and F are all adjacent to the only ordered node A after A is
chosen. In the example shown, node B is chosen arbitrarily. The rest of the nodes
are ordered according to the same principle.

In this example the ordering produced by the Max_cardinality procedure has a
width of 4, whereas a width of 2 is achievable by the ordering (A, B, C, D, E, F, G)
(the reverse of the ordering shown in Figure 6.8(h). For reference, the ordering
shown in Figure 6.8(h) has a bandwidth of 5. A bandwidth of 3 can be achieved for
the graph in Figure 6.8(a) by the ordering (E, F, C, D, A, B, G).

6.2.5  Finding the next variable to label

MWO, MBO, FFP and MCO are all heuristics for ordering the variables. In this sec-
tion, we shall analyse the applicability of these heuristics under different circum-
stances, and study whether they can be applied together.

All MWO, MBO and MCO give the variables a fixed ordering before the search
starts. One problem of doing so is that it does not take the domains of the variables
into consideration. After constraint propagation, some variables could be more con-
strained than others, and therefore, one may benefit from labelling them first. The
FFP, on the other hand, considers this, but does not consider the topology of the
constraint graph.

In principle, the MWO heuristic aims at minimizing the need for backtracking, the
MBO heuristic aims at minimizing the distance of chronological backtracking, and
FFP aims at recognizing failures sooner. The relative efficiency of MWO, MBO,
MCO and FFP are problem dependent. Here we shall give a crude guideline of the
situations under which they may be effective.

In principle, the MWO heuristic may be useful for CSPs where:
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(1) the degree of the nodes in the constraint graph varies significantly; it will not
help, for example, in the N-queens problem, as each node in the constraint
graph has the same degree;

(2) a certain level of consistency is maintained in the graph; in this case, it is
worth finding out whether a backtrack-free search ordering can be established
(Theorem 6.1).

The MBO heuristic may be useful for CSPs where no node in the constraint graph
has high degrees. This is because the maximum degree among the nodes dictates the
lower-bound of the minimal bandwidth of the graph. In general, the fewer edges a
graph has, the smaller its minimal bandwidth is likely to be.

The FFP may be useful in problems where:

(1) the domain size of the variables varies significantly;
(2) constraints are tight, hence the domain sizes of the unlabelled variables could

change significantly in lookahead algorithms;

Point (2) suggests that the FFP is especially effective when used with lookahead
algorithms.

The MCO can be seen as a crude approximation of the MWO, which requires O(n)
time to compute, where n is the number of variables in the problem. It is useful for
generating chordal graphs, which we shall explain in Chapter 7.

One could attempt to combine the MWO and MBO heuristics. Given a constraint
graph, it is possible that more than one ordering has the minimum width and mini-
mal bandwidth. For example, the bandwidth of both the ordered graph shown in
Figure 6.5(b) and Figure 6.5(c) above have a width of 2, but the former has a band-
width of 5, and the latter has a bandwidth of 3. It is not difficult to show that the
width of the graph in Figure 6.5(a) is 2, and its bandwidth is 3. Therefore, the order-
ing shown in Figure 6.5(c) has both the minimum width and the minimal band-
width.

However, it is not always possible to find orderings which minimize both the width
and bandwidth simultaneously. Figure 6.9 shows such an example. Figure 6.9(a)
shows an example graph; Figure 6.9(b) shows an ordering which has width 2 and
bandwidth 5. A little reflection should convince the reader that moving nodes A and
B to positions after 3 and 4 would increase the width by at least 1. Therefore, 5 is
the minimum bandwidth that one can get with the width being equal to 2.
Figure 6.9(c) shows an ordering which has bandwidth 4, a lower bandwidth, but a
width of 3, a higher width. (In fact, running the above described programs would
verify that 2 is the minimum width and 4 is the minimum bandwidth of this graph.)

It is possible to combine the MWO and MBO heuristics with FFP. One way in
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which to do so is to employ FFP to order the variables dynamically, and in case of
ties (i.e. several variables having the same domain size), use the principles in the
MWO or MBO heuristics to select the next variable to label. Another possible
approach is to employ the MWO or MBO heuristic to order the variables before
labelling, and in case of ties in running the procedures Find_Minimal_Width_Or-
dering or Find_Minimal_Bandwidth_Ordering, pick the variable which has a
smaller domain size. Obviously, the justification of the overhead involved is prob-
lem- or domain-dependent.

It may worth emphasizing that MWO, MB, FFP and MCO are general heuristics
only. Given a particular application, domain knowledge should always be looked at,
because sometimes effective domain-specific heuristics may be available. Besides,
the heuristics described in this chapter have not considered the tightness of individ-
ual constraints.

6.3  Ordering of Values in Searching

It has long been suggested that the efficiency of a search for general search prob-
lems can be greatly affected by the ordering in which we explore the branches (e.g.
see Nilsson, 1980). Therefore, it should not be surprising to see that the efficiency
of a search algorithm for solving CSPs can be affected by the ordering under which
the values are selected for each variable.

6.3.1  Rationale behind values ordering

When picking the next variable to label, we pick the most constrained one first
because if it can be established that this variable cannot be consistently labelled,
there is no need to attempt to label the other variables. That is the rationale behind
not only the FFP heuristic, but also the MWO heuristic. On the other hand, when
picking the next value to assign to a variable, we want to pick the value which is
most likely to succeed, because failure in this case would cause backtracking.

Heuristics for ordering the values may help one to find the first solution more effi-
ciently if the branches which have a better chance of reaching a solution can be
identified and searched first. However, unless learning algorithms are employed,
ordering of the values does not help one to prune off any search space. So unless
learning takes place, ordering of the values is only useful for finding single solu-
tions.

6.3.2  The min-conflict heuristic and informed backtrack

In ordering the values, one would like to put those values which are most promising
at the front. However, there may be many ways to evaluate the likelihood of success
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in a value. One heuristic is called the min-conflict heuristic, which basically orders
the values according to the conflicts which they are involved with the unlabelled
variables. Basically, this heuristic can be used together with all those algorithms
described in the Chapter 5.

The Informed-backtrack algorithm below makes use of the min-conflict heuristic.
For simplicity, only binary constraints are considered in this algorithm. It starts with
two sets: LABELS_LEFT and LABELS_DONE. LABELS_LEFT is initialized to a
set of random assignments for all the variables, and LABELS_DONE is initialized
to an empty set. Then the program starts to resolve any conflict that exists.

If any label <x,v> is found to have conflict with any other label in LABELS_LEFT,
it is removed from LABELS_LEFT. Then for all the values v' such that <x,v'> is
compatible with all the labels in LABELS_DONE, v' is placed in a list, and ordered
in ascending order according to the number of conflicts that it has with the labels in
LABELS_LEFT. Then the value with the least number of conflicts will be assigned
to x, and this label will be put into LABELS_DONE. If no such value exists (i.e. all
assignments of x have conflict with some labels in LABELS_DONE), backtracking
takes place and the alternative values in the previously revised variables will be
used. The process terminates when either no conflict is detected among all labels in
LABELS_LEFT or all the combinations of labels have been tried.

Informed-backtrack ensures completeness by looking at all the combinations of
labels whenever necessary.

PROCEDURE Informed-Backtrack( Z, D, C );
BEGIN

LABELS_LEFT ← { };
FOR each variable x ∈  Z DO

BEGIN
pick a random value from Dx;
add <x,v> to LABELS_LEFT

END;
InfBack( LABELS_LEFT, { }, D, C );

END /* of Informed-Backtrack */

PROCEDURE InfBack( LEFT, DONE, D, C );
/* Basically InfBack performs a depth first search. In each step, it

attempts to replace an illegal label in LEFT */
BEGIN

IF (there exists any set of incompatible labels in LEFT)
THEN BEGIN

x ← any variable which label <x,v> is in LEFT and is <x,v> is in
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conflict with some other labels;
Queue ← Order_values( x, Dx, Labels_left, Labels_done, C );
WHILE (Queue ≠ { }) DO

BEGIN
w ← first element in Queue; Delete w from Queue;
 DONE ← DONE + {<x,w>};
 Result ← InfBack( LEFT − {<x,v>}, DONE, D, C );
IF (Result ≠ NIL) THEN return(Result);

END;
return(NIL); /* all values in Queue tried but failed */

END /* of THEN */
ELSE return( LEFT  +  DONE );

END /* of InfBack */

PROCEDURE Order_values( x, Dx, LEFT, DONE, C )
/* Order_values sorts the values of x in ascending order of the

number of labels in LEFT that these values have conflict with. A
value is discarded if it is incompatible with any label in DONE */

BEGIN
List ← { };
FOR each v ∈  Dx DO

BEGIN
IF (<x,v> is compatible with all the labels in DONE)
THEN BEGIN

Count[v] ← 0; /* Let Count be an array of integers */
FOR each <y,w> in LEFT DO

IF NOT satisfies( (<x,v><y,w>), Cx,y )
THEN Count[v] ← Count[v] + 1;

END
List ← List + {v};

END
Queue ← the values in List ordered in ascending order of

Count[v];
return( Queue );

END /* of Order_values */

The Informed-Backtrack algorithm can be improved by applying the min-conflict
heuristic in the initialization stage: instead of assigning a random value to each var-
iable, one could assign the value which has the least number of conflicts with the
labels which have already been assigned. Appropriate modification is possible to
extend the above procedures to handle general constraints.
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6.3.3  Implementation of Informed-Backtrack

Program 6.7, inf_bt.plg, shows an implementation of the Informed-backtracking
algorithm described in the preceding section. The program can be used to find all
the solutions for the N-queens problem. It is basically a backtracking algorithm on
the LABELS_DONE, but in practice, often only a few initial labels need to be
revised before solution is found. The min-conflict heuristic is also used in the ini-
tialization in Program 6.7.

6.4 Ordering of Inferences in Searching

Compatibility checks are computationally expensive in certain applications. In such
applications, the efficiency of the algorithm could be significantly affected by the
number of compatibility checks being made. In lookahead algorithms, propagating
the constraints imposed by the assignment of a value to a variable to the unlabelled
variables involves making inferences. The higher the level of consistency one main-
tains, the more backtracking one could potentially avoid, but the more inferences
one has to make. In algorithms which maintain a high level of consistency, the
number of inferences that needs to be made significantly affect the search efficiency,
but the number of inferences to be made could be affected by the ordering in which
they are made.

Research in the ordering of inferences in CSPs has been scarce. The best known
heuristic in this area is the Fail First Principle (FFP), the use of which in the order-
ing of the variables has been mentioned in Section 6.2.3. For inference ordering,
this principle suggests performing those inferences which are most likely to detect
failure first. The reason for this is obvious: the sooner a dead-end is detected, the
fewer inferences will need to be performed. Domain knowledge is normally
required to evaluate the chance of an inference failing.

6.5  Summary

This chapter explains the importance and heuristics for ordering (1) the variables;
(2) the values; and (3) the inferences.

For ordering the variables to label, we have explained:

(i) the minimal width ordering (MWO) heuristic;
(ii) the minimal bandwidth ordering (MBO) heuristic;
(iii) the fail first principle (FFP); and
(iv) the maximum cardinality ordering (MCO) heuristic.

The MWO, MBO and MCO heuristics all order the variables before the search
starts. All of them exploit the topology of the primal graphs of the problem; the
MWO heuristic attempts to reduce the chance of backtracking, and the MBO heu-
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ristic attempts to reduce the distance of backtracking. The FFP, on the other hand,
may dynamically order the variables. By employing the FFP, one has a better
chance of detecting failures and pruning off search spaces at an earlier stage. The
MCO is a crude approximation of MWO. It is introduced here mainly to be used in
Chapter 7. We have outlined the situations in which these strategies are applicable.

When one attempts to find a single solution, the search efficiency could be
improved if one labels each variable with the values which are most likely to suc-
ceed first. The min-conflict heuristic uses this principle, and has been shown to be
efficient in the N-queens problem (though, as we explained before, the N-queens
problem has very specific features, and therefore, cannot be relied on solely for
benchmarking search algorithms).

By performing the inferences which are most likely to fail first (which is another
aspect of the FFP), one may reduce the number of inferences to be made.

We have included programs which show how the minimum width and minimum
bandwidth can be found, how the FFP can be incorporated in the basic search algo-
rithms described in the Chapter 5, and how the min-conflict heuristic can be applied
to a backtracking search.

6.6  Bibliographical Remarks

The minimal width ordering and the algorithm for finding it are introduced by
Freuder [1982]. The sufficient condition for backtrack-free search (Theorem 6.1)
was first presented by Freuder [1982]. The significance of bandwidth in CSPs is
studied in Zabih [1990]. The first polynomial time and space algorithm for finding
minimal bandwidth ordering is reported by Saxe [1980]. This algorithm is improved
by Gurari & Sudborough [1984]. For more information about the minimum band-
width ordering problem, see Gibbs et al. [1976] and Chinn et al. [1982]. The fail
first principle (FFP) has been discovered and rediscovered over and over again in
different applications. Application of it to CSP solving can be found in many parts
of the CSP literature, (e.g. Brown & Purdom, 1981; Haralick & Elliott, 1980). The
FFP has been shown to be quite effective in the constraint programming language
CHIP (see, for example Dincbas et al., 1988a,b]; van Hentenryck, 1989a). The use
of the maximum cardinality ordering is discussed in Tarjan & Yannakakis [1984].
Preliminary study of the effectiveness of the max-degree ordering and the maxi-
mum cardinality ordering can be found in Dechter & Meiri [1989]. Ginsberg et al.
[1990] report some experimental results in the ordering of the variables and values.
The Min-conflict heuristic is introduced by Minton et al. [1990]. Apart from being
applied to the N-queens problem, it has been applied to scheduling and the colour-
ing problem [MiJoPhLa92]. Geelen [1992] experiments with a number of strategies
for ordering the variables and values. The use of the FFP in the ordering of infer-
ence is suggested in Haralick & Elliott [1980].



Chapter 7

Exploitation of problem-specific features

7.1  Introduction

In Chapter 2, we explained that if there are n variables in a CSP, and the maximum
size of the domains of the variables is a, one would have to deal with a search tree

with O(an) leaves. Therefore, worst case time complexity of CSP solvers is O(an) in
general. In this chapter, we shall look at techniques which exploit the specific fea-
tures of the individual problems and hopefully reduce the time complexity to below

O(an).

Not every variable is constrained by every other variable in every CSP. The topol-
ogy of the constraint hypergraph or primal graph could be exploited in solving some
CSPs. Most of the techniques discussed in this chapter exploit the topology of such
graphs, and some of them use problem reduction techniques to reduce the complex-
ity of the problem.

Section 7.2 discusses the possibility of decomposing problems into independent
subproblems (which allows one to apply the divide and conquer strategy).
Section 7.3 identifies a set of “easy problems”, namely those in which constraint
graphs form trees and k-trees (Definition 3-26), for which efficient algorithms exist.
Section 7.4 discusses techniques to remove redundant constraints (Definitions 3-16,
3-19) to transform CSPs to equivalent but “easy” problems. Section 7.5 introduces
the cycle-cutset method, which is basically a dynamic search method that switches
to a backtrack-free search when the remaining problem is easy. Section 7.6 intro-
duces the tree-clustering method, which groups the variables into clusters to form
subproblems and solves the problem by solving these smaller and easier subprob-
lems separately. Section 7.7 extends the relationship between the width of a con-
straint graph and k-consistency concluded in Theorem 6.1. Section 7.8 introduce
specialized algorithms for handling CSPs with numerical variables and conjunctive
binary constraints.
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7.2  Problem Decomposition

If the variables in a CSP can be separated into independent groups (i.e. no variable
in one group constrains any variable in any other group), then these groups of varia-
bles can be labelled separately. When this is the case, a smaller space needs to be
searched. Figure 7.1 shows the search spaces when the problem can and cannot be
decomposed. If a CSP with n variables can be decomposed into three subproblems
with p, q and r variables, respectively, then the size of the search space is

O(ap + aq + ar) rather than O(ap+q+r), where a is the size of each domain and
p + q + r equals to the total number of variables in the problem n.

Search space when
the problem is not
decomposable:

search

search

search

space: aq

space: ar

space: ap

ap + q + r

Total search space
when the problem
is decomposable:

ap + aq + ar

Figure 7.1 The size of the search space when a problem is decom-
posable. a = size of the domains of the variables and the total number

of variables in the problem = p + q + r
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A problem can be decomposed if its primal graph (Definition 4-1) is not connected
(Definition 1-21). A graph with n nodes can be partitioned in O(n) time, using the
Partition procedure below. Therefore, running a graph partitioning algorithm before
searching for solutions does not increase the overall complexity of the search algo-
rithm.

PROCEDURE Partition(V, E)
/* given a graph, partition the nodes into unconnected clusters */
BEGIN

SS ← { }; /* SS is the set of clusters of variables to be returned */
WHILE (V ≠ { }) DO

BEGIN
z ← any node in V; S ← {z}; V ← V − S; Cluster ← { };
/* S and Cluster are used as working storage */
WHILE (S ≠ { }) DO

BEGIN
x ← any element in S; S ← S − {x};
Cluster ← Cluster + {x};
FOR each y such that (x,y) is in E AND y is in V DO

BEGIN
V ← V − {y};
S ← S + {y};
E ← E − {(x,y)};

END
END /* of inner WHILE loop */

SS ← SS + Cluster; /* one cluster found */
END; /* of outer WHILE loop */

return(SS);
END /* of Partition */

One node is deleted from V in each iteration of the FOR loop, so the FOR loop can
only iterate n times, where n is the number of nodes in the graph. Therefore, the
time complexity of the Partition procedure is O(n). Program 7.1, partition.plg,
shows a Prolog implementation of the Partition algorithm. It assumes the graph to
be stored in the Prolog database in exactly the same format as in the previous pro-
grams.
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7.3  Recognition and Searching in k-trees

7.3.1  “Easy problems”: CSPs which constraint graphs are trees

This section illustrates the fact that when the constraint graph (Definition 4-1) of a

CSP is a tree, one can solve this problem in O(na2), where n is the number of varia-
bles and a is the maximum domain size in the problem. This motivates the recogni-
tion of problems which constraint graphs are trees, or reducing CSPs to problems of
such class.

We mentioned in Chapter 6 that a tree is a graph with a width equal to 1. According
to Theorem 3.1, if the constraint graph of a CSP is a tree, then a search for solutions
in this problem is backtrack-free if node- and arc-consistency (i.e. strong 2-consist-
ency) are maintained in it. We mentioned in Chapter 3 that, in fact, strong 2-consist-
ency is stronger than necessary to guarantee a search to be backtrack-free in a CSP
which constraint graph is a tree. All one needs to achieve is DAC in the CSP.

We shall prove that the Tree_search procedure below can be used to solve CSPs

which constraint graphs are trees in O(na2):

PROCEDURE Tree_search((Z, D, C))
/* The constraint graph of (Z, D, C), G((Z, D, C)), is a tree */
BEGIN

Give the variables an ordering < such that all parents are placed
before their children in G((Z, D, C));

achieve NC and DAC in (Z, D, C, <);
Labelled ← { };
/* backtrack-free search */
WHILE Z ≠ { } DO

BEGIN
x ← the frontmost variable in Z according to <;
Z ← Z − {x};
v ← a value in Dx such that <x,v> is compatible with all the

labels in Labelled;
Labelled ← Labelled + {<x,v>};

END;
return( Labelled );

END /* of Tree_search */

Theorem 7.1 (due to Dechter & Pearl, 1988a)

Given a CSP P, if the constraint graph of P forms a tree, then P can be

solved in O(na2).
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Proof

Given a CSP (Z, D, C), if its constraint graph forms a tree, then we can order
the variables in such a way that all the parents are placed before all their
children (this ordering can be obtained by a preorder search in the tree). Let
this ordering be <. We can show that after maintaining NC and DAC in
(Z, D, C, <), then we can label all the variables without backtracking. If
some domain are reduced to empty sets after problem reduction, then no
search is needed and failure can be reported. Otherwise, the problem is 1-sat-
isfiability by definition. Given that the constraint graph forms a tree, every
variable x is constrained by at most one other variable y such that y < x.
Given the ordering <, y would have already been labelled when x is being
labelled. Since the reduced problem is 1-satisfiable, NC and DAC, we can
always find a value for x which is compatible with y’s label. That means we
can label every variable without needing to revise its parent’s label.

The complexity of a backtrack-free search is O(na), where n is the number
of variables and a is their maximum domain size. This is because in the
worst case, all one needs to do is to go through all the values of each variable
to find a value which is compatible to all the labelled variables.

By using the NC-1 and DAC-1 procedures in Chapter 4, NC and DAC in a

tree-type constraint graph can be achieved in O(na) and O(na2) time, respec-
tively. Therefore, the time complexity of solving a CSP which constraint
graph forms a tree is dominated by complexity of the DAC achievement pro-

cedure, i.e. O(na2).

(Q.E.D.)

The procedure Acyclic recognizes acyclic undirected graphs (i.e. trees) in O(n),
where n is the number of variables in the problem.

PROCEDURE Acyclic(V, E)
/* Return True if the graph (V, E) is acyclic, return False otherwise */
BEGIN

WHILE (V ≠ { }) DO
BEGIN

y ← any node in V;
S ← {y};
WHILE (S ≠ { }) DO

BEGIN
z ← any node in S; S ← S − {z};
V ← V − {z};
FOR each x adjacent to z with regard to E DO

/* (x,z) ∈ E */
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BEGIN
IF (x is in S) THEN return(False);
E ← E − {(x, z)};
/* note that (x, z) is the same object as (z, x) */
S ← S + {x};

END
END

END
return(True);

END /* of Acyclic */

The Acyclic procedure starts from an arbitrary node y in the graph (V, E). S is the set
of all nodes which are adjacent to y. In every iteration of the inner WHILE loop, the
Acyclic procedure removes one node from S, together with all the edges joining it.
Besides, it checks whether this node is adjacent to any other node in S. If it is, then a
cycle is found, and the Acyclic procedure will report failure. The outer WHILE
loop handles one cluster in each iteration in case the graph is not connected. For a
graph with n nodes, there will be exactly n iterations in the inner loop when the
graph is acyclic. When the graph is cyclic, fewer iterations may be needed. There-
fore, the time complexity of Acyclic is O(n). Program 7.2, acyclic.plg, shows a Pro-
log implementation of this algorithm.

7.3.2  Searching in problems which constraint graphs are k-trees

In Chapter 3, we introduced the concept of k-trees (Definition 3-26), which is a gen-
eralization of trees. Let n be number of variables in the problem and a be the maxi-
mum size of the domains. Freuder points out that if the constraint graph of a

problem can be recognized as a k-tree, then it can be solved in O(nak+1) time. This
can be achieved by first finding an ordering which induced-width (Definition 4-5) is
k, and then achieving adaptive-consistency in the problem.

7.3.2.1  Recognition of k-trees

Let us first introduce a procedure W which, given a graph and an integer k, deter-
mines whether the graph is a k-tree, and returns an ordering of the nodes such that
the induced-width of the graph equals k.

PROCEDURE W( (V, E), k );
/* Given a constraint graph G = (V, E) of a constraint satisfaction

problem P and an integer k, return an ordering < of V such that
induced-width(P, <) = k if G is a k-tree; NIL if it is not */

BEGIN
/* initialization */
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K ← { }; Sum ← 0;
FOR each node x in E DO

BEGIN
Count[x] ← the degree of x;
IF (Count[x] = k) THEN K ← K + {x};
Sum ← Sum + Count[x];

END
IF (Sum ≠ 2nk − k − k2) THEN return(NIL); /* note1 */
/* major computation */
FOR i = n to k + 1 by −1 DO

IF (K = { }) THEN return(NIL);
ELSE BEGIN

v ← any node in K; K ← K − {v};
V' ← neighbourhood(v);
E' ← {(a,b) | (a,b) ∈  E ∧ a, b ∈ V'};
IF ((V', E') is a complete graph) THEN

BEGIN
Ordering[i] ← v; V ← V − {v};
FOR each w such that (v, w) ∈ E DO

BEGIN
E = E − {(v, w)};
Count[w] ← Count[w] − 1;
IF (Count[w] = k) THEN K ← K + {w};

END;
END

ELSE return(NIL);
END /* of ELSE */

/* at this point, all but k nodes have been ordered */
IF (the remaining k nodes form a complete graph)
THEN BEGIN

Ordering[1] to Ordering[k] ← remaining nodes in any order;
return(Ordering);

END
ELSE return(NIL);

END /* of W */

The procedure W is in fact providing a constructive proof to the proposition that the
input graph is a k-tree. According to the definition, a k-tree should have exactly
k(k − 1) / 2 + (n − k)k edges, where n is the number of nodes in the k-tree. This is
because a k-tree must contain a complete graph of k nodes, which has k(k − 1) / 2
edges. Besides the nodes in this complete graph, there should be (n − k) other nodes,

1.  A typographical error in [Freu90,p.6] has been corrected here.
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each of them having exactly k edges (according to the definition), making (n − k)k
edges in total. So the total number or edges in a k-tree is k(k − 1) / 2 + (n − k)k. In
the W procedure, each edge is counted twice (once from each end). That is why
after the degree of each node is counted, the Sum is checked against 2 × (k(k − 1) /

2 + (n − k)k) = 2nk − k − k2.

It should be noted that the ordering of the nodes in the set K is unimportant. This is
because if the graph is indeed a k-tree, then no two nodes in K should be adjacent to
each other (otherwise the removal of one of them would cause the degree of the
other to be reduced below k).

The initialization goes through the nodes once, and therefore takes O(n) time to
compute. The second part of the procedure removes one node in each iteration.
Therefore, if we assume that both counting the number of edges and testing whether
a graph is complete (given the degree of each node) takes a constant time, then the
main FOR loop takes O(n) time to compute. So the whole procedure W takes O(n)
time to compute.

Figure 7.2 shows an example of the W procedure in action. The input graph (taken
from Figure 3.6(d)) is recognized as a 3-tree, and an ordering is found which
induced-width is equal to 3.

Theorem 7.2

A k-tree constraint graph with n nodes can be recognized as a k-tree, and an
ordered constraint graph with induced-width k can be found (or k-1 for triv-
ial k-trees), in O(n) time.

Proof

Procedure W will recognize k-trees and return an ordering in O(n), where n
is the number of nodes in the input graph. If the graph is a trivial k-tree (i.e.
it has k nodes and is complete), then any ordering of the nodes would have
induced-width equal to k − 1. If the constraint graph of a CSP is a nontrivial
k-tree, then the induced-width of this CSP under the ordering returned by W
is k for the following reasons. Procedure W ensures that for every j > k, the j-
th node has exactly k nodes before it. Moreover, these k nodes form a com-
plete graph, and therefore, no edge needs to be added between them when
adaptive-consistency is maintained. Therefore, the induced-width of the
graph under the ordering returned by procedure W is k.

(Q.E.D.)
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7.3.2.2  Solving CSPs which constraint graphs are k-trees

Theorem 7.3

Let G be the primal graph of a CSP P. If G is a trivial k-tree, then the

induced-width of P is k − 1. If G is a non-trivial k-tree, then the induced-

width of P is k. Whenever G is a k-tree, the induced-width of P is equal to
G’s width:

∀  csp(P): trivial_k-tree(G(P) ⇒ induced-width(P) = k − 1

∀  csp(P): k-tree(G(P)) ⇒  induced-width(P) = k

∀  csp(P): induced-width(G(P)) = width(G(P))

Proof

By definition, the induced-width of a CSP P is at least as great as the width

of G(P) under any ordering. If the primal graph of P is a trivial k-tree, then
its induced-width is k − 1 because under any ordering of the nodes, the final

node will be adjacent to k − 1 nodes before it. If the primal graph of P is a
non-trivial k-tree T, then there exists a node which neighbourhood is a com-
plete graph of k nodes. So the width of T, hence the induced-width of T, is no
less than k. On the other hand, the induced-width of the ordering produced
by algorithm W is k, so the width of T cannot be greater than k. Since the
width of T is no less than and no greater than the induced-width of T, the
width must be equal to the induced-width of T.

(Q.E.D.)

Theorem 7.3 implies that achieving adaptive-consistency on a k-tree structured CSP
under the ordering returned by procedure W does not change the width of the con-
straint graph. This can be seen from a different perspective: since every node in the
ordering return by procedure W is adjacent to exactly k preceding nodes which form
a complete graph, achieving adaptive-consistency according to this ordering does
not increase the number of edges in the constraint graph. Consequently, the width of
the reduced problem will not be changed.

The k-tree_search procedure below shows one way of exploiting the fact that the
CSP’s constraint graph is a k-trees:

PROCEDURE k-tree_search(Z, D, C)

/* given a CSP, finds a solution to it in O(nak+1) time if its constraint
graph is a k-tree for some k; otherwise, return NIL */

BEGIN
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/* check if the constraint graph is a k-tree for any k */
k ← 1;
REPEAT

Ordering ← W((Z, D, C)), k);
k ← k + 1;

UNTIL (Ordering ≠ NIL) OR (k >  Z );
/* one might want to further limit the value of k above */
IF (Ordering = NIL)
THEN return(NIL) /* other methods needed to solve the CSP */
ELSE BEGIN

P ← Adaptive_consistency(Z, D, C, Ordering);
Result ← perform backtrack-free search on P;
return(Result);

END
END /* of k-tree_search */

Basically, the procedure k-tree_search detects whether a k exists such that the CSP’s
primal graph is a k-tree. Then it achieves adaptive-consistency in the input problem
before performing a backtrack-free search.

Theorem 7.4

A CSP which constraint graph is a k-tree can be solved in O(nak +1) time
and O(nak) space, where n is the number of variables in the problem, and a
is the maximum domain size in the problem.

Proof

The k-tree_search procedure would prove the point. Given a CSP, if its con-

straint graph is a k-tree, then it takes O(n2) time to recognize it. This is
because in the worst case, one has to go through all the n values to find k,
and procedure W takes O(n) to compute.

Achieving adaptive-consistency requires O(naW*+1), where W* is the
induced-width of the constraint graph. When the graph is a non-trivial k-tree,

its induced-width is k; so achieving adaptive-consistency requires O(nak+1).

A backtrack-free search takes O(na) time to complete. Combining all three

steps, the time complexity of procedure k-tree_search is O(nak+1).

The space required by Adaptive_consistency is O(nak), which dominates the
space complexity of k-tree_search.

(Q.E.D.)
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According to our definitions in Chapter 3, any graph is a partial k-tree for a suffi-
ciently large k. Besides, a partial k-tree can be transformed into a k-tree by adding to
it a sufficient number of redundant constraints. Therefore, it appears that one can
use the k-tree_search procedure to tackle general CSPs. However, there are no effi-
cient algorithms for recognizing partial k-trees for general k.

7.4  Problem Reduction by Removing Redundant Constraints

In Chapter 3, we introduced the concept of redundant constraints. It is possible to
reduce a CSP to an “easy problem” (as defined in the last section) by removing
redundant constraints. In Chapter 3, we pointed out that identifying redundant con-
straints is hard, in general. However, as in the case of removing redundant labels
and redundant compound labels, some redundant constraints may be easier to iden-
tify than others. For example, a constraint in a binary CSP can be removed if it is
path-redundant (Definition 3-19) — if S is the set of all path-induced (Definition 3-
18) compound labels for x and y, then the constraint Cx,y is redundant if S is a subset
of Cx,y. The procedure Path_redundant below detects the path-redundancy of any
given binary constraint:

PROCEDURE Path_redundant((x ,y), P)
/* P is a CSP and x, y are two variables in it */
BEGIN

(Z, D, C) ← NC-1(P); /* achieve node-consistency in P */
U ← {(<x,a><y,b>) | a ∈  Dx ∧ b  ∈ D y};
FOR each z in Z such that x ≠ z AND y ≠ z DO

BEGIN
DisAllowed_CLs ← U − Cx,y
For each cl ∈ DisAllowed_CLs DO

IF NOT Permitted(cl, z, Dz, Cx,z, Cz,y)
THEN Cx,y ← Cx,y + {cl};

IF Cx,y = U THEN return(True)
END

return(False);
END /* of Path_redundant */

PROCEDURE Permitted((<x,a><y,b>), z, Dz, Cx,z, Cz,y)

BEGIN
FOR each c ∈  Dz DO

IF (satisfies((<x,a><z,c>), Cx,z) AND
satisfies((<z,c><y,b>), Cz,y))
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THEN return(True);
return(False);

END /* of Permitted */

Path_redundant checks whether every compound label which is disallowed by Cx,y

is indeed disallowed by at least one path. Only if this is the case could Cx,y be
deleted without relaxing the constraints in the problem. If a compound label is
found to be not Permitted by any path, then it need not be considered for another
path; hence it is added to Cx,y in the For loop of Path_redundant. If all the com-
pound labels are added into Cx,y, then it is proved that the set of path-induced com-
pound labels is a subset of Cx,y, which means the input Cx,y is redundant (Cx,y is a
local variable in Path_redundant; its change of value within this procedure is not
supposed to affect the calling program).

Let n be the number of variables in the CSP, and a the maximum domain size in the
problem. The time complexity of Permitted is O(a) as it examines all the a values in
Dz. Path_redundant examines all pairs of values for x and y, and in the worst case,
checks every compound label with every variable z. Therefore, the time complexity

of Path_redundant is O(na3).

No one suggests that all the constraints in the problem should be examined. One
should only run the Path_redundant procedure on those constraints which, once
removed, could result in the problem being reduced to an easier problem. As men-
tioned before, one may attempt to remove certain constraints in order to reduce to
the problem to one which is decomposable into independent problems, or to one
which constraint graph is a tree. However, since not every problem can be reduced
to decomposable problems or problems with their constraint graph being trees, one
should judge the likelihood of succeeding in reducing the problem in order to justify
calling procedures such as Path_redundant. Domain knowledge may be useful in
making such judgements.

7.5  Cycle-cutsets, Stable Sets and Pseudo_Tree_Search

7.5.1  The cycle-cutset method

The cycle-cutset method is basically a dynamic search method which can be applied
to binary CSPs. (Although extending this method to general CSPs is possible, one
may not benefit very much from doing so.) The goal is to reduce the time complex-

ity of solving the problem to below O(an), where n is the number of variables and a
is the maximum domain size in the problem. The basic idea is to identify a subset of
variables in the problem where removal will render the constraint graph being acy-
clic. In general, the cycle-cutset method is useful for problems where most variables
are constrained by only a few other variables.
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Definition 7-1:

The cycle-cutset of a graph is a subset of the nodes in the graph which once
removed, renders the graph as acyclic:

∀  graph((V, E)): ∀ S ⊆ V: cycle-cutset(S, (V, E)) ≡ acyclic((V − S, E'))

where E' = {(a, b) | (a, b) ∈ E ∧ a, b ∈ V − S)} ■

The cycle-cutset method partitions the variables into two sets, one of which is a
cycle-cutset of the CSP’s constraint graph. In the case when the constraint graph is
connected, the removal of the cycle-cutset renders the constraint graph to be a tree.
(If the graph is not connected, the problem can be decomposed, as explained in
Section 7.2). In the graph in Figure 7.3(a), two examples of cycle-cutset are {B, G}
and {D, G}. The graphs after the removal of these cutsets are shown in
Figures 7.3(b) and (c).

There is no known efficient algorithm for finding the minimum cycle-cutset. One
heuristic to find such sets is to use the reverse of a minimum width ordering or a
maximum cardinality ordering (Section 6.2.1, Chapter 6). A less laborious way is to
order the variables by their degrees in descending order instead of using the mini-
mum width ordering. The CCS procedure (CCS stands for Cycle Cut-Set) shows
one possible way of using the cycle-cutset concept to solve binary CSPs.

Figure 7.3 Examples of cycle-cutset
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PROCEDURE CCS(Z, D, C)
BEGIN /* Ordering is an array 1.. Z of nodes */

/* preprocessing — identify a cycle-cutset */
Ordering ← elements in Z ordered by descending order of their

degrees in the constraint graph;
Graph ← constraint graph of (Z, D, C);
Cutset ← { }; i ← 1;
WHILE (the graph of (Z, D, C) is cyclic) DO

BEGIN
Cutset ← Cutset + {Ordering[i]};
remove Ordering[i] and edges involving it from Graph;
i ← i + 1;

END

/* labelling */
CL1 ← compound label for variables in Cutset satisfying all con-

straints;
REPEAT

FOR j ← i to  Z DO
remove from DOrdering[j] values which are incompatible with

CL1;
Achieve DAC in the remaining problem;
IF (the remaining problem is 1-satisfiable) THEN

BEGIN
CL2 ← label the remaining variables using a backtrack-

free search;
return(CL1 + CL2);

END
ELSE CL1 ← alternative consistent compound label for the

Cutset, if any;
UNTIL (there is no alternative consistent compound label for the

Cutset);
return(NIL);

END /* of CCS */

The cycle-cutset method does not specify how the problem in the cutset should be
solved — this is reflected in the CCS procedure. Besides, orderings other than the
one used in the CCS procedure can be used.

The acyclicity of a graph with n nodes can be determined in O(n) using the Acyclic
procedure (Section 7.3.1). The WHILE loop in the preprocessing part of CCS will
iterate n times because it removes one node from Z per iteration. In each iteration, it
checks whether the graph is acyclic. Therefore, the preprocessing part of the algo-

rithm takes O(n2) time to complete. In the worst case, the time complexity of find-
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ing a consistent compound label CL1 is O(ac) time, where a is the size of each
domain, and c is the number of variables in the Cutset. CL2 is found using the
Tree_search procedure. Therefore, the time complexity of finding CL2 is O((n −
c)a2), or O(na2) in the worst case. The overall complexity of the procedure CCS is

therefore O(nac+2).

Figure 7.4 shows the procedure for applying the cycle-cutset method to an example
CSP. The cycle-cutset method can be used together with search strategies which use
dynamic ordering. However, using the cycle-cutset method with such search strate-
gies incurs the overhead of checking, after labelling every variable, whether the
constraint graph of the unlabelled variables is acyclic.

The cycle-cutset method can be extended to handle general constraints. This can be
done by generating the primal graph before identifying a cycle-cutset. However,
this would mean that whenever a k-ary constraint C is present, the cutset must con-
tain at least k − 2 of the variables involved in C.

When the cycle-cutset method is used together with chronological backtracking, a
smaller space will normally be searched, due to the use of DAC after the cycle cut-
set is labelled (see Figure 7.5). This may also be true when this method is used
together with other search strategies. However, in some search strategies, for exam-
ple, those which learn and those which look ahead and order the variables dynami-
cally, the search sequence may be affected by the history of the search. It is thus not
guaranteed that the cycle-cutset method will explore a smaller search space when
coupled with these methods.

Besides, in order to minimize the complexity of the CCS procedure, it may be
tempting to use the cutset with the minimum size (if one can find it). However, var-
iables in the minimum cutset tend to be unconnected. That means less constraint
propagation is possible when labelling the variables in the cutset. Furthermore,
there are potentially more consistent compound-labels for the cycle-cutset than for
an average set of variables of the same size in the problem. Therefore, placing this
cycle-cutset at the front of the ordering of the variables, no matter how the variables
in the cutset are ordered, may not always benefit a search more than using the heu-
ristics described in Chapter 6 (such as the minimum width ordering, minimum
bandwidth ordering and the Fail First Principle).

Whether the cycle-cutset method is effective in realistic problems has yet to be

explored.2

2.  The cycle-cutset method has been tested on small randomly generated CSPs (with maxi-
mum 15 variables and 9 values each), and is shown to out-perform BT (Section 5.2.1, Chapter 5)
by 20% in terms of consistency checks [DecPea87]. Such a result does not give much support to
the efficiency of this method in any realistic applications.
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7.5.2  Stable sets

One may also exploit the topology of the primal graph by identifying stable sets.
The principle is to partition the nodes in the primal graph into sets of mutually inde-
pendent variables, so that they can be tackled separately.

Definition 7-2:

A stable set S of a graph G is a set of non-overlapping sets of nodes in G
such that no edge joins any two elements of different sets in S:

∀  graph((V, E)): ∀ S ⊆  {s | s ⊆ V} :
stable_set(S, (V, E)) ≡

(∀ s1, s2 ∈ S: (s1 ∩ s2 = {} ∧ ( ∀  x ∈  s1, y ∈  s2: (x, y) ∉ E))) ■

The motivation for identifying stable sets can be seen from the example given in
Figure 7.6. Given variables x, y and z and their domains as shown in Figure 7.6(a), a
simple backtracking search which assumes the ordering (x, y, z) have a search space
with (3 × 3 × 3 =) 27 tips in the search tree, (as shown in Figure 7.6(b)). But since y
and z are independent of each other, the search space could be seen as an AND/OR
tree, as shown in Figure 7.6(c). On failing to find any label for any of the subtrees
which is compatible with the label <x,1>, x will be backtracked to and an alternative
value will be tried.

The stable set in this example comprises sets of single variables. In general, the sets
in a stable set for a CSP may contain more than one variable. Assume that the varia-
bles are ordered in such a way that after labelling r variables, the rest of the varia-
bles can be partitioned into clusters that form a stable set. After a legal compound
label CL for the r variables is found, the clusters can be treated as separate prob-
lems. If there exists no compound label for the variables in any of these clusters
which is compatible with CL, then CL is discarded and an alternative compound
label is found for the r variables. This process continues until compatible compound
labels are found for the r variables and the individual clusters. A crude procedure
which uses this principle is shown below:

PROCEDURE Stable_Set(Z, D, C)
/* Given a CSP, Stable_Set returns a solution tuple if it is found; NIL

otherwise; how the stable set SS is found is not suggested here */
CONSTANT r;
BEGIN

/* initialization */
Ordering ← an ordering of the variables in Z;
R ← the set of the first r variables in the Ordering;
SS ← stable set containing the rest of the variables partitioned;
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/* labelling starts */
CL ← legal compound label for the variables in R;
REPEAT

FOR each Si in SS DO
Labeli ← compound label for Si which is compatible with

CL;
IF (Labeli for some i is not found)
THEN CL ← alternative legal compound label for the variables

in R, if any ;
ELSE return(SS + Labeli for all i);

UNTIL (there is no alternative legal compound label for the varia-
bles in R);

return(NIL); /* signifying no solution */
END /* of Stable_Set */

For simplicity, we assume that the complexity of ordering the variables and parti-
tioning the graph are relatively trivial compared with the labelling part of the algo-
rithm. The worst case time complexity for finding a legal compound label CL for

the r variables is in the general O(ar), where a is the maximum domain size in the
problem. Let the size of the i-th cluster be si, and s be the maximum value of all si.
The complexity for finding a legal compound label for all clusters is in general

O(as). Therefore, the complexity of the whole problem is O(ar+s). The space
searched under the Stable_Set procedure is shown in Figure 7.7.

Unfortunately, there is no known algorithm for ordering the variables so as to mini-
mize r + s. The algorithm Stable_Set above does not specify how the variables
should be ordered. One may choose different sizes (r) for the set R in the Stable_Set
procedure above. The maximum size of the stable set (s) may vary depending on the
Ordering and the r chosen.

7.5.3  Pseudo-tree search

Another algorithm which uses a similar idea as the stable sets is the pseudo-tree
search algorithm. It uses a similar principle as the graph-based backjumping algo-
rithm described in Chapter 5. When a variable x cannot be given any label which is
compatible with the compound label committed to so far, both pseudo-tree search
and graph-based backjumping will backtrack to the most recent variable y which
constrains x. The major difference between these two algorithms is that when back-
tracking takes place, Graph-based BackJumping will undo all the labels given to the
variables between y and (including) x. Pseudo-Tree Search will only undo those
labels which are constrained by y. The overhead for doing so is the maintenance of
the dependency relationship among the variables. The pseudo code for the pseudo-
tree search algorithm is shown below:
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PROCEDURE Pseudo_Tree_Search(Z, D, C);
/* for simplicity, we assume that there are n variables and all their

domains have size m; after ordering, let Z[i] be the i-th variable,
D[i,j] be the j-th value of variable Z[i], v[i] be an index to a value in
the domain of Z[i] */

BEGIN
 /* initialization */
Order the variables in Z;
Order the values in every domain in D;
FOR i = 1 to n DO v[i] ← 1; /* assign first value to each variable */
i ← 1;
/* searching */
WHILE (i ≤ n) DO

/* invariance: compound label for variables Z[1] to Z[i-1] is
legal, and v[i] is an index to a value in the domain of Z[i]
which is yet to be examined */

BEGIN
IF (legal(<Z[i], D[i,v[i]]>))
THEN i ← i + 1;
ELSE REPEAT

IF (v[i] < m)
THEN v[i] ← v[i] + 1;

/* give Z[i] an alternative value */
ELSE BEGIN /* backtrack */

p ← bt_level(i); /* to be explained in text */
IF (p > 0)
THEN FOR k = p + 1 to i DO

IF (Z[k] is descendent of Z[p])
THEN v[k] ← 1;
/* v[p] is to be changed */

ELSE return(NIL); /* no solution */
i ← p; /* backtrack to variable Z[p] */

END
UNTIL (legal(<Z[i],D[i,v[i]]>) OR (i < 1));

END; /* of WHILE */
IF (i < 1) THEN return(NIL)
ELSE return(values indexed by v);

END /* of Pseudo_Tree_Search */

For all i, v[i] stores an index to the current value assigned to the variable Z[i]. The
function legal(<Z[i], D[i,v[i]]>) returns True if the label <Z[i], D[i,v[i]]> is compat-
ible with all the labels <Z[h], D[h,v[h]]> for all h < i. If all the values of Z[i] are
incompatible with some labels committed so far, then the function bt-level(i) returns
the greatest index j such that Z[j] precedes Z[i] in the Ordering, and Z[j] constrains
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Z[i]; 0 will be returned if no such Z[j] exists. On the other hand, if some value for
Z[i] is compatible with all the labels committed to so far (i.e. Z[i] has been success-
fully labelled but now it is backtracked to), then bt_level(i) returns i − 1. Z[k] is a
descendent of Z[p] if (i) CZ[p], Z[k] ∈ C and p < k; or (ii) Z[k] is a descendent of any
descendent of Z[p]. When Z[p] is backtracked to, a new value will be given to it.
Therefore, all the values for Z[k] have to be considered; hence the first value is
given to Z[k].

The Pseudo_Tree_Search procedure can be seen as a procedure which uses the sta-
ble set idea: when backtracking, variables are divided into two sets: those which
require revision and those which do not.

7.6  The Tree-clustering Method

The tree-clustering method is useful for general CSPs in which every variable is
constrained by only a few other variables. The tree-clustering method involves
decomposing the problem into subproblems, solving the subproblems separately,
and using the results to generate overall solutions. Interestingly, this process
involves both adding and removing redundant constraints. The basic idea, which
comes from database research, is to generate from the given CSP a new binary CSP
whose constraint graph is a tree. Then this generated problem can be solved using
the tree-searching technique introduced in Section 7.2. The solution of this gener-
ated CSP is then used to generate a solution for the original problem.

7.6.1  Generation of dual problems

Definition 7-3:

Given a problem P = (Z, D, C), the dual problem of P, denoted by P d, is a

binary CSP (Zd, Dd, Cd) where each variable x in Zd represents a set (or
called cluster) of variables in Z, the domain of x being the set of all com-
pound labels for the corresponding variables in P. To be precise, for every
constraint c in C, if c is a constraint on a set of variables in Z, then this set of
variables in Z form a variable in P d. There are only binary constraints in P d,
which requires the projection of the values in each cluster to the same varia-
bles in Z to be consistent:

P d((Z, D, C)) ≡ (Zd, Dd, Cd) where:

Zd = {S | CS ∈ C};

∀ S ∈ Zd: Dd
S =

{(<x1,v1> ... <xk,vk>) | x1, ..., xk ∈ S ∧ v1 ∈ ∧  ... ∧ vk ∈ };Dx1
Dxk
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Cd = {  | S1, S2 ∈ Zd ∧ S1 ∩ S2 ≠ {} }, where

 = {(<S1,L1>,<S2,L2>) |

L1 ∈ ∧ L2 ∈ ∧ (∀ x ∈ Z: ∀ v1, v2 ∈ Dx:

(projection(L1, (<x,v1>)) ∧ projection( L2, (<x,v2>))) ⇒
v1 = v2)} ■

The cluster for a k-constraint T thus contains the k variables in T. For example,
Figure 7.8(a) shows the constraint hypergraph of a CSP:

P = (Z, D, C), where:

Z = {A, B, C, D, E}
DA = DB = DC = DD = DE = {1, 2}
C = {CA,B,C, CA,B,D, CC,E, CD,E}

P contains two 3-constraints (CA,B,C and CA,B,D) and two binary constraints (CC,E

and CD,E), the contents of which are unimportant here. The dual problem of P is
therefore:

P d = (Zd, Dd, Cd), where:

Zd = {ABC, ABD, CE, DE}

Dd
ABC = Dd

ABD =
{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)}

Dd
CE = Dd

DE = {(1,1), (1,2), (2,1), (2,2)}

Cd = {Cd
ABC,ABD, Cd

ABC,CE, Cd
CE,DE, Cd

ABD,DE}, where

Cd
ABC,ABD ⊆  {((1,1,1),(1,1,1)), ((1,1,1),(1,1,2)), ((1,2,1),(1,2,1)), ...}

Cd
ABC,CE ⊆  ......

.....

In this example, we have used the name ABC to denote the newly created variable in

P d which corresponds to the variables A, B and C in P. The domains in P d are

compound labels in P. In this example, we have used, say, (1,1,1) as shorthand for

(<A,1><B,1><C,1>). The constraint Cd
ABC,ABD requires consistent values to be

assigned to A and B in the original problem. Therefore, ((1,1,1), (1,1,2)) is legal as

far as Cd
ABC,ABD is concerned (because both the labels for ABC and ABD project to

(<A,1><B,1>)), but ((1,1,1), (1,2,2)) is illegal (because the label for ABC projects to

CS1 S2,
d

CS1 S2,
d

DS1

d DS2

d
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(<A,1><B,1>) but the label for ABD projects to (<A,1><B,2>)). Figure 7.8(b) shows

the constraint graph of the dual problem P d. There we label the constraints with the
common variables.

7.6.2  Addition and removal of redundant constraints

Several points are important to the development of the tree-cluster method:

(1) Redundant constraints can be added to the original problem without changing
the set of solutions; but this will change the formalization of the dual prob-

lem. For example, to the problem P shown in Figure 7.8(a), one can add a
constraint CC,D such that CC,D contains all the possible compound labels for

variables C and D. If we call the new problem P', then Figure 7.8(c) shows

the constraint hypergraph of P' and Figure 7.8(d) shows the constraint graph

of the dual problem of P'.
(2) If S1 and S2 are sets of variables, and S1 is a subset of S2, then the constraint

on S1 can be discarded if we create or tighten an existing constraint on S2

appropriately. For example, the constraints CC,D, CC,E and CD,E in P' in

Figure 7.8(c) can be replaced by a new 3-constraint CC,D,E such that all the
compound labels and only those compound labels which satisfy all CC,D,
CC,E and CD,E are put into CC,D,E. If we call the new problem after such

replacement P", then Figure 7.8(e) shows the constraint hypergraph of P"

and Figure 7.8(f) shows the constraint graph of the dual problem of P".

