

bash Cookbook ™

Carl Albing, JP Vossen, and Cameron Newham

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

bash Cookbook™

by Carl Albing, JP Vossen, and Cameron Newham

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Laurel R.T. Ruma
Copyeditor: Derek Di Matteo
Production Services: Tolman Creek Design

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

May 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. bash Cookbook, the image of a wood turtle, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN 10: 0-596-52678-4

ISNB 13: 978-0-596-52678-8

[M]

iii

Table of Contents

Preface . xiii

1. Beginning bash . 1
1.1 Decoding the Prompt 4
1.2 Showing Where You Are 5
1.3 Finding and Running Commands 6
1.4 Getting Information About Files 8
1.5 Showing All Hidden (dot) Files in the Current Directory 10
1.6 Using Shell Quoting 12
1.7 Using or Replacing Built-ins and External Commands 13
1.8 Determining If You Are Running Interactively 15
1.9 Setting bash As Your Default Shell 16
1.10 Getting bash for Linux 17
1.11 Getting bash for xBSD 20
1.12 Getting bash for Mac OS X 21
1.13 Getting bash for Unix 22
1.14 Getting bash for Windows 23
1.15 Getting bash Without Getting bash 24
1.16 Learning More About bash Documentation 25

2. Standard Output . 28
2.1 Writing Output to the Terminal/Window 29
2.2 Writing Output but Preserving Spacing 30
2.3 Writing Output with More Formatting Control 31
2.4 Writing Output Without the Newline 32
2.5 Saving Output from a Command 33
2.6 Saving Output to Other Files 34

iv | Table of Contents

2.7 Saving Output from the ls Command 35
2.8 Sending Both Output and Error Messages to Different Files 37
2.9 Sending Both Output and Error Messages to the Same File 37
2.10 Appending Rather Than Clobbering Output 39
2.11 Using Just the Beginning or End of a File 39
2.12 Skipping a Header in a File 40
2.13 Throwing Output Away 41
2.14 Saving or Grouping Output from Several Commands 41
2.15 Connecting Two Programs by Using Output As Input 43
2.16 Saving a Copy of Output Even While Using It As Input 44
2.17 Connecting Two Programs by Using Output As Arguments 46
2.18 Using Multiple Redirects on One Line 47
2.19 Saving Output When Redirect Doesn’t Seem to Work 48
2.20 Swapping STDERR and STDOUT 50
2.21 Keeping Files Safe from Accidental Overwriting 52
2.22 Clobbering a File on Purpose 53

3. Standard Input . 55
3.1 Getting Input from a File 55
3.2 Keeping Your Data with Your Script 56
3.3 Preventing Weird Behavior in a Here-Document 57
3.4 Indenting Here-Documents 59
3.5 Getting User Input 60
3.6 Getting Yes or No Input 61
3.7 Selecting from a List of Options 64
3.8 Prompting for a Password 65

4. Executing Commands . 67
4.1 Running Any Executable 67
4.2 Telling If a Command Succeeded or Not 69
4.3 Running Several Commands in Sequence 71
4.4 Running Several Commands All at Once 72
4.5 Deciding Whether a Command Succeeds 74
4.6 Using Fewer if Statements 75
4.7 Running Long Jobs Unattended 76
4.8 Displaying Error Messages When Failures Occur 77
4.9 Running Commands from a Variable 78
4.10 Running All Scripts in a Directory 79

Table of Contents | v

5. Basic Scripting: Shell Variables . 80
5.1 Documenting Your Script 82
5.2 Embedding Documentation in Shell Scripts 83
5.3 Promoting Script Readability 85
5.4 Separating Variable Names from Surrounding Text 86
5.5 Exporting Variables 87
5.6 Seeing All Variable Values 89
5.7 Using Parameters in a Shell Script 90
5.8 Looping Over Arguments Passed to a Script 91
5.9 Handling Parameters with Blanks 92
5.10 Handling Lists of Parameters with Blanks 94
5.11 Counting Arguments 96
5.12 Consuming Arguments 98
5.13 Getting Default Values 99
5.14 Setting Default Values 100
5.15 Using null As a Valid Default Value 101
5.16 Using More Than Just a Constant String for Default 102
5.17 Giving an Error Message for Unset Parameters 103
5.18 Changing Pieces of a String 105
5.19 Using Array Variables 106

6. Shell Logic and Arithmetic . 108
6.1 Doing Arithmetic in Your Shell Script 108
6.2 Branching on Conditions 111
6.3 Testing for File Characteristics 114
6.4 Testing for More Than One Thing 117
6.5 Testing for String Characteristics 118
6.6 Testing for Equal 119
6.7 Testing with Pattern Matches 121
6.8 Testing with Regular Expressions 122
6.9 Changing Behavior with Redirections 125
6.10 Looping for a While 126
6.11 Looping with a read 128
6.12 Looping with a Count 130
6.13 Looping with Floating-Point Values 131
6.14 Branching Many Ways 132
6.15 Parsing Command-Line Arguments 134
6.16 Creating Simple Menus 137

vi | Table of Contents

6.17 Changing the Prompt on Simple Menus 138
6.18 Creating a Simple RPN Calculator 139
6.19 Creating a Command-Line Calculator 142

7. Intermediate Shell Tools I . 144
7.1 Sifting Through Files for a String 145
7.2 Getting Just the Filename from a Search 147
7.3 Getting a Simple True/False from a Search 148
7.4 Searching for Text While Ignoring Case 149
7.5 Doing a Search in a Pipeline 149
7.6 Paring Down What the Search Finds 151
7.7 Searching with More Complex Patterns 152
7.8 Searching for an SSN 153
7.9 Grepping Compressed Files 154
7.10 Keeping Some Output, Discarding the Rest 155
7.11 Keeping Only a Portion of a Line of Output 156
7.12 Reversing the Words on Each Line 157
7.13 Summing a List of Numbers 158
7.14 Counting String Values 159
7.15 Showing Data As a Quick and Easy Histogram 161
7.16 Showing a Paragraph of Text After a Found Phrase 163

8. Intermediate Shell Tools II . 165
8.1 Sorting Your Output 165
8.2 Sorting Numbers 166
8.3 Sorting IP Addresses 167
8.4 Cutting Out Parts of Your Output 170
8.5 Removing Duplicate Lines 171
8.6 Compressing Files 172
8.7 Uncompressing Files 174
8.8 Checking a tar Archive for Unique Directories 175
8.9 Translating Characters 176
8.10 Converting Uppercase to Lowercase 177
8.11 Converting DOS Files to Linux Format 178
8.12 Removing Smart Quotes 179
8.13 Counting Lines, Words, or Characters in a File 180
8.14 Rewrapping Paragraphs 181
8.15 Doing More with less 181

Table of Contents | vii

9. Finding Files: find, locate, slocate . 184
9.1 Finding All Your MP3 Files 184
9.2 Handling Filenames Containing Odd Characters 186
9.3 Speeding Up Operations on Found Files 187
9.4 Finding Files Across Symbolic Links 188
9.5 Finding Files Irrespective of Case 188
9.6 Finding Files by Date 189
9.7 Finding Files by Type 191
9.8 Finding Files by Size 192
9.9 Finding Files by Content 192
9.10 Finding Existing Files and Content Fast 194
9.11 Finding a File Using a List of Possible Locations 195

10. Additional Features for Scripting . 199
10.1 “Daemon-izing” Your Script 199
10.2 Reusing Code with Includes and Sourcing 200
10.3 Using Configuration Files in a Script 202
10.4 Defining Functions 203
10.5 Using Functions: Parameters and Return Values 205
10.6 Trapping Interrupts 207
10.7 Redefining Commands with alias 211
10.8 Avoiding Aliases, Functions 213

11. Working with Dates and Times . 216
11.1 Formatting Dates for Display 217
11.2 Supplying a Default Date 218
11.3 Automating Date Ranges 220
11.4 Converting Dates and Times to Epoch Seconds 222
11.5 Converting Epoch Seconds to Dates and Times 223
11.6 Getting Yesterday or Tomorrow with Perl 224
11.7 Figuring Out Date and Time Arithmetic 225
11.8 Handling Time Zones, Daylight Saving Time, and Leap Years 227
11.9 Using date and cron to Run a Script on the Nth Day 228

12. End-User Tasks As Shell Scripts . 230
12.1 Starting Simple by Printing Dashes 230
12.2 Viewing Photos in an Album 232
12.3 Loading Your MP3 Player 237
12.4 Burning a CD 242
12.5 Comparing Two Documents 244

viii | Table of Contents

13. Parsing and Similar Tasks . 248
13.1 Parsing Arguments for Your Shell Script 248
13.2 Parsing Arguments with Your Own Error Messages 251
13.3 Parsing Some HTML 253
13.4 Parsing Output into an Array 255
13.5 Parsing Output with a Function Call 256
13.6 Parsing Text with a read Statement 257
13.7 Parsing with read into an Array 258
13.8 Getting Your Plurals Right 259
13.9 Taking It One Character at a Time 260
13.10 Cleaning Up an SVN Source Tree 261
13.11 Setting Up a Database with MySQL 262
13.12 Isolating Specific Fields in Data 264
13.13 Updating Specific Fields in Data Files 266
13.14 Trimming Whitespace 268
13.15 Compressing Whitespace 271
13.16 Processing Fixed-Length Records 273
13.17 Processing Files with No Line Breaks 275
13.18 Converting a Data File to CSV 277
13.19 Parsing a CSV Data File 278

14. Writing Secure Shell Scripts . 280
14.1 Avoiding Common Security Problems 282
14.2 Avoiding Interpreter Spoofing 283
14.3 Setting a Secure $PATH 283
14.4 Clearing All Aliases 285
14.5 Clearing the Command Hash 286
14.6 Preventing Core Dumps 287
14.7 Setting a Secure $IFS 287
14.8 Setting a Secure umask 288
14.9 Finding World-Writable Directories in Your $PATH 289
14.10 Adding the Current Directory to the $PATH 291
14.11 Using Secure Temporary Files 292
14.12 Validating Input 296
14.13 Setting Permissions 298
14.14 Leaking Passwords into the Process List 299
14.15 Writing setuid or setgid Scripts 300
14.16 Restricting Guest Users 301
14.17 Using chroot Jails 303

Table of Contents | ix

14.18 Running As a Non-root User 305
14.19 Using sudo More Securely 305
14.20 Using Passwords in Scripts 307
14.21 Using SSH Without a Password 308
14.22 Restricting SSH Commands 316
14.23 Disconnecting Inactive Sessions 318

15. Advanced Scripting . 320
15.1 Finding bash Portably for #! 321
15.2 Setting a POSIX $PATH 322
15.3 Developing Portable Shell Scripts 324
15.4 Testing Scripts in VMware 326
15.5 Using for Loops Portably 327
15.6 Using echo Portably 329
15.7 Splitting Output Only When Necessary 332
15.8 Viewing Output in Hex 333
15.9 Using bash Net-Redirection 334
15.10 Finding My IP Address 335
15.11 Getting Input from Another Machine 340
15.12 Redirecting Output for the Life of a Script 342
15.13 Working Around “argument list too long” Errors 343
15.14 Logging to syslog from Your Script 345
15.15 Sending Email from Your Script 345
15.16 Automating a Process Using Phases 348

16. Configuring and Customizing bash . 352
16.1 bash Startup Options 353
16.2 Customizing Your Prompt 353
16.3 Change Your $PATH Permanently 361
16.4 Change Your $PATH Temporarily 362
16.5 Setting Your $CDPATH 367
16.6 Shortening or Changing Command Names 369
16.7 Adjusting Shell Behavior and Environment 371
16.8 Adjusting readline Behavior Using .inputrc 371
16.9 Keeping a Private Stash of Utilities
by Adding ~/bin 373
16.10 Using Secondary Prompts: $PS2, $PS3, $PS4 374
16.11 Synchronizing Shell History Between Sessions 376
16.12 Setting Shell History Options 377

x | Table of Contents

16.13 Creating a Better cd Command 380
16.14 Creating and Changing into a New Directory in One Step 381
16.15 Getting to the Bottom of Things 383
16.16 Adding New Features to bash Using Loadable Built-ins 384
16.17 Improving Programmable Completion 389
16.18 Using Initialization Files Correctly 394
16.19 Creating Self-Contained, Portable RC Files 398
16.20 Getting Started with a Custom Configuration 400

17. Housekeeping and Administrative Tasks . 411
17.1 Renaming Many Files 411
17.2 Using GNU Texinfo and Info on Linux 413
17.3 Unzipping Many ZIP Files 414
17.4 Recovering Disconnected Sessions Using screen 415
17.5 Sharing a Single bash Session 417
17.6 Logging an Entire Session or Batch Job 418
17.7 Clearing the Screen When You Log Out 420
17.8 Capturing File Metadata for Recovery 421
17.9 Creating an Index of Many Files 422
17.10 Using diff and patch 422
17.11 Counting Differences in Files 426
17.12 Removing or Renaming Files Named with Special Characters 428
17.13 Prepending Data to a File 429
17.14 Editing a File in Place 432
17.15 Using sudo on a Group of Commands 434
17.16 Finding Lines in One File But Not in the Other 436
17.17 Keeping the Most Recent N Objects 439
17.18 Grepping ps Output Without Also Getting the grep Process Itself 442
17.19 Finding Out Whether a Process Is Running 443
17.20 Adding a Prefix or Suffix to Output 444
17.21 Numbering Lines 446
17.22 Writing Sequences 448
17.23 Emulating the DOS Pause Command 450
17.24 Commifying Numbers 450

18. Working Faster by Typing Less . 453
18.1 Moving Quickly Among Arbitrary Directories 453
18.2 Repeating the Last Command 455
18.3 Running Almost the Same Command 456

Table of Contents | xi

18.4 Substituting Across Word Boundaries 457
18.5 Reusing Arguments 458
18.6 Finishing Names for You 459
18.7 Playing It Safe 460

19. Tips and Traps: Common Goofs for Novices . 462
19.1 Forgetting to Set Execute Permissions 462
19.2 Fixing “No such file or directory” Errors 463
19.3 Forgetting That the Current Directory Is Not in the $PATH 465
19.4 Naming Your Script Test 466
19.5 Expecting to Change Exported Variables 467
19.6 Forgetting Quotes Leads to “command not found” on Assignments 468
19.7 Forgetting That Pattern Matching Alphabetizes 470
19.8 Forgetting That Pipelines Make Subshells 470
19.9 Making Your Terminal Sane Again 473
19.10 Deleting Files Using an Empty Variable 474
19.11 Seeing Odd Behavior from printf 474
19.12 Testing bash Script Syntax 476
19.13 Debugging Scripts 477
19.14 Avoiding “command not found” When Using Functions 479
19.15 Confusing Shell Wildcards and Regular Expressions 480

A. Reference Lists . 482
bash Invocation 482
Prompt String Customizations 483
ANSI Color Escape Sequences 484
Built-in Commands and Reserved Words 485
Built-in Shell Variables 487
set Options 491
shopt Options 492
Adjusting Shell Behavior Using set, shopt, and Environment Variables 494
Test Operators 505
I/O Redirection 506
echo Options and Escape Sequences 508
printf 509
Date and Time String Formatting with strftime 513
Pattern-Matching Characters 514
extglob Extended Pattern-Matching Operators 515
tr Escape Sequences 515

xii | Table of Contents

Readline Init File Syntax 516
emacs Mode Commands 518
vi Control Mode Commands 520
Table of ASCII Values 522

B. Examples Included with bash . 524
Startup-Files Directory Examples 524

C. Command-Line Processing . 532
Command-Line Processing Steps 532

D. Revision Control . 538
CVS 539
Subversion 545
RCS 550
Other 557

E. Building bash from Source . 559
Obtaining bash 559
Unpacking the Archive 559
What’s in the Archive 560
Who Do I Turn To? 564

Index . 567

xiii

Preface1

Every modern operating system has at least one shell and some have many. Some
shells are command-line oriented, such as the shell discussed in this book. Others are
graphical, like Windows Explorer or the Macintosh Finder. Some users will interact
with the shell only long enough to launch their favorite application, and then never
emerge from that until they log off. But most users spend a significant amount of
time using the shell. The more you know about your shell, the faster and more pro-
ductive you can be.

Whether you are a system administrator, a programmer, or an end user, there are
certainly occasions where a simple (or perhaps not so simple) shell script can save
you time and effort, or facilitate consistency and repeatability for some important
task. Even using an alias to change or shorten the name of a command you use often
can have a significant effect. We’ll cover this and much more.

As with any general programming language, there is more than one way to do a given
task. In some cases, there is only one best way, but in most cases there are at least
two or three equally effective and efficient ways to write a solution. Which way you
choose depends on your personal style, creativity, and familiarity with different com-
mands and techniques. This is as true for us as authors as it is for you as the reader.
In most cases we will choose a single method and implement it. In a few cases we
may choose a particular method and explain why we think it’s the best. We may also
occasionally show more than one equivalent solution so you can choose the one that
best fits your needs and environment.

There is also sometimes a choice between a clever way to write some code, and a
readable way. We will choose the readable way every time because experience has
taught us that no matter how transparent you think your clever code is now, six or
eighteen months and 10 projects from now, you will be scratching your head asking
yourself what you were thinking. Trust us, write clear code, and document it—you’ll
thank yourself (and us) later.

xiv | Preface

Who Should Read This Book
This book is for anyone who uses a Unix or Linux system, as well as system adminis-
trators who may use several systems on any given day. With it, you will be able to
create scripts that allow you to accomplish more, in less time, more easily, consis-
tently, and repeatably than ever before.

Anyone? Yes. New users will appreciate the sections on automating repetitive tasks,
making simple substitutions, and customizing their environment to be more friendly
and perhaps behave in more familiar ways. Power users and administrators will find
new and different solutions to common tasks and challenges. Advanced users will
have a collection of techniques they can use at a moment’s notice to put out the lat-
est fire, without having to remember every little detail of syntax.

Ideal readers include:

• New Unix or Linux users who don’t know much about the shell, but want to do
more than point and click

• Experienced Unix or Linux users and system administrators looking for quick
answers to shell scripting questions

• Programmers who work in a Unix or Linux (or even Windows) environment and
want to be more productive

• New Unix or Linux sysadmins, or those coming from a Windows environment
who need to come up to speed quickly

• Experienced Windows users and sysadmins who want a more powerful script-
ing environment

This book will only briefly cover basic and intermediate shell scripting—see Learn-
ing the bash Shell by Cameron Newham (O’Reilly) and Classic Shell Scripting by
Nelson H.F. Beebe and Arnold Robbins (O’Reilly) for more in-depth coverage.
Instead, our goal is to provide solutions to common problems, with a strong focus
on the “how to” rather than the theory. We hope this book will save you time when
figuring out solutions or trying to remember syntax. In fact, that’s why we wrote this
book. It’s one we wanted to read through to get ideas, then refer to practical work-
ing examples when needed. That way we don’t have to remember the subtle differ-
ences between the shell, Perl, C, and so forth.

This book assumes you have access to a Unix or Linux system (or see Recipe 1.15,
“Getting bash Without Getting bash” and Recipe 15.4, “Testing Scripts in VMware”)
and are familiar with logging in, typing basic commands, and using a text editor. You
do not have to be root to use the vast majority of the recipes, though there are a few,
particularly dealing with installing bash, where root access will be needed.

Preface | xv

About This Book
This book covers bash, the GNU Bourne Again Shell, which is a member of the
Bourne family of shells that includes the original Bourne shell sh, the Korn shell ksh,
and the Public Domain Korn Shell pdksh. While these and other shells such as dash,
and zsh are not specifically covered, odds are that most of the scripts will work pretty
well with them.

You should be able to read this book cover to cover, and also just pick it up and read
anything that catches your eye. But perhaps most importantly, we hope that when
you have a question about how to do something or you need a hint, you will be able
to easily find the right answer—or something close enough—and save time and
effort.

A great part of the Unix philosophy is to build simple tools that do one thing well,
then combine them as needed. This combination of tools is often accomplished via a
shell script because these commands, called pipelines, can be long or difficult to
remember and type. Where appropriate, we’ll cover the use of many of these tools in
the context of the shell script as the glue that holds the pieces together to achieve the
goal.

This book was written using OpenOffice.org Writer running on whatever Linux or
Windows machine happened to be handy, and kept in Subversion (see Appendix D).
The nature of the Open Document Format facilitated many critical aspects of writ-
ing this book, including cross-references and extracting code see Recipe 13.17, “Pro-
cessing Files with No Line Breaks.”

GNU Software
bash, and many of the tools we discuss in this book, are part of the GNU Project
(http://www.gnu.org/). GNU (pronounced guh-noo, like canoe) is a recursive acro-
nym for “GNU’s Not Unix” and the project dates back to 1984. Its goal is to develop
a free (as in freedom) Unix-like operating system.

Without getting into too much detail, what is commonly referred to as Linux is, in
fact, a kernel with various supporting software as a core. The GNU tools are wrapped
around it and it has a vast array of other software possibly included, depending on
your distribution. However, the Linux kernel itself is not GNU software.

The GNU project argues that Linux should in fact be called “GNU/Linux” and they
have a good point, so some distributions, notably Debian, do this. Therefore GNU’s
goal has arguably been achieved, though the result is not exclusively GNU.

The GNU project has contributed a vast amount of superior software, notably
including bash, but there are GNU versions of practically every tool we discuss in
this book. And while the GNU tools are more rich in terms of features and (usually)
friendliness, they are also sometimes a little different. We discuss this in Recipe 15.3,

xvi | Preface

“Developing Portable Shell Scripts,” though the commercial Unix vendors in the
1980s and 1990s are also largely to blame for these differences.

Enough (several books this size worth) has already been said about all of these
aspects of GNU, Unix, and Linux, but we felt that this brief note was appropriate.
See http://www.gnu.org for much more on the topic.

A Note About Code Examples
When we show an executable piece of shell scripting in this book, we typically show
it in an offset area like this:

$ ls
a.out cong.txt def.conf file.txt more.txt zebra.list
$

The first character is often a dollar sign ($) to indicate that this command has been
typed at the bash shell prompt. (Remember that you can change the prompt, as in
Recipe 16.2, “Customizing Your Prompt,” so your prompt may look very different.)
The prompt is printed by the shell; you type the remainder of the line. Similarly, the
last line in such an example is often a prompt (the $ again), to show that the com-
mand has ended execution and control has returned to the shell.

The pound or hash sign (#) is a little trickier. In many Unix or Linux files, including
bash shell scripts, a leading # denotes a comment, and we have used it that way in
some out our code examples. But as the trailing symbol in a bash command prompt
(instead of $), # means you are logged in as root. We only have one example that is
running anything as root, so that shouldn’t be confusing, but it’s important to
understand.

When you see an example without the prompt string, we are showing the contents of
a shell script. For several large examples we will number the lines of the script,
though the numbers are not part of the script.

We may also occasionally show an example as a session log or a series of com-
mands. In some cases, we may cat one or more files so you can see the script and/or
data files we’ll be using in the example or in the results of our operation.

$ cat data_file
static header line1
static header line2
1 foo
2 bar
3 baz

Many of the longer scripts and functions are available to download as well. See the
end of this Preface for details. We have chosen to use #!/usr/bin/env bash for these
examples, where applicable, as that is more portable than the #!/bin/bash you will
see on Linux or a Mac. See Recipe 15.1, “Finding bash Portably for #!” for more
details.

Preface | xvii

Also, you may notice something like the following in some code examples:

cookbook filename: snippet_name

That means that the code you are reading is available for download on our site
(http://www.bashcookbook.com). The download (.tgz or .zip) is documented, but
you’ll find the code in something like ./chXX/snippet_name, where chXX is the
chapter and snippet_name is the name of the file.

Useless Use of cat
Certain Unix users take a positively giddy delight in pointing out inefficiencies in
other people’s code. Most of the time this is constructive criticism gently given and
gratefully received.

Probably the most common case is the so-called “useless use of cat award” bestowed
when someone does something like cat file | grep foo instead of simply grep foo
file. In this case, cat is unnecessary and incurs some system overhead since it runs in
a subshell. Another common case would be cat file | tr '[A-Z]' '[a-z]' instead of
tr '[A-Z]' '[a-z]' < file. Sometimes using cat can even cause your script to fail (see
Recipe 19.8, “Forgetting That Pipelines Make Subshells”).

But... (you knew that was coming, didn’t you?) sometimes unnecessarily using cat
actually does serve a purpose. It might be a placeholder to demonstrate the fragment
of a pipeline, with other commands later replacing it (perhaps even cat -n). Or it
might be that placing the file near the left side of the code draws the eye to it more
clearly than hiding it behind a < on the far right side of the page.

While we applaud efficiency and agree it is a goal to strive for, it isn’t as critical as it
once was. We are not advocating carelessness and code-bloat, we’re just saying that
processors aren’t getting any slower any time soon. So if you like cat, use it.

A Note About Perl
We made a conscious decision to avoid using Perl in our solutions as much as possi-
ble, though there are still a few cases where it makes sense. Perl is already covered
elsewhere in far greater depth and breadth than we could ever manage here. And Perl
is generally much larger, with significantly more overhead, than our solutions. There
is also a fine line between shell scripting and Perl scripting, and this is a book about
shell scripting.

Shell scripting is basically glue for sticking Unix programs together, whereas Perl
incorporates much of the functionality of the external Unix programs into the lan-
guage itself. This makes it more efficient and in some ways more portable, at the
expense of being different, and making it harder to efficiently run any external pro-
grams you still need.

xviii | Preface

The choice of which tool to use often has more to do with familiarity than with any
other reason. The bottom line is always getting the work done; the choice of tools is
secondary. We’ll show you many of ways to do things using bash and related tools.
When you need to get your work done, you get to choose what tools you use.

More Resources
• Perl Cookbook, Nathan Torkington and Tom Christiansen (O’Reilly)

• Programming Perl, Larry Wall et al. (O’Reilly)

• Perl Best Practices, Damian Conway (O’Reilly)

• Mastering Regular Expressions, Jeffrey E. F. Friedl (O’Reilly)

• Learning the bash Shell, Cameron Newham (O’Reilly)

• Classic Shell Scripting, Nelson H.F. Beebe and Arnold Robbins (O’Reilly)

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xix

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “bash Cookbook by Carl Albing, JP
Vossen, and Cameron Newham. Copyright 2007 O’Reilly Media, Inc., 978-0-596-
52678-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596526788

You can find information about this book, code samples, errata, links, bash docu-
mentation, and more at the authors’ site:

http://www.bashcookbook.com

Please drop by for a visit to learn, contribute, or chat. The authors would love to
hear from you about what you like and don’t like about the book, what bash won-
ders you may have found, or lessons you have learned.

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xx | Preface

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Thank you to the GNU Software Foundation and Brian Fox for writing bash. And
thank you to Chet Ramey, who has been maintaining and improving bash since
around version 1.14 in the early to mid-1990s. More thanks to Chet for answering
our questions and for reviewing a draft of this book.

Reviewers
Many thanks to our reviewers: Yves Eynard, Chet Ramey, William Shotts, Ryan
Waldron, and Michael Wang. They all provided valuable feedback, suggestions and
in some cases provided alternate solutions, pointed out issues we had overlooked,
and in general greatly improved the book. Any errors or omissions in this text are
ours and not theirs. An excellent example of their wisdom is the correct observation,
“that sentence doesn’t know whether it’s coming or going!”

O’Reilly
Thanks to the entire team at O’Reilly, including Mike Loukides, Derek Di Matteo,
and Laurel Ruma.

From the Authors

Carl

The writing of a book is never a solitary effort, though it has its moments. Thanks to
JP and Cameron for working on this project with me. Our complementary talents
and time schedules have made this a better book than it could have been alone.

Preface | xxi

Thanks also to JP for his great sysadmin efforts to provide us with some infrastruc-
ture. Thanks to Mike for listening to my proposal for a bash cookbook and putting
me in touch with JP and Cameron who were doing the same, for pushing us along
when we got stuck, and reining us in when we went crazy. His steady guidance and
technical input were much appreciated. My wife and children have patiently sup-
ported me through this process, giving me encouragement, motivation, as well as
time and space to work. I thank them wholeheartedly.

But deeper than the immediate task of this book was the background and prepara-
tion. I’m greatly indebted to Dr. Ralph Bjork who made it possible for me to start
working with Unix, back before almost anyone had ever heard of it. His vision, fore-
sight, and guidance have paid dividends for me longer than I would ever have
expected.

My work on this book is dedicated to my parents, Hank and Betty, who have given
me every good thing they had to offer—life itself, Christian faith, love, an excellent
education, a sense of belonging, and all those good and healthy things one hopes to
pass on to one’s own children. I can never thank them enough.

JP

Thanks to Cameron for writing Learning the bash Shell, from which I learned a lot
and which was my primary reference until I started this project, and for contributing
so much useful material from it. Thanks to Carl for all his work, without whom this
would have taken four times as long and only been half as good. Thanks to Mike for
getting the ball rolling, then keeping it rolling, and for bringing Carl on board. And
thanks to both Carl and Mike for their patience with my life and time management
issues.

This book is dedicated to Dad, who’d get a kick out of it. He always told me there
are only two decisions that matter: what you do and who you marry. I’ve managed to
get two for two, so I guess I’m doing pretty well. So this is also dedicated to Karen, for
her incredible support, patience, and understanding during this longer than expected
process and without whom even computers wouldn’t be as fun. Finally, to Kate and
Sam, who contributed greatly to my aforementioned life management issues.

Cameron

I’d like to thank both JP and Carl for their splendid work, without which this book
probably wouldn’t exist. I’d also like to thank JP for coming up with the idea of cre-
ating a bash cookbook; I’m sure he was regretting it through all those long hours at
the keyboard, but with the tome complete in his hands I’m certain that he’s glad he
took part. Lastly, I’d like to once again thank Adam.

1

Chapter 1 CHAPTER 1

Beginning bash2

What’s a shell, and why should you care about it?

Any recent computer operating system (by recent, we mean since about 1970) has
some sort of user interface—some way of specifying commands for the operating sys-
tem to execute. But in lots of operating systems, that command interface was really
built in and there was only one way to talk to the computer. Furthermore, an operat-
ing system’s command interface would let you execute commands, but that was
about all. After all, what else was there to do?

The Unix operating system popularized the notion of separating the shell (the part of
the system that lets you type commands) from everything else: the input/output sys-
tem, the scheduler, memory management, and all of the other things the operating
system takes care of for you (and that most users don’t want to care about). The shell
was just one more program; it was a program whose job was executing other pro-
grams on behalf of users.

But that was the beginning of a revolution. The shell was just another program that
ran on Unix, if you didn’t like the standard one, you could create your own. So by
the end of Unix’s first decade, there were at least two competing shells: the Bourne
Shell, sh (which was a descendant of the original Thomson shell), plus the C Shell,
csh. By the end of Unix’s second decade, there were a few more alternatives: the
Korn shell, (ksh), and the first versions of the bash shell (bash). By the end of Unix’s
third decade, there were probably a dozen different shells.

You probably don’t sit around saying “should I use csh or bash or ksh today?” You’re
probably happy with the standard shell that came with your Linux (or BSD or Mac
OS X or Solaris or HP/UX) system. But disentangling the shell from the operating
system itself made it much easier for software developers (such as Brian Fox, the cre-
ator of bash, and Chet Ramey, the current developer and maintainer of bash), to
write better shells—you could create a new shell without modifying the operating
system itself. It was much easier to get a new shell accepted, since you didn’t have to
talk some operating vendor into building the shell into their system; all you had to
do was package the shell so that it could be installed just like any other program.

2 | Chapter 1: Beginning bash

Still, that sounds like a lot of fuss for something that just takes commands and exe-
cutes them. And you would be right—a shell that just let you type commands
wouldn’t be very interesting. However, two factors drove the evolution of the Unix
shell: user convenience and programming. And the result is a modern shell that does
much more than just accept commands.

Modern shells are very convenient. For example, they remember commands that
you’ve typed, and let you re-use those commands. Modern shells also let you edit
those commands, so they don’t have to be the same each time. And modern shells let
you define your own command abbreviations, shortcuts, and other features. For an
experienced user, typing commands (e.g., with shorthand, shortcuts, command com-
pletion) is a lot more efficient and effective than dragging things around in a fancy
windowed interface.

But beyond simple convenience, shells are programmable. There are many sequences
of commands that you type again and again. Whenever you do anything a second
time, you should ask “Can’t I write a program to do this for me?” You can. A shell is
also a programming language that’s specially designed to work with your computer
system’s commands. So, if you want to generate a thousand MP3 files from WAV
files, you write a shell program (or a shell script). If you want to compress all of your
system’s logfiles, you can write a shell script to do it. Whenever you find yourself
doing a task repeatedly, you should try to automate it by writing a shell script. There
are more powerful scripting languages, like Perl, Python, and Ruby, but the Unix
shell (whatever flavor of shell you’re using) is a great place to start. After all, you
already know how to type commands; why make things more complex?

Why bash?
Why is this book about bash, and not some other shell? Because bash is everywhere.
It may not be the newest, and it’s arguably not the fanciest or the most powerful
(though if not, it comes close), nor is it the only shell that’s distributed as open
source software, but it is ubiquitous.

The reason has to do with history. The first shells were fairly good programing tools,
but not very convenient for users. The C shell added a lot of user conveniences (like
the ability to repeat a command you just typed), but as a programming language it
was quirky. The Korn shell, which came along next (in the early 80s), added a lot of
user conveniences, and improved the programming language, and looked like it was
on the path to widespread adoption. But ksh wasn’t open source software at first; it
was a proprietary software product, and was therefore difficult to ship with a free
operating system like Linux. (The Korn shell’s license was changed in 2000, and
again in 2005.)

In the late 1980s, the Unix community decided standardization was a good thing,
and the POSIX working groups (organized by the IEEE) were formed. POSIX stan-
dardized the Unix libraries and utilities, including the shell. The standard shell was

Beginning bash | 3

primarily based on the 1988 version of the Korn Shell, with some C shell features and
a bit of invention to fill in the gaps. bash was begun as part of the GNU project’s
effort to produce a complete POSIX system, which naturally needed a POSIX shell.

bash provided the programming features that shell programmers needed, plus the
conveniences that command-line users liked. It was originally conceived as an alter-
native to the Korn shell, but as the free software movement became more important,
and as Linux became more popular, bash quickly overshadowed ksh.

As a result, bash is the default user shell on every Linux distribution we know about
(there are a few hundred Linux distros, so there are probably a few with some odd-
ball default shell), as well as Mac OS X. It’s also available for just about every other
Unix operating system, including BSD Unix and Solaris. In the rare cases where bash
doesn’t ship with the operating system, it’s easy to install. It’s even available for Win-
dows (via Cygwin). It’s both a powerful programming language and a good user
interface and you won’t find yourself sacrificing keyboard shortcuts to get elaborate
programming features.

You can’t possibly go wrong by learning bash. The most common default shells are
the old Bourne shell and bash, which is mostly Bourne shell compatible. One of these
shells is certainly present on any modern, major Unix or Unix-like operating system.
And as noted, if bash isn’t present you can always install it. But there are other shells.
In the spirit of free software, the authors and maintainers of all of these shells share
ideas. If you read the bash change logs, you’ll see many places where a feature was
introduced or tweaked to match behavior on another shell. But most people won’t
care. They’ll use whatever is already there and be happy with it. So if you are inter-
ested, by all means investigate other shells. There are many good alternatives and you
may find one you like better—though it probably won’t be as ubiquitous as bash.

The bash Shell
bash is a shell: a command interpreter. The main purpose of bash (or of any shell) is
to allow you to interact with the computer’s operating system so that you can
accomplish whatever you need to do. Usually that involves launching programs, so
the shell takes the commands you type, determines from that input what programs
need to be run, and launches them for you. You will also encounter tasks that
involve a sequence of actions to perform that are recurring, or very complicated, or
both. Shell programming, usually referred to as shell scripting, allows you to auto-
mate these tasks for ease of use, reliability, and reproducibility.

In case you’re new to bash, we’ll start with some basics. If you’ve used Unix or Linux
at all, you probably aren’t new to bash—but you may not have known you were
using it. bash is really just a language for executing commands—so the commands
you’ve been typing all along (e.g., ls, cd, grep, cat) are, in a sense, bash commands.
Some of these commands are built into bash itself; others are separate programs. For
now, it doesn’t make a difference which is which.

4 | Chapter 1: Beginning bash

We’ll end this chapter with a few recipes on getting bash. Most systems come with
bash pre-installed, but a few don’t. Even if your system comes with bash, it’s always
a good idea to know how to get and install it—new versions, with new features, are
released from time to time.

If you’re already running bash, and are somewhat familiar with it, you may want to
go straight to Chapter 2. You are not likely to read this book in order, and if you dip
into the middle, you should find some recipes that demonstrate what bash is really
capable of. But first, the basics.

1.1 Decoding the Prompt

Problem
You’d like to know what all the punctuation on your screen means.

Solution
All command-line shells have some kind of prompt to alert you that the shell is ready
to accept your input. What the prompt looks like depends on many factors includ-
ing your operating system type and version, shell type and version, distribution, and
how someone else may have configured it. In the Bourne family of shells, a trailing $
in the prompt generally means you are logged in as a regular user, while a trailing #
means you are root. The root account is the administrator of the system, equivalent
to the System account on Windows (which is even more powerful than the Adminis-
trator account), or the Supervisor account on Netware. root is all-powerful and can
do anything on a typical Unix or Linux system.

Default prompts also often display the path to the directory that you are currently in;
however, they usually abbreviate it. So a ~ means you are in your home directory.
Some default prompts may also display your username and the name of the machine
you are logged into. If that seems silly now, it won’t when you’re logged into five
machines at once possibly under different usernames.

Here is a typical Linux prompt for a user named jp on a machine called adams, sit-
ting in the home directory. The trailing $ indicates this is a regular user, not root.

jp@adams:~$

Here’s the prompt after changing to the /tmp directory. Notice how ~, which really
meant /home/jp, has changed to /tmp.

jp@adams:/tmp$

Discussion
The shell’s prompt is the thing you will see most often when you work at the com-
mand line, and there are many ways to customize it more to your liking. But for now,

Showing Where You Are | 5

it’s enough to know how to interpret it. Of course, your default prompt may be dif-
ferent, but you should be able to figure out enough to get by for now.

There are some Unix or Linux systems where the power of root may be shared, using
commands like su and sudo. Or root may not even be all-powerful, if the system is
running some kind of mandatory access control (MAC) system such as the NSA’s
SELinux.

See Also
• Recipe 1.2, “Showing Where You Are”

• Recipe 14.19, “Using sudo More Securely”

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 17.15, “Using sudo on a Group of Commands”

1.2 Showing Where You Are

Problem
You are not sure what directory you are in, and the default prompt is not helpful.

Solution
Use the pwd built-in command, or set a more useful prompt (as in Recipe 16.2,
“Customizing Your Prompt”). For example:

bash-2.03$ pwd
/tmp

bash-2.03$ export PS1='[\u@\h \w]$ '
[jp@solaris8 /tmp]$

Discussion
pwd stands for print working directory and takes two options. -L displays your logi-
cal path and is the default.s displays your physical location, which may differ from
your logical path if you have followed a symbolic link.

bash-2.03$ pwd
/tmp/dir2

bash-2.03$ pwd -L
/tmp/dir2

bash-2.03$ pwd -P
/tmp/dir1

See Also
• Recipe 16.2, “Customizing Your Prompt”

6 | Chapter 1: Beginning bash

1.3 Finding and Running Commands

Problem
You need to find and run a particular command under bash.

Solution
Try the type, which, apropos, locate, slocate, find, and ls commands.

Discussion
bash keeps a list of directories in which it should look for commands in an environ-
ment variable called $PATH. The bash built-in type command searches your environ-
ment (including aliases, keywords, functions, built-ins, and files in the $PATH) for
executable commands matching its arguments and displays the type and location of
any matches. It has several arguments, notably the -a flag, which causes it to print all
matches instead of stopping at the first one. The which command is similar but only
searches your $PATH (and csh aliases). It may vary from system to system (it’s usually
a csh shell script on BSD, but a binary on Linux), and usually has a -a flag like type.
Use these commands when you know the name of a command and need to know
exactly where it’s located, or to see if it’s on this computer. For example:

$ type which
which is hashed (/usr/bin/which)

$ type ls
ls is aliased to `ls -F -h'

$ type -a ls
ls is aliased to `ls -F -h'
ls is /bin/ls

$ which which
/usr/bin/which

Almost all commands come with some form of help on how to use them. Usually
there is online documentation called manpages, where “man” is short for manual.
These are accessed using the man command, so man ls will give you documentation
about the ls command. Many programs also have a built-in help facility, accessed by
providing a “help me” argument such as -h or --help. Some programs, especially on
other operating systems, will give you help if you don’t give them arguments. Some
Unix commands will also do that, but a great many of them will not. This is due to
the way that Unix commands fit together into something called pipelines, which we’ll
cover later. But what if you don’t know or can’t remember the name of the com-
mand you need?

Finding and Running Commands | 7

apropos searches manpage names and descriptions for regular expressions supplied
as arguments. This is incredibly useful when you don’t remember the name of the
command you need. This is the same as man -k.

$ apropos music
cms (4) - Creative Music System device driver

$ man -k music
cms (4) - Creative Music System device driver

locate and slocate consult database files about the system (usually compiled and
updated by a cron job) to find files or commands almost instantly. The location of
the actual database files, what is indexed therein, and how often it is checked, may
vary from system to system. Consult your system’s manpages for details. slocate
stores permission information (in addition to filenames and paths) so that it will not
list programs to which the user does not have access. On most Linux systems, locate
is a symbolic link to slocate; other systems may have separate programs, or may not
have slocate at all.

$ locate apropos
/usr/bin/apropos
/usr/share/man/de/man1/apropos.1.gz
/usr/share/man/es/man1/apropos.1.gz
/usr/share/man/it/man1/apropos.1.gz
/usr/share/man/ja/man1/apropos.1.gz
/usr/share/man/man1/apropos.1.gz

For much more on the find command, see all of Chapter 9.

Last but not least, try using ls also. Remember if the command you wish to run is in
your current directory, you must prefix it with a ./ since the current working direc-
tory is usually not in your $PATH for security reasons (see Recipe 14.3, “Setting a
Secure $PATH” and Recipe 14.10, “Adding the Current Directory to the $PATH”).

See Also
• help type

• man which

• man apropos

• man locate

• man slocate

• man find

• man ls

• Chapter 9

• Recipe 4.1, “Running Any Executable”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

8 | Chapter 1: Beginning bash

1.4 Getting Information About Files

Problem
You need more information about a file, such as what it is, who owns it, if it’s exe-
cutable, how many hard links it has, or when it was last accessed or changed.

Solution
Use the ls, stat, file, or find commands.

$ touch /tmp/sample_file

$ ls /tmp/sample_file
/tmp/sample_file

$ ls -l /tmp/sample_file
-rw-r--r-- 1 jp jp 0 Dec 18 15:03 /tmp/sample_file

$ stat /tmp/sample_file
File: "/tmp/sample_file"
Size: 0 Blocks: 0 IO Block: 4096 Regular File
Device: 303h/771d Inode: 2310201 Links: 1
Access: (0644/-rw-r--r--) Uid: (501/ jp) Gid: (501/ jp)
Access: Sun Dec 18 15:03:35 2005
Modify: Sun Dec 18 15:03:35 2005
Change: Sun Dec 18 15:03:42 2005

$ file /tmp/sample_file
/tmp/sample_file: empty

$ file -b /tmp/sample_file
empty

$ echo '#!/bin/bash -' > /tmp/sample_file

$ file /tmp/sample_file
/tmp/sample_file: Bourne-Again shell script text executable

$ file -b /tmp/sample_file
Bourne-Again shell script text executable

For much more on the find command, see all of Chapter 9.

Getting Information About Files | 9

Discussion
The command ls shows only filenames, while ls -l provides more details about
each file. ls has many options; consult the manpage on your system for the ones it
supports. Useful options include:

-a
Do not hide files starting with . (dot)

-F
Show the type of file with one of these trailing type designators: /*@%=|

-l
Long listing

-L
Show information about the linked file, rather than the symbolic link itself

-Q
Quote names (GNU extension, not supported on all systems)

-r
Reverse sort order

-R
Recurse though subdirectories

-S
Sort by file size

-1
Short format but only one file per line

When using -F a slash (/) indicates a directory, an asterisk (*) means the file is exe-
cutable, an at sign (@) indicates a symbolic link, a percent sign (%) shows a whiteout,
an equal sign (=) is a socket, and a pipe or vertical bar (|) is a FIFO.

stat, file, and find all have many options that control the output format; see the
manpages on your system for supported options. For example, these options pro-
duce output that is similar to ls -l:

$ ls -l /tmp/sample_file
-rw-r--r-- 1 jp jp 14 Dec 18 15:04 /tmp/sample_file

$ stat -c'%A %h %U %G %s %y %n' /tmp/sample_file
-rw-r--r-- 1 jp jp 14 Sun Dec 18 15:04:12 2005 /tmp/sample_file

$ find /tmp/ -name sample_file -printf '%m %n %u %g %t %p'
644 1 jp jp Sun Dec 18 15:04:12 2005 /tmp/sample_file

Not all operating systems and versions have all of these tools. For example, Solaris
does not include stat by default.

10 | Chapter 1: Beginning bash

It is also worth pointing out that directories are nothing more than files that the
operating system knows to treat specially. So the commands above work just fine on
directories, though sometimes you may need to modify a command to get the behav-
ior you expect. For example, using ls -d to list information about the directory,
rather than just ls (listing the contents of the directory).

See Also
• man ls

• man stat

• man file

• man find

• Chapter 9

1.5 Showing All Hidden (dot) Files in the Current
Directory

Problem
You want to see only hidden (dot) files in a directory to edit a file you forget the
name of or remove obsolete files. ls -a shows all files, including normally hidden
ones, but that is often too noisy, and ls -a .* doesn’t do what you think it will.

Solution
Use ls -d along with whatever other criteria you have.

ls -d .*
ls -d .b*
ls -d .[!.]*

Or construct your wildcard in such a way that . and .. don’t match.

$ grep -l 'PATH' ~/.[!.]*
/home/jp/.bash_history
/home/jp/.bash_profile

Discussion
Due to the way the shell handles file wildcards, the sequence .* does not behave as
you might expect or desire. The way filename expansion or globbing works is that any
string containing the characters *, ?, or [is treated as a pattern, and replaced by an
alphabetically sorted list of file names matching the pattern. * matches any string,
including the null string, while ? matches any single character. Characters enclosed
in [] specify a list or range of characters, any of which will match. There are also
various extended pattern-matching operators that we’re not going to cover here (see

Showing All Hidden (dot) Files in the Current Directory | 11

“Pattern-Matching Characters” and “extglob Extended Pattern-Matching Opera-
tors” in Appendix A). So *.txt means any file ending in .txt, while *txt means any
file ending in txt (no dot). f?o would match foo or fao but not fooo. So you’d think
that .* would match any file beginning with a dot.

The problem is that .* is expanded to include . and .., which are then both dis-
played. Instead of getting just the dot files in the current directory, you get those
files, plus all the files and directories in the current directory (.), all the files and direc-
tories in the parent directory (..), and the names and contents of any subdirectories in
the current directory that start with a dot. This is very confusing, to say the least.

You can experiment with the same ls command with -d and without, then try echo .*.
The echo trick simply shows you what the shell expanded your .* to. Try echo .[!.]*
also.

.[!.]* is a filename expansion pattern where [] denotes a list of characters to
match, but the leading ! negates the list. So we are looking for a dot, followed by any
character that is not a dot, followed by any number of any characters. You may also
use ^ to negate a character class, but ! is specified in the POSIX standard and thus is
more portable.

.[!.]* will miss a file named ..foo. You could add something like .??*
to match anything starting with a dot that is also at least three charac-
ters long. But ls -d .[!.]* .??* will then display anything that
matches both patterns twice. Or you can use .??* alone, but that will
miss files like .a. Which you use depends on your needs and environ-
ment; there is no good one-size-fits-all solution.

$ ls -a
. ..foo .normal_dot_file
.. .a normal_file

$ ls -d .[!.]*
.a .normal_dot_file

$ ls -d .??*
..foo .normal_dot_file

..foo .a .normal_dot_file
normal_dot_file

$ ls -d .[!.]* .??* | sort -u
..foo
.a
.normal_dot_file

You can use echo * as an emergency substitute for ls if the ls com-
mand is corrupt or not available for some reason. This works because
* is expanded by the shell to everything in the current directory, which
results in a list similar to what you’d get with ls.

12 | Chapter 1: Beginning bash

See Also
• man ls

• http://www.gnu.org/software/coreutils/faq/#ls-_002da-_002a-does-not-list-dot-files

• Section 2.11 in http://www.faqs.org/faqs/unix-faq/faq/part2

• “Pattern Matching Characters” in Appendix A

• “extglob Extended Pattern-Matching Operators” in Appendix A

1.6 Using Shell Quoting

Problem
You need a rule of thumb for using command-line quoting.

Solution
Enclose a string in single quotes unless it contains elements that you want the shell
to interpolate.

Discussion
Unquoted text and even text enclosed in double quotes is subject to shell expansion
and substitution. Consider:

$ echo A coffee is $5?!
A coffee is ?!

$ echo "A coffee is $5?!"
-bash: !": event not found

$ echo 'A coffee is $5?!'
A coffee is $5?!

In the first example, $5 is treated as a variable to expand, but since it doesn’t exist it
is set to null. In the second example, the same is true, but we never even get there
because !" is treated as a history substitution, which fails in this case because it
doesn’t match anything in the history. The third example works as expected.

To mix some shell expansions with some literal strings you may use the shell escape
character \ or change your quoting. The exclamation point is a special case because
the preceding backslash escape character is not removed. You can work around that
by using single quotes or a trailing space as shown here.

$ echo 'A coffee is $5 for' "$USER" '?!'
A coffee is $5 for jp ?!

$ echo "A coffee is \$5 for $USER?\!"
A coffee is $5 for jp?\!

Using or Replacing Built-ins and External Commands | 13

$ echo "A coffee is \$5 for $USER?! "
A coffee is $5 for jp?!

Also, you can’t embed a single quote inside single quotes, even if using a backslash,
since nothing (not even the backslash) is interpolated inside single quotes. But you
can work around that by using double quotes with escapes, or by escaping a single
quote outside of surrounding single quotes.

We'll get a continuation prompt since we now have unbalanced quotes
$ echo '$USER won't pay $5 for coffee.'
> ^C

WRONG
$ echo "$USER won't pay $5 for coffee."
jp won't pay for coffee.

Works
$ echo "$USER won't pay \$5 for coffee."
jp won't pay $5 for coffee.

Also works
$ echo 'I won'\''t pay $5 for coffee.'
I won't pay $5 for coffee.

See Also
• Chapter 5 for more about shell variable and the $VAR syntax

• Chapter 18 for more about ! and the history commands

1.7 Using or Replacing Built-ins and External
Commands

Problem
You want to replace a built-in command with your own function or external com-
mand, and you need to know exactly what your script is executing (e.g., /bin/echo or
the built-in echo). Or you’ve created a new command and it may be conflicting with
an existing external or built-in command.

Solution
Use the type and which commands to see if a given command exists and whether it is
built-in or external.

type cd
cd is a shell builtin

type awk
awk is /bin/awk

14 | Chapter 1: Beginning bash

which cd
/usr/bin/which: no cd in (/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/
sbin:/usr/bin/X11:/usr/X11R6/bin:/root/bin)

which awk
/bin/awk

Discussion
A built-in command is just that; it is built into the shell itself, while an external com-
mand is an external file launched by the shell. The external file may be a binary, or it
may be a shell script itself, and its important to understand the difference for a cou-
ple of reasons. First, when you are using a given version of a particular shell, built-ins
will always be available but external programs may or may not be installed on a par-
ticular system. Second, if you give one of your own programs the same name as a
built-in, you will be very confused about the results since the built-in will always take
precedence (see Recipe 19.4, “Naming Your Script Test”). It is possible to use the
enable command to turn built-in commands off and on, though we strongly recom-
mend against doing so unless you are absolutely sure you understand what you are
doing. enable -a will list all built-ins and their enabled or disabled status.

One problem with built-in commands is that you generally can’t use a -h or --help
option to get usage reminders, and if a manpage exists it’s often just a pointer to the
large bash manpage. That’s where the help command, which is itself a built-in,
comes in handy. help displays help about shell built-ins.

help help
help: help [-s] [pattern ...]
 Display helpful information about builtin commands. If PATTERN is
 specified, gives detailed help on all commands matching PATTERN,
 otherwise a list of the builtins is printed. The -s option
 restricts the output for each builtin command matching PATTERN to
 a short usage synopsis.

When you need to redefine a built-in you use the builtin command to avoid loops.
For example:

cd () {
 builtin cd "$@"
 echo "$OLDPWD --> $PWD"
}

To force the use of an external command instead of any function or built-in that
would otherwise have precedence, use enable -n, which turns off shell built-ins, or
command, which ignores shell functions. For example, to use the test found in $PATH
instead of the shell built-in version, type enable -n test and then run test. Or, use
command ls to use the native ls command rather than any ls function you may have
created.

Determining If You Are Running Interactively | 15

See Also
• man which

• help help

• help builtin

• help command

• help enable

• help type

• Recipe 19.4, “Naming Your Script Test”

• “Built-in Shell Variables” in Appendix A

1.8 Determining If You Are Running Interactively

Problem
You have some code you want to run only if you are (or are not) running interactively.

Solution
Use the following case statement:

#!/usr/bin/env bash
cookbook filename: interactive

case "$-" in
 i) # Code for interactive shell here
 ;;
 *) # Code for non-interactive shell here
 ;;
esac

Discussion
$- is a string listing of all the current shell option flags. It will contain i if the shell is
interactive.

You may also see code like the following (this will work, but the solution above is the
preferred method):

if ["$PS1"]; then
 echo This shell is interactive
else
 echo This shell is not interactive
fi

16 | Chapter 1: Beginning bash

See Also
• help case

• help set

• Recipe 6.14, “Branching Many Ways,” for more explanation of the case statement

1.9 Setting bash As Your Default Shell

Problem
You’re using a BSD system, Solaris, or some other Unix variant for which bash isn’t
the default shell. You’re tired of starting bash explicitly all the time, and want to
make bash your default shell.

Solution
First, make sure bash is installed. Try typing bash --version at a command line. If
you get a version, it’s installed:

$ bash --version
GNU bash, version 3.00.16(1)-release (i386-pc-solaris2.10)
Copyright (C) 2004 Free Software Foundation, Inc.

If you don’t see a version number, you may be missing a directory from your path.
chsh -l or cat /etc/shells may give you a list of valid shells on some systems. Other-
wise, ask your system administrator where bash is, or if it can be installed.

chsh -l provides a list of valid shells on Linux, but opens an editor and allows you to
change settings on BSD. -l is not a valid option to chsh on Mac OS X, but just run-
ning chsh will open an editor to allow you to change settings, and chpass -s shell
will change your shell.

If bash is installed, use the chsh -s command to change your default shell. For exam-
ple, chsh -s /bin/bash. If for any reason that fails try chsh, passwd -e, passwd -l
chpass, or usermod -s /usr/bin/bash. If you still can’t change your shell ask your sys-
tem administrator, who may need to edit the /etc/passwd file. On most systems, /etc/
passwd will have lines of the form:

cam:pK1Z9BCJbzCrBNrkjRUdUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash
cc:kfDKDjfkeDJKJySFgJFWErrElpe/:502:100:Cheshire Cat:/home/cc:/bin/bash

As root, you can just edit the last field of the lines in the password file to the full
pathname of whatever shell you choose. If your system has a vipw command, you
should use it to ensure password file consistency.

Some systems will refuse to allow a login shell that is not listed in /etc/
shells. If bash is not listed in that file, you will have to have your sys-
tem administrator add it.

Getting bash for Linux | 17

Discussion
Some operating systems, notably the BSD Unixes, typically place bash in the /usr par-
tition. You may want to think twice about changing root’s shell on such systems. If
the system runs into trouble while booting, and you have to work on it before /usr is
mounted, you’ve got a real problem: there isn’t a shell for root to use. Therefore, it’s
best to leave the default shell for root unchanged. However, there’s no reason not to
make bash the default shell for regular user accounts. And it goes without saying that
it’s bad practice to use the root account unless it’s absolutely necessary. Use your
regular (user) account whenever possible. With commands like sudo, you should
very rarely need a root shell.

If all else fails, you can probably replace your existing login shell with bash using
exec, but this is not for the faint of heart. See “A7) How can I make bash my login
shell?” in the bash FAQ at ftp://ftp.cwru.edu/pub/bash/FAQ.

See Also
• man chsh

• man passwd

• man chpass

• /etc/shells

• “A7) How can I make bash my login shell?” from ftp://ftp.cwru.edu/pub/bash/
FAQ

• Recipe 14.19, “Using sudo More Securely”

• Recipe 14.13, “Setting Permissions”

1.10 Getting bash for Linux

Problem
You want to get bash for your Linux system, or you want to make sure you have the
latest version.

Solution
bash is included in virtually all modern Linux distributions. To make sure you have the
latest version available for your distribution, use the distribution’s built-in packaging
tools. You must be root or have the root password to upgrade or install applications.

Some Linux distributions (notably Debian) include bash version 2.x as plain bash
and version 3.x as bash3, so you need to watch out for that. Table 1-1 lists the
default versions as of early 2007 (distributions update their repositories often, so ver-
sions might have changed from this listing).

18 | Chapter 1: Beginning bash

Table 1-1. Default Linux distributions

Distribution 2.x in base install 2.x in updates 3.x in base install 3.x in updates

Debian Woody 2.05a N/A N/A N/A

Debian Sargea

a Debian Sarge: see also bash-builtins, bash-doc, bash-minimal, bash-static, bash3-doc

2.05b 3.1dfsg-8 (testing
& unstable)

3.0-12(1)-release 3.00.16(1)-release

Fedora Core 1 bash-2.05b-31.i386.
rpm

bash-2.05b-34.
i386.rpm

N/A N/A

Fedora Core 2 bash-2.05b-38.i386.
rpm

N/A N/A N/A

Fedora Core 3 N/A N/A bash-3.0-17.i386.rpm bash-3.0-18.i386.
rpm

Fedora Core 4 N/A N/A bash-3.0-31.i386.rpm N/A

Fedora Core 5 N/A N/A bash-3.1-6.2.i386.rpm bash-3.1-9.fc5.1.
i386.rpm

Fedora Core 6 N/A N/A bash-3.1-16.1.i386.rpm N/A

Knoppix 3.9 & 4.0.2 N/A N/A 3.0-15 N/A

Mandrake 9.2b

b Mandrake 9.2: bash-completion-20030821-3mdk.noarch.rpm, bash-doc-2.05b-14mdk.i586.rpm, bash1-1.14.7-31mdk.i586.rpm

bash-2.05b-14mdk.
i586.rpm

N/A N/A N/A

Mandrake 10.1c

c Mandrake 10.1: see also bash-completion-20040711-1mdk.noarch.rpm, bash-doc-2.05b-22mdk.i586.rpm, bash1-1.14.7-31mdk.i586.rpm

bash-2.05b-22mdk.
i586.rpm

N/A N/A N/A

Mandrake 10.2d

d Mandrake 10.2: see also bash-completion-20050121-2mdk.noarch.rpm, bash-doc-3.0-2mdk.i586.rpm

N/A N/A bash-3.0-2mdk.i586.rpm N/A

Mandriva 2006.0e

e Mandriva 2006.0: see also bash-completion-20050721-1mdk.noarch.rpm, bash-doc-3.0-6mdk.i586.rpm

N/A N/A bash-3.0-6mdk.i586.rpm N/A

Mandriva 2007.0f

f Mandriva 2007.0: see also bash-completion-20060301-5mdv2007.0.noarch.rpm, bash-doc-3.1-7mdv2007.0.i586.rpm

N/A N/A bash-3.1-7mdv2007.0.
i586.rpm

N/A

OpenSUSE 10.0 N/A N/A 3.00.16(1)-release 3.0.17(1)-release

OpenSUSE 10.1 N/A N/A 3.1.16(1)-release N/A

OpenSUSE 10.2 N/A N/A bash-3.1-55.i586.rpm N/A

SLED 10 RC3 N/A N/A 3.1.17(1)-release N/A

RHEL 3.6, CentOS 3.6 bash-2.05b.0(1) N/A N/A N/A

RHEL 4.4, CentOS 4.4 N/A N/A 3.00.15(1)-release N/A

MEPIS 3.3.1 N/A N/A 3.0-14 N/A

Ubuntu 5.10g

g Ubuntu: see also the bash-builtins, bash-doc, bash-static, and abs-guide packages

N/A N/A 3.0.16(1) N/A

Ubuntu 6.06g N/A N/A 3.1.17(1)-release N/A

Ubuntu 6.10gh

h Ubuntu 6.10 symlinks dash to /bin/sh instead of bash as previous versions of Ubuntu and most other Linux distributions (https://wiki.
ubuntu.com/DashAsBinSh)

N/A N/A 3.1.17(1)-release N/A

Getting bash for Linux | 19

For Debian and Debian-derived systems such as Knoppix, Ubuntu, and MEPIS,
make sure your /etc/apt/sources.list file is pointing at an up-to-date Debian mirror;
then use the graphical Synaptic, kpackage, gnome-apt, or Add/Remove Programs
tools, the terminal-based aptitude tool, or from the command line:

apt-get update && apt-get install bash bash3 bash-builtins bash-doc bash3-doc

For Red Hat distributions, including Fedora Core (FC) and Red Hat Enterprise
Linux (RHEL), use the GUI Add/Remove Applications tool (if the GUI is missing
from the menus, at a command line for RHEL3 type redhat-config-packages & or for
RHEL4 type system-config-packages &). For a command line only:

up2date install bash

For Fedora Core and CentOS, you may use the above RHEL directions or from the
command line:

yum update bash

For SUSE, use either the GUI or terminal version of YaST. You may also use the
command-line RPM tool.

For Mandriva/Mandrake, use the GUI Rpmdrake tool or from the command line:

urpmi bash

Discussion
It’s impossible to cover every Linux distribution and difficult even to cover the major
ones, as they are all evolving rapidly. Fortunately, much of that evolution is in the
area of ease-of-use, so it should not be very difficult to figure out how to install soft-
ware on your distribution of choice.

When using Knoppix, Ubuntu, or other Live CDs, software updates and installa-
tions will most likely fail due to the read-only media. Versions of such distributions
that have been installed to a hard disk should be updatable.

The apt-get update && apt-get install bash bash3 bash-builtins bash-doc bash3-
doc command above will generate errors on systems that do not provide a bash3
package. You may safely ignore such errors.

See Also
• http://wiki.linuxquestions.org/wiki/Installing_Software

• CentOS: http://www.centos.org/docs/3/rhel-sag-en-3/pt-pkg-management.html

• http://www.centos.org/docs/4/html/rhel-sag-en-4/pt-pkg-management.html

• Debian: http://www.debian.org/doc/, see the “APT HOWTO” and “dselect Docu-
mentation for Beginners”

• http://www.debianuniverse.com/readonline/chapter/06

• Fedora Core: http://fedora.redhat.com/docs/yum/

20 | Chapter 1: Beginning bash

• Red Hat Enterprise Linux: https://www.redhat.com/docs/manuals/enterprise/
RHEL-3-Manual/sysadmin-guide/pt-pkg-management.html

• https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/
pt-pkg-management.html

• Mandriva: http://www.mandriva.com/en/community/users/documentation

• http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/software-
management.html

• http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/ch19s05.html

• MEPIS (note about installing or removing applications): http://mepis.org/docs/

• OpenSuSE: http://www.opensuse.org/Documentation

• http://www.opensuse.org/User_Documentation

• http://forge.novell.com/modules/xfmod/project/?yast

• Ubuntu: http://www.ubuntulinux.org/support/documentation/helpcenter_view

• Recipe 1.9, “Setting bash As Your Default Shell”

1.11 Getting bash for xBSD

Problem
You want to get bash for your FreeBSD, NetBSD, or OpenBSD system, or you want
to make sure you have the latest version.

Solution
To see if bash is installed, check the /etc/shells file. To install or update bash, use the
pkg_add command. If you are an experienced BSD user, you may prefer using the
ports collection, but we will not cover that here.

FreeBSD:

pkg_add -vr bash

For NetBSD, browse to Application Software for NetBSD at http://netbsd.org/
Documentation/software/ and locate the latest bash package for your version and
architecture, then use a command such as:

pkg_add -vu ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc-2005Q3/NetBSD-2.0/i386/
All/bash-3.0pl16nb3.tgz

For OpenBSD, you use the pkg_add -vr command. You may have to adjust the FTP
path for your version and architecture. Also, there may be a statically compiled ver-
sion. For example: ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.
16p1-static.tgz.

pkg_add -vr ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1.tgz

Getting bash for Mac OS X | 21

Discussion
FreeBSD and OpenBSD place bash in /usr/local/bin/bash while NetBSD uses /usr/pkg/
bin/bash.

Interestingly, PC-BSD 1.2, a “rock-solid Unix operating system based on FreeBSD,”
comes with bash 3.1.17(0) in /usr/local/bin/bash, though the default shell is still csh.

See Also
• Recipe 1.9, “Setting bash As Your Default Shell”

• Recipe 15.4, “Testing Scripts in VMware”

1.12 Getting bash for Mac OS X

Problem
You want to get bash for your Mac, or you want to make sure you have the latest
version.

Solution
According to Chet Ramey’s bash page (http://tiswww.tis.case.edu/~chet/bash/bashtop.
html), Mac OS 10.2 (Jaguar) and newer ship with bash as /bin/sh. 10.4 (Tiger) has ver-
sion 2.05b.0(1)-release (powerpc-apple-darwin8.0). There are also precompiled OS X
packages of bash-2.05 available from many web sites. One such package is at HMUG.
Bash for Darwin (the base for Mac OS X) is available from Fink or DarwinPorts.

Discussion
It is also possible to build a more recent version of bash from source, but this is rec-
ommended only for experienced users.

See Also
• http://tiswww.tis.case.edu/~chet/bash/bashtop.html

• http://www.hmug.org/pub/MacOS_X/BSD/Applications/Shells/bash/

• http://fink.sourceforge.net/pdb/package.php/bash

• http://darwinports.opendarwin.org/ports.php?by=name&substr=bash

22 | Chapter 1: Beginning bash

1.13 Getting bash for Unix

Problem
You want to get bash for your Unix system, or you want to make sure you have the
latest version.

Solution
If it’s not already installed or in your operating system’s program repository, check
Chet Ramey’s bash page for binary downloads, or build it from source (see
Appendix E).

Discussion
According to Chet Ramey’s bash page (http://tiswww.tis.case.edu/~chet/bash/bashtop.
html):

Solaris 2.x, Solaris 7, and Solaris 8 users can get a precompiled version of bash-3.0
from the Sunfreeware site. Sun ships bash-2.03 with Solaris 8 distributions, ships bash-
2.05 as a supported part of Solaris 9, and ships bash-3.0 as a supported part of Solaris
10 (directly on the Solaris 10 CD).

AIX users can get precompiled versions of older releases of bash for various versions of
AIX from Groupe Bull, and sources and binaries of current releases for various AIX
releases from UCLA. IBM makes bash-3.0 available for AIX 5L as part of the AIX tool-
box for [GNU/]Linux applications. They use RPM format; you can get RPM for AIX
from there, too.

SGI users can get an installable version of bash-2.05b from the SGI Freeware page.

HP-UX users can get bash-3.0 binaries and source code from the Software Porting and
Archive Center for HP-UX.

Tru64 Unix users can get sources and binaries for bash-2.05b from the HP/Compaq
Tru64 Unix Open Source Software Collection.

See Also
• http://tiswww.tis.case.edu/~chet/bash/bashtop.html

• http://www.sun.com/solaris/freeware.html

• http://aixpdslib.seas.ucla.edu/packages/bash.html

• http://www.ibm.com/servers/aix/products/aixos/linux/index.html

• http://freeware.sgi.com/index-by-alpha.html

• http://hpux.cs.utah.edu/

• http://hpux.connect.org.uk/hppd/hpux/Shells/

• http://hpux.connect.org.uk/hppd/hpux/Shells/bash-3.00.16/

• http://h30097.www3.hp.com/demos/ossc/html/bash.htm

Getting bash for Windows | 23

• Recipe 1.9, “Setting bash As Your Default Shell”

• Appendix E

1.14 Getting bash for Windows

Problem
You want to get bash for your Windows system, or you want to make sure you have
the latest version.

Solution
Use Cygwin.

Download http://www.cygwin.com/setup.exe and run it. Follow the prompts and
choose the packages to install, including bash, which is located in the shells category
and is selected by default. As of early 2007, bash-3.1-6 and 3.2.9-11 are available.

Once Cygwin is installed, you will have to configure it. See the User Guide at http://
cygwin.com/cygwin-ug-net/.

Discussion
From the Cygwin site:

What Is Cygwin

Cygwin is a Linux-like environment for Windows. It consists of two parts:

• A DLL (cygwin1.dll), which acts as a Linux API emulation layer providing sub-
stantial Linux API functionality.

• A collection of tools, which provide Linux look and feel.

The Cygwin DLL works with all non-beta, non “release candidate,” x86 32-bit ver-
sions of Windows since Windows 95, with the exception of Windows CE.

What Isn’t Cygwin

• Cygwin is not a way to run native Linux apps on Windows. You have to rebuild
your application from source if you want to get it running on Windows.

• Cygwin is not a way to magically make native Windows apps aware of Unix func-
tionality (e.g., signals, ptys). Again, you need to build your apps from source if
you want to take advantage of Cygwin functionality.

Cygwin is a true Unix-like environment running on top of Windows. It is an excel-
lent tool, but sometimes it might be overkill. For Windows native binaries of the
GNU Text Utils (not including bash), see http://unxutils.sourceforge.net/.

Microsoft Services for Unix (http://www.microsoft.com/windowsserversystem/sfu/
default.mspx) may also be of interest, but note that it is not under active develop-
ment anymore, though it will be supported until at least 2011 (http://www.eweek.
com/article2/0,1895,1855274,00.asp).

24 | Chapter 1: Beginning bash

For powerful character-based and GUI command-line shells with a more consistent
interface, but a DOS/Windows flavor, see http://jpsoft.com/. None of the authors are
affiliated with this company, but one is a long-time satisfied user.

See Also
• http://www.cygwin.com/

• http://unxutils.sourceforge.net/

• http://www.microsoft.com/windowsserversystem/sfu/default.mspx

• http://jpsoft.com/

• http://www.eweek.com/article2/0,1895,1855274,00.asp

1.15 Getting bash Without Getting bash

Problem
You want to try out a shell or a shell script on a system you don’t have the time or
the resources to build or buy.

Or, you feel like reading a Zen-like recipe just about now.

Solution
Get a free or almost free shell account from HP, Polar Home, or another vendor.

Discussion
HP maintains a free “test drive” program that provides free shell accounts on many
operating systems on various HP hardware. See http://www.testdrive.hp.com/ for
details.

Polar Home provides many free services and almost free shell accounts. According to
their web site:

polarhome.com is non commercial, educational effort for popularization of shell
enabled operating systems and Internet services, offering shell accounts, mail and
other online services on all available systems (currently on Linux, OpenVMS, Solaris,
AIX, QNX, IRIX, HP-UX, Tru64, FreeBSD, OpenBSD, NetBSD and OPENSTEP).

[...]

Note: this site is continuously under construction and running on slow lines and low
capacity servers that have been retired, therefore as a non commercial site user/visi-
tor, nobody should have too high expectations in any meaning of the word. Even if
polarhome.com does all to provide services on professional level, users should not
expect more than “AS-IS”.

polarhome.com is a distributed site, but more than 90% of polarhome realm is located
in Stockholm, Sweden.

Learning More About bash Documentation | 25

See Also
• List of free shell accounts: http://www.ductape.net/~mitja/freeunix.shtml

• http://www.testdrive.hp.com/os/

• http://www.testdrive.hp.com/faq/

• http://www.polarhome.com/

1.16 Learning More About bash Documentation

Problem
You’d like to read more about bash but don’t know where to start.

Solution
Well you’re reading this book, which is a great place to start! The other O’Reilly
books about bash and shell scripting are: Learning the bash Shell by Cameron
Newham (O’Reilly) and Classic Shell Scripting by Nelson H.F. Beebe and Arnold
Robbins (O’Reilly).

Unfortunately, the official bash documentation has not been easily accessible
online—until now! Previously, you had to download several different tarballs, locate
all the files that contain documentation, and then decipher the file names to find
what you wanted. Now, our companion web site (http://www.bashcookbook.com/)
has done all this work for you and provides the official bash reference documenta-
tion online so it’s easy to refer to. Check it out, and refer others to it as needed.

Official documentation

The official bash FAQ is at: ftp://ftp.cwru.edu/pub/bash/FAQ. See especially “H2)
What kind of bash documentation is there?” The official reference guide is also
strongly recommended; see below for details.

Chet Ramey’s (the current bash maintainer) bash page (called bashtop) contains a ton
of very useful information (http://tiswww.tis.case.edu/~chet/bash/bashtop.html). Chet
also maintains the following (listed in bashtop):

README
A file describing bash: http://tiswww.tis.case.edu/chet/bash/README

NEWS
A file tersely listing the notable changes between the current and previous ver-
sions: http://tiswww.tis.case.edu/chet/bash/NEWS

CHANGES
A complete bash change history: http://tiswww.tis.case.edu/chet/bash/CHANGES

INSTALL
Installation instructions: http://tiswww.tis.case.edu/chet/bash/INSTALL

26 | Chapter 1: Beginning bash

NOTES
Platform-specific configuration and operation notes: http://tiswww.tis.case.edu/
chet/bash/NOTES

COMPAT
Compatibility issues between bash3 and bash1: http://tiswww.tis.case.edu/~chet/
bash/COMPAT

The latest bash source code and documentation are always available at: http://ftp.gnu.
org/gnu/bash/.

We highly recommend downloading both the source and the documentation even if
you are using prepackaged binaries. Here is a brief list of the documentation. See
Appendix B for an index of the included examples and source code. See the source
tarball’s ./doc directory, for example: http://ftp.gnu.org/gnu/bash/bash-3.1.tar.gz,
bash-3.1/doc:

.FAQ
A set of frequently asked questions about bash with answers

.INTRO
A short introduction to bash

article.ms
An article Chet wrote about bash for The Linux Journal

bash.1
The bash manpage

bashbug.1
The bashbug manpage

builtins.1
A manpage that documents the built-ins extracted from bash.1

bashref.texi
The “bash reference manual”

bashref.info
The “bash reference manual” processed by “makeinfo”

rbash.1
The restricted bash shell manpage

readline.3
The readline manpage

The .ps files are postscript versions of the above. The .html files are HTML versions
of the manpage and reference manual. The .0 files are formatted manual pages. The
.txt versions are ASCII—the output of groff -Tascii.

In the document tarball, for example: http://ftp.gnu.org/gnu/bash/bash-doc-3.1.tar.gz,
bash-doc-3.1:

Learning More About bash Documentation | 27

.bash.0
The bash manpage (formatted)(also PDF, ps, HTML)

bashbug.0
The bashbug manpage (formatted)

bashref
The Bash Reference Guide (also PDF, ps, HTML, dvi)

builtins.0
The built-ins manpage (formatted)

.rbash.0
The restricted bash shell manpage (formatted)

Other documentation

• The Advanced Bash-Scripting Guide at http://www.tldp.org/LDP/abs/html/index.
html and http://www.tldp.org/LDP/abs/abs-guide.pdf

• Writing Shell Scripts at http://www.linuxcommand.org/writing_shell_scripts.php

• BASH Programming – Introduction HOW-TO at http://www.tldp.org/HOWTO/
Bash-Prog-Intro-HOWTO.html

• Bash Guide for Beginners at http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
and http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

• The Bash Prompt HOWTO at http://www.tldp.org/HOWTO/Bash-Prompt-
HOWTO/index.html

• Very old, but still useful: UNIX shell differences and how to change your shell at
http://www.faqs.org/faqs/unix-faq/shell/shell-differences/

• [Apple’s] Shell Scripting Primer at http://developer.apple.com/documentation/
OpenSource/Conceptual/ShellScripting/

See Also
• Appendix B

28

Chapter 2CHAPTER 2

Standard Output 3

No software is worth anything if there is no output of some sort. But I/O (Input/
Output) has long been one of the nastier areas of computing. If you’re ancient, you
remember the days most of the work involved in running a program was setting up
the program’s input and output. Some of the problems have gone away; for exam-
ple, you no longer need to get operators to mount tapes on a tape drive (not on any
laptop or desktop system that I’ve seen). But many of the problems are still with us.

One problem is that there are many different types of output. Writing something on
the screen is different from writing something in a file—at least, it sure seems differ-
ent. Writing something in a file seems different from writing it on a tape, or in flash
memory, or on some other kind of device. And what if you want the output from one
program to go directly into another program? Should software developers be tasked
with writing code to handle all sorts of output devices, even ones that haven’t been
invented yet? That’s certainly inconvenient. Should users have to know how to con-
nect the programs they want to run to different kinds of devices? That’s not a very
good idea, either.

One of the most important ideas behind the Unix operating system was that every-
thing looked like a file (an ordered sequence of bytes). The operating system was
responsible for this magic. It didn’t matter whether you were writing to a file on the
disk, the terminal, a tape drive, a memory stick, or something else; your program
only needed to know how to write to a file, and the operating system would take it
from there. That approach greatly simplified the problem. The next question was,
simply, “which file?” How does a program know whether to write to the file that rep-
resents a terminal window, a file on the disk, or some other kind of file? Simple:
that’s something that can be left to the shell.

When you run a program, you still have to connect it to output files and input files
(which we’ll see in the next chapter). That task doesn’t go away. But the shell makes
it trivially easy. A command as simple as:

$ dosomething < inputfile > outputfile

Writing Output to the Terminal/Window | 29

reads its input from inputfile and sends its output to outputfile. If you omit >
outputfile, the output goes to your terminal window. If you omit <inputfile, the
program takes its input from the keyboard. The program literally doesn’t know
where its output is going, or where its input is coming from. You can send the out-
put anywhere you want (including to another program) by using bash’s redirection
facilities.

But that’s just the start. In this chapter, we’ll look at ways to generate output, and
the shell’s methods for sending that output to different places.

2.1 Writing Output to the Terminal/Window

Problem
You want some simple output from your shell commands.

Solution
Use the echo built-in command. All the parameters on the command line are printed
to the screen. For example:

echo Please wait.

produces

Please wait.

as we see in this simple session where we typed the command at the bash prompt
(the $ character):

$ echo Please wait.
Please wait.
$

Discussion
The echo command is one of the most simple of all bash commands. It prints the
arguments of the command line to the screen. But there are a few points to keep in
mind. First, the shell is parsing the arguments on the echo command line (like it does
for every other command line). This means that it does all its substitutions, wildcard
matching, and other things before handing the arguments off to the echo command.
Second, since they are parsed as arguments, the spacing between arguments is
ignored. For example:

$ echo this was very widely spaced
this was very widely spaced
$

Normally the fact that the shell is very forgiving about whitespace between argu-
ments is a helpful feature. Here, with echo, it’s a bit disconcerting.

30 | Chapter 2: Standard Output

See Also
• help echo

• help printf

• Recipe 2.3, “Writing Output with More Formatting Control”

• Recipe 15.6, “Using echo Portably”

• Recipe 19.1, “Forgetting to Set Execute Permissions”

• “echo Options and Escape Sequences” in Appendix A

• “printf” in Appendix A

2.2 Writing Output but Preserving Spacing

Problem
You want the output to preserve your spacing.

Solution
Enclose the string in quotes. The previous example, but with quotes added, will pre-
serve our spacing.

$ echo "this was very widely spaced"
this was very widely spaced
$

or:

$ echo 'this was very widely spaced'
this was very widely spaced
$

Discussion
Since the words are enclosed in quotes, they form a single argument to the echo com-
mand. That argument is a string and the shell doesn’t need to interfere with the con-
tents of the string. In fact, by using the single quotes ('') the shell is told explicitly
not to interfere with the string at all. If you use double quotes ("), some shell substi-
tutions will take place (variable and tilde expansions and command substitutions),
but since we have none in this example, the shell has nothing to change. When in
doubt, use the single quotes.

See Also
• help echo

• help printf

• Chapter 5 for more information about substitution

Writing Output with More Formatting Control | 31

• Recipe 2.3, “Writing Output with More Formatting Control”

• Recipe 15.6, “Using echo Portably”

• Recipe 19.11, “Seeing Odd Behavior from printf”

• “echo Options and Escape Sequences” in Appendix A

2.3 Writing Output with More Formatting Control

Problem
You want more control over the formatting and placement of output.

Solution
Use the printf built-in command.

For example:

$ printf '%s = %d\n' Lines $LINES
Lines = 24
$

or:

$ printf '%-10.10s = %4.2f\n' 'GigaHerz' 1.92735
GigaHerz = 1.93
$

Discussion
The printf built-in command behaves like the C language library call, where the first
argument is the format control string and the successive arguments are formatted
according to the format specifications (%).

The numbers between the % and the format type (s or f in our example) provide
additional formatting details. For the floating-point type (f), the first number (4 in
the 4.2 specifier) is the width of the entire field. The second number (2) is how many
digits should be printed to the right of the decimal point. Note that it rounds the
answer.

For a string, the first digit is the maximum field width, and the second is the mini-
mum field width. The string will be truncated (if longer than max) or blank padded
(if less than min) as needed. When the max and min specifiers are the same, then the
string is guaranteed to be that length. The negative sign on the specifier means to
left-align the string (within its field width). Without the minus sign, the string would
right justify, thus:

$ printf '%10.10s = %4.2f\n' 'GigaHerz' 1.92735
 GigaHerz = 1.93
$

32 | Chapter 2: Standard Output

The string argument can either be quoted or unquoted. Use quotes if you need to
preserve embedded spacing (there were no spaces needed in our one-word strings),
or if you need to escape the special meaning of any special characters in the string
(again, our example had none). It’s a good idea to be in the habit of quoting any
string that you pass to printf, so that you don’t forget the quotes when you need
them.

See Also
• help printf

• http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

• Learning the bash Shell, Cameron Newham (O’Reilly), page 171, or any C refer-
ence on its printf function

• Recipe 15.6, “Using echo Portably”

• Recipe 19.11, “Seeing Odd Behavior from printf”

• “printf” in Appendix A

2.4 Writing Output Without the Newline

Problem
You want to produce some output without the default newline that echo provides.

Solution
Using printf it’s easy—just leave off the ending \n in your format string. With echo,
use the -n option.

$ printf "%s %s" next prompt
next prompt$

or:

$ echo -n prompt
prompt$

Discussion
Since there was no newline at the end of the printf format string (the first argument),
the prompt character ($) appears right where the printf left off. This feature is much
more useful in shell scripts where you may want to do partial output across several
statements before completing the line, or where you want to display a prompt to the
user before reading input.

With the echo command there are two ways to eliminate the newline. First, the -n
option suppresses the trailing newline. The echo command also has several escape

Saving Output from a Command | 33

sequences with special meanings similar to those in C language strings (e.g., \n for
newline). To use these escape sequences, you must invoke echo with the -e option.
One of echo’s escape sequences is \c, which doesn’t print a character, but rather
inhibits printing the ending newline. Thus, here’s a third solution:

$ echo -e 'hi\c'
hi$

Because of the powerful and flexible formatting that printf provides, and because it is
a built-in with very little overhead to invoke (unlike other shells or older versions of
bash, where printf was a standalone executable), we will use printf for many of our
examples throughout the book.

See Also
• help echo

• help printf

• http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

• See Chapter 3, particularly Recipe 3.5, “Getting User Input”

• Recipe 2.3, “Writing Output with More Formatting Control”

• Recipe 15.6, “Using echo Portably”

• Recipe 19.11, “Seeing Odd Behavior from printf”

• “echo Options and Escape Sequences” in Appendix A

• “printf” in Appendix A

2.5 Saving Output from a Command

Problem
You want to keep the output from a command by putting it in a file.

Solution
Use the > symbol to tell the shell to redirect the output into a file. For example:

$ echo fill it up
fill it up
$ echo fill it up > file.txt
$

Just to be sure, let’s look at what is inside file.txt to see if it captured our output:

$ cat file.txt
fill it up
$

34 | Chapter 2: Standard Output

Discussion
The first line of the example shows an echo command with three arguments that are
printed out. The second line of code uses the > to capture that output into a file
named file.txt, which is why no output appears after that echo command.

The second part of the example uses the cat command to display the contents of the
file. We can see that the file contains what the echo command would have otherwise
sent as output.

The cat command gets its name from the longer word concatenation. The cat com-
mand concatenates the output from the several files listed on its command line, as in:
cat file1 filetwo anotherfile morefiles—the contents of those files would be sent,
one after another, to the terminal window. If a large file had been split in half then it
could be glued back together (i.e., concatenated) by capturing the output into a
third file:

$ cat first.half second.half > whole.file

So our simple command, cat file.txt, is really just the trivial case of concatenating
only one file, with the result sent to the screen. That is to say, while cat is capable of
more, its primary use is to dump the contents of a file to the screen.

See Also
• man cat

• Recipe 17.21, “Numbering Lines”

2.6 Saving Output to Other Files

Problem
You want to save the output with a redirect to elsewhere in the filesystem, not in the
current directory.

Solution
Use more of a pathname when you redirect the output.

$ echo some more data > /tmp/echo.out

or:

$ echo some more data > ../../over.here

Discussion
The filename that appears after the redirection character (the >) is actually a path-
name. If it begins with no other qualifiers, the file will be placed in the current
directory.

Saving Output from the ls Command | 35

If that filename begins with a slash (/) then this is an absolute pathname, and will be
placed where it specifies in the filesystem hierarchy (i.e., tree) beginning at the root
(provided all the intermediary directories exist and have permissions that allow you
to traverse them). We used /tmp since it is a well-known, universally available scratch
directory on virtually all Unix systems. The shell, in this example, will create the file
named echo.out in the /tmp directory.

Our second example, placing the output into ../../over.here, uses a relative path-
name, and the .. is the specially-named directory inside every directory that refers to
the parent directory. So each reference to .. moves up a level in the filesystem tree
(toward the root, not what we usually mean by up in a tree). The point here is that
we can redirect our output, if we want, into a file that is far away from where we are
running the command.

See Also
• Learning the bash Shell by Cameron Newham (O’Reilly), pages 7–10 for an

introduction to files, directories, and the dot notation (i.e., . and ..)

2.7 Saving Output from the ls Command

Problem
You tried to save output from the ls command with a redirect, but when you look at
the resulting file, the format is not what you expected.

Solution
Use the -C option on ls when you redirect the output.

Here’s the ls command showing the contents of a directory:

$ ls
a.out cong.txt def.conf file.txt more.txt zebra.list
$

But when we save the output with the > to redirect it to a file, and then show the file
contents, we get this:

$ ls > /tmp/save.out
$ cat /tmp/save.out
a.out
cong.txt
def.conf
file.txt
more.txt
zebra.list
$

36 | Chapter 2: Standard Output

This time we’ll use the -C option:

$ ls -C > /tmp/save.out
$ cat /tmp/save.out
a.out cong.txt def.conf file.txt more.txt zebra.list
$

Alternatively, if we use the -1 option on ls when we don’t redirect, then we get out-
put like this:

$ ls -1
a.out
cong.txt
def.conf
file.txt
more.txt
save.out
zebra.list
$

Then the original attempt at redirection matches this output.

Discussion
Just when you thought that you understood redirection and you tried it on a simple
ls command, it didn’t quite work right. What’s going on here?

The shell’s redirection is meant to be transparent to all programs, so programs don’t
need special code to make their output redirect-able. The shell takes care of it when
you use the > to send the output elsewhere. But it turns out that code can be added
to a program to figure out when its output is being redirected. Then, the program
can behave differently in those two cases—and that’s what ls is doing.

The authors of ls figured that if your output is going to the screen then you probably
want columnar output (-C option), as screen real estate is limited. But they assumed
if you’re redirecting it to a file, then you’ll want one file per line (the minus one -1
option) since there are more interesting things you can do (i.e., other processing) that
is easier if each filename is on a line by itself.

See Also
• man ls

• Recipe 2.6, “Saving Output to Other Files”

Sending Both Output and Error Messages to the Same File | 37

2.8 Sending Both Output and Error Messages to
Different Files

Problem
You are expecting output from a program but you don’t want it to get littered with
error messages. You’d like to save your error messages, but it’s harder to find them
mixed among the expected output.

Solution
Redirect output and error messages to different files.

$ myprogram 1> messages.out 2> message.err

Or more commonly:

$ myprogram > messages.out 2> message.err

Discussion
This example shows two different output files that will be created by the shell. The
first, messages.out, will get all the output from the hypothetical myprogram redirected
into it. Any error messages from myprogram will be redirected into message.err.

In the constructs 1> and 2> the number is the file descriptor, so 1 is STDOUT and 2 is
STDERR. When no number is specified, STDOUT is assumed.

See Also
• Recipe 2.6, “Saving Output to Other Files”

• Recipe 2.13, “Throwing Output Away”

2.9 Sending Both Output and Error Messages to the
Same File

Problem
Using redirection, you can redirect output or error messages to separate files, but
how do you capture all the output and error messages to a single file?

Solution
Use the shell syntax to redirect standard error messages to the same place as stan-
dard output.

38 | Chapter 2: Standard Output

Preferred:

$ both >& outfile

or:

$ both &> outfile

or older and slightly more verbose:

$ both > outfile 2>&1

where both is just our (imaginary) program that is going to generate output to both
STDERR and STDOUT.

Discussion
&> or >& is a shortcut that simply sends both STDOUT and STDERR to the same
place—exactly what we want to do.

In the third example, the 1 appears to be used as the target of the redirection, but the
>& says to interpret the 1 as a file descriptor instead of a filename. In fact, the 2>& are a
single entity, indicating that standard output (2) will be redirected (>) to a file
descriptor (&) that follows (1). The 2>& all have to appear together without spaces,
otherwise the 2 would look just like another argument, and the & actually means
something completely different when it appears by itself. (It has to do with running
the command in the background.)

It may help to think of all redirection operators as taking a leading number (e.g., 2>)
but that the default number for > is 1, the standard output file descriptor.

You could also do the redirection in the other order, though it is slightly less read-
able, and redirect standard output to the same place to which you have already redi-
rected standard error:

$ both 2> outfile 1>&2

The 1 is used to indicate standard output and the 2 for standard error. By our reason-
ing (above) we could have written just >&2 for that last redirection, since 1 is the
default for >, but we find it more readable to write the number explicitly when redi-
recting file descriptors.

Note the order of the contents of the output file. Sometimes the error messages may
appear sooner in the file than they do on the screen. That has to do with the unbuf-
fered nature of standard error, and the effect becomes more pronounced when writ-
ing to a file instead of the screen.

See Also
• Recipe 2.6, “Saving Output to Other Files”

• Recipe 2.13, “Throwing Output Away”

Using Just the Beginning or End of a File | 39

2.10 Appending Rather Than Clobbering Output

Problem
Each time you redirect your output, it creates that output file anew. What if you
want to redirect output a second (or third, or ...) time, and don’t want to clobber the
previous output?

Solution
The double greater-than sign (>>) is a bash redirector that means append the output:

$ ls > /tmp/ls.out
$ cd ../elsewhere
$ ls >> /tmp/ls.out
$ cd ../anotherdir
$ ls >> /tmp.ls.out
$

Discussion
The first line includes a redirect that removes the file if it exists and starts with a
clean (empty) file, filling it with the output from the ls command.

The second and third invocations of ls use the double greater than sign (>>) to indi-
cate appending to, rather than replacing, the output file.

See Also
• Recipe 2.6, “Saving Output to Other Files”

• Recipe 2.13, “Throwing Output Away”

2.11 Using Just the Beginning or End of a File

Problem
You need to display or use just the beginning or end of a file.

Solution
Use the head or tail commands. By default, head will output the first 10 lines and tail
will output the last 10 lines of the given file. If more than one file is given, the appro-
priate lines from each of them are output. Use the -number switch (e.g., -5) to change
the number of lines. tail also has the -f and -F switches, which follow the end of the
file as it is written to. And it has an interesting + switch that we cover in Recipe 2.12,
“Skipping a Header in a File.”

40 | Chapter 2: Standard Output

Discussion
head and tail, along with cat, grep, sort, cut, and uniq, are some of the most com-
monly used Unix text processing tools out there. If you aren’t already familiar with
them, you’ll soon wonder how you ever got along without them.

See Also
• Recipe 2.12, “Skipping a Header in a File”

• Recipe 7.1, “Sifting Through Files for a String”

• Recipe 8.1, “Sorting Your Output”

• Recipe 8.4, “Cutting Out Parts of Your Output”

• Recipe 8.5, “Removing Duplicate Lines”

• Recipe 17.21, “Numbering Lines”

2.12 Skipping a Header in a File

Problem
You have a file with one or more header lines and you need to process just the data,
and skip the header.

Solution
Use the tail command with a special argument. For example, to skip the first line of a
file:

$ tail +2 lines
Line 2

Line 4
Line 5

Discussion
An argument to tail, which is a number starting dash (-), will specify a line offset rel-
ative to the end of the file. So tail -10 file shows the last 10 lines of file, which
also happens to be the default if you don’t specify anything. But a number starting
with a plus (+) sign is an offset relative to the top of the file. Thus, tail +1 file gives
you the entire file, the same as cat. +2 skips the first line, and so on.

See Also
• man tail

• Recipe 13.11, “Setting Up a Database with MySQL”

Saving or Grouping Output from Several Commands | 41

2.13 Throwing Output Away

Problem
Sometimes you don’t want to save the output into a file; in fact, sometimes you don’t
even want to see it at all.

Solution
Redirect the output to /dev/null as shown in these examples:

$ find / -name myfile -print 2> /dev/null

or:

$ noisy >/dev/null 2>&1

Discussion
We could redirect the unwanted output into a file, then remove the file when we’re
done. But there is an easier way. Unix and Linux systems have a special device that
isn’t real hardware at all, just a bit bucket where we can dump unwanted data. It’s
called /dev/null and is perfect for these situations. Any data written there is simply
thrown away, so it takes up no disk space. Redirection makes it easy.

In the first example, only the output going to standard error is thrown away. In the
second example, both standard output and standard error are discarded.

In rare cases, you may find yourself in a situation where /dev is on a read-only file
system (for example, certain information security appliances), in which case you are
stuck with the first suggestion of writing to a file and then removing it.

See Also
• Recipe 2.6, “Saving Output to Other Files”

2.14 Saving or Grouping Output from Several
Commands

Problem
You want to capture the output with a redirect, but you’re typing several commands
on one line.

$ pwd; ls; cd ../elsewhere; pwd; ls > /tmp/all.out

The final redirect applies only to the last command, the last ls on that line. All the
other output appears on the screen (i.e., does not get redirected).

42 | Chapter 2: Standard Output

Solution
Use braces { } to group these commands together, then redirection applies to the
output from all commands in the group. For example:

$ { pwd; ls; cd ../elsewhere; pwd; ls; } > /tmp/all.out

There are two very subtle catches here. The braces are actually
reserved words, so they must be surrounded by white space. Also, the
trailing semicolon is required before the closing space.

Alternately, you could use parentheses () to tell bash to run the commands in a sub-
shell, then redirect the output of the entire subshell’s execution. For example:

$ (pwd; ls; cd ../elsewhere; pwd; ls) > /tmp/all.out

Discussion
While these two solutions look very similar, there are two important differences. The
first difference is syntactic, the second is semantic. Syntactically, the braces need to
have whitespace around them and the last command inside the list must terminate
with a semicolon. That’s not required when you use parentheses. The bigger differ-
ence, though, is semantic—what these constructs mean. The braces are just a way to
group several commands together, more like a shorthand for our redirecting, so that
we don’t have to redirect each command separately. Commands enclosed in paren-
theses, however, run in another instance of the shell, a child of the current shell
called a subshell.

The subshell is almost identical to the current shell’s environment, i.e., variables,
including $PATH, are all the same, but traps are handled differently (for more on traps,
see Recipe 10.6, “Trapping Interrupts”). Now here is the big difference in using the
subshell approach: because a subshell is used to execute the cd commands, when the
subshell exits, your main shell is back where it started, i.e., its current directory
hasn’t moved, and its variables haven’t changed.

With the braces used for grouping, you end up in the new directory (../elsewhere in
our example). Any other changes that you make (variable assignments, for example)
will be made to your current shell instance. While both approaches result in the
same output, they leave you in very different places.

One interesting thing you can do with braces is form more concise branching blocks
(Recipe 6.2, “Branching on Conditions”). You can shorten this:

if [$result = 1]; then
 echo "Result is 1; excellent."
 exit 0
else
 echo "Uh-oh, ummm, RUN AWAY! "
 exit 120
fi

Connecting Two Programs by Using Output As Input | 43

into this:

[$result = 1] \
 && { echo "Result is 1; excellent." ; exit 0; } \
 || { echo "Uh-oh, ummm, RUN AWAY! " ; exit 120; }

How you write it depends on your style and what you think is readable.

See Also
• Recipe 6.2, “Branching on Conditions”

• Recipe 10.6, “Trapping Interrupts”

• Recipe 15.11, “Getting Input from Another Machine”

• Recipe 19.5, “Expecting to Change Exported Variables”

• Recipe 19.8, “Forgetting That Pipelines Make Subshells”

• “Built-in Shell Variables” in Appendix A to learn about BASH_SUBSHELL

2.15 Connecting Two Programs by Using Output As
Input

Problem
You want to take the output from one program and use it as the input of another
program.

Solution
You could redirect the output from the first program into a temporary file, then use
that file as input to the second program. For example:

$ cat one.file another.file > /tmp/cat.out
$ sort < /tmp/cat.out
...
$ rm /tmp/cat.out

Or you could do all of that in one step by sending the output directly to the next pro-
gram by using the pipe symbol | to connect them. For example:

$ cat one.file another.file | sort

You can also link a sequence of several commands together by using multiple pipes:

$ cat my* | tr 'a-z' 'A-Z' | uniq | awk -f transform.awk | wc

Discussion
By using the pipe symbol we don’t have to invent a temporary filename, remember it,
and remember to delete it.

44 | Chapter 2: Standard Output

Programs like sort can take input from standard in (redirected via the < symbol) but
they can also take input as a filename—for example:

 $ sort /tmp/cat.out

rather than redirecting the input into sort:

$ sort < /tmp/cat.out

That behavior (of using a filename if supplied, and if not, of using standard input) is
a typical Unix/Linux characteristic, and a useful model to follow so that commands
can be connected one to another via the pipe mechanism. If you write your pro-
grams and shell scripts that way, they will be more useful to you and to those with
whom you share your work.

Feel free to be amazed at the powerful simplicity of the pipe mechanism. You can
even think of the pipe as a rudimentary parallel processing mechanism. You have
two commands (programs) running in parallel, sharing data—the output of one as
the input to the next. They don’t have to run sequentially (where the first runs to
completion before the second one starts)—the second one can get started as soon as
data is available from the first.

Be aware, however, that commands run this way (i.e., connected by pipes), are run in
separate subshells. While such a subtlety can often be ignored, there are a few times
when the implications of this are important. We’ll discuss that in Recipe 19.8, “For-
getting That Pipelines Make Subshells.”

Also consider a command such as svn -v log | less. If less exits before Subversion
has finished sending data, you’ll get an error like “svn: Write error: Broken pipe”.
While it isn’t pretty, it also isn’t harmful. It happens all the time when you pipe
some a voluminous amount of data into a program like less—you often want to quit
once you’ve found what you’re looking for, even if there is more data coming down
the pipe.

See Also
• Recipe 3.1, “Getting Input from a File”

• Recipe 19.8, “Forgetting That Pipelines Make Subshells”

2.16 Saving a Copy of Output Even While Using It As
Input

Problem
You want to debug a long sequence of piped I/O, such as:

$ cat my* | tr 'a-z' 'A-Z' | uniq | awk -f transform.awk | wc

How can you see what is happening between uniq and awk without disrupting the pipe?

Saving a Copy of Output Even While Using It As Input | 45

Solution
The solution to these problems is to use what plumbers call a T-joint in the pipes.
For bash, that means using the tee command to split the output into two identical
streams, one that is written to a file and the other that is written to standard out, so
as to continue the sending of data along the pipes.

For this example where we’d like to debug a long string of pipes, we insert the tee
command between uniq and awk:

$... uniq | tee /tmp/x.x | awk -f transform.awk ...

Discussion
The tee command writes the output to the filename specified as its parameter and also
write that same output to standard out. In our example, that sends a copy to /tmp/x.x
and also sends the same data to awk, the command to which the output of tee is con-
nected via the | pipe symbol.

Don’t worry about what each different piece of the command line is doing in these
examples; we just want to illustrate how tee can be used in any sequence of commands.

Let’s back up just a bit and start with a simpler command line. Suppose you’d just
like to save the output from a long-running command for later reference, while at the
same time seeing it on the screen. After all, a command like:

find / -name '*.c' -print | less

could find a lot of C source files, so it will likely scroll off the window. Using more or
less will let you look at the output in manageable pieces, but once completed they
don’t let you go back and look at that output without re-running the command.
Sure, you could run the command and save it to a file:

find / -name '*.c' -print > /tmp/all.my.sources

but then you have to wait for it to complete before you can see the contents of the
file. (OK, we know about tail -f but that’s just getting off topic here.) The tee com-
mand can be used instead of the simple redirection of standard output:

find / -name '*.c' -print | tee /tmp/all.my.sources

In this example, since the output of tee isn’t redirected anywhere, it will print to
the screen. But the copy that is diverted into a file will be there for later use (e.g.,
cat /tmp/all.my.sources).

Notice, too, that in these examples we did not redirect standard error at all. This
means that any errors, like you might expect from find, will be printed to the screen
but won’t show up in the tee file. We could have added a 2>&1 to the find command:

find / -name '*.c' -print 2>&1 | tee /tmp/all.my.sources

to include the error output in the tee file. It won’t be neatly separated, but it will be
captured.

46 | Chapter 2: Standard Output

See Also
• man tee

• Recipe 18.5, “Reusing Arguments”

• Recipe 19.13, “Debugging Scripts”

2.17 Connecting Two Programs by Using Output As
Arguments

Problem
What if one of the programs to which you would like to connect with a pipe doesn’t
work that way? For example, you can remove files with the rm command, specifing
the files to be removed as parameters to the command:

$ rm my.java your.c their.*

but rm doesn’t read from standard input, so you can’t do something like:

find . -name '*.c' | rm

Since rm only takes its filenames as arguments or parameters on the command line,
how can we get the output of a previously-run command (e.g., echo or ls) onto the
command line?

Solution
Use the command substitution feature of bash:

$ rm $(find . -name '*.class')
$

Discussion
The $() encloses a command that is run in a subshell. The output from that com-
mand is substituted in place of the $() phrase. Newlines in the output are replaced
with a space character (actually it uses the first character of $IFS, which is a space by
default, during word splitting), so several lines of output become several parameters
on the command line.

The earlier shell syntax was to use back-quotes instead of $() for enclosing the sub-
command. The $() syntax is preferred over the older backward quotes `` syntax
because it easier to nest and arguably easier to read. However, you will probably see
`` more often than $(), especially in older scripts or from those who grew up with
the original Bourne or C shells.

In our example, the output from find, typically a list of names, will become the argu-
ments to the rm command.

Using Multiple Redirects on One Line | 47

Warning: be very careful when doing something like this because rm is very unforgiv-
ing. If your find command finds more than you expect, rm will remove it with no
recourse. This is not Windows; you cannot recover deleted files from the trashcan.
You can mitigate the danger with rm -i, which will prompt you to verify each delete.
That’s OK on a small number of files, but interminable on a large set.

One way to use such a mechanism in bash with greater safety is to run that inner
command first by itself. When you can see that you are getting the results that you
want, only then do you use it in the command with back-quotes.

For example:

$ find . -name '*.class'
First.class
Other.class
$ rm $(find . -name '*.class')
$

We’ll see in an upcoming recipe how this can be made even more foolproof by
using !! instead of retyping the find command (see Recipe 18.2, “Repeating the
Last Command”).

See Also
• Recipe 18.2, “Repeating the Last Command”

• Recipe 15.13, “Working Around “argument list too long” Errors”

2.18 Using Multiple Redirects on One Line

Problem
You want to redirect output to several different places.

Solution
Use redirection with file numbers to open all the files that you want to use. For
example:

$ divert 3> file.three 4> file.four 5> file.five 6> else.where
$

where divert might be a shell script with various commands whose output you want
to send to different places. For example, you might write divert to contain lines like
this: echo option $OPTSTR >&5. That is, our divert shell script could direct its output
to various different descriptors which the invoking program can send to different
destinations.

Similarly, if divert was a C program executable, you could actually write to descrip-
tors 3, 4, 5, and 6 without any need for open() calls.

48 | Chapter 2: Standard Output

Discussion
In an earlier recipe we explained that each file descriptor is indicated by a number,
starting at 0 (zero). So standard input is 0, out is 1, and error is 2. That means that
you could redirect standard output with the slightly more verbose 1> (rather than a
simple >) followed by a filename, but there’s no need. The shorthand > is fine. It also
means that you can have the shell open up any number of arbitrary file descriptors
and have them set to write various files so that the program that the shell then
invokes from the command line can use these opened file descriptors without fur-
ther ado.

While we don’t recommend this technique, it is intriguing.

See Also
• Recipe 2.6, “Saving Output to Other Files”

• Recipe 2.8, “Sending Both Output and Error Messages to Different Files”

• Recipe 2.13, “Throwing Output Away”

2.19 Saving Output When Redirect Doesn’t Seem to
Work

Problem
You tried using > but some (or all) of the output still appears on the screen.

For example, the compiler is producing some error messages.

$ gcc bad.c
bad.c: In function `main':
bad.c:3: error: `bad' undeclared (first use in this function)
bad.c:3: error: (Each undeclared identifier is reported only once
bad.c:3: error: for each function it appears in.)
bad.c:3: error: parse error before "c"
$

You wanted to capture those messages, so you tried redirecting the output:

$ gcc bad.c > save.it
bad.c: In function `main':
bad.c:3: error: `bad' undeclared (first use in this function)
bad.c:3: error: (Each undeclared identifier is reported only once
bad.c:3: error: for each function it appears in.)
bad.c:3: error: parse error before "c"
$

Saving Output When Redirect Doesn’t Seem to Work | 49

However, it doesn’t seem to have redirected anything. In fact, when you examine the
file into which you were directing the output, that file is empty (zero bytes long):

$ ls -l save.it
-rw-r--r-- 1 albing users 0 2005-11-13 15:30 save.it
$ cat save.it
$

Solution
Redirect the error output, as follows:

$ gcc bad.c 2> save.it
$

The contents of save.it are now the error messages that we had seen before.

Discussion
So what’s going on here? Every process in Unix and Linux typically starts out with
three open file descriptors: one for input called standard input (STDIN), one for out-
put called standard output (STDOUT), and one for error messages called standard
error (STDERR). It is really up to the programmer, who writes any particular pro-
gram, to stick to these conventions and write error messages to standard error and to
write the normally expected output to standard out, so there is no guarantee that
every error message that you ever get will go to standard error. But most of the long-
established utilities are well behaved this way. That is why these compiler messages
are not being diverted with a simple > redirect; it only redirects standard output, not
standard error.

Each file descriptor is indicated by a number, starting at 0. So standard input is 0,
output is 1, and error is 2. That means that you could redirect standard output with
the slightly more verbose: 1> (rather than a simple >) followed by a filename, but
there’s no need. The shorthand > is fine.