(3) We mentioned that every constraint in the dual problem requires no more
than assigning consistent values to the shared variables (in the original prob-
lem) in the two constrained variables (in the dual problem). We know that
equality is transitive (A = B and B = C implies A = C). Therefore, in the con-
straint graph of a dual problem, an edge (a, b) is redundant, and therefore can
be removed if there exists an alternative path between nodes a and b, such
that a ∩ b appears on every edge in the path (a and b are sets of variables in
the original problem). For example, in the constraint graph in Figure 7.8(d),
the edge (ABC, CE) can be removed because C is the only shared variable on
this edge, and C also appears in both of the edges (ABC, CD) and (CD, CE)
(((ABC, CD), (CD, CE)) is a path from ABC to CE). Alternatively, if the edge
(ABC, CE) is retained, then one of (ABC, CD) or (CD, CE) can be removed
for the same reason. Similarly, one of the edges (ABD, DE), (ABD, CD) or
(CD, DE) is redundant.
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Figure 7.8 Examples of equivalent CSPs and their dual problems



216 Exploitation of problem-specific features

7.6.3  Overview of the tree-clustering method

The general strategy underlying the tree-clustering method can be summarized as in

Figure 7.9. Given a CSP P, one can formulate its dual problem P d, and take each

cluster of variables in P d as a subproblem. A solution for a cluster is a compound

label in P. By combining the compound labels for each cluster in P d, one gets a

solution for P.

Given problem P = (Z, D, C)

dual problem P d = (Zd, Dd, Cd)

Compound labels for all clusters X ∈ Zd

Compound label for Z, i.e. solution for P

Figure 7.9 General strategy underlying the tree-clustering method

Solve the subproblems for each cluster
X ∈ Zd, satisfying C

Add redundant constraints and/or combine
constraints to form new constraints; then for-
mulate the dual problem

Combine the compound labels, satisfying Cd
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Let n and a be the number of variables and the maximum domain size in P, respec-

tively, and s be the size of the greatest cluster in P d. Since s ≤ n, the complexity of

solving the subproblems in P d (which is O(as) in general), is no greater than the

complexity of solving P (which is O(an) in general).

However, there is one serious problem in the compound labels combination step.

That is caused by the cycles in the constraint graph of P d. Consider the constraint
graph in Figure 7.8(f). After finding a compound label cl1 for ABC and a compound
label cl2 for ABD, there may not be any compound label for CDE which is compati-
ble with both cl1 and cl2. In the worst case, one has to backtrack through all the com-
pound labels for ABC and ABD before finding a compatible compound label for
CDE, or realizing that no solution exists.

Let there be k clusters in P d, and the number of variables of each cluster be s1, s2,
..., sk. In the worst case, the number of solutions for these clusters, i.e. the domain

sizes of the variables in P d, are O( ), O( ), ..., O( ). Thus, the complexity of

the combination step could be O( × × ... × ) = O( ),

which could be higher than O(an).

The solution to the combination problem is to make sure that the constraint graph of

P d is a tree. If we succeed in achieving this, then the combination problem can be
solved efficiently using the tree-search algorithm described in Section 7.2. In the
following we shall explain how, by adding and removing redundant constraints, a
general CSP can be transformed into one whose dual problem’s constraint graph
forms a tree.

Let k be the number of clusters and r be the size of the largest cluster in the dual
problem. The largest possible domain size of the variables in the dual problem is

therefore O(ar). The complexity of applying the tree-searching algorithm to the

combination problem is then O(k(ar)2) (or O(ka2r)). In fact, if all the compound
labels are ordered by the variables lexicographically, finding whether a compound

label has a compatible compound label in another variable in P d requires O(log ar)

instead of O(ar). Therefore, the overall complexity of the tree-searching algorithm

could be reduced to O(kar log ar) = O(krar log a). However, when a cluster is con-
strained by more than one other cluster, more than one ordering may be needed for
the compound labels; for example, if the cluster {A, B} has only three labels ordered
as: (<A,1><B,2>), (<A,2><B,1>) and (<A,3><B,3>), this ordering would help
checking the redundancy of compound labels for {A, C} (because A is ordered), but
not for {B, D} (because B is not ordered).

a
s1 a

s2 a
sk

a
s1 a

s2 a
sk a

s1 s2 … sk+ + +
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The question is how to make sure that the constraint graph of the dual problem
forms a tree. The answer to this is provided in the literature on query optimization in

database research.3 The key is to generate acyclic hypergraphs, as explained below.

Definition 7-4:

A clique in a graph is a set of nodes which are all adjacent to each other:

∀  graph((V, E)): ∀ Q ⊆ V:
(clique(Q, (V, E)) ≡ (∀ x, y ∈ Q: x ≠ y ⇒  (x, y) ∈ E)) ■

Definition 7-5:

A maximum clique is a clique which is not a proper subset of any other
clique in the same graph:

∀  graph((V, E)): ∀ clique( Q, (V, E)):
(maximum_clique(Q, (V, E)) ≡ (¬ ∃ Q': (clique(Q', (V, E)) ∧ Q ⊂ Q' )) ■

Definition 7-6:

The primal graph G of a hypergraph G is an undirected graph which has
the same nodes as the hypergraph, and every two nodes which are joined by
any hyperedge in G is joined by an edge in G. For convenience, we denote

the primal graph of G by G(G):

∀  hypergraph((N , E )):

(V, E) = primal_graph((N , E )) ≡
((V = N ) ∧ E = { ( x, y) | x, y ∈ N ∧ (∃ e ∈ E : x, y ∈ e)}) ■

Definition 7-7:

A hypergraph G is conformal if, for every maximum clique in its primal

graph, there exists a hyperedge in G which joins all the nodes in this maxi-
mum clique:

∀  hypergraph((N , E )):

(conformal( (N , E ) ) ≡

G = primal_graph((N , E)) ⇒

3.  Like a CSP, a relational database can be seen as a hypergraph; but this will not be elabo-
rated further here.
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(∀ Q ⊆ N : maximum_clique(Q, G) ⇒ Q ∈ E)) ■

Definition 7-8:

A chord in an undirected graph is an edge which joins two nodes which are
accessible to each other without going through this edge:

∀  graph((V, E)): ∀  ( x, y) ∈ E:
(chord( (x, y), (V, E)) ≡ accessible(x, y, (V, E − {(x, y)}))) ■

Definition 7-9:

A graph is chordal if every cycle with at least four distinct nodes has an
edge joining two nonconsecutive nodes in the cycle (this edge is by defini-
tion a chord):

∀  graph((V, E)):
chordal((V, E)) ≡

∀ x1, x2, x3, ..., xm ∈ V:
(m ³ 4 ∧ (∀ xi, xj: xi ≠ xj) ∧ path(( x1, x2, x3, xm, x1), (V, E))) ⇒

(∃ a, b ∈  {x1, x2, x3, ..., xm}:
((a,b) ∈ E ∧ ¬  (a,b) ∈ {( x1, x2), (x2, x3), ..., (xm, x1)}) )) ■

Definition 7-10:

A hypergraph is reduced if and only if no hyperedge is a proper subset of
another:

∀  hypergraph((N , E)):

(reduced-hypergraph((N , E)) ≡ (∀ e ∈ E: ¬ ( ∃ e' ∈ E: e ⊆ e'))) ■

Combined with Definition 7.7, a hypergraph G is reduced and conformal if and only

if every hyperedge in G joins all the nodes in a maximum clique in its primal graph,

and every maximum clique in the primal graph is joined by a hyperedge in G.

Definition 7-11:

Given a hypergraph (N , E) and any subset of nodes M , the set of all

hyperedges in E with nodes which are not members of M removed (except
the hyperedge which joins an empty set of nodes) is called a node generated
set of partial hyperedges:

∀  hypergraph((N , E)):
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(∀  hypergraph((N , F)):

(node-generated-hyperedges(F, (N , E)) ≡

(∃ M ⊆ N : F = {e ∩ M | e ∈ E } − {{}}))) ■

Definition 7-12:

A path in a hypergraph is a sequence of k hyperedges, with k ³ 1, such that
the intersection of adjacent hyperedges are nonempty:

∀  hypergraph((N , E )):

(∀ e1, e2, ..., ek ∈ E :

(path((e1,e2,...,ek), (N , E )) ≡ (∀ 1 ≤ i < k: ei ∩ ei+1 ≠ {}))) ■

Definition 7-13:

A hypergraph is connected if and only if there exists a path which connects
any two nodes:

∀  hypergraph((N , E)):

(connected((N , E)) ≡

(∀ P, Q ∈ N : (∃ e1, e2, ..., ek ∈ E:

(P ∈ e1 ∧ Q ∈ ek ∧  path((e1,e2,...,ek), (N , E)))))) ■

Definition 7-14:

A set of nodes A is an articulation set of a hypergraph G if it is the intersec-

tion of two hyperedges in G, and the result of removing A from G is a hyper-
graph which is not connected:

∀  reduced-hypergraph((N , E)): connected((N , E)):

(∀ A ⊆ N :

(articulation_set(A, E) ≡

(∃ e1, e2 ∈ E : A = e1 ∩ e2) ∧

¬ connected( N − A, {e − A | e ∈ E } − {{}} ))) ■

We continue to use nodes_of(E) to denote the set of nodes involved in the hyper-

edges E of a hypergraph (Definition 1-17):

nodes_of(E) ≡ {x | ∃ e ∈ E: x ∈ e}
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Definition 7-15:

A block of a reduced-hypergraph is a connected, node-generated set of par-
tial hyperedges with no articulation set:

∀  reduced-hypergraph((N , E)):

∀  hyperedges(F, N ):

block(F, (N , E)) ≡

node-generated-hyperedges(F, (N , E)) ∧
connected((nodes_of(F), F)) ⇒

¬ ( ∃ S ⊆ N : articulation_set(S, F )) ■

Recall in Definition 1-6 that hyperedges(F, N ) means that F is a set of hyperedges

for the nodes N in a hypergraph.

Definition 7-16:

A reduced-hypergraph is acyclic if and only if it does not have blocks of size
greater than 2:

∀  reduced-hypergraph((N , E)):

(acyclic((N , E)) ≡

∀ F: hyperedges(F, N ): block(F, (N , E)) ⇒  F ≤  2) ■

We shall borrow the following theorem from database research. The proof of this
theorem is well documented in the literature (e.g. see Beeri et al., 1983]; Maier,
1983).

Theorem 7.5

A reduced-hypergraph is acyclic if and only if it is conformal and its primal
graph is chordal:

∀  reduced-hypergraph((N , E)):

(acyclic((N , E)) ⇔ conformal((N , E)) ∧ chordal(G(( N , E)))

Proof

(see Beeri et al. [1983])

The main implication of Theorem 7.5 is that by transforming the CSP to an equiva-
lent problem which constraint hypergraph is conformal, and which primal graph is
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chordal, one can ensure that the Tree_search algorithm can be applied in the combi-
nation step. The steps of the tree-clustering method in Figure 7.9 are thus refined in
Figure 7.10.

In the following two sections, we shall explain how to generate a chordal and con-
formal CSP which is equivalent to any given CSP. Then we shall introduce a proce-
dure which employs the tree-clustering method.

7.6.4  Generating chordal primal graphs

This section introduces an algorithm for generating chordal primal graphs. Given a
graph, chordality is maintained by adding extra edges into it whenever necessary.
The basic algorithm is to give the nodes of the graph an ordering, and then process
them one at a time. When a node x is processed, it is joined to any other node which
is (a) before x in the ordering; (b) sharing a common parent with x; and (c) not
already adjacent to x. The Fill_in-1 procedure is a naive implementation of this
algorithm:

PROCEDURE Fill_in-1((V, E))
/* given a graph (V, E), return a chordal graph with possibly added

edges */
BEGIN

/* initialization */
Ordering ← Max_cardinality_ordering(V, E);
N ← number of nodes in V;
/* achieving chordality, by possibly adding extra edges */
FOR i = 1 to N DO

FOR j = 1 to i DO
IF (Ordering[i] and Ordering[j] have common parent)
THEN IF ((Ordering[i], Ordering[j]) is not already in E)

THEN E ← E + {(Ordering[i], Ordering[j])};
return((V, E));

END /* of Fill_in-1 */

The Fill_in-1 procedure will generate a chordal graph no matter what ordering is
being used in the initialization. The maximum cardinality ordering (described in
Chapter 6) is used because it can be shown that when the graph is already chordal,
no addition of edges will be generated by the above algorithm if the maximum car-
dinality ordering is used [TarYan84]. (Nodes may be added even when the graph is
chordal when this algorithm uses some other orderings.)

If the neighbourhood of every node is stored by a bit pattern, then testing whether
two nodes have the same parents in an ordering takes roughly a constant time. In



Given problem P = (Z, D, C)

Dual problem Qd = (Zd, Dd, Cd)

Compound labels for all clusters X ∈ Zd

Compound label for Z, i.e. solution for P

Equivalent problem Q = (Z, D, C') which is acyclic

Dual problem Qd' = (Zd, Dd, Cd'),
which constraint graph forms a tree

Figure 7.10 Conceptual steps of the tree-clustering method (note
that one need not actually construct Q in an implementation)

add redundant constraints and/or
combine constraints to form new con-
straints to ensure that the constraint
graph is chordal and conformal

formulate the dual problem

remove redundant constraints to
transform the constraint graph to a
tree (Q being acyclic ensures the exist-
ence of such a tree)

solve the subproblems for each cluster
X ∈ Zd, satisfying C

combine the compound labels, satisfy-
ing Cd, using the Tree-search Algorithm
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this case, the procedure Fill_in-1 takes O(n2) time to complete, because it examines
every combination of two nodes in its two FOR loops.

By using more complex data structures, the Fill_in-1 procedure can be improved to
run in O(m+n) time, where m is the number of arcs and n is the number of nodes in
the graph. For simplicity, without affecting the results of our analysis of the com-
plexity of the tree-clustering method, interested readers are referred to Tarjan &
Yannakakis [1984] for improvement of Fill_in-1.

Figure 7.11 shows an example of a constraint graph, and summarizes the procedure
for maintaining chordality in the graph.

The ordering (G, F, E, D, C, B, A) is one maximum cardinality ordering for the
given graph. The edge (C, D) is added because they are both adjacent to and after
the node E. Similarly, the edge (A, E) is added because they are both adjacent to and
after the node F.

7.6.5  Finding maximum cliques

By adding necessary redundant constraints using the Fill_in-1 procedure, the con-
straint graph is made chordal. In order to make the constraint hypergraph of a CSP
conformal, we need to identify the maximum cliques in the primal graph (so that we
can create a constraint for each maximum clique). In this section, we shall first
present a general algorithm for finding maximum cliques. Then we shall present a
more efficient algorithm which can be applied after running the Fill_in-1 procedure.

7.6.5.1  A general algorithm for finding maximum cliques

In this section, a general algorithm for finding maximum cliques is introduced. It is
based on two observations:

(a) If x is a node in a maximum clique C in a graph, then C must contain x and its
neighbours only. (This is trivially true.)

(b) If S is a set of nodes in a graph, and every node in S is adjacent to some node
x which is not in S, then S does not contain any maximum clique. This is
because if there exists a clique C in S, then C + {x} must be a clique (as
C + {x} forms a complete sub-graph in the given graph). Hence C cannot be a
maximum clique (as it is a proper subset of C + {x}).

Based on these observations, the Max_cliques-1 procedure finds maximum cliques
in a given graph by performing a binary search. In this procedure, one node is con-
sidered at a time. One branch of the search looks for maximum cliques which
include this node, and the other branch looks for maximum cliques which do not
include this node:
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PROCEDURE Max_cliques-1((V, E))
/* given a graph (V, E), returns the set of all maximum cliques */
BEGIN

Maximum_cliques ← MC(V, E, { });
return(Maximum_cliques);

END /* of Max_cliques-1 */

PROCEDURE MC(V, E, N)
/* V is a set of nodes; E is a set of edges which may join nodes other

than those in V; N is a set of nodes which are not in any maximum
clique */

BEGIN
IF No_cliques(V, E, N) THEN return({ })
ELSE IF (is_clique(V, E)) THEN return({V})

/* is_clique is explained in text */
ELSE BEGIN

x ← any node from V;
/* find cliques which contain x */
V' ← {x} + set of nodes in V adjacent to x − N;
MC1 ← MC(V', E, N);
/* find cliques which do not contain x */
MC2 ← MC(V − {x}, E, N + {x});
return(MC1 + MC2); /* return all cliques found */

END
END /* of MC */

PROCEDURE No_cliques(V, E, N)
/* based on observation (b), that if there exists a node outside V

which is adjacent to every node in V, then no maximum clique
exists in V */

BEGIN
FOR each x in N DO

IF (x is adjacent to all nodes in V with regard to E)
THEN return(True);

return(False);
END /* of No_cliques */

The is_clique(V, E) procedure checks to see if every pair of nodes in V are joined by
an edge in E. We assume that by using an appropriate data structure (e.g. recording
the adjacency of the nodes by bit patterns), is_clique can be implemented in O(n),
where n is the number of nodes in the graph. Besides, since one node is considered
at a time, the recursive call of MC is at most n levels deep. So the overall time com-
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plexity of Max_clique is O(2n).

Figure 7.12 shows the steps of finding the maximum cliques in an example graph.
The maximum cliques found are: {A, B, C, D}, {A, C, D, E}, {A, E, F} and {B, G}.
The sets {A, B, C, D} and {A, C, D, E} are accepted as maximum cliques because
they are complete graphs (by definition of maximum cliques). The complete graph
which contains {A, D, E} is rejected because all its nodes are adjacent to B, which is
excluded as an element of any maximum cliques under that branch of the search
tree. The fact that node G is considered after A and B on the right most branch of
Figure 7.12 is just a convenience for presentation. (If other nodes are considered
instead, the search would be deeper, though the result would be the same.)

The efficiency of the construction of MC2 in the Max_clique algorithm can be
improved through the reduction of the size of the remaining graph (call it G). When
looking for maximum cliques which do not contain x, one can do more than remov-
ing x from G: one can also remove any neighbour y of x such that y’s neighbourhood
is a subset of x’s neighbourhood plus x:

({y} + neighbourhood(y, G)) ⊆  ({x} + neighbourhood(x, G))

This is in fact a lookahead step, because if y is in any clique, then this clique must
contain y and nodes in its neighbourhood only. If this clique is a subset of x plus its
neighbourhood, then this clique cannot be a maximum clique.

For example, in Figure 7.12, when node A is excluded from the cliques (i.e. the top
right hand side branch), node D could have been excluded as well, because {D} +
neighbourhood(D, G) is {A, B, C, E}, which is a subset of {A} +
neighbourhood(A, G), which is {A, B, C, D, E, F}. The search indeed confirms that
D does not appear in any maximum clique under that branch of the search tree. By
the same token, nodes C, E and F could have been removed when A is removed.

Program 7.3, max-clique.plg, shows a Prolog implementation of the Max_clique
algorithm.

7.6.5.2  Finding maximum cliques after Fill_in-1

Observe that Fill_in-1 gives the nodes in the input graph a total ordering. If this
ordering is made accessible to other procedures after the exit of Fill_in-1, then it can
help us to find the maximum cliques in the chordal graph efficiently. Fill_in-1
makes sure that for every node x, all the children of x (according to the given order-
ing) are connected to each other. This means that x and all its children together must
be a clique. To find all the maximum cliques in the chordal graph, all one needs to
do is to go through the nodes according to this ordering and check whether the
clique formed by the focal node and its children is maximum. The pseudo code of
this algorithm is shown below:
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Table 7.1 Cliques and maximum cliques in the chordal graph in Figure 7.11

Ordering
Focal
Node

Clique Analysis

1 G {G, B} this is a maximum clique

2 F {F, E, A} this is a maximum clique

3 E {E, D, C, A} this is a maximum clique

4 D {D, C, B, A} this is a maximum clique

5 C {C, B, A} this is not a maximum clique, as
it is a subset of {D, C, B, A}

6 B {B, A} this is not a maximum clique, as
it is a subset of {D, C, B, A}

7 A {A} this is not a maximum clique, as
it is a subset of {D, C, B, A}

PROCEDURE Max_cliques-2((V, E), Ordering)
/* (V, E) is a chordal graph generated by Fill_in-1; Ordering is an

array of nodes V used by Fill_in-1 in generating (V, E) */
BEGIN

C ← { }; /* C stores the set of maximum cliques found so far */
FOR i = 1 to n DO /* n = number of nodes in the input graph */

BEGIN
S ← {Ordering[i]} + neighbourhood( Ordering[i], (V, E) );
IF (S is not a subset of any element in C);
THEN C ← C + {S}; /* S is a maximum clique */
V ← V − Ordering[i];
E ← E −  all edges joining  Ordering[i];

END
return(C);

END /* of Max_cliques-2 */

Let n be the number of nodes in the input graph. The FOR loop in Max_cliques-2
iterates exactly n times. At most one maximum clique is added to C in each itera-
tion. Therefore, the size of C is at most n. If it takes a constant time to check
whether a set is a subset of another, then the IF statement in the FOR loop takes

O(n) time. Therefore, the worst case time complexity of Max_cliques-2 is O(n2). If
every set takes O(n) space to store, then the space complexity of Max_cliques-2 is

also O(n2).
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Table 7.1 shows the cliques and maximum cliques of the chordal graph shown in
Figure 7.11(b). This example illustrates that the procedure Max_cliques-2 finds the
same maximum cliques as Max_cliques-1.

7.6.6  Forming join-trees

Recall that given a CSP P = (Z, D, C), each variable of its dual problem P d is a set
of variables in Z, and its domain being a compound label for the set of variables in

P. Binary constraints and binary constraints only exist in P d. A binary constraint

exists between two variable in P d if they share some common variables in P. Point
(3) in Section 7.6.2 explains that since all constraints concern about equality which
is transitive, redundant constraints can be removed trivially.

Results in the graph theory literature show that given a CSP whose constraint
hypergraph is acyclic, the constraint graph of its dual problem can be reduced (by
removing redundant constraints) to a tree. Such a tree is called a join-tree. In the
preceding sections, we have explained how to transform a CSP to one which con-
straint hypergraph is acyclic. This section explains how join-trees can be con-
structed for dual problems. Again, we shall first present a general algorithm for
finding join-trees, then we present an algorithm which makes use of the ordering
produced by Fill_in-1.

7.6.6.1  General algorithm for finding join-trees

The following is the pseudo code for an algorithm to establish the constraints for a
given set of hyperedges. It is modified from Graham’s Algorithm, which is used to
determine whether a hypergraph is acyclic (see Beeri et al., 1983]).

PROCEDURE Establish_constraints-1(MC)
/* MC is a set of hyperedges in a hypergraph; this hypergraph must

be acyclic; otherwise this procedure will never terminate! */
BEGIN

C ← { }; /* C is to be returned as a set of constraints on MC */
index elements in MC with numbers 1 to k;
S ← MC together with the indices;

/* S[i] = MC[i] = the i-th maximum clique */
/* manipulate the elements in S in order to establish links in MC */
WHILE (S ≠ { }) DO

BEGIN
FOR i = 1 to k DO

FOR each variable x in S[i] DO
IF (x does not appear in any S[j] where j ≠ i)
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THEN S[i] ← S[i] − {x};
FOR i = 1 to k DO

IF (there exists some S[j] in S, where  j ≠ i and S[i] ⊆  S[j])
THEN BEGIN

C ← C + CMC[i],MC[j], where CMC[i],MC[j] is a
constraint which requires consistent
labelling to MC[i] and MC[j];

S ← S − S[i];
END

END; /* MC being acyclic guarantees termination of WHILE*/
return(C);

END /* of Establish_constraints-1 */

The Establish_constraints-1 procedure basically repeats the following steps:

(i) remove any variable which appears in one hyperedge only;
(ii) link hyperedges S[i] and S[j] if S[i] is a subset of S[j]; remove S[i] from

the set of hyperedges.

If the input MC forms the edges of an acyclic hypergraph, then S will always be
reduced to an empty set, and the procedure will terminate (see Beeri et al., 1983).

In the worst case, each of the two out-most FOR loops needs to consider every pairs

of S[i] and S[j]. Therefore, the complexity for both of them are O(k2), where k is the
size of MC (i.e. the number of hyperedges). In the worst case, only one element is
removed from S. When this is the case, the WHILE loop will have to iterate k times
to eliminate all the elements in MC. Therefore, the overall worst case complexity of

the algorithm Establish_constraints-1 is O(k3).

7.6.6.2  Finding join-trees after Fill_in-1 and Max_cliques-2

If the maximum cliques are returned by Max_cliques-2 following Fill_in-1, then
one can build the join-tree more efficiently than Establish_constraints-1. Again, the
total ordering of the nodes in the primal graph which is used in Fill_in-1 must be
made accessible. Let us call this ordering <. A little reflection should convince read-
ers that Max_cliques-2 ensures that a node can only have the highest precedence
according to < in, at most, one of these maximum cliques. Therefore, the maximum
cliques can be ordered according to the ordering of their nodes which have the high-
est precedence according to <. Results in the graph theory literature suggest that,
given such an ordering, one can create the join-tree by simply connecting every
maximum clique mc to a maximum clique which is (a) after mc according to this
ordering, and (b) shares the maximum number of nodes with mc . The pseudo code
of this algorithm is shown below:
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PROCEDURE Establish_constraints-2(MC, Ordering)
/* MC is a set of maximum cliques of  the primal graph or a CSP */
/* MC must be returned by Max_cliques-2 */
/* Ordering is a total ordering of the variables of the CSP returned by

Fill_in-1 */
BEGIN

C ← { }; /* C = set of constraints on MC established so far*/
Order the sets in MC according to the Ordering of their earliest

elements;
FOR i = 1 to  MC −  1 DO

/* join MC[i] to the MC[k] (i < k) which shares the maximum
number of elements with it */

BEGIN
MNSN ← 0; /* MNSN = max. number of shared nodes */
FOR j = i + 1 to MC   DO

IF((MC[i] ∩ MC[j]) > MNSN)
THEN BEGIN

MNSN ←  MC[i] ∩ MC[j]) ; k ← j;
END;

C ← C + CMC[i],MC[k], where CMC[i],MC[k] is a constraint
which requires consistent labelling to MC[i] and MC[k];

END
return(C);

END /* of Establish_constraints-2 */

Let k be the number of maximum cliques in MC. If set intersection takes a constant
time, then it takes O(k) time to find the maximum clique which shares the maximum
number of nodes of a particular maximum clique. The two FOR loops together

dominate the worst case time complexity of Establish_constraints-2, which is O(k2).

Table 7.2 Join-tree for the maximum cliques found in Table 7.1

Ordering
Maximum

clique

Maximum clique of lower
ordering which shares the

maximum elements

Constraint
Created

1 {G, B} {D, C, B, A} CGB,DCBA

2 {F, E, A} {E, D, C, A} CFEA,EDCA

3 {E, D, C, A} {D, C, B, A} CEDCA,DCBA

4 {D, C, B, A} (root)
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Going back to the above example, the maximum cliques, their ordering and the con-
straints generated are shown in Table 7.2. The join-tree thus created is shown in
Figure 7.13.

7.6.7  The tree-clustering procedure

The Tree_clustering procedure, which makes use of the procedures introduced so
far, implements the tree-clustering method:

PROCEDURE Tree_clustering(Z, D, C)
BEGIN

GG ← hypergraph of (Z, D, C);
G ← primal_graph of GG;
G ← Fill_in-1(G); /* generate chordal primal graph */
/* we assume that Ordering is produced by Fill_in-1 as a side

effect */
MC ← Max_cliques-2(G, Ordering); /* identify max. cliques */

Dd ← { };
FOR each mc ∈  MC DO /* solve one sub-problem */

BEGIN
Dmc ← {Dx | x ∈  mc ∧ D x ∈ D}; /* specifify domains */
Tmc ← solution tuples for the CSP (mc, Dmc, CE(mc, (Z, D,

C)));
Dd ← Dd + {Tmc};

END
Cd ← Establish_constraints-2(MC, Ordering);

Sd ← Tree_search(MC, Dd, Cd);

/* Sd is a solution to the dual problem, i.e. a set of compound
labels for the original problem which assigns a unique value to
each variable in Z */

Solution ← (<x1,v1><x2,v2>...<xn,vn>) where {x1, x2, ..., xn} = Z
and for all 1 ≤ i ≤ n, (<xi,vi>) is the projection of some com-

pound labels in Sd;
/* Solution is a compound label to the original problem (Z, D, C) */
return(Solution);

END /* of Tree_clustering */

The Fill_in-1 procedure adds redundant constraints into the graph to make it
chordal. The Max_cliques-2 procedure returns the set of maximum cliques in the
graph. The Establish_constraints-2 procedure generates a join-tree for the dual
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problem. Each of the edges in this join-tree represents a constraint which requires
consistent values to be assigned to the common variables in the joined clusters.

The Tree_clustering procedure adopts the basic ideas explained in Figure 7.10. It
first makes sure that the primal graph of the given problem is chordal. Then the
maximum cliques are identified. Each maximum clique forms a sub-CSP which will
be solved separately. The solution for each maximum clique becomes a constraint
on the variables in this maximum clique, replacing the set of all relevant constraints
in the original problem; hence the transformed CSP becomes conformal. This
ensures that the constraint graph of the dual problem forms a tree. Then the Tree_-
search procedure is applied to solve the dual problem. The solution of the dual prob-
lem can be used to generate a solution for the original problem quite trivially.

The time complexity of the Fill_in-1 and Max_cliques-2 are both O(n2), where n is
the number of variables in the given CSP. Finding solution tuples for the clusters

requires O(ar) time in general, where a is the maximum domain size of the variables
in the given CSP, and r is the size of the largest cluster. Let k be the number of max-
imum cliques in the transformed CSP. The number of variables in the dual problem
is then k. According to the analysis in the last section, the Establish_constraints-2

procedure takes O(k2) time to complete. The domains of the variables in the dual

problem is ar in the worst case, so the worst case time complexity of the Tree_-

search procedure is O(ka2r). It can be reduced to O(kar log (ar))), or O(krar log (a)),
if the procedure for maintaining DAC can be optimized in the way described above
(Section 7.6.3).

The time complexity of Tree-searching, O(ka2r), should dominate the time com-

plexity of the Tree_clustering algorithm, because compared with it, n2, ar and k2

(the complexity of Fill_in-1, Max_cliques-2, solving the decomposed problems and
Establish_constraints-2) are insignificant.

The example in Figure 7.13 summarizes the steps of the tree-clustering method.

7.7 j-width and Backtrack-bounded Search

Theorem 6.1 states the relationship between k-consistency in a CSP and the width
of its graph. In this section, we extend the concept of width to j-width, and show
that it has interesting results related to (i, j)-consistency.

7.7.1  Definition of j-width

In Chapter 2, we defined the concept of backtrack-free search (Definition 2-12).
Here, we define a related concept called b-level backtrack-bounded.



Given:

(i) generate the
P, a CSP

(ii) add redundant

E

F B

G

D

C

A

E

F B

G

D

C

A

E

F B

G

D

C

A

AEF

ABCD

ACD

AE

ACDE BG

B

AEF ABCDA

ACD
AE

ACDE BG

B
(iv) formulate the
dual problem

(v) remove

(iii) identify the maximum cliques

Return: redundant
constraints
to produce
a constraint
tree

and group the constraints into

primal constraint
graph for P

Solution

constraints to
produce a
chordal graph

conceptual constraints

Figure 7.13 Example summarizing the tree-clustering procedure

plus an ordering

(vi) solve the sub-
problems in each
cluster and combine
the results using
the Tree-search
procedure



7.7 j-width and Backtrack-bounded Search 237

Definition 7-17:

A backtracking search for solutions in a CSP is called b-level backtrack-
bounded, or b-bounded for simplicity, under an ordering if, after labelling h
variables for any h less than the number of variables in the problem, we can
always find a value for the (h + 1)-th variable without reconsidering more
than the last b − 1 labels:4

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <): (∀ b <  Z :
b-level-backtrack-bounded((Z, D, C), <) ≡

(∀ x1, x2, ..., xh ∈ Z: (x1 < x2 < ... < xh ⇒
(∀ v1 ∈ , v2 ∈ , ...,vh ∈ :

(satisfies( (<x1,v1>... <xh,vh>), CE({x1, ..., xh}, (Z, D, C))) ⇒
(∀ xh+1 ∈ Z: (xh < xh+1 ⇒

∃ v'h-b+1 ∈ , ...,v'h ∈ , vh+1 ∈ :

satisfies((<x1,v1> ... <xh-b,vh-b><xh-b+1,v'h-b+1> ...
<xh,v'h> <xh+1,vh+1>), CE({x1, ..., xh, xh+1}, (Z, D,
C))) ■

In other words, in a chronological backtracking search where b-bounded is guaran-
teed, if one can successfully label h variables without violating any constraints, then
one can freeze the first (h − b) labels in labelling the rest of the variables. A back-
track-free search is 0-bounded by definition.

Now we shall look at situations under which searches are b-bounded. First, we shall
extend the concepts of width for nodes, orderings and graphs in Chapter 3 (see
Definitions 3-20 to 3-22) to the width of a sequence of variables in a graph.

Definition 7-18:

The width of a group of j consecutive nodes in a graph under an ordering is
the number of nodes preceding this group which are joined to any of the j
nodes in it:

∀  graph((V, E)): (∀ <: total_ordering( V, <):
(∀ x1, x2, ..., xj ∈ V: consecutive((x1, x2, ..., xj)):

(width((x1, x2, ..., xj), (V, E), <) ≡

4.  Note that the b in the definition of b-level-backtrack-bounded, or b-bounded, is actually
treated as an argument of the predicate (like the k in k-consistency in Chapter 3). A more accurate
syntax which conforms to first order logic would be to put b between the brackets, which makes
b-level-backtack-bound(b, Compound_label, Cs). The present syntax is adopted for both simplic-
ity and conformation with the CSP literature. The same arrangement applies to the definition of j-
width later in this chapter.

Dx1
Dx2

Dxh

Dxh b− 1+
Dxh

Dxh 1+
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{ z | z ∈ V ∧ z ∉  {x1, x2, ..., xj} ∧
∃ w: (w ∈ { x1, x2 ,..., xj} ∧ z < w ∧ ( z, w) ∈ E)})))

where

∀  graph((V, E)): (∀ <: total_ordering( V, <): (∀ x1, x2, ..., xj ∈ V:
consecutive((x1, x2, ..., xj)) ≡ x1 < x2, ..., xj-1 < xj ∧

(∀ y ∈ V: (∃  1 ≤ i ≤ j: y < xi) ⇒ y < x1) ∧
(∀ z ∈ V: (∃  1 ≤ i ≤ j: xi < z) ⇒ xj < z))) ■

Definition 7-19:

The j-width of a node x is the minimum of the widths of all the groups of j
or less consecutive nodes which end with x:

∀  graph((V, E)): (∀ <: total_ordering( V, <): (∀ xm ∈  V:
j-width(xm, (V, E) , <) ≡

MIN width((xm-k+1, ..., xm-1, xm), (V, E), <): 1 ≤ k ≤ j)) ■

The concept j-width is a generalization of the concept width. According to this defi-
nition, the definition of the width of a node in Chapter 3 (Definition 3-20) is equiva-
lent to the 1-width of a node.

Definition 7-20:

The j-width of a graph under an ordering is the maximum j-width of all
the nodes in the graph under that ordering:

∀  graph((V, E)): (∀ <: total_ordering( V, <):
j-width(V, E), <) ≡ MAX j-width(x, (V, E), <): x ∈ V ■

Definition 7-21:

The j-width of a graph is the minimum j-width of the graph under all possi-
ble orderings of its nodes:

∀  graph((V, E)): j-width((V, E)) ≡
MIN j-width((V, E), <): total_ordering(V, <) ■

Figure 7.14 gives an example of a graph and the j-width of the nodes for j’s between
1 and 3. For example, the 2-width of node F is 2 because although F is adjacent to
three predecessors (B, D and E), E and F together are adjacent to only 2 predeces-
sors (B and D), and the 2-width of F is the minimum of 3 and 2. The 2-width of the
ordering shown in Figure 7.14 is the maximum of the j-widths for all the nodes,
which is 2.
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7.7.2  Achieving backtrack-bounded search

Under the above definitions and the definition for strong (i, j)-consistency in
Chapter 3, Freuder [1985] proves the following theorem:

Theorem 7.6 (due to Freuder, 1985)

Given a constraint graph for a CSP, there exists a search order that guaran-
tees j-bounded backtrack search if the graph is strong (i, j)-consistent for i
equals to the j-width of the graph.

(a) Example of a graph
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(b) j-width of the nodes for 1 ≤ j ≤ 3, given the ordering A, B, C, D, E,
F, G (the width of each node is shown in italic, the j-width of the order-

ings are indicated in bold)

Figure 7.14 Example of a graph and the j-widths of an ordering
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∀  csp((Z, D, C)): (∀ i, j ≤ Z :
(strong (i, j)-consistent(Z, D, C) ⇒

(∀ <: total_ordering(Z, <):
(i = j-width( G((Z, D, C)), <) ⇒

j-level-backtrack-bounded((Z, D, C), <)))))

Proof

The proof follows from the definitions. Given a CSP, assume that there
exists an ordering whose j-width is i. Assume further that the problem is
strong (i, j)-consistent. When x is the next variable to be labelled, there must
exist a k ≤ j such that the sequence of k variables up to and including x has
width i', where i' ≤ i. In other words, this sequence of variables are joined to
i' variables before this sequence. Given the fact that the problem is strong
(i, j)-consistent, once those i' variables are labelled, there exists a legal com-
pound label for these k variables which is compatible with the compound
label for the i' variables. So to assign a value to x, one needs to revise no
more than the k variables before it. Since k ≤ j, the search is j-bounded.

(Q.E.D.)

In other words, given a problem whose j-width is equal to i, one can determine the
bound for one’s backtrack search if one can maintain strong (i, j)-consistency for
this problem. This implies that by finding an ordering which has the minimum j-
width, one can minimize i in maintaining strong (i, j)-consistency.

Freuder points out that the j-width of an ordered CSP can be determined by a branch
and bound method. Unfortunately, maintaining strong (i, j)-consistency may change
the width of the constraint graph. Besides, there are no efficient algorithms for
determining the j-width of an ordered CSP and maintaining (i, j)-consistency. So,
although Theorem 7.6 is an interesting observation, its practical use in CSPs solving
is yet to be explored.

7.8  CSPs with Binary Numerical Constraints

When all the variables in a CSP are numerical variables, and there exist unary and
binary linear constraints only, specialized linear programming techniques can be
applied. When variables are allowed to take numbers as their values, the problem is
a non-standard CSP (refer to Definition 1-12), because the domains are infinite.
However, since the constraints take special forms, efficient algorithms exist for find-
ing solutions for them.
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7.8.1  Motivation

Research in such problems is partly motivated by point-based temporal reasoning.
In point-based temporal reasoning, time points are taken as primitive objects. Inter-
vals may be represented by pairs of points. One of the tasks in temporal reasoning is
to assign a numerical value to each time point, satisfying constraints on them. Sim-
ple temporal constraints are:

(a) boundary constraints:
The value of a time point may be given a lower bound, which is called the
earliest time, and a upper bound, which is called the latest time. In other
words, given a time point x, there may be constants a and b such that

x > a
and x < b
must hold, where < and > can also be ≤ and ³.

(b) distance constraints:
A distance constraint requires that the distance between two points be
bounded within a range. For example, if x and y are variables representing
two time points, and a and b are constants, a distance constraint may take the
following form:

x − y > a ;
x − y < b ;
a < x − y < b

where < and > can also be ≤ and ³. Examples of distance constraints are
upper bounds and lower bounds on durations. A precedence constraint is a
special kind of distance constraint where the constants are 0. In other words,
precedence constraints take the form:

x < y

Figure 7.15(a) shows an example of a set of intervals and constraints on them. Inter-
vals here are represented by pairs of time points. Intervals A, B, C and D are repre-
sented by (P, S), (Q, S), (P, R) and (Q, R) respectively (for our purpose here, we do
not have to worry about the “open” and “closeness” of intervals. Interested readers
may refer to van Benthem, 1983). Figure 7.15(a) shows that intervals A and C must
start at the same time, C and D must end at the same time, etc. Besides, the dura-
tions are constrained to be within bounds:

10 ≤ S − P ≤ 12
7 ≤ S − Q ≤ 8
7 ≤ R − P ≤ 8
5 ≤ R − Q ≤ 6

The situation in Figure 7.15(a) can be represented by a temporal constraint graph,
a directed graph in which the nodes represent the time points, and the arcs represent
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unary constraints on the time points)
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precedence. Each node is labelled by two numerical values: a lower bound and a
upper bound. If the lower and upper bounds are unknown, then 0 and infinity are
used, respectively. Each arc is labelled by a numerical value which indicates the dis-
tance between the joined time points. If the distance between points x and y is at
least a, then an arc is created from x to y labelled a. If the distance between points x
and y is at most b, then an arc is created from y to x labelled b. If it is known that x
precedes y, but the maximum and minimum distances are unknown, then an arc is
created from x to y labelled 0 and an arc is created from y to x labelled infinity. The
temporal constraint graph for the situation in Figure 7.15(a) is shown in
Figure 7.15(b).

7.8.2  The AnalyseLongestPaths algorithm

Given a temporal constraint graph, the AnalyseLongestPaths algorithm checks if
temporal constraints are satisfiable, and if so, returns the earliest possible times for
each of the time points in the graph:

PROCEDURE AnalyseLongestPaths(V, E, length, lower_bound)
/* (V, E) is a directed graph; length(c) returns the length of an arc c ;

lower_bound(p) returns the earliest starting time of point p in V;
x[i] stores the updated lower bound for point i in V; */

/* AnalyseLongestPaths labels all x[i] */
BEGIN

FOR each i in V DO x[i] ← lower_bound(i);
Converged ← False;
Counter ← 0;
WHILE (NOT Converged) DO

BEGIN
Converged ← True;
FOR j = 1 to  Z  DO

FOR each k such that j→k is in E DO
IF (x[k] < x[j] + length(j→k)) THEN

BEGIN
x[k] ← x[j] + length(j→k);
Converged ← False;

END
Counter ← Counter + 1;
IF Counter >  Z THEN return(NIL); /* over-constrained */

END
/* on exit of the WHILE loop, all the constraints are satisfied */
return(x); /* x is the array of all the variables */

END /* of AnalyseLongestPaths */
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Input to AnalyseLongestPaths is a temporal constraint graph (V, E) plus two func-
tions: length maps every arc to a numerical value which represents its length; low-
er_bound maps every node to a numerical value which represents its lower bound.
If no boundary constraints are specified in the problem, then all the lower bounds
may be assigned the value 0.

An array x is used to store the value assigned to the time points in the graph. The
program initializes each point to the lower bound (i.e. earliest starting time) which
is input to the program. Then it updates these lower bounds by propagating the con-
straints from its preceding nodes. The idea is very similar to the one used in AC-1 in
Chapter 4. If any lower bound is updated, then all the constraints in the graph are re-
examined. This can easily be improved (following the ideas of AC-2, AC-3 and
AC-4) so that constraints are propagated to all successors of the updated nodes only.
(A successor of a node x is a node y such that x→y is an arc in a directed graph).
AnalyseLongestPaths does not insist on the ordering under which the arcs are proc-
essed in the inner for loop.

A constraint should never be propagated more than n times, where n is the number
of nodes in the graph. If this happens, it indicates that the value of a node is updated
because of its own update. In this case, one can conclude that the constraints are not
satisfiable. The Counter helps us to detect such situations. The WHILE loop termi-
nates when no lower bound has been updated.

The AnalyseLongestPaths algorithm finds the longest possible distance from every
node to its successor nodes in the graph (hence its name). The AnalyseLongestPaths
algorithm finds (or updates) the lower bounds of each node in the graph. It can be
modified to the AnalyseShortestPaths algorithm which finds the upper bounds of
the nodes.

PROCEDURE AnalyseShortestPaths(V, E, length, upper_bound)
/* (V, E) is a directed graph; length(c) returns the length of an arc c;

upper_bound(p) returns the latest starting time of point p in V;
y[i] stores the updated upper bound for point i in V; */

/* AnalyseShortestPaths labels all y[i] */
BEGIN

FOR each i in V DO y[i] ← upper_bound(i);
Converged ← False;
Counter ← 0;
WHILE (NOT Converged) DO

BEGIN
Converged ← True;
FOR j = 1 to  Z DO

FOR each k such that k→j is in E DO
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IF (y[k] > y[j] − length(j→k)) THEN
BEGIN

y[k] ← y[j] − length(j→k);
Converged ← False;

END
Counter ← Counter + 1;
IF Counter >  Z THEN return(NIL); /* over-constrained */

END
 /* on exit of the WHILE loop, all constraint have been satisfied*/
return(y); /* y is the array of all the variables */

END /* of AnalyseShortestPaths*/

After running both AnalyseLongestPaths and AnalyseShortestPaths on a temporal
constraint graph, one may obtain both the lower bounds and the upper bounds for all
the time points in the graph. Figure 7.16(a) shows a temporal constraint graph
which is unsatisfiable. It is basically a replica of the graph in Figure 7.15(a), except
that the bounds of the distances for intervals (P, R) and (Q, S) are increased. This
graph is unsatisfiable because from intervals A, B and C, one can see that the over-
lapping part of B and C is at most (7 + 7) − 10 = 4 units of time. However, the min-
imum duration of interval D is 5, which is greater than 4. If the
AnalyseLongestPaths procedure is applied to this graph, it can be found that
(P, S, Q, R, P) forms a loop, as indicated in Figure 7.16(b). At the situation shown in
Figure 7.16(b), the lower bound of P could have been increased to 1 (because the
lower bound for R is 8 at the moment, and the distance from R to P is -7). Figure
7.17 shows the space searched by AnalyseLongestPaths, assuming that the con-
straints are propagated in a depth-first manner. It should not be difficult to see that if
the temporal constraint graph is satisfiable, the search should never go deeper than
the (n + 1)-th level, where n is the number of nodes in the graph.

One nice property of the above two algorithms is that constraints can be added
incrementally. After the upper and lower bounds of the points are computed, new
constraints may be added to the constraint graph. Instead of computing the bounds
from scratch, these algorithms may start with the values computed in the past so as
to save computation.

Programs 7.4, alp.plg, and 7.5, asp.plg, show possible Prolog implementations of
the AnalyseLongestPaths and the AnalyseShortestPaths algorithms.

7.9  Summary

In this chapter, we have looked at techniques which, by exploiting the specific fea-
tures of a CSP, attempt to either reduce the space searched or the complexity in
computation.



P Q R S

10

-12

6

-7

6

-7

5

-6

P R S

10

-12

6

-7

6

-7

5

-6

8 1030

0 000

Figure 7.16 Example of an unsatisfiable temporal constraint graph
detected by the AnalyseLongestPaths procedure

Q

(b) The constraint graph after propagation of the constraints on the
highlighted arcs once — a loop is found, hence the constraints are

unsatisfiable

(a) Example of an input temporal constraint graph to the Analyse-
LongestPaths procedure — all lower bounds are initialized to 0



7.9 Summary 247

To start with, we have identified some “easy problems” for which efficient algo-
rithms have been developed. If the primal graph of a CSP is not connected, then this
problem can be decomposed into independent subproblems which can be solved
separately. We have introduced the concept of k-trees, and pointed out that if the
constraint primal graph of a CSP forms a k-tree for some small k, then this problem
is also easy to solve. A CSP which constraint graph forms a 1-tree (an ordinary tree)
can be solved by first reducing it to directional arc-consistent (DAC), and then
searching in a backtrack-free manner. If a problem can be recognized as a k-tree for

Figure 7.17 Possible space searched by AnalyseLongestPaths for the
temporal constraint graph in Figure 7.16
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a small k, then by maintaining strong k-consistency in the problem, one needs no
backtracking in searching for solutions. When the constraint graph forms a tree, the

problem can be solved in O(na2), where n is the number of variables in the problem,
and a is the maximum domain size. When constraint graph forms a k-tree, the prob-

lem can be solved in O(nak+1) time and O(nak) space.

Some problems can be reduced to “easy problems” if redundant constraints in them
can be identified and removed. One type of redundant constraint, namely path-
redundant constraints, and an algorithm for identifying them have been introduced.
However, it must be realized that most problems cannot be reduced to “easy prob-
lems” through removing redundant constraints.

We have introduced the cycle-cutset method as a dynamic search strategy which
identifies the minimal cycle-cutset in an ordering, so that after the variables which
form a cutset have been labelled, the Tree_search algorithm can be invoked. The
effectiveness of this method very much depends on the size of the cycle-cutset. The

overall complexity of the cycle-cutset method is O(nac+2), where n is the number of
variables in the problem, a is the maximum domain size, and c is the size of the cut-
set.

The tree-clustering method is a method which attempts to reduce the complexity of
a CSP by transforming it into equivalent problems, decomposing it, and then solv-
ing the decomposed subproblems. The solutions for the decomposed problems are
combined using the Tree_search algorithm. The complexity of the tree-clustering

method is O(ka2r), (possibly optimized to O(krar log (a))), where k is the number of
clusters, a is the maximum domain size, and r is the number of variables in the larg-
est cluster in the problem.

We have also summarized the interesting observation that when (i, j)-consistency is
maintained in a CSP, then if the nodes in the constraint graph of the CSP are ordered
in such a way that it’s j-width equals i, the search for solutions under this ordering is
j-level backtrack-bounded.

Finally, partly motivated by temporal reasoning, CSPs (under the extended defini-
tion which allows infinite domain sizes) with numerical variables and binary linear
constraints are studied. The AnalyseLongestPaths and AnalyseShortestPaths algo-
rithms have been introduced, specialized linear programming techniques for finding
the lower bounds and upper bounds of the time points.

Figure 7.18 summarizes some sets of special CSPs and the specialized techniques
introduced in this chapter for tackling them.
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algorithm for finding join-trees (the Establish_constraints-1 algorithm) is modified
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[1983]. Gyssens et al. [1992] propose an alternative way to decompose problems
and attempt to reduce the size of the largest cluster.

Jégou [1990] introduces the cyclic-clustering method, which combines the cycle-
cutset method and the tree-clustering method. However, it is not difficult to show
that the worst case complexity of the cyclic-clustering method is greater than that of
the tree-clustering method.

Freuder [1985] establishes the necessary conditions for b-bounded search. Dechter
et al. [1991] formally define the temporal constraint satisfaction problem (TCSP).
There the class of CSPs that we discuss in Section 7.8 are named simple temporal
problems (STPs). The AnalyseLongestPaths algorithm is introduced by Bell & Tate
[1985] for reasoning with metric time in AI planning. The Floyd-Warshall algo-
rithm in Papadimitriou & Steiglitz [1982] uses basically the same principle, but
assumes no boundary constraints. Hyvönen [1992] and van Beek [1992] both study
algorithms for temporal reasoning.
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Apart from the topology of the constraint graph and the variable types, other
domain specific characteristics can be exploited. For example, if all the constraints
are monotonic, functional or in general convex, the problem can be solved effi-
ciently (see van Hentenryck et al., 1992; Deville & van Hentenryck, 1991; and van
Beek 1992).
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Chapter 8

Stochastic search methods for CSPs

8.1  Introduction

In many situations, a timely response by a CSP solver is crucial. For example, some
CSPs may take days or years to solve with conventional hardware using the com-
plete search methods so far introduced in this book. In applications such as indus-
trial scheduling, the user may like to analyse a large number of hypothetical
situations. This could be due to the fact that many factors are unknown to the user
(who would like to explore many hypothetical situations), or that many constraints
are merely preferences which the user is prepared to relax if no solution which satis-
fies them all can be found. For such applications, the user may need to evaluate the
effect of different combinations of constraints, and therefore speed in a CSP solver
is important.

In other applications, the world might be changing so dynamically that delay in
decisions could be extremely costly. Sometimes, decisions could be useless if they
come too late. For example, in scheduling transportation vehicles, in a container ter-
minal, one may be allowed very little time to schedule a large number of vehicles
and delays could be very costly. In allocating resources to emergency rescue teams,
a decision which comes too late is practically useless.

Although linear speed up may be achievable with parallel architecture (architecture
which use multiprocessors), it is not sufficient to contain the combinatorial explo-
sion problem in CSPs. When no alternative methods are available, the user may be
willing to sacrifice completeness for speed. (In fact, completeness is seldom guaran-
teed by human schedulers in the kind of applications mentioned above.) When this
is the case, stochastic search methods could be useful.

Stochastic search is a class of search methods which includes heuristics and an ele-
ment of nondeterminism in traversing the search space. Unlike the search algo-
rithms introduced so far, a stochastic search algorithm moves from one point to
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another in the search space in a nondeterministic manner, guided by heuristics. The
next move is partly determined by the outcome of the previous move. Stochastic
search algorithms are, in general, incomplete.

In this chapter, we introduce two stochastic search methods, one based on hill-
climbing and the other based on a connectionist approach. Both of them are general
techniques which have been used in problems other than the CSPs. We shall focus
on their application to CSP solving.

8.2  Hill-climbing

Hill-climbing is a general search technique that has been used in many areas; for
example, optimization problems such as the well known Travelling Salesman Prob-
lem. Recently, it has been found that hill-climbing using the min-conflict heuristic
(Section 6.3.2 in Chapter 6) can be used to solve the N-queens problem more

quickly than other search algorithms.1 We shall first define the hill-climbing algo-
rithm, and then explain its application to CSP.

8.2.1  General hill-climbing algorithms

The general hill-climbing algorithm requires two functions: an evaluation function
which maps every point in the search space to a value (which is a number), and an
adjacency function which maps every point in the search space to other points. The
solution is the point in the search space that has the greatest value according to the
evaluation function. (Minimization problems are just maximization problems with
the values negated.)

Hill-climbing algorithms normally start with a random focal point in the search
space. Given the current focal point P, all the points which are adjacent to P accord-
ing to the adjacency function are evaluated using the evaluation function. If there
exist some points which have greater values than P’s, then one of these points (call
them “higher points”) will be picked nondeterministically to become the new focal
point. Heuristics can be used for choosing from among the higher points when more
than one exists. A certain degree of randomness is often found to be useful in the
selection. The algorithm continues until the value of the current focal point is
greater than the values of all the nodes adjacent to it, i.e. the algorithm cannot climb
to a higher point. The current focal point is then either a solution or a local maxi-
mum. The pseudo code for the generic hill-climbing algorithm is shown below:

1.  Deterministic algorithms for solving the N-queens problem exist (e.g. see Abramson &
Yung, 1989 and Bernhardsson, 1991)
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PROCEDURE Generic_Hill_Climbing(e,c)
/* Given a point P in the search space, e(P) maps P to a numerical

value which is to be maximized; c maps any point P to a (possibly
empty) set of points in the search space*/

BEGIN
/* Initialization */
P ← random point in the search space;
SP ← c(P); /* SP is the set of points adjacent to P */

/* Hill-climbing */
WHILE (there exists a point Q in SP such that e(Q) ³  e(P)) DO

BEGIN
Q ← a point in SP such that e(Q) ³  e(P);
/* heuristics may be used here in choosing Q */
P ← Q;
SP ← c(P);

END
END /* of Generic_Hill_Climbing */

There are different ways to tackle a CSP with a hill-climbing approach. The follow-
ing is the outline of one. The search space comprises the set of all possible com-
pound labels. The evaluation function maps every compound label to the negation
of the number of constraints being violated by it. (Therefore, a solution tuple will be
mapped to 0.) Alternatively, the value of a compound label could be made the nega-
tion of the number of labels which are incompatible with some other labels in the
compound label. The next step is to define the adjacency function c in the
Generic_Hill_Climbing procedure. Two compound labels may be considered to be
adjacent to each other if they differ in exactly one label between them. In the fol-
lowing we show the pseudo code of a naive hill-climbing algorithm for tackling
CSPs. There the CSP is treated as a minimization problem in which one would like
to minimize the number of constraints being violated. A solution to the CSP is a set
of assignments which violates zero constraints:

PROCEDURE Naive_CSP_Hill_Climbing(Z, D, C)
BEGIN

/* Initialization */
CL ← { };
FOR each x in Z DO

BEGIN
v ← a random value in Dx;
CL ← CL + {<x,v>};

END

/* Hill-climbing: other termination conditions may be added to pre-
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vent infinite looping */
WHILE (the set of labels in CL violates some constraints) DO

BEGIN
<x,v> ← a randomly picked label from CL which is incom-

patible with some other labels in CL;
v' ← any value in Dx such that CL − {<x,v>} + {<x,v'>} vio-

lates no more constraints than CL;
CL ← CL − {<x,v>} + {<x,v'>};

END
END /* of Naive_CSP_Hill_Climbing */

The Naive_CSP_Hill_Climbing algorithm continues to iterate in the WHILE loop
as long as it can pick a random label that is in conflict with some other labels in the
current compound label CL. For the label picked, it revises the label by picking a
value that violates no more constraints than the original one (this allows the picking
of the current value). This algorithm terminates if and when the current compound
label is a solution (i.e. it violates no constraints).

The problem with hill-climbing algorithms in general is that they do not guarantee
successful termination. They may settle in local optima, where all adjacent points
are worse than the current focal point, though the current focal point does not repre-
sent a solution (this will not happen in Naive_CSP_Hill_Climbing). They may also
loop in plateaus, where a number of mutually-adjacent points all have the same
value (see Figure 8.1). Sometimes, additional termination conditions are added (to
the WHILE loop in the Hill_Climbing algorithm above). For example, one may
want to limit the number of iterations or the program’s run time.

Even when hill-climbing algorithms terminate, they are not guaranteed to be effi-
cient. But when good heuristics are available, which could be the case in some
problems, hill-climbing does give us hope to solve intractable CSPs.

8.2.2  The heuristic repair method

The heuristic repair method is a hill-climbing method based on the min-conflict
heuristic described in Section 6.3.2 of Chapter 6. It improves over the Naive_C-
SP_hill_climbing algorithm in the way in which it chooses the values. When a label
which violates some constraints is picked for revision, the value which violates the
least number of constraints is picked. Ties are resolved randomly. The pseudo code
for the Heuristic Repair Method is shown below:

PROCEDURE Heuristic_Repair(Z, D, C)
/* A hill-climbing algorithm which uses the Min-Conflict heuristic */
BEGIN
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/* Part 1: Initialization */
CL ← { };
FOR each x ∈  Z DO

BEGIN
V ← the set of values in Dx which violate the minimum

number of constraints with labels in CL;
v ← a random value in V;
CL ← CL + {<x,v>};

END
/* Part 2: Hill-climbing */
WHILE (the set of labels in CL violates some constraints) DO
/* additional termination conditions may be added here */

BEGIN
<x,v> ← a randomly picked label from CL which is incom-

patible with some other labels in CL;
CL ← CL − {<x,v>};
V ← the set of values in Dx which violates the minimum

number of constraints with the other labels in CL;
v' ← random value in V;
CL ← CL + {<x,v'>};

END
END /* of Heuristic_Repair */

plateau

global maximum

local maximumlocal
maximum

Figure 8.1 Possible problems with hill-climbing algorithms: the
algorithms may stay in plateaus or local maxima
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The Heuristic Repair Method has been applied to the N-queens problem. The one-
million-queens problem is reported to have been solved by the Heuristic Repair
Method in less than four minutes (real time) on a SUN Sparc 1 workstation. It
should be reiterated here that results in testing an algorithm on the N-queens prob-
lem may be deceptive, because the N-queens problem is a very special CSP in
which the binary constraints become looser as N grows.

Program 8.1, hc.plg, shows an implementation of the Heuristic Repairs Method.
This program does not guarantee to find solutions in the N-queens problem.

The Heuristic Repair Method has the usual problem of incompleteness in hill-
climbing algorithms. The example in Figure 8.2 shows a problem in which the Heu-
ristic Repair Method would fail to produce a solution in most attempts. This prob-
lem contains five variables, A to E, whose domains are all {1, 2, 3}. There exists
only one solution, which is to have all variables labelled to 2. The Heuristic Repair
Method will normally fail to find this solution because unless three or more varia-
bles are initialized to 2, most variables will end up with values 1 or 3 and the Heu-
ristic Repair Method will wander around in a plateau of local minima. For example,
assume that the initialized compound label is (<A,2><B,1><C,1><D,1><E,2>). Six
constraints, namely CA,B, CA,C, CA,D, CB,E, CC,E and CD,E, are violated. The
number of constraints violated can be reduced if the value of either A or E is
changed to 1 or 3 (in either case, only four constraints will be violated). Even if one
of B, C or D is picked to have its value revised, changing its value to 2 does not
reduce the number of constraints violated, and therefore, there is a 2/3 chance that
the values 1 or 3 will be picked (which does not bring the algorithm closer to the
solution). If the initialized compound label has two or less 2’s assigned to the varia-
ble, and A and E are not both labelled with 2, e.g. (<A,2><B,2><C,1><D,1><E,1>),
then the Heuristic Repair Method will change between states in which the five vari-
ables take values 1 or 3, which always violate one constraint, namely CA,E.

8.2.3  A gradient-based conflict minimization hill-climbing heuristic

The gradient-based conflict minimization (GBCM) heuristic is one that is applicable
to CSPs where all variables have the same domain and the size of this domain is the
same as the number of variables, and where each variable must take a unique value.
It has been found to be effective in the N-queens problem, although its effectiveness
in other problems is unknown. Since the N-queens problem has been used to illus-
trate many algorithms in this book, we shall include this heuristic here for the sake
of completeness.

Like the Naive_CSP_Hill_Climbing algorithm, an algorithm which uses the GBCM
heuristic hill-climbs from a random compound label. If there exist two labels in the
compound label which are in conflict with other labels, the values of them will be
swapped when the compound label after this swap violates fewer constraints. The
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idea is similar to the 2-opting heuristic in the travelling salesman problem (see, for
example, Aho et al., 1983). The algorithm, called QS1 and designed for solving the
N-queens problem, is shown below:

PROCEDURE QS1(n)
/* n is the number of queens in the N-queens problem */
BEGIN

/* initialization */
FOR i = 1 to n DO

Q[i] ← a random column which is not yet occupied;
/* hill-climbing */

{1, 2, 3}

{1, 2, 3}{1, 2, 3}

{1, 2, 3}

A = 2 or E = 2

(All constraints Cxy, with the exception of
CAE, require that x + y is even; CAE requires
that at least one of A and E takes the value 2)

Figure 8.2 Example of a CSP in which the Heuristic Repair Method
would easily fail to find the only solution where all variables are

assigned the value 2

DC

EB

A

{1, 2, 3}
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WHILE conflict exists DO
BEGIN

find any i, j, such that Q[i], Q[j] are in conflict with some
queens;

IF (swapping values of Q[i], Q[j] reduces the total number of
conflicts)

THEN swap the values of Q[i] and Q[j];
END /* of while loop */

END /* of QS1 */

It is found that the initialization part of the QS1 algorithm can be improved. Firstly,
a constant c is chosen. Then n − c random rows are chosen, and a queen is put into
one column of each row, making sure that no queens attack each other. If no safe
column is found in any of the chosen rows, then this row is replaced by another ran-
dom row. There is no backtracking involved. After initialization, the program pro-
ceeds in the same way as QS1. The resulting program is called QS4:

PROCEDURE QS4(n)
CONSTANT: c; /* c is to be determined by the programmer */

BEGIN
/* initialization — minimize conflicting queens */
FOR i = 1 to n − c DO

place a queen in a random position which does not have con-
flict with any queen which has already been placed; if failed,
exit reporting failure;

FOR i = 1 to c DO
place a queen in a random column which is not yet occupied;

/* hill-climbing */
WHILE (conflict exists) DO

BEGIN
find any i, j, such that Q[i], Q[j] are in conflict with some

queens;
IF (swapping values of Q[i], Q[j] reduces the total number of

conflicts)
THEN swap the values of Q[i] and Q[j];

END /* of while loop */
END /* of QS4 */

It is found that with a properly chosen c, QS4 performs better than the Heuristic
Repair Method. For the one-million-queens problem, QS4 takes an average of 38
CPU seconds on a SUN Sparc 1 workstation, while the Heuristic Repair Method
takes 90-240 seconds. Solutions are found for the three-million-queens problem in
54.7 CPU seconds.
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However, it is unclear how effective the GBCM heuristic is in problems other than
the N-queens problem. Apart from the limitation that it is only applicable to prob-
lems in which each variable must take a different value, the choice of c in QS4 is
very important. If c is too small, QS4 shows no improvement over QS1. If c is too
large, the initialization process may fail (since no backtracking is involved). No
mechanism has been proposed for choosing c.

8.3  Connectionist Approach

8.3.1  Overview of problem solving using connectionist approaches

The min-conflict heuristic described above (Sections 6.3.2 and 8.2.2) is derived
from a connectionist approach. A connectionist approach uses networks where the
nodes are very simple processors and the arcs are physical connections, each of
which is associated with a numerical value, called a weight. At any time, each node
is in a state which is normally limited to either positive (on) or negative (off). The
state of a node is determined locally by some simple operations, which take into
account the states of this node’s directly connected nodes and the weights of those
connecting arcs. The network state is the collection of the states of all the individual
nodes. In applying a connectionist approach to problem solving, the problem is rep-
resented by a connectionist network. The task is to find a network state which repre-
sents a solution.

Connectionist approaches to CSPs have attracted great attention because of their
potential for massive parallelism, which gives hope to the solving of problems that
are intractable under conventional methods, or of solving problems with a fraction
of the time required by conventional methods, sometimes at the price of losing com-
pleteness. A connectionist approach for maintaining arc-consistency has been
described in Section 4.7 of Chapter 4. In this section, one connectionist approach to
CSP solving is described.

8.3.2  GENET, a connectionist approach to the CSP

GENET is a connectionist model for CSP solving. It has demonstrated its effective-
ness in binary constraint problems, and is being extended to tackle general CSPs. In
this section, we shall limit our attention to its application to binary CSPs. Given a
binary CSP, each possible label for each variable is represented by a node in the
connectionist network. All the nodes for each variable are collected to form a clus-
ter. Every pair of labels between different clusters which is prohibited by a con-
straint is connected by an inhibitory link. Figure 8.3 shows an example of a CSP (a
simplified version of the problem in Figure 8.1) and its representation in GENET.
For example, A + B must be even, and therefore (<A,1><B,2>) is illegal; hence the
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nodes which represent <A,1> and <B,2> are connected. CA,E requires A = 2, E = 2
or both to be true. Consequently, there are connections between <A,1> and both
<E,1> and <E,3>, and connections between <A,3> and both <E,1> and <E,3>.

The algorithm of GENET is very simple. The network is initialized by assigning -1
to all the weights. One arbitrary node per cluster is switched on, then the network is
allowed to converge under the rule which we shall describe below. The input to
each node is computed by the following rule:

input of x =

where wx,y is the weight of the connection between nodes x and y, and sy is the state
of y, which is 1 if y is on and 0 if y is off. That means that the input to a node x is the
sum of the weights on the connections which connect x to nodes that are on at the
point of calculation. The nodes in each cluster continuously compete to be turned
on. In every cluster, the node that receives the maximum input will be turned on,
and the rest will be turned off. Since there exist only connections with negative
weights, the winner in each cluster represents a label which violates the fewest con-
straints for the subject variable. In tie situations, if one of the nodes in the tie was
already on in the previous cycle, it will be allowed to stay on. If all the nodes in the
tie were off in the previous cycle, then a random choice is made to break the tie.
(Experiments show that breaking ties randomly, as done in the heuristic repair
method, degrades the performance of GENET.)

Figure 8.4 shows a state of the network shown in Figure 8.3. There, the nodes
which are on are highlighted, and the input is indicated next to each node. The clus-
ter of nodes which represent the labels for variable A is unstable because the node
which represents <A,2> has the highest input (0) but is not switched on. Similarly,
the clusters for B and C are unstable because the on nodes in them do not have the
highest input. Cluster D is stable because the node which represents <D,2> has an
input of −1, which is a tie with the other two nodes in cluster D. According to the
rules described above, the node representing <D,E> will remain on. There is no rule
governing which of the clusters A, B or C should change its state next, and this
choice is non-deterministic. Obviously, the change of state in one cluster would
change the input to the nodes in other clusters. For example, if the node for <A,1> is
switched off, and the node for <A,2> is switched on, the input of all the three nodes
in cluster B would be −1, which means cluster B would become stable.

If and when the network settles in a stable state, which is called a converged state,
GENET will check to see if that state represents a solution. In a converged state,
none of the on nodes have lower input than any other nodes in the same cluster.
Figure 8.5 shows a converged state in the network in Figure 8.3. A state in which all
the on nodes have zero input represents a solution. Otherwise, the network state rep-

wx y, sy×
y adjacent x y,( )←

∑
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Figure 8.3 Example of a binary CSP and its representation in GENET

(b) Representation of the CSP in (a) in GENET all connections
have their weights initialized to −1

(a) Example of a binary CSP (variables: A, B, C, D and E)
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resents a local minimum. The converged state in Figure 8.5 represents a local mini-
mum because the inputs to the nodes which represent <D,1> and <E,2> are both −1.

When the network settles in a local minimum, the state updating rule has failed to
use local information to change the state. When this happens, the following heuris-
tic rule is applied to remove local maxima:

New wij = Old wij + si × sj

The local maxima is removed by decreasing the weights of violated connections
(constraints). This simple “learning” rule effectively does two things: it reduces
(continuously if necessary) the value of the current state until it ceases to be a local
minima. Besides, it reduces the possibility of any violated constraint being violated
again. The hope is that after sufficient “learning” cycles, the connection weights in
the network will lead the network states to a solution.

In the example in Figure 8.5, the weight on the connection between the nodes which
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Figure 8.4 Example of a network state in the GENET network shown
in Figure 8.3(b) (all connections have weights equal to −1)

= on nodes; input of each node is indicated
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represent <D,1> and <E,2> (highlighted in Figure 8.5) will be decreased by 1 to
become −2. This will make the input to both of the nodes for <D,1> and <E,2> −2.
As a consequence, the state of either cluster D or cluster E will be changed.

The GENET algorithm is shown below in pseudo code:

PROCEDURE GENET
BEGIN

One arbitrary node per cluster is switched ON;
REPEAT

 /* network convergence: */
REPEAT

Modified ← False;
FOR each cluster C DO IN PARALLEL

BEGIN
On_node ← node in C which is at present ON;

A B C D E
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0

0
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-1

-1

-1

1
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3

values:

Variables:

Figure 8.5 Example of a converged state in the GENET network
shown in Figure 8.3(b) (all connections have weights equal to −1)

= on nodes; input of each node is indicated
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Label_Set ← the set of nodes within C which input
are maximum;

IF NOT (On_node in Label_Set) THEN
BEGIN

On_node ← OFF;
Modified ← True;
Switch an arbitrary node in Label_Set to ON;

END
END

UNTIL (NOT Modified); /* the network has converged */

/* learn if necessary: */
IF (sum of input to all ON nodes < 0)

/* network settled in local maximum */
THEN FOR each connection c connecting nodes x & y DO IN

PARALLEL
IF (both x and y are ON)
THEN decrease the weight of c by 1;

UNTIL (input to all ON nodes are 0) OR (any resource exhausted)
END /* of GENET */

The states of all the nodes are revised (and possibly updated) in parallel asynchro-
nously in this model. The inner REPEAT loop terminates when the network has
converged. The outer REPEAT loop terminates when a solution has been found, or
some resource is exhausted. This could mean that the maximum number of cycles
has been reached, or that the time limit of GENET has been exceeded.

8.3.3  Completeness of GENET

There is no guarantee of completeness in GENET, as can be illustrated by the sim-
ple example in Figure 8.6.

The problem in Figure 8.4 comprises two variables, A and B, in which the domains
are both {1, 2}. A constraint between A and B requires them to take values of which
the sum is odd. Therefore, nodes which represent <A,1> and <B,1> are connected,
and nodes which represent <A,2> and <B,2> are connected in GENET.

GENET may not terminate in this example because the following scenario may take
place: the network is initialized to represent (<A,1> <B,1>). Then, since inputs to
both of the nodes which represent <A,1> and <B,1> are −1, and as inputs to both of
the nodes which represent <A,2> and <B,2> are 0, both clusters will change state. If
both clusters happen to change states simultaneously at all times, then the network
will oscillate between the states which represent (<A,1> <B,1>) and (<A,2> <B,2>)
and never converge.
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8.3.4  Performance of GENET

A simulator of GENET has been implemented. Within the simulator, the clusters are
revised sequentially in the procedure shown above. The simulator is allowed a lim-
ited number of state changes, and when the limit is exceeded the simulator will
report failure. The result of GENET is compared with a program which performs
complete search by using forward checking (Section 5.3.1) and the fail-first princi-
ple (Section 6.2.3) to check if the simulator has missed any solution and to evaluate
the speed of GENET.

Thousands of tests have been performed on the GENET simulator using designed
and randomly generated problems. Local minima are known to be present in the
designed problems (the problem in Figure 8.2 being one example). Binary CSPs are
randomly generated using the following parameters:

N = number of variables;
d = average domain size;
p1 = the probability of two variables being constrained to each other;
p2 = the probability of two labels being compatible with each other in a

given constraint.

Parameters have been chosen carefully in generating the random problems so as to

1

2

A B

1

2

Constraint:
(A + B) is odd

Variables:

values:values:

Figure 8.6 Example of a network in GENET which may not converge
(the network may oscillate between (<A,1> <B,1>) and (<A,2> <B,2>))
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focus on tight problems (where relatively few solutions exist), as they are usually
those problems which are most difficult to solve by stochastic methods. Although
GENET does not guarantee completeness, the simulator has not missed any solution
within 1000 cycles in all the CSPs tested so far. This gives positive support to the
hypothesis that GENET will only miss solutions in a relatively small proportion of
problems.

The potential of GENET should be evaluated by the number of cycles that it takes
to find solutions. For CSPs with N = 170, d = 6, p1 = 10% and p2 = 85%, GENET
takes just over 100 cycles to find solutions when they exist. As a rough estimation,

an analogue computer would take 10-8 to 10-6 seconds to process one cycle. There-
fore, if GENET is implemented using an analogue architecture, then we are talking

about spending something like 10-6 to 10-4 seconds to solve a CSP with 6170 states
to be searched. To allow readers to evaluate this speed, the complete search program
mentioned above takes an average of 45 CPU minutes to solve problems of this size
(average over 100 runs). This program implements forward checking and the fail
first principle in C, and timing obtained by running it on SUN Sparc1 workstations.

The efficiency of this program has to be improved 107 times if it is to match the
expected performance of the target GENET connectionist hardware.

8.4  Summary

In some applications, the time available to the problem solver is not sufficient to
tackle the problem (which involves either finding solutions for it or concluding that
no solution exists) by using complete search methods. In other applications, delay
in decisions could be costly. Stochastic search methods, which although they do not
normally guarantee completeness, may provide an answer to such applications. In
this chapter, two stochastic search techniques, namely hill-climbing and connec-
tionist approaches, have been discussed. Preliminary analysis of these techniques
gives hope to meeting the requirements of the above applications.

Search strategies that we have described so far normally start with an empty set of
assignments, and add one label to it at a time, until the set contains a compound
label for all the variables which satisfy all the constraints. So their search space is
made up of k-compound labels, with k ranging from 0 to n, where n is the number of
variables in the problem. On the contrary, the hill-climbing and connectionist
approaches search the space of n-compound labels.

The heuristic repair method is a hill-climbing approach for solving CSPs. It uses the
min-conflict heuristic introduced in Chapter 6. Starting with an n-compound label,
the heuristic repair method tries to change the labels in it to reduce the total number
of constraints violated. The gradient-based conflict minimization heuristic is
another heuristic applicable to CSPs where all the n variables share the same
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domain of size n, and each variable must take a unique value from this domain.
Starting from an n-compound label, the strategy is to swap the values between pairs
of labels so as to reduce the number of constraints being violated. Both of these heu-
ristics have been shown to be successful for the N-queens problem. Like many other
hill-climbing strategies, solutions could be missed by algorithms which adopt these
heuristics.

GENET is a connectionist approach for solving CSPs. A given CSP is represented
by a network, where each label is represented by a node and the constraints are rep-
resented by connections among them. Each state of the network represents an n-
compound label. Associated with each connection is a weight which always take
negative values. The nodes in the network are turned on and off using local infor-
mation — which includes the states of the nodes connected to it and the weights of
the connections. The operations are kept simple to enable massive parallelism.
Though completeness is not guaranteed, preliminary analysis shows that solutions
are rarely missed by GENET for binary CSPs. Hardware implementation of
GENET may allow us to solve CSPs in a fraction of the time required by complete
search algorithms discussed in previous chapters.

8.5  Bibliographical Remarks

Research on applying stochastic search strategies to problem solving is abundant. In
this chapter, we have only introduced a few which have been applied to CSP solv-
ing. The heuristic repair method is reported in Minton et al. [1990, 1992]. It is a
domain independent algorithm which is derived from Adorf & Johnston’s [1990]
neural-network approach. Sosic & Gu [1991] propose QS1 and QS4 for solving the
N-queens problem more efficiently, by exploiting certain properties of the problem.
QS4 is shown to be superior to the heuristic repair method, but the comparison
between QS1 and the heuristic repair method has not been reported. (As mentioned
in Chapter 1, the N-queens problem is a very special CSP. By exploiting more prop-
erties of the N-queens problem, Abramson & Yung [1989] and Bernhardsson [1991]
solve the N-queens problem without needing any search.) Smith [1992] uses a min-
conflict-like reassignment algorithm for loosely constrained problems. Another
generic greedy hill-climbing strategy is proposed by Selman et al. [1992]. Morris
[1992] studies the effectiveness of hill-climbing strategies in CSP solving, and pro-
vides an explanation for the success of the heuristic repair method.

Saletore & Kale [1990] support the view that linear speed up is possible using mul-
tiple processors. However, Kasif [1990] points out that even with a polynomial
number of processors, one is still not able to contain the combinatorial explosion
problem in CSP. Collin et al. [1991] show that even for relatively simple constraint
graphs, there is no general model for parallel processing which guarantees com-
pleteness.
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GENET is ongoing research which uses a connectionist approach to CSP solving.
The basic model and preliminary test results of GENET are reported by Wang &
Tsang [1991]. (The random CSPs are generated using the same parameters as those
in Dechter & Pearl [1988a].) Tsang & Wang [1992] outline a hardware design to
show the technical feasibility of GENET.

Connectionist approaches to arc-consistency maintenance, including work by
Swain & Cooper [1988, 1992] and Guesgen & Hertzberg [1991, 1992], have been
discussed in Chapter 4. Guesgen’s algorithm is not only sound and complete, but is
also guaranteed to terminate. However, when the network converges, what we get is
no more than a reduced problem which is arc-consistent, plus some additional infor-
mation which one could use to find solutions. The task of generating solutions from
the converged network is far from trivial.

Literature on connectionism is abundant; for example, see Feldman & Ballard
[1982], Hopfield [1982], Kohonen [1984], Rumelhart et al. [1986], and Grossberg
[1987]. Partly motivated by the CSP, Pinkas & Dechter [1992] look at acyclic net-
works.

Closely related to hill-climbing and connectionist approaches is simulated anneal-
ing, whose full potential in CSP solving is yet to be explored. For reference to sim-
ulated annealing see, for example, Aarts & Korst [1989], Davis [1987] and Otten &
van Ginneken [1989].



Chapter 9

Solution synthesis

9.1  Introduction

As has been suggested in previous chapters, most research in CSP focuses on heu-
ristic search and problem reduction. In this chapter, we shall look at techniques for
constructively synthesizing solutions for CSPs.

We explained in previous chapters that problem reduction techniques are used to
remove redundant values from variable domains and redundant compound labels
from constraints, thus transforming the given problem to new ones which are hope-
fully easier to solve. Some problem reduction techniques, such as the adaptive con-
sistency achievement algorithm, derive new constraints from the given problem.
Problem reduction, in general, does not insist that all redundant compound labels
are removed. The more effort one is prepared to spend, the more redundant com-
pound labels one can hope to remove.

Solution synthesis techniques constructively generate legal compound labels rather
than eliminating redundant labels or redundant compound labels. One can see solu-
tion synthesis as a special case of problem reduction in which the n-constraint for a
problem with n variables is constructed, and all the n-compound labels which vio-
late some constraints are removed. Alternatively, solution synthesis can be seen as
“searching” multiple partial compound labels in parallel.

In this chapter, we shall introduce three solution synthesis algorithms, namely,
Freuder’s algorithm, Seidel’s invasion algorithm and a class of algorithms called the
Essex Algorithms. We shall identify situations in which these algorithms are appli-
cable.
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9.2  Freuder’s Solution Synthesis Algorithm

The idea of solution synthesis in CSP was first introduced by Freuder. Freuder’s
algorithm is applicable to general CSPs in which one wants to find all the solutions.
The basic idea in Freuder’s algorithm is to incrementally build a lattice which repre-
sents the minimal problem (Definition 2-8). We call this lattice the minimal prob-

lem graph, or MP-graph. We use MP-graph(P) to denote the MP-graph of a CSP

P.

Each node in the MP-graph represents a set of k-compound labels for k variables
(note that this is different from a constraint graph which represents a CSP — there
each node represents a variable). We call a node which contains k-compound labels
a node of order k, and use order_of(Node) to denote the order of Node. One node
is constructed for each subset of variables in the CSP. So for a problem with n vari-

ables, 2n nodes will be constructed. For convenience, we use variables_of(X) to
denote the set of variables contained in the compound labels in the node X in an
MP-graph. Further, we shall use node_for(S) to denote the node which represents
the set of compound labels for the set of variables S. For example, if
variables_of(D) = {X, Y}, then node D contains nothing but compound labels for
the variables X and Y, such as {(<X,1><Y,a>), (<X,2><Y,b>), (<X,2><Y,c>)}. In this
case, D = node_for({X, Y}) and order_of(D) is 2 (because D contains 2-compound
labels).

Definition 9-1:

A node P is a minimal extension of Q if P is of one order higher than node
Q, and all the variables in variables_of(Q) are elements of variables_of(P).
In other words, the variables of P are the variables of Q plus an extra varia-
ble (read minimal_extension(P, Q) as: P is a minimal extension of Q):

∀  csp(P): (V, E) = MP-graph(P):
(∀  P, Q ∈ V:

minimal_extension(P, Q) ≡
(( variables_of(P)  =variables_of( Q) + 1) ∧

(variables_of(Q) ⊂ variables_of( P))) ■

Obviously every node of order k is the minimal extension of k nodes of order k − 1.
The arcs in the MP-graph represent constraints between the nodes. An arc exists
between every node P of order k + 1 and every node Q of order k if and only if P is
a minimal_extension of Q. See Figure 9.2 for the topology of an MP-graph.
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9.2.1  Constraints propagation in Freuder’s algorithm

The contents of each node D of order k in the MP-graph is determined by the fol-
lowing constraints, and the following constraints only:

(1) compound labels in D must satisfy the k-ary constraint on variables_of(D);

(2) upward propagation —
if a compound label cl is in D, then projections of cl must be present in every
node of order k − 1 which is connected to D. For example, if
(<x1,v1><x2,v2><x3,v3>) is in node D, then (<x1,v1><x2,v2>) must be a mem-
ber of the node for {x1, x2}; and

(3) downward propagation —
if a compound label cl is in D, then in every node of order k + 1 which is con-
nected to D there must be a compound label of which cl is a projection. For
example, if (<x1,v1><x2,v2><x3,v3>) is in D, then at least one compound label
(<x1,v1><x2,v2><x3,v3><x4,✻ >) must be a member of the node for variables
{x1, x2, x3, x4}, where ‘✻ ’ denotes a wildcard which represents any value that
x4 may take.

In other words, upward propagation attempts to eliminate compound labels in nodes
of a higher order, and downward propagation attempts to eliminate compound
labels in nodes of a lower order. To be exact, upward propagation and downward
propagation achieve the properties Upward_propagated and Downward_propa-
gated, which are defined below:

Definition 9-2 (Upward_propagated):

∀  csp(P): (V, E) = MP-graph(P):
Upward_propagated((V, E)) ≡

∀ Node1, Node2 ∈ V :
(minimal_extension(Node1, Node2)

⇒  (∀ e1 ∈ Node1: (∃ e2 ∈ Node2: projection(e1, e2)))) ■

Definition 9-3 (Downward_propagated):

∀  csp(P): (V, E) = MP-graph(P):
Downward_propagated((V, E)):

∀ Node1, Node2 ∈ V :
(minimal_extension(Node1, Node2)

⇒  (∀ e2 ∈ Node2: (∃ e1 ∈ Node1: projection(e1, e2)))) ■
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9.2.2  Algorithm Synthesis

The pseudo code for Freuder’s solution synthesis algorithm (which we shall call
Synthesis) is shown below:

PROCEDURE Synthesis(Z, D, C)
BEGIN

 /* Step 1: Initialization */
V ← { }; E ← { }; /* the MP-graph of (Z, D, C) is (V, E) */
FOR each x in Z DO

BEGIN
node_for({x}) ← { (<x,a>) | a ∈  Dx ∧ satisfies(<x,a>, Cx) };
V ← V + {node_for({x})};

END

/* Step 2: Construction of higher-order nodes */
FOR i = 2 to  Z DO

FOR each combination of i variables S in Z DO
BEGIN

IF (CS ∈  C) THEN node_for(S) ← CS;
ELSE node_for(S) ← all possible combinations of labels

for S;
V ← V + {node_for(S)};
FOR each node X of which node_for(S) is a minimal

extension DO
BEGIN

E ← E + {(node_for(S), X)};
FOR each element cl of node_for(S) DO

IF (there exists no cl' in X such that projec-
tion(cl, cl')) holds

THEN node_for(S) ← node_for(S) − {cl};
END

V ← Downward_Propagate(node_for(S), V);
END

END /* of Synthesis */

Each node of order 1 is initialized to the set of all the values which satisfy the unary
constraints of the subject variable. A node N of order k in general is constructed in
the following way: If there exists any constraint on the variables_of(N), then the
node_for(N) is instantiated to this constraint (readers are reminded that both the
nodes and the constraints are treated as sets of compound labels). Otherwise, N is
instantiated to the set of all possible combinations of values for the variables of N.
Then N is connected to all the nodes of which N is the minimal extension.
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After a node N is instantiated and linked to other nodes in the MP-graph, redundant
compound labels in N are removed using the lower-order nodes which are adjacent
to it. For example, the node for the variables {x1, x2, x3, x4} is restricted by the
nodes for the following sets of variables: {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4} and
{x2, x3, x4}. On the other hand, the content of N forms a constraint to all the nodes
of a lower order, and such constraints are propagated using the Downward_Propa-
gation procedure shown below. The Downward_Propagation and Upward_Propaga-
tion procedures call mutual recursively for as many times as necessary:

PROCEDURE Downward_Propagation(N, V)
/* propagate from node N to the set of nodes V in the MP-graph */
BEGIN

FOR each node N' in V such that minimal_extension(N,N') DO
BEGIN

Original_N' ← N';
FOR each element e' of N' DO

IF (there exists no e in N such that projection(e,e'))
THEN N' ← N' − {e'};

IF (N' ≠ Original_N')
THEN BEGIN

V ← Downward_Propagation(N', V);
V ← Upward_Propagation(N', V);

END
END

return(V); /* content of the nodes in V may have been reduced */
END /* of Downward_Propagation */

PROCEDURE Upward_Propagation(N, V)
/* propagate from node N to the set of nodes V in the MP-graph */
BEGIN

FOR each node N' in V such that minimal_extension(N',N) DO
BEGIN

Original_N' ← N';
FOR each element e' of N' DO

IF (there exists no e in N such that projection(e',e))
THEN N' ← N' − {e'};

IF (N' ≠ Original_N')
THEN BEGIN

V ← Upward_Propagation(N', V);
V ← Downward_Propagation(N', V);

END
END

return(V); /* content of the nodes in V may have been reduced */
END /* of Upward_Propagation */
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Downward_Propagation(N, V) removes from every node N' of which N is a mini-
mal_extension the compound labels which have no support from N. A compound
label cl' in N' is supported by N if there exists a compound label cl in N such that cl' is
a projection of cl. If the content of any N' is changed, the constraint must be propa-
gated to all other nodes which are connected to N' through the calls to Downward_-
Propagation and Upward_Propagation.

Upward_Propagation(N, V) removes from every node N' which are minimal_exten-
sions of N all the compound labels which do not have any projection in N. Similarly,
if any N' is changed, the effect will be propagated to all other nodes connected to it.

Let us assume that a is the maximum size of the domains for the variables, and n is
the number of variables in the problem. There are altogether nC1 + nC2 + ... + nCn

combinations of variables; hence there are 2n nodes to be constructed in step 1. In
the worst case, Upward_Propagation and Downward_Propagation remove only one

compound label at a time. Since there are O(an) compound labels, in the worst case,

O(an) calls of Upward_Propagation and Downward_Propagation are needed. In
each call of Upward_Propagation, each element of every minimal_extension is

examined. The number of elements in each minimal_extension is O(an). Since there

are O(n) minimal_extensions, O(nan) projections have to be checked. Therefore, the

worst case time complexity of Freuder’s solution synthesis algorithm is O(2n+

na2n). Since there are O(2n) nodes, and the size of each node is O(an), the worst

case space complexity of Synthesis is O(2nan).

9.2.3  Example of running Freuder’s Algorithm

We shall use the 4-queens problem to illustrate Freuder’s algorithm. The problem is
to place four queens on a 4 × 4 chess board satisfying the constraints that no two
queens can be on the same row, column or diagonal. To formulate it as a CSP, we
use variables x1, x2, x3 and x4 to represent the four queens to be placed on the four
rows of the board. Each of the variables can take a value from {A, B, C, D} repre-
senting the four columns.

For convenience, we use subscripts to indicate the variables that each node repre-
sents: for example, N123 denotes the node for variables {x1, x2, x3}. To start, the fol-
lowing nodes of order 1 will be constructed. Each node represents the set of values
for the subject variable which satisfy the unary constraints:

N1: {(A), (B), (C), (D)}
N2: {(A), (B), (C), (D)}
N3: {(A), (B), (C), (D)}
N4: {(A), (B), (C), (D)}
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The binary constraints in the 4-queens problem determine the contents of the nodes
of order 2 in the MP-graph. The following nodes of order 2 are initialized to the cor-
responding constraints:

N12: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N13: {(A,B), (A,D), (B,A), (B,C), (C,B), (C,D), (D,A), (D,C)}
N14: {(A,B), (A,C), (B,A), (B,C), (B,D), (C,A), (C,B), (C,D), (D,B), (D,C)}
N23: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N24: {(A,B), (A,D), (B,A), (B,C), (C,B), (C,D), (D,A), (D,C)}
N34: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}

After each node of order 2 is built, constraints are propagated downward to nodes of
order 1. No change is caused by the propagation of these constraints. Next, the
nodes of order 3 are built. For each combination of three variables, a node is con-
structed. Since no 3-constraint exists in the problem, all nodes N123, N124, N134 and
N234 are instantiated to the cartesian product of the three domains: {(A,A,A),
(A,A,B), ..., (D,D,D)}. Each of them is constrained by the relevant nodes of order 2.
For example, N123 is restricted by N12, N13 and N23. Let ‘✽ ’ denote a wildcard.
Since (A,A) is not a member of N12, all the elements (A,A,✽ ) are removed from
N123; since (C,D) is not a member of N23, all the elements (✽ ,C,D) are removed
from N123; and so on. After such local propagation of constraints, the nodes of order
3 are as follows:

1

2

3

4

A B C D

Figure 9.1 The board for the 4-queens problem
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N123: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}
N124: {(A,C,B), (B,D,A), (B,D,C), (C,A,B), (C,A,D), (D,A,B), (D,B,C)}
N134: {(A,D,B), (B,A,C), (B,A,D), (C,B,D), (C,D,A), (C,D,B), (D,A,C)}
N234: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}

To complete the construction of each node of order 3, Downward_Propagated is
called by the Synthesis procedure. Since no (A,C,✽ ) and (D,B,✽ ) exist in any ele-
ment of N123, (A,C) and (D,B) are deleted from N12. Similarly, since no (A,D,✽ )
exists in any of the compound labels of N124, (A,D) must be deleted from N12 as
well. As a result, N12 is reduced to:

N12 (updated): {(B,D), (C,A), (D,A)}

Similarly, other nodes of order 2 can be updated. After N12 is updated, constraints
are propagated both downward and upward. Propagating downward, node N1 is
updated to {(B), (C), (D)}, because the value A does not appear in the first position
(the position for x1) of any element in node N12. Similarly, node N2 is updated to
{(A), (D)}. Propagating upward from N12, node N123 is updated to:

N123 (updated): {(B,D,A), (C,A,D), (D,A,C)}

Element (A,D,B) is discarded from N123 because (A,D) is no longer an element of
N12. Apart from N123, all other nodes of order 3 in which are minimal_extensions of
N12 have to be re-examined. For example, N124 will be updated to {(B,D,A),
(B,D,C), (C,A,B), (C,A,D), (D,A,B)} (the element (A,C,B) is deleted from N124

because (A,C) in no longer a member of N12).

The result of N123 being restricted can again be propagated downward to all the
nodes of order 2 which are nodes for subsets of {x1, x2, x3}. For example, N13 will
be restricted to:

N13 (updated): {(B,A), (C,D), (D,C)}

because only these elements are accepted by elements of the updated N123. The
propagation process will stop when and only when no more nodes are updated.
Finally, the following node of order 4 will be constructed using all the nodes of
order 3:

N1234: {(B,D,A,C), (C,A,D,B)}

Node N1234 contains the only two possible solutions for this problem. Figure 9.2
shows the final MP-graph for the 4-queens problem built by Freuder’s algorithm.
Every compound label in every node appears in at least one solution tuple.
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9.2.4  Implementation of Freuder’s synthesis algorithm

Program 9.1, synthesis.plg, shows a Prolog implementation of the above Synthesis
procedure for tackling the N-queens problem. In this program, the nodes of the MP-

graph and their contents are asserted into the Prolog database. Since 2n nodes must
be built for a problem of n variables, and constraints are propagated through the net-
work extensively, carrying the nodes as parameters would be too expensive and
clumsy.

(B, D)
(C, A)

N1234

(B, D, A, C)
(C, A, D, B)

(B, D, A)
(C, A, D)

(B, D, C)
(C, A, B)

(B, A, C)
(C, D, B)

(D, A, C)
(A, D, B)

(B) (A) (A) (B)

(B, A)
(C, D)

(B, C)
(C, B)

(D, A)
(A, D)

(D, C)
(A, B)

(A, C)
(D, B)

(C) (D) (D) (C)

Figure 9.2 The MP-graph constructed by Freuder’s algorithm in solv-
ing the 4-queens problem (after propagation of all the constraints)

N123 N124 N134 N234

N14
N23 N24 N34N12 N13

N1 N2 N3 N4
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For each node N that has been built, node(N) is asserted in synthesis.plg. N is sim-
ply a list of numbers which represent the rows. Node(N) is checked before con-
straint is propagated to or from it. If node(N) has not been built yet, then no
constraint is propagated to and from it. If node(N) is already built, but no compound
label is stored in it, then we know that there exists no solution to the problem.

Each compound label cl which is considered to be legal is asserted in a predicate
content(cl). Clauses in the form of content/1 could be retracted in constraint propa-
gation. For clarity, Program 9.1 reports the progress of the constraint propagation.

9.3  Seidel’s Invasion Algorithm

The invasion algorithm is used to find all solutions for binary CSPs. Although it is
possible to extend it to handle general CSPs, using it for solving CSPs which have
k-ary constraints for large k would be inefficient. The invasion algorithm exploits
the topology of the constraint graph, and is especially useful for problems in which
every variable is involved in only a few constraints. Basically, it orders the variables
and constructs a directed graph where each node represents a legal compound label
and each arc represents a legal extension of a compound label. The variables are
processed one at a time. When each variable is processed, the invasion algorithm
generates nodes that represent the compound labels (or partial solutions) which
involve this variable. After all the variables have been processed, each complete
path from the last node to the first node in the graph represents a legal solution
tuple.

9.3.1  Definitions and Data Structure

Definition 9-4:

Given a graph G of n nodes and a total ordering < on its nodes, an invasion
is a sequence of partial graphs (Definition 3-27) G1, G2, ..., Gn with the first
1, 2, ..., n nodes under the ordering <:

∀  graph((V, E)): (∀ <: total_ordering( V, <): V   = n:
(invasion((G1, G2, ..., Gn), (V, E), <) ≡

(∀ i: 1 ≤ i < n:
((Gi = (Vi, Ei) ∧ Gi+1 = (Vi+1, Ei+1)) ⇒

(partial_graph(Gi, Gi+1) ∧
∃ y ∈V i+1: (Vi+1 = Vi + {y} ∧ ∀ x ∈ V i: x < y)))))) ■

In other words, the partial graph Gi in an invasion consists of the first i nodes of V

according to the ordering of the invasion. Figure 9.3 shows a constraint graph and a
possible invasion.
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The invasion algorithm is very similar to the Find_Minimal_Bandwidth algorithm
described in Chapter 6, and therefore we shall refer to the definitions there. By
Definition 6-4, the nodes in the partial graph Gi in an invasion and its ordering is a
partial layout (V, <). Here, we shall use the terms conquered nodes and active nodes
as they were defined in Chapter 6 (Definitions 6-6 and 6-7).

Definition 9-5:

The front of an invasion graph is the set of active nodes under the ordering
of the invasion:

∀  graph((V, E)): ∀ <: total_ordering( Z, <):
∀  (V1, E1), ..., (Vn, En): invasion(((V1, E1), ..., (Vn, En)), (V, E), <):

(∀ i: 1 ≤ i ≤ V : (front((Vi, Ei)) ≡
{v | active_node(v, (Vi, <), (V, E))}))) ■

Given a CSP P, the invasion algorithm maintains a directed graph, which we shall
call the solution graph, which records the set of all partial solutions. Let S be a
solution graph and S = (VS, ES). Each node in VS represents a compound label for
the variables in front(Gi) for some i. There are two special nodes: a start node and
an end node. The start node represents the 0-compound label and the end node rep-

resents the compound labels for the variables in front(G(P)) (which is also empty

because G(P) has no active nodes). Each arc in ES goes from a compound label for
front(Gi+1) to a compound label for front(Gi). The arcs are marked by a possible
value: the arc between front(Gi) and front(Gi+1) is marked by a value in the domain
of the i-th variable in the ordering. When the algorithm terminates, each path from
the end node to the start node represents a solution. See Figure 9.4 later for the
topology of a solution graph.

9.3.2  The invasion algorithm

The basic idea of the invasion algorithm is to look at the partial graphs of the inva-
sion according to the given ordering, and augment the solution graph in the follow-
ing way: for each compound label cl for the variables of front(Gi), and for each
value v in the domain of the (i + 1)-th variable, check whether cl is compatible with
v. If so, then create a node N for the variables of front(Gi+1) if such node does not
already exist. Then create an arc from N to the node which represents cl.

PROCEDURE Invasion(Z, D, C, <)
BEGIN

/* Si is the set of nodes for the i-th partial graph in the invasion */



9.3 Seidel’s Invasion Algorithm 283

/* create the start node which represents the 0-compound label */
S0 ← {( )};
FOR i = 1 to  Z DO

BEGIN
Gi ← i-th partial graph in the invasion of the graph G(Z, D,

C) according to <;
Si ← { };
FOR each CL in Si-1 DO

FOR each value v in domain xi DO
IF (CL + <xi,v> satisfies CE(variables_of(CL) + {xi}))
THEN BEGIN

CL' ← CL + <xi,v> − labels for conquered
nodes in Gi;

Si ← Si + {CL'};
create arc from CL' to CL and mark it with

<xi,v>;
END

IF (Si = { }) THEN report no solution;
END

END /* of Invasion */

The nodes in the solution graph are logically grouped into sets: Si is the set of nodes
for the i-th partial graph in the invasion. Readers are reminded that CE(S) is the con-
straint expression of a set of variables S (Definition 2-9). CL' represents the com-
pound label of the variables in front(Gi). If n is the number of variables in the CSP,
then Gn contains just one node, which we call the end node (this is because the front
of Gi is by definition an empty set). The Invasion algorithm constructs S0, S1, ..., Sn

in that order. After termination of Invasion, the solution graph comprises the sets of
nodes in S0 + S1 + ... + Sn. Each path from the end to the start node represents a
solution to the CSP. If any set Si is found to be empty after the i-th partial graph has
been processed, then no solution exists for the input CSP.

9.3.3  Complexity of invasion and minimal bandwidth ordering

Let n be the number of variables, a the maximum domain size, and e the number of
constraints in a binary CSP. Further let f be the maximum size of front(Gi) for all
1 ≤ i ≤ n. In the following we show that the time and space complexity of the inva-

sion algorithm are O(eaf+1) and O(naf+1), respectively.

Since f is the maximum size of front(Gi) for all i, there are at most af f-compound
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labels CL in Si-1. Therefore, when a value v in xi is being processed in the inner

FOR loop, <xi,v> is checked against at most af labels in CL. At most af+1 compati-

bility checks are required to process each CL, hence at most faf+1 checks are
required to process each Si-1. If each compatibility check between every pair of

labels takes a constant time, then the time complexity of the algorithm is O(nfaf+1).
But since there are no more than e constraints, n × f is bounded by e. So the time

complexity of the algorithm is O(eaf+1).

Since there are at most af f-compound labels at the front of a partial graph, there are

at most af nodes in Si for all i. So there are at most naf nodes in the solution graph S.
Each f-compound label in the nodes of Si-1 is compatible with at most all a values in

xi. Therefore, no more than af+1 arcs go from Si-1 to Si. If each node is stored in a
constant space, then the space complexity of the invasion algorithm is dominated by

O(naf+1).

The above analysis shows that the value f, i.e. the maximum front size, significantly
affects the complexity of the invasion algorithm. The natural question then is how
to find an invasion which f is minimal. In Chapter 6, we introduced the concept of
bandwidth and an algorithm for finding the minimal bandwidth. Since the front is
defined as the set of active nodes, an ordering which has the minimal bandwidth has
the smallest maximum front size f. Therefore, the time and space complexity of the

invasion algorithm are O(eab+1) and O(nab+1), where b is the (minimal) bandwidth
of the graph.

In the discussion of bandwidth in Chapter 6, we said that the time complexity of

finding the bandwidth of a graph is O(nb), and any CSP whose constraint graph’s

bandwidth is no larger than b can be solved in time O(nb+ab+1) and space

O(nb+ab). In the case when ab+1 dominates the time complexity, this result is con-
sistent with our analysis of the complexity of the invasion algorithm.

Seidel claims that it is possible to extend the invasion algorithm to non-binary
CSPs. This can be done by modifying the definition of connectivity appropriately.
However, one must note that when non-binary constraints are considered, the time
complexity of the algorithm is changed. When the compatibility between CL and
<xi,v> is checked, more than f checks could be needed if the constraints are not lim-

ited to binary. In the worst case, there could be 2f tests. When this is the case, the

time complexity of the algorithm would become O(e ) instead of O(eaf+1).a2f 1+
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9.3.4  Example illustrating the invasion algorithm

The following example from Seidel [1981] illustrates the invasion algorithm. Sup-
pose there are four integer variables, x1, x2, x3, and x4, and the domains for all of
them are the same: {1, 2, 3}. Let the following be the only constraints in the prob-
lem:

x1 < x2
x1 < x3
x2 ≤ x4
x3 ≤ x4

The problem is to find all combinations of assignments to the four variables, satisfy-
ing all the constraints. The constraint graph of this problem is shown in
Figure 9.4(a). Suppose the (arbitrary) ordering of the invasion is (x1, x2, x3, x4).