One other difference between standard output and standard error: standard output
is buffered but standard error is unbuffered, that is every character is written individu-
ally, not collected together and written as a bunch. This means that you see the error
messages right away and that there is less chance of them being dropped when a fault
occurs, but the cost is one of efficiency. It’s not that standard output is unreliable,
but in error situations (e.g., a program dies unexpectedly), the buffered output may
not have made it to the screen before the program stops executing. That’s why stan-
dard error is unbuffered: to be sure the message gets written. By contrast, standard
out is buffered. Only when the buffer is full (or when the file is closed) does the out-
put actually get written. It’s more efficient for the more frequently used output. Effi-
ciency isn’t as important when an error is being reported.

50 | Chapter 2: Standard Output

What if you want to see the output as you are saving it? The tee command we dis-
cussed in Recipe 2.16, “Saving a Copy of Output Even While Using It As Input”
seems just the thing:

$ gcc bad.c 2>&1 | tee save.it

This will take standard error and redirect it to standard out, piping them both into
tee. The tee command will write its input to both the file (save.it) and tee’s stan-
dard out, which will go to your screen since it isn’t otherwise redirected.

This is a special case of redirecting because normally the order of the redirections is
important. Compare these two commands:

$ somecmd >my.file 2>&1

$ somecmd 2>&1 >my.file

In the first case, standard out is redirected to a file (my.file), and then standard error
is redirected to the same place as standard out. All output will appear in my.file.

But that is not the case with the second command. In the second command, stan-
dard error is redirected to standard out (which at that point is connected to the
screen), after which standard out is redirected to my.file. Thus only standard out
messages will be put in the file and errors will still show on the screen.

However, this ordering had to be subverted for pipes, since you couldn’t put the sec-
ond redirect after the pipe symbol, because after the pipe comes the next command.
So bash makes an exception when you write:

$ somecmd 2>&1 | othercmd

and recognizes that standard out is being piped. It therefore assumes that you want
to include standard error in the piping when you write 2>&1 even though its normal
ordering wouldn’t work that way.

The other result of this, and of pipe syntax in general, is that it gives us no way to
pipe just standard error and not standard out into another command—unless we
first swap the file descriptors (see the next recipe).

See Also
• Recipe 2.17, “Connecting Two Programs by Using Output As Arguments

• Recipe 2.20, “Swapping STDERR and STDOUT”

2.20 Swapping STDERR and STDOUT

Problem
You need to swap STDERR and STDOUT so you can send STDOUT to a logfile, but
then send STDERR to the screen and to a file using the tee command. But pipes only
work with STDOUT.

Swapping STDERR and STDOUT | 51

Solution
Swap STDERR and STDOUT before the pipe redirection using a third file descriptor:

$./myscript 3>&1 1>stdout.logfile 2>&3- | tee -a stderr.logfile

Discussion
Whenever you redirect file descriptors, you are duplicating the open descriptor to
another descriptor. This gives you a way to swap descriptors, much like how any
program swaps two values—by means of a third, temporary holder. It looks like:
copy A into C, copy B into A, copy C into B and then you have swapped the values
of A and B. For file descriptors, it looks like this:

$./myscript 3>&1 1>&2 2>&3

Read the syntax 3>&1 as “give file descriptor 3 the same value as output file descrip-
tor 1.” What happens here is that it duplicates file descriptor 1 (i.e., STDOUT) into file
descriptor 3, our temporary holding place. Then it duplicates file descriptor 2 (i.e.,
STDERR) into STDOUT, and finally duplicates file descriptor 3 into STDERR. The net effect
is that STDERR and STDOUT file descriptors have swapped places.

So far so good. Now we just change this slightly. Once we’ve made the copy of
STDOUT (into file descriptor 3), we are free to redirect STDOUT into the logfile we want
to have capture the output of our script or other program. Then we can copy the file
descriptor from its temporary holding place (fd 3) into STDERR. Adding the pipe will
now work because the pipe connects to the (original) STDOUT. That gets us to the
solution we wrote above:

$./myscript 3>&1 1>stdout.logfile 2>&3- | tee -a stderr.logfile

Note the trailing - on the 2>&3- term. We do that so that we close file descriptor 3
when we are done with it. That way our program doesn’t have an extra open file
descriptor. We are tidying up after ourselves.

See Also
• Linux Server Hacks, First Edition, hack #5 “n>&m: Swap STDOUT and

STDERR,” by Rob Flickenger (O’Reilly)

• Recipe 2.19, “Saving Output When Redirect Doesn’t Seem to Work”

• Recipe 10.1, ““Daemon-izing” Your Script”

52 | Chapter 2: Standard Output

2.21 Keeping Files Safe from Accidental Overwriting

Problem
You don’t want to delete the contents of a file by mistake. It can be too easy to
mistype a filename and find that you’ve redirected output into a file that you meant
to save.

Solution
Tell the shell to be more careful, as follows:

$ set -o noclobber
$

If you decide you don’t want to be so careful after all, then turn the option off:

$ set +o noclobber
$

Discussion
The noclobber option tells bash not to overwrite any existing files when you redirect
output. If the file to which you redirect output doesn’t (yet) exist, everything works
as normal, with bash creating the file as it opens it for output. If the file already
exists, however, you will get an error message.

Here it is in action. We begin by turning the option off, just so that your shell is in a
known state, regardless of how your particular system may be configured.

$ set +o noclobber
$ echo something > my.file
$ echo some more > my.file
$ set -o noclobber
$ echo something > my.file
bash: my.file: cannot overwrite existing file
$ echo some more >> my.file
$

The first time we redirect output to my.file the shell will create it for us. The second
time we redirect, bash overwrites the file (it truncates the file to 0 bytes and starts
writing from there). Then we set the noclobber option and we get an error message
when we try to write to that file. As we show in the last part of this example, we can
append to the file (using >>) just fine.

Clobbering a File on Purpose | 53

Beware! The noclobber option only refers to the shell’s clobbering of a
file when redirecting output. It will not stop other file manipulating
actions of other programs from clobbering files (see Recipe 14.13,
“Setting Permissions”).

$ echo useless data > some.file

$ echo important data > other.file

$ set -o noclobber

$ cp some.file other.file

$

Notice that no error occurs; the file is copied over the top of an exist-
ing file. That copy is done via the cp command. The shell doesn’t get
involved.

If you’re a good and careful typist this may not seem like an important option, but
we will look at other recipes where filenames are generated with regular expressions
or passed as variables. Those filenames could be used as the filename for output redi-
rection. In such cases, having noclobber set may be an important safety feature for
preventing unwanted side effects (whether goofs or malicious actions).

See Also
• A good Linux reference on the chmod command and file permissions, such as:

— http://www.linuxforums.org/security/file_permissions.html

— http://www.comptechdoc.org/os/linux/usersguide/linux_ugfilesup.html

— http://www.faqs.org/docs/linux_intro/sect_03_04.html

— http://www.perlfect.com/articles/chmod.shtml

• Recipe 14.13, “Setting Permissions”

2.22 Clobbering a File on Purpose

Problem
You like to have noclobber set, but every once in a while you do want to clobber a
file when you redirect output. Can you override bash’s good intentions, just once?

Solution
Use >| to redirect your output. Even if noclobber is set, bash ignores its setting and
overwrites the file.

54 | Chapter 2: Standard Output

Consider this example:

$ echo something > my.file
$ set -o noclobber
$ echo some more >| my.file
$ cat my.file
some more
$ echo once again > my.file
bash: my.file: cannot overwrite existing file
$

Notice that no error message occurs on the second echo, but on the third echo, when
we are no longer using the vertical bar but just the plain > character by itself, the shell
warns us and does not clobber the existing file.

Discussion
Using noclobber does not take the place of file permissions. If you don’t have write
permission in the directory, you won’t be able to create the file, whether or not you
use the >| construct. Similarly, you must have write permission on the file itself to
overwrite that existing file, whether or not you use the >|.

So why the vertical bar? Perhaps because the exclamation point was already used by
bash for other things, and the vertical bar is close, visually, to the exclamation point.
But why would ! be the appropriate symbol? Well, for emphasis of course. Its use in
English (with the imperative mood) fits that sense of “do it anyway!” when telling
bash to overwrite the file if need be. Secondly, the vi (and ex) editors use the ! in that
same meaning in their write (:w! filename) command. Without a !, the editor will
complain if you try to overwrite an existing file. With it, you are telling the editor to
“do it!”

See Also
• Recipe 14.13, “Setting Permissions”

55

Chapter 3 CHAPTER 3

Standard Input4

Whether it is data for a program to crunch, or simple commands to direct the behav-
ior of a script, input is as fundamental as output. The first part of any program is the
beginning of the “input/output” yin and yang of computing.

3.1 Getting Input from a File

Problem
You want your shell commands to read data from a file.

Solution
Use input redirection, indicated by the < character, to read data from a file.

$ wc < my.file

Discussion
Just as the > sends output to a file, so < takes input from a file. The choice and shape
of the characters was meant to give a visual clue as to what was going on with redi-
rection. Can you see it? (Think “arrowhead.”)

Many shell commands will take one or more filenames as arguments, but when no
filename is given, will read from standard input. Those commands can then be
invoked as either: command filename or as command < filename with the same result.
That’s the case here with wc, but also with cat and others.

It may look like a simple feature, and be familiar if you’ve used the DOS command
line before, but it is a significant feature to shell scripting (which the DOS com-
mand line borrowed) and was radical in both its power and simplicity when first
introduced.

56 | Chapter 3: Standard Input

See Also
• Recipe 2.6, “Saving Output to Other Files”

3.2 Keeping Your Data with Your Script

Problem
You need input to your script, but don’t want a separate file.

Solution
Use a here-document, with the << characters, redirecting the text from the command
line rather than from a file. When put into a shell script, the script file then contains
the data along with the script.

Here’s an example of a shell script in a file we call ext:

$ cat ext
#
here is a "here" document
#
grep $1 <<EOF
mike x.123
joe x.234
sue x.555
pete x.818
sara x.822
bill x.919
EOF
$

It can be used as a shell script for simple phone number lookups:

$ ext bill
bill x.919
$

or:

$ ext 555
sue x.555
$

Discussion
The grep command looks for occurrences of the first argument in the files that are
named, or if no files are named it looks to standard input.

A typical use of grep is something like this:

$ grep somestring file.txt

or:

$ grep myvar *.c

Preventing Weird Behavior in a Here-Document | 57

In our ext script we’ve parameterized the grep by making the string that we’re search-
ing for be the parameter of our shell script ($1). Whereas we often think of grep as
searching for a fixed string through various different files, here we are going to vary
what we search for, but search through the same data every time.

We could have put our phone numbers in a file, say phonenumbers.txt, and then
used that filename on the line that invokes the grep command:

grep $1 phonenumbers.txt

However, that requires two separate files (our script and our datafile) and raises the
question of where to put them and how to keep them together.

So rather than supplying one or more filenames (to search through), we set up a
here-document and tell the shell to redirect standard input to come from that (tem-
porary) document.

The << syntax says that we want to create such a temporary input source, and the EOF
is just an arbitrary string (you can choose what you like) to act as the terminator of
the temporary input. It is not part of the input, but acts as the marker to show where
it ends. The regular shell script (if any) resumes after the marker.

We also might add -i to the grep command to make our search is case-insensitive.
Thus, using grep -i $1 <<EOF would allow us to search for “Bill” as well as “bill.”

See Also
• man grep

• Recipe 3.3, “Preventing Weird Behavior in a Here-Document”

• Recipe 3.4, “Indenting Here-Documents”

3.3 Preventing Weird Behavior in a Here-Document

Problem
Your here-document is behaving weirdly. You tried to maintain a simple list of
donors using the method described previously for phone numbers. So you created a
file called donors that looked like this:

$ cat donors
#
simple lookup of our generous donors
#
grep $1 <<EOF
name amt
pete $100
joe $200
sam $ 25
bill $ 9
EOF
$

58 | Chapter 3: Standard Input

But when you tried running it you got weird output:

$./donors bill
pete bill00
bill $ 9
$./donors pete
pete pete00
$

Solution
Turn off the shell scripting features inside the here-document by escaping any or all
of the characters in the ending marker:

solution
grep $1 <<\EOF
pete $100
joe $200
sam $ 25
bill $ 9
EOF

Discussion
It’s a very subtle difference, but the <<EOF is replaced with <<\EOF, or <<'EOF' or even
<<E\OF—they all work. It’s not the most elegant syntax, but it’s enough to tell bash
that you want to treat the “here” data differently.

Normally (i.e., unless we use this escaping syntax), says the bash manpage, “...all
lines of the here-document are subjected to parameter expansion, command substi-
tution, and arithmetic expansion.”

So what’s happening in our original donor script is that the amounts are being inter-
preted as shell variables. For example, $100 is being seen as the shell variable $1 fol-
lowed by two zeros. That’s what gives us pete00 when we search for “pete” and
bill00 when we search for “bill.”

When we escape some or all of the characters of the EOF, bash knows not to do the
expansions, and the behavior is the expected behavior:

$./donors pete
pete $100
$

Of course you may want the shell expansion on your data—it can be useful in the
correct circumstances, but isn’t what we want here. We’ve found it to be a useful
practice to always escape the marker as in <<'EOF' or <<\EOF to avoid unexpected
results, unless you know that you really want the expansion to be done on your data.

Indenting Here-Documents | 59

Trailing whitespace (e.g., even just a single blank space) on your clos-
ing EOF marker will cause it not to be recognized as the closing marker.
bash will swallow up the rest of your script, treating it as input too,
and looking for that EOF. Be sure there are no extra characters (espe-
cially blanks or tabs) after the EOF.

See Also
• Recipe 3.2, “Keeping Your Data with Your Script”

• Recipe 3.4, “Indenting Here-Documents”

3.4 Indenting Here-Documents

Problem
The here-document is great, but it’s messing up your shell script’s formatting. You
want to be able to indent for readability.

Solution
Use <<- and then you can use tab characters (only!) at the beginning of lines to
indent this portion of your shell script.

$ cat myscript.sh
...
 grep $1 <<-'EOF'
 lots of data
 can go here
 it's indented with tabs
 to match the script's indenting
 but the leading tabs are
 discarded when read
 EOF
 ls
...
$

Discussion
The hyphen just after the << is enough to tell bash to ignore the leading tab charac-
ters. This is for tab characters only and not arbitrary white space. This is especially
important with the EOF or any other marker designation. If you have spaces there, it
will not recognize the EOF as your ending marker, and the “here” data will continue
through to the end of the file (swallowing the rest of your script). Therefore, you may
want to always left-justify the EOF (or other marker) just to be safe, and let the for-
matting go on this one line.

60 | Chapter 3: Standard Input

Just as trailing whitespace of any kind on your closing EOF delimiter
prevents it from being recognized as the closing delimiter (see the
warning in Recipe 3.3, “Preventing Weird Behavior in a Here-Docu-
ment”), so too will using a leading character other than just the tab
character. If your script indents with spaces or a combination of
spaces and tabs, don’t use that technique on here-documents. Either
use just tabs, or keep it all flush left. Also, watch out for text editors
that automatically replace tabs with spaces.

See Also
• Recipe 3.2, “Keeping Your Data with Your Script”

• Recipe 3.3, “Preventing Weird Behavior in a Here-Document”

3.5 Getting User Input

Problem
You need to get input from the user.

Solution
Use the read statement:

read

or:

read – p "answer me this " ANSWER

or:

read PRE MID POST

Discussion
In its simplest form, a read statement with no arguments will read user input and
place it into the shell variable REPLY.

If you want bash to print a prompt string before reading the input, use the -p option.
The next word following the -p will be the prompt, but quoting allows you to sup-
ply multiple words for a prompt. Remember to end the prompt with punctuation
and/or a blank, as the cursor will wait for input right at the end of the prompt string.

If you supply multiple variable names on the read statement, then the read will parse
the input into words, assigning them in order. If the user enters fewer words, the
extra variables will be set blank. If the user enters more words than there are vari-
ables on the read statement, then all of the extra words will be part of the last vari-
able in the list.

Getting Yes or No Input | 61

See Also
• help read

• building robust code

• Recipe 3.8, “Prompting for a Password”

• Recipe 6.11, “Looping with a read”

• Recipe 13.6, “Parsing Text with a read Statement”

• Recipe 14.12, “Validating Input”

3.6 Getting Yes or No Input

Problem
You need to get a simple yes or no input from the user, and you want to be as user-
friendly as possible. In particular, you do not want to be case sensitive, and you want
to provide a useful default if the user presses the Enter key.

Solution
If the actions to take are simple, use this self-contained function:

cookbook filename: func_choose

Let the user make a choice about something and execute code based on
the answer
Called like: choose <default (y or n)> <prompt> <yes action> <no action>
e.g. choose "y" \
"Do you want to play a game?" \
/usr/games/GlobalThermonucularWar \
'printf "%b" "See you later Professor Falkin."' >&2
Returns: nothing
function choose {

 local default="$1"
 local prompt="$2"
 local choice_yes="$3"
 local choice_no="$4"
 local answer

 read -p "$prompt" answer
 [-z "$answer"] && answer="$default"

 case "$answer" in
 [yY1]) exec "$choice_yes"
 # error check
 ;;
 [nN0]) exec "$choice_no"

62 | Chapter 3: Standard Input

 # error check
 ;;
 *) printf "%b" "Unexpected answer '$answer'!" >&2 ;;
 esac
} # end of function choose

If the actions are complicated, use this function and handle the results in your main
code.

cookbook filename: func_choice.1

Let the user make a choice about something and return a standardized
answer. How the default is handled and what happens next is up to
the if/then after the choice in main
Called like: choice <promtp>
e.g. choice "Do you want to play a game?"
$ Returns: global variable CHOICE
function choice {

 CHOICE=''
 local prompt="$*"
 local answer

 read -p "$prompt" answer
 case "$answer" in
 [yY1]) CHOICE='y';;
 [nN0]) CHOICE='n';;
 *) CHOICE="$answer";;
 esac
} # end of function choice

The following code calls the choice function to prompt for and verify a package date.
Assuming $THISPACKAGE is set, the function displays the date and asks for verifica-
tion. If the user types y, Y, or Enter, then that date is accepted. If the user enters a
new date, the function loops and verifies it (for a different treatment of this problem,
see Recipe 11.7, “Figuring Out Date and Time Arithmetic”):

cookbook filename: func_choice.2

until ["$CHOICE" = "y"]; do
 printf "%b" "This package's date is $THISPACKAGE\n" >&2
 choice "Is that correct? [Y/,<New date>]: "
 if [-z "$CHOICE"]; then
 CHOICE='y'
 elif ["$CHOICE" != "y"]; then
 printf "%b" "Overriding $THISPACKAGEwith ${CHOICE}\n"
 THISPACKAGE=$CHOICE
 fi
done

Build the package here

Getting Yes or No Input | 63

Next we’ll show different ways to handle some “yes or no” questions. Carefully read
the prompts and look at the defaults. In both cases the user can simply hit the Enter
key, and the script will then take the default the programmer intended.

If the user types anything except a case insensitive 'n', they will
see the error log
choice "Do you want to look at the error log file? [Y/n]: "
if ["$choice" != "n"]; then
 less error.log
fi

If the user types anything except a case insensitive 'y', they will
not see the message log
choice "Do you want to look at the message log file? [y/N]: "
if ["$choice" = "y"]; then
 less message.log
fi

Finally, this function asks for input that might not exist:

cookbook filename: func_choice.3

choice "Enter your favorite color, if you have one: "
if [-n "$CHOICE"]; then
 printf "%b" "You chose: $CHOICE"
else
 printf "%b" "You do not have a favorite color."
fi

Discussion
Asking the user to make a decision is often necessary in scripting. For getting arbi-
trary input, see Recipe 3.5, “Getting User Input.” For choosing an option from a list,
see Recipe 3.7, “Selecting from a List of Options.”

If the possible choices and the code to handle them are fairly straightforward, the
first self-contained function is easier to use, but it’s not always flexible enough. The
second function is flexible at the expense of having to do more in the main code.

Note that we’ve sent the user prompts to STDERR so that the main script output on
STDOUT may be redirected without the prompts cluttering it up.

See Also
• Recipe 3.5, “Getting User Input”

• Recipe 3.7, “Selecting from a List of Options”

• Recipe 11.7, “Figuring Out Date and Time Arithmetic”

64 | Chapter 3: Standard Input

3.7 Selecting from a List of Options

Problem
You need to provide the user with a list of options to choose from and you don’t
want to make them type any more than necessary.

Solution
Use bash’s built-in select construct to generate a menu, then have the user choose
by typing the number of the selection:

cookbook filename: select_dir

directorylist="Finished $(ls /)"

PS3='Directory to process? ' # Set a useful select prompt
until ["$directory" == "Finished"]; do

 printf "%b" "\a\n\nSelect a directory to process:\n" >&2
 select directory in $directorylist; do

 # User types a number which is stored in $REPLY, but select
 # returns the value of the entry
 if ["$directory" = "Finished"]; then
 echo "Finished processing directories."
 break
 elif [-n "$directory"]; then
 echo "You chose number $REPLY, processing $directory ..."
 # Do something here
 break
 else
 echo "Invalid selection!"
 fi # end of handle user's selection

 done # end of select a directory
done # end of while not finished

Discussion
The select function makes it trivial to present a numbered list to the user on
STDERR, from which they may make a choice. Don’t forget to provide an “exit” or
“finished” choice.

The number the user typed is returned in $REPLY, and the value of that entry is
returned in the variable you specified in the select construct.

Prompting for a Password | 65

See Also
• help select

• help read

• Recipe 3.6, “Getting Yes or No Input”

3.8 Prompting for a Password

Problem
You need to prompt the user for a password, but you don’t want it echoed on the
screen.

Solution
read -s -p "password: " PASSWD
printf "%b" "\n"

Discussion
The -s option tells the read command not to echo the characters typed (s is for
silent) and the -p option says that the next argument is the prompt to be displayed
prior to reading input.

The line of input that is read from the user is put into the environment variable
named $PASSWD.

We follow read with a printf to print out a newline. The printf is necessary because
read -s turns off the echoing of characters. With echoing disabled, when the user
presses the Enter key, no newline is echoed and any subsequent output would
appear on the same line as the prompt. Printing the newline gets us to the next line,
as you would expect. It may even be handy for you to write the code all on one line
to avoid intervening logic; putting it on one line also prevents mistakes should you
cut and paste this line elsewhere:

read -s -p "password: " PASSWD ; printf "%b" "\n"

Be aware that if you read a password into an environment variable it is in memory in
plain text, and thus may be accessed via a core dump or /proc/core. It is also in the
process environment, which may be accessible by other processes. You may be bet-
ter off using certificates with SSH, if possible. In any case, it is wise to assume that
root and possibly other users on the machine may gain access to the password, so
you should handle the situation accordingly.

66 | Chapter 3: Standard Input

Some older scripts may use s to disable the screen echo while a pass-
word is being entered. The problem with that is this if the user breaks
the script, echo will still be off. Experienced users will know to type
stty sane to fix it, but it’s very confusing. If you still need to use this
method, set a trap to turn echo back on when the script terminates.
See Recipe 10.6, “Trapping Interrupts.”

See Also
• help read

• Recipe 10.6, “Trapping Interrupts”

• Recipe 14.14, “Leaking Passwords into the Process List”

• Recipe 14.20, “Using Passwords in Scripts”

• Recipe 14.21, “Using SSH Without a Password”

• Recipe 19.9, “Making Your Terminal Sane Again”

67

Chapter 4 CHAPTER 4

Executing Commands5

The main purpose of bash (or of any shell) is to allow you to interact with the com-
puter’s operating system so that you can accomplish whatever you need to do. Usu-
ally that involves launching programs, so the shell takes the commands you type,
determines from that input what programs need to be run, and launches them for you.

Let’s take a look at the basic mechanism for launching jobs and explore some of the
features bash offers for launching programs in the foreground or the background,
sequentially or in parallel, indicating whether programs succeeded and more.

4.1 Running Any Executable

Problem
You need to run a command on a Linux or Unix system.

Solution
Use bash and type the name of the command at the prompt.

$ someprog

Discussion
This seems rather simple, and in a way it is, but a lot goes on behind the scenes that
you never see. What’s important to understand about bash is that its basic operation
is to load and execute programs. All the rest is just window dressing to get ready to
run programs. Sure there are shell variables and control statements for looping and
if/then/else branching, and there are ways to control input and output, but they are
all icing on the cake of program execution.

So where does it get the program to run?

68 | Chapter 4: Executing Commands

bash will use a shell variable called $PATH to locate your executable. The $PATH vari-
able is a list of directories. The directories are separated by colons (:). bash will
search in each of those directories for a file with the name that you specified. The
order of the directories is important—bash looks at the order in which the directo-
ries are listed in the variable, and takes the first executable found.

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:.
$

In the $PATH variable shown above, four directories are included. The last directory in
that list is just a single dot (called the dot directory, or just dot), which represents the
current directory. The dot is the name of the directory found within every directory
on a Linux or Unix file system—wherever you are, that’s the directory to which dot
refers. For example, when you copy a file from someplace to dot (i.e., cp /other/
place/file .), you are copying the file into the current directory. By having the dot
directory listed in our path, bash will look for commands not just in those other
directories, but also in the current directory (.).

Many people feel that putting dot on your $PATH is too great a security risk—some-
one could trick you and get you to run their own (malicious) version of a command
in place of one that you were expecting. Now if dot were listed first, then someone
else’s version of ls would supersede the normal ls command and you might unwit-
tingly run that command. Don’t believe us? Try this:

$ bash
$ cd
$ touch ls
$ chmod 755 ls
$ PATH=".:$PATH"
$ ls
$

Suddenly, the ls appears not to work in your home directory. You get no output.
When you cd to some other location (e.g., cd /tmp), then ls will work, but not in
your home directory. Why? Because in that directory there is an empty file called ls
that is run (and does nothing—it’s empty) instead of the normal ls command
located at /bin/ls. Since we started this example by running a new copy of bash, you
can exit from this mess by exiting this subshell; but you might want to remove the
bogus ls command first:

$ cd
$ rm ls
$ exit
$

Can you see the mischief potential of wandering into a strange directory with your
path set to search the dot directory before anywhere else?

Telling If a Command Succeeded or Not | 69

If you put dot as the last directory in your $PATH variable, at least you won’t be
tricked that easily. Of course, if you leave it off altogether it is arguably even safer
and you can still run commands in your local directory by typing a leading dot and
slash character, as in:

$./myscript

The choice is yours.

Never allow a dot or writable directories in root’s $PATH. For more, see
Recipe 14.9, “Finding World-Writable Directories in Your $PATH”
and Recipe 14.10, “Adding the Current Directory to the $PATH.”

Don’t forget to set the file’s permissions to execute permission before you invoke
your script:

$ chmod a+x ./myscript
$./myscript

You only need to set the permissions once. Thereafter you can invoke the script as a
command.

A common practice among some bash experts is to create a personal bin directory,
analogous to the system directories /bin and /usr/bin where executables are kept. In
your personal bin you can put copies of your favorite shell scripts and other custom-
ized or private commands. Then add your home directory to your $PATH, even to the
front (PATH=~/bin:$PATH). That way, you can still have your own customized favor-
ites without the security risk of running commands from strangers.

See Also
• Chapter 16 for more on customizing your environment

• Recipe 1.3, “Finding and Running Commands”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 16.9, “Keeping a Private Stash of Utilities by Adding ~/bin”

• Recipe 19.1, “Forgetting to Set Execute Permissions”

4.2 Telling If a Command Succeeded or Not

Problem
You need to know whether the command you ran succeeded.

70 | Chapter 4: Executing Commands

Solution
The shell variable $? will be set with a non-zero value if the command fails—provided
that the programmer who wrote that command or shell script followed the estab-
lished convention:

$ somecommand
it works...
$ echo $?
0
$ badcommand
it fails...
$ echo $?
1
$

Discussion
The exit status of a command is kept in the shell variable referenced with $?. Its value
can range from 0 to 255. When you write a shell script, it’s a good idea to have your
script exit with a non-zero value if you encounter an error condition. (Just keep it
below 255, or the numbers will wrap around.) You return an exit status with the
exit statement (e.g., exit 1 or exit 0). But be aware that you only get one shot at
reading the exit status:

$ badcommand
it fails...
$ echo $?
1
$ echo $?
0
$

Why does the second time give us 0 as a result? Because the second time is reporting
on the status of the immediately preceding echo command. The first time we typed
echo $? it returned a 1, which was the return value of badcommand. But the echo
command itself succeeds, therefore the new, most-recent status is success (i.e., a 0
value). So you only get one chance to check it. Therefore, many shell scripts will
immediately assign the status to another shell variable, as in:

$ badcommand
it fails...
$ STAT=$?
$ echo $STAT
1
$ echo $STAT
1
$

We can keep the value around in the variable $STAT and check its value later on.

Running Several Commands in Sequence | 71

Although we’re showing this in command-line examples, the real use of variables like
$? comes in writing scripts. You can usually see if a command worked or not if you
are watching it run on your screen. But in a script, the commands may be running
unattended.

One of the great features of bash is that the scripting language is identical to com-
mands as you type them at a prompt in a terminal window. This makes it much eas-
ier to check out syntax and logic as you write your scripts.

The exit status is more often used in scripts, and often in if statements, to take dif-
ferent actions depending on the success or failure of a command. Here’s a simple
example for now, but we will revisit this topic in future recipes:

$ somecommand
...
$ if (($?)) ; then echo failed ; else echo OK; fi

See Also
• Recipe 4.5, “Deciding Whether a Command Succeeds”

• Recipe 4.8, “Displaying Error Messages When Failures Occur”

• Recipe 6.2, “Branching on Conditions”

4.3 Running Several Commands in Sequence

Problem
You need to run several commands, but some take a while and you don’t want to
wait for the last one to finish before issuing the next command.

Solution
There are three solutions to this problem, although the first is rather trivial: just keep
typing. A Linux or Unix system is advanced enough to be able to let you type while it
works on your previous commands, so you can simply keep typing one command
after another.

Another rather simple solution is to type those commands into a file and then tell
bash to execute the commands in the file—i.e., a simple shell script.

Assume that we want to run three commands: long, medium, and short, each of
whose execution time is reflected in its name. We need to run them in that order, but
don’t want to wait around for long to finish before starting the other commands. We
could use a shell script (aka batch file). Here’s a primitive way to do that:

$ cat > simple.script
long
medium

72 | Chapter 4: Executing Commands

short
^D # Ctrl-D, not visible
$ bash ./simple.script

The third, and arguably best, solution is to run each command in sequence. If you
want to run each program, regardless if the preceding ones fail, separate them with
semicolons:

$ long ; medium ; short

If you only want to run the next program if the preceding program worked, and all
the programs correctly set exit codes, separate them with double-ampersands:

$ long && medium && short

Discussion
The cat example was just a very primitive way to enter text into a file. We redirect
the output from the command into the file named simple.script (for more on redirect-
ing output, see Chapter 3). Better you should use a real editor, but such things are
harder to show in examples like this. From now on, when we want to show a script,
we’ll just either show the text as disembodied text not on a command line, or we will
start the example with a command like cat filename to dump the contents of the file
to the screen (rather than redirecting output from our typing into the file), and thus
display it in the example.

The main point of this simple solution is to demonstrate that more than one com-
mand can be put on the bash command line. In the first case the second command
isn’t run until the first command exits, and the third doesn’t execute until the sec-
ond exits and so on, for as many commands as you have on the line. In the second
case the second command isn’t run unless the first command succeeds, and the third
doesn’t execute until the second succeeds and so on, for as many commands as you
have on the line.

4.4 Running Several Commands All at Once

Problem
You need to run three commands, but they are independent of each other, and don’t
need to wait for each other to complete.

Solution
You can run a command in the background by putting an ampersand (&) at the end of
the command line. Thus, you could fire off all three jobs in rapid succession as follows:

$ long &
[1] 4592
$ medium &

Running Several Commands All at Once | 73

[2] 4593
$ short
$

Or better yet, you can do it all on one command line:

$ long & medium & short
[1] 4592
[2] 4593
$

Discussion
When we run a command in the background (there really is no such place in Linux),
all that really means is that we disconnect keyboard input from the command and
the shell doesn’t wait for the command to complete before it gives another prompt
and accepts more command input. Output from the job (unless we take explicit
action to do otherwise) will still come to the screen, so all three jobs will be inter-
spersing output to the screen.

The odd bits of numerical output are the job number in square brackets, followed by
the process ID of the command that we just started in the background. In our exam-
ple, job 1 (process 4592) is the long command, and job 2 (process 4593) is medium.

We didn’t put short into the background since we didn’t put an ampersand at the
end of the line, so bash will wait for it to complete before giving us the shell prompt
(the $).

The job number or process ID can be used to provide limited control over the job.
You can kill the long job with kill %1 (since its job number was 1). Or you could
specify the process number (e.g., kill 4592) with the same deadly results.

You can also use the job number to reconnect to a background job. Connect it back
to the foreground with fg %1. But if you only had one job running in the back-
ground, you wouldn’t even need the job number, just fg by itself.

If you start a job and then realize it will take longer to complete than you thought,
you can pause it using Ctrl-Z, which will return you to a prompt. You can then type
bg to un-pause the job so it will continue running in the background. This is basi-
cally adding a trailing & after the fact.

See Also
• Chapter 2 on redirecting output

74 | Chapter 4: Executing Commands

4.5 Deciding Whether a Command Succeeds

Problem
You need to run some commands, but you only want to run certain commands if
certain other ones succeed. For example, you’d like to change directories (using the
cd command) into a temporary directory and remove all the files. However, you
don’t want to remove any files if the cd fails (e.g., if permissions don’t allow you into
the directory, or if you spell the directory name wrong).

Solution
We can use the exit status ($?) of the cd command in combination with an if state-
ment to do the rm only if the cd was successful.

cd mytmp
if (($?)); then rm * ; fi

Discussion
Obviously, you wouldn’t need to do this if you were typing the commands by hand.
You would see any error messages from the cd command, and thus you wouldn’t
type the rm command. But scripting is another matter, and this test is very well
worth doing to make sure that you don’t accidentally erase all the files in the direc-
tory where you are running.

Let’s say you ran that script from the wrong directory, one that didn’t have a subdi-
rectory named mytmp. When it runs, the cd would fail, so the current directory
remains unchanged. Without the if check (the cd having failed) the script would just
continue on to the next statement. Running the rm * would remove all the files in
your current directory. Ouch. The if is worth it.

So how does $? get its value? It is the exit code of the command. For C Language
programmers, you’ll recognize this as the value of the argument supplied to the
exit() function; e.g., exit(4); would return a 4. For the shell, zero is considered
success and a non-zero value means failure.

If you’re writing bash scripts, you’ll want to be sure that your bash scripts explicitly
set return values, so that $? is set properly from your script. If you don’t, the value
set will be the value of the last command run, which you may not want as your
result.

See Also
• Recipe 4.2, “Telling If a Command Succeeded or Not”

• Recipe 4.6, “Using Fewer if Statements”

Using Fewer if Statements | 75

4.6 Using Fewer if Statements

Problem
As a conscientious programmer, you took to heart what we described in the previ-
ous recipe, Recipe 4.5, “Deciding Whether a Command Succeeds.” You applied the
concept to your latest shell script, and now you find that the shell script is unread-
able, if with all those if statements checking the return code of every command. Isn’t
there an alternative?

Solution
Use the double-ampersand operator in bash to provide conditional execution:

$ cd mytmp && rm *

Discussion
Two commands separated by the double ampersands tells bash to run the first com-
mand and then to run the second command only if the first command succeeds (i.e.,
its exit status is 0). This is very much like using an if statement to check the exit sta-
tus of the first command in order to protect the running of the second command:

cd mytmp
if (($?)); then rm * ; fi

The double ampersand syntax is meant to be reminiscent of the logical and operator
in C Language. If you know your logic (and your C) then you’ll recall that if you are
evaluating the logical expression A AND B, then the entire expression can only be true
if both (sub)expression A and (sub)expression B evaluate to true. If either one is false,
the whole expression is false. C Language makes use of this fact, and when you code
an expression like if (A && B) { ... }, it will evaluate expression A first. If it is false,
it won’t even bother to evaluate B since the overall outcome (false) has already been
determined (by A being false).

So what does this have to do with bash? Well, if the exit status of the first command
(the one to the left of the &&) is non-zero (i.e., failed) then it won’t bother to evaluate
the second expression—i.e., it won’t run the other command at all.

If you want to be thorough about your error checking, but don’t want if statements
all over the place, you can have bash exit any time it encounters a failure (i.e., a non-
zero exit status) from every command in your script (except in while loops and if
statements where it is already capturing and using the exit status) by setting the -e
flag.

set -e
cd mytmp
rm *

76 | Chapter 4: Executing Commands

Setting the -e flag will cause the shell to exit when a command fails. If the cd fails,
the script will exit and never even try to execute the rm * command. We don’t recom-
mend doing this on an interactive shell, because when the shell exits it will make
your shell window go away.

See Also
• Recipe 4.8, “Displaying Error Messages When Failures Occur” for an explana-

tion of the || syntax, which is similar in some ways, but also quite different from
the && construct

4.7 Running Long Jobs Unattended

Problem
You ran a job in the background, then exited the shell and went for coffee. When
you came back to check, the job was no longer running and it hadn’t completed. In
fact, your job hadn’t progressed very far at all. It seems to have quit as soon as you
exited the shell.

Solution
If you want to run a job in the background and expect to exit the shell before the job
completes, then you need to nohup the job:

$ nohup long &
nohup: appending output to `nohup.out'
$

Discussion
When you put the job in the background (via the &), it is still a child process of the
bash shell. When you exit an instance of the shell, bash sends a hangup (hup) signal
to all of its child processes. That’s why your job didn’t run for very long. As soon as
you exited bash, it killed your background job. (Hey, you were leaving; how was it
supposed to know?)

The nohup command simply sets up the child process to ignore hang-up signals. You
can still kill a job with the kill command, because kill sends a SIGTERM signal not a
SIGHUP signal. But with nohup, bash won’t inadvertently kill your job when you exit.

The message that nohup gives about appending your output is just nohup trying to be
helpful. Since you are likely to exit the shell after issuing a nohup command, your
output destination will likely go away—i.e., the bash session in your terminal win-
dow would no longer be active. So, where would the job be able to write? More
importantly, writing to a non-existent destination would cause a failure. So nohup
redirects the output for you, appending it (not overwriting, but adding at the end) to

Displaying Error Messages When Failures Occur | 77

a file named nohup.out in the current directory. You can explicitly redirect the out-
put elsewhere on the command line and nohup is smart enough to detect that this
has happened and doesn’t use nohup.out for your output.

See Also
• Chapter 2 for various recipes on redirecting output, since you probably want to

do that for a background job

• Recipe 10.1, ““Daemon-izing” Your Script”

• Recipe 17.4, “Recovering Disconnected Sessions Using screen”

4.8 Displaying Error Messages When Failures Occur

Problem
You need your shell script to be verbose about failures. You want to see error mes-
sages when commands don’t work, but if statements tend to distract from the visual
flow of statements.

Solution
A common idiom among some shell programmers is to use the || with commands to
spit out debug or error messages. Here’s an example:

cmd || printf "%b" "cmd failed. You're on your own\n"

Discussion
Similar to how the && didn’t bother to evaluate the second expression if the first was
false, the || tells the shell not to bother to evaluate the second expression if the first
one is true (i.e., succeeds). As with &&, the || syntax harkens back to logic and C
Language where the outcome is determined (as true) if the first expression in A OR B
evaluates to true—so there’s no need to evaluate the second expression. In bash, if
the first expression returns 0 (i.e., succeeds) then it just continues on. Only if the first
expression (i.e., exit value of the command) returns a non-zero value must it evalu-
ate the second part, and thus run the other command.

Warning—don’t be fooled by this:

cmd || printf "%b" "FAILED.\n" ; exit 1

The exit will be executed in either case! The OR is only between those two com-
mands. If we want to have the exit happen only on error, we need to group it with
the printf so that both are considered as a unit. The desired syntax would be:

cmd || { printf "%b" "FAILED.\n" ; exit 1 ; }

78 | Chapter 4: Executing Commands

Due to an oddity of bash syntax, the semicolon after the last command and just
before the } is required, and that closing brace must be separated by whitespace from
the surrounding text.

See Also
• Recipe 2.14, “Saving or Grouping Output from Several Commands”

• Recipe 4.6, “Using Fewer if Statements” for an explanation of && syntax

4.9 Running Commands from a Variable

Problem
You want to run different commands in your script depending on circumstances.
How can you vary which commands run?

Solution
There are many solutions to this problem—it’s what scripting is all about. In com-
ing chapters we’ll discuss various programming logic that can be used to solve this
problem, such as if/then/else, case statements, and more. But here’s a slightly dif-
ferent approach that reveals something about bash. We can use the contents of a
variable (more on those in Chapter 5) not just for parameters, but also for the com-
mand itself.

FN=/tmp/x.x
PROG=echo
$PROG $FN
PROG=cat
$PROG $FN

Discussion
We can assign the program name to a variable (here we use $PROG), and then when
we refer to that variable in the place where a command name would be expected, it
uses the value of that variable ($PROG) as the command to run. The bash shell parses
the command line, substitutes the values of its variables and takes the result of all the
substitutions and then treats that as the command line, as if it had been typed that
way verbatim.

Be careful about the variable names you use. Some programs such as
InfoZip use environment variables such as $ZIP and $UNZIP to pass set-
tings to the program itself. So if you do something like ZIP='/usr/bin/
zip', you can spend days pulling your hair out wondering why it
works fine from the command line, but not in your script. Trust us.
We learned this one the hard way. Also, RTFM.

Running All Scripts in a Directory | 79

See Also
• Chapter 11

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Appendix C for a descripton of all the various substitutions that are preformed on a
command line; you’ll want to read a few more chapters before tackling that subject

4.10 Running All Scripts in a Directory

Problem
You want to run a series of scripts, but the list keeps changing; you’re always adding
new scripts, but you don’t want to continuously modify a master list.

Solution
Put the scripts you want to run in a directory, and let bash run everything that it
finds. Instead of keeping a master list, simply look at the contents of that directory.
Here’s a script that will run everything it finds in a directory:

for SCRIPT in /path/to/scripts/dir/*
do
 if [-f $SCRIPT -a -x $SCRIPT]
 then
 $SCRIPT
 fi
done

Discussion
We will discuss the for loop and the if statement in greater detail in Chapter 6, but
this gives you a taste. The variable $SCRIPT will take on successive values for each file
that matches the wildcard pattern *, which matches everything in the current direc-
tory (except invisible dot files, which begin with a period). If it is a file (the -f test)
and has execute permissions set (the -x test), the shell will then try to run that script.

In this simple example, we have provided no way to specify any arguments to the
scripts as they are executed. This simple script may work well for your personal
needs, but wouldn’t be considered robust; some might consider it downright dan-
gerous. But we hope it gives you an idea of what lies ahead: some programming-
language-style scripting capabilities.

See Also
• Chapter 6 for more about for loops and if statements

80

Chapter 5CHAPTER 5

Basic Scripting: Shell Variables 6

bash shell programming is a lot like any kind of programming, and that includes hav-
ing variables—containers that hold strings and numbers, which can be changed,
compared, and passed around. bash variables have some very special operators that
can be used when you refer to the variable. bash also has some important built-in
variables, ones that provide important information about the other variables in your
script. This chapter takes a look at bash variables and some special mechanisms for
referencing variables, and shows how they can be put to use in your scripts.

Variables in a bash script are often written as all-uppercase names, though that is not
required—just a common practice. You don’t need to declare them; just use them
where you want them. They are basically all of type string, though some bash opera-
tions can treat their contents as a number. They look like this in use:

trivial script using shell variables
(but at least it is commented!)
MYVAR="something"
echo $MYVAR
similar but with no quotes
MY_2ND=anotherone
echo $MY_2ND
quotes are needed here:
MYOTHER="more stuff to echo"
echo $MYOTHER

There are two significant aspects of bash variable syntax that may not be intuitively
obvious regarding shell variables. First, on the assignment, the name=value syntax is
straightforward enough, but there cannot be any spaces around the equal sign.

Let’s consider for a moment why this is the case. Remember that the basic semantics of
the shell is to launch programs—you name the program on the command line and that
is the program that gets launched. Any words of text that follow after it on the com-
mand line are passed along as arguments to the program. For example when you type:

$ ls filename

Basic Scripting: Shell Variables | 81

the word ls is the name of the command and filename is the first and only argument
in this example.

Why is that relevant? Well, consider what a variable assignment in bash would look
like if you allowed spaces around the equal sign, like this:

MYVAR = something

Can you see that the shell would have a hard time distinguishing between the name
of a command to invoke (like the ls example) and the assignment of a variable? This
would be especially true for commands that can use = symbols as one or more of
their arguments (e.g., test). So to keep it simple, the shell doesn’t allow spaces
around the equal sign in an assignment. Otherwise it would see them just as sepa-
rate words. The flip side of this is also worth noting—don’t use an equal sign in a
filename, especially not one for a shell script (it is possible, just not recommended).

The second aspect of shell variable syntax worth noting is the use of the dollar sign
when referring to the variable. You don’t use the dollar sign on the variable name to
assign it a value, but you do use the dollar sign to get the value of the variable. (The
exception to this is using variables inside a $((...)) expression.) In compiler jargon,
this difference in syntax for assigning and retrieving the value is the difference
between the L-value and the R-value of the variable (for Left and Right side of an
assignment operator).

Once again, the reason for this is for simple disambiguation. Consider the following:

MYVAR=something
echo MYVAR is now MYVAR

As this example tries to point out, how would one distinguish between the literal
string "MYVAR" and the value of the $MYVAR variable? Use quotes, you say? If you were
to require quoting around literal strings then everything would get a lot messier—
you would have to quote every non-variable name, which includes commands! Who
wants to type:

$ "ls" "-l" "/usr/bin/xmms"

(Yes, for those of you who thought about trying it, it does work.) So rather than have
to put quotes around everything, the onus is put on the variable reference by using
the R-value syntax. Put a dollar sign on a variable name when you want to get at the
value associated with that variable name.

MYVAR=something
echo MYVAR is now $MYVAR

Just remember that since everything in bash is strings, we need the dollar sign to
show a variable reference.

82 | Chapter 5: Basic Scripting: Shell Variables

5.1 Documenting Your Script

Problem
Before we say one more word about shell scripts or variables, we have to say some-
thing about documenting your scripts. After all, you need to be able to understand
your script even when several months have passed since you wrote it.

Solution
Document your script with comments. The # character denotes the beginning of a
comment. All the characters after it on that line are ignored by the shell.

#
This is a comment.
#
Use comments frequently.
Comments are your friends.

Discussion
Some people have described shell syntax, regular expressions, and other parts of
shell scripting as write only syntax, implying that it is nearly impossible to under-
stand the intricacies of many shell scripts.

One of your best defenses against letting your shell scripts fall into this trap is the lib-
eral use of comments (another is the use of meaningful variable names). It helps to
put a comment before strange syntax or terse expressions.

replace the semi with a blank
NEWPATH=${PATH/;/ }
#
switch the text on either side of a semi
sed -e 's/^\(.*\);\(.*\)$/\2;\1/' < $FILE

Comments can even be typed in at the command prompt with an interactive shell.
This can be turned off, but it is on by default. There may be a few occasions when it
is useful to make interactive comments.

See Also
• “shopt Options” in Appendix A gives the option for turning interactive com-

ments on or off

Embedding Documentation in Shell Scripts | 83

5.2 Embedding Documentation in Shell Scripts

Problem
You want a simple way to provide formatted end-user documentation (e.g., man or
html pages) for your script. You want to keep both code and documentation mark-
up in the same file to simplify updates, distribution, and revision control.

Solution
Embed documentation in the script using the “do nothing” built-in (a colon) and a
here-document:

#!/usr/bin/env bash
cookbook filename: embedded_documentation

echo 'Shell script code goes here'

Use a : NOOP and here document to embed documentation,
: <<'END_OF_DOCS'

Embedded documentation such as Perl's Plain Old Documentation (POD),
or even plain text here.

Any accurate documentation is better than none at all.

Sample documentation in Perl's Plain Old Documentation (POD) format adapted from
CODE/ch07/Ch07.001_Best_Ex7.1 and 7.2 in Perl Best Practices.

=head1 NAME

MY~PROGRAM--One line description here

=head1 SYNOPSIS

 MY~PROGRAM [OPTIONS] <file>

=head1 OPTIONS

 -h = This usage.
 -v = Be verbose.
 -V = Show version, copyright and license information.

=head1 DESCRIPTION

A full description of the application and its features.
May include numerous subsections (i.e. =head2, =head3, etc.)

[...]

84 | Chapter 5: Basic Scripting: Shell Variables

=head1 LICENSE AND COPYRIGHT

=cut

END_OF_DOCS

Then to extract and use that POD documentation, try these commands.

To read on-screen, automatically paginated
$ perldoc myscript

Just the "usage" sections
$ pod2usage myscript

Create an HTML version
$ pod2html myscript > myscript.html

Create a man page
$ pod2man myscript > myscript.1

Discussion
Any plain text documentation or mark-up can be used this way, either interspersed
throughout the code or better yet collected at the end of the script. Since computer
systems that have bash will probably also have Perl, its Plain Old Documentation
(POD) may be a good choice. Perl usually comes with pod2* programs to convert
POD to HTML, LaTeX, man, text, and usage files.

Damian Conway’s Perl Best Practices (O’Reilly) has some excellent library module
and application documentation templates that could be easily translated into any
documentation format including plain text. In that book, see CODE/ch07/Ch07.001_
Best_Ex7.1 and 7.2 in the examples tarball (http://examples.oreilly.com/perlbp/PBP_
code.tar.gz).

If you keep all of your embedded documentation at the very bottom of the script,
you could also add an exit 0 right before the documentation begins. That will sim-
ply exit the script rather than force the shell to parse each line looking for the end of
the here-document, so it will be a little faster. Thought, you need to be careful not to
do that if you intersperse code and embedded documentation in the body of the
script.

See Also
• http://examples.oreilly.com/perlbp/PBP_code.tar.gz

• “Embedding manpages in Shell Scripts with kshdoc” at http://www.unixlabplus.
com/unix-prog/kshdoc/kshdoc.html

Promoting Script Readability | 85

5.3 Promoting Script Readability

Problem
You’d like to make your script as readable as possible for ease of understanding and
future maintenance.

Solution
• Document your script as noted in Recipe 5.1, “Documenting Your Script” and

Recipe 5.2, “Embedding Documentation in Shell Scripts”

• Indent and use vertical whitespace wisely

• Use meaningful variable names

• Use functions, and give them meaningful names

• Break lines at meaningful places at less than 76 characters or so

• Put the most meaningful bits to the left

Discussion
Document your intent, not the trivial details of the code. If you follow the rest of the
points, the code should be pretty clear. Write reminders, provide sample data lay-
outs or headers, and make a note of all the details that are in your head now, as you
write the code. But document the code itself too if it is subtle or obscure.

We recommend indenting using four spaces per level, with no tabs and especially no
mixed tabs. There are many reasons for this, though it often is a matter of personal
preference or company standards. After all, four spaces is always four spaces, no
matter how your editor (excepting proportional fonts) or printer is set. Four spaces is
big enough to be easily visible as you glance across the script but small enough that
you can have several levels of indenting without running the lines off the right side of
your screen or printed page. We also suggest indenting continued lines with two
additional spaces, or as needed, to make the code the most clear.

Use vertical white space, with separators if you like them, to create blocks of similar
code. Of course you’ll do that with functions as well.

Use meaningful names for variables and functions, and spell them out. The only time
$i or $x is ever acceptable is in a for loop. You may think that short, cryptic names
are saving you time and typing now, but we guarantee that you will lose that time
10- or 100-fold somewhere down the line when you have to fix or modify that script.

Break long lines at around 76 characters. Yes, we know that most of the screens (or
rather terminal programs) can do a lot more than that. But 80 character paper and
screens are still the default, and it never hurts to have some white space to the right
of the code. Constantly having to scroll to the right or having lines wrap on the
screen or printout is annoying and distracting. Don’t cause it.

86 | Chapter 5: Basic Scripting: Shell Variables

Unfortunately, there are sometimes exceptions to the long line rule. When creating
lines to pass elsewhere, perhaps via Secure Shell (SSH), and in certain other cases,
breaking up the line can cause many more code headaches than it solves. But in most
cases, it makes sense.

Try to put the most meaningful bits to the left when you break a line because we
read shell code left-to-right, so the unusual fact of a continued line will stand out
more. It’s also easier to scan down the left edge of the code for continued lines,
should you need to find them. Which is more clear?

Good
[$results] \
 && echo "Got a good result in $results" \
 || echo 'Got an empty result, something is wrong'

Also good
[$results] && echo "Got a good result in $results" \
 || echo 'Got an empty result, something is wrong'

OK, but not ideal
[$results] && echo "Got a good result in $results" \
 || echo 'Got an empty result, something is wrong'

Bad
[$results] && echo "Got a good result in $results" || echo 'Got an empty result,
something is wrong'

Bad
[$results] && \
 echo "Got a good result in $results" || \
 echo 'Got an empty result, something is wrong'

See Also
• Recipe 5.1, “Documenting Your Script”

• Recipe 5.2, “Embedding Documentation in Shell Scripts”

5.4 Separating Variable Names from Surrounding
Text

Problem
You need to print a variable along with other text. You are using the dollar sign in
referring to the variable. But how do you distinguish the end of the variable name

Exporting Variables | 87

from other text that follows? For example, say you wanted to use a shell variable as
part of a filename, as in:

for FN in 1 2 3 4 5
do
 somescript /tmp/rep$FNport.txt
done

How will the shell read that? It will think that the variable name starts with the $ and
ends with the punctuation. In other words, it will think that $FNport is the variable
name, not the intended $FN.

Solution
Use the full syntax for a variable reference, which includes not just the dollar sign,
but also braces around the variable name:

somescript /tmp/rep${SUM}bay.txt

Discussion
Because shell variables are only alphanumeric characters, there are many instances
where you won’t need to use the braces. Any whitespace or punctuation (except
underscore) provides enough of a clue to where the variable name ends. But when in
doubt, use the braces.