Figure 9.4(b) shows the solution graph generated by the invasion algorithm. G1

contains x1 only, which is connected to uninvaded nodes. So the front of G1 is {x1}.
Since all the possible labels of x1 are compatible with the 0-compound label (),
nodes for all (<x1,1>), (<x1,2>) and (<x1,3>) are created and put into S1. G2 con-
tains x1 and x2. Since both of them are connected to some uninvaded nodes, both are
in the front of G2. Since both <x2,2> and <x2,3> are compatible with <x1,1>, nodes
for both (<x1,1><x2,2>) and (<x1,1><x2,3>) are created. Node (<x1,2><x2,3>) is
created because <x1,2> is compatible with <x2,3>. G3 contains x1, x2 and x3, among
which x1 is conquered. So the front of G3 is {x2, x3} and nodes for S3 are 2-com-
pound labels for x2 and x3.

The solutions can be found following the paths from the end node to the start node.
An example of two solutions shown in the solution graph are:

(<x1,1><x2,2><x3,2><x4,2>)

and (<x1,1><x2,2><x3,3><x4,3>).

9.3.5  Implementation of the invasion algorithm

Program 9.2, invasion.plg, shows an implementation of the invasion algorithm. It is
applicable to binary constraint problems only, though it is quite easy to modify it to
handle general problems (one needs to modify satisfy_constraints/2 and find_new_-
front/3 in update_sg_aux/6). It assumes a particular form of the input data, and
therefore has to be modified if the input is in a different format. The example given
at the beginning of the program (under the heading Notes) is the same example as
that in the preceding section, with variable names changed from x1, x2, x3 and x4 to
w, x, y and z.
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9.4  The Essex Solution Synthesis Algorithms

In this section, we shall introduce a class of solution synthesis algorithms that were
developed with the intention of exploiting advanced hardware. These algorithms are
inspired by and modifications of Freuder’s algorithm in Section 9.2. They are appli-
cable to general problems, though particularly useful for binary constraint prob-
lems. The possible exploitation of hardware by these algorithms will be discussed in
Section 9.5.

9.4.1  The AB algorithm

The basic Essex solution synthesis algorithm is called AB (which stands for Algo-
rithm Basic). As Freuder’s algorithm, AB synthesizes solution tuples by building a
graph in which each node represents a set of compound labels for a particular set of
variables. We shall call the graphs generated by AB AB-Graphs. As before, we

shall use variables_of(N) to denote the set of variables for the node N in the AB-

graph, and order_of(N) to denote its order. Unlike in Freuder’s algorithm, nodes in
an AB-Graph are partially ordered, and only adjacent nodes are used to construct
nodes of higher order. The ordering and adjacency of the nodes are defined as fol-
lows.

Definition 9-6 (ordering of nodes in AB):

Given any total ordering of the variables in a CSP, the nodes of order 1 in the
AB-graph are ordered according to the ordering of the variables that they
represent. The ordering of nodes of higher order is defined recursively. For
all nodes P and Q of the same order, P is before node Q if there exists a var-
iable in variables_of(P) which is before all the variables in variables_of(Q):

∀  csp(P): (V, E) = AB-graph(P):
(∀  <: total_ordering({N | N ∈ V ∧  order_of(N) = 1}, <):

(∀ P, Q ∈ V: order_of(P) = order_of(Q)) ∧  order_of(P) > 1:
(P < Q ≡ ∃ x ∈  variables_of(P): ∀ y ∈  variables_of(Q): x < y))) ■

Definition 9-7 (adjacency of nodes in AB):

Two nodes of the same order are adjacent to each other if and only if one of
them is before the other, and there exists no node of the same order which is
between them in the ordering:

∀  csp(P): (V, E) = AB-graph(P):
(∀  <: total_ordering({N | N ∈ V ∧  order_of(N) = 1}, <):

(∀ P, Q ∈ V: order_of(P) = order_of(Q):
(adjacent_ordered_node(P, Q, <) ≡
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((P < Q ∧ ¬ ∃  node R:
(order_of(R) = order_of(Q) ∧ P < R ∧ R < Q)) ∨

(Q < P ∧ ¬ ∃  node R:
(order_of(R) = order_of(Q) ∧ Q < R ∧ R < P)))))) ■

Since only adjacent nodes are used to construct new nodes, the AB-graph that AB
generates is actually a tangled binary tree. This tree will be constructed from the tips
to the root, with n, n − 1, n − 2, ..., 3, 2, 1 nodes being constructed for each order,
where n is the number of variables in the problem. The root of this tree is the node
for solution tuples (see Figure 9.6 for the topology of the AB-graph). The pseudo
code for the algorithm AB is shown below.

PROCEDURE AB(Z, D, C)
/* Z: a set of variables, D: index to domains, C: a set of constraints */
BEGIN

/* initialization */
give the variables an arbitrary ordering <;
S ← { } /* S = set of nodes in the AB-Graph to be constructed */
FOR each variable x in Z DO

S ← S ∪ { (<x,v>) | v ∈  Dx ∧ <x,v> ∈  Cx };
k = 1;
/* synthesis of solutions */
WHILE (k ≤  Z) DO

BEGIN
FOR each pair of adjacent nodes P, Q in S such that P < Q

DO S ← S ∪ {Compose(P,Q)};
k = k + 1;

END
return node of order  | Z | in S which represents the set of all solu-

tion tuples;
END /* of AB */

The node of order  Z contains all the solution tuples for the problem (this node
could be an empty set). AB ensures that in Compose(P, Q), P and Q are nodes of the
same order, adjacent to each other and P < Q. This implies that the sets variable-
s_of(P) and variables_or(Q) differ in exactly one element, and P’s unique element
is before all of Q’s elements. In the procedure Compose, we assume that:

variables_of(P) = {x} + W
variables_of(Q) = W + {y}

where W is a set of variables and x < y. Following we show the Compose procedure
for binary CSPs:
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PROCEDURE Compose(P, Q)
BEGIN

R ← { }; /* node to be returned */
FOR each element (<x,a><x1,v1>...<xm,vm>) in P

FOR each element (<x1,v1>...<xm,vm><y,b>) in Q
IF satisfies((<x,a><y,b>), Cx,y)
/* only binary constraints are checked here; in dealing with

general CSPs, check if satisfies((<x,a><x1,v1> ...
<xm,vm><y,b>), CE({x,x1,...,xm,y}) holds */

THEN R ← R + {(<x,a><x1,v1>...<xm,vm><y,b>)};
return(R);

END /* of Compose */

The procedure Compose(P ,Q) picks from the two given nodes P and Q a pair of
elements which have the same projection to the common variables, and checks to
see if the unique labels for the differing variables are compatible. If they are, a com-
pound label containing the union of all the labels is included in the node to be
returned.

For general CSPs, Compose has to check whether the differing variables are
involved in any general constraints which might involve the common variables. If
such constraint exists, Compose has to check whether the combined compound
label satisfies all such constraints before it is put into the constructed node. Figure
9.5 summarizes the constraints being checked in Compose for both binary con-
straint problems and general problems.

There are (n − k + 1) nodes of order k in the AB-graph. When each of these nodes is
constructed, two nodes of order k − 1 will be passed as parameters to Compose. The
time complexity of Compose is determined by the size of these input nodes. The

size of a node of order k − 1 is O(ak-1) in the worst case. Compose has to consider
each combination of two elements from the two input nodes. Therefore, the time

complexity of Compose is O(a2k-2). So the time complexity of AB is

, which is dominated by the term where k = n, i.e.

O(a2n-2). The largest possible node created by AB has the size an. Therefore, the

worst case space complexity of AB is O(an). The memory requirement of AB will
be studied in greater detail in Section 9.5.1.

9.4.2  Implementation of AB

Program 9.3, ab.plg, is a Prolog implementation of the AB algorithm for solving the
N-queens problem. A node is represented by:

n k− 1+( ) a2k 2−
k 1=
n∑
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put the following into the constructed node

compatibility checks

Figure 9.5 Constraints being checked in the Compose procedure

if (<x1,v1>, <xk+1,vk+1>) satisfies

, then put the following into

the constructed node

Cx1 xk 1+,
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[X1, X2, ...]-[V1, V2, ...]

in the program, where [X1, X2, ...] is the list of variables for the subject node, and
each of Vi’s is a value to be assigned to the variable Xi. Syn/2 is given the list of all
nodes of order 1. In each of its recursive calls, it will generate the set of nodes of
one order higher (through calling syn_nodes_of_current_order/2), until either the
solutions are generated, or it is provable that no solution exists.

9.4.3  Variations of AB

The efficiency of AB can be improved in the initialization. AB can also be modified
should constraint propagation be worthwhile (as in Freuder’s algorithm). These var-
iations of AB are described briefly in the following sections.

9.4.3.1  Initializing AB using the MBO

The nodes are ordered arbitrarily in AB, but the efficiency of AB could be improved
by giving the nodes certain ordering. The observation is that the smaller the nodes,
the less computation is required for composing the higher order nodes. Although the
size of the nodes of order 1 are determined by the problem specification, the sizes of
the higher order nodes are determined by how much the variables of those nodes
constrain each other. When the tightness of individual constraints are easily com-
putable, one may benefit from putting the tightly constrained variables closer
together in the ordering of the nodes of order 1 in AB. One heuristic is to give the
variables a minimal bandwidth ordering (MBO) during initialization. For algo-
rithms for finding the minimal bandwidth ordering and their implementations, read-
ers are referred to Section 6.2.2 in Chapter 6.

9.4.3.2  The AP algorithm

Constraints are not propagated upward or downward in AB as they are in Freuder’s
algorithm. This is because AB is designed to exploit parallelism. All the nodes of
order k are assumed to be constructed simultaneously. Propagating constraints will
reduce the nodes’ sizes and reduce the number of compatibility checks, but hamper
parallelism. This is because, as Kasif [1990] has pointed out, consistency achieve-
ment is sequential by nature.

Constraints could be fully or partially propagated in AB if desired. The AP algo-
rithm (P for Propagation) is a modification of AB in that constraints are partially
propagated. In AP, if nodes P and Q are used to construct R, and P < Q, then con-
straints are propagated from R to Q (which will be used to construct the next node
of one order higher than P and Q). Constraints are not propagated from R to P, or
from Q to nodes of a lower order.
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It is possible to extend AP further to maintain Upward_propagated (Definition 9-2)
and Downward_propagated (Definition 9-3). Doing so could reduce the size of the
nodes, at the cost of more computation. Whether it is justifiable to do so depends on
the application. The decision on how much propagation to perform in AP is akin to
the decision on what level of consistency to achieve in problem reduction. Program
9.4, ap.plg, is a Prolog implementation of the AP algorithm for solving the N-
queens problem.

9.4.4 Example of running AB

We shall use the 4-queens problem to illustrate the AB procedure. As before, we
shall use one variable to represent the queen in one row, and call the four variables
x1, x2, x3 and x4. We shall continue to use subscripts to indicate the variables that
each node represents: for example, N123 denotes the node for variables {x1, x2, x3}.

Since all the variables x1, x2, x3 and x4 can take values A, B, C and D, all nodes of
order 1 are identical:

N1: {(A), (B), (C), (D)}
N2: {(A), (B), (C), (D)}
N3: {(A), (B), (C), (D)}
N4: {(A), (B), (C), (D)}

From the nodes of order 1, nodes of order 2 are constructed:

N12: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N23: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N34: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}

As described in the algorithm, only adjacent nodes of order 1 are used to construct
nodes of order 2. So nodes such as N13 and N24 will not be constructed. Node N12

suggests that compound labels (<x1,A><x2,C>), (<x1,A><x2,D>), (<x1,B><x2,D>),

etc. are all legal compound labels, as far as the constraint  is concerned.

With these nodes of order 2, the following nodes of order 3 will be generated:

N123: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}
N234: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}

Finally, the following node of order 4 will be generated, which contains all the solu-
tion for the problem:

N1234: {(B,D,A,C), (C,A,D,B)}

Node N1234 contains two compound labels:

Cx1 x2,
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(<x1,B><x2,D><x3,A><x4,C>)
and (<x1,C><x2,A><x3,D><x4,B>)

are the only two solutions for this problem. At this stage, the AB-graph (which is a
tangled binary tree) in Figure 9.6 is constructed.

(A, C)
(A, D)

N1234

(B, D, A, C)
(C, A, D, B)

(A, D, B)
(B, D, A)

(A) (A) (A)
(B) (B) (B)
(C)
(D)

(C)
(D)

(C)
(D)

(A)
(B)
(C)
(D)

(B, D)
(C, A)
(D, A)
(D, B)

(A, C)
(A, D)
(B, D)
(C, A)
(D, A)
(D, B)

(A, C)
(A, D)
(B, D)
(C, A)
(D, A)
(D, B)

(C, A, D)
(D, A, C)

(A, D, B)
(B, D, A)
(C, A, D)
(D, A, C)

Figure 9.6  The tangled binary tree (AB-graph) constructed by the AB
algorithm in solving the 4-queens problem

N123 N234

N23N12 N34

N3N1 N4N2
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9.4.5  Example of running AP

For the simple example shown in the last section, different nodes will be generated
by AP. Before constraints are propagated, the nodes of order 1 and order 2 in run-
ning AP are exactly the same as those in AB. After the following node N123 is con-
structed:

N123: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)},

N123 will form a constraint to node N23 (but not N12 because it will not be used to
construct any more nodes). (B,D) will be removed from N23 because there is no
(✽ ,B,D) in N123 (where ‘✽ ’ represents a wildcard). Similarly (C,A) will be removed
from N23 because there is no (✽ ,C,A) in N123. So the node N23 is updated to:

N23 (updated): {(A,C), (A,D), (D,A), (D,B)}

The updated N23 will be used to build N234:

N234: {(A,D,B), (D,A,C)}

Finally, the node of order 4 where solutions are stored is constructed:

N1234 (solution): {(B,D,A,C), (C,A,D,B)}

9.5  When to Synthesize Solutions

In this section, we shall firstly identify the types of problems which are suitable for
solution synthesis. Then we shall argue that advanced hardware could make solu-
tion synthesis more attractive than in the past.

9.5.1  Expected memory requirement of AB

Since solution synthesis methods are memory demanding by nature, we shall exam-
ine the memory requirements for AB in this section. Given any CSP, one can show
that the size of the nodes in AB grows at a decreasing rate as the order of the node
grows.

In a problem with n variables, n nodes of order 1 will be created. Among the n
nodes of order 1, there are n − 1 pairs of adjacent nodes. Therefore, n − 1 nodes of
order 2 will be constructed. There would be n − 2 nodes of order 3, n − 3 nodes of
order 4, ..., and 1 node of order n. The total number of nodes in the binary tree is

n(n + 1) / 2. Therefore, the number of nodes is O(n2). The complexity of composing
a new node is O(s1 × s2), where s1 and s2 are the sizes of the two nodes used to con-
struct the new node.
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The size of the nodes is determined by the tightness of the problem: the tighter the
constraints, the smaller the sizes of the nodes. For simplicity, we shall limit our
analysis to binary constraint problems here. Let r be the proportion of binary-com-
pound labels which are allowed in each binary constraint. Assume for simplicity
that the domain size of every variable in the CSP is a. The expected size of a node
of order 2 is a × a × r. Given two labels <x1, v1> and <x2, v2> the chance of a label

<x3, v3> being compatible with them simultaneously is r2. The chance of a label

<x4, v4> being compatible with all <x1, v1>, <x1, v2> and <x1, v3> is r3.

In general, the size of a node of order k, S(k), is:

S(k) = r × r2 × r3 × ... × rk-1 × rk × ak = rk(k-1)/2 × ak

Since 0 ≤ r ≤ 1, rk(k-1)/2 should decrease at a faster rate than ak increases. We can
find k which has the maximum number of elements in its nodes by finding the deriv-

ative of S(k) and making it equal to zero. Let t = :

  =

=

If  = 0, then we have: (2k − 1) × ln(t) + ln(a) = 0. Therefore, k =

, or k = , which is the order in which the

nodes potentially have the most elements. This analysis helps in estimating the
actual memory requirement in an application.

9.5.2  Problems suitable for solution synthesis

All solution synthesis techniques described in this chapter construct the set of all
solutions. Therefore, their usefulness is normally limited to CSPs in which all the
solutions are required.

The amount of computation involved in solution synthesis is mainly determined by
the sizes of the nodes. In general, the looser a CSP is, the more compound labels are
legal, and consequently more computation is required. The tighter a problem is, the
fewer compound labels there are in each node, and consequently less computation is
required. This suggests that solution synthesis methods are more useful for tightly
constrained problems.

In Chapter 2, we classified CSP solving techniques into problem reduction, search-
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ing and solution synthesis. Now we have looked at all three classes of techniques,
we shall study their applicability in the classes of problems whown in Table 2.1 of
Chapter 2.

If a single solution is required, then a loosely constrained CSP can easily be solved
by any brute force search: relatively many solutions exist in the search space, and
therefore few backtracking can be expected. However, when the problem is tightly
constrained, naive search methods such as Chronological Backtracking may require
a large number of backtracks. In such problems, problem reduction methods could
be useful. Besides, since the problem is tightly constrained, efforts spent in propa-
gating the constraints are likely to result in successfully reducing the domains and
constraint sizes.

With search methods, finding all solutions basically requires one to explore all parts
of the search space in which one cannot prove the non-existence of solutions. As in
CSPs which require single solutions, the tighter the problem, the more effective
problem reduction methods are in pruning off the search space. Besides, as
explained above, the tighter the CSP, the fewer elements one could expect to be
included in the nodes constructed by both Freuder’s and Essex solution synthesis
algorithms, and therefore the more efficient these algorithms could be expected.

When the search space is large and the problem is loosely constrained, finding all
solutions is hard. Both problem reduction and solution synthesis methods cannot be
expected to perform much better than brute force search in this class of CSPs.
Table 9.1 summarizes our analysis in this section.

Table 9.1 Mapping of tools to problems

Solutions
required

Tightness of the problem

Loosely constrained Tightly constrained

Single
solution
required

Problem is easy by nature;
brute force search (e.g. simple
backtracking) would be suffi-
cient

Problem reduction helps to
prune off search space, hence
could be used to improve
search efficiency

All solutions
required

When the search space is
large, the problem is hard by
nature

Problem reduction helps to
prune off search space; solu-
tion synthesis has greater
potential in these problems
than in loosely constrained
problems
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9.5.3  Exploitation of advanced hardware

Part of the motivation for developing AB is to exploit the advances in hardware
development. Although solution synthesis is memory demanding by nature, this
problem has been alleviated by the fact that computer memory has been made much
cheaper and more abundant in recent years. Besides, the wider availability of
cheaper content-addressable memory and parallel architectures make solution syn-
thesis a more probable tool for CSP solving than, say, ten years ago. In this section,
we shall explain how AB can be helped by these advanced hardware developments.
Although the use of advanced hardware does not change the complexity of AB, it
does affect the real computation time.

In AB, each node of order k where k > 1 is constructed by two nodes of order k − 1.
As soon as these two nodes have been constructed, the node of order k can be con-
structed. Therefore, there is plenty of scope for parallelism in the construction of
nodes.

The efficiency of the Compose procedure could be improved with the help of con-
tent-addressable memory. Let us assume that P and Q are nodes for the variables {x,
x1, ..., xm} and {x1, ..., xm, y}, respectively. When P and Q are used to construct the
node R (which is a node for the variables {x, x1, ..., xm, y}), the following operation
is involved: given any tuple (<x,a><x1,v1>...<xm,vm>) in P, one needs to retrieve all
tuples of the form (<x1,v1>...<xm,vm><y,b>) from Q before one can check whether
<x,a> and <y,b> are compatible. This retrieval involves going through all the tuples
in Q and performing pattern matching on each of them. With content-addressable
memory, one needs no indexing, and therefore can retrieve the tuples directly.

One system which partially meets the requirements of the Essex Algorithms is the
Intelligent File Store (IFS). It provides content-addressable memory and parallel
search engines, and therefore is capable of returning all the tuples which match the
required pattern in roughly constant time. Unfortunately, it does not facilitate paral-
lel construction of the nodes.

9.6  Concluding Remarks

Solution synthesis involves constructively building up compound labels for larger
and larger groups of variables. Solution synthesis in general is more useful for
tightly constrained problems in which all solutions are required.

In this chapter, three solution synthesis algorithms have been explained: Freuder’s
algorithm, the invasion algorithm, and the Essex Algorithms (AB and its variants).
Freuder’s solution synthesis algorithm is applicable to CSPs with general con-
straints. The basic idea is to incrementally construct a lattice, which we call the
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minimal problem graph, or MP-graph, in which every node contains the set of all
legal tuples for a unique subset of variables. The node for a set of k variables S is
constructed using the k-constraint on S (if any) and all the nodes for the subsets of
k − 1 elements of S.

The invasion algorithm is applicable to binary constraint CSPs, though it can be
extended to handle general constraints with additional complexity. It exploits the
topology of the constraint graph, and is especially useful for problems in which
each variable is involved in only a few constraints. Starting with the 0-compound
label, the basic principle is to extend each compound label of the last iteration by
adding to it a label for a new variable. In the process of doing so, a solution graph is
created to store all the solutions. We have pointed out the close relationship between
the invasion algorithm and the minimal bandwidth ordering (MBO).

The Essex Algorithms are also more suitable for binary constraint CSPs, but can be
extended to handling general constraints. The idea is to reduce both the number of
nodes and the complexity of nodes construction in Freuder’s algorithm. This is done
by ordering the variables, and constructing nodes only out of adjacent nodes. It is
argued that the efficiency of the Essex Algorithms can be significantly improved by
employing a parallel machine architecture with content-addressable memory.

9.7  Bibliographical Remarks

The idea of solution synthesis was first introduced by Freuder [1978]. The invasion
algorithm was proposed by Seidel [1981]. In this chapter, we have pointed out the
relationship between Seidel’s work and the minimal bandwidth ordering (MBO),
described in Chapter 6. Algorithms which take a polynomial time to find the mini-
mal bandwidth were first published by Saxe [1980], and then improved by Gurari &
Sudborough [1984]. The Essex Algorithms are reported by Tsang & Foster [1990].
The IFS was developed by Lavington et al. [1987, 1988, 1989].



Chapter 10

Optimization in CSPs

10.1  Introduction

In previous chapters, we have looked at techniques for solving CSPs in which all
solutions are equally good. In applications such as industrial scheduling, some solu-
tions are better than others. In other cases, the assignment of different values to the
same variable incurs different costs. The task in such problems is to find optimal
solutions, where optimality is defined in terms of some application-specific func-
tions. We call these problems Constraint Satisfaction Optimization Problems
(CSOP) to distinguish them from the standard CSP in Definition 1-12.

Moreover, in many applications, the constraints are so tight that one normally can-
not satisfy all of them. When this is the case, one may want to find compound labels
which are as close to solutions as possible, where closeness may be defined in a
number of ways. We call these problems Partial Constraint Satisfaction Problems
(PCSP).

Relatively little research has been done in both CSOP and PCSP by the CSP
research community. In this chapter, these problems will be formally defined, and
relevant techniques for solving them will be identified.

10.2  The Constraint Satisfaction Optimization Problem

10.2.1  Definitions and motivation

All optimization problems studied in operations research are constraint satisfaction
problems in the general sense, where the constraints are normally numerical. Here,
we use the term Constraint Satisfaction Optimization Problems (CSOP) to refer to
the standard constraint satisfaction problem (CSP) as defined in Definition 1-12,
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plus the requirement of finding optimal solutions.

Definition 10.1:

A CSOP is defined as a CSP (Definition 1-12) together with an optimization
function f which maps every solution tuple to a numerical value:

(Z, D, C, f)

where (Z, D, C) is a CSP, and if S is the set of solution tuples of (Z, D, C),
then

f: S → numerical value.
Given a solution tuple T, we call f(T) the f-value of T. ■

The task in a CSOP is to find the solution tuple with the optimal (minimal or maxi-
mal) f-value with regard to the application-dependent optimization function f.

Resource allocation problems in scheduling are CSOPs. In many scheduling appli-
cations, finding just any solution is not good enough. One may like to find the most
economical way to allocate the resources to the jobs, or allocate machines to jobs,
maximizing some measurable quality of the output. These problems are CSOPs.

In order to find the optimal solution, one potentially needs to find all the solutions
first, and then compare their f-values. A part of the search space can only be pruned
if one can prove that the optimal solution does not lie in it — which means either no
solution exists in it (which involves knowledge about solutions) or that the f-value
in any solution in the pruned search space is sub-optimal (which involves knowl-
edge about the f-values).

10.2.2  Techniques for tackling the CSOP

Finding optimal solutions basically involves comparing all the solutions in a CSOP.
Therefore, techniques for finding all solutions are more relevant to CSOP solving
than techniques for finding single solutions.

Among the techniques described in the previous chapters, solution synthesis tech-
niques are designed for finding all solutions. Problem reduction methods discussed
in Chapter 4 are in general useful for finding all solutions because they all aim at
reducing the search space. The basic search strategies introduced in Chapter 5 are in
general applicable to both finding all solutions and finding single solutions. Variable
ordering techniques which aim at minimizing backtracking (the minimal width
ordering) and minimizing the number of backtracks (the minimal bandwidth order-
ing) are more useful for finding single solutions than all solutions. On the other
hand, the fail first principle (FFP) in variable ordering is useful for finding all solu-
tions as well as single solutions, because it aims at detecting futility as soon as pos-
sible so as to prune off more of the search space.
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Techniques for ordering the values are normally irrelevant when all solutions are
required because in such a case, all values must be looked at. Values ordering will
be useful in gather-information-while-searching strategies if more nogood sets can
be discovered in searching one subtree rather than another, and one has the heuris-
tics to order the branches (values) in order to maximize learning.

In the following sections, we shall introduce two important methods for tackling
CSOPs which have not been introduced in this book so far. They are the branch and
bound (B&B) algorithm and genetic algorithms (GAs). The former uses heuristics
to prune off search space, and the latter is a stochastic approach that has been shown
to be effective in combinatorial problems.

10.2.3  Solving CSOPs with branch and bound

In solving CSOPs, one may use heuristics about the f function to guide the search.
Branch and bound (B&B), which is a general search algorithm for finding optimal
solutions, makes use of knowledge on the f function. He we continue to use the term
solution tuple to describe compound labels which assign values to all those varia-
bles satisfying all the constraints (Definition 1-13). Readers should note that a solu-
tion tuple here need not refer to the optimal solution in a CSOP. B&B is a well
known technique in both operations research and AI. It relies on the availability of
good heuristics for estimating the best values (‘best’ according to the optimization
function) of all the leaves under the current branch of the search tree. If reliable heu-
ristics are used, one could be able to prune off search space in which the optimal
solution does not lie. Thus, although B&B does not reduce the complexity of a
search algorithm, it could be more efficient than the chronological backtracking
search. It must be pointed out, however, that reliable heuristics are not necessarily
available. For simplicity, we shall limit our discussion to the depth first branch and
bound strategy and its application to the CSOP in this section.

10.2.3.1  A generic B&B algorithm for CSOP

To apply the B&B to CSOP, one needs a heuristic function h which maps every
compound label CL to a numerical value (h: CL → number). We call this value the
h-value of the compound label. For the function h to be admissible, the h-value of
any compound label CL must be an over-estimation (under-estimation) of the f-
value of any solution tuple which projects to CL in a maximization (minimization)
problem.

A global variable, which we shall refer to as the bound, will be initialized to minus
infinity in a maximization problem. The algorithm searches for solutions in a depth
first manner. It behaves like Chronological_Backtracking in Chapter 2, except that
before a compound label is extended to include a new label, the h-value of the cur-
rent compound label is calculated. If this h-value is less than the bound in a maximi-
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zation problem, then the subtree under the current compound label is pruned.
Whenever a solution tuple is found, its f-value is computed. This f-value will
become the new bound if and only if it is greater than the existing bound in a maxi-
mization problem. When this f-value is equal to or greater than the bound, the newly
found solution tuple will be recorded as one of the, or the best solution tuples so far.
After all parts of the search space have been searched or pruned, the best solution
tuples recorded so far are solutions to the CSOP.

The Branch_and_Bound procedure below outlines the steps in applying a depth-
first branch and bound search strategy to solving the CSOP, where the maximum f-
value is required. Minimization problems can be handled as maximization problems
by substituting all f- and h-value by their negation. For simplicity, this procedure
returns only one solution tuple which has the optimal f-value; other solution tuples
which have the same f-value are discarded.

PROCEDURE Branch_and_Bound( Z, D, C, f, h );
/* (Z, D, C) is a CSP; f is the function on solution tuples, the f-value is

to be maximized; h is a heuristic estimation of the upper-bound of
the f-value of compound labels */

BEGIN
/* BOUND is a global variable, which stores the best f-value found

so far; BEST_S_SO_FAR is also a global variable, which
stores the best solution found so far */

BOUND ← minus infinity; BEST_S_SO_FAR ← NIL;
BNB( Z, { }, D, C, f, h );
return(BEST_S_SO_FAR);

END /* of Branch_and_Bound */

PROCEDURE BNB(UNLABELLED, COMPOUND_LABEL, D, C, f, h);
BEGIN

IF (UNLABELLED = { }) THEN
BEGIN

IF (f(COMPOUND_LABEL) > BOUND) THEN
BEGIN /* only one optimal solution is returned */

BOUND ← f(COMPOUND_LABEL);
BEST_S_SO_FAR ← COMPOUND_LABEL;

END;
END;

ELSE IF (h(COMPOUND_LABEL) > BOUND) THEN
BEGIN

Pick any variable x from UNLABELLED;
REPEAT

Pick any value v from Dx;
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Delete v from Dx;
IF (COMPOUND_LABEL + {<x,v>} violates no con-

straints)
THEN BNB(UNLABELLED − {x}, COMPOUND_LABEL

+ {<x,v>}, D, C, f, h);
UNTIL (Dx = { });

END /* of ELSE IF */
END /* of BNB */

Note that the Branch_and_Bound procedure is only sound and complete if h(CL)
indeed returns an upper-bound of the f-value. If the heuristic h may underestimate
the f-value, then the procedure may prune off search space where optimal solutions
lie, which causes sub-optimal solution tuples to be returned.

The efficiency of B&B is determined by two factors: the quality of the heuristic
function and whether a “good” bound is found at an early stage. In a maximization
problem, if the h-values are always over-estimations of the f-values, then the closer
the estimation is to the f-value (i.e. the smaller the h-value is without being smaller
than the f-value), the more chance there will be that a larger part of the search space
will be pruned.

A branch will be pruned by B&B if the h-value of the current node is lower than the
bound (in a maximization problem). That means even with the heuristic function
fixed, B&B will prune off different proportion of the search space if the branches
are ordered differently, because different bounds could be found under different
branches.

10.2.3.2  Example of solving CSOP with B&B

Figure 10.1 shows an example of a CSOP. The five variables x1, x2, x3, x4 and x5 all
have numerical domains. The f-value of a compound label is the summation of all
the values taken by the variables. The task is to find the solution tuple with the max-
imum f-value.

Figure 10.2 shows the space explored by simple backtracking. Each node in
Figure 10.2 represents a compound label, and each branch represents the assign-
ment of a value to an unlabelled variable. The variables are assumed to be searched
under the ordering: x1, x2, x3, x4 and x5. As explained in the last section, B&B will
perform better if a tighter bound is found earlier. In order to illustrate the effect of
B&B, we assume that the branches which represent the assignment of higher values
are searched first.

Figure 10.3 shows the space searched by B&B under the same search ordering as
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simple backtracking. The h-value for a node is calculated as the values assigned so
far plus the sum of the maximal values for the unlabelled variables. For example,
the h-value of (<x1,4> <x2,5>) is 4 + 5 (the values assigned so far) plus 5 + 3 + 3
(the maximum values that can be assigned to x3, x4 and x5), which is 20.

According to the Branch_and_Bound procedure described in the last section, the
bound is initialized to minus infinity. When the node for (<x1,5> <x2,3> <x3,3>
<x4,2> <x5,3>) is reached, the bound is updated to (5 + 3 + 3 + 2 + 3 =) 16. This
bound has no effect on the left half of the search tree in this example. When the
node for (<x1,4> <x2,5> <x3,5> <x4,3> <x5,1>) is reached, the bound is updated to
18. When the node for (<x1,4> <x2,5> <x3,5> <x4,2> <x5,3>) is reached, the bound
is updated to 19. When the node (<x1,4> <x2,3>) is examined, its h-value (which is
18) is found to be less than the current bound (which is 19). Therefore, the subtree
under the node (<x1,4> <x2,3>) is pruned. After this pruning, (<x1,4> <x2,5> <x3,5>
<x4,2> <x5,3>) is concluded to be the optimal solution. In Figure 10.3, 21 nodes
have been explored, as opposed to 27 nodes in Figure 10.2.

Figure 10.4 shows the importance of finding a tighter bound at an earlier stage. In
Figure 10.4, we assume that <x1,4> is searched before <x1,5>, all other things
remaining the same. The optimal solution is found after 10 nodes have been
explored. The bound 19 is used to prune the subtree below (<x1,4> <x2,3>) (whose
h-value is 18) and (<x1,5> <x2,3> <x3,3>) (whose h-value is 18). Note that if a sin-
gle solution is required, the subtree below (<x1,5> <x2,3>) will be pruned because
the h-value of (<x1,5> <x2,3>) is just equal to the bound. Only 17 nodes have been
explored in Figure 10.4.

Variables Domains

x1

x2

x3

x4

x5

4, 5
3, 5
3, 5
2, 3
1, 3

Constraints

x2 ≠ x1

x3 = x2

x4 < x3

x5 ≠ x4

Figure 10.1 Example of a CSOP

Task: to assign consistent values to the variables and
maximize ∑(values assigned)
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10.2.4  Tackling CSOPs using Genetic Algorithms

Like CSPs, CSOPs are NP-hard by nature. Unless a B&B algorithm is provided
with a heuristic which gives fairly accurate estimations of the f-values, it is unlikely
to be able to solve very large problems. Besides, good heuristic functions are not
always available, especially when the function to be optimized is not a simple linear
function.

Genetic algorithms (GAs) are a class of stochastic search algorithms which borrow
their ideas from evolution in nature. GAs have been demonstrated to be effective in
a number of well known and extensively researched combinatorial optimization
problems, including the travelling salesman problem (TSP), the quadratic assign-
ment problem (QAP), and applications such as scheduling. This section describes
the GAs, and evaluates their potential in solving CSOPs. Preliminary research has
suggested that GAs could be useful for large but loosely constrained CSOPs where
near-optimal solutions are acceptable.
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Figure 10.2 The space searched by simple backtracking in solving the
CSOP in Figure 10.1 (branches which represent the assignment of
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10.2.4.1  Genetic Algorithms

The idea of GAs is based on evolution, where the fitter an individual is, the better
chance it has to survive and produce offspring and pass its genes on to future gener-
ations. In the long run, the genes which contribute positively to the fitness of an
individual will have a better chance of remaining in the population. This will hope-
fully improve the average fitness of the population and improve the chance of fitter
strings emerging.

To apply this idea to optimization problems, one must first be able to represent the
candidate solutions as a string of building blocks. (In some other GA applications,
a candidate solution is represented by a set of strings rather than a single string.)
Each building block must take a value from a finite domain. Many researches focus
on using binary building blocks (i.e. building blocks which can only take on 0 or 1
as their values). To apply GAs to optimization problems, one must also be able to
express the optimization function in the problem as a function of the values being
taken by the building blocks in a string. The optimization function, which need not
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Figure 10.3 The space searched by Branch & Bound in solving the
CSOP in Figure 10.1: branches which represent the assignment of

greater values are searched first; h(x) = value assigned + ∑(maximal
values for the unlabelled variables)
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be linear, is referred to in GAs as the evaluation function or the fitness function. A
string is analogous to a chromosome in biological cells, and the building blocks are
analogous to genes (see Figure 10.5(a)). The values taken by the building blocks are
called allels. The value of the string returned by the evaluation function is referred
to as the fitness of the string.

To apply GAs to optimization problems, a population of candidate solutions is gen-
erated and maintained. In a simple implementation, random strings could be gener-
ated in the initialization process. A more sophisticated initialization may ensure that
all allels of all the building blocks are present in the initial population. The size of
the population is one of the parameters of the GA which has to be set by the pro-
gram designer. After the initial population is generated, the population is allowed to
evolve dynamically. One commonly used control flow is the canonical GA, shown
in Figure 10.6.
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(a) Representation of candidate solutions of PCSPs in GA
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Figure 10.5 Possible objects and operations in a Genetic Algorithm

(b) Crossover — the building block of the parents are
exchanged to form the new offspring

(c) Mutation — a random building block is picked, and its
value changed
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Certain members of the population are selected and put into a set called the mating
pool. Members are normally selected weighted randomly — the fitter a member is
(according to the evaluation function) in the population, the greater chance it has of
being selected. This operation is called reproduction. The size of the mating pool is
another parameter of the GA which must be set by the program designer.

After the mating pool has been formed, the old population is discarded and the new
population is generated. Normally, a pair of new strings, called offspring are gener-
ated from a pair of parent strings from the mating pool. To generate a pair of off-
spring, parents are often picked from the mating pool randomly. Offspring are
normally generated by combining the building blocks in two parent strings. This
operation is called crossover. The simplest form of crossover is to pick a random
cutting point, and exchange the building blocks of the two parent strings at that
point, as illustrated in Figure 10.5(b). For example, if the parents are:

parent 1: 11001100
parent 2: 01010101

and the cutting point is between the 4-th and the 5-th bits, then the offspring would
be:

offspring 1: 11000101
offspring 2: 01011100

Occasionally, individual building blocks of some offspring are picked and have
their allels modified. This operation is called mutation. Normally, mutation is
allowed to occur infrequently. The purpose of introducing mutation is to allow the
building blocks to take on new allels, which could form part of the optimal solution,
but is missing in the current population.

Since the stronger strings get more chances to reproduce, it is possible that after a
number of iterations (sometimes called generations or cycles), all the strings in the
population will become identical. We call this phenomenon convergence of the pop-
ulation. When this happens, there is no point in allowing the GA to continue,
because apart from the occasional mutations, the population will remain unchanged.

Apart from the population being converged, a GA may be terminated when it runs
out of resources, e.g. time. Unless the population has converged, the longer a GA is
allowed to run, the more search space it is allowed to explore, and in principle it has
a better chance of finding better solutions. The CGA procedure below shows the
pseudo codes of the canonical GA:

PROCEDURE CGA(f, PZ, ZMP, MutationRate)
/* f = the evaluation function; PZ = Population Size; ZMP = Size of the

Mating Pool */
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BEGIN
Population ← Initialization(PZ);
REPEAT

Mating_Pool ← Reproduction(f, ZMP, Population);
Population ← { };
REPEAT

Parent1 ← random element from Mating_Pool;
Parent2 ← random element from Mating_Pool;
Offspring ← Crossover(Parent1, Parent2);
FOR each element os in Offspring DO

IF (random number (between 0 and 1) ≤ MutationRate)
THEN os ← Mutation(os);

Population ← Population + Offspring;
UNTIL size_of(Population) = PZ;

UNTIL (converged(Population) ∨ resources_exhausted);
END /* of CGA */

The evaluation function, population size, size of mating pool and mutation rates are
parameterized in CGA. Procedures for population initialization, reproduction,
crossover and mutation in a GA are collectively called GA operators. The control
flow and the GA operators are shown in Figure 10.6.

GAs may vary in many ways. A population dynamic different from the Canonical
GA may be used. Instead of generating a mating pool and discarding the old popula-
tion (as described above), the Steady State GA removes strings from and adds
strings to the current population in each cycle.

Within a particular control flow, GAs may still vary in their operators. One may add
new operators to the above mentioned ones. Besides, it is possible to perform hill-
climbing within or after applying the crossover operator.

Under a fixed set of GA operators, there are still a number of parameters that one
may set; for example:

• the size of the population;
• the size of the mating pool;
• the frequency of mutation;
• the number of offspring to be generated from each pair of parents;
• the time the GA is allowed to run;
• the maximum number of iterations the GA is allowed to run;
• etc.

The effectiveness of a GA in an application, or in a particular problem, is dependent
on a large number of factors, including the representation, the definition of the eval-
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uation function and both the control and the operators and parameters used. Finding
the right combination is the key to the success of a GA, hence the focus of much
current research.

10.2.4.2  Effectiveness of GAs

The effectiveness of GAs is based on the schemata theorem, or the fundamental
theorem. To help in studying the effectiveness of GAs, the concept of a schema is
introduced. A schema in a GA representation is a partially instantiated string. For
example, assume that a GA representation uses strings of seven building blocks,
which all take binary allels (0 or 1), and let ✽  represent a wildcard. The conceptual
string ✽ 1✽✽ 01✽  is a schema with blocks 2, 5 and 6 instantiated. The order of a
schema is the number of instantiated building blocks. The defining length of a
schema is the distance between the first and the last instantiated building block. For
example, the order of the schema ✽ 1✽✽ 01✽  is 3, and the defining length of it is (6 −
2 =) 4. A schema covers a whole set of instantiations, e.g. ✽ 1✽✽ 01✽  covers
0100010, 1111011, etc.

The fitness of a schema in a population is the average fitness of strings covered by
that schema. The schema has above (below) average fitness if its fitness is above
(below) the average fitness of the population. The effect of reproduction is to
encourage above average schemata to appear in successive generations. The effect
of crossover is to allow old schemata to be broken down and new schemata to be
created.

The schema theorem is a probabilistic approach to estimating the chance of a
schema surviving in the next generation. It shows that simple GAs (such as the
canonical GA) will give above average schemata which have a lower order and a
shorter defining length exponential chance of appearing in successive generations.
Although this does not guarantee that the optimal solution will be generated in some
generations, the hypothesis is that above average schemata would have a better
chance of appearing in the optimal solution. This hypothesis is called the building
block hypothesis.

For a GA to be effective, it has to be able to combine exploration and exploitation
appropriately. Exploration means allowing randomness in the search. Exploiting
means using the fitness values and the result of the previous iterations to guide the
search. Without allowing enough exploration, the population is likely to converge in
local sub-optimal. That is why randomness is introduced in all the above mentioned
GA operators. Without allowing enough exploitation, the search is unguided, and
therefore is no better than random search. That is why offspring are generated from
members of the current population, members are picked weighted randomly to form
the mating pool, mutation is not allowed too frequently, etc.
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10.2.4.3  Applying GAs to CSOPs

Like most other stochastic search algorithms, GAs do not guarantee to find optimal
solutions. However, many real life problems are intractable with complete methods.
For such problems, near-optimal solutions are often acceptable if they can be gener-
ated within the time available. GAs offer hope in solving such problems. A GA is
worth looking at as a tool for solving CSOPs because (a) GAs have been successful
in many optimization problems, and (b) solution tuples in CSPs can naturally be
represented by strings in GAs, as explained below.

For a CSOP with n variables, each string can be used to represent an n-compound
tuple, where the building blocks represent the variables (in fixed order) each of
which can take a value from a finite domain. Each schema in GA represents a com-
pound label in a CSP.

For example, if there are five variables in the CSOP, x1, x2, x3, x4 and x5, then a
string of five building blocks will be used in GA to represent the 5-compound labels
in the CSOP. If the variables are given the above ordering in a GA representation,
then the compound label (<x1,a> <x3,b>) would be represented by the schema
a✽ b✽✽ , where ✽  represents a wildcard.

What cannot be represented explicitly in a string are the constraints in a CSOP. To
ensure that a GA generates legal compound labels (compound labels which satisfy
the constraints), one may use one of the following strategies:

(a) make sure that the population contains only those strings which satisfy the
constraints (by designing the initialization, crossover and mutation operators
appropriately); or

(b) build into the evaluation function a penalty function which assigns low fitness
values to strings that violate constraints. This effectively reduces the chance
of those strings which violate certain constraints to reproduce.

According to the analysis in Chapter 9 (see Table 9.1), loosely constrained prob-
lems where all solutions are required are hard by nature. (This is because in loosely
constrained problems a larger part of the search space contains legal compound
labels, or less search space can be pruned.) In principle, the f-values of all solution
tuples must be compared in a CSOP, and therefore a CSOP belongs to the category
of CSPs where all solutions are required. When CSOPs are tightly constrained, one
could use the constraints to prune off part of the search space. When the CSOP is
loosely constrained, many solution tuples exist, and therefore one can easily use
strategy (a) in a GA. So GAs fill the slot in Table 9.1 where no other methods so far
described in this book can go. For tightly constrained CSOPs, strategy (b) can be
used to handle the constraints.
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10.3  The Partial Constraint Satisfaction Problem

10.3.1  Motivation and definition of the PCSP

Study of the partial constraint satisfaction problem (PCSP) is motivated by applica-
tions such as industrial scheduling, where one would normally like to utilize
resources to their full. The constraints in a problem are often so tight that solutions
are not available. Often what a problem solver is supposed to do is find near solu-
tions when the problem is over-constrained, so that it or its user will know how
much the constraints should be relaxed. In other applications, the problem solver is
allowed to violate some constraints at certain costs. For example, shortage in man-
power could sometimes be met by paying overtime or employing temporary staff;
shortage in equipment could be met by hiring, leasing, etc. In these applications,
one would often like to find near-solutions when the problem is over-constrained.
We call such problems PCSPs.

Here we shall first formally define the PCSP. In the next section, we shall identify
techniques which are relevant to it.

Definition 10.2:

A partial constraint satisfaction problem (PCSP) is a quadruple:

(Z, D, C, g)

where (Z, D, C) is a CSP, and g is a function which maps every compound
label to a numerical value, i.e. if cl is a compound label in the CSP then:

g: cl → numerical value
Given a compound label cl, we call g(cl) the g-value of cl. ■

The task in a PCSP is to find the compound label(s) with the optimal g-value with
regard to some (possibly application-dependent) optimization function g.

The PCSP can be seen as a generalization of the CSOP defined above, since the set
of solution tuples is a subset of the compound labels. In a maximization problem, a
PCSP (Z, D, C, f) is equivalent to a CSOP (Z, D, C, g) where:

g:(cl) = f(cl) if cl is a solution tuple
g:(cl) = − ∞ otherwise (g:(cl) = ∞ in a minimization problem)

10.3.2  Important classes of PCSP and relevant techniques

PCSPs may take various forms, depending on their optimization functions (gs), and
therefore it is difficult to name the relevant techniques. In the worst case, the whole
search space must be searched because unlike in CSOPs, one cannot prune any part
of the search space even if one can be sure that every compound label in it violates
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some constraints. Therefore, heuristics on the satisfiability of the problem become
less useful for pruning off search spaces. On the other hand, heuristics on the opti-
mization function (i.e. estimation of the g-values) are useful for PCSPs. When such
heuristics are available, the best known techniques for solving a PCSP is B&B,
which have been explained in Section 10.2.3. In this section, we shall introduce two
classes of PCSPs which are motivated by scheduling.

10.3.2.1  The minimal violation problem

In a CSP, if one is allowed to violate the constraints at some costs, then the CSP can
be formalized as a PCSP where the optimization function g is one which maps
every compound label to a non-positive numerical value. The task in such problems
is to find n-compound labels (where n is the number of variables in the problem)
which violate the minimum amount of constraints. We call this kind of problems
minimal violation problems (MVPs).

Definition 10.3:

A minimal violation problem (MVP) is a quadruple:

(Z, D, C, g)

where (Z, D, C) is a CSP, and g is a function which maps every compound
label to a number:

g(cl) = numerical value if cl is an n-compound label and n =  Z
= infinity otherwise ■

The task in a MVP (Z, D, C, g) where Z   = n is to minimize g(cl) for all n-com-
pound labels cl.

MVPs can be found in scheduling, where constraints on resources can be relaxed
(e.g. by acquiring additional resources) at certain costs. In over-constrained situa-
tions, the scheduling system may want to find out the minimum cost of scheduling
all the jobs rather than simply reporting failure. For such applications, a function,
call it c, maps every constraint to a relaxation cost:

c : C → numerical value

The optimization function in the PCSP is then the sum of all the costs incurred in
relaxing the violated constraints:

g(cl) =

Another example of the MVP is graph matching (see Section 1.5.6 in Chapter 1)
where inexact matches are acceptable when exact matches do not exist. This will be
the case when noise exists in the data, as would be the case in many real life appli-

c CS( )
CS C∈ satisfies cl CS,( )¬∧∑
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cations. When the knowledge of the labels on the nodes and edges are unreliable,
inexact matching will be acceptable.

Among the techniques covered in this book, branch and bound is applicable to the
MVP when good heuristics are available. The heuristic repair method, which uses
the min-conflict heuristic, is one relevant technique for solving the MVP. Although
the min-conflict heuristic introduced in Chapter 6 assumes the cost of violating each
constraint to be 1, modifying it to reflect the cost of the violation of the constraints
should be straightforward. Instead of picking values which violate the least number
of constraints, one could attempt to pick values which incur the minimum cost in
the constraints that they violate.

The GENET approach (Section 8.3.2), which basically adds learning to a hill-
climbing algorithm using the min-conflict heuristic, is also a good candidate to the
MVP. To apply GENET to MVPs, one may initialize the weights of the connections
to the negation of the costs of violating the corresponding constraint.

10.3.2.2  The maximal utility problem

In some applications, no constraint can be violated. When no solution tuple can be
found, the problem solver would settle for k-compound labels (with k less than the
total number of variables in the problem) which have the greatest “utility”, where
utility is user defined. We call this kind of problems maximal utility problems
(MUPs).

Definition 10.4:

A maximal utility problem (MUP) is a quadruple:

(Z, D, C, g)

where (Z, D, C) is a CSP, and g is a function which maps every compound
label to a number:

g(cl) = numerical value if the compound label cl violates no constraint
= minus infinity otherwise ■

The task in a MUP (Z, D, C, g) is to maximize g(cl) for all k-compound labels cl.

MUPs can also be found in resource allocation in job-shop scheduling. In some
applications, one would like to assign resources to tasks, satisfying constraints
which must not be violated. For example, the capacity of certain machines cannot
be exceeded; no extra manpower can be recruited to do certain jobs within the avail-
able time. A “utility”, for example sales income, may be associated with the accom-
plishment of each job. If one cannot schedule to meet all the orders, one would like
to meet the set of orders whose sum of utility is maximal. If all jobs have a uniform
utility, then the task becomes “to finish as many jobs as possible”.
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Among the techniques which we have covered in this book, the branch and bound
algorithm is applicable to the MUP when heuristics are available.

Problem reduction is also applicable to MUPs. Since no constraint must be violated
by the optimal solution, values for the unlabelled variables which are not compati-
ble with the committed labels can be removed. Hence, techniques such as forward
checking and arc-consistency lookahead could be expected to search a smaller
space. However, maintaining higher level of consistency (see Figure 3.7) may not
be effective in MUP solving. This can be explained by the following example. Let
us assume that there are three variables x, y and z in a MUP (whose utility function
is unimportant to our discussion here), and the constraints on the variables are:

Cx,y: x = y
Cy,z: y = z

Now assume that we have already committed to: x = a. We can remove all the val-
ues b from the domain of y (Dy) such that b ≠ a, because (<x,a> <y,b>) violates the
constraint Cx,y (and therefore will not be part of the optimal compound label). How-
ever, one cannot remove all the values b such that b ≠ a from the domain of z,
although x = y and y = z together implies x = z. This is because the optimal solution
need not contain a label for y. This example illustrates that achieving path-consist-
ency maintenance may not be useful in MUPs.