See Also
• Recipe 1.6, “Using Shell Quoting”

5.5 Exporting Variables

Problem
You defined a variable in one script, but when you called another script it didn’t
know about the variable.

Solution
Export variables that you want to pass on to other scripts:

export MYVAR
export NAME=value

Discussion
Sometimes it’s a good thing that one script doesn’t know about the other script’s
variables. If you called a shell script from within a for loop in the first script, you
wouldn’t want the second script messing up the iterations of your for loop.

88 | Chapter 5: Basic Scripting: Shell Variables

But sometimes you do want the information passed along. In those cases, you can
export the variable so that its value is passed along to any other program that it
invokes.

If you want to see a list of all the exported variables, just type the built-in command
env (or export -p) for a list of each variable and its value. All of these are available for
your script when it runs. Many have already been set up by the bash startup scripts
(see Chapter 16 for more on configuring and customizing bash).

You can have the export statement just name the variable that will be exported.
Though the export statement can be put anywhere prior to where you need the value
to be exported, script writers often group these export statements together like vari-
able declarations at the front of a script. You can also make the export part of any
variable assignment, though that won’t work in old versions of the shell.

Once exported, you can assign repeatedly to the variable without exporting it each
time. So, sometimes you’ll see statements like:

export FNAME
export SIZE
export MAX
...
MAX=2048
SIZE=64
FNAME=/tmp/scratch

and at other times you’ll see:

export FNAME=/tmp/scratch
export SIZE=64
export MAX=2048
...
FNAME=/tmp/scratch2
...
FNAME=/tmp/stillexported

One word of caution: the exported variables are, in effect, call by value. Changing
the value of the exported value in the called script does not change that variable’s
value back in the calling script.

This begs the question: “How would you pass back a changed value from the called
script?” Answer: you can’t.

Is there a better answer? Unfortunately, there isn’t. You can only design your scripts
so that they don’t need to do this. What mechanisms have people used to cope with
this limitation?

One approach might be to have the called script echo its changed value as output
from the script, letting you read the output with the resulting changed value. For
example, suppose one script exports a variable $VAL and then calls another script that

Seeing All Variable Values | 89

modifies $VAL. To get the new value returned, you have to write the new value to
standard out and capture that value and assign it to $VAL, as in:

VAL=$(anotherscript)

in order to change the value of $VAL (see Recipe 10.5, “Using Functions: Parameters
and Return Values”). You could even change multiple values and echo them each in
turn to standard out. The calling program could then use a shell read to capture each
line of output one at a time into the appropriate variables. This requires that the
called script produce no other output to standard out (at least not before or among
the variables), and sets up a very strong interdependency between the scripts (not
good from a maintenance standpoint).

See Also
• help export

• Chapter 16 for more information on configuring and customizing bash

• Recipe 5.6, “Seeing All Variable Values”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Recipe 19.5, “Expecting to Change Exported Variables”

5.6 Seeing All Variable Values

Problem
How can I see which variables have been exported and what values they have? Do I
have to echo each one by hand? How would I tell if they are exported?

Solution
Use the set command to see the value of all variables and function definitions in the
current shell.

Use the env (or export -p) command to see only those variables that have been
exported and would be available to a subshell.

Discussion
The set command, with no other arguments, produces (on standard out) a list of all
the shell variables currently defined along with their values, in a name=value format.
The env command is similiar. If you run either, you will find a rather long list of vari-
ables, many of which you might not recognize. Those variables have been created for
you, as part of the shell’s startup process.

The list produced by env is a subset of the list produced by set, since not all variables
are exported.

90 | Chapter 5: Basic Scripting: Shell Variables

If there are particular variables or values that are of interest, and you don’t want the
entire list, just pipe it into a grep command. For example:

$ set | grep MY

will show only those variables whose name or value has the two-character sequence
MY somewhere in it.

See Also
• help set

• help export

• man env

• Chapter 16 for more on configuring and customizing bash

• Appendix A for reference lists for all of the built-in shell variables

5.7 Using Parameters in a Shell Script

Problem
You also want users to be able to invoke your script with a parameter. You could
require that users set a shell variable, but that seems clunky. You also need to pass
data to another script. You could agree on environment variables, but that ties the
two scripts together too closely.

Solution
Use command-line parameters. Any words put on the command line of a shell script
are available to the script as numbered variables:

simple shell script
echo $1

The script will echo the first parameter supplied on the command line when it is
invoked. Here it is in action:

$ cat simplest.sh
simple shell script
echo ${1}
$./simplest.sh you see what I mean
you
$./simplest.sh one more time
one
$

Looping Over Arguments Passed to a Script | 91

Discussion
The other parameters are available as ${2}, ${3}, ${4}, ${5}, and so on. You don’t
need the braces for the single-digit numbers, except to separate the variable name
from the surrounding text. Typical scripts have only a handful of parameters, but
when you get to ${10} you better use the braces or else the shell will interpret that as
${1} followed immediately by the literal string 0 as we see here:

$ cat tricky.sh
echo $1 $10 ${10}
$./tricky.sh I II III IV V VI VII VIII IX X XI
I I0 X
$

The tenth argument has the value X but if you write $10 in your script, then the shell
will give you $1, the first parameter, followed immediately by a zero, the literal char-
acter that you put next to the $1 in your echo statement.

See Also
• Recipe 5.4, “Separating Variable Names from Surrounding Text”

5.8 Looping Over Arguments Passed to a Script

Problem
You want to take some set of actions for a given list of arguments. You could write
your shell script to do that for one argument and use $1 to reference the parameter.
But what if you’d like to do this for a whole bunch of files? You would like to be able
to invoke your script like this:

actall *.txt

knowing that the shell will pattern match and build a list of filenames that match the
*.txt pattern (any filename ending with .txt).

Solution
Use the shell special variable $* to refer to all of your arguments, and use that in a
for loop like this:

#!/usr/bin/env bash
cookbook filename: chmod_all.1
#
change permissions on a bunch of files
#
for FN in $*
do
 echo changing $FN
 chmod 0750 $FN
done

92 | Chapter 5: Basic Scripting: Shell Variables

Discussion
The variable $FN is our choice; we could have used any shell variable name we
wanted there. The $* refers to all the arguments supplied on the command line. For
example, if the user types:

$./actall abc.txt another.txt allmynotes.txt

the script will be invoked with $1 equal to abc.txt and $2 equal to another.txt and $3
equal to allmynotes.txt, but $* will be equal to the entire list. In other words, after the
shell has substituted the list for $* in the for statement, it will be as if the script had
read:

for FN in abc.txt another.txt allmynotes.txt
do
 echo changing $FN
 chmod 0750 $FN
done

The for loop will take one value at a time from the list, assign it to the variable $FN
and proceed through the list of statements between the do and the done. It will then
repeat that loop for each of the other values.

But you’re not finished yet! This script works fine when filenames have no spaces in
them, but sometimes you encounter filenames with spaces. Read the next two reci-
pes to see how this script can be improved.

See Also
• help for

• Recipe 6.12, “Looping with a Count”

5.9 Handling Parameters with Blanks

Problem
You wrote a script that took a filename as a parameter and it seemed to work, but
then one time your script failed. The filename, it turns out, had an embedded blank.

Solution
You’ll need to be careful to quote any shell parameters that might contain filenames.
When referring to a variable, put the variable reference inside double quotes.

Discussion
Thanks a lot, Apple! Trying to be user friendly, they popularized the concept of
space characters as valid characters in filenames, so users could name their files with
names like My Report and Our Dept Data instead of the ugly and unreadable

Handling Parameters with Blanks | 93

MyReport and Our_Dept_Data. (How could anyone possibly understand what those
old-fashioned names meant?) Well, that makes life tough for the shell, because the
space is the fundamental separator between words, and so filenames were always
kept to a single word. Not so anymore.

So how do we handle this?

Where a shell script once had simply ls -l $1, it is better to write ls -l "$1" with
quotes around the parameter. Otherwise, if the parameter has an embedded blank, it
will be parsed into separate words, and only part of the name will be in $1. Let’s
show you how this doesn’t work:

$ cat simpls.sh
simple shell script
ls -l ${1}
$
$./simple.sh Oh the Waste
ls: Oh: No such file or directory
$

When we don’t put any quotes around the filename as we invoke the script, then
bash sees three arguments and substitutes the first argument (Oh) for $1. The ls com-
mand runs with Oh as its only argument and can’t find that file.

So now let’s put quotes around the filename when we invoke the script:

$./simpls.sh "Oh the Waste"
ls: Oh: No such file or directory
ls: the: No such file or directory
ls: Waste: No such file or directory
$

Still not good. bash has taken the three-word filename and substituted it for $1 on
the ls command line in our script. So far so good. Since we don’t have quotes around
the variable reference in our script, however, ls sees each word as a separate argu-
ment, i.e., as separate filenames. It can’t find any of them.

Let’s try a script that quotes the variable reference:

$ cat quoted.sh
note the quotes
ls -l "${1}"
$
$./quoted.sh "Oh the Waste"
-rw-r--r-- 1 smith users 28470 2007-01-11 19:22 Oh the Waste
$

When we quoted the reference "{$1}" it was treated as a single word (a single file-
name), and the ls then had only one argument—the filename—and it could com-
plete its task.

94 | Chapter 5: Basic Scripting: Shell Variables

See Also
• Chapter 19 for common goofs

• Recipe 1.6, “Using Shell Quoting”

• Appendix C for more information on command-line processing

5.10 Handling Lists of Parameters with Blanks

Problem
OK, you have quotes around your variable as the previous recipe recommended. But
you’re still getting errors. It’s just like the script from the Recipe 5.8, “Looping Over
Arguments Passed to a Script,” but it fails when a file has a blank in its name:

#
for FN in $*
do
 chmod 0750 "$FN"
done

Solution
It has to do with the $* in the script, used in the for loop. For this case we need to use
a different but related shell variable, $@. When it is quoted, the resulting list has quotes
around each argument separately. The shell script should be written as follows:

#!/usr/bin/env bash
cookbook filename: chmod_all.2
#
change permissions on a bunch of files
with better quoting in case of filenames with blanks
#
for FN in "$@"
do
 chmod 0750 "$FN"
done

Discussion
The parameter $* expands to the list of arguments supplied to the shell script. If you
invoke your script like this:

$ myscript these are args

then $* refers to the three arguments these are args. And when used in a for loop,
such as:

for FN in $*

then the first time through the loop, $FN is assigned the first word (these) and the
second time, the second word (are), etc.

Handling Lists of Parameters with Blanks | 95

If the arguments are filenames and they are put on the command line by pattern
matching, as when you invoke the script this way:

$ myscript *.mp3

then the shell will match all the files in the current directory whose names end with
the four characters .mp3, and they will be passed to the script. So consider an exam-
ple where there are three MP3 files whose names are:

vocals.mp3
cool music.mp3
tophit.mp3

The second song title has a blank in the filename between cool and music. When you
invoke the script with:

$ myscript *.mp3

you’ll get, in effect:

$ myscript vocals.mp3 cool music.mp3 tophit.mp3

If your script contains the line:

for FN in $*

that will expand to:

for FN in vocals.mp3 cool music.mp3 tophit.mp3

which has four words in its list, not three. The second song title has a blank as the
fifth character (cool music.mp3), and the blank causes the shell to see that as two sep-
arate words (cool and music.mp3), so $FN will be cool on the second iteration through
the for loop. On the third iteration, $FN will have the value music.mp3 but that, too, is
not the name of your file. You’ll get file-not-found error messages.

It might seem logical to try quoting the $* but

for FN in "$*"

will expand to:

for FN in "vocals.mp3 cool music.mp3 tophit.mp3"

and you will end up with a single value for $FN equal to the entire list. You’ll get an
error message like this:

chmod: cannot access 'vocals.mp3 cool music.mp3 tophit.mp3': No such file or
directory

Instead you need to use the shell variable $@ and quote it. Unquoted, $* and $@ give
you the same thing. But when quoted, bash treats them differently. A reference to
$* inside of quotes gives the entire list inside one set of quotes, as we just saw. But
a reference to $@ inside of quotes returns not one string but a list of quoted strings,
one for each argument.

96 | Chapter 5: Basic Scripting: Shell Variables

In our example using the MP3 filenames:

for FN in "$@"

will expand to:

for FN in "vocals.mp3" "cool music.mp3" "tophit.mp3"

and you can see that the second filename is now quoted so that its blank will be kept
as part of its name and not considered a separator between two words.

The second time through this loop, $FN will be assigned the value cool music.mp3,
which has an embedded blank. So be careful how you refer to $FN—you’ll probably
want to put it in quotes too, so that the space in the filename is kept as part of that
string and not used as a separator. That is, you’ll want to use "$FN" as in:

$ chmod 0750 "$FN"

Shouldn’t you always use "$@" in your for loop? Well, it’s a lot harder to type, so for
quick-and-dirty scripts, when you know your filenames don’t have blanks, it’s proba-
bly OK to keep using the old-fashioned $* syntax. For more robust scripting though,
we recommend "$@" as the safer way to go. We’ll probably use them interchange-
ably throughout this book, because even though we know better, old habits die
hard—and some of us never use blanks in our filenames! (Famous last words.)

See Also
• Recipe 5.8, “Looping Over Arguments Passed to a Script”

• Recipe 5.9, “Handling Parameters with Blanks”

• Recipe 5.12, “Consuming Arguments”

• Recipe 6.12, “Looping with a Count”

5.11 Counting Arguments

Problem
You need to know with how many parameters the script was invoked.

Solution
Use the shell built-in variable ${#}. Here’s some scripting to enforce an exact count
of three arguments:

#!/usr/bin/env bash
cookbook filename: check_arg_count
#
Check for the correct # of arguments:
Use this syntax or use: if [$# -lt 3]
if (($# < 3))
then

Counting Arguments | 97

 printf "%b" "Error. Not enough arguments.\n" >&2
 printf "%b" "usage: myscript file1 op file2\n" >&2
 exit 1
elif (($# > 3))
then
 printf "%b" "Error. Too many arguments.\n" >&2
 printf "%b" "usage: myscript file1 op file2\n" >&2
 exit 2
else
 printf "%b" "Argument count correct. Proceeding...\n"
fi

And here is what it looks like when we run it, once with too many arguments and
once with the correct number of arguments:

$./myscript myfile is copied into yourfile
Error. Too many arguments.
usage: myscript file1 op file2

$./myscript myfile copy yourfile
Argument count correct. Proceeding...

Discussion
After the opening comments (always a helpful thing to have in a script), we have the
if test to see whether the number of arguments supplied (found in $#) is greater than
three. If so, we print an error message, remind the user of the correct usage, and exit.

The output from the error messages are redirected to standard error. This is in keep-
ing with the intent of standard error as the channel for all error messages.

The script also has a different return value depending on the error that was detected.
While not that significant here, it is useful for any script that might be invoked by
other scripts, so that there is a programmatic way not only to detect failure (non-zero
exit value), but to distinguish between error types.

One word of caution: don’t confuse ${#} with ${#VAR} or even ${VAR#alt} just
because they all use the # inside of braces. The first gives the number of arguments
the second gives the length of the value in the variable VAR, and the third does a cer-
tain kind of substitution.

See Also
• Recipe 4.2, “Telling If a Command Succeeded or Not”

• Recipe 5.1, “Documenting Your Script”

• Recipe 5.12, “Consuming Arguments”

• Recipe 5.18, “Changing Pieces of a String”

• Recipe 6.12, “Looping with a Count”

98 | Chapter 5: Basic Scripting: Shell Variables

5.12 Consuming Arguments

Problem
For any serious shell script, you are likely to have two kinds of arguments—options
that modify the behavior of the script and the real arguments with which you want to
work. You need a way to get rid of the option argument(s) after you’ve processed
them.

Remember this script:

for FN in "$@"
do
 echo changing $FN
 chmod 0750 "$FN"
done

It’s simple enough—it echoes the filename that it is working on, then it changes that
file’s permissions. What if you want it to work quietly sometimes, not echoing the
filename? How would we add an option to turn off this verbose behavior while pre-
serving the for loop?

Solution
#!/usr/bin/env bash
cookbook filename: use_up_option
#
use and consume an option
#
parse the optional argument
VERBOSE=0;
if [[$1 = -v]]
then
 VERBOSE=1;
 shift;
fi
#
the real work is here
#
for FN in "$@"
do
 if ((VERBOSE == 0))
 then
 echo changing $FN
 fi
 chmod 0750 "$FN"
done

Discussion
We add a flag variable, $VERBOSE, to tell us whether or not to echo the filename as we
work. But once the shell script has seen the -v and set the flag, we don’t want the -v

Getting Default Values | 99

in the argument list any more. The shift statement tells bash to shift its arguments
down one position, getting rid of the first argument ($1) as $2 becomes $1, and $3
becomes $2, and so on.

That way, when the for loop runs, the list of parameters (in $@) no longer contains
the -v but starts with the next parameter.

This approach of parsing arguments is alright for handling a single option. But if you
want more than one option, you need a bit more logic. By convention, options to a
shell script (usually) are not dependent on position; e.g., myscript -a -p should be
the same as myscript -p -a. Moreover, a robust script should be able to handle
repeated options and either ignore them or report an error. For more robust parsing,
see the recipe on bash’s getopts built-in (Recipe 13.1, “Parsing Arguments for Your
Shell Script”).

See Also
• help shift

• Recipe 5.8, “Looping Over Arguments Passed to a Script”

• Recipe 5.11, “Counting Arguments”

• Recipe 5.12, “Consuming Arguments”

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 13.1, “Parsing Arguments for Your Shell Script”

• Recipe 13.2, “Parsing Arguments with Your Own Error Messages”

5.13 Getting Default Values

Problem
You have a shell script that takes arguments supplied on the command line. You’d
like to provide default values so that the most common value(s) can be used without
needing to type them every time.

Solution
Use the ${:-} syntax when referring to the parameter, and use it to supply a default
value:

FILEDIR=${1:-"/tmp"}

Discussion
There are a series of special operators available when referencing a shell variable.
This one, the :- operator, says that if $1 is not set or is null then it will use what fol-
lows, /tmp in our example, as the value. Otherwise it will use the value that is already

100 | Chapter 5: Basic Scripting: Shell Variables

set in $1. It can be used on any shell variable, not just the positional parameters (1, 2,
3, etc.), but they are probably the most common use.

Of course you could do this the long way by constructing an if statement and check-
ing to see if the variable is null or unset (we leave that as an exercise to the reader),
but this sort of thing is so common in shell scripts that this syntax has been wel-
comed as a convenient shorthand.

See Also
• bash manpage on parameter substitution

• Learning the bash Shell by Cameron Newham (O’Reilly), pages 91–92

• Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O’Reilly),
pages 113–114

• Recipe 5.14, “Setting Default Values”

5.14 Setting Default Values

Problem
Your script may rely on certain environment variables, either widely used ones (e.g.,
$USER) or ones specific to your own business. If you want to build a robust shell
script, you should make sure that these variables do have a reasonable value. You
want to guarantee a reasonable default value. How?

Solution
Use the assignment operator in the shell variable reference the first time you refer to
it to assign a value to the variable if it doesn’t already have one, as in:

cd ${HOME:=/tmp}

Discussion
The reference to $HOME in the example above will return the current value of $HOME
unless it is empty or not set at all. In those cases (empty or not set), it will return the
value /tmp, which will also be assigned to $HOME so that further references to $HOME
will have this new value.

We can see this in action here:

$ echo ${HOME:=/tmp}
/home/uid002
$ unset HOME # generally not wise to do
$ echo ${HOME:=/tmp}
/tmp
$ echo $HOME

Using null As a Valid Default Value | 101

/tmp
$ cd ; pwd
/tmp
$

Once we unset the variable it no longer had any value. When we then used the :=
operator as part of our reference to it, the new value (/tmp) was substituted. The sub-
sequent references to $HOME returned its new value.

One important exception to keep in mind about the assignment operator: this mech-
anism will not work with positional parameter arguments (e.g., $1 or $*). For those
cases, use :- in expressions like ${1:-default}, which will return the value without
trying to do the assignment.

As an aside, it might help you to remember some of these crazy symbols if you think
of the visual difference between ${VAR:=value} and ${VAR:-value}. The := will do an
assignment as well as return the value on the right of the operator. The :- will do
half of that—it just returns the value but doesn’t do the assignment—so its symbol is
only half of an equal sign (i.e., one horizontal bar, not two). If this doesn’t help, for-
get that we mentioned it.

See Also
• Recipe 5.13, “Getting Default Values”

5.15 Using null As a Valid Default Value

Problem
You need to set a default value, but you want to allow an empty string as a valid
value. You only want to substitute the default in the case where the value is unset.

The ${:=} operator has two cases where the new value will be used: first, when the
value of the shell variable has previously not been set (or has been explicitly unset);
and second, where the value has been set but is empty, as in HOME="" or HOME=$OTHER
(where $OTHER had no value).

Solution
The shell can distinguish between these two cases, and omitting the colon (:) indi-
cates that you want to make the substitution only if the value is unset. If you write
only ${HOME=/tmp} without the colon, the assignment will take place only in the case
where the variable is not set (never set or explicitly unset).

102 | Chapter 5: Basic Scripting: Shell Variables

Discussion
Let’s play with the $HOME variable again, but this time without the colon in the
operator:

$ echo ${HOME=/tmp} # no substitution needed
/home/uid002
$ HOME="" # generally not wise
$ echo ${HOME=/tmp} # will NOT substitute

$ unset HOME # generally not wise
$ echo ${HOME=/tmp} # will substitute
/tmp
$ echo $HOME
/tmp
$

In the case where we simply made the $HOME variable an empty string, the = operator
didn’t do the substitution since $HOME did have a value, albeit null. But when we
unset the variable, the substitution occurs. If you want to allow for empty strings,
use just the = with no colon. Most times, though, the := is used because you can do
little with an empty value, deliberate or not.

See Also
• Recipe 5.13, “Getting Default Values”

• Recipe 5.14, “Setting Default Values”

5.16 Using More Than Just a Constant String for
Default

Problem
You need something more than just a constant string as the default value for the
variable.

Solution
You can use quite a bit more on the righthand side of these shell variable references.
For example:

cd ${BASE:="$(pwd)"}

Discussion
As the example shows, the value that will be substituted doesn’t have to be just a
string constant. Rather it can be the result of a more complex shell expression,
including running commands in a subshell (as in the example). In our example, if

Giving an Error Message for Unset Parameters | 103

$BASE is not set, the shell will run the pwd built-in command (to get the current direc-
tory) and use the string that it returns as the value.

So what can you do on the righthand side of this (and the other similar) operators? The
bash manpage says that what we put to the right of the operator “is subject to tilde
expansion, parameter expansion, command substitution, and arithmetic expansion.”

Here is what that means:

• Parameter expansion means that we could use other shell variables in this
expression, as in: ${BASE:=${HOME}}.

• Tilde expansion means that we can use expressions like ~bob and it will expand
that to refer to the home directory of the username bob. Use ${BASE:=~uid17} to
set the default value to the home directory for user uid17, but don’t put quotes
around this string, as that will defeat the tilde expansion.

• Command substitution is what we used in the example; it will run the com-
mands and take their output as the value for the variable. Commands are
enclosed in the single parentheses syntax, $(cmds).

• Arithmetic expansion means that we can do integer arithmetic, using the $((...))
syntax in this expression. Here’s an example:

echo ${BASE:=/home/uid$((ID+1))}

See Also
• Recipe 5.13, “Getting Default Values”

5.17 Giving an Error Message for Unset Parameters

Problem
Those shorthands for giving a default value are cool, but maybe you need to force the
users to give you a value, otherwise you don’t want to proceed. Perhaps if they left
off a parameter, they don’t really understand how to invoke your script. You want to
leave nothing to guesswork. Is there anything shorter than lots of if statements to
check each of your several parameters?

Solution
Use the ${:?} syntax when referring to the parameter. bash will print an error mes-
sage and then exit if the parameter is unset or null.

#!/usr/bin/env bash
cookbook filename: check_unset_parms
#

104 | Chapter 5: Basic Scripting: Shell Variables

USAGE="usage: myscript scratchdir sourcefile conversion"
FILEDIR=${1:?"Error. You must supply a scratch directory."}
FILESRC=${2:?"Error. You must supply a source file."}
CVTTYPE=${3:?"Error. ${USAGE}"}

Here’s what happens when we run that script with insufficient arguments:

$./myscript /tmp /dev/null
./myscript: line 5: 3: Error. usage: myscript scracthdir sourcefile conversion
$

Discussion
The check is made to see if the first parameter is set (or null) and if not, it will print
an error message and exit.

The third variable uses another shell variable in its message. You can even run
another command inside it:

CVTTYPE=${3:?"Error. $USAGE. $(rm $SCRATCHFILE)"}

If parameter three is not set, then the error message will contain the phrase “Error.”,
along with the value of the variable named $USAGE and then any output from the
command which removes the filename named by the variable $SCRATCHFILE. OK, so
we’re getting carried away. You can make your shell script awfully compact, and we
do mean awfully. It is better to waste some whitespace and a few bytes to make the
logic ever so much more readable, as in:

if [-z "$3"]
then
 echo "Error. $USAGE"
 rm $SCRATCHFILE
fi

One other consideration: the error message produced by the ${:?} feature comes out
with the shell script filename and line number. For example:

./myscript: line 5: 3: Error. usage: myscript scracthdir sourcefile conversion

Because you have no control over this part of the message, and since it looks like an
error in the shell script itself, combined with the issue of readability, this technique is
not so popular in commercial-grade shell scripts. (It is handy for debugging, though.)

See Also
• Recipe 5.13, “Getting Default Values”

• Recipe 5.14, “Setting Default Values”

• Recipe 5.16, “Using More Than Just a Constant String for Default”

Changing Pieces of a String | 105

5.18 Changing Pieces of a String

Problem
You want to rename a number of files. The filenames are almost right, but they have
the wrong suffix.

Solution
Use a bash parameter expansion feature that will remove text that matches a pattern.

#!/usr/bin/env bash
cookbook filename: suffixer
#
rename files that end in .bad to be .bash

for FN in *.bad
do
 mv "${FN}" "${FN%bad}bash"
done

Discussion
The for loop will iterate over a list of filenames in the current directory that all end in
.bad. The variable $FN will take the value of each name one at a time. Inside the loop,
the mv command will rename the file (move it from the old name to the new name).
We need to put quotes around each filename in case the filename contains embed-
ded spaces.

The crux of this operation is the reference to $FN that includes an automatic deletion
of the trailing bad characters. The ${ } delimit the reference so that the bash adjacent
to it is just appended right on the end of the string.

Here it is broken down into a few more steps:

NOBAD="${FN%bad}"
NEWNAME="${NOBAD}bash"
mv "${FN}" "${NEWNAME}"

This way you can see the individual steps of stripping off the unwanted suffix, creat-
ing the new name, and then renaming the files. Putting it all on one line isn’t so bad
though, once you get used to the special operators.

Since we are not just removing a substring from the variable but are replacing the bad
with bash, we could have used the substitution operator for variable references, the
slash (/). Similar to editor commands (e.g., those found in vi and sed) that use the
slash to delimit substitutions, we could have written:

mv "${FN}" "${FN/.bad/.bash}"

(Unlike the editor commands, you don’t use a final slash—the right-brace serves that
function.)

106 | Chapter 5: Basic Scripting: Shell Variables

However, one reason that we didn’t do it this way is because the substitution isn’t
anchored, and will make the substitution anywhere in the variable. If, for example,
we had a file named subaddon.bad then the substitution would leave us with
subashdon.bad, which is not what we want. If we used a double slash for the first
slash, it would substitute every occurrence within the variable. That would result in
subashdon.bash, which isn’t what we want either.

There are several operators that do various sorts of manipulation on the string val-
ues of variables when referenced. Table 5-1 summarizes them.

Try them all. They are very handy.

See Also
• man rename

• Recipe 12.5, “Comparing Two Documents”

5.19 Using Array Variables

Problem
There have been plenty of scripts so far with variables, but can bash deal with an
array of variables?

Solution
Yes. bash now has an array syntax for single-dimension arrays.

Table 5-1. String-manipulation operators

inside ${ ... } Action taken

name:number:number Substring starting character, length

#name Return the length of the string

name#pattern Remove (shortest) front-anchored pattern

name##pattern Remove (longest) front-anchored pattern

name%pattern Remove (shortest) rear-anchored pattern

name%%pattern Remove (longest) rear-anchored pattern

name/pattern/string Replace first occurrence

name//pattern/string Replace all occurrences

Using Array Variables | 107

Description
Arrays are easy to initialize if you know the values as you write the script. The for-
mat is simple:

MYRA=(first second third home)

Each element of the array is a separate word in the list enclosed in parentheses. Then
you can refer to each this way:

echo runners on ${MYRA[0]} and ${MYRA[2]}

This output is the result:

runners on first and third

If you write only $MYRA, you will get only the first element, just as if you had written
${MYRA[0]}.

See Also
• Learning the bash Shell by Cameron Newham (O’Reilly), pages 157–161 for

more information about arrays

108

Chapter 6CHAPTER 6

Shell Logic and Arithmetic 7

One of the big improvements that modern versions of bash have when compared
with the original Bourne shell is in the area of arithmetic. Early versions of the shell
had no built-in arithmetic; it had to be done by invoking a separate executable, even
just to add 1 to a variable. In a way it’s a tribute to how useful and powerful the shell
was and is—that it can be used for so many tasks despite that awful mechanism for
arithmetic. Maybe no one expected the shell to be so useful and so well used but,
after a while, the simple counting useful for automating repetitive tasks needed sim-
ple, straightforward syntax. The lack of such capability in the original Bourne shell
contributed to the success of the C shell (csh) when it introduced C Language-like
syntax for shell programming, including numeric variables. Well, that was then and
this is now. If you haven’t looked at shell arithmetic in bash for a while, you’re in for
a big surprise.

Beyond arithmetic, there are the control structures familiar to any programmer.
There is an if/then/else construct for decision making. There are while loops and
for loops, but you will see some bash peculiarities to all of these. There is a case
statement made quite powerful by its string pattern matching, and an odd construct
called select. After discussing these features we will end the chapter by using them
to build two simple command-line calculators.

6.1 Doing Arithmetic in Your Shell Script

Problem
You need to do some simple arithmetic in your shell script.

Solution
Use $(()) or let for integer arithmetic expressions.

COUNT=$((COUNT + 5 + MAX * 2))
let COUNT+=5+MAX*2

Doing Arithmetic in Your Shell Script | 109

Discussion
As long as you keep to integer arithmetic, you can use all the standard (i.e., C-like)
operators inside of $(()) for arithmetic. There is one additional operator—you can
use ** for raising to a power, as in MAX=$((2**8)), which yields 256.

Spaces are not needed nor are they prohibited around operators and arguments
(though ** must be together) within a $(()) expression. But you must not have
spaces around the equals sign, as with any bash variable assignment. If you wrote:

COUNT = $((COUNT + 5)) # not what you think!

then bash will try to run a program named COUNT and its first argument would be
an equal sign, and its second argument would be the number you get adding 5 to the
value of $COUNT. Remember not to put spaces around the equal sign.

Another oddity to these expressions is that the $ that we normally put in front of a
shell variable to say we want its value (as in $COUNT or $MAX) is not needed inside the
double parentheses. For example, $((COUNT +5 MAX * 2)) needs no dollar sign on the
shell variables—in effect, the outer $ applies to the entire expression.

We do need the dollar sign, though, if we are using a positional parameter (e.g., $2)
to distinguish it from a numeric constant (e.g., “2”). Here’s an example:

COUNT=$((COUNT + $2 + OFFSET))

There is a similar mechanism for integer arithmetic with shell variables using the bash
built-in let statement. It uses the same arithmetic operators as the $(()) construct:

let COUNT=COUNT+5

When using let, there are some fancy assignment operators we can use such as this
(which will accomplish the same thing as the previous line):

let COUNT+=5

(This should look familiar to programmers of C/C++ and Java.)

Table 6-1 shows a list of those special assignment operators.

Table 6-1. Explanation of assignment operators in bash

Operator Operation with assignment Use Meaning

= Simple assignment a=b a=b

= Multiplication a=b a=(a*b)

/= Division a/=b a=(a/b)

%= Remainder a%=b a=(a%b)

+= Addition a+=b a=(a+b)

-= Subtraction a-=b a=(a-b)

<<= Bit-shift left a<<=b a=(a<<b)

110 | Chapter 6: Shell Logic and Arithmetic

These assignment operators are also available with $(()) provided they occur inside
the double parentheses. The outermost assignment is still just plain old shell vari-
able assignment.

The assignments can also be cascaded, through the use of the comma operator:

echo $((X+=5 , Y*=3))

which will do both assignments and then echo the result of the second expression
(since the comma operator returns the value of its second expression). If you don’t
want to echo the result, the more common usage would be with the let statement:

let X+=5 Y*=3

The comma operator is not needed here, as each word of a let statement is its own
arithmetic expression.

Unlike many other places in bash scripts where certain characters have special
meanings (like the asterisk for wildcard patterns or parentheses for subshell execu-
tion), in these expressions we don’t need to use quotes or backslashes to escape
them since they don’t have their special meaning in let statements or inside of the
$(()) construct:

let Y=(X+2)*10

Y=$(((X + 2) * 10))

One other important difference between the let statement and the $(()) syntax
deals with the rather minor issue of the whitespace (i.e., the space character). The
let statement requires that there be no spaces around not only the assignment opera-
tor (the equal sign), but around any of the other operators as well; it must all be
packed together into a single word.

The $(()) syntax, however, can be much more generous, allowing all sorts of
whitespace within the parentheses. For that reason, it is both less prone to errors and
makes the code much more readable and is, therefore, our preferred way of doing
bash integer arithmetic. However, an exception can be made for the occasional +=
assignment or ++ operator, or when we get nostalgic for the early days of BASIC pro-
gramming (which had a LET statement).

>>= Bit-shift right a>>=b a=(a>>b)

&= Bitwise “and” a&=b a=(a&b)

^= Bitwise “exclusive or” a^=b a=(a^b)

|= Bitwise “or” a|=b a=(a|b)

Table 6-1. Explanation of assignment operators in bash (continued)

Operator Operation with assignment Use Meaning

Branching on Conditions | 111

Remember; this is integer arithmetic, not floating point. Don’t expect
much out of an expression like 2/3, which in integer arithmetic evalu-
ates to 0 (zero). The division is integer division, which will truncate
any fractional result.

See Also
• help let

• bash manpage

6.2 Branching on Conditions

Problem
You want to check if you have the right number of arguments and take actions
accordingly. You need a branching construct.

Solution
The if statement in bash is similar in appearance to that in other programming
languages:

if [$# -lt 3]
then
 printf "%b" "Error. Not enough arguments.\n"
 printf "%b" "usage: myscript file1 op file2\n"
 exit 1
fi

or alternatively:

if (($# < 3))
then
 printf "%b" "Error. Not enough arguments.\n"
 printf "%b" "usage: myscript file1 op file2\n"
 exit 1
fi

Here’s a full-blown if with an elif (bash-talk for else-if) and an else clause:

if (($# < 3))
then
 printf "%b" "Error. Not enough arguments.\n"
 printf "%b" "usage: myscript file1 op file2\n"
 exit 1
elif (($# > 3))
then
 printf "%b" "Error. Too many arguments.\n"
 printf "%b" "usage: myscript file1 op file2\n"
 exit 2

112 | Chapter 6: Shell Logic and Arithmetic

else
 printf "%b" "Argument count correct. Proceeding...\n"
fi

You can even do things like this:

[$result = 1] \
 && { echo "Result is 1; excellent." ; exit 0; } \
 || { echo "Uh-oh, ummm, RUN AWAY! " ; exit 120; }

(For a discussion of this last example, see Recipe 2.14, “Saving or Grouping Output
from Several Commands.”)

Discussion
We have two things we need to discuss: the basic structure of the if statement and
how it is that we have different syntax (parentheses or brackets, operators or
options) for the if expression. The first may help explain the second. The general
form for an if statement, from the manpage for bash, is:

if list; then list; [elif list; then list;] ... [else list;] fi

The [and] in our description here are used to delineate optional parts of the state-
ment (e.g., some if statements have no else clause). So let’s look for a moment at
the if without any optional elements.

The simplest form for an if statement would be:

if list; then list; fi

In bash, the semicolon serves the same purpose as a newline—it ends
a statement. So in the first examples of the Solution section we could
have crammed the example onto fewer lines by using the semicolons,
but it is more readable to use newlines.

The then list seems to make sense—it’s the statement or statements that will be
executed provided that the if condition is true—or so we would surmise from other
programming languages. But what’s with the if list? Wouldn’t you expect it to be
if expression?

You might, except that this is a shell—a command processor. Its primary operation
is to execute commands. So the list after the if is a place where you can put a list of
commands. What, you ask, will be used to determine the branching—the alternate
paths of the then or the else? It will be determined by the return value of the last
command in the list. (The return value, you might remember, is also available as the
value of the variable $?.)

Let’s take a somewhat strange example to make this point:

$ cat trythis.sh
if ls; pwd; cd $1;
then
 echo success;

Branching on Conditions | 113

else
 echo failed;
fi
pwd

$ bash ./trythis.sh /tmp
...
$ bash ./trythis.sh /nonexistant
...
$

In this strange script, the shell will execute three commands (an ls, a pwd, and a cd)
before doing any branching. The argument to the cd is the first argument supplied on
the shell script invocation. If there is no argument supplied, it will just execute cd,
which returns you to your home directory.

So what happens? Try it yourself and find out. The result showing “success” or
“failed” will depend on whether or not the cd command succeeds. In our example,
the cd is the last command in the if list of commands. If the cd fails, the else clause
is taken, but if it succeeds, the then clause is taken.

Properly written commands and built-ins will return a value of 0 (zero) when they
encounter no errors in their execution. If they detect a problem (e.g., bad parame-
ters, I/O errors, file not found), they will return some non-zero value (often a differ-
ent value for each different kind of error they detect).

This is why it is important for both shell script writers and C (and other language)
programmers to be sure to return sensible values upon exiting from their scripts and
programs. Someone’s if statement may be depending on it!

OK, so how do we get from this strange if construct to something that looks like a
real if statement—the kind that you are used to seeing in programs? What’s going
on with the examples that began this recipe? After all, they don’t look like lists of
statements.

Let’s try this on for size:

if test $# -lt 3
then
 echo try again.
fi

Do you see something that looks like, if not an entire list, then at least like a single
shell command—the built-in command test, which will take its arguments and com-
pares their values? The test command will return a 0 if true or a 1 otherwise. To see
this yourself, try the test command on a line by itself, and then echo $? to see its
return value.

The first example we gave that began if [$# -lt 3] looks a lot like the test state-
ment—because the [is actually the test command—with just a different name for
the same command. (When invoked with the name [it also requires a trailing] as

114 | Chapter 6: Shell Logic and Arithmetic

the last parameter, for readability and aesthetic reasons.) So that explains the first
syntax—the expression on the if statement is actually a list of only one command, a
test command.

In the early days of Unix, test was its own separate executable and [
was just a link to the same executable. They still exist as executa-
bles used by other shells, but bash implements them as a built-in
command.

Now what about the if (($# < 3)) expression in our list of examples in the Solution
section? The double parentheses are one of several types of compound commands.
This kind is useful for if statements because it performs an arithmetic evaluation of
the expression between the double parentheses. This is a more recent bash improve-
ment, added for just such an occasion as its use in if statements.

The important distinctions to make with the two kinds of syntax that can be used
with the if statement are the ways to express the tests, and the kinds of things for
which they test. The double parentheses are strictly arithmetic expressions. The
square brackets can also test for file characteristics, but its syntax is much less
streamlined for arithmetic expressions. This is particularly true if you need to group
larger expressions with parentheses (which need to be quoted or escaped).

See Also
• help if

• help test

• man test

• Recipe 2.14, “Saving or Grouping Output from Several Commands”

• Recipe 4.2, “Telling If a Command Succeeded or Not”

• Recipe 6.3, “Testing for File Characteristics”

• Recipe 6.5, “Testing for String Characteristics”

• Recipe 15.11, “Getting Input from Another Machine”

6.3 Testing for File Characteristics

Problem
You want to make your script robust by checking to see if your input file is there
before reading from it; you would like to see if your output file has write permis-
sions before writing to it; you would like to see if there is a directory there before you
attempt to cd into it. How do you do all that in bash scripts?

Testing for File Characteristics | 115

Solution
Use the various file characteristic tests in the test command as part of your if state-
ments. Your specific problems might be solved with scripting that looks something
like this:

#!/usr/bin/env bash
cookbook filename: checkfile
#
DIRPLACE=/tmp
INFILE=/home/yucca/amazing.data
OUTFILE=/home/yucca/more.results

if [-d "$DIRPLACE"]
then
 cd $DIRPLACE
 if [-e "$INFILE"]
 then
 if [-w "$OUTFILE"]
 then
 doscience < "$INFILE" >> "$OUTFILE"
 else
 echo "can not write to $OUTFILE"
 fi
 else
 echo "can not read from $INFILE"
 fi
else
 echo "can not cd into $DIRPLACE"
fi

Discussion
We put all the references to the various filenames in quotes in case they have any
embedded spaces in the pathnames. There are none in this example, but if you
change the script you might use other pathnames.

We tested and executed the cd before we tested the other two conditions. In this
example it wouldn’t matter, but if INFILE or OUTFILE were relative pathnames (not
beginning from the root of the file system, i.e., with a leading “/”), then the test
might evaluate true before the cd and not after, or vice versa. This way, we test right
before we use the files.

We use the double-greater-than operator >> to concatenate output onto our results
file, rather than wiping it out. You wouldn’t really care if the file had write permis-
sions if you were going to obliterate it. (Then you would only need write permission
on its containing directory.)

The several tests could be combined into one large if statement using the -a (read
“and”) operator, but then if the test failed you couldn’t give a very helpful error mes-
sage since you wouldn’t know which test it didn’t pass.

116 | Chapter 6: Shell Logic and Arithmetic

There are several other characteristics for which you can test. Three of them are
tested using binary operators, each taking two filenames:

FILE1 -nt FILE2
Is newer than (it checks the modification date)

FILE1 -ot FILE2
Is older than

FILE1 -ef FILE2
Have the same device and inode numbers (identical file, even if pointed to by dif-
ferent links)

Table 6-2 shows the other tests related to files (see “Test Operators” in Appendix A
for a more complete list). They all are unary operators, taking the form option
filename as in if [-e myfile].

See Also
• Recipe 2.10, “Appending Rather Than Clobbering Output”

• Recipe 4.6, “Using Fewer if Statements”

• “Test Operators” in Appendix A

Table 6-2. Unary operators that check file characteristics

Option Description

-b File is block special device (for files like /dev/hda1)

-c File is character special (for files like /dev/tty)

-d File is a directory

-e File exists

-f File is a regular file

-g File has its set-group-ID bit set

-h File is a symbolic link (same as -L)

-G File is owned by the effective group ID

-k File has its sticky bit set

-L File is a symbolic link (same as -h)

-O File is owned by the effective user ID

-p File is a named pipe

-r File is readable

-s File has a size greater than zero

-S File is a socket

-u File has its set-user-ID bit set

-w File is writable

-x File is executable

Testing for More Than One Thing | 117

6.4 Testing for More Than One Thing

Problem
What if you want to test for more than one characteristic? Do you have to nest your
if statements?

Solution
Use the operators for logial AND (-a) and OR (-o) to combine more than one test in
an expression. For example:

if [-r $FILE -a -w $FILE]

will test to see that the file is both readable and writable.

Discussion
All the file test conditions include an implicit test for existence, so you don’t need to
test if a file exists and is readable. It won’t be readable if it doesn’t exist.

These conjunctions (-a for AND and -o for OR) can be used for all the various test
conditions. They aren’t limited to just the file conditions.

You can make several and/or conjunctions on one statement. You might need to use
parentheses to get the proper precedence, as in a and (b or c), but if you use paren-
theses, be sure to escape their special meaning from the shell by putting a backslash
before each or by quoting each parenthesis. Don’t try to quote the entire expression
in one set of quotes, however, as that will make your entire expression a single term
that will be treated as a test for an empty string (see Recipe 6.5, “Testing for String
Characteristics”).

Here’s an example of a more complex test with the parentheses properly escaped:

if [-r "$FN" -a \(-f "$FN" -o -p "$FN" \)]

Don’t make the assumption that these expressions are evaluated in quite the same
order as in Java or C language. In C and Java, if the first part of the AND expression
is false (or the first part true in an OR expression), the second part of the expression
won’t be evaluated (we say the expression short-circuited). However, because the
shell makes multiple passes over the statement while preparing it for evaluation (e.g.,
doing parameter substitution, etc.), both parts of the joined condition may have been
partially evaluated. While it doesn’t matter in this simple example, in more compli-
cated situations it might. For example:

if [-z "$V1" -o -z "${V2:=YIKES}"]

Even if $V1 is empty, satisfying enough of the if statement that the second part of the
condition (checking if $V2 is empty) need not occur, the value of $V2 may have
already been modified (as a side-effect of the parameter substitution for $V2). The

118 | Chapter 6: Shell Logic and Arithmetic

parameter substitution step occurs before the -z tests are made. Confused? Don’t
be.. . just don’t count on short circuits in your conditionals. If you need that kind of
behavior, just break the if statement into two nested if statements.

See Also
• Recipe 6.5, “Testing for String Characteristics”

• Appendix C for more on command-line processing

6.5 Testing for String Characteristics

Problem
You want your script to check the value of some strings before using them. The
strings could be user input, read from a file, or environment variables passed to your
script. How do you do that with bash scripts?

Solution
There are some simple tests that you can do with the built-in test command, using
the single bracket if statements. You can check to see whether a variable has any
text, and you can check to see whether two variables are equal as strings.

Discussion
For example:

#!/usr/bin/env bash
cookbook filename: checkstr
#
if statement
test a string to see if it has any length
#
use the command line argument
VAR="$1"
#
if ["$VAR"]
then
 echo has text
else
 echo zero length
fi
#
if [-z "$VAR"]
then
 echo zero length
else
 echo has text
fi

Testing for Equal | 119

We use the phrase “has any length” deliberately. There are two types of variables
that will have no length—those that have been set to an empty string and those that
have not been set at all. This test does not distinguish between those two cases. All it
asks is whether there are some characters in the variable.

It is important to put quotes around the "$VAR" expression because without them your
syntax could be disturbed by odd user input. If the value of $VAR were x -a 7 -lt 5
and if there were no quotes around the $VAR, then the expression:

if [-z $VAR]

would become (after variable substitution):

if [-z x -a 7 -lt 5]

which is legitimate syntax for a more elaborate test, but one that will yield a result
that is not what you wanted (i.e., one not based on whether the string has characters).

See Also
• Recipe 6.7, “Testing with Pattern Matches”

• Recipe 6.8, “Testing with Regular Expressions”

• Recipe 14.2, “Avoiding Interpreter Spoofing”

• “Test Operators” in Appendix A

6.6 Testing for Equal

Problem
You want to check to see if two shell variables are equal, but there are two different
test operators: -eq and = (or ==). So which one should you use?

Solution
The type of comparison you need determines which operator you should use. Use
the -eq operator for numeric comparisons and the equality primary = (or ==) for
string comparisons.

Discussion
Here’s a simple script to illustrate the situation:

#!/usr/bin/env bash
cookbook filename: strvsnum
#
the old string vs. numeric comparison dilemma
#
VAR1=" 05 "
VAR2="5"

120 | Chapter 6: Shell Logic and Arithmetic

printf "%s" "do they -eq as equal? "
if ["$VAR1" -eq "$VAR2"]
then
 echo YES
else
 echo NO
fi

printf "%s" "do they = as equal? "
if ["$VAR1" = "$VAR2"]
then
 echo YES
else
 echo NO
fi

When we run the script, here is what we get:

$ bash strvsnum
do they -eq as equal? YES
do they = as equal? NO
$

While the numeric value is the same (5) for both variables, characters such as lead-
ing zeros and whitespace can mean that the strings are not equal as strings.

Both = and == are accepted, but the single equal sign follows the POSIX standard and
is more portable.

It may help you to remember which comparison to use if you can recognize that the
-eq operator is similar to the FORTRAN .eq. operator. (FORTRAN is a very num-
bers-oriented language, used for scientific computation.) In fact, there are several
numerical comparison operators, each similar to an old FORTRAN operator. The
abbreviations, all listed in Table 6-3, are rather mnemonic-like and easy to figure out.

On the other hand, these are the opposite of Perl, in which eq, ne, etc. are the string
operators, while ==, !=, etc. are numeric.

Table 6-3. bash’s comparison operators

Numeric String Meaning

-lt < Less than

-le <= Less than or equal to

-gt > Greater than

-ge >= Greater than or equal to

-eq =, == Equal to

-ne != Not equal to

Testing with Pattern Matches | 121

See Also
• Recipe 6.7, “Testing with Pattern Matches”

• Recipe 6.8, “Testing with Regular Expressions”

• Recipe 14.12, “Validating Input”

• “Test Operators” in Appendix A

6.7 Testing with Pattern Matches

Problem
You want to test a string not for a literal match, but to see if it fits a pattern. For
example, you want to know if a file is named like a JPEG file might be named.

Solution
Use the double-bracket compound statement in an if statement to enable shell-style
pattern matches on the righthand side of the equals operator:

if [["${MYFILENAME}" == *.jpg]]

Discussion
The double-brackets is a newer syntax (bash version 2.01 or so). It is not the old-
fashioned [of the test command, but a newer bash mechanism. It uses the same
operators that work with the single bracket form, but in the double-bracket syntax
the equal sign is a more powerful string comparator. The equal sign operator can be
a single equal sign or a double equals as we have used here. They are the same
semantically. We prefer to use the double equals (especially when using the pattern
matching) to emphasize the difference, but it is not the reason that we get pattern
matching—that comes from the double-bracket compound statement.

The standard pattern matching includes the * to match any number of characters,
the question mark (?) to match a single character, and brackets for including a list of
possible characters. Note that these resemble shell file wildcards, and are not regular
expressions.

Don’t put quotes around the pattern if you want it to behave as a pattern. If our
string had been quoted, it would have only matched strings with a literal asterisk as
the first character.

There are more powerful pattern matching capabilities available by turning on some
additional options in bash. Let’s expand our example to look for filenames that end
in either .jpg or .jpeg. We could do that with this bit of code:

122 | Chapter 6: Shell Logic and Arithmetic

shopt -s extglob
if [["$FN" == *.@(jpg|jpeg)]]
then
 # and so on

The shopt -s command is the way to turn on shell options. The extglob is the option
dealing with extended pattern matching (or globbing). With this extended pattern
matching we can have several patterns, separated by the | character and grouped by
parentheses. The first character preceding the parentheses says whether the list
should match just one occurrence of a pattern in the list (using a leading @) or some
other criteria. Table 6-4 lists the possibilities (see also “extglob Extended Pattern-
Matching Operators” in Appendix A).

Matches are case sensitive, but you may use shopt -s nocasematch (in bash versions
3.1+) to change that. This option affects case and [[commands.

See Also
• Recipe 14.2, “Avoiding Interpreter Spoofing”

• Recipe 16.7, “Adjusting Shell Behavior and Environment”

• “Pattern-Matching Characters” in Appendix A

• “extglob Extended Pattern-Matching Operators” in Appendix A

• “shopt Options” in Appendix A

6.8 Testing with Regular Expressions

Problem
Sometimes even the extended pattern matching of the extglob option isn’t enough.
What you really need are regular expressions. Let’s say that you rip a CD of classical
music into a directory, ls that directory, and see these names:

$ ls
Ludwig Van Beethoven - 01 - Allegro.ogg
Ludwig Van Beethoven - 02 - Adagio un poco mosso.ogg
Ludwig Van Beethoven - 03 - Rondo - Allegro.ogg

Table 6-4. Grouping symbols for extended pattern-matching

Grouping Meaning

@(...) Only one occurrence

*(...) Zero or more occurrences

+(...) One or more occurrences

?(...) Zero or one occurrences

!(...) Not these occurrences, but anything else

Testing with Regular Expressions | 123

Ludwig Van Beethoven - 04 - "Coriolan" Overture, Op. 62.ogg
Ludwig Van Beethoven - 05 - "Leonore" Overture, No. 2 Op. 72.ogg
$

You’d like to write a script to rename these files to something simple, such as just the
track number. How can you do that?

Solution
Use the regular expression matching of the =~ operator. Once it has matched the
string, the various parts of the pattern are available in the shell variable $BASH_
REMATCH. Here is the part of the script that deals with the pattern match:

#!/usr/bin/env bash
cookbook filename: trackmatch
#
for CDTRACK in *
do
 if [["$CDTRACK" =~ "([[:alpha:][:blank:]]*)- ([[:digit:]]*) - (.*)$"]]
 then
 echo Track ${BASH_REMATCH[2]} is ${BASH_REMATCH[3]}
 mv "$CDTRACK" "Track${BASH_REMATCH[2]}"
 fi
done

Caution: this requires bash version 3.0 or newer because older ver-
sions don’t have the =~ operator. In addition, bash version 3.2 unified
the handling of the pattern in the == and =~ conditional command
operators but introduced a subtle quoting bug that was corrected in
3.2 patch #3. If the solution above fails, you may be using bash ver-
sion 3.2 without that patch. You might want to upgrade to a newer
version. You might also avoid the bug with a less readable version of
the regular expression by removing the quotes around the regex and
escaping each parenthesis and space character individually, which gets
ugly quickly:

if [["$CDTRACK" =~ \([[:alpha:][:blank:]]*\)-\ \([[:digit:
]]*\)\ -\ \(.*\)\$]]

Discussion
If you are familiar with regular expressions from sed, awk, and older shells, you may
notice a few slight differences with this newer form. Most noticeable are the charac-
ter classes such as [:alpha:] and that the grouping parentheses don’t need to be
escaped—we don’t write \(here as we would in sed. Here \(would mean a literal
parenthesis.