Most of the variable ordering heuristics described in Chapter 6 are applicable to
problems where all solutions are required, and therefore are applicable to MUPs.
The minimal width ordering (MWO) heuristic, the minimal bandwidth ordering
(MBO) heuristic, and the fail first principle (FFP) attempt to improve search effi-
ciency by different means. To recapitulate, the MWO heuristic attempts to reduce
the need to backtrack; the MBO heuristic attempts to reduce the distance of back-
tracking; the FFP attempts to prune off as much search space as possible when
backtracking is required.

Heuristics on the g-values are useful for ordering the variables and their values in
branch and bound. This follows the point made earlier that the efficiency of branch
and bound is affected by the discovery of tight bounds at early stages.

Solution synthesis techniques for CSPs would only be useful for MUPs if they syn-
thesized the set of all legal compound labels (compound labels which do not violate
any constraints). Among the solution synthesis algorithms introduced in Chapter 9,
only Freuder’s algorithm qualifies under this criteria. The Essex Algorithms will not
generate all legal compound labels, and therefore could miss solutions for MUPs.
Similarly, not every legal compound label has a path in the solution graph generated
by Seidel’s invasion algorithm — therefore, the solution for a MUP may not be rep-
resented in Seidel’s solution graph.
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Hill-climbing could be applicable to MUPs if appropriate heuristic functions (for
guiding the direction of the climb) are available. In MUPs, one would like to hill-
climb in the space of legal compound labels. Since the min-conflict heuristic aims at
reducing the total number of constraints violated, it may not be very relevant to
MUPs. Instead, one might need to use a heuristic which maximally increases the
utility. The GENET approach takes the min-conflict heuristic, and therefore needs
modifications if it were to be used to tackle MUPs.

10.4  Summary

In this chapter, we have looked at two important extensions of the standard CSP
motivated by real life applications such as scheduling applications. We have
extended the standard CSP to the constraint satisfaction optimization problem
(CSOP), CSPs in which optimal solutions are required. Most CSP techniques which
are applicable to finding all solutions are relevant to solving CSOPs. Examples of
such techniques are solution synthesis, problem reduction and the fail first principle.
Such techniques are more effective when the problem is tightly constrained.

The most general tool for solving CSOPs is branch and bound (B&B). However,
since CSPs are NP-hard in general, complete search algorithms may not be able to
solve very large CSOPs. Preliminary research suggests that genetic algorithms
(GAs) might be able to tackle large and loosely constrained CSOPs where near-
optimal solutions are acceptable.

The CSOP can be seen as an instance of the partial constraint satisfaction problem
(PCSP), a more general problem in which every compound label is mapped to a
numerical value. Two other instances of PCSPs are the minimal violation problem
(MVP) and the maximal utility problem (MUP), which are motivated by scheduling
applications that are normally over-constrained.

A minimal violation problem (MVP) is one in which the task is to find a compound
label for all the variables such that the minimum weighted constraints are violated.
Since solutions may (and are most likely to) violate certain constraints, standard
CSP techniques such as problem reduction, variables ordering and solution synthe-
sis are not applicable to the MVP. B&B is the most commonly used technique for
tackling MVPs. The effectiveness of B&B on MVPs relies on the availability of
good heuristics on the function to be optimized. For large problems, and when heu-
ristics are not available for B&B, completeness and optimality are often sacrificed
for tractability. In this case, hill-climbing strategies (such as the heuristic repair
method) and connectionist approaches (such as GENET) have been proposed.

A maximal utility problem (MUP) is a PCSP in which the objective is to find the
compound label that has the greatest utility — for example, to label as many varia-
bles as possible while ensuring that no constraint is violated. Standard CSP tech-
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niques, including problem reduction and variables and values ordering, are
applicable to MUPs. For problems where near optimal solutions are acceptable, it is
possible to tackle MUPs with hill-climbing approaches.

10.5  Bibliographical Remarks

The CSOP and the PCSP are motivated by real life problems such as scheduling. In
the CSP research community, research in CSOP and PCSP is not as abundant as
research in the standard CSP. The branch and bound algorithm is a well known tech-
nique for tackling optimization problems; for example, see Lawler & Wood [1966],
Hall [1971], Reingold et al. [1977] and Aho et al. [1983].

The field of Genetic Algorithms (GAs) was founded by Holland [1975]. Theories
(such as the schemata theorem) and a survey of GAs can be found in Goldberg
[1989] and Davis [1991]. Goldberg lists a large number of applications of GA.
Muehlenbein and others have applied GAs to a number of problems, including the
Travelling Salesman Problem (TSP), the Quadratic Assignment Problem (QAP) and
scheduling problems, and obtained remarkable results [Mueh89] [BrHuSp89]
[Fili92]. Tsang & Warwick [1990] report preliminary but encouraging results on
applying GAs to CSOPs.

Freuder [1989] gives the first formal definition to the PCSP. In order to conform to
the convention used throughout this book, a definition different from Freuder’s has
been used. Voss et al. [1990] attempt to satisfy as much constraints as possible, and
dispose “soft-constraints” — constraints which represent preferences. Freuder and
Wallace [1992] define the problem of “satisfying as many constraints as possible”
as the maximal constraint satisfaction problem and tackle it by extending standard
constraint satisfaction techniques. Hubbe & Freuder [1992] propose a cross product
representation of partial solutions.The car sequencing problem as defined by Par-
rello et al. [1986] is a minimal violation problem (MVP), which has been modified
to become a standard CSP by Dincbas et al. [1988b] (Dincbus’ formulation of the
car sequencing problem is described in Chapter 1). For references on both hill-
climbing and connectionist approaches to CSP solving, readers are referred to
Chapter 8. Applying GENET to PCSP is an ongoing piece of research. Tabu Search
is a generic search strategy developed in operations research for optimization prob-
lems; e.g. see Glover [1989, 1990]. Instantiations of it have been applied to a
number of applications and success has been claimed. The use of it in PCSP is
worth studying.
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/*========================================================
Program 5.1 : bt.plg
Subject : Backtracking algorithm applied to the N-queens

problem
========================================================*/

/*
queens(N, Result)
N is the number of queens to be placed.
Result is a list of integers representing the solution.
The i-th number in the list represents the column of queen on the i-th row.
e.g. calling by ?- queens(8, Result)
should get something like: Result = [5,7,2,6,3,1,4,8]

*/
queens(N, Result) :-

range(N, Range),
queens(Range, [], Result).

/*
create a list of numbers from 1 to N

*/
range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

/*
queens(Unlabelled, Labelled, Solution)
Unlabelled is the list of rows with unlabelled queens;
Labelled accumulates the labelled queens;
Solution is the solution.

*/
queens([], Solution, Solution).
queens(UnlabelledQs, LabelledQs, Solution) :-

delete(Q, UnlabelledQs, Rest),
noattack(Q, LabelledQs, 1),
queens(Rest, [Q|LabelledQs], Solution).

delete(A, [A|L], L).
delete(A, [B|L], [B|L1]) :- delete(A,L,L1).

noattack(_,[],_).
noattack(Y, [Y1| YL], XD) :-

Y1-Y =\= XD,
Y-Y1 =\= XD,
D1 is XD + 1,
noattack(Y, YL, D1).

/*========================================================*/
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/*========================================================
Program 5.2 : ib.plg
Subject : Iterative Broadening algorithm applied to the N-

queens problem
Note : This program needs Program 5.3: random.plg
========================================================*/

queens( N, Result ) :-
gen_domain( N, Domain ),
gen_bound( N, Bound ),
write(‘Bound = ‘), write(Bound), nl,
ib_bt( N, Domain, Bound, [], Result ).

gen_domain( 0, [] ).
gen_domain( N, [N|L] ) :-

N > 0, N1 is N - 1, gen_domain( N1, L ).

gen_bound( Max, Bound ) :-
1 =< Max, gen_bound( Max, 1, Bound ).

gen_bound( Max, Bound, Bound ).
gen_bound( Max, N, Bound ) :-

N < Max, N1 is N + 1, gen_bound( Max, N1, Bound ).

ib_bt( 0, _, _, Result, Result ).
ib_bt( X, Domain, Bound, Labelled, Result ) :-

X1 is X - 1,
random_N_times( Bound, Domain, V ), /* defined in random.plg */
noattack( X/V, Labelled ),
delete( V, Domain, Rest ),
ib_bt( X1, Rest, Bound, [X/V| Labelled], Result ).

delete( X, [X|Rest], Rest ).
delete( X, [H|L1], [H|L2] ) :- X \== H, delete( X, L1, L2 ).

noattack( _, [] ).
noattack( X0/V0, [X1/V1|Rest] ):-

V0 =\= V1,
V1-V0 =\= X1-X0,
V1-V0 =\= X0-X1,
noattack( X0/V0, Rest ).

/*======================================================*/
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/*========================================================
Program 5.3 : random.plg
Subject : Predicates for generating pseudo random numbers
Notes : random(L,U,R) takes three parameters : L and U

are the range of numbers you want; R is for the
result.
The random numbers it produces are integers in the
range L to R inclusive, so if you called random(1,
100, K) it would come out with K being bound to a
random number between 1 and 100.

=========================================================*/

random(L, U, R) :-
retract(seed(Xi)),
Xi1 is (371 * Xi) mod 3191,
assert(seed(Xi1)),
R is (Xi1 mod (U - L + 1)) + L, !.

random(L,U,R) :-
X is ((U * (3137 * L) + 1) mod (U - L + 1)) + L,
assert(seed(X)), random(L, U, R), !.

/*------------------------------------------------------------------------*/

/*
random_element( List, Element )
Randomly pick an element from the given List

*/
random_element( [], _ ) :- !, fail.
random_element( [X], X ) :- !.
random_element( L, E ) :-

P =.. [dummy |L],
functor( P, _, Max ),
random( 1, Max, Rand ),
arg( Rand, P, E ), !.

/*
random_N_times( N, List, X ) returns X as an element of List. It will suc-
ceed a maximum of N times.

*/
random_N_times( N, List, X ) :-

random_N_times( N, List, X, 1 ).

random_N_times( N, List, Result, I ) :-
random_element( List, Y ),
random_N_times_aux( N, List, Y, Result, I ).

random_N_times_aux( _, _, X, X, _ ).
random_N_times_aux( N, List, LastResult, Result, I ) :-
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I < N, I1 is I + 1,
‘random: delete’( LastResult, List, Rest ),
random_N_times( N, Rest, Result, I1 ).

/*
random_ordering( List, Result )
Randomly order the elements in the List, giving Result

*/
random_ordering( [], [] ).
random_ordering( List, [E|Result] ) :-

random_element( List, E ),
‘random: delete’( E, List, Rest ),
random_ordering( Rest, Result ).

‘random: delete’( E, [H|Rest], Rest ) :- E == H.
‘random: delete’( E, [H|List], [H|Rest] ) :-

E \== H, ‘random: delete’( E, List, Rest ).

/*======================================================*/
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/*========================================================
Program 5.4 : fc.plg
Subject : Forward Checking algorithm applied to the N

queens problem
========================================================*/

queens(N, R) :-
range(N, L),
setup_candidate_lists(N, L, C),
look_ahead_search(C, R),
report(R).

/*
range(N, List)
Given a number N, range creates the List:

[N, N - 1, N - 2, ..., 3, 2, 1].
*/
range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

/*
setup_candidate_lists(N, L, Candidates)
Given a number N, and a list L = [N, N - 1, N - 2, ..., 3, 2, 1],
return as the 3rd argument the Candidates:

[N/L, N - 1/L, N - 2/L, ..., 2/L, 1/L]
L is the list of all possible values that each queen can take.

*/
setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R).

/*
look_ahead_search(Candidates, Solution)
The main clause for searching:
The algorithm is: pick one value for one queen, propagate the constraints
that it creates to other queens, then handle the next queen, untill all the
queens are labelled.

*/
look_ahead_search([], []).
look_ahead_search([X/L| T], [X/V| R]) :-

member(V, L),
propagate(X/V, T, Temp),
look_ahead_search(Temp, R).
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/* to propagate the constraints of a label to others:
The label, input as the 1st argument, is propagated to one queen at a time,
until all the queens are considered.

*/
propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

prop(X/V, Y/C, C1), C1 \== [],
propagate(X/V, T, T1).

/*
Given a choice (i.e. X/V), prop/3 restricts the domain of the Y-th queen
(C) to an updated domain (R).

*/
prop(X/V, Y/C, R) :-

del(V, C, C1),
V1 is V-(X-Y),
del(V1, C1, C2),
V2 is V + (X-Y),
del(V2, C2, R).

/*
del(X, List, Result) deletes X from List and instantiates Result to the
result. It succeeds whether X exists in List or not.

*/
del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \== H, del(X,T,L).

report([]) :- nl, nl.
report([_/V | L]) :- tab((V - 1) * 2), write(‘Q’), nl, report(L).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

/*========================================================*/
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/*========================================================
Program 5.5 : dac.lookahead.plg
Subject : Directional Arc-consistency Lookahead algorithm

applied to the N-queens problem
Notes : To be used with:

Program 5.6: ac.plg
Program 5.7: print.queens.plg

========================================================*/

queens(N, R) :-
range(N, L),
setup_candidate_lists(N, L, C),
sort_labels(C, accum([]), SortedC),
dac_look_ahead_search(SortedC, R),
print_queens(R).

range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R).

/*
dac_look_ahead_search(Candidates, Solution)
This is the main predicate for the search. The algorithm is: pick one value
for one queen, propagate the constraints by maintaining DAC, then han-
dle the next queen, untill all the queens are labelled.

*/
dac_look_ahead_search([], []).
dac_look_ahead_search([X/L| T], [X/V| R]) :-

member(V, L),
propagate(X/V, T, Temp1),
maintain_directed_arc_consistency(Temp1, DAC_Problem),
sort_labels(DAC_Problem, accum([]), Sorted_DAC_Problem),
dac_look_ahead_search(Sorted_DAC_Problem, R).

/*
to propagate the constraints of a choice to others:
The choice, input as the 1st argument, is propagated to one queen at a
time, until all the queens are considered.

*/
propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

prop(X/V, Y/C, C1), C1 \== [],
propagate(X/V, T, T1).
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prop(X/V, Y/C, R) :-
del(V, C, C1),
V1 is V - (X - Y),
del(V1, C1, C2),
V2 is V + (X - Y),
del(V2, C2, R).

del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \== H, del(X,T,L).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

/*========================================================*/
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/*========================================================
Program 5.6 : ac.plg
Subject : Predicates for maintaining AC and DAC in the N-

queens problem
Notes : Two external calls:

(1) maintain_arc_consistency(Unlabelled, Result)
(2) maintain_directed_arc_consistency(Unlabelled,
Result)
Data structure:
Given: is a problem, represented by a list of varia-
bles together with their domains, in the form “Var/
Values”, for example:

[1/[1,4,8], 2/[2,4], 3/[4,7,8]]
Returned: a problem possibly with some values
removed from certain domain such that arc-consist-
ency/directional arc-consistency is maintained.

========================================================*/

/*
(1) maintain_arc_consistency(Unlabelled, NewUnlabelled)
Given Unlabelled, which is a list of Variable/Domain, return NewUnla-
belled where arc consistency is achieved.

*/
maintain_arc_consistency(Unlabelled, NewUnlabelled) :-

maintain_ac(to_be_checked(Unlabelled), checked([]), NewUnlabelled).

maintain_ac(to_be_checked([]), checked(NewUnlabelled), NewUnlabelled).
maintain_ac(to_be_checked([X/Dx| U]), checked(Checked), NewUnlabelled) :-

bagof( V, (ac_member(V,Dx), ac(X/V, U), ac(X/V, Checked)), NewDx ),
/* if no such V exists, fail to achieve AC in the problem */
maintain_ac_aux(X/Dx/NewDx, U, Checked, NewUnlabelled).

maintain_ac_aux(X/Dx/Dx, U, Checked, NewUnlabelled) :-
maintain_ac(to_be_checked(U), checked([X/Dx|Checked]), NewUnla-
belled).

maintain_ac_aux(X/Dx/NewDx, U, Checked, NewUnlabelled) :-
Dx \== NewDx,
ac_append(Checked, [X/NewDx], Temp),
ac_append(U, Temp, ToBeChecked),
maintain_ac(to_be_checked(ToBeChecked), checked([]), NewUnla-
belled).

/*
ac(X/Vx, Var_Dom)
X/Vx is a variable X with a value Vx; Var_Dom is a list of Variable/
Domain;
ac/2 succeeds iff for each element in Var_Dom, there exists a label which
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is compatible with X/Vx.
*/
ac(_, []).
ac(X/Vx, [Y/Dy| L]) :-

ac(X, Vx, Y, Dy),
ac(X/Vx, L).

/*
ac(X, Vx, Y, Dy)
Dy is the legal domain of Y at present
ac/4 succeeds iff there exists a value Vy in Dy such that <X,Vx> and
<Y,Vy> are compatible.

*/
ac(X, Vx, Y, [Vy|_]) :-

Vx \== Vy,
X-Y =\= Vx-Vy,
X-Y =\= Vy-Vx, !.

ac(X, Vx, Y, [_|Dy]) :-
ac(X, Vx, Y, Dy).

/ac_member(X,[X|_]).
ac_member(X,[_|L]) :- ‘ac_member’(X,L).

ac_append([], L, L) .
ac_append([H|L1], L2, [H|L3]) :- ac_append(L1, L2, L3) .

/*------------------------------------------------------------------------*/

(2) maintain_directed_arc_consistency(Unlabelled, NewUnlabelled)
Given Unlabelled, which is a list of Variable/Domain, return NewUnla-
belled where directed arc consistency is achieved.

*/
maintain_directed_arc_consistency([], []).
maintain_directed_arc_consistency([X/Dx|Unlabelled], [X/NewDx|NewUnla-

belled]) :-
maintain_directed_arc_consistency(Unlabelled, NewUnlabelled),
bagof( V, (‘ac_member’(V,Dx), ac(X/V, NewUnlabelled)), NewDx ).

/*======================================================*/
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/*========================================================
Program 5.7 : print.queens.plg
Subject : Predicates for printing result for the N-queens

problem
Given a list of labels in the form: [Var1/Val1, Var2/
Val2, ....], print the positions of the queens

========================================================*/

print_queens(R) :-
sort_labels(R, accum([]), SortedR),
nl, write(‘** Solution:’), nl,
report(SortedR), nl.

sort_labels([], accum(L), L).
sort_labels([X/Vx|L1], accum(L2), R) :-

insert(X/Vx, L2, Temp),
sort_labels(L1, accum(Temp), R).

insert(X/Vx, [], [X/Vx]).
insert(X/Vx, [Y/Vy|L], [X/Vx,Y/Vy|L]) :- X < Y.
insert(X/Vx, [Y/Vy|L], [Y/Vy|R]) :- X >= Y, insert(X/Vx, L, R).

report([]).
report([_/V | L]) :- tab((V - 1) * 2), write(‘Q’), nl, report(L).

/*======================================================*/
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/*========================================================
Program 5.8 : ac.lookahead.plg
Subject : AC-Lookahead Algorithm applied to the N-queens

problem
Notes : To be used with:

Program 5.6: ac.plg
Program 5.7: print.queens.plg

========================================================*/

queens(N, R) :-
range(N, L), setup_candidate_lists(N, L, C),
sort_labels(C, accum([]), SortedC),
ac_look_ahead_search(SortedC, R), print_queens(R).

range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1, setup_candidate_lists(N1, L, R).

/* This is the main clause for searching. The algorithm is: pick one value for
one queen, propagate the constraints by maintaining AC, then handle the
next queen, till all the queens are labelled.

*/
ac_look_ahead_search([], []).
ac_look_ahead_search([X/L| T], [X/V| R]) :-

member(V, L), propagate(X/V, T, Temp1),
maintain_arc_consistency(Temp1, AC_Problem),
sort_labels(AC_Problem, accum([]), Sorted_AC_Problem),
ac_look_ahead_search(Sorted_AC_Problem, R).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

prop(X/V, Y/C, C1), C1 \== [], propagate(X/V, T, T1).

prop(X/V, Y/C, R) :-
del(V, C, C1), V1 is V-(X-Y),
del(V1, C1, C2), V2 is V + (X-Y), del(V2, C2, R).

del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \== H, del(X,T,L).

/*========================================================*/
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/*========================================================
Program 5.9 : bj.plg
Subject : BackJumping (BJ) algorithm applied to the N-

queens problem.
========================================================*/

queens(N, R) :-
range(N, L),
reverse(L, List_of_variables),
setup_candidate_lists(N, List_of_variables, C),
reverse(C, Variables_and_domains),
bj_search(Variables_and_domains, R, [], -1),
is_list(Result), report(R).

range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R).

/*
bj_search(Candidates, Solution, Committed, BT_Des)
Candidates is a list:

[X/Domain_of_X| Other_Variables_&_Domains];
Solution is a variable for returning the output; Committed is a list of
labels:

[X/Value_for_X| Other_Labels]
BT_Des is the variable to be backtracked to when needed

*/
bj_search([], R, R, _).
bj_search([X/[]| _], bt_to(BT_Des), _, BT_Des) :-

writeln([‘domain for Q’,X,’ exhausted, bt to ‘,BT_Des,’ <<‘]).
bj_search([X/[V|L]| T], Result, Accum, BT_Destination) :-

no_conflict( X/V, Accum ),
writeln([‘>> looking at <‘,X,’,’,V,’>’]),
bj_search(T, Temp, [X/V|Accum], -1),

/* do not search for alternative results if no solution is found in the the above
call. */
(Temp = bt_to(_), !; true),
bj( Temp, Result, [X/L| T], Accum, BT_Destination ).

bj_search([X/[V|L]| T], Result, Accum, BT_To ) :-
\+ no_conflict( X/V, Accum ),
find_earliest_conflict(X/V, Accum, Earliest_Conflict),
max( Earliest_Conflict, BT_To, BT_Destination ),
bj_search([X/L| T], Result, Accum, BT_Destination ).

/* the following clause is included for alternative results */
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bj_search([X/[V|L]| T], Result, Accum, BT_To ) :-
no_conflict( X/V, Accum ),
bj_search([X/L| T], Result, Accum, BT_To ).

bj( bt_to(Y), bt_to(Y), [X/_|_], _, _ ) :-
Y < X,
writeln([‘BJ ignores all other values for variable ‘,X,’!’]).

bj( bt_to(Y), Result, [X/L| T], Accum, _ ) :-
Y >= X,
bj_search( [X/L| T], Result, Accum, X - 1).

bj( Result, Result, _, _, _ ) :- is_list(Result).

max( X, Y, X ) :- X >= Y.
max( X, Y, Y ) :- X < Y.

find_earliest_conflict( X/V, [_|L], EC ) :-
find_earliest_conflict( X/V, L, EC ), !.

find_earliest_conflict( X/V, [Y/W|L], Y ) :-
conflict( X/V, Y/W ).

no_conflict( X/V, [] ).
no_conflict( X/V, [Y/W|L] ) :-

\+ conflict( X/V, Y/W ),
no_conflict( X/V, L ).

conflict( _/V, _/V ) :- !.
conflict( X/V, Y/W ) :- X - Y =:= V - W, !.
conflict( X/V, Y/W ) :- X - Y =:= W - V, !.

report([]) :- nl, nl.
report([_/V | L]) :-

Space is (V - 1) * 2, tab(Space), write(‘Q’), nl,
report(L), !.

writeln([]) :- nl.
writeln([H|L]) :- write(H), writeln(L).

reverse( List, Result ) :- reverse( List, Result, [] ).

reverse([], Result, Result).
reverse([H|L1], R, Accum) :- reverse( L1, R, [H|Accum] ).

is_list([]).
is_list([_|_]).

/*======================================================*/
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/*========================================================
Program 5.10 : lncl.plg
Subject : Learning Nogood Compound Labels algorithm

applied to the N-queens problem
Notes: : nogood(Compound_Label) is asserted to record

compound_labels which has been proved to be
unviable. Progress is reported to show the use of
nogoods

========================================================*/

:- op( 100, yfx, [:]).

queens(N, R) :-
range(N, L),
reverse(L, RL),
retract_all( nogood(_) ),
lncl_search( domains:RL, unlabelled:RL, labelled:[], R ),
report(R).

/*
lncl_search( domains:D, unlabelled:U, labelled:L, R )
D Domain, list of all possible values
U list of Variables which are not yet labelled
L list of Variable/Value pairs already committed to
R Result, to be instantiated to list of Variable/Value
lncl_search/4 behaves like chronological_backtracking, except that
whenever backtracking is needed, culprit compound labels are identified
and recorded as nogood. The program rejects any compound label which
has the nogood sets in it in the future.

*/
lncl_search( _, unlabelled:[], labelled:R, R ).
lncl_search( domains:D, unlabelled:[H|U], labelled:L, R ) :-

member_and_not_recorded_as_nogood( [H/V|L], D ),
all_consistent( L, H/V ),
sort( [H/V|L], L1 ),
writeln( [‘>> Considering <‘,H,’,’,V,’> ...’] ),
lncl_search( domains:D, unlabelled:U, labelled:L1, R ).

lncl_search( domains:D, unlabelled:[H|_], labelled:L, _ ) :-
writeln( [‘Over-constrained: ‘,L,’, backtrack <<‘] ),
record_nogoods( domains:D, H, L ),
!, fail.

/*------------------------------------------------------------------------*/

/*
range(N, List)
Given a number N, range creates the List: [N, N - 1, N - 2, ..., 3, 2, 1].

*/
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range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

reverse( L, R ) :- reverse( L, R, [] ).
reverse( [], R, R ).
reverse( [H|L], Result, Temp ) :- reverse( L, Result, [H|Temp] ).

/*
member_and_not_recorded_as_nogood( Assignments, Domain )
This predicate does two things at the same time. First, it takes an element
from Domain and “assigns” it to the 1st element of the 1st argument,
which is a list. Alternative elements (from Domain) will be used as long
as L has not become nogood. Secondly, it checks whether the 1st argu-
ment after assignment of the new value is recorded as nogood.

*/
member_and_not_recorded_as_nogood( [H/V|L], [V|_] ) :-

not_recorded_as_nogood( [H/V|L] ).
member_and_not_recorded_as_nogood( [H/_|L], _ ) :-

nogood(NG),
sublist(NG, L),
writeln( [‘Queen-’,H,’ is rejected as ‘,NG, ‘ is recorded nogood.’] ),
!, fail.

member_and_not_recorded_as_nogood( L, [_|Domain] ) :-
member_and_not_recorded_as_nogood( L, Domain ).

/*
not_recorded_as_nogood( L )
L is not recorded as nogood

*/
not_recorded_as_nogood( L ) :-

nogood( NG ),
sublist( NG, L ),
writeln([L,’ is rejected as ‘,NG,’ is recorded nogood...’]),
!, fail.

not_recorded_as_nogood( _ ) .

/*
sublist( L1, L2 )
L1 is a sublist of L2

*/
sublist( [], _ ) .
sublist( [H|L1], L2 ) :- member( H, L2 ), sublist( L1, L2 ).

/*
all_consistent( L, H/V )
L List of Variable/Value
H/V a label <H,V>
sublist/2 succeeds if H/V is consistent with all elements of L
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*/
all_consistent( [], _ ) .
all_consistent( [X/Vx|L], Y/Vy ) :-

\+ conflict( X/Vx, Y/Vy ),
all_consistent( L, Y/Vy ).

/*------------------------------------------------------------------------*/
/*

record_nogoods( domain:D, X, L )
D list of values
X variable which has to take a value from D
L list of Variable/Value
For each value V in the domain D, find all elements in L which are incon-
sistent with X/V

*/
record_nogoods( domains:D, X, L ) :-

identify_conflicts( D, X, L, Conflicts ),
find_covering_set( Conflicts, NG, accumulator:[] ),
sort( NG, SortedNG ),
update_nogood_sets( nogood(SortedNG) ),
fail.

record_nogoods( _, _, _ ) .

/*
identify_conflicts( D, X, L, Conflicts ),
D domain
X Variable
L list of [X1/V1, X2/V2, ...]
Conflicts list of list of labels to be returned, element-i is a list of labels
which from L which have conflict with <X,i>. e.g.:

[[X1/V1,X2/V2], [X3/V2], ...]
NB: the use of “bagof”, not “findall” in the 2nd clause is  important here.
bagof will fail if X/Vx has no conflict label, whereas findall will instanti-
ate C1 to [] under such situations.

*/
identify_conflicts( [], _, _, [] ) .
identify_conflicts( [Vx|Rest], X, L, [C1|Conflicts] ) :-

bagof( Label, (member(Label,L), conflict(X/Vx, Label)), C1 ),
identify_conflicts( Rest, X, L, Conflicts ) .

conflict( _/V, _/V ) :- !.
conflict( X/Vx, Y/Vy ) :- X-Y =:= Vx-Vy, !.
conflict( X/Vx, Y/Vy ) :- X-Y =:= Vy-Vx, !.

/*
This is a very naive way to find covering sets from the given list. Identical
sets could be re-discovered repeatedly. The efficiency of this predicate
could be greatly improved. Finding covering sets is itself a Constraint
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Satisfaction
Problem.

*/
find_covering_set( [], L, accumulator:L ).
find_covering_set( [C1|Cs], NG, accumulator:A ) :-

member(X,C1),
set_union( X, A, A1 ),
find_covering_set( Cs, NG, accumulator:A1 ).

set_union( X, A, A ) :- member( X, A ) .
set_union( X, A, [X|A] ) :- \+ member( X, A ).

update_nogood_sets( nogood(L) ) :-
nogood(NG), sublist(NG, L), !.

update_nogood_sets( nogood(L) ) :-
nogood(NG), NG\==L, sublist(L, NG), retract(NG), fail.

update_nogood_sets( P ) :-
asserta(P),
writeln( [‘..... record ‘,P] ) .

/*------------------------------------------------------------------------*/
*/
report([]) :- nl, nl.
report([_/V | L]) :- tab( (V - 1) * 2 ), write(‘Q’), nl, report(L).

writeln([]) :- nl.
writeln([H|L]) :- write(H), writeln(L).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

retract_all( P ) :- retract( P ), fail.
retract_all( P ) .

/*========================================================*/
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/*========================================================
Program 6.1 : mwo.plg
Subject : To find Minimal Width Ordering for input graphs
Note : A graph is assumed to be recorded in the database

in the following form:
node(Node)
edge(Node1, Node2)

========================================================*/
:- op(100, yfx, in).

minimal_width_ordering( MWO ) :-
bagof( Node, node(Node), Nodes ),
mwo( Nodes, MWO, [] ).

minimal_width_ordering( [] ) :- /* graph without nodes */
\+node(_).

mwo( [], L, L ).
mwo( [N|L], Result, Accum ) :-

setof( N1, adjacent(N, N1 in L), List ),
length( List, Len ),
least_connections( L, bsf(N,Len), [N|L], Node1, Rest ),
mwo( Rest, Result, [Node1|Accum] ).

mwo( [Node1|L], Result, Accum ) :-
\+ adjacent(Node1, _ in L), /* Node1 is unadjacent */
mwo( L, Result, [Node1|Accum] ).

/* least_connections( Nodes, bsf(N1, Degree), NodesInG, Result, Rest )
to find the node from [N1| Nodes] which is adjacent to the least number
nodes in NodesInG, and return such node as Result. The rest of the nodes
are returned as Rest. read bsf as “best so far”

*/
least_connections( [], bsf(Result,_), _, Result, [] ).
least_connections( [N1|L], bsf(N0,Len0), Nodes, Result, [N|Rest] ) :-

setof( N2, adjacent(N1, N2 in Nodes), List ), length( List, Len1 ),
(Len1 =< Len0, N = N0,
least_connections( L, bsf(N1,Len1), Nodes, Result, Rest);
Len1 > Len0, N = N1,
least_connections( L, bsf(N0,Len0), Nodes, Result, Rest)).

least_connections( [N1|L], bsf(N0,_), Nodes, N1, [N0|L] ) :-
\+ adjacent( N1, _ in Nodes ). /* N1 is unadjacent */

adjacent( X, Y in List ) :- edge( X, Y ), in( Y, List ).
adjacent( X, Y in List ) :- edge( Y, X ), in( Y, List ).

in( X, [X|_] ).
in( X, [Y|L] ) :- X \= Y, in( X, L ).

/*=====================================================*/
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/*========================================================
Program 6.2 : mbwo1.plg
Subject : To find Minimal Bandwidth Orderings for input

graphs, using the algorithm in (Gurari & Sudbor-
ough, 1984)

Notes : A graph is assumed to be recorded in the database
in the following form:

node(Node)
edge(Node1, Node2)

tried_already/2 is asserted into the database
========================================================*/
/*

minimal_bandwidth_ordering( MBWO, K )
Given a graph represented in the above form, return one minimal band-
width ordering (MBWO) at a time, together with the bandwidth. The
search is complete, in the sense that it can find all the orderings with min-
imal bandwidth.

*/
minimal_bandwidth_ordering( MBWO, K ) :-

bagof( Node, node(Node), Nodes ),
length( Nodes, Len ),
Max_bandwidth is Len - 1,
gen_num( Max_bandwidth, K ), /* 1 =< K =< Max_bandwidth */
retract_all( tried_already(_, _) ),
bw( [([],[],[])], MBWO, K ).

gen_num( Len, K ) :- Len >= 1, gen_num( Len, 1, K ).

gen_num( Len, K, K ).
gen_num( Len, M, K ) :- M < Len, M1 is M + 1, gen_num( Len, M1, K ).

bw( [(C, [V1|R], D) | Q], Result, K ) :-
length( [V1|R], K ),
delete_edge( (V1,V2), D, D1 ),
update( (C, [V1|R], D1 ), V2, (NewC, NewR, NewD) ),
bw_aux( (NewC, NewR, NewD), Q, Result, K ).

bw( [(C, R, D) | Q], Result, K ) :-
\+ length( R, K ),
findall( V, unassigned( C, R, V ), U ),
update_all( U, (C,R,D), Q, Result, K ).

bw_aux( (C, R, []), _, Result, _ ) :-
append( C, R, Result ).

bw_aux( (C, R, D), Q, Result, K ) :-
D \== [],
plausible_n_untried( R, D, K ),
append( Q, [(C,R,D)], Q1 ),
bw( Q1, Result, K ).
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bw_aux( (C, R, D), Q, Result, K ) :-
D \== [],
\+ plausible_n_untried( R, D, K ),
bw( Q, Result, K ).

update_all( [], _, Q, Result, K ) :- bw( Q, Result, K ).
update_all( [V|L], (C,R,D), Q, Result, K ) :-

update( (C,R,D), V, (C1,R1,D1) ),
update_all_aux( L, (C,R,D), (C1,R1,D1), Q, Result, K ).

update_all_aux( _, _, (C,R,[]), _, Result, _ ) :-
append( C, R, Result ).

update_all_aux( L, (C,R,D), (C1,R1,D1), Q, Result, K ) :-
plausible_n_untried( R1, D1, K ),
append( Q, [(C1,R1,D1)], Q1 ),
update_all( L, (C,R,D), Q1, Result, K ).

update_all_aux( L, (C,R,D), (_,R1,D1), Q, Result, K ) :-
\+ plausible_n_untried( R1, D1, K ),
update_all( L, (C,R,D), Q, Result, K ).

update( (C,R,D), S, (C1,R1,D1) ) :-
delete_all_edges( (S,_), D, Temp ),
move_conquered_nodes( (C,R,Temp), (C1,TempR), [] ),
append( TempR, [S], R1 ),
findall( (S,X), adjacent_nodes( S, X, R ), List ),
append( Temp, List, D1 ).

move_conquered_nodes( (C,[],_), (C1,[]), Accum ) :-
append( C, Accum, C1 ).

move_conquered_nodes( (C,[H|R],D), (C1,R1), Accum ) :-
\+ edge_member( (H,_), D ),
move_conquered_nodes( (C,R,D), (C1,R1), [H|Accum] ).

move_conquered_nodes( (C,[H|R],D), (C1,[H|R]), Accum ) :-
edge_member( (H,_), D ),
append( C, Accum, C1 ).

adjacent_nodes( S, X, R ) :-
(edge( S, X ); edge( X, S )),
\+ member( X, R ).

plausible_n_untried( R, D, K ) :-
plausible( R, D, K ),
\+ tried( R, D ),
sort( R, Sorted_R ),
sort( D, Sorted_D ),
assert( tried_already(Sorted_R, Sorted_D) ).
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plausible( R, D, K ) :-
length( R, LenR ),
Limit is K - LenR + 1 ,
limited_dangling_edges( R, D, Limit ).

limited_dangling_edges( [], _, _ ).
limited_dangling_edges( [X|L], D, Limit ) :-

findall( Y, (member((X,Y),D); member((Y,X),D)), List ),
length( List, Len ),
Len =< Limit,
limited_dangling_edges( L, D, Limit + 1 ).

tried( R, D ) :-
sort( R, Sorted_R ),
sort( D, Sorted_D ),
tried_already( Sorted_R, Sorted_D ).

unassigned( C, R, V ) :- node(V), \+ member(V, C), \+ member(V, R).

delete_edge( _, [], [] ).
delete_edge( (X,Y), [(X,Y)|L], L ).
delete_edge( (X,Y), [(Y,X)|L], L ).
delete_edge( (X,Y), [(X1,Y1)|L1], [(X1,Y1)|L2] ) :-

(X,Y) \= (X1,Y1), (X,Y) \= (Y1,X1),
delete_edge( (X,Y), L1, L2 ).

delete_all_edges( _, [], [] ).
delete_all_edges( (X,Y), [(X,Y)|L], Result ) :-

delete_all_edges( (X,Y), L, Result ).
delete_all_edges( (X,Y), [(Y,X)|L], Result ) :-

delete_all_edges( (X,Y), L, Result ).
delete_all_edges( (X,Y), [(X1,Y1)|L1], [(X1,Y1)|L2] ) :-

(X,Y) \= (X1,Y1), (X,Y) \= (Y1,X1),
delete_all_edges( (X,Y), L1, L2 ).

edge_member( (X,Y), [(X,Y)|_] ).
edge_member( (X,Y), [(Y,X)|_] ).
edge_member( Edge, [_|L] ) :- edge_member( Edge, L ).

member( X, [X|_] ).
member( X, [_|L] ) :- member( X, L ).

append( [], L, L ).
append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).

retract_all( P ) :- retract(P), fail.
retract_all( _ ).
/*========================================================*/
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/*========================================================
Program 6.3 : mbwo2.plg
Subject : Program to find Minimal Bandwidth Orderings

(compared with mbwo1.plg, this is an implementa-
tion of an algorithm which is more natural for Pro-
log)

Note : A graph is assumed to be recorded in the database
in the following form:

node(Node)
edge(Node1, Node2)

========================================================*/
/*

minimal_bandwidth_ordering( MBWO, K )
Given a graph represented in the above form, return one minimal band-
width ordering (MBWO) at a time, together with the bandwidth. The
search is complete, in the sense that it can find all the orderings with min-
imal bandwidth.
“setof” is used to collect all the orderings with the minimal bandwidth,
and the cut after it is used to disallow backtracking to generate greater
Max_bandwidth.

*/
minimal_bandwidth_ordering( MBWO, K ) :-

bagof( Node, node(Node), Nodes ),
length( Nodes, Len ),
Max_bandwidth is Len - 1,
gen_num( Max_bandwidth, K ), /* 1 =< K =< Max_bandwidth */
setof( Ordering, mbwo(K,[],[],Nodes,Ordering), Solutions ), !,
member( Solutions, MBWO, _ ).

minimal_bandwidth_ordering( [], _ ) :- /* graph without nodes */
\+node(_).

gen_num( Len, K ) :- Len >= 1, gen_num( Len, 1, K ).

gen_num( Len, K, K ).
gen_num( Len, M, K ) :- M < Len, M1 is M + 1, gen_num( Len, M1, K ).

/*
mbwo( K, Passed, Active, Unlabelled, Result )
Active has at most K elements.
Invariance: (1) the bandwidth of Passed + Active =< K; (2) none of the
nodes in Passed are adjacent to any of the nodes in Unlabelled;

*/
mbwo( _, Passed, Active, [], Result ) :-

append( Passed, Active, Result ).
mbwo( K, Passed, Active, Unplaced, Result ) :-

length( Active, LenActive ),
LenActive < K,
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member( Unplaced, Node, Rest ),
append( Active, [Node], NewActive ),
mbwo( K, Passed, NewActive, Rest, Result ).

mbwo( K, Passed, [H|Active], Unplaced, Result ) :-
length( Active, LenActive ), LenActive + 1 =:= K,
member( Unplaced, Node, Rest ),
no_connection( H, Rest ),
append( Active, [Node], NewActive ),
append( Passed, [H], NewPassed ),
mbwo( K, NewPassed, NewActive, Rest, Result ).

member( [X|L], X, L ).
member( [H|L], X, [H|R] ) :- member( L, X, R ).

append( [], L, L ).
append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).

no_connection( _, [] ).
no_connection( X, [Y|List] ) :-

\+adjacent( X, Y ), no_connection( X, List ).

adjacent( X, Y ) :- edge( X, Y ).
adjacent( X, Y ) :- edge( Y, X ).

/*========================================================*/
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/*========================================================
Program 6.4 : ffp-fc.plg
Subject : Forward Checking algorithm applied to the N-

queens problem; Fail-first Principle is used in
selecting the next variable

========================================================*/

/*
queens(N, R)
N is the number of queens, and R is a solution
The main clause. Called by, say, ?- (queens(8, Result).

*/
queens(N, R) :-

range(N, L),
setup_candidate_lists(N, L, C),
forward_checking_with_ffp(C, R),
report(R).

/*
range(N, List)
Given a number N, range creates the List:

[N, N - 1, N - 2, ..., 3, 2, 1].
*/
range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

/*
setup_candidate_lists(N, L, Candidates)
Given a number N, and a list L = [N, N - 1, N - 2, ..., 3, 2, 1],
return as the 3rd argument the Candidates:

[N/L, N - 1/L, N - 2/L, ..., 2/L, 1/L]
L is the list of all possible values that each queen can take.

*/
setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R).

/*
forward_checking_with_ffp( Unlabelled, Solution)
This is the main clause for searching. Unlabelled is a list of X/Dx, where
X is a variable and Dx is its domain. The algorithm is: pick one value for
one queen, propagate the constraints that it creates to other queens, then
handle the next queen, till all the queens are labelled. If the picked varia-
ble cannot be labelled, the call will fail. For the picked variable, all values
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will be tried.
*/
forward_checking_with_ffp([], []).
forward_checking_with_ffp([H/Dh| Other_Unlabelled], [X/V| R]) :-

length(Dh, Len_H),
select_variable(Other_Unlabelled, H/Dh, Len_H, X/Domain, Rest),
select_value(X/Domain, V, Rest, Updated_Unlabelled),
forward_checking_with_ffp(Updated_Unlabelled, R).

/*
select_variable(Unlabelled, H/Dh, Len_H, X/Domain, Rest),
Given a set of unlabelled variables and their domains (1st Arg), return the
variable X which has the smallest Domain and the remaining unlabelled
variable/domains (5th arg). H is the variable which has the smallest
domain found so far, where Dh is the domain of H, and Len_H is the size
of Dh.

*/
select_variable([], Selected, _, Selected, []).
select_variable([Y/Dy| L], X/Dx, Lx, Result, [X/Dx| Rest]) :-

length(Dy, Ly),
Ly < Lx,
select_variable(L, Y/Dy, Ly, Result, Rest).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [Y/Dy| Rest]) :-
length(Dy, Ly),
Ly >= Lx,
select_variable(L, X/Dx, Lx, Result, Rest).

/*
select_value( X/Dom, V, Unlabelled, Updated_Unlabelled)
Given variable X and its domain (Dom) and a set of unlabelled variables
and their domains (Unlabelled), return a value (V) in Dom and the
updated domains for the unlabelled variables in Unlabelled. It fails if all
the values will cause the situation to be over-constrained. In this imple-
mentation, no heuristics is being used.

*/
select_value(X/[V|_], V, U, Updated_U) :-

propagate(X/V, U, Updated_U).
select_value(X/[_|L], V, U, Updated_U) :-

select_value(X/L, V, U, Updated_U).

/* propagate( Assignment, Unlabelled, Updated_Unlabelled )
It propagates the effect of the Assignment to the Unlabelled variables.
The Assignment is propagated to one queen at a time, until all the queens
are considered. Updated_Unlabelled will be instantiated to the result.

*/
propagate(_, [], []).
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propagate(X/V, [Y/C| T], [Y/C1| T1]) :-
prop(X/V, Y/C, C1), C1 \== [],
propagate(X/V, T, T1).

/*
prop( X/Vx, Y/Dy, Updated_Dy )
Given an assignment  X/Vx, prop/3 restricts the domain of the Y-th queen
(Dy) to an updated domain (Updated_Dy).

*/
prop(X/V, Y/C, R) :-

del(V, C, C1),
V1 is V-(X-Y),
del(V1, C1, C2),
V2 is V + (X-Y),
del(V2, C2, R).

/*
del( Element, List, Result )
delete an Element  from the input List, returning the Result as the 3rd
argument. del/3 succeeds whether Element exists in List or not.

*/
del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \= H, del(X,T,L).

report([]) :- nl, nl.
report([_/V | L]) :- tab((V - 1) * 2), write(‘Q’), nl, report(L).

/*========================================================*/
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/*========================================================
Program 6.5 : ffp-dac.plg
Subject : DAC-Lookahead algorithm applied to the N-queens

problem; Fail-first Principle is used in selecting the
next variable; DAC is maintained among unlabelled
variables.

Note : The following programs are required:
Program 5.6: ac.plg
Program 5.7: print.queens.plg

========================================================*/

queens(N, R) :-
range(N, L),
setup_candidate_lists(N, L, C),
dac_lookahead_with_ffp(C, R),
print_queens(R). /* defined in print.queens.plg */

range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R).

/*
dac_lookahead_with_ffp( Unlabelled, Solution )
This is the main clause for searching. Unlabelled is a list of X/Dx, where
X is a variable and Dx is its domain. The algorithm is: pick one value for
one queen, propagate the constraints by maintaining directional arc-con-
sistency, then handle the next queen, till all the queens have been labelled.
If the picked variable cannot be labelled, the call will fail. For the picked
variable, all values will be tried.

*/
dac_lookahead_with_ffp([], []).
dac_lookahead_with_ffp([H/Dh| Other_Unlabelled], [X/V| R]) :-

length(Dh, Len_H),
select_variable(Other_Unlabelled, H/Dh, Len_H, X/Domain, Rest),
select_value(X/Domain, V, Rest, Updated_Unlabelled),
dac_lookahead_with_ffp(Updated_Unlabelled, R).

/*
Given a set of unlabelled variables and their domains (1st Arg), return the
variable (X) which has the smallest domain (Dom) and the remaining
unlabelled variable/domains (5th arg).

*/
select_variable([], Selected, _, Selected, []).
select_variable([Y/Dy| L], X/Dx, Lx, Result, [X/Dx| Rest]) :-
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length(Dy, Ly), Ly < Lx,
select_variable(L, Y/Dy, Ly, Result, Rest).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [Y/Dy| Rest]) :-
length(Dy, Ly), Ly >= Lx,
select_variable(L, X/Dx, Lx, Result, Rest).

/*
select_value(X/Dom, V, U, Updated_U)
Given variable X and its domain (Dom) and a set of unlabelled variables
and their domains (U), return a value (V) in Dom and the updated
domains for the unlabelled variables in U. Fail if all the values cause the
situation over-constrained. In this implementation, no heuristics is used.
maintain_directed_arc_consistency/2 is defined in the program ac.plg.

*/
select_value(X/[V|_], V, U, Updated_U) :-

propagate(X/V, U, Temp),
maintain_directed_arc_consistency(Temp, Updated_U).

select_value(X/[_|L], V, U, Updated_U) :-
select_value(X/L, V, U, Updated_U).

/* propagate( Assignment, Unlabelled, Updated_Unlabelled )
It propagates the effect of the Assignment to the Unlabelled variables.
The Assignment is propagated to one queen at a time, until all the queens
are considered. Updated_Unlabelled will be instantiated to the result.

*/
propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

prop(X/V, Y/C, C1), C1 \== [],
propagate(X/V, T, T1).

/*
prop( X/Vx, Y/Dy, Updated_Dy )
Given an assignment  X/Vx, prop/3 restricts the domain of the Y-th queen
(Dy) to an updated domain (Updated_Dy).

*/
prop(X/V, Y/C, R) :-

del(V, C, C1),
V1 is V-(X-Y),
del(V1, C1, C2),
V2 is V + (X-Y),
del(V2, C2, R).

del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \= H, del(X,T,L).

/*========================================================*/
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/*========================================================
Program 6.6 : ffp-ac.plg
Subject : AC-Lookahead algorithm applied to the N-queens

problem: Fail-first Principle is used in selecting the
next variable; Arc-consistency is maintained among
unlabelled variables.

Note : The following programs are required:
Program 5.6: ac.plg
Program 5.7: print.queens.plg

========================================================*/
/*

The main clause, the 1st argument is used to distinguish it from other def-
initions of “queens” when more than one file is loaded.

*/
queens(N, R) :-

range(N, L), setup_candidate_lists(N, L, C),
label_with_ffp(C, R), print_queens(R).

/* range(N, List)
Given a number N, range/2 creates the List:

[N, N - 1, N - 2, ..., 3, 2, 1].
*/
range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

/* setup_candidate_lists(N, L, Candidates)
Given a number N, and a list L = [N, N - 1, N - 2, ..., 3, 2, 1], return as the
3rd argument the Candidates: [N/L, N - 1/L, N - 2/L, ..., 2/L, 1/L]
L is the list of all possible values that each queen can take.

*/
setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-

N > 0, N1 is N - 1, setup_candidate_lists(N1, L, R).

/* label_with_ffp( Unlabelled, Solution )
This is the main clause for searching. Unlabelled is a list of X/Dx, where
X is a variable and Dx is its domain. The algorithm: pick one value for
one queen, propagate the constraints by maintaining Arc-Consistency,
then handle the next queen, till all the queens are labelled. If the picked
variable cannot be labelled, the call will fail. For the picked variable, all
values will be tried.

*/
label_with_ffp([], []).
label_with_ffp([H/Dh| Other_Unlabelled], [X/V| R]) :-

length(Dh, Len_H),
select_variable(Other_Unlabelled, H/Dh, Len_H, X/Domain, Rest),
select_value(X/Domain, V, Rest, Updated_Unlabelled),
label_with_ffp(Updated_Unlabelled, R).
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/* Given a set of unlabelled variables and their domains (1st Arg), return the
variable (X) which has the smallest domain (Dom) and the remaining
unlabelled variable/domains (5th arg).

*/
select_variable([], Selected, _, Selected, []).
select_variable([Y/Dy| L], X/Dx, Lx, Result, [X/Dx| Rest]) :-

length(Dy, Ly), Ly < Lx,
select_variable(L, Y/Dy, Ly, Result, Rest).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [Y/Dy| Rest]) :-
length(Dy, Ly), Ly >= Lx,
select_variable(L, X/Dx, Lx, Result, Rest).

/* select_value( X/Dom, V, U, Updated_U)
Given variable X and its domain (Dom) and a set of unlabelled variables
and their domains (U), return a value (V) in Dom and the updated
domains for the unlabelled variables in U. Fail if all the values cause the
situation over-constrained.