The subexpressions, each enclosed in parentheses, are used to populate the bash
built-in array variable $BASH_REMATCH. The zeroth element ($BASH_REMATCH[0]) is the
entire string matched by the regular expression. Any subexpressions are available as
$BASH_REMATCH[1], $BASH_REMATCH[2], and so on. Any time a regular expression is

124 | Chapter 6: Shell Logic and Arithmetic

used this way, it will populate the variable $BASH_REMATCH. Since other bash functions
may want to use regular expression matching, you may want to assign this variable
to one of your own naming as soon as possible, so as to preserve the values for your
later use. In our example we use the values right away, inside our if/then clause, so
we don’t bother to save them for use elsewhere.

Regular expressions have often been described as write-only expressions because they
can be very difficult to decipher. We’ll build this one up in several steps to show how
we arrived at the final expression. The general layout of the filenames given to our
datafiles, as in this example, seems to be like this:

Ludwig Van Beethoven - 04 - "Coriolan" Overture, Op. 62.ogg

i.e., a composer’s name, a track number, and then the title of the piece, ending in .ogg
(these were saved in Ogg Vorbis format, for smaller space and higher fidelity).

Beginning at the left-hand side of the expression is an opening (or left) parenthesis.
That begins our first subexpression. Inside it, we will write an expression to match
the first part of the filename, the composer’s name—marked in bold here:

([[:alpha:][:blank:]]*)- ([[:digit:]]*) - (.*)$

The composer’s name consists of any number of alphabetic characters and blanks.
We use the square brackets to group the set of characters that will make up the
name. Rather than write [A-Za-z0-9], we use the character class names [:alpha:]
and [:blank:] and put them inside the square brackets. This is followed by an aster-
isk to indicate “0 or more” repetitions. The right parenthesis closes off the first sub-
expression, followed by a literal hyphen and a blank.

The second subexpression (marked in bold here) will attempt to match the track
number:

([[:alpha:][:blank:]]*)- ([[:digit:]]*) - (.*)$

The second subexpression begins with another left parenthesis. The track numbers
are integers, composed of digits (the character class [:digit:]), which we write
inside another pair of brackets followed by an asterisk as [[:digit:]]* to indicate “0
or more” of what is in the brackets (i.e., digits). Then our pattern has the literals
blank, hyphen, and blank.

The final subexpression will catch everything else, including the track name and the
file extension.

([[:alpha:][:blank:]]*)- ([[:digit:]]*) - (.*)$

The third and final subexpression is the common and familiar .* regular expression,
which means any number (*) of any character (.). We end the expression with a dol-
lar sign, which matches the end of the string. Matches are case-sensitive, but you
may use shopt -s nocasematch (available in bash versions 3.1+) to change that. This
option affects case and [[commands.

Changing Behavior with Redirections | 125

See Also
• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details

of your regular expression library

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 7.7, “Searching with More Complex Patterns”

• Recipe 7.8, “Searching for an SSN”

• Recipe 19.15, “Confusing Shell Wildcards and Regular Expressions”

6.9 Changing Behavior with Redirections

Problem
Normally you want a script to behave the same regardless of whether input comes
from a keyboard or a file, or whether output is going to the screen or a file. Occa-
sionally, though, you want to make that distinction. How do you do that in a script?

Solution
Use the test -t option in an if statement to branch between the two desired
behaviors.

Discussion
Think long and hard before you do this. So much of the power and flexibility of
bash scripting comes from the fact that scripts can be pipelined together. Be sure
you have a really good reason to make your script behave oddly when input or out-
put is redirected.

See Also
• Recipe 2.18, “Using Multiple Redirects on One Line”

• Recipe 2.19, “Saving Output When Redirect Doesn’t Seem to Work”

• Recipe 2.20, “Swapping STDERR and STDOUT”

• Recipe 10.1, ““Daemon-izing” Your Script”

• Recipe 15.9, “Using bash Net-Redirection”

• Recipe 15.12, “Redirecting Output for the Life of a Script”

• “I/O Redirection” in Appendix A

126 | Chapter 6: Shell Logic and Arithmetic

6.10 Looping for a While

Problem
You want your shell script to perform some actions repeatedly as long as some con-
dition is met.

Solution
Use the while looping construct for arithmetic conditions:

while ((COUNT < MAX))
do
 some stuff
 let COUNT++
done

for filesystem-related conditions:

while [-z "$LOCKFILE"]
do
 some things
done

or for reading input:

while read lineoftext
do
 process $lineoftext
done

Discussion
The double parentheses in our first while statement are just arithmetic expressions,
very much like the $(()) expression for shell variable assignment. They bound an
arithmetic expression and assume that variable names mentioned inside the paren-
theses are meant to be dereferenced. That is, you don’t write $VAR, and instead use
VAR inside the parentheses.

The use of the square brackets in while [-z "$LOCKFILE"] is the same as with the if
statement—the single square bracket is the same as using the test statement.

The last example, while read lineoftext, doesn’t have any parentheses, brackets, or
braces. The syntax of the while statement in bash is defined such that the condition
of the while statement is a list of statements to be executed (just like the if state-
ment), and the exit status of the last one determines whether the condition is true or
false. An exit status of zero, and the condition is considered true, otherwise false.

A read statement returns a 0 on a successful read and a -1 on end-of-file, which
means that the while will find it true for any successful read, but when the end of file
is reached (and -1 returned) the while condition will be false and the looping will

Looping for a While | 127

end. At that point, the next statement to be executed will be the statement after the
done statement.

This logic of “keep looping while the statement returns zero” might seem a bit
flipped—most C-like languages use the opposite, namely, “loop while nonzero.” But
in the shell, a zero return value means everything went well; non-zero return values
indicate an error exit.

This explains what happens with the (()) construct, too. Any expression inside the
parentheses is evaluated, and if the result is nonzero, then the result of the (()) is to
return a zero; similarly, a zero result returns a one. This means we can write expres-
sions like Java or C programmers would, but the while statement still works as
always in bash, expecting a zero result to be true.

In practical terms, it means we can write an infinite loop like this:

while ((1))
{
...
}

which “feels right” to a C programmer. But remember that the while statement is
looking for a zero return—which it gets because (()) returns 0 for a true (i.e., non-
zero) result.

Before we leave the while loop, let’s take one more look at that while read example,
which is reading from standard input (i.e., the keyboard), and see how it might get
modified in order to read input from a file instead of the keyboard.

This is typically done in one of three ways. The first requires no real modifications to
the statements at all. Rather, when the script is invoked, standard input is redirected
from a file like this:

$ myscript <file.name

But suppose you don’t want to leave it up to the caller. If you know what file you
want to process, or if it was supplied as a command-line argument to your script, then
you can use this same while loop as is, but redirect the input from the file as follows:

while read lineoftext
do

process that line
done < file.input

As a third way you might do this, you could begin by cat-ing the file to dump it to
standard output, and then connect the standard output of that program to the stan-
dard input for the while statement:

cat file.input | \
while read lineoftext
do

process that line
done

128 | Chapter 6: Shell Logic and Arithmetic

Because of the pipe, both the cat command and the while loop
(including the process that line part), are each executing in their
own separate subshells. This means that if you use this method, the
script commands inside the while loop cannot affect the other parts of
the script outside the loop. For example, any variables that you set
within the while loop will no longer have those values after the loop
ends. Such is not the case however if you use while read ... done <
file.input, because that isn’t a pipeline.

In the last example, the trailing backslash has no characters after it, just a newline.
Therefore it escapes the newline, telling the shell to continue onto the next line with-
out terminating the line. This is a more readable way to highlight the two different
actions—the cat command and the while statement.

See Also
• Recipe 6.2, “Branching on Conditions”

• Recipe 6.3, “Testing for File Characteristics”

• Recipe 6.4, “Testing for More Than One Thing”

• Recipe 6.5, “Testing for String Characteristics”

• Recipe 6.6, “Testing for Equal”

• Recipe 6.7, “Testing with Pattern Matches”

• Recipe 6.8, “Testing with Regular Expressions”

• Recipe 6.11, “Looping with a read”

• Recipe 19.8, “Forgetting That Pipelines Make Subshells”

6.11 Looping with a read

Problem
What can you do with a while loop? One common technique is to read the output of
previous commands. Let’s say you’re using the Subversion revision control system,
which is executable as svn. (This example is very similar to what you would do for
cvs as well.) When you check the status of a directory subtree to see what files have
been changed, you might see something like this:

$ svn status bcb
M bcb/amin.c
? bcb/dmin.c
? bcb/mdiv.tmp
A bcb/optrn.c
M bcb/optson.c
? bcb/prtbout.4161
? bcb/rideaslist.odt
? bcb/x.maxc
$

Looping with a read | 129

The lines that begin with question marks are files about which Subversion has not
been told; in this case they’re scratch files and temporary copies of files. The lines
that begin with an A are newly added files, and those that begin with M have been
modified since the last changes were committed.

To clean up this directory it would be nice to get rid of all the scratch files, which are
those files named in lines that begin with a question mark.

Solution
Try:

svn status mysrc | grep '^?' | cut -c8- | \
 while read FN; do echo "$FN"; rm -rf "$FN"; done

or:

svn status mysrc | \
while read TAG FN
do
 if [[$TAG == \?]]
 then
 echo $FN
 rm -rf "$FN"
 fi
done

Discussion
Both scripts will do the same thing—remove files that svn reports with a question
mark.

The first approach uses several subprograms to do its work (not a big deal in these
days of gigahertz processors), and would fit on a single line in a typical terminal win-
dow. It uses grep to select only the lines that begin (signified by the ^) with a ques-
tion mark. The expression '^?' is put in single quotes to avoid any special meanings
that those characters have for bash. It then uses cut to take only the characters begin-
ning in column eight (through the end of the line). That leaves just the filenames for
the while loop to read.

The read will return a nonzero value when there is no more input, so at that point
the loop will end. Until then, the read will assign the line of text that it reads each
time into the variable "$FN", and that is the filename that we remove. We use the -rf
options in case the unknown file is actually a directory of files, and to remove even
read-only files. If you don’t want/need to be so drastic in what you remove, leave
those options off.

The second script can be described as more shell-like, since it doesn’t need grep to do
its searching (it uses the if statement) and it doesn’t need cut to do its parsing (it
uses the read statement). We’ve also formatted it more like you would format a

130 | Chapter 6: Shell Logic and Arithmetic

script in a file. If you were typing this at a command prompt, you could collapse the
indentation, but for our use here the readability is much more important than saving
a few keystrokes.

The read in this second script is reading into two variables, not just one. That is how
we get bash to parse the line into two pieces—the leading character and the file-
name. The read statement parses its input into words, like words on a shell com-
mand line. The first word on the input line is assigned to the first word in the list of
variables on the read statement, the second word to the second variable, and so on.
The last variable in the list gets the entire remainder of the line, even if it’s more than
a single word. In our example, $TAG gets the first word, which is the character (an M,
A, or ?) that the whitespace defines the end of that word and the beginning of the
next. The variable $FN gets the remainder of the line as the filename, which is signifi-
cant here in case the filenames have embedded spaces. (We wouldn’t want just the
first word of the filename.) The script removes the filename and the loop continues.

See Also
• Appendix D

6.12 Looping with a Count

Problem
You need to loop a fixed number of times. You could use a while loop and do the
counting and testing, but programming languages have for loops for such a com-
mon idiom. How does one do this in bash ?

Solution
Use a special case of the for syntax, one that looks a lot like C Language, but with
double parentheses:

$ for ((i=0 ; i < 10 ; i++)) ; do echo $i ; done

Discussion
In early versions of the shell, the original syntax for the for loop only included iterat-
ing over a fixed list of items. It was a neat innovation for such a word-oriented lan-
guage as shell scripts, dealing with filenames and such. But when users needed to
count, they sometimes found themselves writing:

for i in 1 2 3 4 5 6 7 8 9 10
do
 echo $i
done

Looping with Floating-Point Values | 131

Now that’s not too bad, especially for small loops, but let’s face it—that’s not going
to work for 500 iterations. (Yes, you could nest loops 5 × 10, but come on!) What
you really need is a for loop that can count.

The special case of the for loop with C-like syntax is a relatively recent addition to
bash (appearing in version 2.04). Its more general form can be described as:

for ((expr1 ; expr2 ; expr3)) ; do list ; done

The use of double parentheses is meant to indicate that these are arithmetic expres-
sions. You don’t need to use the $ construct (as in $i, except for arguments like $1)
when referring to variables inside the double parentheses (just like the other places
where double parentheses are used in bash). The expressions are integer arithmetic
expressions and offer a rich variety of operators, including the use of the comma to
put multiple operations within one expression:

for ((i=0, j=0 ; i+j < 10 ; i++, j++))
do
 echo $((i*j))
done

That for loop initializes two variables (i and j), then has a more complex second
expression adding the two together before doing the less-than comparison. The
comma operator is used again in the third expression to increment both variables.

See Also
• Recipe 6.13, “Looping with Floating-Point Values”

• Recipe 17.22, “Writing Sequences”

6.13 Looping with Floating-Point Values

Problem
The for loop with arithmetic expressions only does integer arithmetic. What do I do
for floating-point values?

Solution
Use the seq command to generate your floating-point values, if your system provides it:

for fp in $(seq 1.0 .01 1.1)
do
 echo $fp; other stuff too
done

or:

seq 1.0 .01 1.1 | \
while read fp
do

132 | Chapter 6: Shell Logic and Arithmetic

 echo $fp; other stuff too
done

Discussion
The seq command will generate a sequence of floating-point numbers, one per line.
The arguments to seq are the starting value, the increment, and the ending value.
This is not the intuitive order if you are used to the C language for loop, or if you
learned your looping from BASIC (e.g., FOR I=4 TO 10 STEP 2). With seq the increment
is the middle argument.

In the first example, the $() runs the command in a subshell and returns the result with
the newlines replaced by just whitespace, so each value is a string value for the for loop.

In the second example, seq is run as a command with its output piped into a while
loop that reads each line and does something with it. This would be the preferred
approach for a really long sequence, as it can run the seq command in parallel with
the while. The for loop version has to run seq to completion and put all of its output
on the command line for the for statement. For very large sequences, this could be
time- and memory-consuming.

See Also
• Recipe 6.12, “Looping with a Count”

• Recipe 17.22, “Writing Sequences”

6.14 Branching Many Ways

Problem
You have a series of comparisons to make, and the if/then/else is getting pretty long
and repetitive. Isn’t there an easier way?

Solution
Use the case statement for a multiway branch:

case $FN in
 *.gif) gif2png $FN
 ;;
 *.png) pngOK $FN
 ;;
 *.jpg) jpg2gif $FN
 ;;
 *.tif | *.TIFF) tif2jpg $FN
 ;;
 *) printf "File not supported: %s" $FN
 ;;
esac

Branching Many Ways | 133

The equivalent to this using if/then/else statements is:

if [[$FN == *.gif]]
then
 gif2png $FN
elif [[$FN == *.png]]
then
 pngOK $FN
elif [[$FN == *.jpg]]
then
 jpg2gif $FN
elif [[$FN == *.tif || $FN == *.TIFF]]
then
 tif2jpg $FN
else
 printf "File not supported: %s" $FN
fi

Discussion
The case statement will expand the word (including parameter substitution) between
the case and the in keywords. It will then try to match the word with the patterns
listed in order. This is a very powerful feature of the shell. It is not just doing simple
value comparisons, but string pattern matches. We have simple patterns in our
example: *.gif matches any character sequence (signified by the *) that ends with
the literal characters .gif.

Use |, a vertical bar meaning logical OR, to separate different patterns for which you
want to take the same action. In the example above, if $FN ends either with .tif or .TIFF
then the pattern will match and the (fictional) tif2jpg command will be executed.

Use the double semicolon to end the set of statements or else bash will continue exe-
cuting into the next set of statements.

There is no else or default keyword to indicate the statements to execute if no pat-
tern matches. Instead, use * as the last pattern—since that pattern will match any-
thing. Placing it last makes it act as the default and match anything that hasn’t
already been matched.

An aside to C/C++ and Java programmers: the bash case is similar to the switch
statement, and each pattern corresponds to a case. Notice though, the variable on
which you can switch/case is a shell variable (typically a string value) and the cases
are patterns (not just constant values). The patterns end with a right parenthesis (not
a colon). The equivalent to the break in C/C++ and Java switch statements is, in
bash, a double semicolon. The equivalent to their default keyword is, in bash, the *
pattern.

Matches are case-sensitive, but you may use shopt -s nocasematch (available in bash
versions 3.1+) to change that. This option affects case and [[commands.

134 | Chapter 6: Shell Logic and Arithmetic

We end the case statement with an esac (that’s “c-a-s-e” spelled backwards; “end-
case” was too long, we suppose, just like using elif instead of “elseif” to be shorter).

See Also
• help case

• help shopt

• Recipe 6.2, “Branching on Conditions”

6.15 Parsing Command-Line Arguments

Problem
You want to write a simple shell script to print a line of dashes, but you want to
parameterize it so that you can specify different line lengths and specify a character
to use other than just a dash. The syntax would look like this:

dashes # would print out 72 dashes
dashes 50 # would print out 50 dashes
dashes -c= 50 # would print out 50 equal signs
dashes -cx # would print out 72 x characters

What’s an easy way to parse those simple arguments?

Solution
For serious scripting, you should use the getopts built-in. But we would like to show
you the case statement in action, so for this simple situation we’ll use case for argu-
ment parsing.

Here’s the beginning of the script (see Recipe 12.1, “Starting Simple by Printing
Dashes” for a complete remove):

#!/usr/bin/env bash
cookbook filename: dashes
#
dashes - print a line of dashes
#
options: # how many (default 72)
-c X use char X instead of dashes
#

LEN=72
CHAR='-'
while (($# > 0))
do
 case $1 in
 [0-9]*) LEN=$1
 ;;
 -c) shift;

Parsing Command-Line Arguments | 135

 CHAR=${1:--}
 ;;
 *) printf 'usage: %s [-c X] [#]\n' $(basename $0) >&2
 exit 2
 ;;
 esac
 shift
done
#
more...

Discussion
The default length (72) and the default character (-) are set at the beginning of the
script (after some useful comments). The while loop allows us to parse more than
one parameter. It will keep looping while the number of arguments ($#) is above
zero.

The case statement matches three different patterns. First, the [0-9]* will match any
digit followed by any other characters. We could have used a more elaborate expres-
sion to allow only pure numbers, but we’ll assume that any argument that begins
with a digit is a number. If that isn’t true (e.g., the user types 1T4), then the script will
error when it tries to use $LEN. We can live with that for now.

The second pattern is a literal -c. There is no pattern to this, just an exact match. In
that case, we use the shift built-in command to throw away that argument (now
that we know what it is) and we take the next argument (which has now become the
first argument, so it is referenced as $1) and save that as the new character choice.
We use :- when referencing $1 (as in ${1:-x}) to specify a default value if the param-
eter isn’t set. That way, if the user types -c but fails to specify an argument, it will
use the default, specified as the character immediately following the :-. In the
expression ${1:-x} it would be x. For our script, we wrote ${1:--} (note the two
minus signs), so the character taken as default is the (second) minus sign.

The third pattern is the wildcard pattern (*), which matches everything, so that any
argument unmatched by the previous patterns will be matched here. By placing it
last in the case statement, it is the catch-all that notifies the user of an error (since it
wasn’t one of the prescribed parameters) and it issues an error message.

That printf error message probably needs explaining if you’re new to bash. There
are four sections of that statement to look at. The first is simply the command name,
printf. The second is the format string that printf will use (see Recipe 2.3, “Writing
Output with More Formatting Control” and “printf” in Appendix A). We use single
quotes around the string so that the shell doesn’t try to interpret any of the string.
The last part of the line (>&2) tells the shell to redirect that output to standard error.
Since this is an error message, that seems appropriate. Many script writers are casual
about this and often neglect this redirection on error messages. We think it is a good
habit to always redirect error messages to standard error.

136 | Chapter 6: Shell Logic and Arithmetic

The third part of the line invokes a subshell to run the basename command on $0, and
then returns the output of the command as text on the command line. This is a com-
mon idiom used to strip off any leading path part of how the command was invoked.
For example, consider what would happen if we used only $0. Here are two different
but erroneous invocations of the same script. Notice the error messages:

$ dashes -g
usage: dashes [-c X] [#]

$ /usr/local/bin/dashes -g
usage: /usr/local/bin/dashes [-c X] [#]

In the second invocation, we used the full pathname. The error message then also
contained the full pathname. Some people find this annoying. So we strip $0 down to
just the script’s base name (using the basename command). Then the error messages
look the same regardless of how the script is invoked:

$ dashes -g
usage: dashes [-c X] [#]

$ /usr/local/bin/dashes -g
usage: dashes [-c X] [#]

While this certainly takes a bit more time than just hardcoding the script name or
using $0 without trimming it, the extra time isn’t that vital since this is an error mes-
sage and the script is about to exit anyway.

We end the case statement with an esac and then do a shift so as to consume the
argument that we just matched in our case statement. If we didn’t do that, we’d be
stuck in the while loop, parsing the same argument over and over. The shift will
cause the second argument ($2) to become the first ($1) and the third to become the
second, and so on, but also $# to be one smaller. On some iteration of the loop $#
finally reaches zero (when there are no more arguments) and the loop terminates.

The actual printing of the dashes (or other character) is not shown here, as we
wanted to focus on the case statement and related actions. You can see the complete
script, with a function for the usage message, in its entirety, in Recipe 12.1, “Starting
Simple by Printing Dashes.”

See Also
• help case

• help getopts

• help getopt

• Recipe 2.3, “Writing Output with More Formatting Control”

• Recipe 5.8, “Looping Over Arguments Passed to a Script”

• Recipe 5.11, “Counting Arguments”

• Recipe 5.12, “Consuming Arguments”

Creating Simple Menus | 137

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 12.1, “Starting Simple by Printing Dashes”

• Recipe 13.1, “Parsing Arguments for Your Shell Script”

• Recipe 13.2, “Parsing Arguments with Your Own Error Messages”

• “printf” in Appendix A

6.16 Creating Simple Menus

Problem
You have a simple SQL script that you would like to run against different databases
to reset them for tests that you want to run. You could supply the name of the data-
base on the command line, but you want something more interactive. How can you
write a shell script to choose from a list of names?

Solution
Use the select statement to create simple character-based screen menus. Here’s a
simple example:

#!/usr/bin/env bash
cookbook filename: dbinit.1
#
DBLIST=$(sh ./listdb | tail +2)
select DB in $DBLIST
do
 echo Initializing database: $DB
 mysql -uuser -p $DB <myinit.sql
done

Ignore for a moment how $DBLIST gets its values; just know that it is a list of words
(like the output from ls would give). The select statement will display those words,
each preceded by a number, and the user will be prompted for input. The user makes
a choice by typing the number and the corresponding word is assigned to the vari-
able specified after the keyword select (in this case DB).

Here’s what the running of this script might look like:

$./dbinit
1) testDB
2) simpleInventory
3) masterInventory
4) otherDB
#? 2
Initializing database: simpleInventory
#?
$

138 | Chapter 6: Shell Logic and Arithmetic

Discussion
When the user types “2” the variable DB is assigned the word simpleInventory. If
you really want to get at the user’s literal choice, the variable $REPLY will hold it, in
this case it would be “2”.

The select statement is really a loop. When you have entered a choice it will exe-
cute the body of the loop (between the do and the done) and then re-prompt you for
the next value.

It doesn’t redisplay the list every time, only if you make no choice and just press the
Enter key. So whenever you want to see the list again, just press Enter.

It does not re-evaluate the code after the in, that is, you can’t alter the list once
you’ve begun. If you modified $DBLIST inside the loop, it wouldn’t change your list of
choices.

The looping will stop when it reaches the end of the file, which for interactive use
means when you type Ctrl-D. (If you piped a series of choices into a select loop, it
would end when the input ends.)

There isn’t any formatting control over the list. If you’re going to use select, you
have to be satisfied with the way it displays your choices. You can, however, alter the
prompt on the select.

See Also
• Recipe 3.7, “Selecting from a List of Options”

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 16.10, “Using Secondary Prompts: $PS2, $PS3, $PS4”

6.17 Changing the Prompt on Simple Menus

Problem
You just don’t like that prompt in the select menus. How can it be changed?

Solution
The bash environment variable $PS3 is the prompt used by select. Set it to a new
value and you’ll get a new prompt.

Discussion
This is the third of the bash prompts. The first ($PS1) is the prompt you get before
most commands. (We’ve used $ in our examples, but it can be much more elaborate
than that, including user ID or directory names.) If a line of command input needs to
be continued, the second prompt is used ($PS2).

Creating a Simple RPN Calculator | 139

For select loops, the third prompt, $PS3, is used. Set it before the select statement to
make the prompt be whatever you want. You can even modify it within the loop to
have it change as the loop progresses.

Here’s a script similar to the previous recipe, but one that counts how many times it
has handled a valid input:

#!/usr/bin/env bash
cookbook filename: dbinit.2
#
DBLIST=$(sh ./listdb | tail +2)

PS3="0 inits >"

select DB in $DBLIST
do
 if [$DB]
 then
 echo Initializing database: $DB

 PS3="$((i++)) inits >"

 mysql -uuser -p $DB <myinit.sql
 fi
done
$

We’ve added some extra whitespace to make the setting of $PS3 stand out more. The
if statement assures us that we’re only counting the times when the user entered a
valid choice. Such a check would be useful in the previous version, but we were
keeping it simple.

See Also
• Recipe 3.7, “Selecting from a List of Options”

• Recipe 6.17, “Changing the Prompt on Simple Menus”

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 16.10, “Using Secondary Prompts: $PS2, $PS3, $PS4”

6.18 Creating a Simple RPN Calculator

Problem
You may be able to convert binary to decimal, octal, or hex in your head but it seems
that you can’t do simple arithmetic anymore and you can never find a calculator
when you need one. What to do?

140 | Chapter 6: Shell Logic and Arithmetic

Solution
Create a calculator using shell arithmetic and RPN notation:

#!/usr/bin/env bash
cookbook filename: rpncalc
#
simple RPN command line (integer) calculator
#
takes the arguments and computes with them
of the form a b op
allow the use of x instead of *
#
error check our argument counts:
if [\($# -lt 3 \) -o \($(($# % 2)) -eq 0 \)]
then
 echo "usage: calc number number op [number op] ..."
 echo "use x or '*' for multiplication"
 exit 1
fi

ANS=$(($1 ${3//x/*} $2))
shift 3
while [$# -gt 0]
do
 ANS=$((ANS ${2//x/*} $1))
 shift 2
done
echo $ANS

Discussion

Any arithmetic done within $(()) is integer arithmetic only.

The idea of RPN (or postfix) style of notation puts the operands (the numbers) first,
followed by the operator. If we are using RPN, we don’t write 5 + 4 but rather 5 4 + as
our expression. If you want to multiply the result by 2, then you just put 2 * on the
end, so the whole expression would be 5 4 + 2 *, which is great for computers to
parse because you can go left to right and never need parentheses. The result of any
operation becomes the first operand for the next expression.

In our simple bash calculator we will allow the use of lowercase x as a substitute for
the multiplication symbol since * has special meaning to the shell. But if you escape
that special meaning by writing '*' or * we want that to work, too.

How do we error check the arguments? We will consider it an error if there are less
than three arguments (we need two operands and one operator, e.g., 6 3 /). There
can be more than three arguments, but in that case there will always be an odd

Creating a Simple RPN Calculator | 141

number (since we start with three and add two more, a second operand and the next
operator, and so on, always adding two more; the valid number of arguments would
be 3 or 5 or 7 or 9 or ...). We check that with the expression:

$(($# % 2)) -eq 0

to see if the result is zero. The $(()) says we’re doing some shell arithmetic inside.
We are using the % operator (called the remainder operator) to see if $# (which is the
number of arguments) is divisible by 2 with no remainder (i.e., -eq 0).

Now that we know there are the right number of arguments, we can use them to
compute the result. We write:

ANS=$(($1 ${3//x/*} $2))

which will compute the result and substitute the asterisk for the letter x at the same
time. When you invoke the script you give it an RPN expression on the command
line, but the shell syntax for arithmetic is our normal (infix) notation. So we can eval-
uate the expression inside of $(()) but we have to switch the arguments around.
Ignoring the x-to-* substitution for the moment, you can see it is just:

ANS=$(($1 $3 $2))

which just moves the operator between the two operands. bash will substitute the
parameters before doing the arithmetic evaluation, so if $1 is 5 and $2 is 4 and $3 is a
+ then after parameter substitution bash will have:

ANS=$((5 + 4))

and it will evaluate that and assign the result, 9, to ANS. Done with those three argu-
ments, we shift 3 to toss them and get the new arguments into play. Since we’ve
already checked that there are an odd number of arguments, if we have any more
arguments to process, we will have at least two more (only 1 more and it would be
an even number, since 3+1=4).

From that point on we loop, taking two arguments at a time. The previous answer is
the first operand, the next argument (now $1 as a result of the shift) is our second
operand, and we put the operator inside $2 in between and evaluate it all much like
before. Once we are out of arguments, the answer is what we have in ANS.

One last word, about the substitution. ${2} would be how we refer to the second
argument. Though we often don’t bother with the {} and just write $2, we need them
here for the additional operations we will ask bash to perform on the argument. We
write ${2//x/*} to say that we want to replace or substitute (//) an x with (indicated
by the next /) an * before returning the value of $2. We could have written this in
two steps by creating an extra variable:

OP=${2//x/*}
ANS=$((ANS OP $1))

142 | Chapter 6: Shell Logic and Arithmetic

That extra variable can be helpful as you first begin to use these features of bash, but
once you are familiar with these common expressions, you’ll find yourself putting
them all together on one line (even though it’ll be harder to read).

Are you wondering why we didn’t write $ANS and $OP in the expression that does the
evaluation? We don’t have to use the $ on variable names inside of $(()) expres-
sions, except for the positional parameters (e.g., $1, $2). The positional parameters
need it to distinguish them from regular numbers (e.g., 1, 2).

See Also
• Chapter 5

• Recipe 6.19, “Creating a Command-Line Calculator”

6.19 Creating a Command-Line Calculator

Problem
You need more than just integer arithmetic, and you’ve never been very fond of RPN
notation. How about a different approach to a command-line calculator?

Solution
Create a trivial command-line calculator using awk’s built-in floating-point arith-
metic expressions:

cookbook filename: func_calc

Trivial command line calculator
function calc
{
 awk "BEGIN {print \"The answer is: \" $* }";
}

Discussion
You may be tempted to try echo The answer is: $(($*)), which will work fine for
integers, but will truncate the results of floating-point operations.

We use a function because aliases do not allow the use of arguments.

You will probably want to add this function to your global /etc/bashrc or local ~/.bashrc.

The operators are what you’d expect and are the same as in C:

$ calc 2 + 3 + 4
The answer is: 9

$ calc 2 + 3 + 4.5
The answer is: 9.5

Creating a Command-Line Calculator | 143

Watch out for shell meta characters. For example:

$ calc (2+2-3)*4
-bash: syntax error near unexpected token `2+2-3'

You need to escape the special meaning of the parentheses. You can put the expres-
sion inside single quotes, or just use the backslash in front of any special (to the
shell) character to escape its meaning. For example:

$ calc '(2+2-3)*4'
The answer is: 4

$ calc \(2+2-3\)*4
The answer is: 4

$ calc '(2+2-3)*4.5'
The answer is: 4.5

We need to escape the multiplication symbol too, since that has special meaning to
bash as the wildcard for filenames. This is especially true if you like to put
whitespace around your operators, as in 17 + 3 * 21, because then * will match all the
files in the current directory, putting their names on the command line in place of the
asterisk—definitely not what you want.

See Also
• man awk

• “ARITHMETIC EVALUATION” in the bash(1) manpage

• Recipe 6.18, “Creating a Simple RPN Calculator”

• Recipe 16.6, “Shortening or Changing Command Names”

144

Chapter 7CHAPTER 7

Intermediate Shell Tools I 8

It is time to expand our repertoire. This chapter’s recipes use some utilities that are
not part of the shell, but which are so useful that it is hard to imagine using the shell
without them.

One of the over-arching philosophies of Unix (and thus Linux) is that of small (i.e.,
limited in scope) program pieces that can be fit together to provide powerful results.
Rather than have one program do everything, we have many different programs that
each do one thing well.

That is true of bash as well. While bash is getting big and feature-rich, it still doesn’t
try to do everything, and there are times when it is easier to use other commands to
accomplish a task even if bash can be stretched to do it.

A simple example of this is the ls command. You needn’t use ls to see the contents of
your current directory. You could just type echo * to have filenames displayed. Or
you could even get fancier, using the bash printf command and some formatting,
etc. But that’s not really the purpose of the shell, and someone has already provided
a listing program (ls) to deal with all sorts of variations on filesystem information.

Perhaps more importantly, by not expecting bash to provide more filesystem listing
features, we avoid additional feature creep pressures on bash and instead give it some
measure of independence; ls can be released with new features without requiring that
we all upgrade our bash versions.

But enough philosophy—back to the practical.

What we have here are three of the most useful text-related utilities: grep, sed, and
awk.

The grep program searches for strings, the sed program provides a way to edit text as
it passes through a pipeline, and awk, well, awk is its own interesting beast, a precur-
sor to perl and a bit of a chameleon—it can look quite different depending on how it
is used.

Sifting Through Files for a String | 145

These utilities, and a few more that we will discuss in an upcoming chapter, become
very much a part of most shell scripts and most sessions spent typing commands to
bash. If your shell script requires a list of files on which to operate, it is likely that
either find or grep will be used to supply that list of files, and that sed and/or awk will
be used to parse the input or format the output at some stage of the shell script.

To say it another way, if our scripting examples are going to tackle real-world prob-
lems, they need to use the wider range of tools that are actually used by real-world
bash users and programmers.

7.1 Sifting Through Files for a String

Problem
You need to find all occurrences of a string in one or more files.

Solution
The grep command searches through files looking for the expression you supply:

$ grep printf *.c
both.c: printf("Std Out message.\n", argv[0], argc-1);
both.c: fprintf(stderr, "Std Error message.\n", argv[0], argc-1);
good.c: printf("%s: %d args.\n", argv[0], argc-1);
somio.c: // we'll use printf to tell us what we
somio.c: printf("open: fd=%d\n", iod[i]);
$

The files we searched through in this example were all in the current directory. We
just used the simple shell pattern *.c to match all the files ending in .c with no pre-
ceding pathname.

Not all the files through which you want to search may be that conveniently located.
Of course, the shell doesn’t care how much pathname you type, so we could have
done something like this:

$ grep printf ../lib/*.c ../server/*.c ../cmd/*.c */*.c

Discussion
When more than one file is searched, grep begins its output with the filename, fol-
lowed by a colon. The text after the colon is what actually appears in the files that
grep searched.

The search matches any occurrence of the characters, so a line that contained the
string “fprintf” was returned, since “printf” is contained within “fprintf”.

The first (non-option) argument to grep can be just a simple string, as in this exam-
ple, or it can be a more complex regular expression (RE). These REs are not the
same as the shell’s pattern matching, though they can look similar at times. Pattern

146 | Chapter 7: Intermediate Shell Tools I

matching is so powerful that you may find yourself relying on it to the point where
you’ll start using “grep” as a verb, and wishing you could make use of it everywhere,
as in “I wish I could grep my desk for that paper you wanted.”

You can vary the output from grep using options on the command line. If you don’t
want to see the specific filenames, you may turn this off using the -h switch to grep:

$ grep -h printf *.c
 printf("Std Out message.\n", argv[0], argc-1);
 fprintf(stderr, "Std Error message.\n", argv[0], argc-1);
 printf("%s: %d args.\n", argv[0], argc-1);
 // we'll use printf to tell us what we
 printf("open: fd=%d\n", iod[i]);
$

If you don’t want to see the actual lines from the file, but only a count of the number
of times the expression is found, then use the -c option:

$ grep -c printf *.c
both.c:2
good.c:1
somio.c:2
$

A common mistake is to forget to provide grep with a source of input.
For example grep myvar. In this case grep assumes you will provide
input from STDIN, but you think it will get it from a file. So it just sits
there forever, seemingly doing nothing. (In fact, it is waiting for input
from your keyboard.) This is particularly hard to catch when you are
grepping a large amount of data and expect it to take a while.

See Also
• man grep

• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O’Reilly), Sec-
tions 3.1 and 3.2

• Chapter 9 and the find utility, for more far-reaching searches

• Recipe 19.5, “Expecting to Change Exported Variables”

Getting Just the Filename from a Search | 147

7.2 Getting Just the Filename from a Search

Problem
You need to find the files in which a certain string appears. You don’t want to see the
line of text that was found, just the filenames.

Solution
Use the -l option of grep to get just the filenames:

$ grep -l printf *.c
both.c
good.c
somio.c

Discussion
If grep finds more than one match per file, it still only prints the name once. If grep
finds no matches, it gives no output.

This option is handy if you want to build a list of files to be operated on, based on
the fact that they contain the string that you’re looking for. Put the grep command
inside $() and those filenames can be used on the command line.

For example, to remove the files that contain the phrase “This file is obsolete,” you
could use this shell command combination:

$ rm -i $(grep -l 'This file is obsolete' *)

We’ve added the -i option to rm so that it will ask you before it removes each file.
That’s obviously a safer way to operate, given the power of this combination of
commands.

bash expands the * to match every file in the current directory (but does not descend
into sub-directories) and passes them as the arguments to grep. Then grep produces a
list of filenames that contain the given string. This list then is handed to the rm com-
mand to remove each file.

See Also
• man grep

• man rm

• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 2.15, “Connecting Two Programs by Using Output As Input”

• Recipe 19.5, “Expecting to Change Exported Variables”

148 | Chapter 7: Intermediate Shell Tools I

7.3 Getting a Simple True/False from a Search

Problem
You need to know whether a certain string is in a particular file. However, you don’t
want any output, just a yes or no sort of answer.

Solution
Use -q, the “quiet” option for grep. Or, for maximum portability, just throw the out-
put away by redirecting it into /dev/null. Either way, your answer is in the bash return
status variable $? so you can use it in an if-test like this:

$ grep -q findme bigdata.file
$ if [$? -eq 0] ; then echo yes ; else echo nope ; fi
nope
$

Discussion
In a shell script, you often don’t want the results of the search displayed in the out-
put; you just want to know whether there is a match so that your script can branch
accordingly.

As with most Unix/Linux commands, a return value of 0 indicates successful com-
pletion. In this case, success is defined as having found the string in at least one of
the given files (in this example, we searched in only one file). The return value is
stored in the shell variable $?, which we can then use in an if statement.

If we list multiple filenames after grep -q, then grep stops searching after the very first
occurrence of the search string being found. It doesn’t search all the files, as you
really just want to know whether it found any occurrence of the string. If you really
need to read through all the files (why?), then rather than use -q you can do this:

$ grep findme bigdata.file >/dev/null
$ if [$? -eq 0] ; then echo yes ; else echo nope ; fi
nope
$

The redirecting to /dev/null sends the output to a special kind of device, a bit bucket,
that just throws everything you give it away.

The /dev/null technique is also useful if you want to write shell scripts that are porta-
ble across the various flavors of grep that are available on Unix and Linux systems,
should you find one that doesn’t support the -q option.

See Also
• man grep

• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

Doing a Search in a Pipeline | 149

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 19.5, “Expecting to Change Exported Variables”

7.4 Searching for Text While Ignoring Case

Problem
You need to search for a string (e.g., “error”) in a log file, and you want to do it case-
insensitively to catch all occurrences.

Solution
Use the -i option on grep to ignore case:

$ grep -i error logfile.msgs

Discussion
A case-insensitive search finds messages written “ERROR”, “error”, “Error,” as well
as ones like “ErrOR” and “eRrOr.” This option is particularly useful for finding
words anywhere that you might have mixed-case text, including words that might be
capitalized at the beginning of a sentence or email addresses.

See Also
• man grep

• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Chapter 9’s discussion of the find command and its -iname option

• Recipe 19.5, “Expecting to Change Exported Variables”

7.5 Doing a Search in a Pipeline

Problem
You need to search for some text, but the text you’re searching for isn’t in a file;
instead, it’s in the output of a command or perhaps even the output of a pipeline of
commands.

Solution
Just pipe your results into grep:

$ some pipeline | of commands | grep

150 | Chapter 7: Intermediate Shell Tools I

Discussion
When no filename is supplied to grep, it reads from standard input. Most well-
designed utilities meant for shell scripting will do this. It is one of the things that
makes them so useful as building blocks for shell scripts.

If you also want to have grep search error messages that come from the previous
command, be sure to redirect its error output into standard output before the pipe:

$ gcc bigbadcode.c 2>&1 | grep -i error

This command attempts to compile some hypothetical, hairy piece of code. We redi-
rect standard error into standard output (2>&1) before we proceed to pipe (|) the
output into grep, where it will search case-insensitively (-i) looking for the string
error.

Don’t overlook the possibility of grepping the output of grep. Why would you want
to do that? To further narrow down the results of a search. Let’s say you wanted to
find out Bob Johnson’s email address:

$ grep -i johnson mail/*
... too much output to think about; there are lots of Johnsons in the world ...
$!! | grep -i robert
grep -i johnson mail/* | grep -i robert
... more manageable output ...
$!! | grep -i "the bluesman"
grep -i johnson mail/* | grep -i robert | grep -i "the bluesman"
Robert M. Johnson, The Bluesman <rmj@noplace.org>

You could have re-typed the first grep, but this example also shows the power of the
!! history operator. The !! let’s you repeat the previous command without retyping
it. You can then continue adding to the command line after the !! as we show here.
The shell will display the command that it runs, so that you can see what you got as
a result of the !! substitution (see Recipe 18.2, “Repeating the Last Command”).

You can build up a long grep pipeline very quickly and simply this way, seeing the
results of the intermediate steps as you go, and deciding how to refine your search
with additional grep expressions. You could also accomplish the same task with a
single grep and a clever regular expression, but we find that building up a pipeline
incrementally is easier.

See Also
• man grep

• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 2.15, “Connecting Two Programs by Using Output As Input”

• Recipe 18.2, “Repeating the Last Command”

• Recipe 19.5, “Expecting to Change Exported Variables”

Paring Down What the Search Finds | 151

7.6 Paring Down What the Search Finds

Problem
Your search is returning way more than you expected, including many results you
don’t want.

Solution
Pipe the results into grep -v with an expression that describes what you don’t want
to see.

Let’s say you were searching for messages in a log file, and you wanted all the mes-
sages from the month of December. You know that your logfile uses the 3-letter
abbreviation for December as Dec, but you’re not sure if it’s always written as Dec, so
to be sure to catch them all you type:

$ grep -i dec logfile

but you find that you also get phrases like these:

...
error on Jan 01: not a decimal number
error on Feb 13: base converted to Decimal
warning on Mar 22: using only decimal numbers
error on Dec 16 : the actual message you wanted
error on Jan 01: not a decimal number
...

A quick and dirty solution in this case is to pipe the first result into a second grep and
tell the second grep to ignore any instances of “decimal”:

$ grep -i dec logfile | grep -vi decimal

It’s not uncommon to string a few of these together (as new, unexpected matches are
also discovered) to filter down the search results to what you’re really looking for:

$ grep -i dec logfile | grep -vi decimal | grep -vi decimate

Discussion
The “dirty” part of this “quick and dirty” solution is that the solution here might also
get rid of some of the December log messages, ones that you wanted to keep—if they
have the word “decimal” in them, they’ll be filtered out by the grep -v.

The -v option can be handy if used carefully; you just have to keep in mind what it
might exclude.

For this particular example, a better solution would be to use a more powerful regu-
lar expression to match the December date, one that looked for “Dec” followed by a
space and two digits:

$ grep 'Dec [0-9][0-9]' logfile

152 | Chapter 7: Intermediate Shell Tools I

But that often won’t work either because syslog uses a space to pad single digit dates,
so we add a space in the first list [0-9]:

$ grep 'Dec [0-9][0-9]' logfile

We used single quotes around the expression because of the embedded spaces, and
to avoid any possible shell interpretation of the bracket characters (not that there
would be, but just as a matter of habit). It’s good to get into the habit of using single
quotes around anything that might possibly be confusing to the shell. We could have
written:

$ grep Dec\ [0-9\][0-9] logfile

escaping the space with a backslash, but in that form it’s harder to see where the
search string ends and the filename begins.

See Also
• man grep

• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 19.5, “Expecting to Change Exported Variables”

7.7 Searching with More Complex Patterns
The regular expression mechanism of grep provides for some very powerful patterns
that can fit most of your needs.

A regular expression describes patterns for matching against strings. Any alphabetic
character just matches that character in the string. “A” matches “A”, “B” matches
“B”; no surprise there. But regular expressions define other special characters that
can be used by themselves or in combination with other characters to make more
complex patterns.

We already said that any character without some special meaning simply matches
itself—“A” to “A” and so on. The next important rule is to combine letters just by
position, so “AB” matches “A” followed by “B”. This, too, seems obvious.

The first special character is (.). A period (.) matches any single character. Therefore
.... matches any four characters; A. matches an “A” followed by any character; and
.A. matches any character, then an “A”, then any character (not necessarily the same
character as the first).

An asterisk (*) means to repeat zero or more occurrences of the previous character.
So A* means zero or more “A” characters, and .* means zero or more characters of
any sort (such as “abcdefg”, “aaaabc”, “sdfgf ;lkjhj”, or even an empty line).

Searching for an SSN | 153

So what does ..* mean? Any single character followed by zero or more of any char-
acter (i.e., one or more characters) but not an empty line.

Speaking of lines, the caret ^ matches the beginning of a line of text and the dollar
sign $ matches the end of a line; hence ^$ matches an empty line (the beginning fol-
lowed by the end, with nothing in between).

What if you want to match an actual period, caret, dollar sign, or any other special
character? Precede it by a backslash (\). So ion. matches the letters “ion” followed by
any other letter, but ion\. matches “ion” bounded by a period (e.g., at the end of a
sentence or wherever else it appears with a trailing dot).

A set of characters enclosed in square brackets (e.g., [abc]) matches any one of those
characters (e.g., “a” or “b” or “c”). If the first character inside the square brackets is
a caret, then it matches any character that is not in that set.

For example, [AaEeIiOoUu] matches any of the vowels, and [^AaEeIiOoUu] matches
any character that is not a vowel. This last case is not the same as saying that it
matches consonants because [^AaEeIiOoUu] also matches punctuation and other spe-
cial characters that are neither vowels nor consonants.

Another mechanism we want to introduce is a repetition mechanism written as \{n,m\}
where n is the minimum number of repetitions and m is the maximum. If it is written as
\{n\} it means “exactly n times,” and when written as “\{n,\}” then “at least n times.”

For example, the regular expression A\{5\} means five capital A letters in a row,
whereas A\{5,\} means five or more capital A letters.

7.8 Searching for an SSN

Problem
You need a regular expression to match a Social Security number. These numbers are
nine digits long, typically grouped as three digits, then two digits, then a final four
digits (e.g., 123-45-6789). Sometimes they are written without hyphens, so you need
to make hyphens optional in the regular expression.

Solution
$ grep '[0-9]\{3\}-\{0,1\}[0-9]\{2\}-\{0,1\}[0-9]\{4\}' datafile

Discussion
These kinds of regular expressions are often jokingly referred to as write only expres-
sions, meaning that they can be difficult or impossible to read. We’ll take this one
apart to help you understand it. In general, though, in any bash script that you write
using regular expressions, be sure to put comments nearby explaining what you
intended the regular expression to match.

154 | Chapter 7: Intermediate Shell Tools I

If we added some spaces to the regular expression we would improve its readability,
making visual comprehension easier, but it would change the meaning—it would say
that we’d need to match space characters at those points in the expression. Ignoring
that for the moment, let’s insert some spaces into the previous regular expression so
that we can read it more easily:

[0-9]\{3\} -\{0,1\} [0-9]\{2\} -\{0,1\} [0-9]\{4\}

The first grouping says “any digit” then “exactly 3 times.” The next grouping says “a
dash” then “0 or 1 time.” The third grouping says “any digit” then “exactly 2 times.”
The next grouping says “a dash” then “0 or 1 time.” The last grouping says “any
digit” then “exactly 4 times.”

See Also
• man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details

of your regular expression library

• Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O’Reilly) Sec-
tion 3.2, for more about regular expressions and the tools that use them

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 19.5, “Expecting to Change Exported Variables”

7.9 Grepping Compressed Files

Problem
You need to grep some compressed files. Do you have to uncompress them first?

Solution
Not if you have zgrep, zcat, or gzcat on your system.

zgrep is simply a grep that understands various compressed and uncompressed files
(which types are understood varies from system to system). You will commonly run
into this when searching syslog messages on Linux, since the log rotation facilities
leave the current log file uncompressed (so it can be in use), but gzip archival logs:

$ zgrep 'search term' /var/log/messages*

zcat is simply a cat that understands various compressed and uncompressed files
(which types are understood varies from system to system). It might understand
more formats than zgrep, and it might be installed on more systems by default. It is
also used in recovering damaged compressed files, since it will simply output every-
thing it possibly can, instead of erroring out as gunzip or other tools might.

gzcat is similar to zcat, the differences having to do with commercial versus free Unix
variants, and backward compatibility:

$ zcat /var/log/messages.1.gz

Keeping Some Output, Discarding the Rest | 155

Discussion
The less utility may also be configured to transparently display various compressed
files, which is very handy. See Recipe 8.15, “Doing More with less.”

See Also
• Recipe 8.6, “Compressing Files”

• Recipe 8.7, “Uncompressing Files”

• Recipe 8.15, “Doing More with less”

7.10 Keeping Some Output, Discarding the Rest

Problem
You need a way to keep some of your output and discard the rest.

Solution
The following code prints the first word of every line of input:

$ awk '{print $1}' myinput.file

Words are delineated by whitespace. The awk utility reads data from the filename
supplied on the command line, or from standard input if no filename is given. There-
fore, you can redirect the input from a file, like this:

$ awk '{print $1}' < myinput.file

or even from a pipe, like this:

$ cat myinput.file | awk '{print $1}'

Discussion
The awk program can be used in several different ways. Its easiest, simplest use is
just to print one or more selected fields from its input.

Fields are delineated by whitespace (or specified with the -F option) and are num-
bered starting at 1. The field $0 represents the entire line of input.

awk is a complete programming language; awk scripts can become extremely com-
plex. This is only the beginning.

See Also
• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

156 | Chapter 7: Intermediate Shell Tools I

7.11 Keeping Only a Portion of a Line of Output

Problem
You want to keep only a portion of a line of output, such as just the first and last
words. For example, you would like ls to list just filenames and permissions, with-
out all of the other information provided by ls -l. However, you can’t find any
options to ls that would limit the output in that way.

Solution
Pipe ls into awk, and just pull out the fields that you need:

$ ls -l | awk '{print $1, $NF}'
total 151130
-rw-r--r-- add.1
drwxr-xr-x art
drwxr-xr-x bin
-rw-r--r-- BuddyIcon.png
drwxr-xr-x CDs
drwxr-xr-x downloads
drwxr-sr-x eclipse
...
$

Discussion
Consider the output from the ls -l command. One line of it looks like this:

drwxr-xr-x 2 username group 176 2006-10-28 20:09 bin

so it is convenient for awk to parse (by default, whitespace delineates fields in awk).
The output from ls -l has the permissions as the first field and the filename as the
last field.

We use a bit of a trick to print the filename. Since the various fields are referenced in
awk using a dollar sign followed by the field number (e.g., $1, $2, $3), and since awk
has a built-in variable called NF that holds the number of fields found on the current
line, $NF always refers to the last field. (For example, the ls output line has eight
fields, so the variable NF contains 8, so $NF refers to the eighth field of the input line,
which in our example is the filename.)

Just remember that you don’t use a $ to read the value of an awk variable (unlike
bash variables). NF is a valid variable reference by itself. Adding a $ before it changes
its meaning from “the number of fields on the current line” to “the last field on the
current line.”

Reversing the Words on Each Line | 157

See Also
• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

7.12 Reversing the Words on Each Line

Problem
You want to print the input lines with words in the reverse order.

Solution
$ awk '{
> for (i=NF; i>0; i--) {
> printf "%s ", $i;
> }
> printf "\n"
> }'

You don’t type the > characters; the shell will print those as a prompt to say that you
haven’t ended your command yet (it is looking for the matching single-quote mark).
Because the awk program is enclosed in single quotes, the bash shell lets us type mul-
tiple lines, prompting us with the secondary prompt > until we supply the matching
end quote. We spaced out the program for readability, even though we could have
stuffed it all onto one line like this:

$ awk '{for (i=NF; i>0; i--) {printf "%s ", $i;} printf "\n" }'

Discussion
The awk program has syntax for a for loop, very much in the C language style. It
even supports a printf mechanism for formatted output, again modeled after the C
language version (or the bash version, too). We use the for loop to count down
from the last to the first field, and print each field as we go. We deliberately don’t
put a \n on that first printf because we want to keep the several fields on the same
line of output. When the loop is done, we add a newline to terminate the line of
output.

The reference to $i is very different in awk compared to bash. In bash, when we write
$i we are getting at the value stored in the variable named i. But in awk, as with
most programming languages, we simply reference the value in i by naming it—that
is by just writing i. So what is meant by $i in awk? The value of the variable i is
resolved to a number, and then the dollar-number expression is understood as a ref-
erence to a field (or word) of input—that is, the i-th field. So as i counts down from
the last field to the first, this loop will print the fields in that reversed order.

158 | Chapter 7: Intermediate Shell Tools I

See Also
• man printf(1)

• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

• “printf” in Appendix A

7.13 Summing a List of Numbers

Problem
You need to sum a list of numbers, including numbers that don’t appear on lines by
themselves.

Solution
Use awk both to isolate the field to be summed and to do the summing. Here we’ll
sum up the numbers that are the file sizes from the output of an ls -l command:

$ ls -l | awk '{sum += $5} END {print sum}'

Discussion
We are summing up the fifth field of the ls -l output. The output of ls -l looks like
this:

-rw-r--r-- 1 albing users 267 2005-09-26 21:26 lilmax

and the fields are: permissions, links, owner, group, size (in bytes), date, time, and
filename. We’re only interested in the size, so we use $5 in our awk program to refer-
ence that field.