*/
select_value(X/[V|_], V, U, Updated_U) :-

propagate(X/V, U, Temp),
maintain_arc_consistency(Temp, Updated_U).

select_value(X/[_|L], V, U, Updated_U) :- select_value(X/L, V, U, Updated_U).

/* propagate( Assignment, Unlabelled, Updated_Unlabelled )
It propagates the effect of the Assignment to the Unlabelled variables.
The Assignment is propagated to one queen at a time, until all the queens
are considered. Updated_Unlabelled will be instantiated to the result.

*/
propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

prop(X/V, Y/C, C1), C1 \== [], propagate(X/V, T, T1).

/* prop( X/Vx, Y/Dy, Updated_Dy )
Given an assignment  X/Vx, prop/3 restricts the domain of the Y-th queen
(Dy) to an updated domain (Updated_Dy).

*/
prop(X/V, Y/C, R) :-

del(V, C, C1), V1 is V - (X - Y),
del(V1, C1, C2), V2 is V + (X - Y), del(V2, C2, R).

del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \= H, del(X,T,L).

/*========================================================*/
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/*========================================================
Program 6.7 : inf_bt.plg
Subject : Solving the N-queens problem with backtracking,

using the Min-conflict Heuristic to order the values
Note : This program requires the following programs:

Program 5.3: random.plg
Program 5.7: print.queens.plg

========================================================*/

:- op( 100, yfx, less ). /* for difference list */

/*
Initial_Assignment should be a difference list

*/
queens(N, Result) :-

generate_domain( N, Domain ),
initialize_labels( N, Domain, Initial_labels ),
informed_backtrack( Domain, Initial_labels, X less X, Temp, 0 ),
retrieve_from_diff_list( Temp, Result ),
print_queens( Result ).

/*-----------------------------------------------------------------------------------------------*/

generate_domain( N, [] ) :- N =< 0.
generate_domain( N, [N|L] ) :-

N > 0, N1 is N - 1, generate_domain(N1, L).

/*-----------------------------------------------------------------------------------------------*/
/*

initialize_labels( N, Domain, Assignments )
It generates Assignments, which is a difference list representing a near-
solution. initialize_labels/3 uses the min_conflicts heuristic.

*/
initialize_labels( N, Domain, Assignments ) :-

init_labels( N, Domain, Assignments, X less X ).

init_labels( 0, _, Result, Result ).
init_labels( N, Domain, Result, L1 less L2 ) :-

pick_one_value( N, Domain, L1 less L2, V, Remaining_Values ),
N1 is N - 1,
init_labels( N1, Remaining_Values, Result, [N/V|L1] less L2).

pick_one_value( _, [V], _, V, [] ).
pick_one_value( N, [V1|Vs], Labels less Tail, V, Rest ) :-

Vs \== [],
count_conflicts( N/V1, Labels less Tail, Bound ),
find_min_conflict_value(Bound-N/[V1], Vs, Labels less Tail, V ),
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delete( V, [V1|Vs], Rest ).

/*
find_min_conflict_value( Bound-N/V1, Vs, Labelled, V )
given a label N/V1 and the number of conflicts that it has with the assign-
ments in Labelled, pick from Vs a value V such that X/V has fewer con-
flicts with Labelled. If no such V exists, instantiate V to V1. If the Bound
is 0, then there is no chance of improvement. In this case, a random value
is picked (this is done in the 1st clause).

*/
find_min_conflict_value( _-_/Vs, [], _, V ) :-

random_element( Vs, V ). /* defined in random.plg */
find_min_conflict_value( Bound-X/V, [V1|Vs], Labelled, Result ) :-

count_conflicts( X/V1, Labelled, Count, Bound ),
fmcv( Bound-X/V, Count-X/V1, Vs, Labelled, Result ).

fmcv( Count-X/L, Count-X/V1, Vs, Labelled, R ) :-
find_min_conflict_value( Count-X/[V1|L], Vs, Labelled, R).

fmcv( Bound-X/L, Count-_, Vs, Labelled, Result ) :-
Bound < Count,
find_min_conflict_value( Bound-X/L, Vs, Labelled, Result ).

fmcv( Bound-_, Count-X/V1, Vs, Labelled, R ) :-
Bound > Count,
find_min_conflict_value( Count-X/[V1], Vs, Labelled, R ).

/*-----------------------------------------------------------------------------------------------*/
/*

informed_backtrack(Domain, VarsLeft, VarsDone, Result, Count)
Domain is the domain that each variable can take — in the N-queens
problem, all variables have the same domain;
VarsLeft is a difference list, which represents the labels which have not
yet been fully examined;
VarsDone is a difference list, which represents the labels which have been
checked and guaranteed to have no conflict with each other;
Result is a difference list, which will be instantiated to VarLeft + VarDone
when no conflict is detected.
Count counts the number of iterations needed to find the solution — used
solely for reporting.

*/
informed_backtrack( Domain, VarsLeft, VarsDone, Result, Count ) :-

pick_conflict_label( VarsLeft, VarsDone, X ),
delete_from_diff_list( X/Old, VarsLeft, Rest ), !,
order_values_by_conflicts( X, Domain, Rest, VarsDone, Ordered_Do-
main ),
member( _-V, Ordered_Domain ),
add_to_diff_list( X/V, VarsDone, New_VarsDone ),
delete( V, Domain, D1 ),
Count1 is Count + 1,
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informed_backtrack( D1, Rest, New_VarsDone, Result, Count1 ).
informed_backtrack( _, X less Y, Y less Z, X less Z, Count ) :-

write(‘Iterations needed: ‘), write(Count).

/*
pick_conflict_label( VarsLeft, Labels_to_check, X )

*/
pick_conflict_label( L1 less L2, _, _ ) :-

L1 == L2, !, fail.
pick_conflict_label( [X/V| Rest] less L1, L2 less L3, R ) :-

no_conflicts( X/V, Rest less L1 ),
no_conflicts( X/V, L2 less L3 ), !,
pick_conflict_label( Rest less L1, [X/V| L2] less L3, R ).

pick_conflict_label( [X/_|_] less _, _, X ).

/*
order_values_by_conflicts( X, D, VarsLeft, VarsDone, Result )

*/
order_values_by_conflicts( X, Domain, VarsLeft, VarsDone, Result ) :-

bagof( Count-V, (member(V,Domain),
 no_conflicts( X/V, VarsDone ),
 count_conflicts( X/V, VarsLeft, Count )),

Temp
 ),
modified_qsort( Temp, Result ).

no_conflicts( _, L1 less L2 ) :- L1 == L2.
no_conflicts( X1/V1, [X2/V2| L1] less L2 ) :-

[X2/V2| L1] \== L2,
noattack( X1/V1, X2/V2 ),
no_conflicts( X1/V1, L1 less L2 ).

modified_qsort( [], [] ).
modified_qsort( [Pivot-X|L], Result ) :-

split( Pivot, L, Equal, Less, More ),
modified_qsort( Less, Sorted_Less ),
modified_qsort( More, Sorted_More ),
random_ordering( [Pivot-X|Equal], Temp1 ),/* random.plg */
append( Sorted_Less, Temp1, Temp2 ),
append( Temp2, Sorted_More, Result ).

split( _, [], [], [], [] ).
split( V, [V-X|L1], [V-X|L2], L3, L4 ) :-

split( V, L1, L2, L3, L4 ).
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split( Pivot, [V-X|L1], L2, [V-X|L3], L4 ) :-
V < Pivot, split( Pivot, L1, L2, L3, L4 ).

split( Pivot, [V-X|L1], L2, L3, [V-X|L4] ) :-
V > Pivot, split( Pivot, L1, L2, L3, L4 ).

/*-----------------------------------------------------------------------------------------------*/
/*

count_conflicts ( X/V, Labelled, Count )
count the number of conflicts between X/V and the Labelled variables,
returning Count.

*/
count_conflicts( _, L1 less L2, 0 ) :- L1 == L2, !.
count_conflicts( X/V, [Y/W| L1] less L2, Count ) :-

noattack( X/V, Y/W ), !,
count_conflicts( X/V, L1 less L2, Count ).

count_conflicts( X/V, [_| L1] less L2, Count ) :-
count_conflicts( X/V, L1 less L2, Count0 ),
Count is Count0 + 1.

/*
count_conflicts ( X/V, Labelled, Count, Max_Count )
count the number of conflicts between X/V and the Labelled variables,
returning Count. If Count > Max_Count, there is no need to continue. Just
return 0.

*/
count_conflicts( _, L1 less L2, 0, _ ) :- L1 == L2, !.
count_conflicts( _, _, 0, N ) :- N < 0, !.
count_conflicts( X/V, [Y/W| L1] less L2, Count, Max ) :-

noattack( X/V, Y/W ), !,
count_conflicts( X/V, L1 less L2, Count, Max ).

count_conflicts( X/V, [_| L1] less L2, Count, Max ) :-
Max1 is Max - 1,
count_conflicts( X/V, L1 less L2, Count0, Max1 ),
Count is Count0 + 1.

noattack(X0/V0, X1/V1):-
V0 =\= V1,
V1-V0 =\= X1-X0,
V1-V0 =\= X0-X1.

/*-----------------------------------------------------------------------------------------------*/

/*
add_to_diff_list( X, Difference_List1, Result )
to add X to a difference list, giving Result.

*/
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add_to_diff_list( X, L1 less L2, [X|L1] less L2 ).

delete_from_diff_list( _, L1 less L2, L1 less L2 ) :-
L1 == L2, !.

delete_from_diff_list( X, [X|L1] less L2, L1 less L2 ).
delete_from_diff_list( X, [H|L1] less L2, [H|L3] less L2 ) :-

X \= H,
delete_from_diff_list( X, L1 less L2, L3 less L2 ).

retrieve_from_diff_list( L1 less L2, [] ) :- L1 == L2.
retrieve_from_diff_list( [H|L1] less L2, [H|L3] ) :-

[H|L1] \== L2,
retrieve_from_diff_list( L1 less L2, L3 ).

reverse_diff_list( Diff_list, Reverse ) :-
reverse_diff_list( Diff_list, Reverse, L less L ).

reverse_diff_list( L1 less L2, Result, Result ) :- L1 == L2.
reverse_diff_list( [H|L1] less L2, Result, L3 less L4 ) :-

[H|L1] \== L2,
reverse_diff_list( L1 less L2, Result, [H|L3] less L4 ).

member( X, [X|_] ).
member( X, [_|L] ) :- member( X, L ).

/*
delete(X,L1,L2)
deletes the first occurence of X from L1, giving L2.

*/
delete( _, [], [] ).
delete( X, [X|L], L ).
delete( X, [H|L1], [H|L2] ) :- X \= H, delete( X, L1, L2 ).

append( [], L, L ).
append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).

/*========================================================*/
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/*========================================================
Program 7.1 : partition.plg
Subject : Program to partition the nodes in the given graph

into unconnected clusters
Notes : A graph is assumed to be recorded in the database

in the following form:
node(Node)
edge(Node1, Node2)

========================================================*/
partition(Clusters) :-

bagof(N, node(N), Nodes),
delete(X, Nodes, RestOfNodes), !,
partition([X], RestOfNodes, [], Clusters).

partition([]).

partition([], [], Cluster, [Cluster]).
partition(L, [], Accum, [Cluster]) :-

append(L, Accum, Cluster).
partition([], Nodes, Cluster1, [Cluster1| Clusters]) :-

Nodes \== [], /* start another cluster */
delete(X, Nodes, RestOfNodes),
partition([X], RestOfNodes, [], Clusters).

partition([H|L], Nodes, Accum, Clusters) :-
Nodes \== [],
findall(X, (member(X, Nodes), adjacent(H,X)), List),
delete_list(List, Nodes, RestOfNodes),
append(L, List, NewL),
partition(NewL, RestOfNodes, [H|Accum], Clusters).

adjacent(X,Y) :- edge(X,Y).
adjacent(X,Y) :- edge(Y,X).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

append([], L, L).
append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).

delete(_, [], []).
delete(X, [X|L], L).
delete(X, [H|L1], [H|L2]) :- X \== H, delete(X, L1, L2).

delete_list([], L, L).
delete_list([H|L1], L2, L3) :- delete(H, L2, Temp), delete_list(L1, Temp, L3).

writeln([]) :- nl.
writeln([H|L]) :- write(H), writeln(L).
/*====================================================*/
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/*========================================================
Program 7.2 : acyclic.plg
Subject : To check whether an undirected graph is Acyclic
Notes : A graph is assumed to be recorded in the database

in the following form:
node(Node)
edge(Node1, Node2)

========================================================*/
acyclic :-

bagof(N, node(N), Nodes), bagof((A,B), edge(A,B), Edges), node(X), !,
acyclic([X], (Nodes, Edges)).

acyclic([], ([], _)).
acyclic([], (Nodes, Edges)) :- member(X, Nodes), acyclic([X], (Nodes, Edges)).
acyclic([H|L], (Nodes, Edges)) :-

delete(H, Nodes, RestNodes),
findall(Y, adjacent((H,Y), Edges), Connected),
remove_connections( H, Connected, Edges, RestEdges),
no_cycle( Connected, L ),
append(Connected, L, L1),
writeln([H,’ removed, graph = (‘,Nodes,’,’,Edges,’)’]),
acyclic(L1, (RestNodes, RestEdges)).

adjacent((X,Y), Edges) :- member((X,Y), Edges).
adjacent((X,Y), Edges) :- member((Y,X), Edges).

remove_connections(_, [], L, L).
remove_connections(X, [Y|L], Edges, RestEdges) :-

delete((X,Y), Edges, Temp1),
delete((Y,X), Temp1, Temp2),
remove_connections(X, L, Temp2, RestEdges).

no_cycle([], _).
no_cycle([H|L], Visited) :- \+ member(H, Visited), no_cycle(L, Visited).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

append([], L, L).
append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).

delete(_, [], []).
delete(X, [X|L], L).
delete(X, [H|L1], [H|L2]) :- X \== H, delete(X, L1, L2).

writeln([]) :- nl.
writeln([H|L]) :- write(H), writeln(L).
/*========================================================*/
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/*========================================================
Program 7.3 : max-clique.plg
Subject : To find all Maximum Cliques in a given graph
Notes : A graph is assumed to be recorded in the database

in the following form:
node(Node)
edge(Node1, Node2)

======================================================*/
/* max_cliques( MC )

It instantiates MC to the set of all maximum cliques in the graph which is
in the Prolog database.

*/
max_cliques( MC ) :- bagof(N, node(N), Nodes), mc(Nodes, [], [], MC).

mc([], _, _, []).
mc(Nodes, _, Excluded_nodes, []) :- no_clique(Excluded_nodes, Nodes), !.
mc(Nodes, _, _, [Nodes]) :- clique(Nodes), !.
mc(Nodes, Include_nodes, Excluded_nodes, MC) :-

delete(X, Nodes, RestOfNodes), \+member(X, Include_nodes), !,
findall(N, (member(N,RestOfNodes), adjacent(N,X)), Neighbours),
mc([X|Neighbours], [X|Include_nodes], Excluded_nodes, MC1),
mc(RestOfNodes, Include_nodes, [X|Excluded_nodes], MC2),
append(MC1, MC2, MC).

/* no_clique(N, C)
no clique exists if any of the nodes in N is adjacent to all the nodes in C

*/
no_clique([H|_], C) :- all_adjacent(C, H).
no_clique([_|L], C) :- no_clique(L, C).

clique([]).
clique([H|L]) :- all_adjacent(L, H), clique(L).

all_adjacent([], _).
all_adjacent([H|L], X) :- adjacent(H,X), all_adjacent(L, X).

adjacent( X, Y ) :- edge( X, Y ).
adjacent( X, Y ) :- edge( Y, X ).

member( X, [X|_] ).
member( X, [_|L] ) :- member( X, L ).

append( [], L, L ).
append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).

delete(_, [], []).
delete(X, [X|L], L).
delete(X, [H|L1], [H|L2]) :- delete(X, L1, L2).
/*========================================================*/
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/*========================================================
Program 7.4 : alp.plg
Subject : AnalyzeLongestPath algorithm
Note : A graph is assumed to be recorded in the database

in the following form:
path(From, To, Length).

The predicate abs_time(Point, Abs_Time), if
present, states the absolute time of the Point.
Abs_Time can either be an integer or a term min(T-
ime). All times are assumed to be possitive.
** NB : This program does not detect any untidi-
ness of the database, e.g. duplicated clauses on the
same path or abs_time constraint

========================================================*/
/*

analyse_longest_path
analyse_longest_path succeeds if the temporal constraints in the given
graph is satisfiable.

*/
analyse_longest_path :- analyse_longest_path(_).

/*
analyse_longest_path(R)
succeeds if the temporal constraints can be satisfied, in which case R is
instantiated to the set of nodes in the database together with their earliest
possible time

*/
analyse_longest_path(ResultList) :-

setof( X, node_n_time(X), L ),
setof( (Y,TimeY), (in(Y,L), alp_gets_time(Y,TimeY)), List ),
(alp( to_be_processed(L), List, ResultList, visited([]) ), !,
 alp_satisfy_abs_time_constraint( ResultList ),
 writeln([‘AnalyzeLongestPath succeeds, result: ‘]);
 writeln([‘AnalyzeLongestPath fails: inconsistency detected ‘]),
 !, fail
).

/*
alp_satisfy_abs_time_constraint( List )
checks to see if all (Point,Time) pairs in the List satisfies all the abs_time
constraints in the database. Checking is performed here instead of alp/4 in
order to improve the clarity of alp/4.

*/
alp_satisfy_abs_time_constraint( [] ).
alp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-

abs_time( X, T ), integer(T),
(T == TimeX;
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 writeln([‘Time of ‘,X,’ violates abs_time constraint ‘,T]), !, fail
), !,
alp_satisfy_abs_time_constraint( L ).

alp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-
abs_time( X, max(T) ),
(TimeX =< T;
 writeln([‘Time of ‘,X,’ exceeds max. abs_time constraint ‘,T]), !, fail
), !,
alp_satisfy_abs_time_constraint( L ).

alp_satisfy_abs_time_constraint( [_| L] ) :-
alp_satisfy_abs_time_constraint( L ).

/*------------------------------------------------------------------------*/

Main predicates for analysing longest path

alp( to_be_processed(L1), L2, Result, visited(V) )
mutually recursive with alp_updates_time/5.

*/
alp(to_be_processed([]), Result, Result, _). /* finished */
alp(to_be_processed([A|_]), _, _, visited(Visited_Nodes)) :-

in(A, Visited_Nodes), !,
writeln([‘ Loop with node ‘,A]),
!, fail. /* loop detected */

alp(to_be_processed([A| L]), List, Result, visited(V)) :-
in((A,TimeA), List),
bagof((P,Length), path(A, P, Length), U),
(alp_updates_time(U, TimeA, List, Updated_List, visited([A|V]));
 writeln([‘ Loop with node ‘,A]), !, fail
), !,
alp(to_be_processed(L), Updated_List, Result, visited(V)).

/*
alp_updates_time( List1, Time, List2, List3, visited(V) )
+ List1: list of (successor, distance) for updating
+ Time: time at predecessor
+ List2: most updated list of (point,time)
- List3: List 2 with time checked and possibly updated
+ V: visited nodes, for checking loops

*/
alp_updates_time([], _, Result, Result, _).
alp_updates_time([(Y,Distance_X_Y)|U], TimeX, List, Result, Visited) :-

delete((Y,TimeY), List, Rest),
AltTimeY is TimeX + Distance_X_Y,
AltTimeY > TimeY, !,
alp(to_be_processed([Y]), [(Y,AltTimeY) |Rest], Temp, Visited), !,
alp_updates_time(U, TimeX, Temp, Result, Visited), !.

alp_updates_time([_|U], T, List, Result, Visited) :-
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alp_updates_time(U, T, List, Result, Visited).

/*------------------------------------------------------------------------*/

in( X, [X|_] ).
in( X, [_|L] ) :- in( X, L ).

delete( _, [], [] ).
delete( X, [X|Rest], Rest ).
delete( X, [Y|L], [Y|Rest] ) :- X\=Y, delete( X, L, Rest ).

writeln([]) :- nl.
writeln([nl|L]) :- !, nl, writeln(L).
writeln([H|L]) :- write(H), writeln(L).

/*------------------------------------------------------------------------*/

PREDICATES RELATED TO THE DATABASE */
/*

pick one node and find its time
*/
node_n_time(X) :- (path(X,_,_); path(_,X,_)).

alp_gets_time(A, TimeA) :- abs_time(A, TimeA), integer(TimeA), !.
alp_gets_time(A, TimeA) :- abs_time(A, min(TimeA)), !.
alp_gets_time(_, 0) :- !.

/*========================================================*/
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/*========================================================
Program 7.5 : asp.plg
Subject : AnalyzeShortestPath algorithm
Note : A graph is assumed to be recorded in the database

in the following form:
path(From, To, Length).

The predicate abs_time(Point, Abs_Time), if
present, states the absolute time of the Point.
Abs_Time can either be an integer or a term min(T-
ime). All times are assumed to be positive.
** NB : This program does not detect any untidi-
ness of the database, e.g. duplicated clauses on the
same path or abs_time constraint

========================================================*/

:- op(100, yfx, [less_than]).

/*
analyse_shortest_path
analyse_shortest_path succeeds if the temporal constraints in the
given graph is satisfiable.

*/
analyse_shortest_path :- analyse_shortest_path(_).

/*
analyse_shortest_path(R)
it succeeds if the temporal constraints can be satisfied, in which case R is
instantiated to the set of nodes in the database together with their earliest
possible time

*/
analyse_shortest_path(ResultList) :-

setof( X, node_n_time(X), L ),
setof( (Y,TimeY), (in(Y,L), asp_gets_time(Y,TimeY)), List ),
(asp( to_be_processed(L), List, ResultList, visited([]) ), !,
 asp_satisfy_abs_time_constraint( ResultList ),
 writeln([‘AnalyzeShortestPath succeeds, result: ‘]);
 writeln([‘AnalyseShortest Path fails: inconsistency detected ‘]),
 !, fail
).

/*
asp_satisfy_abs_time_constraint( List )
checks to see if the (Point,Time) pairs in the List satisfies all the abs_time
constraints in the database. Checking is performed here instead of alp/4 in
order to improve the clarity of alp/4.

*/
asp_satisfy_abs_time_constraint( [] ).
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asp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-
abs_time( X, T ), integer(T),
(T == TimeX;
 writeln([‘Time of ‘,X,’ violates abs_time constraint ‘,T]), !, fail
), !,
asp_satisfy_abs_time_constraint( L ).

asp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-
abs_time( X, min(T) ),
(\+(TimeX less_than T);
 writeln([‘Time of ‘,X,’ less than min. abs_time constraint ‘,T]), !, fail
), !,
asp_satisfy_abs_time_constraint( L ).

asp_satisfy_abs_time_constraint( [_| L] ) :-
asp_satisfy_abs_time_constraint( L ).

/*------------------------------------------------------------------------*/

Main predicates for analysing shortest path

asp( to_be_processed(L1), L2, Result, visited(V) )
mutually recursive with asp_updates_time/5.

*/
asp(to_be_processed([]), Result, Result, _). /* finished */
asp(to_be_processed([A|_]), _, _, visited(Visited_Nodes)) :-

in(A, Visited_Nodes), !,
writeln([‘ Loop with node ‘,A]),
!, fail. /* loop detected */

asp(to_be_processed([A| L]), List, Result, visited(V)) :-
in((A,TimeA), List), TimeA \= infinity,
bagof((P,Length), path(P, A, Length), U),
(asp_updates_time(U, TimeA, List, Updated_List, visited([A|V]));
 writeln([‘ Loop with node ‘,A]), !, fail
), !,
asp(to_be_processed(L), Updated_List, Result, visited(V)).

asp(to_be_processed([A| L]), List, Result, visited(V)) :-
in((A,infinity), List),
asp(to_be_processed(L), List, Result, visited(V)).

/*
asp_updates_time( List1, Time, List2, List3, visited(V) )
+ List1: list of (predecessor, distance) for updating
+ Time: time at successor
+ List2: most updated list of (point,time)
- List3: List 2 with time checked and possibly updated
+ V: visited nodes, for checking loops

*/
asp_updates_time([], _, Result, Result, _).
asp_updates_time([(X,Distance_X_Y)|U], TimeY, List, Result, Visited) :-
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delete((X,TimeX), List, Rest),
difference(TimeY, Distance_X_Y, AltTimeX),
AltTimeX less_than TimeX, !,
asp(to_be_processed([X]), [(X,AltTimeX) |Rest], Temp, Visited), !,
asp_updates_time(U, TimeY, Temp, Result, Visited), !.

asp_updates_time([_|U], T, List, Result, Visited) :-
asp_updates_time(U, T, List, Result, Visited).

/*------------------------------------------------------------------------*/

in( X, [X|_] ).
in( X, [_|L] ) :- in( X, L ).

delete( _, [], [] ).
delete( X, [X|Rest], Rest ).
delete( X, [Y|L], [Y|Rest] ) :- X\=Y, delete( X, L, Rest ).

writeln([]) :- nl.
writeln([nl|L]) :- !, nl, writeln(L).
writeln([H|L]) :- write(H), writeln(L).

difference( infinity, _, infinity ).
difference( X, infinity, -infinity ) :- X \== infinity.
difference( X, Y, Diff ) :- integer(X), integer(Y), Diff is X - Y.

_ less_than infinity.
X less_than Y :- integer(X), integer(Y), X < Y.

/*------------------------------------------------------------------------*/

PREDICATES RELATED TO THE DATABASE */

/*
pick one node and find its time

*/
node_n_time(X) :- (path(X,_,_); path(_,X,_)).

asp_gets_time(A, TimeA) :- abs_time(A, TimeA), integer(TimeA), !.
asp_gets_time(A, TimeA) :- abs_time(A, max(TimeA)), !.
asp_gets_time(_, infinity) :- !.

/*========================================================*/
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/*========================================================
Program 8.1 : hc.plg
Subject : Solving the N-queens problem using the Heuristic

Repair Method in Minton et al. [1990]
Note : The following programs are required:

Program 5.3: random.plg
Program 5.7: print.queens.plg

Search in this program is incomplete.
========================================================*/

queens(N, Result) :-
generate_domain( N, Domain ),
initialize_labels( N, Domain, Initial_labels ),
writeln([‘Initial labels: ‘, Initial_labels]),
hill_climb( Initial_labels, Domain, Result ),
print_queens( Result ).

/*------------------------------------------------------------------------*/

generate_domain( N, [] ) :- N =< 0.
generate_domain( N, [N|L] ) :-

N > 0, N1 is N - 1, generate_domain(N1, L).
/*

initialize_labels( N, Domain, Assignments )
it generates Assignments, which is a list representing an approximate
solution.
initialize_labels/3 uses the min_conflicts heuristic.

*/
initialize_labels( N, Domain, Assignments ) :-

init_labels( N, Domain, Assignments, [] ).

init_labels( 0, _, Result, Result ).
init_labels( N, Domain, Result, Labelled ) :-

N > 0,
pick_value_with_min_conflict( N, Domain, Labelled, V ),
N1 is N - 1,
init_labels( N1, Domain, Result, [N/V| Labelled] ).

pick_value_with_min_conflict( N, [V1|Vs], Labels, V ) :-
length(Vs, Len),
count_conflicts( N/V1, Labels, Count, Len ),
find_min_conflict_value(Count-N/V1, Vs, Labels, V ).

/*
find_min_conflict_value( Bound-N/V1, Vs, Labelled, V )
given a label N/V1 and the number of conflicts that it has with the
Labelled, pick from Vs a value V such that X/V has less conflicts with
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Labelled. If no such V exists, instantiate V to V1. If the Bound is 0, then
there is no chance to improve. This is handled by the 1st clause.

*/
find_min_conflict_value( _-_/V, [], _, V ).
find_min_conflict_value( 0-_/V, _, _, V ).
find_min_conflict_value( Bound-X/V, [V1|Vs], Labelled, Result ) :-

count_conflicts( X/V1, Labelled, Count, Bound ),
fmcv( Bound-X/V, Count-X/V1, Vs, Labelled, Result ).

fmcv( Count-X/V1, Count-X/V2, Vs, Labelled, R ) :-
random_element( [V1,V2], V ),
find_min_conflict_value( Count-X/V, Vs, Labelled, R).

fmcv( Bound-X/V, Count-_, Vs, Labelled, Result ) :-
Bound < Count,
find_min_conflict_value( Bound-X/V, Vs, Labelled, Result ).

fmcv( Bound-_, Count-X/V, Vs, Labelled, R ) :-
Bound > Count,
find_min_conflict_value( Count-X/V, Vs, Labelled, R ).

/*------------------------------------------------------------------------*/
/*

count_conflicts ( X/V, Labelled, Count, Max_Count )
count the number of conflicts between X/V and the Labelled variables,
returning Count. If Count is greater than Max_Count, there is no need to
continue: just return 0.

*/
count_conflicts( _, [], 0, _ ).
count_conflicts( _, _, 0, N ) :- N < 0.
count_conflicts( X/V, [Y/W| L1], Count, Max ) :-

Max >= 0,
noattack( X/V, Y/W ),
count_conflicts( X/V, L1, Count, Max ).

count_conflicts( X/V, [Y/W| L1], Count, Max ) :-
Max >= 0, \+noattack( X/V, Y/W ),
Max1 is Max - 1,
count_conflicts( X/V, L1, Count0, Max1 ),
Count is Count0 + 1.

noattack(X0/V0, X1/V1):-
V0 =\= V1,
V1-V0 =\= X1-X0,
V1-V0 =\= X0-X1.

/*------------------------------------------------------------------------*/

hill_climb( Config, Domain, Result ) :-
setof( Label, conflict_element( Label, Config ), Conflict_list ),
writeln([‘Conflict set: ‘, Conflict_list]),
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random_element( Conflict_list, Y/Vy ), /* no backtrack */
delete(Y/Vy, Config, Labelled),
pick_value_with_min_conflict( Y, Domain, Labelled, Value ),
writeln([‘Repair: ‘,Y,’=’,Vy,’ becomes ‘,Y,’=’,Value]),
!, /* no backtracking should be allowed */
hill_climb( [Y/Value| Labelled], Domain, Result ).

hill_climb( Config, _, Config ).

conflict_element( Label, Config ) :-
conflict_element( Label, Config, Config ).

conflict_element( X/V, [X/V| L], Config ) :- attack( X/V, Config ).
conflict_element( Label, [_| L], Config ) :- conflict_element( Label, L, Config ).

attack(X0/V0, [X1/V1|_]) :- X0 \== X1, V0 == V1.
attack(X0/V0, [X1/V1|_]) :- X0 \== X1, V1-V0 =:= X1-X0.
attack(X0/V0, [X1/V1|_]) :- X0 \== X1, V1-V0 =:= X0-X1.
attack(Label, [_|L]) :- attack(Label, L).

/*
delete(X,L1,L2)
deletes the first occurence of X from L1, giving L2.

*/
delete( _, [], [] ).
delete( X, [X|L], L ).
delete( X, [H|L1], [H|L2] ) :- X \= H, delete( X, L1, L2 ).

writeln( [] ) :- nl.
writeln( [H|L] ) :- write(H), writeln( L ).

/*========================================================*/
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/*========================================================
Program 9.1 : synthesis.plg
Subject : Freuder’s Solution Synthesis algorithm applied to

the N-queens problem
Dynamic Clauses : Clauses of the following predicate will be asserted/

retracted:
node( [X1,X2,...,Xn] )
content( [X1-V1, X2-V2, ..., Xn-Vn] )

where Xi are variables and Vi are values
Note : This program reports the constraint propagation

process
========================================================*/
/*

queens(N)
N is the number of queens.
queens(N) will report all the solutions to the N-queens problem.

*/
queens(N) :-

retract_all( node(_) ), retract_all( content(_) ),
build_nodes(1, N), report(N).

retract_all( P ) :- retract( P ), fail.
retract_all( _ ).

build_nodes(Order, N) :- Order > N.
build_nodes(Order, N) :-

Order =< N,
(combination( Order, N, Combination ),
 build_one_node( N, Combination ), fail;
 Order1 is Order + 1, build_nodes( Order1, N )
).

/*------------------------------------------------------------------------*/

combination( M, N, Combination ) :-
make_list(N, Variables),
enumerate_combination( M, Variables, Combination ).

make_list(N, List) :- make_list( N, List, [] ).
make_list(0, L, L).
make_list(N, R, L) :- N > 0, N1 is N - 1, make_list(N1, R, [N|L]).

enumerate_combination( 0, _, [] ).
enumerate_combination( M, [H|Variables], [H|Combination] ) :-

M > 0, M1 is M - 1,
enumerate_combination( M1, Variables, Combination ).

enumerate_combination( M, [_|Variables], Combination ) :-
M > 0, enumerate_combination( M, Variables, Combination ).
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/*------------------------------------------------------------------------*/

build_one_node( N, Combination ) :-
assert(node(Combination)),
writeln([‘** building node for ‘,Combination,’ **’]),
make_list( N, Domain ),
(one_assignment( Domain, Combination, Assignment ),
 compatible( Assignment ),
 supported( Combination, Assignment ),
 assert(content(Assignment)),
 writeln([‘>> content ‘,Assignment,’ is asserted.’]),
 fail;
 true
),
downward_propagation( Combination ).

one_assignment( _, [], [] ).
one_assignment( Domain, [X1| Xs], [X1-V1| Assignments] ) :-

member( V1, Domain ), one_assignment( Domain, Xs, Assignments ).

member( X, [X|_] ).
member( X, [_|L] ) :- member( X, L ).

compatible( [X1-V1, X2-V2] ) :-
!, V1 \== V2, X1 - X2 =\= V1 - V2, X1 - X2 =\= V2 - V1.

compatible( _ ).

supported( Vars, Assignment ) :-
remove_one_variable( Vars, Assignment, V, A ),
node( V ), \+content( A ), !, fail.

supported( _, _ ).

remove_one_variable( [_|V], [_|A], V, A ).
remove_one_variable( [V1|Vs], [A1|As], [V1|V], [A1|A] ) :-

remove_one_variable( Vs, As, V, A ).

downward_propagation( C ) :-
build_template( C, T, C1, T1 ), node( C1 ),
assert( terminate_propagation ),
d_propagate_all( T, T1 ), global_propagate( C1 ), fail.

downward_propagation( _ ).

/*
build_template( C, T, C1, T1 )
Given a list of variables, [X1, X2, ..., Xn], build: T = [X1-V1, X2-V2, ...,
Xn-Vn]; C1 = C1 with one variable less; and T1 = T with one label less.
Alternatively, given a C1, build C, T and T1.
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*/
build_template( [X1|L1], [X1-_|L2], L3, L4 ) :-

build_template_aux( L1, L2, L3, L4 ).
build_template( [X1|L1], [X1-V1|L2], [X1|L3], [X1-V1|L4] ) :-

build_template( L1, L2, L3, L4 ).

build_template_aux( [], [], [], [] ).
build_template_aux( [X|L1], [X-V|L2], [X|L3], [X-V|L4] ) :-

build_template_aux( L1, L2, L3, L4 ).

d_propagate_all( T, T1 ) :-
content( T1 ),
\+content( T ),
retract( content(T1) ),
writeln([T1, ‘ removed <<‘]),
retract( terminate_propagation ),
fail.

d_propagate_all( _, _ ).

global_propagate( _ ) :- retract( terminate_propagation ), !.
global_propagate( C1 ) :-

writeln([‘{ Global propagation from ‘,C1]),
downward_propagation( C1 ), upward_propagation( C1 ),
writeln([‘} End of global propagation from ‘,C1]).

upward_propagation( C ) :-
build_templates( C, T, C1, T1 ), node( C ),
assert( terminate_propagation ),
u_propagate_all( T, T1 ), global_propagate( C1 ),
fail.

upward_propagation( _ ).

u_propagate_all( T, T1 ) :-
content( T ), \+content( T1 ), retract( content(T) ),
writeln([T, ‘removed <<‘]), retract( terminate_propagation ), fail.

u_propagate_all( _, _ ).

/*------------------------------------------------------------------------*/

report(N) :-
write(‘Solutions:’), nl, functor( P, dummy, N ), P =.. [_|Solution],
content( Solution ), write( Solution ), nl, fail.

report(_) :- write(****).

writeln([]) :- nl.
writeln([A|L]) :- write(A), writeln(L).

/*========================================================*/
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/*========================================================
Program 9.2 : invasion.plg
Subject : Seidel’s Invasion algorithm for solving CSPs
Dynamic Clauses : Clauses of the following predicates will be

asserted:
sg_node( N )
sg_arc( X, Y, Label )

where sg stands for solution graph, Label in sg_arc
is the label on the arc (X,Y).

Notes : This program assumes that:
(1) the constraint graph is a connected graph;
(2) the problem is specified with the following
predicates:

variable( X )
domain( X, Domain )
constraint( X, Y, Legal_pairs )

where Domain is a list of values; and
Legal_pairs = [ Vx1/Vy1, Vx2/Vy2, ... ]

where Vxi and Vyi are values for X and Y respec-
tively. If constraint/3 is not defined between varia-
bles P and Q, then P and Q are not constrained.
An example problem is attached to the end of the
program.

========================================================*/
invasion :-

retract_all( sg_node(_) ),
retract_all( sg_arc(_, _) ),
bagof( X, variable(X), Vars ),
assert( sg_node( [] ) ),
invade( [[]], Vars ),
report.

invasion :- write(‘There are no variables in this problem.’), nl.

retract_all( P ) :- retract( P ), fail.
retract_all( _ ).

/*
invade( S1, Vars )
S1 stands for S(i - 1); Vars is the list of variables to be processed

*/
invade( _, [] ).
invade( S1, [X| Vars] ) :-

domain( X, Dx ),
update_sg( S1, X, Dx, Vars, NewNodes, [] ),
NewNodes \== [],
invade( NewNodes, Vars ).

invade( _, [X|_] ) :- write(‘Invasion fails in variable ‘), write(X), nl.
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/*
update_sg( OldNodes, X, Dx, Vars, NewNodes, TempNewNodes )
OldNodes is the nodes in S(i - 1);
X is the variable currently being processed;
Dx is the domain of X;
Vars is the set of variables yet to be processed; it is passed as a parameter
for updating the Front;
NewNodes is the nodes in Si (NewNodes is to be returned);
TempNewNodes is set of NewNodes found so far.
update_sg/6 processes one OldNode at a time.

*/
update_sg( [], _, _, _, NewNodes, NewNodes ).
update_sg( [CL1| CLs], X, Dx, Vars, NewNodes, Temp ) :-

update_sg_aux( CL1, X, Dx, Vars, Temp1, Temp ),
update_sg( CLs, X, Dx, Vars, NewNodes, Temp1 ).

/*
update_sg_aux( CL, X, Dx, Vars, NewNodes, TempNewNodes )
CL is the compound label being processed;
X is the variable currently being processed;
Dx is the domain of X;
Vars is the set of variables yet to be processed; it is used here for updating
the Front;
NewNodes is the nodes in Si (NewNodes is to be returned);
TempNewNodes is set of NewNodes found so far;
update_sg_aux/6 processes one value in Dx at a time.

*/
update_sg_aux( _, _, [], _, NewNodes, NewNodes ).
update_sg_aux( CL, X, [V| Vs], Vars, NewNodes, Temp ) :-

satisfy_constraints( CL, X-V ), !,
find_new_front( [X-V| CL], FrontNode, Vars ),
update_node( FrontNode, Temp, Temp1 ),
assert( sg_arc(FrontNode, CL, X-V) ),
update_sg_aux( CL, X, Vs, Vars, NewNodes, Temp1 ).

update_sg_aux( CL, X, [_| Vs], Vars, NewNodes, Temp ) :-
update_sg_aux( CL, X, Vs, Vars, NewNodes, Temp ).

/*
satisfy_constraints( CL, X-Vx )
CL is a compound label;
X-Vx is a label for variable X and value Vx;
satisfy_constraints/2 succeeds if <X,Vx> is compatible with all the labels
in CL.

*/
satisfy_constraints( [], _ ).
satisfy_constraints( [Y-Vy| CL], X-Vx ) :-

constraint( X, Y, LegalPairs ),
member( Vx/Vy, LegalPairs ),
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satisfy_constraints( CL, X-Vx ).
satisfy_constraints( [Y-_| CL], X-Vx ) :-

\+constraint( X, Y, _ ),
satisfy_constraints( CL, X-Vx ).

member( X, [X|_] ).
member( X, [_|L] ) :- member( X, L ).

find_new_front( [], [], _ ).
find_new_front( [X-V| L], [X-V| R], Vars ) :-

constraint( X, Y, _ ),
member( Y, Vars ), !,
find_new_front( L, R, Vars ).

find_new_front( [_| L], R, Vars ) :-
find_new_front( L, R, Vars ).

update_node( Node, L, L ) :- sg_node( Node ).
update_node( Node, L, [Node|L] ) :-

\+ sg_node( Node ), assert( sg_node(Node) ).

/*------------------------------------------------------------------------*/

report :- write(‘Solutions:’), nl,
sg_arc( [], Node, Label ),
trace_sg_arcs( Node, [Label], Solution ),
write( Solution ), nl,
fail.

report :- write(‘****’), nl.

trace_sg_arcs( [], Solution, Solution ).
trace_sg_arcs( Node, CL, Solution ) :-

Node \== [],
sg_arc( Node, Node1, Label ),
trace_sg_arcs( Node1, [Label| CL], Solution ).

/*------------------------------------------------------------------------*/
/* An example problem:
variable( w ). variable( x ). variable( y ). variable( z ).
domain( w, [1,2,3] ). domain( x, [1,2,3] ). domain( y, [1,2,3] ). domain( z, [1,2,3] ).
constraint( w, x, [1/2,1/3,2/3] ).
constraint( w, y, [1/2,1/3,2/3] ).
constraint( x, z, [1/1,1/2,1/3,2/2,2/3,3/3] ).
constraint( y, z, [1/1,1/2,1/3,2/2,2/3,3/3] ).
constraint( x, w, [2/1,3/1,3/2] ).
constraint( y, w, [2/1,3/1,3/2] ).
constraint( z, x, [1/1,2/1,3/1,2/2,3/2,3/3] ).
constraint( z, y, [1/1,2/1,3/1,2/2,3/2,3/3] ).
/*========================================================*/
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/*========================================================
Program 9.3 : ab.plg
Subject : Essex Solution Synthesis algorithm AB applied to

the N-queens problem
Notes : The data structure used throughout the program is a

list of:
[Vars]-[[Val_1], [Val_2], ..., [Val_n]]

where Vars is a list of variable, each of Val_1,
Val_2, ..., Val_n is a list of values for the variables
in Vars.

========================================================*/
/*

queens(N, R)
N a number specifying how many queens to use
R a solution for the N-queens problem
Problem List of [Var]-[[Val_1], [Val_2], ..., [Val_n]]

*/
queens(N, R) :-

range(N, L),
setup_candidate_lists(N, L, Problem),
syn(Problem, R),
report(R).

/*------------------------------------------------------------------------*/
/*

range(N, List)
Given a number N, range creates the List:

[[1], [2], ..., [N - 1], [N]]
*/
range(N, R) :- range(N, R, []).

range(0, L, L).
range(N, R, L) :- N > 0, N1 is N - 1, range(N1, R, [[N]|L]).

/*
setup_candidate_lists(N, L, Candidates)
Given a number N, and a list L, return as the 3rd argument the Candi-
dates:

[[1]-L, [2]-L, ..., [N - 1]-L, [N]-L]
L is the list of all possible values that each queen can take.

*/
setup_candidate_lists(N, L, Result) :-

setup_candidate_lists(N, L, Result, []).

setup_candidate_lists(0, _, R, R).
setup_candidate_lists(N, L, R, Temp) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R, [[N]-L| Temp]).



378 Program 9.3

/*------------------------------------------------------------------------*/
/*

(predicates in this section are domain independent,
except for “compatible_values/2”)

syn(Nodes, Solution)
Given: Nodes [Vars]-[CompoundLabels]
where both Vars and CompoundLabels are lists.
e.g. one of the nodes of order 2 in Nodes could be:

[1,2]-[[1,2], [1,3], [2,2], [2,4]]
if this list is combined with another node:

[2,3]-[[1,2], [1,3], [2,2], [2,4]]
in Nodes, one should get the following node of order 3:

[1,2,3]-[[1,2,2], [1,2,4], [2,2,2], [2,2,4]]
*/
syn([Solution], Solution).
syn(Nodes, Solution) :-

Nodes \= [_],
Nodes = [Vars-_|_],
length(Vars, Len),
writeln([‘Nodes of order ‘,Len,’: ‘,nl,indented_list(Nodes)]),
syn_nodes_of_current_order(Nodes, Temp),
syn(Temp, Solution).

syn_nodes_of_current_order([N1,N2|L], [N3| Solution]) :-
combine(N1, N2, N3), !,
syn_nodes_of_current_order([N2|L], Solution).

syn_nodes_of_current_order(_, []).

combine([X|_]-Values1, X2-Values2, [X|X2]-CombinedValues) :-
last(X2, Y),
bagof(V, compatible_values(X, Y, Values1, Values2, V), CombinedVal-
ues).

combine([X|L1]-Values1, X2-Values2, [X|X2]-[]) :-
nl, writeln([‘** No value satisfies all variables ‘,[X|X2],’!!’]),
writeln([‘Values for ‘,[X|L1],’ are: ‘,Values1]),
writeln([‘Values for ‘,X2,’ are: ‘,Values2]).

compatible_values(X, Y, Values1, Values2, [Vx|V2]) :-
member([Vx|V1], Values1),
member(V2, Values2),
append(V1, Tail, V2),
last(Tail, Vy),
compatible(X-Vx, Y-Vy).

compatible(X-Vx, Y-Vy):-
Vx =\= Vy,
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Vy-Vx =\= Y-X,
Vy-Vx =\= X-Y.

/*------------------------------------------------------------------------*/
/* Reporting -- not the core of this program
*/
report(_-[]).
report(Vars-[H| L]) :-

write(‘Solution: (‘),
report_aux( Vars, H ),
report(Vars-L).

report_aux( [], [] ) :- write(‘)’), nl.
report_aux( [X1|Xs], [V1|Vs] ) :-

write(X1), write(‘/’), write(V1),
(Xs == []; write(‘, ‘)), !,
report_aux( Xs, Vs ).

/*------------------------------------------------------------------------*/

writeln([]) :- nl.
writeln([nl|L]) :- !, nl, writeln(L).
writeln([indented_list(H)|L]) :-

!, indented_list(H),
writeln(L).

writeln([H|L]) :- write(H), writeln(L).

indented_list([]).
indented_list([H|L]) :- write(H), nl, indented_list(L).

member(X, [X|_]).
member(X, [_|L]) :- member(X,L).

append([], L, L).
append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).

last([X], X).
last([_|L], X) :- last(L, X).

/*========================================================*/
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/*========================================================
Program 9.4 : ap.plg
Subject : Essex Solution Synthesis algorithm AP applied to

the N-queens problem. This program is modified
from ab.plg to allow local propagation

Notes : The following data structure is being used:
ListOfVariables-ListOfCompoundLabels

e.g.: [1,2]-[[1,3],[1,4],[2,4],[3,1],[4,1],[4,2]]
========================================================*/
/*

queens(N, R)
N a number specifying how many queens to use
R a solution for the N-queens problem

*/
queens(N, R) :-

range(N, L),
setup_candidate_lists(N, L, Problem),
syn(Problem, R),
report(R).

/*------------------------------------------------------------------------*/
/*

range(N, List)
Given a number N, range creates the List:

[[1], [2], ..., [N - 1], [N]]
*/
range(N, R) :- range(N, R, []).

range(0, L, L).
range(N, R, L) :- N > 0, N1 is N - 1, range(N1, R, [[N]|L]).

/*
setup_candidate_lists(N, L, Candidates)
Given a number N and a list L, return as the 3rd argument the Candidates:

[[1]-L, [2]-L, ..., [N - 1]-L, [N]-L]
L is the list of all possible values that each queen can take.

*/
setup_candidate_lists(N, L, Result) :-

setup_candidate_lists(N, L, Result, []).

setup_candidate_lists(0, _, R, R).
setup_candidate_lists(N, L, R, Temp) :-

N > 0, N1 is N - 1,
setup_candidate_lists(N1, L, R, [[N]-L| Temp]).

/*------------------------------------------------------------------------*/

syn(Nodes, Solution)
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(this predicate is domain independent, except for “allowed”)
Given: Nodes [Vars]-[CompoundLabels] where both Vars and Com-
poundLabels are lists; e.g. one of the nodes of order 2 in Nodes could be:

[1,2]-[[1,2], [1,3], [2,2], [2,4]]
if this list is combined with another node:

[2,3]-[[1,2], [1,3], [2,2], [2,4]]
in Nodes, one should get the following node of order 3:

[1,2,3]-[[1,2,2], [1,2,4], [2,2,2], [2,2,4]]
*/
syn([Solution], Solution).
syn(Nodes, Solution) :-

Nodes = [Vars-_|L], L\==[],
length(Vars, Len),
writeln([‘Nodes of order ‘,Len,’: ‘,nl,indented_list(Nodes)]),
syn_aux(Nodes, Temp),
syn(Temp, Solution), !.

syn_aux([N1,N2|L], [N3| Solution]) :-
combine(N1, N2, N3),
(L==[], N2=NewN2; L\==[], downward_constrain(N2, N3, NewN2)),
syn_aux([NewN2|L], Solution).

syn_aux(_, []) .

combine([X|_]-Values1, X2-Values2, [X|X2]-CombinedValues) :-
last(X2, Y),
bagof(V, allowed_values(X, Y, Values1, Values2, V), CombinedValues),
!.

combine([X|L1]-Values1, X2-Values2, [X1|X2]-[]) :-
nl, writeln([‘** No value satisfies all variables ‘,[X|X2],’!!’]),
writeln([‘Values for ‘,[X|L1],’ are: ‘,Values1]),
writeln([‘Values for ‘,X2,’ are: ‘,Values2]).

allowed_values(X, Y, Values1, Values2, [Vx|V2]) :-
member([Vx|V1], Values1),
member(V2, Values2),
append(V1, Tail, V2),
last(Tail, Vy),
allowed(X-Vx, Y-Vy).

/*
domain dependent predicates:

*/
allowed(X-Vx, Y-Vy):-

Vx =\= Vy,
Vy-Vx =\= Y-X,
Vy-Vx =\= X-Y.
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/*
downward_constrain(X2-V2, X3-V3, X2-NewV2)

*/
downward_constrain(X2-V2, X3-V3, X2-NewV2) :-

downward_constrain(V2, V3, NewV2),
(V2 == NewV2;
 V2 \== NewV2, length(V2, M), length(NewV2,N), P is M - N,
 writeln([‘** Node ‘,X3,’-’,V3,’ reduces ‘,P,
 ‘ elements from node ‘, X2, nl,V2,’ --> ‘,NewV2,nl])
).

downward_constrain([], CombinedValues, []).
downward_constrain([H|L], CombinedValues, [H|R]) :-

member_chk([_|H], CombinedValues), !,
downward_constrain(L, CombinedValues, R).

downward_constrain([H|L], CombinedValues, R) :-
downward_constrain(L, CombinedValues, R).