We enclose the two bodies of our awk program in braces ({}); note that there can be
more than one body (or block) of code in an awk program. A block of code pre-
ceded by the literal keyword END is only run once, when the rest of the program has
finished. Similarly, you can prefix a block of code with BEGIN and supply some code
that will be run before any input is read. The BEGIN block is useful for initializing
variables, and we could have used one here to initialize sum, but awk guarantees that
variables will start out empty.

If you look at the output of an ls -l command, you will notice that the first line is a
total, and doesn’t fit our expected format for the other lines.

Counting String Values | 159

We have two choices for dealing with that. We can pretend it’s not there, which is
the approach taken above. Since that undesired line doesn’t have a fifth field, then
our reference to $5 will be empty, and our sum won’t change.

The more conscientious approach would be to eliminate that field. We could do so
before we give the output to awk by using grep:

$ ls -l | grep -v '^total' | awk '{sum += $5} END {print sum}'

or we could do a similar thing within awk:

$ ls -l | awk '/^total/{getline} {sum += $5} END {print sum}'

The ^total is a regular expression (regex); it means “the letters t-o-t-a-l occurring at
the beginning of a line” (the leading ^ anchors the search to the beginning of a line).
For any line of input matching that regex, the associated block of code will be exe-
cuted. The second block of code (the sum) has no leading text, the absence of which
tells awk to execute it for every line of input (meaning this will happen regardless of
whether the line matches the regex).

Now, the whole point of adding the special case for “total” was to exclude such a
line from our summing. Therefore in the ^total block we add a getline command,
which reads in the next line of input. Thus, when the second block of code is
reached, it is with a new line of input. The getline does not re-match all the pat-
terns from the top, only the ones from there on down. In awk programming, the
order of the blocks of code matters.

See Also
• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

7.14 Counting String Values

Problem
You need to count all the occurrences of several different strings, including some
strings whose values you don’t know beforehand. That is, you’re not trying to count
the occurrences of a pre-determined set of strings. Rather, you are going to encoun-
ter some strings in your data and you want to count these as-yet-unknown strings.

Solution
Use awk’s associative arrays (also known as hashes) for your counting.

160 | Chapter 7: Intermediate Shell Tools I

For our example, we’ll count how many files are owned by various users on our sys-
tem. The username shows up as the third field in an ls -l output. So we’ll use that
field ($3) as the index of the array, and increment that member of the array:

#
cookbook filename: asar.awk
#
NF > 7 {
 user[$3]++
 }
END {
 for (i in user)
 {
 printf "%s owns %d files\n", i, user[i]
 }
 }

We invoke awk a bit differently here. Because this awk script is a bit more complex,
we’ve put it in a separate file. We use the -f option to tell awk where to get the script
file:

$ ls -lR /usr/local | awk -f asar.awk
bin owns 68 files
albing owns 1801 files
root owns 13755 files
man owns 11491 files
$

Discussion
We use the condition NF > 7 as a qualifier to part of the awk script to weed out the
lines that do not contain filenames, which appear in the ls -lR output and are useful
for readability because they include blank lines to separate different directories as
well as total counts for each subdirectory. Such lines don’t have as many fields (or
words). The expression NF>7 that precedes the opening brace is not enclosed in
slashes, which is to say that it is not a regular expression. It’s a logical expression,
much like you would use in an if statement, and it evaluates to true or false. The NF
variable is a special built-in variable that refers to the number of fields for the cur-
rent line of input. So only if a line of input has more than seven fields (words of text)
will it be processed by the statements within the braces.

The key line, however, is this one:

 user[$3]++

Here the username (e.g., bin) is used as the index to the array. It’s called an associa-
tive array, because a hash table (or similar mechanism) is being used to associate
each unique string with a numerical index. awk is doing all that work for you behind
the scenes; you don’t have to write any string comparisons and lookups and such.

Showing Data As a Quick and Easy Histogram | 161

Once you’ve built such an array it might seem difficult to get the values back out. For
this, awk has a special form of the for loop. Instead of the numeric for(i=0; i<max;
i++) that awk also supports, there is a particular syntax for associative arrays:

 for (i in user)

In this expression, the variable i will take on successive values (in no particular
order) from the various values used as indexes to the array user. In our example, this
means that i will take on the values (i.e., bin, albing, man, root), one each iteration of
the loop. If you haven’t seen associative arrays before, then we hope that you’re sur-
prised and impressed. It is a very powerful feature of awk (and Perl).

See Also
• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

7.15 Showing Data As a Quick and Easy Histogram

Problem
You need a quick screen-based histogram of some data.

Solution
Use the associative arrays of awk, as discussed in the previous recipe:

#
cookbook filename: hist.awk
#
function max(arr, big)
{
 big = 0;
 for (i in user)
 {
 if (user[i] > big) { big=user[i];}
 }
 return big
}

NF > 7 {
 user[$3]++
 }
END {
 # for scaling
 maxm = max(user);
 for (i in user)
 {

162 | Chapter 7: Intermediate Shell Tools I

 #printf "%s owns %d files\n", i, user[i]
 scaled = 60 * user[i] / maxm ;
 printf "%-10.10s [%8d]:", i, user[i]
 for (i=0; i<scaled; i++) {
 printf "#";
 }
 printf "\n";
 }
 }

When we run it with the same input as the previous recipe, we get:

$ ls -lR /usr/local | awk -f hist.awk
bin [68]:#
albing [1801]:#######
root [13755]:##
man [11491]:##
$

Discussion
We could have put the code for max as the first code inside the END block, but we
wanted to show you that you can define functions in awk. We are using a bit of fan-
cier printf. The string format %-10.10s will left justify and pad to 10 characters but
also truncate at 10 characters. The integer format %8d will assure that the integer is
printed in an 8 character field. This gives each histogram the same starting point, by
using the same amount of space regardless of the username or the size of the integer.

Like all arithmetic in awk, the scaling calculation is done with floating point unless
we explicitly truncate the result with a call to the built-in int() function. We don’t
do so, which means that the for loop will execute at least once, so that even the
smallest amount of data will still display a single hash mark.

The order of data returned from the for (i in user) loop is in no particular order,
probably based on some convenient ordering of the underlying hash table. If you
wanted the histogram displayed in a sorted order, either numeric by count or alpha-
betical by username, you would have to add some sorting. One way to do this is to
break this program apart into two pieces, sending the output from the first part into
the sort command and then piping that output into the second piece to print the
histogram.

See Also
• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

• Recipe 8.1, “Sorting Your Output”

Showing a Paragraph of Text After a Found Phrase | 163

7.16 Showing a Paragraph of Text After a Found
Phrase

Problem
You are searching for a phrase in a document, and want to show the paragraph after
the found phrase.

Solution
We’re assuming a simple text file, where paragraph means all the text between blank
lines, so the occurrence of a blank line implies a paragraph break. Given that, it’s a
pretty short awk program:

$ cat para.awk
/keyphrase/ { flag=1 }
{ if (flag == 1) { print $0 } }
/^$/ { flag=0 }
$
$ awk -f para.awk < searchthis.txt

Discussion
There are just three simple code blocks. The first is invoked when a line of input
matches the regular expression (here just the word “keyphrase”). If “keyphrase”
occurs anywhere within a line of input, that is a match and this block of code will be
executed. All that happens in this block is that the flag is set.

The second code block is invoked for every line of input, since there is no regular
expression preceding its open brace. Even the input that matches “keyphrase” will
also be applied to this code block (if we didn’t want that effect, we could use a
continue statement in the first block). All this second block does is print the entire
input line, but only if the flag is set.

The third block has a regular expression that, if satisfied, will simply reset (turn off)
the flag. That regular expression uses two characters with special meaning—the caret
(^), when used as the first character of a regular expression, matches the beginning of
the line; the dollar sign ($), when used as the last character, matches the end of the
line. So the regular expression ^$ means “an empty line” because it has no characters
between the beginning and end of the line.

We could have used a slightly more complicated regular expression for an empty line
to let it handle any line with just whitespace rather than a completely blank line.
That would make the third line look like this:

/^[:blank:]*$/ { flag=0 }

164 | Chapter 7: Intermediate Shell Tools I

Perl programmers love the sort of problem and solution discussed in this recipe, but
we’ve implemented it with awk because Perl is (mostly) beyond the scope of this
book. If you know Perl, by all means use it. If not, awk might be all you need.

See Also
• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk by Arnold Robbins and Dale Dougherty (O’Reilly)

165

Chapter 8 CHAPTER 8

Intermediate Shell Tools II9

Once again, we have some useful utilities that are not part of the shell but are used in
so many shell scripts that you really should know about them.

Sorting is such a common task, and so useful for readability reasons, that it’s good to
know about the sort command. In a similar vein, the tr command will translate or
map from one character to another, or even just delete characters.

One common thread here is that these utilities are written not just as standalone
commands, but also as filters that can be included in a pipeline of commands. These
sorts of commands will typically take one to many filenames as parameters (or argu-
ments), but in the absence of any filenames they will read from standard input. They
also write to standard output. That combination makes it easy to connect to the
command with pipes, as in something | sort | even more.

That makes them especially useful, and avoids the clutter and confusion of a myriad
of temporary files.

8.1 Sorting Your Output

Problem
You would like output in a sorted order, but you don’t want to write (yet again) a
custom sort function for your program or shell script. Hasn’t this been done already?

Solution
Use the sort utility. You can sort one or more files by putting the file names on the
command line:

$ sort file1.txt file2.txt myotherfile.xyz

With no filenames on the command, sort will read from standard input so you can
pipe the output from a previous command into sort:

$ somecommands | sort

166 | Chapter 8: Intermediate Shell Tools II

Discussion
It can be handy to have your output in sorted order, and handier still not to have to
add sorting code to every program you write. The shell’s piping allows you to hook
up sort to any program’s standard output.

There a few options to sort, but two of the three most worth remembering are:

$ sort -r

to reverse the order of the sort (where, to borrow a phrase, the last shall be first and
the first, last); and

$ sort -f

to “fold” lower- and uppercase characters together; i.e., to ignore the case differ-
ences. This can be done either with the -f option or with a GNU long-format option:

$ sort -–ignore-case

We decided to keep you in suspense, so see the next recipe, Recipe 8.2, “Sorting
Numbers,” for the third coolest sort option.

See Also
• man sort

• Recipe 8.2, “Sorting Numbers”

8.2 Sorting Numbers

Problem
When sorting numeric data you notice that the order doesn’t seem right:

$ sort somedata
2
200
21
250
$

Solution
You need to tell sort that the data should be sorted as numbers. Specify a numeric
sort with the -n option:

$ sort -n somedata
2
21
200
250
$

Sorting IP Addresses | 167

Discussion
There is nothing wrong with the original (if odd) sort order if you realize that it is an
alphabetic sort on the data (i.e., 21 comes after 200 because 1 comes after 0 in an
alphabetic sort). Of course, what you probably want is numeric ordering, so you
need to use the -n option.

sort -rn can be very handy in giving you a descending frequency list of something
when combined with uniq -c. For example, let’s display the most popular shells on
this system:

$ cut -d':' -f7 /etc/passwd | sort | uniq -c | sort -rn
 20 /bin/sh
 10 /bin/false
 2 /bin/bash
 1 /bin/sync

cut -d':' -f7 /etc/passwd isolates the shell from the /etc/passwd file. Then we have
to do an initial sort so that uniq will work. uniq -c counts consecutive, duplicate
lines, which is why we need the pre-sort. Then sort -rn gives us a reverse, numerical
sort, with the most popular shell at the top.

If you don’t need to count the occurrences and just want a unique list of values—i.e.,
if you want sort to remove duplicates—then you can use the -u option on the sort
command (and omit the uniq command). So to find just the list of different shells on
this system:

cut -d':' -f7 /etc/passwd | sort -u

See Also
• man sort

• man uniq

• man cut

8.3 Sorting IP Addresses

Problem
You want to sort a list of numeric IP address, but you’d like to sort by the last por-
tion of the number or by the entire address logically.

Solution
To sort by the last octet only (old syntax):

$ sort -t. -n +3.0 ipaddr.list
10.0.0.2
192.168.0.2

168 | Chapter 8: Intermediate Shell Tools II

192.168.0.4
10.0.0.5
192.168.0.12
10.0.0.20
$

To sort the entire address as you would expect (POSIX syntax):

$ sort -t . -k 1,1n -k 2,2n -k 3,3n -k 4,4n ipaddr.list
10.0.0.2
10.0.0.5
10.0.0.20
192.168.0.2
192.168.0.4
192.168.0.12
$

Discussion
We know this is numeric data, so we use the -n option. The -t option indicates the
character to use as a separator between fields (in our case, a period) so that we can
also specify which fields to sort first. In the first example, we start sorting with the
third field (zero-based) from the left, and the very first character (again, zero-based)
of that field, so +3.0.

In the second example, we used the new POSIX specification instead of the tradi-
tional (but obsolete) +pos1 -pos2 method. Unlike the older method, it is not zero-
based, so fields start at 1.

$ sort -t . -k 1,1n -k 2,2n -k 3,3n -k 4,4n ipaddr.list

Wow, that’s ugly. Here it is in the old format: sort -t. +0n -1 +1n -2 +2n -3 +3n -
4, which is just as bad.

Using -t. to define the field delimiter is the same, but the sort-key fields are given
quite differently. In this case, -k 1,1n means “start sorting at the beginning of field
one (1) and (,) stop sorting at the end of field one (1) and do a numerical sort (n).
Once you get that, the rest is easy. When using more than one field, it’s very impor-
tant to tell sort where to stop. The default is to go to the end of the line, which is
often not what you want and which will really confuse you if you don’t understand
what it’s doing.

The order that sort uses is affected by your locale setting. If your
results are not as expected, that’s one thing to check.

Your sort order will vary from system to system depending on whether your sort
command defaults to using a stable sort. A stable sort preserves the original order in
the sorted data when the sort fields are equal. Linux and Solaris do not default to a
stable sort, but NetBSD does. And while -S turns off the stable sort on NetBSD, it
sets the buffer size on other versions of sort.

Sorting IP Addresses | 169

If we run this sort command on a Linux or Solaris system:

$ sort -t. -k4n ipaddr.list

or this command on a NetBSD system

$ sort -t. -S -k4n ipaddr.list

we will get the data sorted as shown in the 1st column of Table 8-1. Remove the -S on
a NetBSD system, and sort will produce the ordering as shown in the second column.

If our input file, ipaddr.list, had all the 192.168 addresses first, followed by all the 10.
addresses, then the stable sort would leave the 192.168 address first when there is a
tie, that is when two elements in our sort have the same value. We can see in
Table 8-1 that this situation exists for laptop and sluggish, since each has a 2 as its
fourth field, and also for mainframe and office, which tie with 4. In the default Linux
sort (and NetBSD with the -S option specified), the order is not guaranteed.

To get back to something easy, and just for practice, let’s sort by the text in our IP
address list. This time we want our separator to be the # character and we want an
alphabetic sort on the second field, so we get:

$ sort -t'#' -k2 ipaddr.list
10.0.0.20 # lanyard
192.168.0.2 # laptop
10.0.0.5 # mainframe
192.168.0.4 # office
10.0.0.2 # sluggish
192.168.0.12 # speedy
$

The sorting will start with the second key, and in this case, go through the end of the
line. With just the one separator (#) per line, we didn’t need to specify the ending,
though we could have written -k2,2 .

See Also
• man sort

• Appendix B’s example ./functions/inetaddr, as provided in the bash tarball

Table 8-1. Sort ordering comparison of Linux, Solaris, and NetBSD

Linux and Solaris (default) and NetBSD (with -S) NetBSD stable (default) sort ordering

10.0.0.2 # sluggish
192.168.0.2 # laptop
10.0.0.4 # mainframe
192.168.0.4 # office
192.168.0.12 # speedy
10.0.0.20 # lanyard

192.168.0.2 # laptop
10.0.0.2 # sluggish
192.168.0.4 # office
10.0.0.4 # mainframe
192.168.0.12 # speedy
10.0.0.20 # lanyard

170 | Chapter 8: Intermediate Shell Tools II

8.4 Cutting Out Parts of Your Output

Problem
You need to look at only part of your fixed-width or column-based data. You’d like
to take a subset of it, based on the column position.

Solution
Use the cut command with the -c option to take particular columns: Note that our
example 'ps' command only works with certain systems; e.g., CentOS-4, Fedora
Core 5, and Ubuntu work, but Red Hat 8, NetBSD, Solaris, and Mac OS X all garble
the output due to using different columns:

$ ps -l | cut -c12-15
 PID
5391
7285
7286
$

or:

$ ps -elf | cut -c58-
(output not shown)

Discussion
With the cut command we specify what portion of the lines we want to keep. In the
first example, we are keeping columns 12 (starting at column one) through 15, inclu-
sive. In the second case, we specify starting at column 58 but don’t specify the end of
the range so that cut will take from column 58 on through the end of the line.

Most of the data manipulation we’ve looked at has been based on fields, relative
positions separated by characters called delimiters. The cut command can do that
too, but it is one of the few utilities that you’ll use with bash that can also easily deal
with fixed-width, columnar data (via the -c option).

Using cut to print out fields rather than columns is possible, though more limited
than other choices such as awk. The default delimiter between fields is the Tab char-
acter, but you can specify a different delimiter with the -d option. Here is an exam-
ple of a cut command using fields:

$ cut -d'#' -f2 < ipaddr.list

and an equivalent awk command:

$ awk -F'#' '{print $2}' < ipaddr.list

You can even use cut to handle non-matching delimiters by using more than one cut.
You may be better off using a regular expression with awk for this, but sometimes a
couple of quick and dirty cuts are faster to figure out and type.

Removing Duplicate Lines | 171

Here is how you can get the field out from between square brackets. Note that the
first cut uses a delimiter of open square bracket (-d'[') and field 2 (-f2 starting at 1).
Because the first cut has already removed part of the line, the second cut uses a
delimiter of closed square bracket (-d']') and field 1 (-f1).

$ cat delimited_data
Line [l1].
Line [l2].
Line [l3].

$ cut -d'[' -f2 delimited_data | cut -d']' -f1
l1
l2
l3

See Also
• man cut

• man awk

8.5 Removing Duplicate Lines

Problem
After selecting and/or sorting some data you notice that there are many duplicate
lines in your results. You’d like to get rid of the duplicates, so that you can see just
the unique values.

Solution
You have two choices available to you. If you’ve just been sorting your output, add
the -u option to the sort command:

$ somesequence | sort -u

If you aren’t running sort, just pipe the output into uniq—provided, that is, that the
output is sorted, so that identical lines are adjacent:

$ somesequence > myfile
$ uniq myfile

Discussion
Since uniq requires the data to be sorted already, we’re more likely to just add the -u
option to sort unless we also need to count the number of duplicates (-c, see Recipe
8.2, “Sorting Numbers”), or see only the duplicates (-d), which uniq can do.

172 | Chapter 8: Intermediate Shell Tools II

Don’t accidentally overwrite a valuable file by mistake; the uniq com-
mand is a bit odd in its parameters. Whereas most Unix/Linux com-
mands take multiple input files on the command line, uniq does not.
In fact, the first (non-option) argument is taken to be the (one and
only) input file and any second argument, if supplied, is taken as the
output file. So if you supply two filenames on the command line, the
second one will get clobbered without warning.

See Also
• man sort

• man uniq

• Recipe 8.2, “Sorting Numbers”

8.6 Compressing Files

Problem
You need to compress some files and aren’t sure of the best way to do it.

Solution
First, you need to understand that in traditional Unix, archiving (or combining) and
compressing files are two different operations using two different tools, while in the
DOS and Windows world it’s typically one operation with one tool. A “tarball” is
created by combining several files and/or directories using the tar (tape archive) com-
mand, then compressed using the compress, gzip, or bzip2 tools. This results in files
like tarball.tar.Z, tarball.tar.gz, tarball.tgz, or tarball.tar.bz2. Having said that, many
other tools, including zip, are supported.

In order to use the correct format, you need to understand where your data will be
used. If you are simply compressing some files for yourself, use whatever you find
easiest. If other people will need to use your data, consider what platform they will
be using and what they are comfortable with.

The Unix traditional tarball was tarball.tar.Z, but gzip is now much more common
and bzip2 (which offers better compression than gzip) is gaining ground. There is
also a tool question. Some versions of tar allow you to use the compression of your
choice automatically while creating the archive. Others don’t.

The universally accepted Unix or Linux format would be a tarball.tar.gz created like
this:

$ tar cf tarball_name.tar directory_of_files
$ gzip tarball_name.tar

Compressing Files | 173

If you have GNU tar, you could use -Z for compress (don’t, this is obsolete), -z for
gzip (safest), or -j for bzip2 (highest compression). Don’t forget to use an appropri-
ate filename, this is not automatic.

$ tar czf tarball_name.tgz directory_of_files

While tar and gzip are available for many platforms, if you need to share with Win-
dows you are better off using zip, which is nearly universal. zip and unzip are sup-
plied by the InfoZip packages on Unix and almost any other platform you can
possibly think of. Unfortunately, they are not always installed by default. Run the
command by itself for some helpful usage information, since these tools are not like
most other Unix tools. And note the -l option to convert Unix line endings to DOS
line endings, or -ll for the reverse.

$ zip -r zipfile_name directory_of_files

Discussion
There are far too many compression algorithms and tools to talk about here; others
include: AR, ARC, ARJ, BIN, BZ2, CAB, CAB, JAR, CPIO, DEB, HQX, LHA, LZH,
RAR, RPM, UUE, and ZOO.

When using tar, we strongly recommend using a relative directory to store all the
files. If you use an absolute directory, you might overwrite something on another sys-
tem that you shouldn’t. If you don’t use any directory, you’ll clutter up whatever
directory the user is in when they extract the files (see Recipe 8.8, “Checking a tar
Archive for Unique Directories”). The recommended use is the name and possibly
version of the data you are processing. Table 8-2 shows some examples.

It is worth noting that Red Hat Package Manager (RPM) files are actually CPIO files
with a header. You can get a shell or Perl script called rpm2cpio (http://fedora.redhat.
com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html) to strip that header and
then extract the files like this:

$ rpm2cpio some.rpm | cpio -i

Debian’s .deb files are actually ar archives containing gzipped or bzipped tar
archives. They may be extracted with the standard ar, gunzip, or bunzip2 tools.

Many of the Windows-based tools such as WinZip, PKZIP, FilZip, and 7-Zip can
handle many or all of the above formats and more (including tarballs and RPMs).

Table 8-2. Good and bad examples of naming files for the tar utility

Good Bad

./myapp_1.0.1 myapp.c

myapp.h

myapp.man

./bintools /usr/local/bin

174 | Chapter 8: Intermediate Shell Tools II

See Also
• man tar

• man gzip

• man bzip2

• man compress

• man zip

• man rpm

• man ar

• man dpkg

• http://www.info-zip.org/

• http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html

• http://en.wikipedia.org/wiki/Deb_(file_format)

• http://www.rpm.org/

• http://en.wikipedia.org/wiki/RPM_Package_Manager

• Recipe 7.9, “Grepping Compressed Files”

• Recipe 8.7, “Uncompressing Files”

• Recipe 8.8, “Checking a tar Archive for Unique Directories”

• Recipe 17.3, “Unzipping Many ZIP Files”

8.7 Uncompressing Files

Problem
You need to uncompress one or more files ending in extensions like tar, tar.gz, gz,
tgz, Z, or zip.

Solution
Figure out what you are dealing with and use the right tool. Table 8-3 maps com-
mon extensions to programs capable of handling them.

Table 8-3. Common file extensions and compression utilities

File extension Command

.tar tar tf (list contents), tar xf (extract)

.tar.gz, .tgz GNU tar: tar tzf (list contents), tar xzf (extract)

else: gunzip file && tar xf file

.tar.bz2 GNU tar: tar tjf (list contents), tar xjf (extract)

else: gunzip2 file && tar xf file

Checking a tar Archive for Unique Directories | 175

You should also try the file command:

$ file what_is_this.*
what_is_this.1: GNU tar archive
what_is_this.2: gzip compressed data, from Unix

$ gunzip what_is_this.2
gunzip: what_is_this.2: unknown suffix -- ignored

$ mv what_is_this.2 what_is_this.2.gz

$ gunzip what_is_this.2.gz

$ file what_is_this.2
what_is_this.2: GNU tar archive

Discussion
If the file extension matches none of those listed in Table 8-3 and the file command
doesn’t help, but you are sure it’s an archive of some kind, then you should do a web
search for it.

See Also
• Recipe 7.9, “Grepping Compressed Files”

• Recipe 8.6, “Compressing Files”

8.8 Checking a tar Archive for Unique Directories

Problem
You want to untar an archive, but you want to know beforehand into which directo-
ries it is going to write. You can look at the table of contents of the tarfile by using
tar -t, but this output can be very large and it’s easy to miss something.

Solution
Use an awk script to parse off the directory names from the tar archive’s table of con-
tents, then use sort -u to leave you with just the unique directory names:

$ tar tf some.tar | awk -F/ '{print $1}' | sort -u

.tar.Z GNU tar: tar tZf (list contents), tar xZf (extract)

else: uncompress file && tar xf file

.zip unzip (often not installed by default)

Table 8-3. Common file extensions and compression utilities (continued)

File extension Command

176 | Chapter 8: Intermediate Shell Tools II

Discussion
The t option will produce the table of contents for the file specified with the f option
whose filename follows. The awk command specifies a non-default field separator by
using -F/ to specify a slash as the separator between fields. Thus, the print $1 will
print the first directory name in the pathname.

Finally, all the directory names will be sorted and only unique ones will be printed.

If a line of the output contains a single period then some files will be extracted into
the current directory when you unpack this tar file, so be sure to be in the directory
you desire.

Similarly, if the filenames in the archive are all local and without a leading ./ then
you will get a list of filenames that will be created in the current directory.

If the output contains a blank line, that means that some of the files are specified
with absolute pathnames (i.e., beginning with /), so again be careful, as extracting
such an archive might clobber something that you don’t want replaced.

See Also
• man tar

• man awk

• Recipe 8.1, “Sorting Your Output”

• Recipe 8.2, “Sorting Numbers”

• Recipe 8.3, “Sorting IP Addresses”

8.9 Translating Characters

Problem
You need to convert one character to another in all of your text.

Solution
Use the tr command to translate one character to another. For example:

$ tr ';' ',' <be.fore >af.ter

Discussion
In its simplest form, a tr command replaces occurrences of the first (and only) char-
acter of the first argument with the first (and only) character of the second argument.

In the example solution, we redirected input from the file named be.fore and sent the
output into the file named af.ter and we translated all occurrences of a semicolon
into a comma.

Converting Uppercase to Lowercase | 177

Why do we use the single quotes around the semicolon and the comma? Well, a
semicolon has special meaning to bash, so if we didn’t quote it bash would break our
command into two commands, resulting in an error. The comma has no special
meaning, but we quote it out of habit to avoid any special meaning we may have for-
gotten about—i.e., it’s safer always to use the quotes, then we never forget to use
them when we need them.

The tr command can do more that one translation at a time by putting the several
characters to be translated in the first argument and their corresponding resultant
characters in the second argument. Just remember, it’s a one-for-one substitution.
For example:

$ tr ';:.!?' ',' <other.punct >commas.all

will translate all occurrences of the punctuation symbols of semicolon, colon, period,
exclamation point and question mark to commas. Since the second argument is
shorter than the first, its last (and here, its only) character is repeated to match the
length of the first argument, so that each character has a corresponding character for
the translation.

Now this kind of translation could be done with the sed command, though sed syn-
tax is a bit trickier. The tr command is not as powerful, since it doesn’t use regular
expressions, but it does have some special syntax for ranges of characters—and that
can be quite useful as we’ll see in Recipe 8.10, “Converting Uppercase to Lowercase.”

See Also
• man tr

8.10 Converting Uppercase to Lowercase

Problem
You need to eliminate case distinctions in a stream of text.

Solution
You can translate all uppercase characters (A–Z) to lowercase (a–z) using the tr com-
mand and specifying a range of characters, as in:

$ tr 'A-Z' 'a-z' <be.fore >af.ter

There is also special syntax in tr for specifying this sort of range for upper- and lower-
case conversions:

$ tr '[:upper:]' '[:lower:]' <be.fore >af.ter

178 | Chapter 8: Intermediate Shell Tools II

Discussion
Although tr doesn’t support regular expressions, it does support a range of charac-
ters. Just make sure that both arguments end up with the same number of charac-
ters. If the second argument is shorter, its last character will be repeated to match the
length of the first argument. If the first argument is shorter, the second argument will
be truncated to match the length of the first.

Here’s a very simplistic encoding of a text message using a simple substitution
cypher that offsets each character by 13 places (i.e., ROT13). An interesting charac-
teristic of ROT13 is that the same process is used to both encipher and decipher the
text:

$ cat /tmp/joke
Q: Why did the chicken cross the road?
A: To get to the other side.

$ tr 'A-Za-z' 'N-ZA-Mn-za-m' < /tmp/joke
D: Jul qvq gur puvpxra pebff gur ebnq?
N: Gb trg gb gur bgure fvqr.

$ tr 'A-Za-z' 'N-ZA-Mn-za-m' < /tmp/joke | tr 'A-Za-z' 'N-ZA-Mn-za-m'
Q: Why did the chicken cross the road?
A: To get to the other side.

See Also
• man tr

• http://en.wikipedia.org/wiki/Rot13

8.11 Converting DOS Files to Linux Format

Problem
You need to convert DOS formatted text files to the Linux format. In DOS, each line
ends with a pair of characters—the return and the newline. In Linux, each line ends
with a single newline. So how can you delete that extra DOS character?

Solution
Use the -d option on tr to delete the character(s) in the supplied list. For example, to
delete all DOS carriage returns (\r), use the command:

$ tr -d '\r' <file.dos >file.txt

This will delete all \r characters in the file, not just those at the end of
a line. Typical text files rarely have characters like that inline, but it is
possible. You may wish to look into the dos2unix and unix2dos pro-
grams if you are worried about this.

Removing Smart Quotes | 179

Discussion
The tr utility has a few special escape sequences that it recognizes, among them \r
for carriage return and \n for newline. The other special backslash sequences are
listed in Table 8-4.

See Also
• man tr

8.12 Removing Smart Quotes

Problem
You want simple ASCII text out of a document in MS Word, but when you save it as
text some odd characters still remain.

Solution
Translate the odd characters back to simple ASCII like this:

$ tr '\221\222\223\224\226\227' '\047\047""--' <odd.txt >plain.txt

Discussion
Such “smart quotes” come from the Windows-1252 character set, and may also
show up in email messages that you save as text. To quote from Wikipedia on this
subject:

A few mail clients send curved quotes using the Windows-1252 codes but mark the
text as ISO-8859-1 causing problems for decoders that do not make the dubious
assumption that C1 control codes in ISO-8859-1 text were meant to be Windows-1252
printable characters.

Table 8-4. The special escape sequences of the tr utility

Sequence Meaning

\ooo Character with octal value ooo (1-3 octal digits)

\\ A backslash character (i.e., escapes the backslash itself)

\a “audible” bell, the ASCII BEL character (since “b” was taken for backspace)

\b Backspace

\f Form feed

\n Newline

\r Return

\t Tab (sometimes called a “horizontal” tab)

\v Vertical tab

180 | Chapter 8: Intermediate Shell Tools II

To clean up such text, we can use the tr command. The 221 and 222 (octal) curved
single-quotes will be translated to simple single quotes. We specify them in octal
(047) to make it easier on us, since the shell uses single quotes as a delimiter. The 223
and 224 (octal) are opening and closing curved quotes, and will be translated to sim-
ple double quotes. The double quotes can be typed within the second argument
since the single quotes protect them from shell interpretation. The 226 and 227
(octal) are dash characters and will be translated to hyphens (and no, that second
hyphen in the second argument is not technically needed, since tr will repeat the last
character to match the length of the first argument, but it’s better to be specific).

See Also
• man tr

• http://en.wikipedia.org/wiki/Curved_quotes for way more than you might ever
have wanted to know about quotation marks and related character set issues

8.13 Counting Lines, Words, or Characters in a File

Problem
You need to know how many lines, words, or characters are in a given file.

Solution
Use the wc (word count) command with awk in a command substitution.

The normal output of wc is something like this:

$ wc data_file
 5 15 60 data_file

Lines only
$ wc -l data_file
 5 data_file

Words only
$ wc -w data_file
 15 data_file

Characters (often the same as bytes) only
$ wc -c data_file
 60 data_file

Note 60B
$ ls -l data_file
-rw-r--r-- 1 jp users 60B Dec 6 03:18 data_file

You may be tempted to just do something like this:

data_file_lines=$(wc -l "$data_file")

Doing More with less | 181

That won’t do what you expect, since you’ll get something like "5 data_file" as the
value. Instead, try this:

data_file_lines=$(wc -l "$data_file" | awk '{print $1}')

Discussion
If your version of wc is locale aware, the number of characters will not equal the
number of bytes in some character sets.

See Also
• man wc

• Recipe 15.7, “Splitting Output Only When Necessary”

8.14 Rewrapping Paragraphs

Problem
You have some text with lines that are too long or too short, so you’d like to re-wrap
them to be more readable.

Solution
Use the fmt command, optionally with a goal and maximum line length:

$ fmt mangled_text
$ fmt 55 60 mangled_text

Discussion
One tricky thing about fmt is that it expects blank lines to separate headers and para-
graphs. If your input file doesn’t have those blanks, it has no way to tell the differ-
ence between different paragraphs and extra newlines inside the same paragraph. So
you will end up with one giant paragraph, with the correct line lengths.

The pr command might also be of some interest for formatting text.

See Also
• man fmt

• man pr

8.15 Doing More with less
“less is more!”

182 | Chapter 8: Intermediate Shell Tools II

Problem
You’d like to take better advantage of the features of the less pager.

Solution
Read the less manpage and use the $LESS variable with ~/.lessfilter and ~/.lesspipe
files.

less takes options from the $LESS variable, so rather than creating an alias with your
favorite options, put them in that variable. It takes both long and short options, and
any command-line options will override the variable. We recommend using the long
options in the $LESS variable since they are easy to read. For example:

export LESS="--LONG-PROMPT --LINE-NUMBERS --ignore-case --QUIET"

But that is just the beginning. less is expandable via input preprocessors, which are
simply programs or scripts that pre-process the file that less is about to display. This is
handled by setting the $LESSOPEN and $LESSCLOSE environment variables appropriately.

You could build your own, but save yourself some time and look into Wolfgang Frie-
bel’s lesspipe.sh available at http://www-zeuthen.desy.de/~friebel/unix/lesspipe.html
(but see the discussion below first). The script works by setting and exporting the
$LESSOPEN environment variable when run by itself:

$./lesspipe.sh
LESSOPEN="|./lesspipe.sh %s"
export LESSOPEN

So you simply run it in an eval statement, like eval $(/path/to/lessfilter.sh) or
eval `/path/to/lessfilter.sh`, and then use less as usual. The list of supported for-
mats for version 1.53 is:

gzip, compress, bzip2, zip, rar, tar, nroff, ar archive, pdf, ps, dvi, shared library, exe-
cutable, directory, RPM, Microsoft Word, OpenOffice 1.x and OASIS (OpenDocu-
ment) formats, Debian, MP3 files, image formats (png, gif, jpeg, tiff, ...), utf-16 text,
iso images and filesystems on removable media via /dev/xxx

But there is a catch. These formats require various external tools, so not all features
in the example lesspipe.sh will work if you don’t have them. The package also con-
tains ./configure (or make) scripts to generate a version of the filter that will work on
your system, given the tools that you have available.

Discussion
less is unique in that it is a GNU tool that was already installed by default on every
single test system we tried—every one. Not even bash can say this. And version dif-
ferences aside, it works the same on all of them. Quite a claim to fame.

However, the same cannot be said for lesspipe* and less open filters. We found other
versions, with wildly variable capabilities, besides the ones listed above.

Doing More with less | 183

• Red Hat has a /usr/bin/lesspipe.sh that can’t be used like eval `lesspipe`.

• Debian has a /usr/bin/lesspipe that can be eval’ed and also supports additional fil-
ters via a ~/.lessfilter file.

• SUSE Linux has a /usr/bin/lessopen.sh that can’t be eval’ed.

• FreeBSD has a trivial /usr/bin/lesspipe.sh (no eval, .Z, .gz, or .bz2).

• Solaris, HP-UX, the other BSDs, and the Mac have nothing by default.

To see if you already have one of these, try this on your systems. This Debian system
has the Debian lesspipe installed but not in use (since $LESSOPEN is not defined):

$ type lesspipe.sh; type lesspipe; set | grep LESS
-bash3: type: lesspipe.sh: not found
lesspipe is /usr/bin/lesspipe

This Ubuntu system has the Debian lesspipe installed and in use:

$ type lesspipe.sh; type lesspipe; set | grep LESS
-bash: type: lesspipe.sh: not found
lesspipe is hashed (/usr/bin/lesspipe)
LESSCLOSE='/usr/bin/lesspipe %s %s'
LESSOPEN='| /usr/bin/lesspipe %s'

We recommend that you download, configure, and use Wolfgang Friebel’s lesspipe.
sh because it’s the most capable. We also recommend that you read the less manpage
because it’s very interesting.

See Also
• man less

• man lesspipe

• man lesspipe.sh

• http://www.greenwoodsoftware.com/less/

• http://www-zeuthen.desy.de/~friebel/unix/lesspipe.html

184

Chapter 9CHAPTER 9

Finding Files: find, locate, slocate 10

How easy is it for you to search for files throughout your filesystem?

For the first few files that you created, it was easy enough just to remember their
names and where you kept them. Then when you got more files, you created subdi-
rectories (or folders in GUI-speak) to clump your files into related groups. Soon there
were subdirectories inside of subdirectories, and now you are having trouble remem-
bering where you put things. Of course, with larger and larger disks it is getting eas-
ier to just keep creating and never deleting any files (and for some of us, this getting
older thing isn’t helping either).

But how do you find that file you were just editing last week? Or the attachment that
you saved in a subdirectory (it seemed such a logical choice at the time). Or maybe
your filesystem has become cluttered with MP3 files scattered all over it.

Various attempts have been made to provide graphical interfaces to help you search
for files, which is all well and good—but how do you use the results from a GUI-
style search as input to other commands?

bash and the GNU tools can help. They provide some very powerful search capabili-
ties that enable you to search by filename, dates of creation or modification, even
content. They send the results to standard output, perfect for use in other com-
mands or scripts.

So stop your wondering—here’s the information you need.

9.1 Finding All Your MP3 Files

Problem
You have MP3 audio files scattered all over your filesystem. You’d like to move them
all into a single location so that you can organize them and then copy them onto a
music player.

Finding All Your MP3 Files | 185

Solution
The find utility can locate all of those files and then execute a command to move
them where you want. For example:

$ find . -name '*.mp3' -print -exec mv '{}' ~/songs \;

Discussion
The syntax for the find utility is unlike other Unix tools. It doesn’t use options in the
typical way, with dash and single-letter collections up front followed by several
words of arguments. Rather, the options look like short words, and are ordered in a
logical sequence describing the logic of which files are to be found, and what to do
with them, if anything, when they are found. These word-like options are often
called predicates.

A find command’s first arguments are the directory or directories in which to search.
A typical use is simply (.) for the current directory. But you can provide a whole list
of directories, or even search the entire filesystem (permissions allowing) by specify-
ing the root of the filesystem (/) as the starting point.

In our example the first option (the -name predicate) specifies the pattern we will
search for. Its syntax is like the bash pattern matching syntax, so *.mp3 will match all
filenames that end in the characters “.mp3”. Any file that matches this pattern is con-
sidered to return true and will thus continue to the next predicate of the command.

Think of it this way: find will climb around on the filesystem and each filename that
it finds it will present to this gauntlet of conditions that must be run. Any condition
that is true is passed. Encounter a false and that filename’s turn is immediately over,
and the next filename is processed.

Now the -print condition is easy. It is always true and it has the side effect of print-
ing the name to standard output. So any file that has made it this far in the sequence
of conditions will have its name printed.

The -exec is a bit odd. Any filename making it this far will become part of a com-
mand that is executed. The remainder of the lineup to the \; is the command to be
executed. The {} is replaced by the name of the file that was found. So in our exam-
ple, if find encounters a file named mhsr.mp3 in the ./music/jazz subdirectory, then
the command that will be executed will be:

mv ./music/jazz/mhsr.mp3 ~/songs

The command will be issued for each file that matches the pattern. If lots and lots of
matching files are found, lots and lots of commands will be issued. Sometimes this
is too demanding of system resources and it can be a better idea to use find just to
find the files and print the filenames into a datafile and issue fewer commands by

186 | Chapter 9: Finding Files: find, locate, slocate

consolidating arguments several to a line. (But with machines getting faster all the
time, this is less and less of an issue. It might even be something worthwhile for your
dual core or quad core processor to do.)

See Also
• man find

• Recipe 1.3, “Finding and Running Commands”

• Recipe 1.4, “Getting Information About Files”

• Recipe 9.2, “Handling Filenames Containing Odd Characters”

9.2 Handling Filenames Containing Odd Characters

Problem
You used a find command like the one in Recipe 9.1, “Finding All Your MP3 Files”
but the results were not what you intended because many of your filenames contain
odd characters.

Solution
First, understand that to Unix folks, odd means “anything not a lowercase letter, or
maybe a number.” So uppercase, spaces, punctuation, and character accents are all
odd. But you’ll find all of those and more in the names of many songs and bands.

Depending on the oddness of the characters, your system, tools, and goal, it might be
enough to simply quote the replacement string (i.e., put single quotes around the {},
as in '{}') . You did test your command first, right?

If that’s no good, try using the -print0 argument to find and the -0 argument to
xargs. -print0 tells find to use the null character (\0) instead of whitespace as the
output delimiter between pathnames found. -0 then tells xargs the input delimiter.
These will always work, but they are not supported on every system.

The xargs command takes whitespace delimited (except when using -0) pathnames
from standard input and executes a specified command on as many of them as possi-
ble (up to a bit less than the system’s ARG_MAX value; see Recipe 15.13, “Working
Around “argument list too long” Errors”). Since there is a lot of overhead associated
with calling other commands, using xargs can drastically speed up operations
because you are calling the other command as few times as possible, rather than each
time a pathname is found.

Speeding Up Operations on Found Files | 187

So, to rewrite the solution from Recipe 9.1, “Finding All Your MP3 Files” to handle
odd characters:

$ find . -name '*.mp3' -print0 | xargs -i -0 mv '{}' ~/songs

Here is a similar example demonstrating how to use xargs to work around spaces in
a path or filename when locating and then coping files:

$ locate P1100087.JPG PC220010.JPG PA310075.JPG PA310076.JPG | xargs -i cp '{}' .

Discussion
There are two problems with this approach. One is that not all versions of xargs sup-
port the -i option, and the other is that the -i option eliminates argument grouping,
thus negating the speed increase we were hoping for. The problem is that the mv
command needs the destination directory as the final argument, but traditional xargs
will simply take its input and tack it onto the end of the given command until it runs
out of space or input. The results of that behavior applied to an mv command would
be very, very ugly. So some versions of xargs provide a -i switch that defaults to
using {} (like find), but using -i requires that the command be run one at a time. So
the only benefit over using find’s -exec is the odd character handling.

However, the xargs utility is most effective when used in conjunction with find and a
command like chmod that just wants a list of arguments to process. You can really
see a vast speed improvement when handling large numbers of pathnames. For
example:

$ find some_directory -type f -print0 | xargs -0 chmod 0644

See Also
• man find

• man xargs

• Recipe 9.1, “Finding All Your MP3 Files”

• Recipe 15.13, “Working Around “argument list too long” Errors”

9.3 Speeding Up Operations on Found Files

Problem
You used a find command like the one in Recipe 9.1, “Finding All Your MP3 Files”
and the resulting operations take a long time because you found a lot of files, so you
want to speed it up.

188 | Chapter 9: Finding Files: find, locate, slocate

Solution
See the discussion on xargs Recipe 9.2, “Handling Filenames Containing Odd
Characters.”

See Also
• Recipe 9.1, “Finding All Your MP3 Files”

• Recipe 9.2, “Handling Filenames Containing Odd Characters”

9.4 Finding Files Across Symbolic Links

Problem
You issued a find command to find your .mp3 files but it didn’t find all of them—it
missed all those that were part of your filesystem but were mounted via a symbolic
link. Is find unable to cross that kind of boundary?

Solution
Use the -follow predicate. The example we used before becomes:

$ find . -follow -name '*.mp3' -print0 | xargs -i -0 mv '{}' ~/songs

Discussion
Sometimes you don’t want find to cross over onto other filesystems, which is where
symbolic links originated. So the default for find is not to follow a symbolic link. If
you do want it to do so, then use the -follow option as the first option in the list on
your find command.

See Also
• man find

9.5 Finding Files Irrespective of Case

Problem
Some of your MP3 files end with .MP3 rather than .mp3. How do you find those?

Finding Files by Date | 189

Solution
Use the -iname predicate (if your version of find supports it) to run a case-insensitive
search, rather than just -name. For example:

$ find . -follow -iname '*.mp3' -print0 | xargs -i -0 mv '{}' ~/songs

Discussion
Sometimes you care about the case of the filename and sometimes you don’t. Use the
-iname option when you don’t care, in situations like this, where .mp3 or .MP3 both
indicate that the file is probably an MP3 file. (We say probably because on Unix-like
systems you can name a file anything that you want. It isn’t forced to have a particu-
lar extension.)

One of the most common places where you’ll see the upper- and lowercase issue is
when dealing with Microsoft Windows-compatible filesystems, especially older or
“lowest common denominator” filesystems. A digital camera that we use stores its
files with filenames like PICT001.JPG, incrementing the number with each picture. If
you were to try:

$ find . -name '*.jpg' -print

you wouldn’t find many pictures. In this case you could also try:

$ find . -name '*.[Jj][Pp][Gg]' -print

since that regular expression will match either letter in brackets, but that isn’t as easy
to type, especially if the pattern that you want to match is much longer. In prac-
tice, -iname is an easier choice. The catch is that not every version of find supports
the -iname predicate. If your system doesn’t support it, you could try tricky regular
expressions as shown above, use multiple -name options with the case variations
you expect, or install the GNU version of find.

See Also
• man find

9.6 Finding Files by Date

Problem
Suppose someone sent you a JPEG image file that you saved on your filesystem a few
months ago. Now you don’t remember where you put it. How can you find it?

190 | Chapter 9: Finding Files: find, locate, slocate

Solution
Use a find command with the -mtime predicate, which checks the date of last modifi-
cation. For example:

find . -name '*.jpg' -mtime +90 -print

Discussion
The -mtime predicate takes an argument to specify the timeframe for the search. The
90 stands for 90 days. By using a plus sign on the number (+90) we indicate that we’re
looking for a file modified more than 90 days ago. Write -90 (using a minus sign) for
less than 90 days. Use neither a plus nor minus to mean exactly 90 days.

There are several predicates for searching based on file modification times and each
take a quantity argument. Using a plus, minus, or no sign indicates greater than, less
than, or equals, respectively, for all of those predicates.

The find utility also has logical AND, OR, and NOT constructs so if you know that
the file was at least one week old (7 days) but not more than 14 days old, you can
combine the predicates like this:

$ find . -mtime +7 -a -mtime -14 -print

You can get even more complicated using OR as well as AND and even NOT to
combine conditions, as in:

$ find . -mtime +14 -name '*.text' -o \(-mtime -14 -name '*.txt' \) -print

This will print out the names of files ending in .text that are older than 14 days, as
well as those that are newer than 14 days but have .txt as their last 4 characters.

You will likely need parentheses to get the precedence right. Two predicates in
sequence are like a logical AND, which binds tighter than an OR (in find as in most
languages). Use parentheses as much as you need to make it unambiguous.

Parentheses have a special meaning to bash, so we need to escape that meaning, and
write them as \(and \) or inside of single quotes as '(' and ')'. You cannot use sin-
gle quotes around the entire expression though, as that will confuse the find com-
mand. It wants each predicate as its own word.

See Also
• man find

Finding Files by Type | 191

9.7 Finding Files by Type

Problem
You are looking for a directory with the word “java” in it. When you tried:

$ find . -name '*java*' -print

you got way too many files—including all the Java source files in your part of the
filesystem.

Solution
Use the -type predicate to select only directories:

$ find . -type d -name '*java*' -print

Discussion
We put the -type d first followed by the -name *java*. Either order would have
found the same set of files. By putting the -type d first in the list of options, though,
the search will be slightly more efficient: as each file is encountered, the test will be
made to see if it is a directory and then only directories will have their names
checked against the pattern. All files have names; relatively few are directories. So
this ordering eliminates most files from further consideration before we ever do the
string comparison. Is it a big deal? With processors getting faster all the time, it mat-
ters less so. With disk sizes getting bigger all the time, it matters more so. There are
several types of files for which you can check, not just directories. Table 9-1 lists the
single characters used to find these types of files.

Table 9-1. Characters used by find’s -type predicate

Key Meaning

b block special file

c character special file

d directory

p pipe (or “fifo”)

f plain ol’ file

l symbolic link

s socket

D (Solaris only) “door”

192 | Chapter 9: Finding Files: find, locate, slocate

See Also
• man find

9.8 Finding Files by Size

Problem
You want to do a little housecleaning, and to get the most out of your effort you are
going to start by finding your largest files and deciding if you need to keep them
around. But how do you find your largest files?

Solution
Use the -size predicate in the find command to select files above, below, or exactly a
certain size. For example:

find . -size +3000k -print

Discussion
Like the numeric argument to -mtime, the -size predicate’s numeric argument can be
preceded by a minus sign, plus sign, or no sign at all to indicate less than, greater
than, or exactly equal to the numeric argument. So we’ve indicated, in our example,
that we’re looking for files that are greater than the size indicated.

The size indicated includes a unit of k for kilobytes. If you use c for the unit, that
means just bytes (or characters). If you use b, or don’t put any unit, that indicates a
size in blocks. (The block is a 512-byte block, historically a common unit in Unix
systems.) So we’re looking for files that are greater than 3 MB in size.

See Also
• man find

• man du

9.9 Finding Files by Content

Problem
How do you find a file of some known content? Let’s say that you had written an
important letter and saved it as a text file, putting .txt on the end of the filename.
Beyond that, the only thing you remember about the content of the letter is that you
had used the word “portend.”

Finding Files by Content | 193

Solution
If you are in the vicinity of that file, say within the current directory, you can start
with a simple grep:

grep -i portend *.txt

With the -i option, grep will ignore upper- and lowercase difference. This command
may not be sufficient to find what you’re looking for, but start simply. Of course, if
you think the file might be in one of your many subdirectories, you can try to reach
all the files that are in subdirectories of the current directory with this command:

grep -i portend */*.txt

Let’s face it, though, that’s not a very thorough search.

If that doesn’t do it, let’s use a more complete solution: the find command. Use the
-exec option on find so that if the predicates are true up to that point, it will exe-
cute a command for each file it finds. You can invoke grep or other utilities like this:

find . -name '*.txt' -exec grep -Hi portend '{}' \;

Discussion
We use the -name '*.txt' construct to help narrow down the search. Any such test
will help, since having to run a separate executable for each file that it finds is
costly in time and CPU horsepower. Maybe you have a rough idea of how old the
file is (e.g., -mdate -5 or some such).

The '{}' is where the filename is put when executing the command. The \; indi-
cates the end of the command, in case you want to continue with more predicates.
Both the braces and the semicolon need to be escaped, so we quote one and use the
backslash for the other. It doesn’t matter which way we escape them, only that we
do escape them, so that bash doesn’t misinterpret them.

On some systems, the -H option will print the name of the file if grep finds some-
thing. Normally, with only one filename on the command, grep won’t bother to
name the file, it just prints out the matching line that it finds. Since we’re searching
through many files, we need to know which file was grepped.

If you’re running a version of grep that doesn’t have the -H option, then just put /dev/
null as one of the filenames on the grep command. The grep command will then have
more than one file to open, and will print out the filename if it finds the text.

See Also
• man find

194 | Chapter 9: Finding Files: find, locate, slocate

9.10 Finding Existing Files and Content Fast

Problem
You’d like to be able to find files without having to wait for a long find command to
complete, or you need to find a file with some specific content.

Solution
If your system has locate, slocate, Beagle, Spotlight or some other indexer, you are
already set. If not, look into them.

As we discussed in Recipe 1.3, “Finding and Running Commands”, locate and
slocate consult database files about the system (usually compiled and updated by a
cron job) to find file or command names almost instantly. The location of the actual
database files, what is indexed therein, and how often, may vary from system to sys-
tem. Consult your system’s manpages for details.

$ locate apropos
/usr/bin/apropos
/usr/share/man/de/man1/apropos.1.gz
/usr/share/man/es/man1/apropos.1.gz
/usr/share/man/it/man1/apropos.1.gz
/usr/share/man/ja/man1/apropos.1.gz
/usr/share/man/man1/apropos.1.gz

locate and slocate don’t index content though, so see Recipe 9.9, “Finding Files by
Content” for that.

Beagle and Spotlight are examples of a fairly recent technology known as desktop
search engines or indexers. Google Desktop Search and Copernic Desktop Search are
two examples from the Microsoft Windows world. Desktop search tools use some
kind of indexer to crawl, parse, and index the names and contents of all of the files
(and usually email messages) in your personal file space; i.e., your home directory on
a Unix or Linux system. This information is then almost instantly available to you
when you look for it. These tools are usually very configurable, graphical, operate on
a per-user basis, and index the contents of your files.

Discussion
slocate stores permission information (in addition to filenames and paths) so that it
will not list programs to which the user does not have access. On most Linux sys-
tems locate is a symbolic link to slocate; other systems may have separate programs, or
may not have slocate at all. Both of these are command-line tools that crawl and index
the entire filesystem, more or less, but they only contain filenames and locations.