/*------------------------------------------------------------------------*/

/* Reporting -- not the core of the program
*/
report(_-[]).
report(Vars-[H| L]) :- writeln([‘Solution: ‘,Vars,’-’,H]), report(Vars-L).

writeln([]) :- nl.
writeln([nl|L]) :- nl, !, writeln(L).
writeln([indented_list(H)|L]) :-

indented_list(H), !,
writeln(L).

writeln([H|L]) :- write(H), writeln(L).

indented_list([]).
indented_list([H|L]) :- write(H), nl, indented_list(L).

member(X, [X|_]).
member(X, [_|L]) :- member(X,L).

append([], L, L).
append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).

last([X], X).
last([_|L], X) :- L\==[], last(L, X).

member_chk(H, [H|_]).
member_chk(H, [A|L]) :- H \= A, member_chk(H, L).

/*========================================================*/
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/*========================================================

Program 5.1	:	bt.plg
Subject		:	Backtracking algorithm applied to the N-queens problem

========================================================*/



/*
	queens(N, Result)
	N is the number of queens to be placed.
	Result is a list of integers representing the solution.
	The i-th number in the list represents the column of queen on the i-th row.
	e.g. calling by ?- queens(8, Result)
	should get something like: Result = [5,7,2,6,3,1,4,8]
*/

queens(N, Result) :-		
	range(N, Range),
	queens(Range, [], Result).

/*
	create a list of numbers from 1 to N
*/
range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).


/*
	queens(Unlabelled, Labelled, Solution)
	Unlabelled is the list of rows with unlabelled queens;
	Labelled accumulates the labelled queens;
	Solution is the solution. 
*/
queens([], Solution, Solution).
queens(UnlabelledQs, LabelledQs, Solution) :-
	delete(Q, UnlabelledQs, Rest),
	noattack(Q, LabelledQs, 1),
	queens(Rest, [Q|LabelledQs], Solution).

delete(A, [A|L], L).
delete(A, [B|L], [B|L1]) :- delete(A,L,L1).

noattack(_,[],_).
noattack(Y, [Y1| YL], XD) :-
	Y1-Y =\= XD,
	Y-Y1 =\= XD,
	D1 is XD + 1,
	noattack(Y, YL, D1).

/*========================================================*/

/*========================================================
Program 5.2	:	ib.plg
Subject		:	Iterative Broadening algorithm applied to the N- queens problem
Note		:	This program needs Program 5.3: random.plg
========================================================*/

queens( N, Result ) :-
	gen_domain( N, Domain ),
	gen_bound( N, Bound ),
	write('Bound = '), write(Bound), nl,
	ib_bt( N, Domain, Bound, [], Result ).

gen_domain( 0, [] ).
gen_domain( N, [N|L] ) :- 
	N > 0, N1 is N - 1, gen_domain( N1, L ).

gen_bound( Max, Bound ) :- 
	1 =< Max, gen_bound( Max, 1, Bound ).

gen_bound( Max, Bound, Bound ).
gen_bound( Max, N, Bound ) :- 
	N < Max, N1 is N + 1, gen_bound( Max, N1, Bound ).

ib_bt( 0, _, _, Result, Result ).
ib_bt( X, Domain, Bound, Labelled, Result ) :-
	X1 is X - 1,
	random_N_times( Bound, Domain, V ),				/* defined in random.plg */
	noattack( X/V, Labelled ),
	delete( V, Domain, Rest ),
	ib_bt( X1, Rest, Bound, [X/V| Labelled], Result ).

delete( X, [X|Rest], Rest ).
delete( X, [H|L1], [H|L2] ) :- X \== H, delete( X, L1, L2 ).

noattack( _, [] ).
noattack( X0/V0, [X1/V1|Rest] ):-
 	V0 =\= V1,
 	V1-V0 =\= X1-X0,
 	V1-V0 =\= X0-X1,
 	noattack( X0/V0, Rest ).

/*======================================================*/
/*========================================================
Program 5.3	:	random.plg Subject		:	Predicates for generating pseudo random numbers
Notes		:	random(L,U,R) takes three parameters : L and U are the range of numbers you want; R is for the result.
The random numbers it produces are integers in the range L to R inclusive, so if you called random(1, 
100, K) it would come out with K being bound to a random number between 1 and 100.
=========================================================*/

random(L, U, R) :-
	retract(seed(Xi)),
	Xi1 is (371 * Xi) mod 3191,
	assert(seed(Xi1)),
	R is (Xi1 mod (U - L + 1)) + L, !.
random(L,U,R) :-
	X is ((U * (3137 * L) + 1) mod (U - L + 1)) + L,
	assert(seed(X)), random(L, U, R), !.

/*------------------------------------------------------------------------*/

/*
	random_element( List, Element )
	Randomly pick an element from the given List
*/

random_element( [], _ ) :- !, fail.
random_element( [X], X ) :- !.
random_element( L, E ) :-
	P =.. [dummy |L],
	functor( P, _, Max ),
	random( 1, Max, Rand ),
	arg( Rand, P, E ), !.

/*
	random_N_times( N, List, X ) returns X as an element of List. It will succeed a maximum of N times.
*/

random_N_times( N, List, X ) :-
	random_N_times( N, List, X, 1 ).
random_N_times( N, List, Result, I ) :-
	random_element( List, Y ),
	random_N_times_aux( N, List, Y, Result, I ).

random_N_times_aux( _, _, X, X, _ ).
random_N_times_aux( N, List, LastResult, Result, I ) :-
	I < N, I1 is I + 1,
	'random: delete'( LastResult, List, Rest ),
	random_N_times( N, Rest, Result, I1 ).

/*
	random_ordering( List, Result )
	Randomly order the elements in the List, giving Result
*/
random_ordering( [], [] ).
random_ordering( List, [E|Result] ) :-
	random_element( List, E ),
	'random: delete'( E, List, Rest ),
	random_ordering( Rest, Result ).
	
'random: delete'( E, [H|Rest], Rest ) :- E == H.
'random: delete'( E, [H|List], [H|Rest] ) :- 
	E \== H, 'random: delete'( E, List, Rest ).

/*======================================================*/

/*========================================================
Program 5.4	:	fc.plg
Subject		:	Forward Checking algorithm applied to the N queens problem
========================================================*/

queens(N, R) :-
	range(N, L),
	setup_candidate_lists(N, L, C),
	look_ahead_search(C, R),
	report(R).

/*	
	range(N, List)
	Given a number N, range creates the List: 
			[N, N - 1, N - 2, ..., 3, 2, 1].
*/
range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).


/*	
	setup_candidate_lists(N, L, Candidates)
	Given a number N, and a list L = [N, N - 1, N - 2, ..., 3, 2, 1], 
	return as the 3rd argument the Candidates:
		[N/L, N - 1/L, N - 2/L, ..., 2/L, 1/L]
	L is the list of all possible values that each queen can take.
*/
setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-
	N > 0, N1 is N - 1,
	setup_candidate_lists(N1, L, R).


/*	
	look_ahead_search(Candidates, Solution)
	The main clause for searching:
	The algorithm is: pick one value for one queen, propagate the constraints that it creates to other queens, then handle the next queen, untill all the 
queens are labelled.
*/
look_ahead_search([], []).
look_ahead_search([X/L| T], [X/V| R]) :-
	member(V, L),
	propagate(X/V, T, Temp),
	look_ahead_search(Temp, R).


/*	to propagate the constraints of a label to others:
	The label, input as the 1st argument, is propagated to one queen at a time, until all the queens are considered.
*/
propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-
prop(X/V, Y/C, C1), C1 \== [],
propagate(X/V, T, T1).

/*
Given a choice (i.e. X/V), prop/3 restricts the domain of the Y-th queen 
(C) to an updated domain (R).
*/
prop(X/V, Y/C, R) :-
	del(V, C, C1),
	V1 is V-(X-Y),
	del(V1, C1, C2),
	V2 is V + (X-Y),
	del(V2, C2, R).

/*
	del(X, List, Result) deletes X from List and instantiates Result to the result. It succeeds whether X exists in List or not.
*/
del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \== H, del(X,T,L).

report([]) :- nl, nl.
report([_/V | L]) :- tab((V - 1) * 2), write('Q'), nl, report(L).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

/*========================================================*/
/*========================================================
Program 5.5	:	dac.lookahead.plg
Subject		:	Directional Arc-consistency Lookahead algorithm applied to the N-queens problem
Notes		:	To be used with: Program 5.6: ac.plg 
				Program 5.7: print.queens.plg
========================================================*/

queens(N, R) :-
	range(N, L),
	setup_candidate_lists(N, L, C),
	sort_labels(C, accum([]), SortedC),
	dac_look_ahead_search(SortedC, R),
	print_queens(R).

range(0, []).
range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).

setup_candidate_lists(0, _, []).
setup_candidate_lists(N, L, [N/L| R]) :-
	N > 0, N1 is N - 1,
	setup_candidate_lists(N1, L, R).

/*	
	dac_look_ahead_search(Candidates, Solution)
	This is the main predicate for the search. The algorithm is: pick one value for one queen, propagate the constraints by maintaining DAC, then han-
dle the next queen, untill all the queens are labelled.
*/
dac_look_ahead_search([], []).
dac_look_ahead_search([X/L| T], [X/V| R]) :-
	member(V, L),
	propagate(X/V, T, Temp1),
	maintain_directed_arc_consistency(Temp1, DAC_Problem),
	sort_labels(DAC_Problem, accum([]), Sorted_DAC_Problem),
	dac_look_ahead_search(Sorted_DAC_Problem, R).

/*	
	to propagate the constraints of a choice to others:
	The choice, input as the 1st argument, is propagated to one queen at a time, until all the queens are considered.
*/
propagate(_, [], []).
propagate(X/V, [Y/C| T], [Y/C1| T1]) :-
	prop(X/V, Y/C, C1), C1 \== [],
	propagate(X/V, T, T1).

prop(X/V, Y/C, R) :-
	del(V, C, C1),
	V1 is V - (X - Y),
	del(V1, C1, C2),
	V2 is V + (X - Y),
	del(V2, C2, R).

del(_, [], []).
del(X, [X|L], L).
del(X, [H|T], [H|L]) :- X \== H, del(X,T,L).


member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

/*========================================================*/

/*========================================================
Program 5.6	:	ac.plg
Subject		:	Predicates for maintaining AC and DAC in the N- queens problem
Notes		:	Two external calls:
			(1) maintain_arc_consistency(Unlabelled, Result)
			(2) maintain_directed_arc_consistency(Unlabelled, Result)

			Data structure:
			Given: is a problem, represented by a list of varia-
bles together with their domains, in the form "Var/ Values", for example: 

				[1/[1,4,8], 2/[2,4], 3/[4,7,8]]

			Returned: a problem possibly with some values 
removed from certain domain such that arc-consist-
ency/directional arc-consistency is maintained.

========================================================*/

/*
	(1) maintain_arc_consistency(Unlabelled, NewUnlabelled)

	Given Unlabelled, which is a list of Variable/Domain, return NewUnla-
belled where arc consistency is achieved.

*/

maintain_arc_consistency(Unlabelled, NewUnlabelled) :-
	maintain_ac(to_be_checked(Unlabelled), checked([]), NewUnlabelled).

maintain_ac(to_be_checked([]), checked(NewUnlabelled), NewUnlabelled).
maintain_ac(to_be_checked([X/Dx| U]), checked(Checked), NewUnlabelled) :-
	bagof( V, (ac_member(V,Dx), ac(X/V, U), ac(X/V, Checked)), NewDx ),
	/* if no such V exists, fail to achieve AC in the problem */
	maintain_ac_aux(X/Dx/NewDx, U, Checked, NewUnlabelled).


maintain_ac_aux(X/Dx/Dx, U, Checked, NewUnlabelled) :-
	maintain_ac(to_be_checked(U), checked([X/Dx|Checked]), NewUnla- belled).
maintain_ac_aux(X/Dx/NewDx, U, Checked, NewUnlabelled) :-
	Dx \== NewDx,
	ac_append(Checked, [X/NewDx], Temp),
	ac_append(U, Temp, ToBeChecked),
	maintain_ac(to_be_checked(ToBeChecked), checked([]), NewUnla- belled).


/*
	ac(X/Vx, Var_Dom)

	X/Vx is a variable X with a value Vx; 	Var_Dom is a list of Variable/ Domain;
	ac/2 succeeds iff for each element in Var_Dom, there exists a label which 
is compatible with X/Vx.
*/

ac(_, []).
ac(X/Vx, [Y/Dy| L]) :-
	ac(X, Vx, Y, Dy),
	ac(X/Vx, L).


/*
	ac(X, Vx, Y, Dy)
	Dy is the legal domain of Y at present
	ac/4 succeeds iff there exists a value Vy in Dy such that <X,Vx> and 
<Y,Vy> are compatible.
*/
ac(X, Vx, Y, [Vy|_]) :-
	Vx \== Vy,
	X-Y =\= Vx-Vy,
	X-Y =\= Vy-Vx, !. 
ac(X, Vx, Y, [_|Dy]) :-
	ac(X, Vx, Y, Dy).

ac_member(X,[X|_]).
ac_member(X,[_|L]) :- 'ac_member'(X,L).

ac_append([], L, L) .
ac_append([H|L1], L2, [H|L3]) :- ac_append(L1, L2, L3) .

/*------------------------------------------------------------------------*/

	(2) maintain_directed_arc_consistency(Unlabelled, NewUnlabelled)

	Given Unlabelled, which is a list of Variable/Domain, return NewUnla-
belled where directed arc consistency is achieved.
*/

maintain_directed_arc_consistency([], []).
maintain_directed_arc_consistency([X/Dx|Unlabelled], [X/NewDx|NewUnla- belled]) :-
	maintain_directed_arc_consistency(Unlabelled, NewUnlabelled), 
	bagof( V, ('ac_member'(V,Dx), ac(X/V, NewUnlabelled)), NewDx ).


/*======================================================*/



/*========================================================

Program 5.7	:	print.queens.plg
Subject		:	Predicates for printing result for the N-queens problem
			Given a list of labels in the form: [Var1/Val1, Var2/
Val2, ....], print the positions of the queens

========================================================*/

print_queens(R) :-
	sort_labels(R, accum([]), SortedR),
	nl, write('** Solution:'), nl,
	report(SortedR), nl.

sort_labels([], accum(L), L).
sort_labels([X/Vx|L1], accum(L2), R) :-
	insert(X/Vx, L2, Temp),
	sort_labels(L1, accum(Temp), R).

insert(X/Vx, [], [X/Vx]).
insert(X/Vx, [Y/Vy|L], [X/Vx,Y/Vy|L]) :- X < Y.
insert(X/Vx, [Y/Vy|L], [Y/Vy|R]) :- X >= Y, insert(X/Vx, L, R).

report([]).
report([_/V | L]) :- tab((V - 1) * 2), write('Q'), nl, report(L).

/*======================================================*/

/*========================================================

Program 5.8	:	ac.lookahead.plg
subject		:	AC-Lookahead Algorithm applied to the N-queens problem
Notes		:	To be used with:
				Program 5.6: ac.plg 
				Program 5.7: print.queens.plg

========================================================*/



queens(N, R) :-

	range(N, L), setup_candidate_lists(N, L, C),

	sort_labels(C, accum([]), SortedC),

	ac_look_ahead_search(SortedC, R), print_queens(R).



range(0, []).

range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).



setup_candidate_lists(0, _, []).

setup_candidate_lists(N, L, [N/L| R]) :-

	N > 0, N1 is N - 1, setup_candidate_lists(N1, L, R).



/*	This is the main clause for searching. The algorithm is: pick one value for 
one queen, propagate the constraints by maintaining AC, then handle the 
next queen, till all the queens are labelled.

*/

ac_look_ahead_search([], []).

ac_look_ahead_search([X/L| T], [X/V| R]) :-

	member(V, L), propagate(X/V, T, Temp1),

	maintain_arc_consistency(Temp1, AC_Problem),

	sort_labels(AC_Problem, accum([]), Sorted_AC_Problem),

	ac_look_ahead_search(Sorted_AC_Problem, R).



member(X, [X|_]).

member(X, [_|L]) :- member(X, L).



propagate(_, [], []).

propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

	prop(X/V, Y/C, C1), C1 \== [], propagate(X/V, T, T1).



prop(X/V, Y/C, R) :-

	del(V, C, C1), V1 is V-(X-Y),

	del(V1, C1, C2), V2 is V + (X-Y), del(V2, C2, R).



del(_, [], []).

del(X, [X|L], L).

del(X, [H|T], [H|L]) :- X \== H, del(X,T,L).



/*========================================================*/

/*========================================================

Program 5.9	:	bj.plg
Subject		:	BackJumping (BJ) algorithm applied to the N- queens problem.

========================================================*/



queens(N, R) :-

	range(N, L),

	reverse(L, List_of_variables),

	setup_candidate_lists(N, List_of_variables, C),

	reverse(C, Variables_and_domains),

	bj_search(Variables_and_domains, R, [], -1),

	is_list(Result), report(R).



range(0, []).

range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).



setup_candidate_lists(0, _, []).

setup_candidate_lists(N, L, [N/L| R]) :-

	N > 0, N1 is N - 1,

	setup_candidate_lists(N1, L, R).



/*	

	bj_search(Candidates, Solution, Committed, BT_Des)

	Candidates is a list: 

		[X/Domain_of_X| Other_Variables_&_Domains];

	Solution is a variable for returning the output; Committed is a list of 
labels:

		[X/Value_for_X| Other_Labels]

	BT_Des is the variable to be backtracked to when needed

*/

bj_search([], R, R, _).

bj_search([X/[]| _], bt_to(BT_Des), _, BT_Des) :-

	writeln(['domain for Q',X,' exhausted, bt to ',BT_Des,' <<']).

bj_search([X/[V|L]| T], Result, Accum, BT_Destination) :-

	no_conflict( X/V, Accum ),

	writeln(['>> looking at <',X,',',V,'>']),

	bj_search(T, Temp, [X/V|Accum], -1),

/*	do not search for alternative results if no solution is found in the the above 
call. */

	(Temp = bt_to(_), !; true),

	bj( Temp, Result, [X/L| T], Accum, BT_Destination ).

bj_search([X/[V|L]| T], Result, Accum, BT_To ) :-

	\+ no_conflict( X/V, Accum ),

	find_earliest_conflict(X/V, Accum, Earliest_Conflict),

	max( Earliest_Conflict, BT_To, BT_Destination ),

	bj_search([X/L| T], Result, Accum, BT_Destination ).

/* the following clause is included for alternative results */

bj_search([X/[V|L]| T], Result, Accum, BT_To ) :-

	no_conflict( X/V, Accum ),

	bj_search([X/L| T], Result, Accum, BT_To ).





bj( bt_to(Y), bt_to(Y), [X/_|_], _, _ ) :-

	Y < X,

	writeln(['BJ ignores all other values for variable ',X,'!']).

bj( bt_to(Y), Result, [X/L| T], Accum, _ ) :-

	Y >= X,

	bj_search( [X/L| T], Result, Accum, X - 1).

bj( Result, Result, _, _, _ ) :- is_list(Result).



max( X, Y, X ) :- X >= Y.

max( X, Y, Y ) :- X < Y.



find_earliest_conflict( X/V, [_|L], EC ) :-

	find_earliest_conflict( X/V, L, EC ), !.

find_earliest_conflict( X/V, [Y/W|L], Y ) :-

	conflict( X/V, Y/W ).

	

no_conflict( X/V, [] ).

no_conflict( X/V, [Y/W|L] ) :-

	\+ conflict( X/V, Y/W ),

	no_conflict( X/V, L ).



conflict( _/V, _/V ) :- !.

conflict( X/V, Y/W ) :- X - Y =:= V - W, !.

conflict( X/V, Y/W ) :- X - Y =:= W - V, !.

	



report([]) :- nl, nl.

report([_/V | L]) :-

	Space is (V - 1) * 2, tab(Space), write('Q'), nl,

	report(L), !.



writeln([]) :- nl.

writeln([H|L]) :- write(H), writeln(L).



reverse( List, Result ) :- reverse( List, Result, [] ).



reverse([], Result, Result).

reverse([H|L1], R, Accum) :- reverse( L1, R, [H|Accum] ).



is_list([]).

is_list([_|_]).



/*======================================================*/

/*========================================================

Program 5.10	:	lncl.plg
Subject		:	Learning Nogood Compound Labels algorithm applied to the N-queens problem
Notes:		:	nogood(Compound_Label) is asserted to record 
compound_labels which has been proved to be 
unviable. Progress is reported to show the use of 
nogoods

========================================================*/



:- op( 100, yfx, [:]).



queens(N, R) :-

	range(N, L),

	reverse(L, RL),

	retract_all( nogood(_) ),

	lncl_search( domains:RL, unlabelled:RL, labelled:[], R ),

	report(R).



/*

	lncl_search( domains:D, unlabelled:U, labelled:L, R )

	D	Domain, list of all possible values

	U	list of Variables which are not yet labelled

	L	list of Variable/Value pairs already committed to

	R	Result, to be instantiated to list of Variable/Value

	lncl_search/4 behaves like chronological_backtracking, except that 
whenever backtracking is needed, culprit compound labels are identified 
and recorded as nogood. The program rejects any compound label which 
has the nogood sets in it in the future.

*/

lncl_search( _, unlabelled:[], labelled:R, R ).

lncl_search( domains:D, unlabelled:[H|U], labelled:L, R ) :-

	member_and_not_recorded_as_nogood( [H/V|L], D ),

	all_consistent( L, H/V ),

	sort( [H/V|L], L1 ),

	writeln( ['>> Considering <',H,',',V,'> ...'] ),

	lncl_search( domains:D, unlabelled:U, labelled:L1, R ).

lncl_search( domains:D, unlabelled:[H|_], labelled:L, _ ) :-

	writeln( ['Over-constrained: ',L,', backtrack <<'] ),

	record_nogoods( domains:D, H, L ),

	!, fail.



/*------------------------------------------------------------------------*/



/*	

	range(N, List)

	Given a number N, range creates the List: [N, N - 1, N - 2, ..., 3, 2, 1].

*/

range(0, []).

range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).



reverse( L, R ) :- reverse( L, R, [] ).

reverse( [], R, R ).

reverse( [H|L], Result, Temp ) :- reverse( L, Result, [H|Temp] ).



/*

	member_and_not_recorded_as_nogood( Assignments, Domain )

	This predicate does two things at the same time. First, it takes an element 
from Domain and "assigns" it to the 1st element of the 1st argument, 
which is a list. Alternative elements (from Domain) will be used as long 
as L has not become nogood. Secondly, it checks whether the 1st argu-
ment after assignment of the new value is recorded as nogood.

*/

member_and_not_recorded_as_nogood( [H/V|L], [V|_] ) :-

	not_recorded_as_nogood( [H/V|L] ).

member_and_not_recorded_as_nogood( [H/_|L], _ ) :-

	nogood(NG), 

	sublist(NG, L), 

	writeln( ['Queen-',H,' is rejected as ',NG, ' is recorded nogood.'] ),

	!, fail.

member_and_not_recorded_as_nogood( L, [_|Domain] ) :-

	member_and_not_recorded_as_nogood( L, Domain ).



/*

	not_recorded_as_nogood( L )

	L is not recorded as nogood

*/

not_recorded_as_nogood( L ) :-

	nogood( NG ),

	sublist( NG, L ), 

	writeln([L,' is rejected as ',NG,' is recorded nogood...']), 

	!, fail.

not_recorded_as_nogood( _ ) .



/*

	sublist( L1, L2 )

	L1 is a sublist of L2

*/

sublist( [], _ ) .

sublist( [H|L1], L2 ) :- member( H, L2 ), sublist( L1, L2 ).



/*

	all_consistent( L, H/V )

	L	List of Variable/Value

	H/V	a label <H,V>

	sublist/2 succeeds if H/V is consistent with all elements of L

*/

all_consistent( [], _ ) .

all_consistent( [X/Vx|L], Y/Vy ) :-

	\+ conflict( X/Vx, Y/Vy ), 

	all_consistent( L, Y/Vy ).



/*------------------------------------------------------------------------*/

/*

	record_nogoods( domain:D, X, L )

	D	list of values

	X	variable which has to take a value from D

	L	list of Variable/Value

	For each value V in the domain D, find all elements in L which are incon-
sistent with X/V

*/

record_nogoods( domains:D, X, L ) :-

	identify_conflicts( D, X, L, Conflicts ),

	find_covering_set( Conflicts, NG, accumulator:[] ),

	sort( NG, SortedNG ),

	update_nogood_sets( nogood(SortedNG) ),

	fail.

record_nogoods( _, _, _ ) .



/*

	identify_conflicts( D, X, L, Conflicts ),

	D		domain

	X		Variable

	L		list of [X1/V1, X2/V2, ...]

	Conflicts 	list of list of labels to be returned, element-i is a list of labels 
which from L which have conflict with <X,i>. e.g.:

			[[X1/V1,X2/V2], [X3/V2], ...]

	NB: the use of "bagof", not "findall" in the 2nd clause is  important here. 
bagof will fail if X/Vx has no conflict label, whereas findall will instanti-
ate C1 to [] under such situations.

*/

identify_conflicts( [], _, _, [] ) .

identify_conflicts( [Vx|Rest], X, L, [C1|Conflicts] ) :-

	bagof( Label, (member(Label,L), conflict(X/Vx, Label)), C1 ),

	identify_conflicts( Rest, X, L, Conflicts ) .



conflict( _/V, _/V ) :- !.

conflict( X/Vx, Y/Vy ) :- X-Y =:= Vx-Vy, !.

conflict( X/Vx, Y/Vy ) :- X-Y =:= Vy-Vx, !.



/*

	This is a very naive way to find covering sets from the given list. Identical 
sets could be re-discovered repeatedly. The efficiency of this predicate 
could be greatly improved. Finding covering sets is itself a Constraint 
Satisfaction 

	Problem.

*/

find_covering_set( [], L, accumulator:L ).

find_covering_set( [C1|Cs], NG, accumulator:A ) :-

	member(X,C1),

	set_union( X, A, A1 ),

	find_covering_set( Cs, NG, accumulator:A1 ).



set_union( X, A, A ) :- member( X, A ) .

set_union( X, A, [X|A] ) :- \+ member( X, A ).



update_nogood_sets( nogood(L) ) :- 

	nogood(NG), sublist(NG, L), !.

update_nogood_sets( nogood(L) ) :- 

	nogood(NG), NG\==L, sublist(L, NG), retract(NG), fail.

update_nogood_sets( P ) :- 

	asserta(P), 

	writeln( ['..... record ',P] ) .



/*------------------------------------------------------------------------*/

*/

report([]) :- nl, nl.

report([_/V | L]) :- tab( (V - 1) * 2 ), write('Q'), nl, report(L).



writeln([]) :- nl.

writeln([H|L]) :- write(H), writeln(L).



member(X, [X|_]).

member(X, [_|L]) :- member(X, L).



retract_all( P ) :- retract( P ), fail.

retract_all( P ) .



/*========================================================*/



/*========================================================

Program 6.1	:	mwo.plg
Subject		:	To find Minimal Width Ordering for input graphs
Note		:	A graph is assumed to be recorded in the database in the following form:
				node(Node)
				edge(Node1, Node2)

========================================================*/

:- op(100, yfx, in).



minimal_width_ordering( MWO ) :-

	bagof( Node, node(Node), Nodes ), 

	mwo( Nodes, MWO, [] ).

minimal_width_ordering( [] ) :- 				/* graph without nodes */

	\+node(_).



mwo( [], L, L ).

mwo( [N|L], Result, Accum ) :-

	setof( N1, adjacent(N, N1 in L), List ), 

	length( List, Len ),

	least_connections( L, bsf(N,Len), [N|L], Node1, Rest ),

	mwo( Rest, Result, [Node1|Accum] ).

mwo( [Node1|L], Result, Accum ) :-

	\+ adjacent(Node1, _ in L),		 		/* Node1 is unadjacent */

	mwo( L, Result, [Node1|Accum] ).



/*	least_connections( Nodes, bsf(N1, Degree), NodesInG, Result, Rest )

	to find the node from [N1| Nodes] which is adjacent to the least number 
nodes in NodesInG, and return such node as Result. The rest of the nodes 
are returned as Rest. read bsf as "best so far" 

*/

least_connections( [], bsf(Result,_), _, Result, [] ).

least_connections( [N1|L], bsf(N0,Len0), Nodes, Result, [N|Rest] ) :-

	setof( N2, adjacent(N1, N2 in Nodes), List ), length( List, Len1 ),

	(Len1 =< Len0, N = N0,

	least_connections( L, bsf(N1,Len1), Nodes, Result, Rest);

	Len1 > Len0, N = N1, 

	least_connections( L, bsf(N0,Len0), Nodes, Result, Rest)).

least_connections( [N1|L], bsf(N0,_), Nodes, N1, [N0|L] ) :-

	\+ adjacent( N1, _ in Nodes ).				/* N1 is unadjacent */



adjacent( X, Y in List ) :- edge( X, Y ), in( Y, List ).

adjacent( X, Y in List ) :- edge( Y, X ), in( Y, List ).



in( X, [X|_] ).

in( X, [Y|L] ) :- X \= Y, in( X, L ).



/*=====================================================*/

/*========================================================

Program 6.2	:	mbwo1.plg
Subject		:	To find Minimal Bandwidth Orderings for input 
graphs, using the algorithm in (Gurari & Sudborough, 1984)

Notes		:	A graph is assumed to be recorded in the database in the following form:
				node(Node)
				edge(Node1, Node2)
			tried_already/2 is asserted into the database

========================================================*/

/*

	minimal_bandwidth_ordering( MBWO, K )

	Given a graph represented in the above form, return one minimal band-
width ordering (MBWO) at a time, together with the bandwidth. The 
search is complete, in the sense that it can find all the orderings with min-
imal bandwidth.

*/

minimal_bandwidth_ordering( MBWO, K ) :-

	bagof( Node, node(Node), Nodes ), 

	length( Nodes, Len ),

	Max_bandwidth is Len - 1,

	gen_num( Max_bandwidth, K ),			       /* 1 =< K =< Max_bandwidth */

	retract_all( tried_already(_, _) ),

	bw( [([],[],[])], MBWO, K ).



gen_num( Len, K ) :- Len >= 1, gen_num( Len, 1, K ).



gen_num( Len, K, K ).

gen_num( Len, M, K ) :- M < Len, M1 is M + 1, gen_num( Len, M1, K ).



bw( [(C, [V1|R], D) | Q], Result, K ) :-

	length( [V1|R], K ),

	delete_edge( (V1,V2), D, D1 ),

	update( (C, [V1|R], D1 ), V2, (NewC, NewR, NewD) ),

	bw_aux( (NewC, NewR, NewD), Q, Result, K ).

bw( [(C, R, D) | Q], Result, K ) :-

	\+ length( R, K ),

	findall( V, unassigned( C, R, V ), U ),

	update_all( U, (C,R,D), Q, Result, K ).



bw_aux( (C, R, []), _, Result, _ ) :-

	append( C, R, Result ).

bw_aux( (C, R, D), Q, Result, K ) :-

	D \== [],

	plausible_n_untried( R, D, K ),

	append( Q, [(C,R,D)], Q1 ),

	bw( Q1, Result, K ).

bw_aux( (C, R, D), Q, Result, K ) :-

	D \== [],

	\+ plausible_n_untried( R, D, K ),

	bw( Q, Result, K ).



update_all( [], _, Q, Result, K ) :- bw( Q, Result, K ).

update_all( [V|L], (C,R,D), Q, Result, K ) :- 

	update( (C,R,D), V, (C1,R1,D1) ),

	update_all_aux( L, (C,R,D), (C1,R1,D1), Q, Result, K ).



update_all_aux( _, _, (C,R,[]), _, Result, _ ) :-

	append( C, R, Result ).

update_all_aux( L, (C,R,D), (C1,R1,D1), Q, Result, K ) :-

	plausible_n_untried( R1, D1, K ),

	append( Q, [(C1,R1,D1)], Q1 ),

	update_all( L, (C,R,D), Q1, Result, K ).

update_all_aux( L, (C,R,D), (_,R1,D1), Q, Result, K ) :-

	\+ plausible_n_untried( R1, D1, K ),

	update_all( L, (C,R,D), Q, Result, K ).



update( (C,R,D), S, (C1,R1,D1) ) :-

	delete_all_edges( (S,_), D, Temp ), 

	move_conquered_nodes( (C,R,Temp), (C1,TempR), [] ),

	append( TempR, [S], R1 ),

	findall( (S,X), adjacent_nodes( S, X, R ), List ),

	append( Temp, List, D1 ).

	

move_conquered_nodes( (C,[],_), (C1,[]), Accum ) :-

	append( C, Accum, C1 ).

move_conquered_nodes( (C,[H|R],D), (C1,R1), Accum ) :-

	\+ edge_member( (H,_), D ),

	move_conquered_nodes( (C,R,D), (C1,R1), [H|Accum] ).

move_conquered_nodes( (C,[H|R],D), (C1,[H|R]), Accum ) :-

	edge_member( (H,_), D ),

	append( C, Accum, C1 ).



adjacent_nodes( S, X, R ) :-

	(edge( S, X ); edge( X, S )), 

	\+ member( X, R ).



plausible_n_untried( R, D, K ) :-

	plausible( R, D, K ),

	\+ tried( R, D ),

	sort( R, Sorted_R ),

	sort( D, Sorted_D ),

	assert( tried_already(Sorted_R, Sorted_D) ).





plausible( R, D, K ) :-

	length( R, LenR ),

	Limit is K - LenR + 1 ,

	limited_dangling_edges( R, D, Limit ).



limited_dangling_edges( [], _, _ ).

limited_dangling_edges( [X|L], D, Limit ) :-

	findall( Y, (member((X,Y),D); member((Y,X),D)), List ),

	length( List, Len ),

	Len =< Limit,

	limited_dangling_edges( L, D, Limit + 1 ).



tried( R, D ) :-

	sort( R, Sorted_R ),

	sort( D, Sorted_D ),

	tried_already( Sorted_R, Sorted_D ).



unassigned( C, R, V ) :- node(V), \+ member(V, C), \+ member(V, R).



delete_edge( _, [], [] ).

delete_edge( (X,Y), [(X,Y)|L], L ).

delete_edge( (X,Y), [(Y,X)|L], L ).

delete_edge( (X,Y), [(X1,Y1)|L1], [(X1,Y1)|L2] ) :-

	(X,Y) \= (X1,Y1), (X,Y) \= (Y1,X1),

	delete_edge( (X,Y), L1, L2 ).



delete_all_edges( _, [], [] ).

delete_all_edges( (X,Y), [(X,Y)|L], Result ) :-

	delete_all_edges( (X,Y), L, Result ).

delete_all_edges( (X,Y), [(Y,X)|L], Result ) :-

	delete_all_edges( (X,Y), L, Result ).

delete_all_edges( (X,Y), [(X1,Y1)|L1], [(X1,Y1)|L2] ) :-

	(X,Y) \= (X1,Y1), (X,Y) \= (Y1,X1),

	delete_all_edges( (X,Y), L1, L2 ).



edge_member( (X,Y), [(X,Y)|_] ).

edge_member( (X,Y), [(Y,X)|_] ).

edge_member( Edge, [_|L] ) :- edge_member( Edge, L ).



member( X, [X|_] ).

member( X, [_|L] ) :- member( X, L ).



append( [], L, L ).

append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).



retract_all( P ) :- retract(P), fail.

retract_all( _ ).

/*========================================================*/

/*========================================================

Program 6.3	:	mbwo2.plg
Subject		:	Program to find Minimal Bandwidth Orderings 
(compared with mbwo1.plg, this is an implementation of an algorithm 
which is more natural for Prolog)

Note		:	A graph is assumed to be recorded in the database 
in the following form:
				node(Node)
				edge(Node1, Node2)

========================================================*/

/*

	minimal_bandwidth_ordering( MBWO, K )

	Given a graph represented in the above form, return one minimal band-
width ordering (MBWO) at a time, together with the bandwidth. The 
search is complete, in the sense that it can find all the orderings with min-
imal bandwidth.

	"setof" is used to collect all the orderings with the minimal bandwidth, 
and the cut after it is used to disallow backtracking to generate greater 
Max_bandwidth.

*/

minimal_bandwidth_ordering( MBWO, K ) :-

	bagof( Node, node(Node), Nodes ), 

	length( Nodes, Len ),

	Max_bandwidth is Len - 1,

	gen_num( Max_bandwidth, K ),			     /* 1 =< K =< Max_bandwidth */

	setof( Ordering, mbwo(K,[],[],Nodes,Ordering), Solutions ), !,

	member( Solutions, MBWO, _ ).

minimal_bandwidth_ordering( [], _ ) :- 					/* graph without nodes */

	\+node(_).





gen_num( Len, K ) :- Len >= 1, gen_num( Len, 1, K ).



gen_num( Len, K, K ).

gen_num( Len, M, K ) :- M < Len, M1 is M + 1, gen_num( Len, M1, K ).



/*

	mbwo( K, Passed, Active, Unlabelled, Result )

	Active has at most K elements.

	Invariance: (1) the bandwidth of Passed + Active =< K; (2) none of the 
nodes in Passed are adjacent to any of the nodes in Unlabelled;

*/

mbwo( _, Passed, Active, [], Result ) :-

	append( Passed, Active, Result ).

mbwo( K, Passed, Active, Unplaced, Result ) :-

	length( Active, LenActive ),

	LenActive < K,

	member( Unplaced, Node, Rest ),

	append( Active, [Node], NewActive ),

	mbwo( K, Passed, NewActive, Rest, Result ).

mbwo( K, Passed, [H|Active], Unplaced, Result ) :-

	length( Active, LenActive ), LenActive + 1 =:= K,

	member( Unplaced, Node, Rest ),

	no_connection( H, Rest ),

	append( Active, [Node], NewActive ),

	append( Passed, [H], NewPassed ),

	mbwo( K, NewPassed, NewActive, Rest, Result ).



member( [X|L], X, L ).

member( [H|L], X, [H|R] ) :- member( L, X, R ).



append( [], L, L ).

append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).



no_connection( _, [] ).

no_connection( X, [Y|List] ) :-

	\+adjacent( X, Y ), no_connection( X, List ).



adjacent( X, Y ) :- edge( X, Y ).

adjacent( X, Y ) :- edge( Y, X ).



/*========================================================*/

/*========================================================

Program 6.4	:	ffp-fc.plg
subject		:	Forward Checking algorithm applied to the N-
queens problem; Fail-first Principle is used in selecting the next variable

========================================================*/



/*	

	queens(N, R)

	N is the number of queens, and R is a solution

	The main clause. Called by, say, ?- (queens(8, Result).

*/

queens(N, R) :-

	range(N, L),

	setup_candidate_lists(N, L, C),

	forward_checking_with_ffp(C, R),

	report(R).





/*	

	range(N, List)

	Given a number N, range creates the List: 

			[N, N - 1, N - 2, ..., 3, 2, 1].

*/

range(0, []).

range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).





/*	

	setup_candidate_lists(N, L, Candidates)

	Given a number N, and a list L = [N, N - 1, N - 2, ..., 3, 2, 1], 

	return as the 3rd argument the Candidates:

		[N/L, N - 1/L, N - 2/L, ..., 2/L, 1/L]

	L is the list of all possible values that each queen can take.

*/

setup_candidate_lists(0, _, []).

setup_candidate_lists(N, L, [N/L| R]) :-

	N > 0, N1 is N - 1,

	setup_candidate_lists(N1, L, R).





/*

	forward_checking_with_ffp( Unlabelled, Solution)

	This is the main clause for searching. Unlabelled is a list of X/Dx, where 
X is a variable and Dx is its domain. The algorithm is: pick one value for 
one queen, propagate the constraints that it creates to other queens, then 
handle the next queen, till all the queens are labelled. If the picked varia-
ble cannot be labelled, the call will fail. For the picked variable, all values 
will be tried.

*/

forward_checking_with_ffp([], []).

forward_checking_with_ffp([H/Dh| Other_Unlabelled], [X/V| R]) :-

	length(Dh, Len_H),

	select_variable(Other_Unlabelled, H/Dh, Len_H, X/Domain, Rest),

	select_value(X/Domain, V, Rest, Updated_Unlabelled),

	forward_checking_with_ffp(Updated_Unlabelled, R).





/*

	select_variable(Unlabelled, H/Dh, Len_H, X/Domain, Rest),

	Given a set of unlabelled variables and their domains (1st Arg), return the 
variable X which has the smallest Domain and the remaining unlabelled 
variable/domains (5th arg). H is the variable which has the smallest 
domain found so far, where Dh is the domain of H, and Len_H is the size 
of Dh.

*/

select_variable([], Selected, _, Selected, []).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [X/Dx| Rest]) :-

	length(Dy, Ly),

	Ly < Lx, 

	select_variable(L, Y/Dy, Ly, Result, Rest).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [Y/Dy| Rest]) :-

	length(Dy, Ly),

	Ly >= Lx, 

	select_variable(L, X/Dx, Lx, Result, Rest).





/*

	select_value( X/Dom, V, Unlabelled, Updated_Unlabelled) 

	Given variable X and its domain (Dom) and a set of unlabelled variables 
and their domains (Unlabelled), return a value (V) in Dom and the 
updated domains for the unlabelled variables in Unlabelled. It fails if all 
the values will cause the situation to be over-constrained. In this imple-
mentation, no heuristics is being used.

*/

select_value(X/[V|_], V, U, Updated_U) :- 

	propagate(X/V, U, Updated_U).

select_value(X/[_|L], V, U, Updated_U) :-

	select_value(X/L, V, U, Updated_U).



/*	propagate( Assignment, Unlabelled, Updated_Unlabelled )

	It propagates the effect of the Assignment to the Unlabelled variables. 
The Assignment is propagated to one queen at a time, until all the queens 
are considered. Updated_Unlabelled will be instantiated to the result. 

*/

propagate(_, [], []).

propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

	prop(X/V, Y/C, C1), C1 \== [],

	propagate(X/V, T, T1).



/*

	prop( X/Vx, Y/Dy, Updated_Dy )

	Given an assignment  X/Vx, prop/3 restricts the domain of the Y-th queen 
(Dy) to an updated domain (Updated_Dy).

*/

prop(X/V, Y/C, R) :-

	del(V, C, C1),

	V1 is V-(X-Y),

	del(V1, C1, C2),

	V2 is V + (X-Y),

	del(V2, C2, R).



/*

	del( Element, List, Result )

	delete an Element  from the input List, returning the Result as the 3rd 
argument. del/3 succeeds whether Element exists in List or not.

*/

del(_, [], []).

del(X, [X|L], L).

del(X, [H|T], [H|L]) :- X \= H, del(X,T,L).



report([]) :- nl, nl.

report([_/V | L]) :- tab((V - 1) * 2), write('Q'), nl, report(L).



/*========================================================*/

/*========================================================

Program 6.5	:	ffp-dac.plg
Fubject		:	DAC-Lookahead algorithm applied to the N-queens 
problem; Fail-first Principle is used in selecting the 
next variable; DAC is maintained among unlabelled variables.

Note		:	The following programs are required:
				Program 5.6: ac.plg
				Program 5.7: print.queens.plg

========================================================*/



queens(N, R) :-

	range(N, L),

	setup_candidate_lists(N, L, C),

	dac_lookahead_with_ffp(C, R),

	print_queens(R).			/* defined in print.queens.plg */ 



range(0, []).

range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).



setup_candidate_lists(0, _, []).

setup_candidate_lists(N, L, [N/L| R]) :-

	N > 0, N1 is N - 1,

	setup_candidate_lists(N1, L, R).



/*

	dac_lookahead_with_ffp( Unlabelled, Solution )

	This is the main clause for searching. Unlabelled is a list of X/Dx, where 
X is a variable and Dx is its domain. The algorithm is: pick one value for 
one queen, propagate the constraints by maintaining directional arc-con-
sistency, then handle the next queen, till all the queens have been labelled. 
If the picked variable cannot be labelled, the call will fail. For the picked 
variable, all values will be tried.

*/

dac_lookahead_with_ffp([], []).

dac_lookahead_with_ffp([H/Dh| Other_Unlabelled], [X/V| R]) :-

	length(Dh, Len_H),

	select_variable(Other_Unlabelled, H/Dh, Len_H, X/Domain, Rest),

	select_value(X/Domain, V, Rest, Updated_Unlabelled),

	dac_lookahead_with_ffp(Updated_Unlabelled, R).



/*

	Given a set of unlabelled variables and their domains (1st Arg), return the 
variable (X) which has the smallest domain (Dom) and the remaining 
unlabelled variable/domains (5th arg).

*/

select_variable([], Selected, _, Selected, []).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [X/Dx| Rest]) :-

	length(Dy, Ly), Ly < Lx, 

	select_variable(L, Y/Dy, Ly, Result, Rest).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [Y/Dy| Rest]) :-

	length(Dy, Ly), Ly >= Lx, 

	select_variable(L, X/Dx, Lx, Result, Rest).



/*

	select_value(X/Dom, V, U, Updated_U)

	Given variable X and its domain (Dom) and a set of unlabelled variables 
and their domains (U), return a value (V) in Dom and the updated 
domains for the unlabelled variables in U. Fail if all the values cause the 
situation over-constrained. In this implementation, no heuristics is used. 
maintain_directed_arc_consistency/2 is defined in the program ac.plg.

*/

select_value(X/[V|_], V, U, Updated_U) :- 

	propagate(X/V, U, Temp),

	maintain_directed_arc_consistency(Temp, Updated_U).

select_value(X/[_|L], V, U, Updated_U) :-

	select_value(X/L, V, U, Updated_U).



/*	propagate( Assignment, Unlabelled, Updated_Unlabelled )

	It propagates the effect of the Assignment to the Unlabelled variables. 
The Assignment is propagated to one queen at a time, until all the queens 
are considered. Updated_Unlabelled will be instantiated to the result. 

*/

propagate(_, [], []).

propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

	prop(X/V, Y/C, C1), C1 \== [],

	propagate(X/V, T, T1).



/*

	prop( X/Vx, Y/Dy, Updated_Dy )

	Given an assignment  X/Vx, prop/3 restricts the domain of the Y-th queen 
(Dy) to an updated domain (Updated_Dy).

*/

prop(X/V, Y/C, R) :-

	del(V, C, C1),

	V1 is V-(X-Y),

	del(V1, C1, C2),

	V2 is V + (X-Y),

	del(V2, C2, R).



del(_, [], []).

del(X, [X|L], L).

del(X, [H|T], [H|L]) :- X \= H, del(X,T,L).



/*========================================================*/

/*========================================================

Program 6.6	:	ffp-ac.plg
Subject		:	AC-Lookahead algorithm applied to the N-queens 
problem: Fail-first Principle is used in selecting the 
next variable; Arc-consistency is maintained among unlabelled variables.

Note		:	The following programs are required:
				Program 5.6: ac.plg
				Program 5.7: print.queens.plg

========================================================*/

/*

	The main clause, the 1st argument is used to distinguish it from other def-
initions of "queens" when more than one file is loaded.

*/

queens(N, R) :-

	range(N, L), setup_candidate_lists(N, L, C),

	label_with_ffp(C, R), print_queens(R).



/* 	range(N, List)

	Given a number N, range/2 creates the List: 

			[N, N - 1, N - 2, ..., 3, 2, 1].

*/

range(0, []).

range(N, [N|L]) :- N > 0, N1 is N - 1, range(N1, L).



/*	setup_candidate_lists(N, L, Candidates)

	Given a number N, and a list L = [N, N - 1, N - 2, ..., 3, 2, 1], return as the 
3rd argument the Candidates: [N/L, N - 1/L, N - 2/L, ..., 2/L, 1/L]

	L is the list of all possible values that each queen can take.

*/

setup_candidate_lists(0, _, []).

setup_candidate_lists(N, L, [N/L| R]) :-

	N > 0, N1 is N - 1, setup_candidate_lists(N1, L, R).



/*	label_with_ffp( Unlabelled, Solution )

	This is the main clause for searching. Unlabelled is a list of X/Dx, where 
X is a variable and Dx is its domain. The algorithm: pick one value for 
one queen, propagate the constraints by maintaining Arc-Consistency, 
then handle the next queen, till all the queens are labelled. If the picked 
variable cannot be labelled, the call will fail. For the picked variable, all 
values will be tried.

*/

label_with_ffp([], []).

label_with_ffp([H/Dh| Other_Unlabelled], [X/V| R]) :-

	length(Dh, Len_H),

	select_variable(Other_Unlabelled, H/Dh, Len_H, X/Domain, Rest),

	select_value(X/Domain, V, Rest, Updated_Unlabelled),

	label_with_ffp(Updated_Unlabelled, R).



/* 	Given a set of unlabelled variables and their domains (1st Arg), return the 
variable (X) which has the smallest domain (Dom) and the remaining 
unlabelled variable/domains (5th arg).

*/

select_variable([], Selected, _, Selected, []).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [X/Dx| Rest]) :-

	length(Dy, Ly), Ly < Lx, 

	select_variable(L, Y/Dy, Ly, Result, Rest).

select_variable([Y/Dy| L], X/Dx, Lx, Result, [Y/Dy| Rest]) :-

	length(Dy, Ly), Ly >= Lx, 

	select_variable(L, X/Dx, Lx, Result, Rest).



/* 	select_value( X/Dom, V, U, Updated_U)

	Given variable X and its domain (Dom) and a set of unlabelled variables 
and their domains (U), return a value (V) in Dom and the updated 
domains for the unlabelled variables in U. Fail if all the values cause the 
situation over-constrained.

*/

select_value(X/[V|_], V, U, Updated_U) :- 

	propagate(X/V, U, Temp),

	maintain_arc_consistency(Temp, Updated_U).

select_value(X/[_|L], V, U, Updated_U) :- select_value(X/L, V, U, Updated_U).



/*	propagate( Assignment, Unlabelled, Updated_Unlabelled )

	It propagates the effect of the Assignment to the Unlabelled variables. 
The Assignment is propagated to one queen at a time, until all the queens 
are considered. Updated_Unlabelled will be instantiated to the result. 

*/

propagate(_, [], []).

propagate(X/V, [Y/C| T], [Y/C1| T1]) :-

	prop(X/V, Y/C, C1), C1 \== [], propagate(X/V, T, T1).



/*	prop( X/Vx, Y/Dy, Updated_Dy )

	Given an assignment  X/Vx, prop/3 restricts the domain of the Y-th queen 
(Dy) to an updated domain (Updated_Dy).

*/

prop(X/V, Y/C, R) :-

	del(V, C, C1), V1 is V - (X - Y),

	del(V1, C1, C2), V2 is V + (X - Y), del(V2, C2, R).



del(_, [], []).

del(X, [X|L], L).

del(X, [H|T], [H|L]) :- X \= H, del(X,T,L).



/*========================================================*/

/*========================================================

Program 6.7	:	inf_bt.plg
Subject		:	Solving the N-queens problem with backtracking, 
using the Min-conflict Heuristic to order the values

Note		:	This program requires the following programs:
				Program 5.3:		random.plg
				Program 5.7:		print.queens.plg

========================================================*/





:- op( 100, yfx, less ).				/* for difference list */



/*

	Initial_Assignment should be a difference list

*/

queens(N, Result) :-

	generate_domain( N, Domain ),

	initialize_labels( N, Domain, Initial_labels ),

	informed_backtrack( Domain, Initial_labels, X less X, Temp, 0 ),

	retrieve_from_diff_list( Temp, Result ),

	print_queens( Result ).



/*-----------------------------------------------------------------------------------------------*/



generate_domain( N, [] ) :- N =< 0.

generate_domain( N, [N|L] ) :- 

	N > 0, N1 is N - 1, generate_domain(N1, L).