Finding a File Using a List of Possible Locations | 195

See Also
• man locate

• man slocate

• http://beagle-project.org/

• http://www.apple.com/macosx/features/spotlight/

• http://desktop.google.com/

• http://www.copernic.com/en/products/desktop-search/

• Recipe 1.3, “Finding and Running Commands”

• Recipe 9.9, “Finding Files by Content”

9.11 Finding a File Using a List of Possible Locations

Problem
You need to execute, source, or read a file, but it may be located in a number of dif-
ferent places in or outside of the $PATH.

Solution
If you are going to source the file and it’s located somewhere on the $PATH, just
source it. bash’s built-in source command (also known by the shorter-to-type but
harder-to-read POSIX name “.”) will search the $PATH if the sourcepath shell option is
set, which it is by default:

$ source myfile

If you want to execute a file only if you know it exists in the $PATH and is executable,
and you have bash version 2.05b or higher, use type -P to search the $PATH. Unlike
the which command, type -P only produces output when it finds the file, which
makes it much easier to use in this case:

LS=$(type -P ls)
[-x $LS] && $LS

--OR--

LS=$(type -P ls)
if [-x $LS]; then
 : commands involving $LS here
fi

If you need to look in a variety of locations, possibly including the $PATH, use a for
loop. To search the $PATH, use the variable substitution operator ${variable/pattern/
replacement} to replace the : separator with a space, and then use for as usual. To
search the $PATH and other possible locations, just list them:

196 | Chapter 9: Finding Files: find, locate, slocate

for path in ${PATH//:/ }; do
 [-x "$path/ls"] && $path/ls
done

--OR--

for path in ${PATH//:/ } /opt/foo/bin /opt/bar/bin; do
 [-x "$path/ls"] && $path/ls
done

If the file is not in the $PATH, but could be in a list of locations, possibly even under
different names, list the entire path and name:

for file in /usr/local/bin/inputrc /etc/inputrc ~/.inputrc; do
 [-f "$file"] && bind -f "$file" && break # Use the first one found
done

Perform any additional tests as needed. For example, you may wish to use screen
when logging in if it’s present on the system:

for path in ${PATH//:/ }; do
 if [-x "$path/screen"]; then
 # If screen(1) exists and is executable:
 for file in /opt/bin/settings/run_screen ~/settings/run_screen; do
 [-x "$file"] && $file && break # Execute the first one found
 done
 fi
done

See Recipe 16.20, “Getting Started with a Custom Configuration” for more details on
this code fragment.

Discussion
Using for to iterate through each possible location may seem like overkill, but it’s
actually very flexible and allows you to search wherever you need to, apply whatever
other tests are appropriate, and then do whatever you want with the file if found. By
replacing : with a space in the $PATH, we turn it into the kind of space-delimited list
for expects (but as we also saw, any space delimited list will work). Adapting this
technique as needed will allow you to write some very flexible and portable shell
scripts that can be very tolerant of file locations.

You may be tempted to set $IFS=':' to directly parse the $PATH, rather than
preparsing it into $path. That will work, but involves extra work with variables and
isn’t as flexible.

You may also be tempted to do something like the following:

["$(which myfile)"] && bind -f $(which myfile)

The problem here is not when the file exists, but when it doesn’t. The which utility
behaves differently on different systems. The Red Hat which is also aliased to pro-
vide details when the argument is an alias, and to set various command-line

Finding a File Using a List of Possible Locations | 197

switches; and it returns a not found message (while which on Debian or FreeBSD do
not). But if you try that line on NetBSD you could end up trying to bind no myfile in
/sbin /usr/sbin /bin /usr/bin /usr/pkg/sbin /usr/pkg/bin /usr/X11R6/bin /usr/
local/sbin /usr/local/bin, which is not what you meant.

The command command is also interesting in this context. It’s been around longer
than type -P and may be useful under some circumstances.

Red Hat Enterprise Linux 4.x behaves like this:

$ alias which
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot --show-tilde'

$ which rd
alias rd='rmdir'
 /bin/rmdir

$ which ls
alias ls='ls --color=auto -F -h'
 /bin/ls

$ which cat
/bin/cat

$ which cattt
/usr/bin/which: no cattt in (/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/
X11R6/bin:/home/jp/bin)

$ command -v rd
alias rd='rmdir'

$ command -v ls
alias ls='ls --color=auto -F -h'

$ command -v cat
/bin/cat

Debian and FreeBSD (but not NetBSD or OpenBSD) behave like this:

$ alias which
-bash3: alias: which: not found

$ which rd

$ which ls
/bin/ls

$ which cat
/bin/cat

$ which cattt

$ command -v rd
-bash: command: rd: not found

198 | Chapter 9: Finding Files: find, locate, slocate

$ command -v ls
/bin/ls

$ command -v cat
/bin/cat

$ command -v ll
alias ll='ls -l'

See Also
• help type

• man which

• help source

• man source

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 17.4, “Recovering Disconnected Sessions Using screen”

199

Chapter 10 CHAPTER 10

Additional Features for Scripting11

Many scripts are written as simple one-off scripts that are only used by their author,
consisting of only a few lines, perhaps only a single loop, if that. But some scripts are
heavy-duty scripts that will see a lot of use from a variety of users. Such scripts will
often need to take advantage of features that allow for better sharing and reuse of
code. These advanced scripting tips and techniques can be useful for many kinds of
scripts, and are often found in larger systems of scripts such as the /etc/init.d scripts
on many Linux systems. You don’t have to be a system administrator to appreciate
and use these techniques. They will prove themselves on any large scripting effort.

10.1 “Daemon-izing” Your Script

Problem
Sometimes you want a script to run as a daemon, i.e., in the background and never
ending. To do this properly you need to be able to detach your script from its con-
trolling tty, that is from the terminal session used to start the daemon. Simply put-
ting an ampersand on the command isn’t enough. If you start your daemon script on
a remote system via an SSH (or similar) session, you’ll notice that when you log out,
the SSH session doesn’t end and your window is hung until that script ends (which,
being a daemon, it won’t).

Solution
Use the following to invoke your script, run it in the background, and still allow
yourself to log out:

nohup mydaemonscript 0<&- 1>/dev/null 2>&1 &

or:

nohup mydaemonscript >>/var/log/myadmin.log 2>&1 <&- &

200 | Chapter 10: Additional Features for Scripting

Discussion
You need to close the controlling tty, which is connected in three ways to your (or
any) job: standard input (STDIN), standard output (STDOUT), and standard error
(STDERR). We can close STDOUT and STDERR by pointing them at another file—
typically either a log file, so that you can retrieve their output at a later time, or at the
file /dev/null to throw away all their output. We use the redirecting operator > to do
this.

But what about STDIN? The cleanest way to deal with STDIN is to close the file
descriptor. The bash syntax to do that is like a redirect, but with a dash for the file-
name (0<&- or <&-).

We use the nohup command so that the script is run without being interrupted by a
hangup signal when we log off.

In the first example, we use the file descriptor numbers (i.e., 0, 1, 2) explicitly in all
three redirections. They are optional in the case of STDIN and STDOUT, so in our
second example we don’t use them explicitly. We also put the input redirect at the
end of the second command rather than at the beginning, since the order here is not
important. (However, the order is important and the file descriptor numbers are nec-
essary in redirecting STDERR.)

See Also
• Chapters 2 and 3 for more on redirecting input and redirecting output

10.2 Reusing Code with Includes and Sourcing

Problem
There are a set of shell variable assignments that you would like to have common
across a set of scripts that you are writing. You tried putting this configuration infor-
mation in its own script. But when you run that script from within another script,
the values don’t stick; e.g., your configuration is running in another shell, and when
that shell exits, so do your values. Is there some way to run that configuration script
within the current shell?

Solution
Use the bash shell’s source command or POSIX single period (.) to read in the con-
tents of that configuration file. The lines of that file will be processed as if encoun-
tered in the current script.

Here’s an example of some configuration data:

$ cat myprefs.cfg
SCRATCH_DIR=/var/tmp

Reusing Code with Includes and Sourcing | 201

IMG_FMT=png
SND_FMT=ogg
$

It is just a simple script consisting of three assignments. Here’s another script, one
that will use these values:

#
use the user prefs
#
source $HOME/myprefs.cfg
cd ${SCRATCH_DIR:-/tmp}
echo You prefer $IMG_FMT image files
echo You prefer $SND_FMT sound files

and so forth.

Discussion
The script that is going to use the configuration file uses the source command to read
in the file. It can also use a dot (.) in place of the word source. A dot is easy and
quick to type, but hard to notice in a script or screen shot:

. $HOME/myprefs.cfg

You wouldn’t be the first person to look right past the dot and think that the script
was just being executed.

bash also has a third syntax, one that comes from the input processor readline, a
topic we will not get into here. We’ll just say that an equivalent action can occur
with this syntax:

$include $HOME/myprefs.cfg

provided that the file is in your search path (or else specify an explicit path) and that
the file has execute permissions and, of course, read permission, too. That dollar sign
is not the command prompt, but part of the directive $include.

Sourcing is both a powerful and a dangerous feature of bash scripting. It gives you a
way to create a configuration file and then share that file among several scripts. With
that mechanism, you can change your configuration by editing one file, not several
scripts.

The contents of the configuration file are not limited to simple variable assignment,
however. Any valid shell command is legal syntax, because when you source a file
like this, it is simply getting its input from a different source, but it is still the bash
shell processing bash commands. Regardless of what shell commands are in that
sourced file, for example loops or invoking other commands, it is all legitimate shell
input and will be run as if it were part of your script.

Here’s a modified configuration file:

$ cat myprefs.cfg
SCRATCH_DIR=/var/tmp

202 | Chapter 10: Additional Features for Scripting

IMG_FMT=$(cat $HOME/myimage.pref)
if [-e /media/mp3]
then
 SND_FMT=mp3
else
 SND_FMT=ogg
fi
echo config file loaded
$

This configuration file is hardly what one thinks of as a passive list of configured
variables. It can run other commands (e.g., cat) and use if statements to vary its
choices. It even ends by echoing a message. Be careful when you source something,
as it’s a wide open door into your script.

One of the best uses of sourcing scripts comes when you can define bash functions
(as we will show you in Recipe 10.3, “Using Configuration Files in a Script”). These
functions can then be shared as a common library of functions among all the scripts
that source the script of function definitions.

See Also
• The bash manpage for more about readline

• Recipe 10.3, “Using Configuration Files in a Script”

• Recipe 10.4, “Defining Functions”

10.3 Using Configuration Files in a Script

Problem
You want to use one or more external configuration files for one or more scripts.

Solution
You could write a lot of code to parse some special configuration file format. Do
yourself a favor and don’t do that. Just make the config file a shell script and use the
solution in Recipe 10.2, “Reusing Code with Includes and Sourcing.”

Discussion
This is just a specific application of sourcing a file. However, it’s worth noting that
you may need to give a little thought as to how you can reduce all of your configura-
tion needs to bash-legal syntax. In particular, you can make use of Boolean flags, and
optional variables (see Chapter 5 and Recipe 15.11, “Getting Input from Another
Machine”).

In config file
VERBOSE=0 # '' for off, 1 for on
SSH_USER='jbagadonutz@' # Note trailing @, set to '' to use the current user

Defining Functions | 203

In script
["$VERBOSE"] || echo "Verbose msg from $) goes to STDERR" >&2
[...]
ssh SSH_USERREMOTE_HOST [...]

Of course, depending on the user to get the configuration file correct can be chancy,
so instead of requiring the user to read the comment and add the trailing @, we could
do it in the script:

If $SSH_USER is set and doesn't have a trailing @ add it:
[-n "$SSH_USER" -a "$SSH_USER" = "${SSH_USER%@}"] && SSH_USER="$SSH_USER@"

Or just use:

ssh ${SSH_USER:+${SSH_USER}@}${REMOTE_HOST} [...]

to make that same substitution right in place. The bash variable operator :+ will do
the following: if $SSH_USER has a value, it will return the value to the right of the :+
(in this case we specified the variable itself along with an extra @); otherwise, if unset
or empty, it will return nothing.

See Also
• Chapter 5

• Recipe 10.2, “Reusing Code with Includes and Sourcing”

• Recipe 15.11, “Getting Input from Another Machine”

10.4 Defining Functions

Problem
There are several places in your shell script where you would like to give the user a
usage message (a message describing the proper syntax for the command), but you
don’t want to keep repeating the code for the same echo statement. Isn’t there a way
to do this just once and have several references to it? If you could make the usage
message its own script, then you could just invoke it anywhere in your original
script—but that requires two scripts, not one. Besides, it seems odd to have the mes-
sage for how to use one script be the output of a different script. Isn’t there a better
way to do this?

Solution
You need a bash function. At the beginning of your script put something like this:

function usage ()
{
 printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

204 | Chapter 10: Additional Features for Scripting

Then later in your script you can write code like this:

if [$# -lt 1]
then
 usage
fi

Discussion
Functions may be defined in several ways ([function] name () compound-command
[redirections]). We could write a function definition any of these ways:

function usage ()
{
 printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

function usage {
 printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

usage ()
{
 printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

usage () {
 printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

Either the reserved word function or the trailing () must be present. If function is
used, the () are optional. We like using the word function because it is very clear and
readable, and it is easy to grep for; e.g., grep '^function' script will list the func-
tions in your script.

This function definition should go at the front of your shell script, or at least some-
where before you need to invoke it. The definition is, in a sense, just another bash
statement. But once it has been executed, then the function is defined. If you invoke
the function before it is defined you will get a “command not found” error. That’s
why we always put our function definitions first before any other commands in our
script.

Our function does very little; it is just a printf statement. Because we only have one
usage message, if we ever add a new option, we don’t need to modify several state-
ments, just this one.

The only argument to printf beyond the format string is $0, the name by which the
shell script was invoked. You might even want to use the expression $(basename $0)
so that only the last part of any pathname is included.

Using Functions: Parameters and Return Values | 205

Since the usage message is an error message, we redirect the output of the printf to
standard error. We could also have put that redirection on the outside of the func-
tion definition, so that all output from the function would be redirected:

function usage ()
{
 printf "usage: %s [-a | - b] file1 ... filen\n" $0

} > &2

See Also
• Recipe 7.1, “Sifting Through Files for a String”

• Recipe 16.13, “Creating a Better cd Command”

• Recipe 16.14, “Creating and Changing into a New Directory in One Step”

• Recipe 19.14, “Avoiding “command not found” When Using Functions”

10.5 Using Functions: Parameters and Return Values

Problem
You want to use a function and you need to get some values into the function. How
do you pass in parameters? How do you get values back?

Solution
You don’t put parentheses around the arguments like you might expect from some
programming languages. Put any parameters for a bash function right after the func-
tion’s name, separated by whitespace, just like you were invoking any shell script or
command. Don’t forget to quote them if necessary!

define the function:
function max ()
{ ... }
#
call the function:
#
max 128 $SIM
max $VAR $CNT

You have two ways to get values back from a function. You can assign values to vari-
ables inside the body of your function. Those variables will be global to the whole
script unless they are explicitly declared local within the function:

cookbook filename: func_max.1

define the function:
function max ()
{

206 | Chapter 10: Additional Features for Scripting

 local HIDN
 if [$1 -gt $2]
 then
 BIGR=$1
 else
 BIGR=$2
 fi
 HIDN=5
}

For example:

call the function:
max 128 $SIM
use the result:
echo $BIGR

The other way is to use echo or printf to send output to standard output. Then you
must invoke the function inside a $(), capturing the output and using the result, or
it will be wasted on the screen:

cookbook filename: func_max.2

define the function:
function max ()
{
 if [$1 -gt $2]
 then
 echo $1
 else
 echo $2
 fi
}

For example:

call the function:
BIGR=$(max 128 $SIM)
use the result
echo $BIGR

Discussion
Putting parameters on the invocation of the function is just like calling any shell
script. The parameters are just the other words on the command line.

Within the function, the parameters are referred to as if they were command-line
arguments by using $1, $2, etc. However, $0 is left alone. It remains the name by
which the entire script was invoked. On return from the function, $1, $2, etc. are
back to referring to the parameters with which the script was invoked.

Also of interest is the $FUNCNAME array. $FUNCNAME all by itself references the
zeroth element of the array, which is the name of the currently executing function. In
other words, $FUNCNAME is to a function as $0 is to a script, except without all

Trapping Interrupts | 207

the path information. The rest of the array elements is hat amounts to a call stack,
with “main” as the bottom or last element. This variable only exists while a function
is executing.

We included the useless variable $HIDN just to show that it is local to the function
definition. Even though we can assign it values inside the function, any such value
would not be available elsewhere in the script. It is a variable whose value is local to
that function; it comes into existence when the function is called, and is gone once
the function returns.

Returning values by setting variables is more efficient, and can handle lots of data—
many variables can be set—but the approach has its drawbacks. It requires that the
function and the rest of the script agree on variable names for the information hand-
off. This kind of coupling has maintenance issues. The other approach, using the
output as the way to return values, does reduce this coupling, but is limited in its
usefulness—it is limited in how much data it can return before your script has to
spend lots of effort parsing the results of the function. So which to use? As with
much of engineering, this, too, is a trade-off and you have to decide based on your
specific needs.

See Also
• Recipe 1.6, “Using Shell Quoting”

• Recipe 16.4, “Change Your $PATH Temporarily”

10.6 Trapping Interrupts

Problem
You are writing a script that needs to be able to trap signals and respond accordingly.

Solution
Use the trap utility to set signal handlers. First, use trap -l (or kill -l) to list the sig-
nals you may trap. They vary from system to system:

NetBSD
$ trap -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
 9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGURG
17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGINFO 30) SIGUSR1 31) SIGUSR2 32) SIGPWR

208 | Chapter 10: Additional Features for Scripting

Linux
$ trap -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 33) SIGRTMIN 34) SIGRTMIN+1
35) SIGRTMIN+2 36) SIGRTMIN+3 37) SIGRTMIN+4 38) SIGRTMIN+5
39) SIGRTMIN+6 40) SIGRTMIN+7 41) SIGRTMIN+8 42) SIGRTMIN+9
43) SIGRTMIN+10 44) SIGRTMIN+11 45) SIGRTMIN+12 46) SIGRTMIN+13
47) SIGRTMIN+14 48) SIGRTMIN+15 49) SIGRTMAX-15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

Next, set your trap(s) and signal handlers. Note that the exit status of your script will
be 128+signal number if the command was terminated by signal signal number. Here
is a simple case where we only care that we got a signal and don’t care what it was. If
our trap had been trap '' ABRT EXIT HUP INT TERM QUIT, this script would be rather
hard to kill because any of those signals would just be ignored.

$ cat hard_to_kill
#!/bin/bash -
trap ' echo "You got me! $?" ' ABRT EXIT HUP INT TERM QUIT
trap ' echo "Later... $?"; exit ' USR1
sleep 120

$./hard_to_kill
^CYou got me! 130
You got me! 130

$./hard_to_kill &
[1] 26354

$ kill -USR1 %1
User defined signal 1
Later... 158
You got me! 0
[1]+ Done ./hard_to_kill

$./hard_to_kill &
[1] 28180

$ kill %1
You got me! 0
[1]+ Terminated ./hard_to_kill

This is a more interesting example:

#!/usr/bin/env bash
cookbook filename: hard_to_kill

Trapping Interrupts | 209

function trapped {
 if ["$1" = "USR1"]; then
 echo "Got me with a $1 trap!"
 exit
 else
 echo "Received $1 trap--neener, neener"
 fi
}

trap "trapped ABRT" ABRT
trap "trapped EXIT" EXIT
trap "trapped HUP" HUP
trap "trapped INT" INT
trap "trapped KILL" KILL # This won't actually work
trap "trapped QUIT" QUIT
trap "trapped TERM" TERM
trap "trapped USR1" USR1 # This one is special

Just hang out and do nothing, without introducing "third-party"
trap behavior, such as if we used 'sleep'
while ((1)); do
 : # : is a NOOP
done

Here we invoke this example then try to kill it:

$./hard_to_kill
^CReceived INT trap--neener, neener
^CReceived INT trap--neener, neener
^CReceived INT trap--neener, neener
^Z
[1]+ Stopped ./hard_to_kill

$ kill -TERM %1

[1]+ Stopped ./hard_to_kill
Received TERM trap--neener, neener

$ jobs
[1]+ Stopped ./hard_to_kill

$ bg
[1]+ ./hard_to_kill &

$ jobs
[1]+ Running ./hard_to_kill &

$ kill -TERM %1
Received TERM trap--neener, neener

$ kill -HUP %1
Received HUP trap--neener, neener

210 | Chapter 10: Additional Features for Scripting

$ kill -USR1 %1
Got me with a USR1 trap!
Received EXIT trap--neener, neener

[1]+ Done ./hard_to_kill

Discussion
First, we should mention that you can’t actually trap -SIGKILL (-9). That signal kills
processes dead immediately, so they have no chance to trap anything. So maybe our
examples weren’t really so hard to kill after all. But remember that this signal does
not allow the script or program to clean up or shut down gracefully at any time.
That’s often a bad thing, so try to avoid using kill -KILL unless you have no other
choice.

Usage for trap is as follows:

trap [-lp] [arg] [signal [signal]]

The first nonoption argument to trap is the code to execute when the given signal is
received. As shown above, that code can be self-contained, or a call to a function.
For most nontrivial uses a call to one or more error handling functions is probably
best, since that lends itself well to cleanup and graceful termination features. If this
argument the null string, the given signal or signals will be ignored. If the argument
is - or missing, but one or more signals are listed, they will be reset to the shell
defaults. -l lists the signal names as show above, while -p will print any current traps
and their handlers.

When using more than one trap handler, we recommend you take the extra time to
alphabetize signal names because that makes them easier to read and find later on.

As noted above, the exit status of your script will be 128+signal number if the com-
mand was terminated by signal signal number.

There are three pseudosignals for various special purposes. The DEBUG signal is simi-
lar to EXIT but is used before every command for debugging purposes. The RETURN
signal is triggered when execution resumes after a function or source (.) call. And the
ERR signal is triggered after a simple command fails. Consult the bash Reference for
more specific details and caveats, especially dealing with functions using the declare
built-in or the set -o functrace option.

Redefining Commands with alias | 211

Note there are some POSIX differences that affect trap. As noted in the
bash Reference, “starting bash with the --posix command-line option
or executing set -o posix while bash is running will cause bash to
conform more closely to the POSIX 1003.2 standard by changing the
behavior to match that specified by POSIX in areas where the bash
default differs.” In particular, this will cause kill and trap to display
signal names without the leading SIG and the output of kill -l will be
different. And trap will handle its argument somewhat more strictly, in
particular it will require a leading - in order to reset the trap to shell
default. In other words it requires trap - USR1, not just trap USR1. We
recommend that you always include the - even when not necessary,
because it makes your intent clearer in the code.

See Also
• help trap

• Recipe 1.16, “Learning More About bash Documentation”

• Recipe 10.1, ““Daemon-izing” Your Script”

• Recipe 14.11, “Using Secure Temporary Files”

• Recipe 17.7, “Clearing the Screen When You Log Out”

10.7 Redefining Commands with alias

Problem
You’d like to slightly alter the definition of a command, perhaps so that you always
use a particular option on a command (e.g., always using -a on the ls command or -i
on the rm command).

Solution
Use the alias feature of bash for interactive shells (only). The alias command is smart
enough not to go into an endless loop when you say something like:

alias ls='ls -a'

In fact, just type alias with no other arguments and you can see a list of aliases that
are already defined for you in your bash session. Some installations may already have
several available for you.

212 | Chapter 10: Additional Features for Scripting

Discussion
The alias mechanism is a straightforward text substitution. It occurs very early in the
command-line processing, so other substitutions will occur after the alias. For exam-
ple, if you want to define the single letter “h” to be the command that lists your
home directory, you can do it like this:

alias h='ls $HOME'

or like this:

alias h='ls ~'

The use of single quotes is significant in the first instance, meaning that the variable
$HOME will not be evaluated when the definition of the alias is made. Only when you
run the command will the (string) substitution be made, and only then will the $HOME
variable be evaluated. That way if you change the definition of $HOME the alias will
move with it, so to speak.

If, instead, you used double quotes, then the substitution of the variable’s value
would be made right away and the alias would be defined with the value of $HOME
substituted. You can see this by typing alias with no arguments so that bash lists all
the alias definitions. You would see something like this:

...
alias h='ls /home/youracct'
...

If you don’t like what your alias does and want to get rid of it, just use unalias and
the name of the alias that you no longer want. For example:

unalias h

will remove the definition that we just made above. If you get really messed up, you
can use unalias -a to remove all the alias definitions in your current shell session.
But what if someone has created an alias for unalias? Simple, if you prefix it with a
backslash, alias expansion is not performed. So use \unalias -a instead.

Aliases do not allow arguments. For example, you cannot do this:

Does NOT work, arguments NOT allowed
$ alias='mkdir $1 && cd $1'

The difference between $1 and $HOME is that $HOME is defined (one way or another)
when the alias itself is defined, while you’d expect $1 to be passed in at runtime.
Sorry, that doesn’t work. Use a function instead.

See Also
• Appendix C for more on command-line processing

• Recipe 10.4, “Defining Functions”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

Avoiding Aliases, Functions | 213

• Recipe 14.4, “Clearing All Aliases”

• Recipe 16.14, “Creating and Changing into a New Directory in One Step”

10.8 Avoiding Aliases, Functions

Problem
You’ve written an alias or function to override a real command, and now you want
to execute the real command.

Solution
Use the bash shell’s builtin command to ignore shell functions and aliases to run the
actual built-in command.

Use the command command to ignore shell functions and aliases to run the actual
external command.

If you only want to avoid alias expansion, but still allow function definitions to be
considered, then prefix the command with \ to just prevent alias expansion.

Use the type command (also with -a) to figure out what you’ve got.

Here are some examples:

$ alias echo='echo ~~~'