/*-----------------------------------------------------------------------------------------------*/

/*

	initialize_labels( N, Domain, Assignments ) 

	It generates Assignments, which is a difference list representing a near-
solution. initialize_labels/3 uses the min_conflicts heuristic.

*/

initialize_labels( N, Domain, Assignments ) :-

	init_labels( N, Domain, Assignments, X less X ).



init_labels( 0, _, Result, Result ).

init_labels( N, Domain, Result, L1 less L2 ) :-

	pick_one_value( N, Domain, L1 less L2, V, Remaining_Values ),

	N1 is N - 1,

	init_labels( N1, Remaining_Values, Result, [N/V|L1] less L2).



pick_one_value( _, [V], _, V, [] ).

pick_one_value( N, [V1|Vs], Labels less Tail, V, Rest ) :-

	Vs \== [],

	count_conflicts( N/V1, Labels less Tail, Bound ),

	find_min_conflict_value(Bound-N/[V1], Vs, Labels less Tail, V ),

	delete( V, [V1|Vs], Rest ).



/*

	find_min_conflict_value( Bound-N/V1, Vs, Labelled, V )

	given a label N/V1 and the number of conflicts that it has with the assign-
ments in Labelled, pick from Vs a value V such that X/V has fewer con-
flicts with Labelled. If no such V exists, instantiate V to V1. If the Bound 
is 0, then there is no chance of improvement. In this case, a random value 
is picked (this is done in the 1st clause).

*/

find_min_conflict_value( _-_/Vs, [], _, V ) :-

	random_element( Vs, V ).				/* defined in random.plg */

find_min_conflict_value( Bound-X/V, [V1|Vs], Labelled, Result ) :-

	count_conflicts( X/V1, Labelled, Count, Bound ),

	fmcv( Bound-X/V, Count-X/V1, Vs, Labelled, Result ).



fmcv( Count-X/L, Count-X/V1, Vs, Labelled, R ) :-

	find_min_conflict_value( Count-X/[V1|L], Vs, Labelled, R).

fmcv( Bound-X/L, Count-_, Vs, Labelled, Result ) :-

	Bound < Count,

	find_min_conflict_value( Bound-X/L, Vs, Labelled, Result ).

fmcv( Bound-_, Count-X/V1, Vs, Labelled, R ) :-

	Bound > Count,

	find_min_conflict_value( Count-X/[V1], Vs, Labelled, R ).



/*-----------------------------------------------------------------------------------------------*/

/*

	informed_backtrack(Domain, VarsLeft, VarsDone, Result, Count)

	Domain is the domain that each variable can take - in the N-queens 
problem, all variables have the same domain; 

	VarsLeft is a difference list, which represents the labels which have not 
yet been fully examined;

	VarsDone is a difference list, which represents the labels which have been 
checked and guaranteed to have no conflict with each other;

	Result is a difference list, which will be instantiated to VarLeft + VarDone 
when no conflict is detected.

	Count counts the number of iterations needed to find the solution - used 
solely for reporting.

*/

informed_backtrack( Domain, VarsLeft, VarsDone, Result, Count ) :-

	pick_conflict_label( VarsLeft, VarsDone, X ),

	delete_from_diff_list( X/Old, VarsLeft, Rest ), !,

	order_values_by_conflicts( X, Domain, Rest, VarsDone, Ordered_Do-
main ),

	member( _-V, Ordered_Domain ),

	add_to_diff_list( X/V, VarsDone, New_VarsDone ),

	delete( V, Domain, D1 ),

	Count1 is Count + 1,

	informed_backtrack( D1, Rest, New_VarsDone, Result, Count1 ).

informed_backtrack( _, X less Y, Y less Z, X less Z, Count ) :- 

	write('Iterations needed: '), write(Count).



/*

	pick_conflict_label( VarsLeft, Labels_to_check, X )

*/

pick_conflict_label( L1 less L2, _, _ ) :- 

	L1 == L2, !, fail.

pick_conflict_label( [X/V| Rest] less L1, L2 less L3, R ) :-

	no_conflicts( X/V, Rest less L1 ),

	no_conflicts( X/V, L2 less L3 ), !,

	pick_conflict_label( Rest less L1, [X/V| L2] less L3, R ).

pick_conflict_label( [X/_|_] less _, _, X ).

	



/*

	order_values_by_conflicts( X, D, VarsLeft, VarsDone, Result )

*/

order_values_by_conflicts( X, Domain, VarsLeft, VarsDone, Result ) :-

	bagof( Count-V, (member(V,Domain), 

			 no_conflicts( X/V, VarsDone ),

			 count_conflicts( X/V, VarsLeft, Count )),

		Temp

	 ),

	modified_qsort( Temp, Result ).





no_conflicts( _, L1 less L2 ) :- L1 == L2.

no_conflicts( X1/V1, [X2/V2| L1] less L2 ) :-

	[X2/V2| L1] \== L2,

	noattack( X1/V1, X2/V2 ),

	no_conflicts( X1/V1, L1 less L2 ).





modified_qsort( [], [] ).

modified_qsort( [Pivot-X|L], Result ) :-

	split( Pivot, L, Equal, Less, More ),

	modified_qsort( Less, Sorted_Less ),

	modified_qsort( More, Sorted_More ),

	random_ordering( [Pivot-X|Equal], Temp1 ),	/* random.plg */

	append( Sorted_Less, Temp1, Temp2 ),

	append( Temp2, Sorted_More, Result ).





split( _, [], [], [], [] ).

split( V, [V-X|L1], [V-X|L2], L3, L4 ) :-

	split( V, L1, L2, L3, L4 ).

split( Pivot, [V-X|L1], L2, [V-X|L3], L4 ) :-

	V < Pivot, split( Pivot, L1, L2, L3, L4 ).

split( Pivot, [V-X|L1], L2, L3, [V-X|L4] ) :-

	V > Pivot, split( Pivot, L1, L2, L3, L4 ).



/*-----------------------------------------------------------------------------------------------*/

/*

	count_conflicts ( X/V, Labelled, Count ) 

	count the number of conflicts between X/V and the Labelled variables, 
returning Count.

*/

count_conflicts( _, L1 less L2, 0 ) :- L1 == L2, !.

count_conflicts( X/V, [Y/W| L1] less L2, Count ) :-

	noattack( X/V, Y/W ), !,

	count_conflicts( X/V, L1 less L2, Count ).

count_conflicts( X/V, [_| L1] less L2, Count ) :-

	count_conflicts( X/V, L1 less L2, Count0 ),

	Count is Count0 + 1.





/*

	count_conflicts ( X/V, Labelled, Count, Max_Count ) 

	count the number of conflicts between X/V and the Labelled variables, 
returning Count. If Count > Max_Count, there is no need to continue. Just 
return 0.

*/

count_conflicts( _, L1 less L2, 0, _ ) :- L1 == L2, !.

count_conflicts( _, _, 0, N ) :- N < 0, !.

count_conflicts( X/V, [Y/W| L1] less L2, Count, Max ) :-

	noattack( X/V, Y/W ), !,

	count_conflicts( X/V, L1 less L2, Count, Max ).

count_conflicts( X/V, [_| L1] less L2, Count, Max ) :-

	Max1 is Max - 1,

	count_conflicts( X/V, L1 less L2, Count0, Max1 ),

	Count is Count0 + 1.





noattack(X0/V0, X1/V1):-

	V0 =\= V1,

	V1-V0 =\= X1-X0,

	V1-V0 =\= X0-X1.



/*-----------------------------------------------------------------------------------------------*/



/*

	add_to_diff_list( X, Difference_List1, Result )

	to add X to a difference list, giving Result.

*/

add_to_diff_list( X, L1 less L2, [X|L1] less L2 ).



delete_from_diff_list( _, L1 less L2, L1 less L2 ) :- 

	L1 == L2, !.

delete_from_diff_list( X, [X|L1] less L2, L1 less L2 ).

delete_from_diff_list( X, [H|L1] less L2, [H|L3] less L2 ) :-

	X \= H, 

	delete_from_diff_list( X, L1 less L2, L3 less L2 ).



retrieve_from_diff_list( L1 less L2, [] ) :- L1 == L2.

retrieve_from_diff_list( [H|L1] less L2, [H|L3] ) :-

	[H|L1] \== L2,

	retrieve_from_diff_list( L1 less L2, L3 ).



reverse_diff_list( Diff_list, Reverse ) :-

	reverse_diff_list( Diff_list, Reverse, L less L ).



reverse_diff_list( L1 less L2, Result, Result ) :- L1 == L2.

reverse_diff_list( [H|L1] less L2, Result, L3 less L4 ) :- 

	[H|L1] \== L2,

	reverse_diff_list( L1 less L2, Result, [H|L3] less L4 ).



member( X, [X|_] ).

member( X, [_|L] ) :- member( X, L ).



/*

	delete(X,L1,L2) 

	deletes the first occurence of X from L1, giving L2.

*/

delete( _, [], [] ).

delete( X, [X|L], L ).

delete( X, [H|L1], [H|L2] ) :- X \= H, delete( X, L1, L2 ).



append( [], L, L ).

append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).



/*========================================================*/

/*========================================================

Program 7.1	:	partition.plg
Subject		:	Program to partition the nodes in the given graph into unconnected clusters

Notes		:	A graph is assumed to be recorded in the database in the following form:
				node(Node)
				edge(Node1, Node2)

========================================================*/

partition(Clusters) :-

	bagof(N, node(N), Nodes),

	delete(X, Nodes, RestOfNodes), !,

	partition([X], RestOfNodes, [], Clusters).

partition([]).



partition([], [], Cluster, [Cluster]).

partition(L, [], Accum, [Cluster]) :-

	append(L, Accum, Cluster).

partition([], Nodes, Cluster1, [Cluster1| Clusters]) :-

	Nodes \== [],			/* start another cluster */

	delete(X, Nodes, RestOfNodes),

	partition([X], RestOfNodes, [], Clusters).

partition([H|L], Nodes, Accum, Clusters) :-

	Nodes \== [],

	findall(X, (member(X, Nodes), adjacent(H,X)), List),

	delete_list(List, Nodes, RestOfNodes),

	append(L, List, NewL),

	partition(NewL, RestOfNodes, [H|Accum], Clusters).



adjacent(X,Y) :- edge(X,Y).

adjacent(X,Y) :- edge(Y,X).



member(X, [X|_]).

member(X, [_|L]) :- member(X, L).



append([], L, L).

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).



delete(_, [], []).

delete(X, [X|L], L).

delete(X, [H|L1], [H|L2]) :- X \== H, delete(X, L1, L2).



delete_list([], L, L).

delete_list([H|L1], L2, L3) :- delete(H, L2, Temp), delete_list(L1, Temp, L3).

	

writeln([]) :- nl.

writeln([H|L]) :- write(H), writeln(L).

/*====================================================*/

/*========================================================

Program 7.2	:	acyclic.plg
Subject		:	To check whether an undirected graph is Acyclic
Notes		:	A graph is assumed to be recorded in the database in the following form:
				node(Node)
				edge(Node1, Node2)

========================================================*/

acyclic :-

	bagof(N, node(N), Nodes), bagof((A,B), edge(A,B), Edges), node(X), !,

	acyclic([X], (Nodes, Edges)).



acyclic([], ([], _)).

acyclic([], (Nodes, Edges)) :- member(X, Nodes), acyclic([X], (Nodes, Edges)).

acyclic([H|L], (Nodes, Edges)) :-

	delete(H, Nodes, RestNodes),

	findall(Y, adjacent((H,Y), Edges), Connected),

	remove_connections( H, Connected, Edges, RestEdges),

	no_cycle( Connected, L ),

	append(Connected, L, L1),

	writeln([H,' removed, graph = (',Nodes,',',Edges,')']),

	acyclic(L1, (RestNodes, RestEdges)).



adjacent((X,Y), Edges) :- member((X,Y), Edges).

adjacent((X,Y), Edges) :- member((Y,X), Edges).



remove_connections(_, [], L, L).

remove_connections(X, [Y|L], Edges, RestEdges) :-

	delete((X,Y), Edges, Temp1),

	delete((Y,X), Temp1, Temp2),

	remove_connections(X, L, Temp2, RestEdges).



no_cycle([], _).

no_cycle([H|L], Visited) :- \+ member(H, Visited), no_cycle(L, Visited).

	

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).



append([], L, L).

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).



delete(_, [], []).

delete(X, [X|L], L).

delete(X, [H|L1], [H|L2]) :- X \== H, delete(X, L1, L2).



writeln([]) :- nl.

writeln([H|L]) :- write(H), writeln(L).

/*========================================================*/

/*========================================================

Program 7.3	:	max-clique.plg
Subject		:	To find all Maximum Cliques in a given graph
Notes		:	A graph is assumed to be recorded in the database in the following form:
				node(Node)
				edge(Node1, Node2)

======================================================*/

/* 	max_cliques( MC )

	It instantiates MC to the set of all maximum cliques in the graph which is 
in the Prolog database. 

*/

max_cliques( MC ) :- bagof(N, node(N), Nodes), mc(Nodes, [], [], MC).



mc([], _, _, []).

mc(Nodes, _, Excluded_nodes, []) :- no_clique(Excluded_nodes, Nodes), !.

mc(Nodes, _, _, [Nodes]) :- clique(Nodes), !.

mc(Nodes, Include_nodes, Excluded_nodes, MC) :-

	delete(X, Nodes, RestOfNodes), \+member(X, Include_nodes), !,

	findall(N, (member(N,RestOfNodes), adjacent(N,X)), Neighbours),

	mc([X|Neighbours], [X|Include_nodes], Excluded_nodes, MC1),

	mc(RestOfNodes, Include_nodes, [X|Excluded_nodes], MC2),

	append(MC1, MC2, MC).



/* 	no_clique(N, C)

	no clique exists if any of the nodes in N is adjacent to all the nodes in C

*/

no_clique([H|_], C) :- all_adjacent(C, H).

no_clique([_|L], C) :- no_clique(L, C).



clique([]).

clique([H|L]) :- all_adjacent(L, H), clique(L).



all_adjacent([], _).

all_adjacent([H|L], X) :- adjacent(H,X), all_adjacent(L, X).



adjacent( X, Y ) :- edge( X, Y ).

adjacent( X, Y ) :- edge( Y, X ).



member( X, [X|_] ).

member( X, [_|L] ) :- member( X, L ).



append( [], L, L ).

append( [H|L1], L2, [H|L3] ) :- append( L1, L2, L3 ).



delete(_, [], []).

delete(X, [X|L], L).

delete(X, [H|L1], [H|L2]) :- delete(X, L1, L2).

/*========================================================*/

/*========================================================

Program 7.4	:	alp.plg
Subject 	:	AnalyzeLongestPath algorithm
Note		:	A graph is assumed to be recorded in the database in the following form:

				path(From, To, Length).

			The predicate abs_time(Point, Abs_Time), if 
present, states the absolute time of the Point. 
Abs_Time can either be an integer or a term min(T-
ime). All times are assumed to be possitive.

			** NB : This program does not detect any untidi-
ness of the database, e.g. duplicated clauses on the same path or abs_time constraint



========================================================*/

/*

	analyse_longest_path

	analyse_longest_path succeeds if the temporal constraints in the given 
graph is satisfiable.

*/

analyse_longest_path :- analyse_longest_path(_).



/*

	analyse_longest_path(R)

	succeeds if the temporal constraints can be satisfied, in which case R is 
instantiated to the set of nodes in the database together with their earliest 
possible time

*/

analyse_longest_path(ResultList) :-

	setof( X, node_n_time(X), L ),

	setof( (Y,TimeY), (in(Y,L), alp_gets_time(Y,TimeY)), List ),

	(alp( to_be_processed(L), List, ResultList, visited([]) ), !,

	 alp_satisfy_abs_time_constraint( ResultList ),

	 writeln(['AnalyzeLongestPath succeeds, result: ']);

	 writeln(['AnalyzeLongestPath fails: inconsistency detected ']),

	 !, fail

	).



/*

	alp_satisfy_abs_time_constraint( List )

	checks to see if all (Point,Time) pairs in the List satisfies all the abs_time 
constraints in the database. Checking is performed here instead of alp/4 in 
order to improve the clarity of alp/4.

*/

alp_satisfy_abs_time_constraint( [] ).

alp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-

	abs_time( X, T ), integer(T),

	(T == TimeX;

	 writeln(['Time of ',X,' violates abs_time constraint ',T]), !, fail

	), !,

	alp_satisfy_abs_time_constraint( L ).

alp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-

	abs_time( X, max(T) ),

	(TimeX =< T;

	 writeln(['Time of ',X,' exceeds max. abs_time constraint ',T]), !, fail

	), !,

	alp_satisfy_abs_time_constraint( L ).

alp_satisfy_abs_time_constraint( [_| L] ) :-

	alp_satisfy_abs_time_constraint( L ).



/*------------------------------------------------------------------------*/



	Main predicates for analysing longest path



	alp( to_be_processed(L1), L2, Result, visited(V) ) 

	mutually recursive with alp_updates_time/5.

*/

alp(to_be_processed([]), Result, Result, _).					/* finished */

alp(to_be_processed([A|_]), _, _, visited(Visited_Nodes)) :- 

	in(A, Visited_Nodes), !,

	writeln(['	Loop with node ',A]),

	!, fail.				/* loop detected */

alp(to_be_processed([A| L]), List, Result, visited(V)) :-

	in((A,TimeA), List),

	bagof((P,Length), path(A, P, Length), U),

	(alp_updates_time(U, TimeA, List, Updated_List, visited([A|V]));

	 writeln(['	Loop with node ',A]), !, fail

	), !,

	alp(to_be_processed(L), Updated_List, Result, visited(V)).



/*

	alp_updates_time( List1, Time, List2, List3, visited(V) )

	+	List1: list of (successor, distance) for updating

	+	Time: time at predecessor 

	+	List2: most updated list of (point,time) 

	-	List3: List 2 with time checked and possibly updated

	+	V: visited nodes, for checking loops

*/

alp_updates_time([], _, Result, Result, _).

alp_updates_time([(Y,Distance_X_Y)|U], TimeX, List, Result, Visited) :-

	delete((Y,TimeY), List, Rest),

	AltTimeY is TimeX + Distance_X_Y, 

	AltTimeY > TimeY, !,

	alp(to_be_processed([Y]), [(Y,AltTimeY) |Rest], Temp, Visited), !,

	alp_updates_time(U, TimeX, Temp, Result, Visited), !.

alp_updates_time([_|U], T, List, Result, Visited) :-

	alp_updates_time(U, T, List, Result, Visited).



/*------------------------------------------------------------------------*/



in( X, [X|_] ).

in( X, [_|L] ) :- in( X, L ).



delete( _, [], [] ).

delete( X, [X|Rest], Rest ).

delete( X, [Y|L], [Y|Rest] ) :- X\=Y, delete( X, L, Rest ).



writeln([]) :- nl.

writeln([nl|L]) :- !, nl, writeln(L).

writeln([H|L]) :- write(H), writeln(L).



/*------------------------------------------------------------------------*/



		PREDICATES RELATED TO THE DATABASE */

/*

	pick one node and find its time

*/

node_n_time(X) :- (path(X,_,_); path(_,X,_)).



alp_gets_time(A, TimeA) :- abs_time(A, TimeA), integer(TimeA), !.

alp_gets_time(A, TimeA) :- abs_time(A, min(TimeA)), !.

alp_gets_time(_, 0) :- !.



/*========================================================*/

/*========================================================

Program 7.5	:	asp.plg
Subject 	:	AnalyzeShortestPath algorithm
Note		:	A graph is assumed to be recorded in the database in the following form:

				path(From, To, Length).

			The predicate abs_time(Point, Abs_Time), if 
present, states the absolute time of the Point. 
Abs_Time can either be an integer or a term min(Time). All times are assumed to be positive.

			** NB : This program does not detect any untidi-
ness of the database, e.g. duplicated clauses on the same path or abs_time constraint

========================================================*/



:- op(100, yfx, [less_than]).



/*

	analyse_shortest_path

	analyse_shortest_path succeeds if the temporal constraints in the

	given graph is satisfiable.

*/

analyse_shortest_path :- analyse_shortest_path(_).



/*

	analyse_shortest_path(R)

	it succeeds if the temporal constraints can be satisfied, in which case R is 
instantiated to the set of nodes in the database together with their earliest 
possible time

*/

analyse_shortest_path(ResultList) :-

	setof( X, node_n_time(X), L ),

	setof( (Y,TimeY), (in(Y,L), asp_gets_time(Y,TimeY)), List ),

	(asp( to_be_processed(L), List, ResultList, visited([]) ), !,

	 asp_satisfy_abs_time_constraint( ResultList ),

	 writeln(['AnalyzeShortestPath succeeds, result: ']);

	 writeln(['AnalyseShortest Path fails: inconsistency detected ']),

	 !, fail

	).





/*

	asp_satisfy_abs_time_constraint( List )

	checks to see if the (Point,Time) pairs in the List satisfies all the abs_time 
constraints in the database. Checking is performed here instead of alp/4 in 
order to improve the clarity of alp/4.

*/

asp_satisfy_abs_time_constraint( [] ).

asp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-

	abs_time( X, T ), integer(T),

	(T == TimeX;

	 writeln(['Time of ',X,' violates abs_time constraint ',T]), !, fail

	), !,

	asp_satisfy_abs_time_constraint( L ).

asp_satisfy_abs_time_constraint( [(X, TimeX)| L] ) :-

	abs_time( X, min(T) ),

	(\+(TimeX less_than T);

	 writeln(['Time of ',X,' less than min. abs_time constraint ',T]), !, fail

	), !,

	asp_satisfy_abs_time_constraint( L ).

asp_satisfy_abs_time_constraint( [_| L] ) :-

	asp_satisfy_abs_time_constraint( L ).



/*------------------------------------------------------------------------*/



	Main predicates for analysing shortest path



	asp( to_be_processed(L1), L2, Result, visited(V) ) 

	mutually recursive with asp_updates_time/5.

*/

asp(to_be_processed([]), Result, Result, _).					/* finished */

asp(to_be_processed([A|_]), _, _, visited(Visited_Nodes)) :- 

	in(A, Visited_Nodes), !, 

	writeln(['	Loop with node ',A]),

	!, fail.				/* loop detected */

asp(to_be_processed([A| L]), List, Result, visited(V)) :-

	in((A,TimeA), List), TimeA \= infinity,

	bagof((P,Length), path(P, A, Length), U),

	(asp_updates_time(U, TimeA, List, Updated_List, visited([A|V]));

	 writeln(['	Loop with node ',A]), !, fail

	), !,

	asp(to_be_processed(L), Updated_List, Result, visited(V)).

asp(to_be_processed([A| L]), List, Result, visited(V)) :-

	in((A,infinity), List),

	asp(to_be_processed(L), List, Result, visited(V)).



/*

	asp_updates_time( List1, Time, List2, List3, visited(V) )

	+	List1: list of (predecessor, distance) for updating

	+	Time: time at successor

	+	List2: most updated list of (point,time)

	-	List3: List 2 with time checked and possibly updated

	+	V: visited nodes, for checking loops

*/

asp_updates_time([], _, Result, Result, _).

asp_updates_time([(X,Distance_X_Y)|U], TimeY, List, Result, Visited) :-

	delete((X,TimeX), List, Rest),

	difference(TimeY, Distance_X_Y, AltTimeX),

	AltTimeX less_than TimeX, !,

	asp(to_be_processed([X]), [(X,AltTimeX) |Rest], Temp, Visited), !,

	asp_updates_time(U, TimeY, Temp, Result, Visited), !.

asp_updates_time([_|U], T, List, Result, Visited) :-

	asp_updates_time(U, T, List, Result, Visited).



/*------------------------------------------------------------------------*/



in( X, [X|_] ).

in( X, [_|L] ) :- in( X, L ).



delete( _, [], [] ).

delete( X, [X|Rest], Rest ).

delete( X, [Y|L], [Y|Rest] ) :- X\=Y, delete( X, L, Rest ).



writeln([]) :- nl.

writeln([nl|L]) :- !, nl, writeln(L).

writeln([H|L]) :- write(H), writeln(L).



difference( infinity, _, infinity ).

difference( X, infinity, -infinity ) :- X \== infinity.

difference( X, Y, Diff ) :- integer(X), integer(Y), Diff is X - Y.



_ less_than infinity.

X less_than Y :- integer(X), integer(Y), X < Y.



/*------------------------------------------------------------------------*/



		PREDICATES RELATED TO THE DATABASE */



/*

	pick one node and find its time

*/

node_n_time(X) :- (path(X,_,_); path(_,X,_)).



asp_gets_time(A, TimeA) :- abs_time(A, TimeA), integer(TimeA), !.

asp_gets_time(A, TimeA) :- abs_time(A, max(TimeA)), !.

asp_gets_time(_, infinity) :- !.



/*========================================================*/

/*========================================================

Program 8.1	:	hc.plg
Subject		:	Solving the N-queens problem using the Heuristic Repair Method in Minton et al. [1990] 
Note		:	The following programs are required:
				Program 5.3: random.plg
				Program 5.7: print.queens.plg
			Search in this program is incomplete.

========================================================*/



queens(N, Result) :-

	generate_domain( N, Domain ),

	initialize_labels( N, Domain, Initial_labels ),

	writeln(['Initial labels: ', Initial_labels]),

	hill_climb( Initial_labels, Domain, Result ),

	print_queens( Result ).





/*------------------------------------------------------------------------*/



generate_domain( N, [] ) :- N =< 0.

generate_domain( N, [N|L] ) :- 

	N > 0, N1 is N - 1, generate_domain(N1, L).

/*

	initialize_labels( N, Domain, Assignments ) 

	it generates Assignments, which is a list representing an approximate 
solution.

	initialize_labels/3 uses the min_conflicts heuristic.

*/

initialize_labels( N, Domain, Assignments ) :-

	init_labels( N, Domain, Assignments, [] ).



init_labels( 0, _, Result, Result ).

init_labels( N, Domain, Result, Labelled ) :-

	N > 0, 

	pick_value_with_min_conflict( N, Domain, Labelled, V ),

	N1 is N - 1,

	init_labels( N1, Domain, Result, [N/V| Labelled] ).



pick_value_with_min_conflict( N, [V1|Vs], Labels, V ) :-

	length(Vs, Len),

	count_conflicts( N/V1, Labels, Count, Len ),

	find_min_conflict_value(Count-N/V1, Vs, Labels, V ).



/*

	find_min_conflict_value( Bound-N/V1, Vs, Labelled, V )

	given a label N/V1 and the number of conflicts that it has with the 
Labelled, pick from Vs a value V such that X/V has less conflicts with 
Labelled. If no such V exists, instantiate V to V1. If the Bound is 0, then 
there is no chance to improve. This is handled by the 1st clause.

*/

find_min_conflict_value( _-_/V, [], _, V ).

find_min_conflict_value( 0-_/V, _, _, V ).

find_min_conflict_value( Bound-X/V, [V1|Vs], Labelled, Result ) :-

	count_conflicts( X/V1, Labelled, Count, Bound ),

	fmcv( Bound-X/V, Count-X/V1, Vs, Labelled, Result ).



fmcv( Count-X/V1, Count-X/V2, Vs, Labelled, R ) :-

	random_element( [V1,V2], V ),

	find_min_conflict_value( Count-X/V, Vs, Labelled, R).

fmcv( Bound-X/V, Count-_, Vs, Labelled, Result ) :-

	Bound < Count,

	find_min_conflict_value( Bound-X/V, Vs, Labelled, Result ).

fmcv( Bound-_, Count-X/V, Vs, Labelled, R ) :-

	Bound > Count,

	find_min_conflict_value( Count-X/V, Vs, Labelled, R ).



/*------------------------------------------------------------------------*/

/*

	count_conflicts ( X/V, Labelled, Count, Max_Count ) 

	count the number of conflicts between X/V and the Labelled variables, 
returning Count. If Count is greater than Max_Count, there is no need to 
continue: just return 0.

*/

count_conflicts( _, [], 0, _ ).

count_conflicts( _, _, 0, N ) :- N < 0.

count_conflicts( X/V, [Y/W| L1], Count, Max ) :-

	Max >= 0,

	noattack( X/V, Y/W ),

	count_conflicts( X/V, L1, Count, Max ).

count_conflicts( X/V, [Y/W| L1], Count, Max ) :-

	Max >= 0, \+noattack( X/V, Y/W ),

	Max1 is Max - 1,

	count_conflicts( X/V, L1, Count0, Max1 ),

	Count is Count0 + 1.



noattack(X0/V0, X1/V1):-

	V0 =\= V1,

	V1-V0 =\= X1-X0,

	V1-V0 =\= X0-X1.



/*------------------------------------------------------------------------*/



hill_climb( Config, Domain, Result ) :-

	setof( Label, conflict_element( Label, Config ), Conflict_list ),

	writeln(['Conflict set: ', Conflict_list]), 

	random_element( Conflict_list, Y/Vy ),				/* no backtrack */

	delete(Y/Vy, Config, Labelled), 

	pick_value_with_min_conflict( Y, Domain, Labelled, Value ),

	writeln(['Repair: ',Y,'=',Vy,' becomes ',Y,'=',Value]),

	!, 	/* no backtracking should be allowed */

	hill_climb( [Y/Value| Labelled], Domain, Result ).

hill_climb( Config, _, Config ).





conflict_element( Label, Config ) :-

	conflict_element( Label, Config, Config ).



conflict_element( X/V, [X/V| L], Config ) :- attack( X/V, Config ).

conflict_element( Label, [_| L], Config ) :- conflict_element( Label, L, Config ).



attack(X0/V0, [X1/V1|_]) :- X0 \== X1, V0 == V1.

attack(X0/V0, [X1/V1|_]) :- X0 \== X1, V1-V0 =:= X1-X0.

attack(X0/V0, [X1/V1|_]) :- X0 \== X1, V1-V0 =:= X0-X1.

attack(Label, [_|L]) :- attack(Label, L).



/*

	delete(X,L1,L2) 

	deletes the first occurence of X from L1, giving L2.

*/

delete( _, [], [] ).

delete( X, [X|L], L ).

delete( X, [H|L1], [H|L2] ) :- X \= H, delete( X, L1, L2 ).



writeln( [] ) :- nl.

writeln( [H|L] ) :- write(H), writeln( L ).



/*========================================================*/

/*========================================================

Program 9.1	:	synthesis.plg
Subject		:	Freuder's Solution Synthesis algorithm applied to the N-queens problem
Dynamic Clauses		:	Clauses of the following predicate will be asserted/retracted:

				node( [X1,X2,...,Xn] )
				content( [X1-V1, X2-V2, ..., Xn-Vn] )

			where Xi are variables and Vi are values

Note		:	This program reports the constraint propagation process

========================================================*/

/*

	queens(N)

	N is the number of queens.

	queens(N) will report all the solutions to the N-queens problem.

*/

queens(N) :-

	retract_all( node(_) ), retract_all( content(_) ),

	build_nodes(1, N), report(N).



retract_all( P ) :- retract( P ), fail.

retract_all( _ ).



build_nodes(Order, N) :- Order > N.

build_nodes(Order, N) :-

	Order =< N,

	(combination( Order, N, Combination ),

	 build_one_node( N, Combination ), fail;

	 Order1 is Order + 1, build_nodes( Order1, N )

	).



/*------------------------------------------------------------------------*/



combination( M, N, Combination ) :-

	make_list(N, Variables),

	enumerate_combination( M, Variables, Combination ).



make_list(N, List) :- make_list( N, List, [] ).

make_list(0, L, L).

make_list(N, R, L) :- N > 0, N1 is N - 1, make_list(N1, R, [N|L]).



enumerate_combination( 0, _, [] ).

enumerate_combination( M, [H|Variables], [H|Combination] ) :-

	M > 0, M1 is M - 1,

	enumerate_combination( M1, Variables, Combination ).

enumerate_combination( M, [_|Variables], Combination ) :-

	M > 0, enumerate_combination( M, Variables, Combination ).



/*------------------------------------------------------------------------*/



build_one_node( N, Combination ) :-

	assert(node(Combination)),

	writeln(['** building node for ',Combination,' **']),

	make_list( N, Domain ),

	(one_assignment( Domain, Combination, Assignment ),

	 compatible( Assignment ),

	 supported( Combination, Assignment ),

	 assert(content(Assignment)),

	 writeln(['>> content ',Assignment,' is asserted.']),

	 fail;

	 true

	),

	downward_propagation( Combination ).



one_assignment( _, [], [] ).

one_assignment( Domain, [X1| Xs], [X1-V1| Assignments] ) :-

	member( V1, Domain ), one_assignment( Domain, Xs, Assignments ).



member( X, [X|_] ).

member( X, [_|L] ) :- member( X, L ).



compatible( [X1-V1, X2-V2] ) :-

	!, V1 \== V2, X1 - X2 =\= V1 - V2, X1 - X2 =\= V2 - V1.

compatible( _ ).



supported( Vars, Assignment ) :-

	remove_one_variable( Vars, Assignment, V, A ),

	node( V ), \+content( A ), !, fail.

supported( _, _ ).



remove_one_variable( [_|V], [_|A], V, A ).

remove_one_variable( [V1|Vs], [A1|As], [V1|V], [A1|A] ) :-

	remove_one_variable( Vs, As, V, A ).



downward_propagation( C ) :-

	build_template( C, T, C1, T1 ), node( C1 ),

	assert( terminate_propagation ),

	d_propagate_all( T, T1 ), global_propagate( C1 ), fail.

downward_propagation( _ ).



/*

	build_template( C, T, C1, T1 )

	Given a list of variables, [X1, X2, ..., Xn], build: T = [X1-V1, X2-V2, ..., 
Xn-Vn]; C1 = C1 with one variable less; and T1 = T with one label less.

	Alternatively, given a C1, build C, T and T1.

*/

build_template( [X1|L1], [X1-_|L2], L3, L4 ) :-

	build_template_aux( L1, L2, L3, L4 ).

build_template( [X1|L1], [X1-V1|L2], [X1|L3], [X1-V1|L4] ) :-

	build_template( L1, L2, L3, L4 ).



build_template_aux( [], [], [], [] ).

build_template_aux( [X|L1], [X-V|L2], [X|L3], [X-V|L4] ) :-

	build_template_aux( L1, L2, L3, L4 ).



d_propagate_all( T, T1 ) :-

	content( T1 ),

	\+content( T ),

	retract( content(T1) ),

	writeln([T1, ' removed <<']),

	retract( terminate_propagation ),

	fail.

d_propagate_all( _, _ ).



global_propagate( _ ) :- retract( terminate_propagation ), !.

global_propagate( C1 ) :-

	writeln(['{ Global propagation from ',C1]),

	downward_propagation( C1 ), upward_propagation( C1 ),

	writeln(['} End of global propagation from ',C1]).



upward_propagation( C ) :-

	build_templates( C, T, C1, T1 ), node( C ),

	assert( terminate_propagation ),

	u_propagate_all( T, T1 ), global_propagate( C1 ),

	fail.

upward_propagation( _ ).



u_propagate_all( T, T1 ) :-

	content( T ), \+content( T1 ), retract( content(T) ),

	writeln([T, 'removed <<']), retract( terminate_propagation ), fail.

u_propagate_all( _, _ ).



/*------------------------------------------------------------------------*/



report(N) :-

	write('Solutions:'), nl, functor( P, dummy, N ), P =.. [_|Solution],

	content( Solution ), write( Solution ), nl, fail.

report(_) :- write(****).



writeln([]) :- nl.

writeln([A|L]) :- write(A), writeln(L).



/*========================================================*/

/*========================================================

Program 9.2	:	invasion.plg
Subject		:	Seidel's Invasion algorithm for solving CSPs
Dynamic Clauses		:	Clauses of the following predicates will be asserted:

				sg_node( N )
				sg_arc( X, Y, Label )

			where sg stands for solution graph, Label in sg_arc is the label on the arc (X,Y).

Notes		:	This program assumes that: 
			(1) the constraint graph is a connected graph; 
			(2) the problem is specified with the following 

			predicates:
				variable( X )
				domain( X, Domain )
				constraint( X, Y, Legal_pairs )

			where	Domain is a list of values; and 

				Legal_pairs = [ Vx1/Vy1, Vx2/Vy2, ... ]

			where Vxi and Vyi are values for X and Y respec-
tively. If constraint/3 is not defined between varia-
bles P and Q, then P and Q are not constrained.

			An example problem is attached to the end of the program.

========================================================*/

invasion :-

	retract_all( sg_node(_) ),

	retract_all( sg_arc(_, _) ),

	bagof( X, variable(X), Vars ),

	assert( sg_node( [] ) ),

	invade( [[]], Vars ),

	report.

invasion :- write('There are no variables in this problem.'), nl.



retract_all( P ) :- retract( P ), fail.

retract_all( _ ).



/*

	invade( S1, Vars )

	S1 stands for S(i - 1); Vars is the list of variables to be processed

*/

invade( _, [] ).

invade( S1, [X| Vars] ) :-

	domain( X, Dx ),

	update_sg( S1, X, Dx, Vars, NewNodes, [] ),

	NewNodes \== [], 

	invade( NewNodes, Vars ).

invade( _, [X|_] ) :- write('Invasion fails in variable '), write(X), nl.



/*

	update_sg( OldNodes, X, Dx, Vars, NewNodes, TempNewNodes )

	OldNodes is the nodes in S(i - 1);

	X is the variable currently being processed;

	Dx is the domain of X;

	Vars is the set of variables yet to be processed; it is passed as a parameter 
for updating the Front;

	NewNodes is the nodes in Si (NewNodes is to be returned);

	TempNewNodes is set of NewNodes found so far.

	update_sg/6 processes one OldNode at a time.

*/

update_sg( [], _, _, _, NewNodes, NewNodes ).

update_sg( [CL1| CLs], X, Dx, Vars, NewNodes, Temp ) :- 

	update_sg_aux( CL1, X, Dx, Vars, Temp1, Temp ),

	update_sg( CLs, X, Dx, Vars, NewNodes, Temp1 ).



/*

	update_sg_aux( CL, X, Dx, Vars, NewNodes, TempNewNodes )

	CL is the compound label being processed;

	X is the variable currently being processed;

	Dx is the domain of X;

	Vars is the set of variables yet to be processed; it is used here for updating 
the Front;

	NewNodes is the nodes in Si (NewNodes is to be returned);

	TempNewNodes is set of NewNodes found so far;

	update_sg_aux/6 processes one value in Dx at a time.

*/

update_sg_aux( _, _, [], _, NewNodes, NewNodes ).

update_sg_aux( CL, X, [V| Vs], Vars, NewNodes, Temp ) :-

	satisfy_constraints( CL, X-V ), !,

	find_new_front( [X-V| CL], FrontNode, Vars ),

	update_node( FrontNode, Temp, Temp1 ),

	assert( sg_arc(FrontNode, CL, X-V) ),

	update_sg_aux( CL, X, Vs, Vars, NewNodes, Temp1 ).

update_sg_aux( CL, X, [_| Vs], Vars, NewNodes, Temp ) :-

	update_sg_aux( CL, X, Vs, Vars, NewNodes, Temp ).



/*

	satisfy_constraints( CL, X-Vx )

	CL is a compound label;

	X-Vx is a label for variable X and value Vx;

	satisfy_constraints/2 succeeds if <X,Vx> is compatible with all the labels 
in CL.

*/

satisfy_constraints( [], _ ).

satisfy_constraints( [Y-Vy| CL], X-Vx ) :-

	constraint( X, Y, LegalPairs ),

	member( Vx/Vy, LegalPairs ),

	satisfy_constraints( CL, X-Vx ).

satisfy_constraints( [Y-_| CL], X-Vx ) :-

	\+constraint( X, Y, _ ),

	satisfy_constraints( CL, X-Vx ).



member( X, [X|_] ).

member( X, [_|L] ) :- member( X, L ).



find_new_front( [], [], _ ).

find_new_front( [X-V| L], [X-V| R], Vars ) :-

	constraint( X, Y, _ ),

	member( Y, Vars ), !,

	find_new_front( L, R, Vars ).

find_new_front( [_| L], R, Vars ) :-

	find_new_front( L, R, Vars ).



update_node( Node, L, L ) :- sg_node( Node ).

update_node( Node, L, [Node|L] ) :- 

	\+ sg_node( Node ), assert( sg_node(Node) ).



/*------------------------------------------------------------------------*/



report :-	write('Solutions:'), nl,

	sg_arc( [], Node, Label ),

	trace_sg_arcs( Node, [Label], Solution ), 

	write( Solution ), nl,

	fail.

report :- write('****'), nl.



trace_sg_arcs( [], Solution, Solution ).

trace_sg_arcs( Node, CL, Solution ) :-

	Node \== [],

	sg_arc( Node, Node1, Label ),

	trace_sg_arcs( Node1, [Label| CL], Solution ).



/*------------------------------------------------------------------------*/

/* 	An example problem:

variable( w ). variable( x ). variable( y ). variable( z ).

domain( w, [1,2,3] ). domain( x, [1,2,3] ). domain( y, [1,2,3] ). domain( z, [1,2,3] ).

constraint( w, x, [1/2,1/3,2/3] ).

constraint( w, y, [1/2,1/3,2/3] ).

constraint( x, z, [1/1,1/2,1/3,2/2,2/3,3/3] ).

constraint( y, z, [1/1,1/2,1/3,2/2,2/3,3/3] ).

constraint( x, w, [2/1,3/1,3/2] ).

constraint( y, w, [2/1,3/1,3/2] ).

constraint( z, x, [1/1,2/1,3/1,2/2,3/2,3/3] ).

constraint( z, y, [1/1,2/1,3/1,2/2,3/2,3/3] ).

/*========================================================*/

/*========================================================

Program 9.3	:	ab.plg
Subject		:	Essex Solution Synthesis algorithm AB applied to the N-queens problem 
Notes		:	The data structure used throughout the program is a list of:

				[Vars]-[[Val_1], [Val_2], ..., [Val_n]]

			where Vars is a list of variable, each of Val_1, 
Val_2, ..., Val_n is a list of values for the variables in Vars.

========================================================*/

/*

	queens(N, R)

	N 		a number specifying how many queens to use

	R 		a solution for the N-queens problem

	Problem		List of [Var]-[[Val_1], [Val_2], ..., [Val_n]]

*/

queens(N, R) :-

	range(N, L),

	setup_candidate_lists(N, L, Problem),

	syn(Problem, R),

	report(R).



/*------------------------------------------------------------------------*/

/*

	range(N, List)

	Given a number N, range creates the List: 

		[[1], [2], ..., [N - 1], [N]]

*/

range(N, R) :- range(N, R, []).



range(0, L, L).

range(N, R, L) :- N > 0, N1 is N - 1, range(N1, R, [[N]|L]).



/*	

	setup_candidate_lists(N, L, Candidates)

	Given a number N, and a list L, return as the 3rd argument the Candi-
dates:

		[[1]-L, [2]-L, ..., [N - 1]-L, [N]-L]

	L is the list of all possible values that each queen can take.

*/

setup_candidate_lists(N, L, Result) :- 

	setup_candidate_lists(N, L, Result, []).



setup_candidate_lists(0, _, R, R).

setup_candidate_lists(N, L, R, Temp) :-

	N > 0, N1 is N - 1,

	setup_candidate_lists(N1, L, R, [[N]-L| Temp]).



/*------------------------------------------------------------------------*/

/*

	(predicates in this section are domain independent, 

	except for "compatible_values/2")



	syn(Nodes, Solution)

	Given: Nodes [Vars]-[CompoundLabels]

	where both Vars and CompoundLabels are lists. 

	e.g. one of the nodes of order 2 in Nodes could be:

		[1,2]-[[1,2], [1,3], [2,2], [2,4]]

	if this list is combined with another node:

		[2,3]-[[1,2], [1,3], [2,2], [2,4]]

	in Nodes, one should get the following node of order 3:

		[1,2,3]-[[1,2,2], [1,2,4], [2,2,2], [2,2,4]]

*/

syn([Solution], Solution).

syn(Nodes, Solution) :-

	Nodes \= [_],

	Nodes = [Vars-_|_], 

	length(Vars, Len),

	writeln(['Nodes of order ',Len,': ',nl,indented_list(Nodes)]),

	syn_nodes_of_current_order(Nodes, Temp),

	syn(Temp, Solution).



syn_nodes_of_current_order([N1,N2|L], [N3| Solution]) :-

	combine(N1, N2, N3), !,

	syn_nodes_of_current_order([N2|L], Solution).

syn_nodes_of_current_order(_, []).

	

combine([X|_]-Values1, X2-Values2, [X|X2]-CombinedValues) :-

	last(X2, Y),

	bagof(V, compatible_values(X, Y, Values1, Values2, V), CombinedVal-
ues).

combine([X|L1]-Values1, X2-Values2, [X|X2]-[]) :-

	nl, writeln(['** No value satisfies all variables ',[X|X2],'!!']), 

	writeln(['Values for ',[X|L1],' are: ',Values1]), 

	writeln(['Values for ',X2,' are: ',Values2]).



compatible_values(X, Y, Values1, Values2, [Vx|V2]) :-

	member([Vx|V1], Values1),

	member(V2, Values2),

	append(V1, Tail, V2),

	last(Tail, Vy),

	compatible(X-Vx, Y-Vy).



compatible(X-Vx, Y-Vy):-

	Vx =\= Vy,

	Vy-Vx =\= Y-X,

	Vy-Vx =\= X-Y.



/*------------------------------------------------------------------------*/

/*	Reporting -- not the core of this program

*/

report(_-[]).

report(Vars-[H| L]) :-

	write('Solution: ('),

	report_aux( Vars, H ),

	report(Vars-L).



report_aux( [], [] ) :- write(')'), nl.

report_aux( [X1|Xs], [V1|Vs] ) :-

	write(X1), write('/'), write(V1), 

	(Xs == []; write(', ')), !,

	report_aux( Xs, Vs ).



/*------------------------------------------------------------------------*/



writeln([]) :- nl.

writeln([nl|L]) :- !, nl, writeln(L).

writeln([indented_list(H)|L]) :-

	!, indented_list(H), 

	writeln(L).

writeln([H|L]) :- write(H), writeln(L).



indented_list([]).

indented_list([H|L]) :- write(H), nl, indented_list(L).



member(X, [X|_]).

member(X, [_|L]) :- member(X,L).



append([], L, L).

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).



last([X], X).

last([_|L], X) :- last(L, X).



/*========================================================*/

/*========================================================

Program 9.4	:	ap.plg
Subject		:	Essex Solution Synthesis algorithm AP applied to 
the N-queens problem. This program is modified from ab.plg to allow local propagation 
Notes		:	The following data structure is being used:

			      ListOfVariables-ListOfCompoundLabels

			e.g.:	[1,2]-[[1,3],[1,4],[2,4],[3,1],[4,1],[4,2]]

========================================================*/

/*

	queens(N, R)

	N 		a number specifying how many queens to use

	R 		a solution for the N-queens problem

*/

queens(N, R) :-

	range(N, L),

	setup_candidate_lists(N, L, Problem),

	syn(Problem, R),

	report(R).



/*------------------------------------------------------------------------*/

/*

	range(N, List)

	Given a number N, range creates the List: 

		[[1], [2], ..., [N - 1], [N]]

*/

range(N, R) :- range(N, R, []).



range(0, L, L).

range(N, R, L) :- N > 0, N1 is N - 1, range(N1, R, [[N]|L]).



/*	

	setup_candidate_lists(N, L, Candidates)

	Given a number N and a list L, return as the 3rd argument the Candidates:

		[[1]-L, [2]-L, ..., [N - 1]-L, [N]-L]

	L is the list of all possible values that each queen can take.

*/

setup_candidate_lists(N, L, Result) :- 

	setup_candidate_lists(N, L, Result, []).



setup_candidate_lists(0, _, R, R).

setup_candidate_lists(N, L, R, Temp) :-

	N > 0, N1 is N - 1,

	setup_candidate_lists(N1, L, R, [[N]-L| Temp]).



/*------------------------------------------------------------------------*/



	syn(Nodes, Solution)

	(this predicate is domain independent, except for "allowed")

	Given: Nodes [Vars]-[CompoundLabels] where both Vars and Com-
poundLabels are lists; e.g. one of the nodes of order 2 in Nodes could be:

		[1,2]-[[1,2], [1,3], [2,2], [2,4]]

	if this list is combined with another node:

		[2,3]-[[1,2], [1,3], [2,2], [2,4]]

	in Nodes, one should get the following node of order 3:

		[1,2,3]-[[1,2,2], [1,2,4], [2,2,2], [2,2,4]]

*/

syn([Solution], Solution).

syn(Nodes, Solution) :-

	Nodes = [Vars-_|L], L\==[],

	length(Vars, Len), 

	writeln(['Nodes of order ',Len,': ',nl,indented_list(Nodes)]),

	syn_aux(Nodes, Temp),

	syn(Temp, Solution), !.





syn_aux([N1,N2|L], [N3| Solution]) :-

	combine(N1, N2, N3),

	(L==[], N2=NewN2; L\==[], downward_constrain(N2, N3, NewN2)),

	syn_aux([NewN2|L], Solution).

syn_aux(_, []) .



combine([X|_]-Values1, X2-Values2, [X|X2]-CombinedValues) :-

	last(X2, Y),

	bagof(V, allowed_values(X, Y, Values1, Values2, V), CombinedValues), 
!.

combine([X|L1]-Values1, X2-Values2, [X1|X2]-[]) :-

	nl, writeln(['** No value satisfies all variables ',[X|X2],'!!']), 

	writeln(['Values for ',[X|L1],' are: ',Values1]), 

	writeln(['Values for ',X2,' are: ',Values2]).



allowed_values(X, Y, Values1, Values2, [Vx|V2]) :-

	member([Vx|V1], Values1),

	member(V2, Values2),

	append(V1, Tail, V2),

	last(Tail, Vy),

	allowed(X-Vx, Y-Vy).



/*

	domain dependent predicates:

*/

allowed(X-Vx, Y-Vy):-

	Vx =\= Vy,

	Vy-Vx =\= Y-X,

	Vy-Vx =\= X-Y.



/*

	downward_constrain(X2-V2, X3-V3, X2-NewV2)

*/

downward_constrain(X2-V2, X3-V3, X2-NewV2) :-

	downward_constrain(V2, V3, NewV2),

	(V2 == NewV2;

	 V2 \== NewV2, length(V2, M), length(NewV2,N), P is M - N,

	 writeln(['** Node ',X3,'-',V3,' reduces ',P,

	 ' elements from node ', X2, nl,V2,' --> ',NewV2,nl])

	).



downward_constrain([], CombinedValues, []).

downward_constrain([H|L], CombinedValues, [H|R]) :-

	member_chk([_|H], CombinedValues), !,

	downward_constrain(L, CombinedValues, R).

downward_constrain([H|L], CombinedValues, R) :-

	downward_constrain(L, CombinedValues, R).



/*------------------------------------------------------------------------*/



/*	Reporting -- not the core of the program

*/

report(_-[]).

report(Vars-[H| L]) :- writeln(['Solution: ',Vars,'-',H]), report(Vars-L).



writeln([]) :- nl.

writeln([nl|L]) :- nl, !, writeln(L).

writeln([indented_list(H)|L]) :-

	indented_list(H), !,

	writeln(L).

writeln([H|L]) :- write(H), writeln(L).



indented_list([]).

indented_list([H|L]) :- write(H), nl, indented_list(L).



member(X, [X|_]).

member(X, [_|L]) :- member(X,L).



append([], L, L).

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).



last([X], X).

last([_|L], X) :- L\==[], last(L, X).



member_chk(H, [H|_]).

member_chk(H, [A|L]) :- H \= A, member_chk(H, L).



/*========================================================*/