$ echo test
~~~ test

$ \echo test
test

$ builtin echo test
test

$ type echo
echo is aliased to `echo ~~~'

$ unalias echo

$ type echo
echo is a shell builtin

$ type -a echo
echo is a shell builtin
echo is /bin/echo

$ echo test
test



214 | Chapter 10: Additional Features for Scripting

Here is a function definition that we will discuss:

function cd ( )
{
    if [[ $1 = "..." ]]
    then
        builtin cd ../..
    else
        builtin cd $1
    fi
}

Discussion
The alias command is smart enough not to go into an endless loop when you say
something like alias ls='ls -a' or alias echo='echo ~~~', so in our first example we
need to do nothing special on the righthand side of our alias definition to refer to the
actual echo command.

When we have echo defined as an alias, then the type command will tell us not only
that this is an alias, but will show us the alias definition. Similarly with function defi-
nitions, we would be shown the actual body of the function. type -a some_command
will show us all of the places (aliases, built-ins, functions, and external) that contain
some_command (as long as you are not also using -p).

In our last example, the function overrides the definition of cd so that we can add a
simple shortcut. We want our function to understand that cd ... means to go up two
directories; i.e., cd ../.. (see Recipe 16.13, “Creating a Better cd Command”). All
other arguments will be treated as normal. Our function simply looks for a match
with ... and substitutes the real meaning. But how, within (or without) the func-
tion, do you invoke the underlying cd command so as to actually change directories?
The builtin command tells bash to assume that the command that follows is a shell
built-in command and not to use any alias or function definition. We use it within
the function, but it can be used at any time to refer, unambiguously, to the actual
command, avoiding any function name that might be overriding it.

If your function name was that of an executable, like ls, and not a built-in com-
mand, then you can override any alias and/or function definition by just referring to
the full path to the executable, such as /bin/ls rather than just ls as the command. If
you don’t know its full path name, just prefix the command with the keyword
command and bash will ignore any alias and function definitions with that name and
use the actual command. Please note, however, that the $PATH variable will still be
used to determine the location of the command. If you are running the wrong ls
because your $PATH has some unexpected values, adding a command will not help in
that situation.



Avoiding Aliases, Functions | 215

See Also
• help builtin

• help command

• help type

• Recipe 14.4, “Clearing All Aliases”

• Recipe 16.13, “Creating a Better cd Command”



216

Chapter 11CHAPTER 11

Working with Dates and Times 12

Working with dates and times should be simple, but it’s not. Regardless of whether
you’re writing a shell script or a much larger program, time keeping is full of com-
plexities: different formats for displaying the time and date, Daylight Saving Time,
leap years, leap seconds, and all of that. For example, imagine that you have a list of
contracts and the dates on which they were signed. You’d like to compute expira-
tion dates for all of those contracts. It’s not a trivial problem: does a leap year get in
the way? Is it the sort of contract where daylight saving time is likely to be a prob-
lem? And how do you format the output so that it’s unambiguous? Does 7/4/07
mean July 4, 2007, or does it mean April 7?

Dates and times permeate every aspect of computing. Sooner or later you are going
to have to deal with them: in system, application, or transaction logs; in data pro-
cessing scripts; in user or administrative tasks; and more. This chapter will help you
deal with them as simply and cleanly as possible. Computers are very good at keep-
ing time accurately, particularly if they are using the Network Time Protocol (NTP)
to keep themselves synced with national and international time standards. They’re
also great at understanding the variations in Daylight Saving Time from locale to
locale. To work with time in a shell script, you need the Unix date command (or
even better, the GNU version of the date command, which is standard on Linux).
date is capable of displaying dates in different formats and even doing date arith-
metic correctly.

Note that gawk (the GNU version of awk), has the same strftime formatting as the
GNU date command. We’re not going to cover gawk usage here except for one triv-
ial example. We recommend sticking with GNU date because it’s much easier to use
and it has the very useful -d argument. But keep gawk in mind should you ever
encounter a system that has gawk but not GNU date.



Formatting Dates for Display | 217

11.1 Formatting Dates for Display

Problem
You need to format dates or time for output.

Solution
Use the date command with a strftime format specification. See “Date and Time
String Formatting with strftime” in Appendix A or the strftime manpage for the list of
format specifications supported.

# Setting environment variables can be helpful in scripts:
$ STRICT_ISO_8601='%Y-%m-%dT%H:%M:%S%z'   # http://greenwichmeantime.com/info/iso.htm
$ ISO_8601='%Y-%m-%d %H:%M:%S %Z'        # Almost ISO-8601, but more human-readable
$ ISO_8601_1='%Y-%m-%d %T %Z'           # %T is the same as %H:%M:%S
$ DATEFILE='%Y%m%d%H%M%S'               # Suitable for use in a file name

$ date "+$ISO_8601"
2006-05-08 14:36:51 CDT

gawk "BEGIN {print strftime(\"$ISO_8601\")}"
2006-12-07 04:38:54 EST

# Same as previous $ISO_8601
$ date '+%Y-%m-%d %H:%M:%S %Z'
2006-05-08 14:36:51 CDT

$ date -d '2005-11-06' "+$ISO_8601"
2005-11-06 00:00:00 CST

$ date "+Program starting at: $ISO_8601"
Program starting at: 2006-05-08 14:36:51 CDT

$ printf "%b" "Program starting at: $(date '+$ISO_8601')\n"
Program starting at: $ISO_8601

$ echo "I can rename a file like this: mv file.log file_$(date +$DATEFILE).log"
I can rename a file like this: mv file.log file_20060508143724.log

Discussion
You may be tempted to place the + in the environment variable to simplify the later
command. On some systems the date command is more picky about the existence
and placement of the + than on others. Our advice is to explicitly add it to the date
command itself.

Many more formatting options are available, see the date manpage or the C
strftime( ) function (man 3 strftime) on your system for a full list.



218 | Chapter 11: Working with Dates and Times

Unless otherwise specified, the time zone is assumed to be local time as defined by
your system. The %z format is a nonstandard extension used by the GNU date com-
mand; it may not work on your system.

ISO 8601 is the recommended standard for displaying dates and times and should be
used if at all possible. It offers a number of advantages over other display formats:

• It is a recognized standard

• It is unambiguous

• It is easy to read while still being easy to parse programmatically (e.g., using awk
or cut)

• It sorts as expected when used in columnar data or in filenames

Try to avoid MM/DD/YY or DD/MM/YY or even worse M/D/YY or D/M/YY for-
mats. They do not sort well and they are ambiguous, since either the day or the
month may come first depending on geographical location, which also makes them
hard to parse. Likewise, use 24-hour time when possible to avoid even more ambigu-
ity and parsing problems.

See Also
• man date

• http://www.cl.cam.ac.uk/~mgk25/iso-time.html

• http://www.qsl.net/g1smd/isopdf.htm

• http://greenwichmeantime.com/info/iso.htm

• “Date and Time String Formatting with strftime” in Appendix A

11.2 Supplying a Default Date

Problem
You want your script to provide a useful default date, and perhaps prompt the user
to verify it.

Solution
Using the GNU date command, assign the most likely date to a variable, then allow
the user to change it:

#!/usr/bin/env bash
# cookbook filename: default_date

# Use Noon time to prevent a script running around midnight and a clock a
# few seconds off from causing off by one day errors.
START_DATE=$(date -d 'last week Monday 12:00:00' '+%Y-%m-%d')



Supplying a Default Date | 219

while [ 1 ]; do
    printf "%b" "The starting date is $START_DATE, is that correct? (Y/new date) "
    read answer

    # Anything other than ENTER, "Y" or "y" is validated as a new date
    # could use "[Yy]*" to allow the user to spell out "yes"...
    # validate the new date format as: CCYY-MM-DD
    case "$answer" in
        [Yy]) break
            ;;
        [0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9])
            printf "%b" "Overriding $START_DATE with $answer\n"
            START_DATE="$answer"
            ;;

        *)   printf "%b" "Invalid date, please try again...\n"
            ;;
    esac
done

END_DATE=$(date -d "$START_DATE +7 days" '+%Y-%m-%d')

echo "START_DATE: $START_DATE"
echo "END_DATE:   $END_DATE"

Discussion
Not all date commands support the -d option, but the GNU version does. Our
advice is to obtain and use the GNU date command if at all possible.

Leave out the user verification code if your script is running unattended or at a
known time (e.g., from cron).

See Recipe 11.1, “Formatting Dates for Display” for information about how to for-
mat the dates and times.

We use code like this in scripts that generate SQL queries. The script runs at a given
time and creates a SQL query for a specific date range to generate a report.

See Also
• man date

• Recipe 11.1, “Formatting Dates for Display”

• Recipe 11.3, “Automating Date Ranges”



220 | Chapter 11: Working with Dates and Times

11.3 Automating Date Ranges

Problem
You have one date (perhaps from Recipe 11.2, “Supplying a Default Date”) and you
would like to generate the other automatically.

Solution
The GNU date command is very powerful and flexible, but the power of -d isn’t doc-
umented well. Your system may document this under getdate (try the getdate
manpage). Here are some examples:

$ date '+%Y-%m-%d %H:%M:%S %z'
2005-11-05 01:03:00 -0500

$ date -d 'today' '+%Y-%m-%d %H:%M:%S %z'
2005-11-05 01:04:39 -0500

$ date -d 'yesterday' '+%Y-%m-%d %H:%M:%S %z'
2005-11-04 01:04:48 -0500

$ date -d 'tomorrow' '+%Y-%m-%d %H:%M:%S %z'
2005-11-06 01:04:55 -0500

$ date -d 'Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-11-07 00:00:00 -0500

$ date -d 'this Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-11-07 00:00:00 -0500

$ date -d 'last Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-10-31 00:00:00 -0500

$ date -d 'next Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-11-07 00:00:00 -0500

$ date -d 'last week' '+%Y-%m-%d %H:%M:%S %z'
2005-10-29 01:05:24 -0400

$ date -d 'next week' '+%Y-%m-%d %H:%M:%S %z'
2005-11-12 01:05:29 -0500

$ date -d '2 weeks' '+%Y-%m-%d %H:%M:%S %z'
2005-11-19 01:05:42 -0500

$ date -d '-2 weeks' '+%Y-%m-%d %H:%M:%S %z'
2005-10-22 01:05:47 -0400

$ date -d '2 weeks ago' '+%Y-%m-%d %H:%M:%S %z'
2005-10-22 01:06:00 -0400



Automating Date Ranges | 221

$ date -d '+4 days' '+%Y-%m-%d %H:%M:%S %z'
2005-11-09 01:06:23 -0500

$ date -d '-6 days' '+%Y-%m-%d %H:%M:%S %z'
2005-10-30 01:06:30 -0400

$ date -d '2000-01-01 +12 days' '+%Y-%m-%d %H:%M:%S %z'
2000-01-13 00:00:00 -0500

$ date -d '3 months 1 day' '+%Y-%m-%d %H:%M:%S %z'
2006-02-06 01:03:00 -0500

Discussion
The -d option allows you to specify a specific date instead of using now, but not all
date commands support it. The GNU version supports it and our advice is to obtain
and use that version if at all possible.

Using -d can be tricky. These arguments work as expected:

$ date '+%a %Y-%m-%d'
Sat 2005-11-05

$ date -d 'today' '+%a %Y-%m-%d'
Sat 2005-11-05

$ date -d 'Saturday' '+%a %Y-%m-%d'
Sat 2005-11-05

$ date -d 'last Saturday' '+%a %Y-%m-%d'
Sat 2005-10-29

$ date -d 'this Saturday' '+%a %Y-%m-%d'
Sat 2005-11-05

But if you run this on Saturday you would expect to see next Saturday, but instead
you get today:

$ date -d 'next Saturday' '+%a %Y-%m-%d'
Sat 2005-11-05

Also watch out for this week or DAY because as soon as that is in the past, this week
becomes next week. So if you run this on Saturday 2005-11-05, you get these results,
which may not be what you were thinking:

$ date -d 'this week Friday' '+%a %Y-%m-%d'
Fri 2005-11-11

The -d options can be incredibly useful, but be sure to thoroughly test your code and
provide appropriate error checking.

If you don’t have GNU date, you may find the shell functions presented in “Shell
Corner: Date-Related Shell Functions” in the September 2005 issue of UnixReview to
be very useful. The article presents five shell functions:



222 | Chapter 11: Working with Dates and Times

pn_month
Previous and next x months relative to the given month

end_month
End of month of the given month

pn_day
Previous and next x days of the given day

cur_weekday
Day of week for the given day

pn_weekday
Previous and next x day of weeks relative to the given day

And these were added not long before this book went to press:

pn_day_nr
(Non-recursive) Previous and next x days of the given day

days_between
Number of days between two dates

Note that pn_month, end_month, and cur_weekday are independent of the rest of the
functions. However, pn_day is built on top of pn_month and end_month, and pn_weekday
is built on top of pn_day and cur_weekday.

See Also
• man date

• man getdate

• http://www.unixreview.com/documents/s=9884/ur0509a/ur0509a.html

• http://www.unixlabplus.com/unix-prog/date_function/

• Recipe 11.2, “Supplying a Default Date”

11.4 Converting Dates and Times to Epoch Seconds

Problem
You want to convert a date and time to Epoch seconds to make it easier to do date
and time arithmetic.

Solution
Use the GNU date command with the nonstandard -d option and a standard %s
format:

# "Now" is easy
$ date '+%s'
1131172934



Converting Epoch Seconds to Dates and Times | 223

# Some other time needs the non-standard -d
$ date -d '2005-11-05 12:00:00 +0000' '+%s'
1131192000

Discussion
If you do not have the GNU date command available, this is a harder problem to
solve. Our advice is to obtain and use the GNU date command if at all possible. If
that is not possible you might be able to use Perl. Here are three ways to print the
time right now in Epoch seconds:

$ perl -e 'print time, qq(\n);'
1154158997

# Same as above
$ perl -e 'use Time::Local; print timelocal(localtime( )) . qq(\n);'
1154158997

$ perl -e 'use POSIX qw(strftime); print strftime("%s", localtime( )) . qq(\n);'
1154159097

Using Perl to convert a specific day and time instead of right now is even harder due
to Perl’s date/time data structure. Years start at 1900 and months (but not days) start
at zero instead of one. The format of the command is: timelocal(sec, min, hour,
day, month-1, year-1900). So to convert 2005-11-05 06:59:49 to Epoch seconds:

# The given time is in local time
$ perl -e 'use Time::Local; print timelocal("49", "59", "06", "05", "10", "105") .
qq(\n);'
1131191989

# The given time is in UTC time
$ perl -e 'use Time::Local; print timegm("49", "59", "06", "05", "10", "105") . qq(\
n);'
1131173989

See Also
• man date

• Recipe 11.5, “Converting Epoch Seconds to Dates and Times”

• “Date and Time String Formatting with strftime” in Appendix A

11.5 Converting Epoch Seconds to Dates and Times

Problem
You need to convert Epoch seconds to a human-readable date and time.



224 | Chapter 11: Working with Dates and Times

Solution
Use the GNU date command with your desired format from Recipe 11.1, “Format-
ting Dates for Display”:

EPOCH='1131173989'

$ date -d "1970-01-01 UTC $EPOCH seconds" +"%Y-%m-%d %T %z"
2005-11-05 01:59:49 -0500

$ date --utc --date "1970-01-01 $EPOCH seconds" +"%Y-%m-%d %T %z"
2005-11-05 06:59:49 +0000

Discussion
Since Epoch seconds are simply the number of seconds since the Epoch (which is
Midnight on January 1, 1970, also known as 1970-01-01T00:00:00), this command
starts at the Epoch, adds the Epoch seconds, and displays the date and time as you
wish.

If you don’t have GNU date on your system you can try one of these Perl one-liners:

EPOCH='1131173989'

$ perl -e "print scalar(gmtime($EPOCH)), qq(\n);"     # UTC
Sat Nov  5 06:59:49 2005

$ perl -e "print scalar(localtime($EPOCH)), qq(\n);"  # Your local time
Sat Nov  5 01:59:49 2005

$ perl -e "use POSIX qw(strftime); print strftime('%Y-%m-%d %H:%M:%S',
localtime($EPOCH)), qq(\n);"
2005-11-05 01:59:49

See Also
• man date

• Recipe 11.1, “Formatting Dates for Display”

• Recipe 11.4, “Converting Dates and Times to Epoch Seconds”

• “Date and Time String Formatting with strftime” in Appendix A

11.6 Getting Yesterday or Tomorrow with Perl

Problem
You need to get yesterday or tomorrow’s date, and you have Perl but not GNU date
on your system.



Figuring Out Date and Time Arithmetic | 225

Solution
Use this Perl one-liner, adjusting the number of seconds added to or subtracted from
time:

# Yesterday at this same time (note subtraction)
$ perl -e "use POSIX qw(strftime); print strftime('%Y-%m-%d', localtime(time -
86400)), qq(\n);"

# Tomorrow at this same time (note addition)
$ perl -e "use POSIX qw(strftime); print strftime('%Y-%m-%d', localtime(time +
86400)), qq(\n);"

Discussion
This is really just a specific application of the recipes above, but is so common that
it’s worth talking about by itself. See Recipe 11.7, “Figuring Out Date and Time
Arithmetic” for a handy table of values that may be of use.

See Also
• Recipe 11.2, “Supplying a Default Date”

• Recipe 11.3, “Automating Date Ranges”

• Recipe 11.4, “Converting Dates and Times to Epoch Seconds”

• Recipe 11.5, “Converting Epoch Seconds to Dates and Times”

• Recipe 11.7, “Figuring Out Date and Time Arithmetic”

• “Date and Time String Formatting with strftime” in Appendix A

11.7 Figuring Out Date and Time Arithmetic

Problem
You need to do some kind of arithmetic with dates and times.

Solution
If you can’t get the answer you need using the date command (see Recipe 11.3,
“Automating Date Ranges”), convert your existing dates and times to Epoch sec-
onds using Recipe 11.4, “Converting Dates and Times to Epoch Seconds,” perform
your calculations, then convert the resulting Epoch seconds back to your desired for-
mat using Recipe 11.5, “Converting Epoch Seconds to Dates and Times.”

If you don’t have GNU date, you may find the shell functions pre-
sented in “Shell Corner: Date-Related Shell Functions” in the Septem-
ber 2005 issue of Unix Review to be very useful. See Recipe 11.3,
“Automating Date Ranges.”



226 | Chapter 11: Working with Dates and Times

For example, suppose you have log data from a machine where the time was badly
off. Everyone should already be using the Network Time Protocol (NTP) so this
doesn’t happen, but just suppose:

CORRECTION='172800'   # 2 days worth of seconds

# Code to extract the date portion from the data
# into $bad_date go here

# Suppose it's this:
bad_date='Jan  2 05:13:05'  # syslog formated date

# Convert to Epoch using GNU date
bad_epoch=$(date -d "$bad_date" '+%s')

# Apply correction
good_epoch=$(( bad_epoch + $CORRECTION ))

# Make corrected date human-readable
good_date=$(date -d "1970-01-01 UTC $good_epoch seconds")   # GNU Date
good_date_iso=$(date -d "1970-01-01 UTC $good_epoch seconds" +'%Y-%m-%d %T') # GNU
Date

echo "bad_date:       $bad_date"
echo "bad_epoch:      $bad_epoch"
echo "Correction:     +$CORRECTION"
echo "good_epoch:     $good_epoch"
echo "good_date:      $good_date"
echo "good_date_iso:  $good_date_iso"

# Code to insert the $good_date back into the data goes here

Watch out for years! Some Unix commands like ls and syslog try to be
easy to read and omit the year under certain conditions. You may need
to take that into account when calculating your correction factor. If
you have data from a large range of dates or from different time zones,
you will have to find some way to break it into separate files and pro-
cess them individually.

Discussion
Dealing with any kind of date arithmetic is much easier using Epoch seconds than
any other format of which we are aware. You don’t have to worry about hours, days,
weeks, or years, you just do some simple addition or subtraction and you’re all set.
Using Epoch seconds also avoids all the convoluted rules about leap years and sec-
onds, and if you standardize on one time zone (usually UTC, which used to be called
GMT) you can even avoid time zones.

Table 11-1 lists values that may be of use.



Handling Time Zones, Daylight Saving Time, and Leap Years | 227

See Also
• http://www.jpsdomain.org/networking/time.html

• Recipe 11.3, “Automating Date Ranges”

• Recipe 11.4, “Converting Dates and Times to Epoch Seconds”

• Recipe 11.5, “Converting Epoch Seconds to Dates and Times”

• Recipe 13.12, “Isolating Specific Fields in Data”

11.8 Handling Time Zones, Daylight Saving Time, and
Leap Years

Problem
You need to account for time zones, Daylight Saving Time, and leap years or seconds.

Solution
Don’t. This is a lot trickier than it sounds. Leave it to code that’s already been in use
and debugged for years, and just use a tool that can handle your needs. Odds are
high that one of the other recipes in this chapter has covered what you need, proba-
bly using GNU date. If not, there is almost certainly another tool out there that can
do the job. For example, there are a number of excellent Perl modules that deal with
dates and times.

Really, we aren’t kidding. This is a real nightmare to get right. Save yourself a lot of
agony and just use a tool.

Table 11-1. Conversion table of common Epoch time values

Seconds Minutes Hours Days

60 1

300 5

600 10

3,600 60 1

18,000 300 5

36,000 600 10

86,400 1,440 24 1

172,800 2,880 48 2

604,800 10,080 168 7

1,209,600 20,160 336 14

2,592,000 43,200 720 30

31,536,000 525,600 8,760 365



228 | Chapter 11: Working with Dates and Times

See Also
• Recipe 11.1, “Formatting Dates for Display”

• Recipe 11.3, “Automating Date Ranges”

• Recipe 11.4, “Converting Dates and Times to Epoch Seconds”

• Recipe 11.5, “Converting Epoch Seconds to Dates and Times”

• Recipe 11.7, “Figuring Out Date and Time Arithmetic”

11.9 Using date and cron to Run a Script on the Nth
Day

Problem
You need to run a script on the Nth weekday of the month (e.g., the second Wednes-
day), and most crons will not allow that.

Solution
Use a bit of shell code in the command to be run. In your Linux Vixie Cron crontab
adapt one of the following lines. If you are using another cron program, you may
need to convert the day of the week names to numbers according to the schedule
your cron uses (0–6 or 1–7) and use +%w (day of week as number) in place of +%a
(locale’s abbreviated weekday name):

# Vixie Cron
# Min   Hour DoM   Mnth DoW Program
# 0-59 0-23 1-31 1-12 0-7

# Run the first Wednesday @ 23:00
00 23 1-7 * Wed [ "$(date '+%a')" == "Wed" ] && /path/to/command args to command

# Run the second Thursday @ 23:00
00 23 8-14 * Thu [ "$(date '+%a')" == "Thu" ] && /path/to/command

# Run the third Friday @ 23:00
00 23 15-21 * Fri [ "$(date '+%a')" == "Fri" ] && /path/to/command

# Run the fourth Saturday @ 23:00
00 23 22-27 * Sat [ "$(date '+%a')" == "Sat" ] && /path/to/command

# Run the fifth Sunday @ 23:00
00 23 28-31 * Sun [ "$(date '+%a')" == "Sun" ] && /path/to/command

Note that any given day of the week doesn’t always happen five times
during one month, so be sure you really know what you are asking for
if you schedule something for the fifth week of the month.



Using date and cron to Run a Script on the Nth Day | 229

Discussion
Most versions of cron (including Linux’s Vixie Cron) do not allow you to schedule a
job on the Nth day of the month. To get around that, we schedule the job to run dur-
ing the range of days when the Nth day we need occurs, then check to see if it is the
correct day on which to run. The “second Wednesday of the month” must occur
somewhere in the range of the 8th to 14th day of the month. So we simply run every
day and see if it’s Wednesday. If so, we execute our command.

Table 11-2 shows the ranges noted above.

We know this almost seems too simplistic; check a calendar if you don’t believe us:

$ cal 10 2006
   October 2006
 S  M Tu  W Th  F  S
 1  2  3  4  5  6  7
 8  9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

See Also
• man 5 crontab

• man cal

Table 11-2. Day ranges for each week of a month

Week Day range

First 1 to 7

Second 8 to 14

Third 15 to 21

Fourth 22 to 27

Fifth (see previous warning note) 28 to 31



230

Chapter 12CHAPTER 12

End-User Tasks As Shell Scripts 13

You have seen a lot of smaller scripts and syntax up to now. Our examples have, of
necessity, been small in scale and scope. Now we would like to show you a few
larger (though not large) examples. They are meant to give you useful, real world
examples of actual uses of shell scripts beyond just system administration tasks. We
hope you find them useful or usable. More than that, we hope you learn something
about bash by reading through them and maybe trying them yourself or even tweak-
ing them for your own use.

12.1 Starting Simple by Printing Dashes

Problem
To print a line of dashes with a simple command might sound easy—and it is. But as
soon as you think you’ve got a simple script, it begins to grow. What about varying
the length of the line of dashes? What about changing the character from a dash to a
user-supplied character? Do you see how easily feature creep occurs? Can we write a
simple script that takes those extensions into account without getting too complex?

Solution
Consider this script:

1 #!/usr/bin/env bash
2 # cookbook filename: dash
3 # dash - print a line of dashes
4 # options: # how many (default 72)
5 #         -c X  use char X instead of dashes
6 #
7 function usagexit ( )
8 {
9     printf "usage: %s [-c X] [#]\n" $(basename $0)

10     exit 2
11 } >&2



Starting Simple by Printing Dashes | 231

12 LEN=72
13 CHAR='-'
14 while (( $# > 0 ))
15 do
16     case $1 in
17     [0-9]*) LEN=$1;;
18     -c) shift
19         CHAR=$1;;
20     *) usagexit;;
21     esac
22     shift
23 done

24 if (( LEN > 4096 ))
25 then
26     echo "too large" >&2
27     exit 3

28 fi
29 # build the string to the exact length
30 DASHES=""
31 for ((i=0; i<LEN; i++))
32 do
33     DASHES="${DASHES}${CHAR}"
34 done
35 printf "%s\n" "$DASHES"

Discussion
The basic task is accomplished by building a string of the required number of dashes
(or an alternate character) and then printing that string to standard output (STD-
OUT). That takes only the six lines from 30–35. Lines 12 and 13 set the default val-
ues. All the other lines are spent on argument parsing, error checking, user messages,
and comments.

You will find that it’s pretty typical for a robust, end-user script. Less than 20 per-
cent of the code does more than 80 percent of the work. But that 80 percent of the
code is what makes it usable and “friendly” for your users.

In line 9 we use basename to trim off any leading pathname characters when display-
ing this script’s name. That way no matter how the user invokes the script (for
example, ./dashes, /home/username/bin/dashes, or even ../../over/there/dashes), it will
still be referred to as just dashes in the usage message.

The argument parsing is done while there are some arguments to parse (line 14). As
arguments are handled, each shift built-in will decrement the number of arguments
and eventually get us out of the while loop. There are only two possible allowable
arguments: specifying a number for the length (line 17), and a -c option followed by
a number (see lines 18–19). Anything else (line 20) will result in the usage message
and an early exit.



232 | Chapter 12: End-User Tasks As Shell Scripts

We could be more careful in parsing the -c and its argument. By not using more
sophisticated parsing (e.g., getopt Recipe 13.1, “Parsing Arguments for Your Shell
Script”), the option and it’s argument must be separated by whitespace. (In running
the script one must type -c n and not -cn.) We don’t even check to see that the sec-
ond argument is supplied at all. Furthermore, it could be not just a single letter but a
whole string. (Can you think of a simple way to limit this, by just taking the first
character of the argument? Do you need/want to? Why not let the user specify a
string instead of a single character?)

The parsing of the numerical argument could also use some more sophisticated
techniques. The patterns in a case statement follow the rules of pathname expan-
sion and are not regular expressions. It might be tempting to assume that the case
pattern [0-9]* means only digits, but that would be the regular expression mean-
ing. In the case statement it means any string that begins with a digit. Not catching
erroneous input like 9.5 or 612more will result in errors in the script later on. The use
of an if statement with its more sophisticated regular expression matching might be
useful here.

As a final comment on the code: at line 24 the script enforces a maximum length,
though it is completely arbitrary. Would you keep or remove such a restriction?

You can see from this example that even simple scripts can be come quite involved,
mostly due to error checking, argument parsing, and the like. For scripts that you
write for yourself, such techniques are often glossed over or skipped entirely—after
all, as the only user of the script you know the proper usage and are willing to use it
correctly or have it fail in an ugly display of error messages. For scripts that you want
to share, however, such is not the case, and much care and effort will likely be put
into toughening up your script.

See Also
• Recipe 5.8, “Looping Over Arguments Passed to a Script”

• Recipe 5.11, “Counting Arguments”

• Recipe 5.12, “Consuming Arguments”

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 13.1, “Parsing Arguments for Your Shell Script”

12.2 Viewing Photos in an Album

Problem
You have a directory full of images like the ones you just downloaded from your digi-
tal camera. You want a quick and easy way to view them all, so that you can pick out
the good ones.



Viewing Photos in an Album | 233

Solution
Write a shell script that will generate a set of html pages so that you can view your
photos with a browser. Call it mkalbum and put it somewhere like your ~/bin directory.

On the command line, cd into the directory where you want your album created
(typically where your photos are located). Then run some command that will gener-
ate the list of photos that you want included in this album (e.g., ls *.jpg, but see also
Recipe 9.5, “Finding Files Irrespective of Case”), and pipe this output into the
mkalbum shell script, which we will explain later. You need to put the name of the
album (i.e., the name of a directory that will be created by the script) on the com-
mand line as the only argument to the shell script. It might look something like this:

$ ls *.jpg | mkalbum rugbymatch

Figure 12-1 shows a sample of the generated web page.

The large title is the photo (i.e., the filename); there are hyperlinks to other pages for
first, last, next, and previous.

The fpllowing is the shell script (mkalbum) that will generate a set of html pages,
one page per image (the line numbers are not part of the script, but are put here to
make it easier to discuss):

Figure 12-1. Sample mkalbum web page



234 | Chapter 12: End-User Tasks As Shell Scripts

1 #!/usr/bin/env bash
2 # cookbook filename: mkalbum
3 # mkalbum - make an html "album" of a pile of photo files.
4 # ver. 0.2
5 #
6 # An album is a directory of html pages.
7 # It will be created in the current directory.
8 #
9 # An album page is the html to display one photo, with

10 # a title that is the filename of the photo, along with
11 # hyperlinks to the first, previous, next, and last photos.
12 #
13 # ERROUT
14 ERROUT( )
15 {
16     printf "%b" "$@"
17 } >&2
18
19 #
20 # USAGE
21 USAGE( )
22 {
23     ERROUT "usage: %s <newdir>\n" $(basename $0)
24 }
25
26 # EMIT(thisph, startph, prevph, nextph, lastph)
27 EMIT( )
28 {
29   THISPH="../$1"
30   STRTPH="${2%.*}.html"
31   PREVPH="${3%.*}.html"
32   NEXTPH="${4%.*}.html"
33   LASTPH="${5%.*}.html"
34   if [ -z "$3" ]
35   then
36      PREVLINE='<TD> Prev </TD>'
37   else
38      PREVLINE='<TD> <A HREF="'$PREVPH'"> Prev </A> </TD>'
39   fi
40   if [ -z "$4" ]
41   then
42       NEXTLINE='<TD> Next </TD>'
43   else
44       NEXTLINE='<TD> <A HREF="'$NEXTPH'"> Next </A> </TD>'
45   fi
46 cat <<EOF
47 <HTML>
48 <HEAD><TITLE>$THISPH</TITLE></HEAD>
49 <BODY>
50   <H2>$THISPH</H2>
51 <TABLE WIDTH="25%">
52   <TR>
53   <TD> <A HREF="$STRTPH"> First </A> </TD>
54   $PREVLINE



Viewing Photos in an Album | 235

55   $NEXTLINE
56   <TD> <A HREF="$LASTPH"> Last </A> </TD>
57   </TR>
58 </TABLE>
59   <IMG SRC="$THISPH" alt="$THISPH"
60   BORDER="1" VSPACE="4" HSPACE="4"
61   WIDTH="800" HEIGHT="600"/>
62 </BODY>
63 </HTML>
64 EOF
65 }
66
67 if (( $# != 1 ))
68 then
69     USAGE
70     exit -1
71 fi
72 ALBUM="$1"
73 if [ -d "${ALBUM}" ]
74 then
75     ERROUT "Directory [%s] already exists.\n" ${ALBUM}
76     USAGE
77     exit -2
78 else
79     mkdir "$ALBUM"
80 fi
81 cd "$ALBUM"
82
83 PREV=""
84 FIRST=""
85 LAST="last"
86
87 while read PHOTO
88 do
89      # prime the pump
90      if [ -z "${CURRENT}" ]
91      then
92          CURRENT="$PHOTO"
93          FIRST="$PHOTO"
94          continue
95      fi
96
97      PHILE=$(basename "${CURRENT}")
98      EMIT "$CURRENT" "$FIRST" "$PREV" "$PHOTO" "$LAST" > "${PHILE%.*}.html"
99

100 1    # set up for next iteration
101      PREV="$CURRENT"
102      CURRENT="$PHOTO"
103
104 done
105
106 PHILE=$(basename ${CURRENT})
107 EMIT "$CURRENT" "$FIRST" "$PREV"   ""   "$LAST" > "${PHILE%.*}.html"
108



236 | Chapter 12: End-User Tasks As Shell Scripts

109 # make the symlink for "last"
110 ln -s "${PHILE%.*}.html" ./last.html
111
112 # make a link for index.html
113 ln -s "${FIRST%.*}.html" ./index.html
114

Discussion
While there are plenty of free or inexpensive photo viewers, using bash to build a
simple photo album helps to illustrate the power of shell programming, and gives us
a meatier example to discuss.

The shell script begins (line 1) with the special comment that defines which execut-
able to use to run this script. Then follows some comments describing the script.
Let’s just put in one more word encouraging you to be sure to comment your script.
Even the sparsest comments are worth something 3 days or 13 months from now
when you wish you could remember what this script was all about.

After the comments we have put our function definitions. The ERROUT function (lines
14–17) will act very much like printf (since all it does is invoke printf) but with the
added twist that it redirects its output to standard error. This saves you from having
to remember to redirect the output on every printf of error messages.

While normally we put the redirection at the end of a command, here (line 17) it is
put at the end of a function definition to tell bash to redirect all output that ema-
nates from this function.

The USAGE function (lines 21–24), while not strictly necessary as a separate function,
is a handy way to document up front how you expect your script to be invoked.
Rather than hard-coding the name of the script in our usage message, we like to use
the $0 special variable in case the script is renamed. Since $0 is the name of the script
as it was invoked, if the script is invoked with its full pathname (e.g., /usr/local/bin/
mkalbum) then $0 is the full pathname and the usage message would include the full
pathname. By taking the basename (line 23) we get rid of all that path noise.

The EMIT function (lines 27–65) is a larger function. Its purpose is to emit the HTML
for each page of the album. Each page is its own (static) web page, with hyperlinks to
the previous and next image as well as links to the first and last image. The EMIT
function doesn’t know much; it is given the names of all the images to which to link.
It takes those names and converts them to page names, which for our script are the
same as the image name but with the file extension changed to html. So for example
if $2 held the filename pict001.jpg, the result of ${2%.*}.html would be pict001.html.

Since there is so much HTML to emit, rather than have printf after printf statement,
we use the cat command and a here-document (line 46) to allow us to type the literal
HTML in the script, line after line, along with shell variable expansion being applied
to the lines. The cat command is simply copying (concatenating) the STDIN to the
STDOUT. In our script we redirect STDIN to take its input from the succeeding lines



Loading Your MP3 Player | 237

of text, i.e., a here-document. By not quoting the end-of-input word (just EOF and not
'EOF' or \EOF), bash will continue to do variable substitution on our input lines,
enabling us to use variable names based on our parameters for various titles and
hyperlinks.

We could have passed in a filename to the EMIT function, and have had EMIT redirect
its own output to that file. But such redirection was not really logically a part of the
emit idea (c.f. ERROUT whose whole purpose was the redirection). The purpose of EMIT
was to create the HTML; where we send that HTML is another matter. Because bash
allows us to redirect output so easily, it is possible to make that a separate step.
Besides, it was easier to debug when the method just wrote its output to STDOUT.

The last two commands in the script (lines 110 and 113) create symbolic links as
short cuts to the first and last photos. This way the script doesn’t need to figure out
the name of the first and last pages of the album, it just uses the hardcoded names
index.html and last.html, respectively, when generating all the other album pages.
Then as a last step, since the last filename processed is the last photo in our album, it
creates the link to it. Similarly with the first page, although we know that name right
away, we waited until the end to put it with the other symbolic link, just as a matter
of style—to keep the two similar operations in proximity.

See Also
• http://www.w3schools.com/

• HTML & XHTML: The Definitive Guide by Chuch Musciano and Bill Kennedy
(O’Reilly)

• Recipe 3.2, “Keeping Your Data with Your Script”

• Recipe 3.3, “Preventing Weird Behavior in a Here-Document”

• Recipe 3.4, “Indenting Here-Documents”

• Recipe 5.13, “Getting Default Values”

• Recipe 5.14, “Setting Default Values”

• Recipe 5.18, “Changing Pieces of a String”

• Recipe 5.19, “Using Array Variables”

• Recipe 9.5, “Finding Files Irrespective of Case”

• Recipe 16.9, “Keeping a Private Stash of Utilities by Adding ~/bin”

12.3 Loading Your MP3 Player

Problem
You have a collection of MP3 files that you would like to put in your MP3 player. But
you have more music than can fit on your MP3 player. How can you load your player
with music without having to baby-sit it by dragging and dropping files until it is full?



238 | Chapter 12: End-User Tasks As Shell Scripts

Solution
Use a shell script to keep track of the available space as it copies files onto the MP3
player, quitting when it is full.

1 #!/usr/bin/env bash
2 # cookbook filename: load_mp3
3 # Fill up my mp3 player with as many songs as will fit.
4 # N.B.: This assumes that the mp3 player is mounted on /media/mp3
5 #
6
7 #
8 # determine the size of a file
9 #

10 function FILESIZE ( )
11 {
12     FN=${1:-/dev/null}
13     if [[ -e $FN ]]
14     then
15        # FZ=$(ls -s $FN | cut -d ' ' -f 1)
16             set -- $(ls -s "$FN")
17             FZ=$1
18         fi
19 }
20
21 #
22 # compute the freespace on the mp3 player
23 #
24 function FREESPACE
25 {
26     # FREE=$(df /media/mp3 | awk '/^\/dev/ {print $4}')
27     set -- $(df /media/mp3 | grep '^/dev/')
28     FREE=$4
29 }
30
31 # subtract the (given) filesize from the (global) freespace
32 function REDUCE ( )
33 (( FREE-=${1:-0}))
34
35 #
36 # main:
37 #
38 let SUM=0
39 let COUNT=0
40 export FZ
41 export FREE
42 FREESPACE
43 find . -name '*.mp3' -print | \
44 (while read PATHNM
45 do
46    FILESIZE "$PATHNM"
47    if ((FZ <= FREE))
48    then
49         echo loading $PATHNM



Loading Your MP3 Player | 239

50       cp "$PATHNM" /media/mp3
51       if (( $? == 0 ))
52       then
53           let SUM+=FZ
54           let COUNT++
55           REDUCE $FZ
56       else
57           echo "bad copy of $PATHNM to /media/mp3"
58           rm -f /media/mp3/$(basename "$PATHNM")
59           # recompute because we don't know how far it got
60           FREESPACE
61       fi
62       # any reason to go on?
63       if (( FREE <= 0 ))
64       then
65           break
66       fi
67    else
68        echo skipping $PATHNM
69    fi
70 done
71 printf "loaded %d songs (%d blocks)"  $COUNT $SUM
72 printf " onto /media/mp3 (%d blocks free)\n" $FREE
73 )
74 # end of script

Discussion
Invoke this script and it will copy any MP3 file that it finds from the current direc-
tory on down (toward the leaf nodes of the tree) onto an MP3 player (or other
device) mounted on /media/mp3. The script will try to determine the freespace on the
device before it begins its copying, and then it will subtract the disk size of copied items
so as to know when to quit (i.e., when the device is full, or as full as we can get it).

The script is simple to invoke:

$ fillmp3

and then you can watch as it copies files, or you can go grab a cup of coffee—it
depends on how fast your disk and your MP3 memory writes go.

Let’s look at some bash features used in this script, referencing them by line number.

Let’s start at line 35, after the opening comments and the function definitions. (We’ll
return to the function definitions later.) The main body of the shell script starts by
initializing some variables (lines 38–39) and exporting some variables so they will be
available globally. At line 42 we call the FREESPACE function to determine how much
free space is available on the MP3 player before we begin copying files.

Line 43 has the find command that will locate all the MP3 files (actually only those
files whose names end in “.mp3”). This information is piped into a while loop that
begins on line 44.



240 | Chapter 12: End-User Tasks As Shell Scripts

Why is the while loop wrapped inside of parentheses? The parentheses mean that the
statements inside it will be run inside of a subshell. But what we’re concerned about
here is that we group the while statement with the printf statements that follow (lines
71 and 72). Since each statement in a pipeline is run in its own subshell, and since
the find pipes its output into the while loop, then none of the counting that we do
inside the while loop will be available outside of that loop. By putting the while and
the printfs inside of a subshell, they are now both executing in the same shell envi-
ronment and can share variables.

Let’s look inside the while loop and see what it’s doing:

46      FILESIZE "$PATHNM"
47      if ((FZ <= FREE))
48      then
49          echo loading $PATHNM
50          cp "$PATHNM" /media/mp3
51          if (( $? == 0 ))
52          then

For each filename that it reads (from the find command’s output) it will use the
FILESIZE function to determine the size of that file (see below for a discussion of that
function). Then it checks (line 47) to see if the file is smaller than the remaining disk
space, i.e., whether there is room for this file. If so, it will echo the filename so we can
see what it’s doing and then it will copy (line 50) the file onto the MP3 player.

It’s important to check and see if the copy command completed successfully (line
51). The $? is the result of the previous command, so it represents the result of the
the cp command. If the copy is successful, then we can deduct its size from the space
available on the MP3 player. But if the copy failed, then we need to try to remove the
copy (since, if it is there at all, it will be incomplete). We use the -f option on rm so
as to avoid error messages if the file never got created. Then we recalculate the free
space to be sure that we have the count right. (After all, the copy might have failed
because somehow our estimate was wrong and we really are out of space.)

In the main part of the script, all three of our if statements (lines 47, 51, and 63) use
the double parentheses around the expression. All three are numerical if state-
ments, and we wanted to use the familiar operators (vis. <= and ==). These same if
conditions could have been checked using the square bracket ([) form of the if state-
ment, but then the operators would be -le and -eq. We do use a different form of the
if statement in line 13, in the FILESIZE function. There we need to check the exist-
ence of the file (whose name is in the variable $FN). That is simple to write with the
-e operator, but that is not available to the arithmetic-style if statement (i.e., when
using parentheses instead of square brackets).

Speaking of arithmetic expressions, lets take a look at the REDUCE function and see
what’s going on there:

32 function REDUCE ( )
33 (( FREE-=${1:-0}))



Loading Your MP3 Player | 241

Most people write functions using curly braces to delimit the body of the function.
However, in bash, any compound statement will work. In this case we chose the
double-parentheses of arithmetic evaluation, since that is all we need the function to
do. Whatever value is supplied on the command line that invokes REDUCE will be the
first (positional) parameter (i.e., $1). We simply subtract that value from $FREE to get
the new value for $FREE. That is why we used the arithmetic expression syntax—so
that we can use the -= operator.

While we are looking at the functions, let’s look at two lines in the FILESIZE func-
tion. Take a close look at these lines:

16    set -- $(ls -s "$FN")
17    FZ=$1

There is a lot going on in those few characters. First, the ls command is run inside of
a subshell (the $( ) construct). The -s option on ls gives us the size, in blocks, of the
file along with the file name. The output of the command is returned as words on the
command line for the set command. The purpose of the set command here is to
parse the words of the ls output. Now there are lots of ways we could do that, but
this approach is a useful technique to remember.

The set -- will take the remaining words on the command line and make them the
new positional parameters. If you write set -- this is a test, then $1 is this and $3
is a. The previous values for $1, $2, etc are lost, but in line 12 we saved into $FN the
only parameter that gets passed in to this function. Having done so, we are free to
reuse the positional parameters, and we use them by having the shell do the parsing
for us. We can then get at the file size as $1, as you see in line 17. (By the way, in this
case, since this is inside a function, it is only the function’s positional parameters that
are changed, not those from the invoking of the script.)

We use this technique of having the shell do our parsing for us, again on line 27 in
the other function:

27       set -- $(df /media/mp3 | grep '^/dev/')
28       FREE=$4

The output of the df command will report on the size, in blocks, available on the
device. We pipe the output through grep, since we only want the one line with our
device’s information and we don’t want the heading line that df produces. Once bash
has set our arguments, we can grab the free space on the device as $4.

The comment on line 26 shows an alternative way to parse the output of the df
command. We could just pipe the output into awk and let it parse the output from
df for us:

26       # FREE=$(df /media/mp3 | awk '/^\/dev/ {print $4}')

By using the expression in slashes, we tell awk to pay attention only to lines with a
leading /dev. (The caret anchors the search to the beginning of the line and the back-
slash escapes the meaning of the slash, so as not to end the search expression at that
point and to include a slash as the first character to find.)



242 | Chapter 12: End-User Tasks As Shell Scripts

So which approach to use? They both involve invoking an external program, in one
case grep and in the other awk. There are usually several ways to accomplish the
same thing (in bash as in life), so the choice is yours. In our experience, it usually
comes down to which one you think of first.

See Also
• man df

• man grep

• man awk

• Recipe 10.4, “Defining Functions”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Recipe 19.8, “Forgetting That Pipelines Make Subshells”

12.4 Burning a CD

Problem
You have a directory full of files on your Linux system that you would like to burn to
a CD. Do you need an expensive CD burning program, or can you do it with the
shell and some open source programs?

Solution
You can do it with two open source programs called mkisofs and cdrecord, and a
bash script to help you keep all the options straight.

Start by putting all the files that you want to copy to CD into a directory structure.
The script will take that directory, make an ISO filesystem image from those files,
then burn the ISO image. All it takes is a bunch of disk space and a bit of time—but
you can get up and wander while the bash script runs.

This script may not work on your system. We include it here as an
example of shell scripting, not as a workable CD recording and
backup mechanism.

1 #!/usr/bin/env bash
2 # cookbook filename: cdscript
3 # cdscript - prep and burn a CD from a dir.
4 #
5 # usage: cdscript dir [ cddev ]
6 #
7 if [[ $# < 1 || $# > 2 ]]
8 then
9     echo 'usage: cdscript dir [ cddev ]'



Burning a CD | 243

10     exit 2
11 fi
12
13 # set the defaults
14 RCDIR=$1
15 # your device might be "ATAPI:0,0,0" or other digits
16 CDDEV=${2:-"ATAPI:0,0,0"}
17 ISOIMAGE=/tmp/cd$$.iso
18
19 echo "building ISO image..."
20 #
21 # make the ISO fs image
22 #
23 mkisofs $ISOPTS -A "$(cat ~/.cdAnnotation)" \
24     -p "$(hostname)" -V "$(basename $SRCDIR)" \
25     -r -o "$ISOIMAGE" $SRCDIR
26 STATUS=$?
27 if [ $STATUS -ne 0 ]
28 then
29     echo "Error. ISO image failed."
30     echo "Investigate then remove $ISOIMAGE"
31     exit $STATUS
32 fi
33
34 echo "ISO image built; burning to cd..."
35 exit
36
37 # burn the CD
38 SPD=8
39 OPTS="-eject -v fs=64M driveropts=burnproof"
40 cdrecord $OPTS -speed=$SPD dev=${CDDEV} $ISOImage
41 STATUS=$?
42 if [ $STATUS -ne 0 ]
43 then
44     echo "Error. CD Burn failed."
45     echo "Investigate then remove $ISOIMAGE"
46     exit $STATUS
47 fi
48
49 rm -f $ISOIMAGE
50 echo "Done."

Discussion
Here is a quick look at some of the odder constructs in this script.

At line 17:

    17  ISOIMAGE=/tmp/cd$$.iso

we construct a temporary filename by using the $$ variable, which gives us our pro-
cess number. As long as this script is running, it will be the one and only process of
that number, so it gives us a name that is unique among all other running processes.
(See Recipe 14.11, “Using Secure Temporary Files” for a better way.)



244 | Chapter 12: End-User Tasks As Shell Scripts

In line 26, we save the status of the mkisofs command. Well-written Unix and Linux
commands (and bash shell scripts) will return 0 on success (i.e., nothing went wrong)
and a nonzero value if they fail. We could have just used the $? in the if statement
on line 27 except that we want to preserve the status from the mkisofs command so
that, in the event of failure, we can pass that back out as the return value of this
script (line 31). We do the same with the cdrecord command and its return value on
lines 41–47.

It may take a bit of thought to unpack lines 23–25:

23  mkisofs $ISOPTS -A "$(cat ~/.cdAnnotation)" \
24      -p "$(hostname)" -V "$(basename $SRCDIR)" \
25      -r -o "$ISOIMAGE" $SRCDIR

All three lines are just a single line of input to bash which has been separated across
lines by putting the backslash as the very last character on the line in order to
escape the normal meaning of an end of line. Be sure you don’t put a space after the
trailing \. But that’s just the tip of the iceberg here. There are three subshells that
are invoked whose output is used in the construction of the final command line that
invokes mkisofs.

First there is an invocation of the cat program to dump the contents of a file called
.cdAnnotation located in the home directory (~/) of the user invoking this script.
The purpose is to provide a string to the -A option, which the manpage describes
as “a text string that will be written into the volume header.” Similarly, the -p option
wants another such string, this time indicating the preparer of the image. For our
script it seemed like it might be handy to put the hostname where the script is run as
the preparer, so we run hostname in a subshell. Finally, the volume name is specified
with the -V parameter, and for that we will use the name of the directory where all
the files are found. Since that directory is specified on the command line to our script,
but will likely be a full pathname, we use basename in a subshell to peel off the lead-
ing directory pathname, if any (so, for example, /usr/local/stuff becomes just stuff).

See Also
• Recipe 14.11, “Using Secure Temporary Files”

12.5 Comparing Two Documents

Problem
It is easy to compare two text files (see Recipe 17.10, “Using diff and patch”). But
what about documents produced by your suite of office applications? They are not
stored as text, so how can you compare them? If you have two versions of the same
document, and you need to know what the content changes are (if any) between the
two versions, is there anything you can do besides printing them out and comparing
page after page?



Comparing Two Documents | 245

Solution
First, use an office suite that will let you save your documents in Open Document
Format (ODF). This is the case for packages like OpenOffice.org while other com-
mercial packages have promised to add support soon. Once you have your files in
ODF, you can use a shell script to compare just the content of the files. We stress the
word content here because the formatting differences are another issue, and it is (usu-
ally) the content that is the most important determinant of which version is new or
more important to the end user.

Here is a bash script that can be used to compare two OpenOffice.org files, which
are saved in ODF (but use the conventional suffix odt to indicate a text-oriented doc-
ument, as opposed to a spreadsheet or a presentation file).

1 #!/usr/bin/env bash
2 # cookbook filename: oodiff
3 # oodiff -- diff the CONTENTS of two OpenOffice.org files
4 # works only on .odt files
5 #
6 function usagexit ( )
7 {
8     echo "usage: $0 file1 file2"
9     echo "where both files must be .odt files"

10     exit $1
11 } >&2
12
13 # assure two readable arg filenames which end in .odt
14 if (( $# != 2 ))
15 then
16     usagexit 1
17 fi
18 if [[ $1 != *.odt || $2 != *.odt ]]
19 then
20     usagexit 2
21 fi
22 if [[ ! -r $1 || ! -r $2 ]]
23 then
24     usagexit 3
25 fi
26
27 BAS1=$(basename "$1" .odt)
28 BAS2=$(basename "$2" .odt)
29
30 # unzip them someplace private
31 PRIV1="/tmp/${BAS1}.$$_1"
32 PRIV2="/tmp/${BAS2}.$$_2"
33
34 # make absolute
35 HERE=$(pwd)
36 if [[ ${1:0:1} == '/' ]]
37 then
38     FULL1="${1}"



246 | Chapter 12: End-User Tasks As Shell Scripts

39 else
40     FULL1="${HERE}/${1}"
41 fi
42
43 # make absolute
44 if [[ ${2:0:1} == '/' ]]
45 then
46     FULL2="${2}"
47 else
48     FULL2="${HERE}/${2}"
49 fi
50
51 # mkdir scratch areas and check for failure
52 # N.B. must have whitespace around the { and } and
53 #      must have the trailing ; in the {} lists
54 mkdir "$PRIV1" || { echo Unable to mkdir $PRIV1 ; exit 4; }
55 mkdir "$PRIV2" || { echo Unable to mkdir $PRIV2 ; exit 5; }
56
57 cd "$PRIV1"
58 unzip -q "$FULL1"
59 sed -e 's/>/>\
60 /g' -e 's/</\
61 </g' content.xml > contentwnl.xml
62
63 cd "$PRIV2"
64 unzip -q "$FULL2"
65 sed -e 's/>/>\
66 /g' -e 's/</\
67 </g' content.xml > contentwnl.xml
68
69 cd $HERE
70
71 diff "${PRIV1}/contentwnl.xml" "${PRIV2}/contentwnl.xml"
72
73 rm -rf $PRIV1 $PRIV2

Discussion
Underlying this script is the knowledge that OpenOffice.org files are stored like ZIP
files. Unzip them and there are a collection of XML files that define your document.
One of those files contains the content of your document, that is, the paragraphs of
text without any formatting (but with XML tags to tie each snippet of text to its for-
matting). The basic idea behind the script is to unzip the two documents and com-
pare the content pieces using diff, and then clean up the mess that we’ve made.

One other step is taken to make the diffs easier to read. Since the content is all in
XML and there aren’t a lot of newlines, the script will insert a newline after every tag
and before every end-tag (tags that begin with a slash, as in </ ... >). While this
introduces a lot of blank lines, it also enables diff to focus on the real differences: the
textual content.



Comparing Two Documents | 247

As far as shell syntax goes, you have seen all this in other recipes in the book, but it
may be worth explaining a few pieces of syntax just to be sure you can tell what is
going on in the script.

Line 11 redirects all the output from this shell function to STDERR. That seems
appropriate since this is a help message, not the normal output of this program. By
putting the redirect on the function definition, we don’t need to remember to redi-
rect every output line separately.

Line 36 contains the terse expression if [[ ${1:0:1} == '/' ]], which checks to see
whether the first argument begins with a slash character. The ${1:0:1} is the syntax
for a substring of a shell variable. The variable is ${1}, the first positional parameter.
The :0:1 syntax says to start at an offset of zero and that the substring should be one
character long.

Lines 59–60 and 60–61 may be a little hard to read because they involve escaping the
newline character so that it becomes part of the sed substitution string. The substitu-
tion expression takes each > in the first substitution and each < in the second, and
replaces it with itself plus a newline. We do this to our content file in order to spread
out the XML and get the content on lines by itself. That way the diff doesn’t show
any XML tags, just content text.

See Also
• Recipe 8.7, “Uncompressing Files”

• Recipe 13.3, “Parsing Some HTML”

• Recipe 14.11, “Using Secure Temporary Files”

• Recipe 17.3, “Unzipping Many ZIP Files”

• Recipe 17.10, “Using diff and patch”



248

Chapter 13CHAPTER 13

Parsing and Similar Tasks 14

This is a chapter of tasks that programmers might recognize. It’s not necessarily
more advanced than other bash script recipes in the book, but if you are not a pro-
grammer, these tasks might seem obscure or irrelevant to your use of bash. We won’t
do much explaining of the reasons why you’d find yourself in these situations (as a
programmer, you’ll recognize some if not all of them). Even if you don’t recognize
the situation, you should read them for what you can learn about bash.

Some of the recipes in this chapter include the parsing of command-line arguments.
Recall that the typical way to specify options on a shell script is to have a leading
minus sign and a single letter. For example, an option for your script to give fewer
messages might use -q as a flag to mean quiet mode. Sometimes an option might
take an argument. For example, a user option where you need to specify a username
might use -u followed by the username. This distinction will be made clear in this
chapter’s first recipe.

13.1 Parsing Arguments for Your Shell Script

Problem
You want to have some options on your shell script, some flags that you can use to
alter its behavior. You could do the parsing directly, using ${#} to tell you how many
arguments have been supplied, and testing ${1:0:1} to test the first character of the
first argument to see if it is a minus sign. You would need some if/then or case logic
to identify which option it is and whether it takes an argument. What if the user
doesn’t supply a required argument? What if the user calls your script with two
options combined (e.g., -ab)? Will you also parse for that? The need to parse options
for a shell script is a common situation. Lots of scripts have options. Isn’t there a
more standard way to do this?



Parsing Arguments for Your Shell Script | 249

Solution
Use bash’s built-in getopts command to help parse options.

Here is an example, based largely on the example in the manpage for getopts:

#!/usr/bin/env bash
# cookbook filename: getopts_example
#
# using getopts
#
aflag=
bflag=
while getopts 'ab:' OPTION
do
  case $OPTION in
  a)    aflag=1
        ;;
  b)    bflag=1
        bval="$OPTARG"
        ;;
  ?)    printf "Usage: %s: [-a] [-b value] args\n" $(basename $0) >&2
        exit 2
        ;;
  esac
done
shift $(($OPTIND – 1))

if [ "$aflag" ]
then
  printf "Option -a specified\n"
fi
if [ "$bflag" ]
then
  printf 'Option -b "%s" specified\n' "$bval"
fi
printf "Remaining arguments are: %s\n" "$*"

Discussion
There are two kinds of options supported here. The first and simpler kind is an
option that stands alone. It typically represents a flag to modify a command’s behav-
ior. An example of this sort of option is the -l option on the ls command. The sec-
ond kind of option requires an argument. An example of this is the mysql
command’s -u option, which requires that a username be supplied, as in mysql -u
sysadmin. Let’s look at how getopts supports the parsing of both kinds.

The use of getopts has two arguments.

getopts 'ab:' OPTION

The first is a list of option letters. The second is the name of a shell variable. In our
example, we are defining -a and -b as the only two valid options, so the first argument



250 | Chapter 13: Parsing and Similar Tasks

in getopts has just those two letters...and a colon. What does the colon signify? It
indicates that -b needs an argument, just like -u username or -f filename might be
used. The colon needs to be adjacent to any option letter taking an argument. For
example, if only -a took an argument we would need to write 'a:b' instead.

The getopts built-in will set the variable named in the second argument to the value
that it finds when it parses the shell script’s argument list ($1, $2, etc). If it finds an
argument with a leading minus sign, it will treat that as an option argument and put
the letter into the given variable ($OPTION in our example). Then it returns true (i.e.,
0) so that the while loop will process the option then continue to parse options by
repeated calls to getopts until it runs out of arguments (or encounters a double
minus -- to allow users to put an explicit end to the options). Then getopts returns
false (i.e., non-zero) and the while loop ends.

Inside the loop, when the parsing has found an option letter for processing, we use a
case statement on the variable $OPTION to set flags or otherwise take action when the
option is encountered. For options that take arguments, that argument is placed in
the shell variable $OPTARG (a fixed name not related to our use of $OPTION as our vari-
able). We need to save that value by assigning it to another variable because as the
parsing continues to loop, the variable $OPTARG will be reset on each call to getopts.

The third case of our case statement is a question mark, a shell pattern that matches
any single character. When getopts finds an option that is not in the set of expected
options ('ab:' in our example) then it will return a literal question mark in the vari-
able ($OPTION in our example). So we could have made our case statement read \?) or
'?') for an exact match, but the ? as a pattern match of any single character pro-
vides a convenient default for our case statement. It will match a literal question
mark as well as matching any other single character.

In the usage message that we print, we have made two changes from the example
script in the manpage. First, we use $(basename $0) to give the name of the script
without all the extra pathnames that may have been part of how it was invoked. Sec-
ondly, we redirect this message to standard error (>&2) because that is really where
such messages belong. All of the error messages from getopts that occur when an
unknown option or missing argument is encountered are always written to standard
error. We add our usage message to that chorus.

When the while loop terminates, we see the next line to be executed is:

shift $(($OPTIND – 1))

which is a shift statement used to move the positional parameters of the shell script
from $1, $2, etc. down a given number of positions (tossing the lower ones). The vari-
able $OPTIND is an index into the arguments that getopts uses to keep track of where it
is when it parses. Once we are done parsing, we can toss all the options that we’ve
processed by doing this shift statement. For example, if we had this command line:

myscript -a -b alt plow harvest reap



Parsing Arguments with Your Own Error Messages | 251

then after parsing for options, $OPTIND would be set to 4. By doing a shift of three
($OPTIND-1) we would get rid of the options and then a quick echo $* would give this:

plow harvest reap

So, the remaining (non-option) arguments are ready for use in your script (in a for
loop perhaps). In our example script, the last line is a printf showing all the remain-
ing arguments.

See Also
• help case

• help getopts

• help getopt

• Recipe 5.8, “Looping Over Arguments Passed to a Script”

• Recipe 5.11, “Counting Arguments”

• Recipe 5.12, “Consuming Arguments”

• Recipe 6.10, “Looping for a While”

• Recipe 6.14, “Branching Many Ways”

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 13.2, “Parsing Arguments with Your Own Error Messages”

13.2 Parsing Arguments with Your Own Error
Messages

Problem
You are using getopts to parse your options for your shell script. But you don’t like
the error messages that it writes when it encounters bad input. Can you still use
getopts but write your own error handling?

Solution
If you just want getopts to be quiet and not report any errors at all, just assign
$OPTERR=0 before you begin parsing. But if you want getopts to give you more infor-
mation without the error messages, then just begin the option list with a colon. (The
v--- in the comments below is meant to be an arrow pointing to a particular place in
the line below it, to show that special colon.)

#!/usr/bin/env bash
# cookbook filename: getopts_custom
#
# using getopts - with custom error messages
#



252 | Chapter 13: Parsing and Similar Tasks

aflag=
bflag=
# since we don't want getopts to generate error
# messages, but want this script to issue its
# own messages, we will put, in the option list, a
# leading ':' v---here    to silence getopts.
while getopts :ab: FOUND
do
    case $FOUND in
    a)    aflag=1
          ;;
    b)    bflag=1
          bval="$OPTARG"
          ;;
    \:)   printf "argument missing from -%s option\n" $OPTARG
          printf "Usage: %s: [-a] [-b value] args\n" $(basename $0)
          exit 2
          ;;
    \?)   printf "unknown option: -%s\n" $OPTARG
          printf "Usage: %s: [-a] [-b value] args\n" $(basename $0)
          exit 2
          ;;

  esac >&2

done
shift $(($OPTIND - 1))

if [ "$aflag" ]
then
    printf "Option -a specified\n"
fi
if [ "$bflag" ]
then
    printf 'Option -b "%s" specified\n' "$bval"
fi
printf "Remaining arguments are: %s\n" "$*"

Discussion
The script is very much the same as the recipe Recipe 13.1, “Parsing Arguments for
Your Shell Script.” See that discussion for more background. One difference here is
that getopts may now return a colon. It does so when an option is missing (e.g., you
invoke the script with -b but without an argument for it). In that case, it puts the
option letter into $OPTARG so that you know what option it was that was missing its
argument.

Similarly, if an unsupported option is given (e.g., if you tried -d when invoking our
example) getopts returns a question mark as the value for $FOUND, and puts the letter
(the d in this case) into $OPTARG so that it can be used in your error messages.



Parsing Some HTML | 253

We put a backslash in front of both the colon and the question mark to indicate that
these are literals and not any special patterns or shell syntax. While not necessary for
the colon, it looks better to have the parallel construction with the two punctuations
both being escaped.

We added an I/O redirection on the esac (the end of the case statement), so that all
output from the various printf statements will be redirected to standard error. This is
in keeping with the purpose of standard error and is just easier to put it here than
remembering to put it on each printf individually.

See Also
• help case

• help getopts

• help getopt

• Recipe 5.8, “Looping Over Arguments Passed to a Script”

• Recipe 5.11, “Counting Arguments”

• Recipe 5.12, “Consuming Arguments”

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 13.1, “Parsing Arguments for Your Shell Script”

13.3 Parsing Some HTML

Problem
You want to pull the strings out of some HTML. For example, you’d like to get at
the href="urlstringstuff" type strings from the <a> tags within a chunk of HTML.

Solution
For a quick and easy shell parse of HTML, provided it doesn’t have to be foolproof,
you might want to try something like this:

cat $1 | sed -e 's/>/>\
/g'  | grep '<a' | while IFS='"' read a b c ; do echo $b; done

Discussion
Parsing HTML from bash is pretty tricky, mostly because bash tends to be very line
oriented whereas HTML was designed to treat newlines like whitespace. So it’s not
uncommon to see tags split across two or more lines as in:

<a href="blah...blah...blah
  other stuff >



254 | Chapter 13: Parsing and Similar Tasks

There are also two ways to write <a> tags, one with a separate ending </a> tag, and
one without, where instead the singular <a> tag itself ends with a /> . So, with multi-
ple tags on a line and the last tag split across lines, it’s a bit messy to parse, and our
simple bash technique for this is often not foolproof.

Here are the steps involved in our solution. First, break the multiple tags on one line
into at most one line per tag:

 cat file | sed -e 's/>/>\
 /g'

Yes, that’s a newline right after the backslash so that it substitutes each end-of-tag
character (i.e., the >) with that same character and then a newline. That will put tags
on separate lines with maybe a few extra blank lines. The trailing g tells sed to do the
search and replace globally, i.e., multiple times on a line if need be.

Then you can pipe that output into grep to grab just the <a tag lines or maybe just
lines with double quotes:

cat file | sed -e 's/>/>\
/g'  | grep '<a'

or:

cat file | sed -e 's/>/>\
/g'  | grep '".*"'

(that’s g r e p ‘ “. * ” ’). The single quotes tell the shell to take the inner characters lit-
erally and not do any shell expansion on them; the rest is a regular expression to
match a double quote followed by any character (.) any number of times (*) fol-
lowed by another double quote. (This won’t work if the string itself is split across
lines.)

To parse out the contents of what’s inside the double quotes, one trick is to use the
shell’s Internal Field Separator ($IFS) to tell it to use the double quote (") as the sepa-
rator; or you can do a similar thing with awk and its -F option (F for field separator).
For example:

cat $1 | sed -e 's/>/>\
/g'  | grep '".*"' | awk -F'"' '{ print $2}'

(Or use the grep '<a' if you just want <a tags and not all quoted strings.)

If you want to use the $IFS shell trick, rather than awk, it would be:

cat $1 | sed -e 's/>/>\
/g'  | grep '<a' | while IFS='"' read PRE URL POST ; do echo $URL; done

where the grep output is piped into a while loop and the while loop will read the
input into three fields (PRE, URL, and POST). By preceding the read command with the
IFS='"', we set that environment variable just for the read command, not for the
entire script. Thus, for the line of input that it reads, it will parse with the quotes as its
notion of what separates the words of the input line. It will set PRE to be everything up



Parsing Output into an Array | 255

to the first quote, URL to be everything from there to the next quote, and POST to be
everything thereafter. Then the script just echoes the second variable, URL. That’s all
the characters between the quotes.

See Also
• man sed

• man grep

13.4 Parsing Output into an Array

Problem
You want the output of some program or script to be put into an array.

Solution
#!/usr/bin/env bash
# cookbook filename: parseViaArray
#
# find the file size
# use an array to parse the ls -l output into words

LSL=$(ls -ld $1)

declare -a MYRA
MYRA=($LSL)

echo the file $1 is ${MYRA[4]} bytes.

Discussion
In our example, we take the output from the ls -l command and parse the words by
putting them into an array. Then we can just refer to each array element to get at
each word. The typical output from the ls -l command looks like this (yours may
vary due to locale):

-rw-r--r--  1 albing users 113 2006-10-10 23:33 mystuff.txt

Arrays are easy to initialize if you know the values as you write the script. The for-
mat is simple. We begin by declaring the variable to be an array, and then we assign
it values:

declare -a MYRA
MYRA=(first second third home)

The same can be done by using a variable inside those parentheses. Just be sure not
to use quotes around the variable. Writing MYRA=$("$LSL") will put the entire string
into the first argument, since it is all contained as one quoted string. Then
${MYRA[0]} will be the only array element, and it will contain the entire string, which
is not what you wanted.



256 | Chapter 13: Parsing and Similar Tasks

We also could have shortened this script by combining the steps, and it would look
like this:

declare -a MYRA
MYRA=($(ls -ld $1))

If you want to know how many elements you have in your new array, just reference
the variable ${#MYRA[*]} or ${#MYRA[@]}, either of which is a lot of special characters
to type.

See Also
• Recipe 5.19, “Using Array Variables”

13.5 Parsing Output with a Function Call

Problem
You want to parse the output of some program into various variables to be used else-
where in your program. Arrays are great when you are looping through the values,
but not very readable if you want to refer to each separately, rather than by an index.

Solution
Use a function call to parse the words:

#!/usr/bin/env bash
# cookbook filename: parseViaFunc
#
# parse ls -l via function call
# an example of output from ls -l follows:
# -rw-r--r--  1 albing users 126 2006-10-10 22:50 fnsize

function lsparts ( )
{
    PERMS=$1
    LCOUNT=$2
    OWNER=$3
    GROUP=$4
    SIZE=$5
    CRDATE=$6
    CRTIME=$7
    FILE=$8
}

lsparts $(ls -l "$1")

echo $FILE has $LCOUNT 'link(s)' and is $SIZE bytes long.



Parsing Text with a read Statement | 257

Here’s what it looks like when it runs:

$ ./fnsize fnsize
fnsize has 1 link(s) and is 311 bytes long.
$

Discussion
We can let bash do the work of parsing by putting the text to be parsed on a func-
tion call. Calling a function is much like calling a shell script. bash parses the words
into separate variables and assigns them to $1, $2, etc. Our function can just assign
each positional parameter to a separate variable. If the variables are not declared
locally then they are available outside as well as inside the function.

We put quotes around the reference to $1 in the ls command in case the filename
supplied has spaces in its name. The quotes keep it all together so that ls sees it as a
single filename and not as a series of separate filenames.

We use quotes in the expression 'link(s)' to avoid special treatment of the paren-
theses by bash. Alternatively, we could have put the entire phrase (except for the echo
itself) inside of double quotes—double, not single, quotes so that the variable substi-
tution (for $FILE, etc.) still occurs.

See Also
• Recipe 10.4, “Defining Functions”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Recipe 13.8, “Getting Your Plurals Right”

• Recipe 17.7, “Clearing the Screen When You Log Out”

13.6 Parsing Text with a read Statement

Problem
The are many ways to parse text with bash. What if I don’t want to use a function? Is
there another way?

Solution
Use the read statement.

#!/usr/bin/env bash
# cookbook filename: parseViaRead
#
# parse ls -l with a read statement
# an example of output from ls -l follows:
# -rw-r--r--  1 albing users 126 2006-10-10 22:50 fnsize



258 | Chapter 13: Parsing and Similar Tasks

ls -l "$1" | { read PERMS LCOUNT OWNER GROUP SIZE CRDATE CRTIME FILE ;
               echo $FILE has $LCOUNT 'link(s)' and is $SIZE bytes long. ;
             }

Discussion
Here we let read do all the parsing. It will break apart the input into words, where
words are separated by whitespace, and assign each word to the variables named on
the read command. Actually, you can even change the separator, by setting the bash
variable $IFS (which means Internal Field Separator) to whatever character you want
for parsing; just remember to set it back!

As you can see from the sample output of ls -l, we have tried to choose names that
get at the meaning of each word in that output. Since FILE is the last word, any extra
fields will also be part of that variable. That way if the name has whitespace in it like
“Beethoven Fifth Symphony” then all three words will end up in $FILE.

See Also
• Recipe 2.14, “Saving or Grouping Output from Several Commands”

• Recipe 19.8, “Forgetting That Pipelines Make Subshells”

13.7 Parsing with read into an Array

Problem
You’ve got a varying number of words on each line of input, so you can’t just assign
each word to a predetermined variable.

Solution
Use the -a option on the read statement, and the words will be read into an array
variable.

read -a MYRAY

Discussion
Whether coming from user input or a pipeline, read will parse the input into words,
putting each word in its own array element. The variable does not need to be
declared as an array—using it in this fashion is enough to make it into an array. Each
element can be referenced with the bash array syntax, which is a zero-based array. So
the second word on a line of input will be put into ${MYRAY[1]} in our example. The
number of words will determine the size of the array. In our example, the size of the
array is ${#MYRAY[@]}.



Getting Your Plurals Right | 259

See Also
• Recipe 3.5, “Getting User Input”

• Recipe 13.6, “Parsing Text with a read Statement”

13.8 Getting Your Plurals Right

Problem
You want to use a plural noun when you have more than one of an object. But you
don’t want to scatter if statements all through your code.

Solution
#!/usr/bin/env bash
# cookbook filename: pluralize
#
# A function to make words plural by adding an s
# when the value ($2) is != 1 or -1
# It only adds an 's'; it is not very smart.
#
function plural ( )
{
    if [ $2 -eq 1 -o $2 -eq -1 ]
    then
        echo ${1}
    else
        echo ${1}s
    fi
}

while read num name
do
    echo $num $(plural "$name" $num)
done

Discussion
The function, though only set to handle the simple addition of an s, will do fine for
many nouns. The function doesn’t do any error checking of the number or contents
of the arguments. If you wanted to use this script in a serious application, you might
want to add those kinds of checks.

We put the name in quotes when we call the plural function in case there are embed-
ded blanks in the name. It did, after all, come from the read statement, and the last
variable on a read statement gets all the remaining text from the input line. You can
see that in the following example.



260 | Chapter 13: Parsing and Similar Tasks

We put the solution script into a file named pluralize and ran it against the following
data:

$ cat input.file
1 hen
2 duck
3 squawking goose
4 limerick oyster
5 corpulent porpoise

$ ./pluralize < input.file
1 hen
2 ducks
3 squawking gooses
4 limerick oysters
5 corpulent porpoises
$

“Gooses” isn’t correct English, but the script did what was intended. If you like the
C-like syntax better, you could write the if statement like this:

  if (( $2 == 1 || $2 == -1 ))

The square bracket (i.e., the test built-in) is the older form, more common across
the various versions of bash, but either should work. Use whichever form’s syntax is
easiest for you to remember.

We don’t expect you would keep a file like pluralize around, but the plural function
might be handy to have as part of a larger scripting project. Then whenever you
report on the count of something you could use the plural function as part of the ref-
erence, as shown in the while loop above.

See Also
• Recipe 6.11, “Looping with a read”

13.9 Taking It One Character at a Time

Problem
You have some parsing to do and for whatever reason nothing else will do—you
need to take your strings apart one character at a time.

Solution
The substring function for variables will let you take things apart and another fea-
ture tells you how long a string is:

#!/usr/bin/env bash
# cookbook filename: onebyone
#



Cleaning Up an SVN Source Tree | 261

# parsing input one character at a time

while read ALINE
do
    for ((i=0; i < ${#ALINE}; i++))
    do
        ACHAR=${ALINE:i:1}
        # do something here, e.g. echo $ACHAR
    done
done

Discussion
The read will take input from standard in and put it, a line at a time, into the vari-
able $ALINE. Since there are no other variables on the read command, it takes the
entire line and doesn’t divvy it up.

The for loop will loop once for each character in the $ALINE variable. We can com-
pute how many times to loop by using ${#ALINE}, which returns the length of the
contents of $ALINE.

Each time through the loop we assign ACHAR the value of the one-character substring
of ALINE that begins at the ith position. That’s simple enough. Now, what was it you
needed to parse this way?

See Also
• Check out the other parsing techniques in this chapter to see if you can avoid

working at this low level

13.10 Cleaning Up an SVN Source Tree

Problem
Subversion’s svn status command shows all the files that have been modified, but if
you have scratch files or other garbage lying around in your source tree, svn will list
those, too. It would be useful to have a way to clean up your source tree, removing
those files unknown to Subversion.

Subversion won’t know about new files unless and until you do an svn
add command. Don’t run this script until you’ve added any new source
files, or they’ll be gone for good.

Solution
svn status src | grep '^\?' | cut -c8- | \
while read fn; do echo "$fn"; rm -rf "$fn"; done



262 | Chapter 13: Parsing and Similar Tasks

Discussion
The svn status output lists one file per line. It puts an M as the first character of a line
for files that have been modified, an A for newly added (but not yet committed) files,
and a question mark for those about which it knows nothing. We just grep for those
lines beginning with a question mark and cut off the leading eight columns of each
line of output so that we are left with just the filename on each line. We read those
filenames with a read statement in a while loop. The echo isn’t strictly necessary, but
it’s useful to see what’s being removed, just in case there is a mistake or an error.
You can at least see that it’s gone for good. When we do the remove, we use the -rf
options in case the file is a directory, but mostly just to keep the remove quiet. Prob-
lems encountered with permissions and such are squelched by the -f option. It just
removes the file as best as your permissions allow. We put the reference to the file-
name in quotes "$fn" in case there are special characters (like spaces) in the filename.

See Also
• Recipe 6.11, “Looping with a read”

• Appendix D

13.11 Setting Up a Database with MySQL

Problem
You want to create and initialize several databases using MySQL. You want them all
to be initialized using the same SQL commands. Each database needs its own name,
but each database will have the same contents, at least at initialization. You may
need to do this setup over and over, as in the case where these databases are used as
part of a test suite that needs to be reset when tests are rerun.

Solution
A simple bash script can help with this administrative task:

#!/usr/bin/env bash
# cookbook filename: dbiniter
#
# initialize databases from a standard file
# creating databases as needed.

DBLIST=$(mysql -e "SHOW DATABASES;" | tail +2)
select DB in $DBLIST "new..."
do
    if [[ $DB == "new..." ]]
    then
        printf "%b" "name for new db: "
        read DB rest
        echo creating new database $DB



Setting Up a Database with MySQL | 263

        mysql -e "CREATE DATABASE IF NOT EXISTS $DB;"
    fi

    if [ "$DB" ]
    then
        echo Initializing database: $DB
        mysql $DB < ourInit.sql
    fi
done

Discussion
The tail +2 is added to remove the heading from the list of databases (see Recipe
2.12, “Skipping a Header in a File”).

The select creates the menus showing the existing databases. We added the literal
"new..." as an additional choice (see Recipe 3.7, “Selecting from a List of Options”
and Recipe 6.16, “Creating Simple Menus”).

When the user wants to create a new database, we prompt for and read a new name,
but we use two fields on the read command as a bit of error handling. If the user
types more than one name on the line, we only use the first name—it gets put into
the variable $DB while the rest of the input is put into $rest and ignored. (We could
add an error check to see if $rest is null.)

Whether created anew or chosen from the list of extant databases, if the $DB variable
is not empty, it will invoke mysql one more time to feed it the set of SQL statements
that we’ve put into the file ourInit.sql as our standardized initialization sequence.

If you’re going to use a script like this, you might need to add parameters to your
mysql command, such as -u and -p to prompt for username and password. It will
depend on how your database and its permissions are configured or whether you
have a file named .my.cnf with your MySQL defaults.

We could also have added an error check after the creation of the new database to
see if it succeeded; if it did not succeed, we could unset DB thereby bypassing the ini-
tialization. However, as many a math textbook has said, “we leave that as an exer-
cise for the reader.”

See Also
• Recipe 2.12, “Skipping a Header in a File”

• Recipe 3.7, “Selecting from a List of Options”

• Recipe 6.16, “Creating Simple Menus for more about the select command”

• Recipe 14.20, “Using Passwords in Scripts”



264 | Chapter 13: Parsing and Similar Tasks

13.12 Isolating Specific Fields in Data

Problem
You need to extract one or more fields from each line of output.

Solution
Use cut if there are delimiters you can easily pick out, even if they are different for the
beginning and end of the field you need:

# Here's an easy one, what users, home directories and shells do
# we have on this NetBSD system
$ cut -d':' -f1,6,7 /etc/passwd
root:/root:/bin/csh
toor:/root:/bin/sh
daemon:/:/sbin/nologin
operator:/usr/guest/operator:/sbin/nologin
bin:/:/sbin/nologin
games:/usr/games:/sbin/nologin
postfix:/var/spool/postfix:/sbin/nologin
named:/var/chroot/named:/sbin/nologin
ntpd:/var/chroot/ntpd:/sbin/nologin
sshd:/var/chroot/sshd:/sbin/nologin
smmsp:/nonexistent:/sbin/nologin
uucp:/var/spool/uucppublic:/usr/libexec/uucp/uucico
nobody:/nonexistent:/sbin/nologin
jp:/home/jp:/usr/pkg/bin/bash

# What is the most popular shell on the system?
$ cut -d':' -f7 /etc/passwd | sort | uniq -c | sort -rn
  10 /sbin/nologin
   2 /usr/pkg/bin/bash
   1 /bin/csh
   1 /bin/sh
   1 /usr/libexec/uucp/uucico

# Now let's see the first two directory levels
$ cut -d':' -f6 /etc/passwd | cut -d'/' -f1-3 | sort -u
/
/home/jp
/nonexistent
/root
/usr/games
/usr/guest
/var/chroot
/var/spool



Isolating Specific Fields in Data | 265

Use awk to split on multiples of whitespace, or if you need to rearrange the order of
the output fields. Note the ➝ denotes a tab character in the output. The default is
space but you can change that using $OFS:

# Users, home directories and shells, but swap the last two
# and use a tab delimiter
$ awk 'BEGIN {FS=":"; OFS="\t"; } { print $1,$7,$6; }' /etc/passwd
root ➝ /bin/csh ➝ /root
toor ➝ /bin/sh ➝ /root
daemon ➝ /sbin/nologin ➝ /
operator ➝ /sbin/nologin ➝ /usr/guest/operator
bin ➝ /sbin/nologin ➝ /
games ➝ /sbin/nologin ➝ /usr/games
postfix ➝ /sbin/nologin ➝ /var/spool/postfix
named ➝ /sbin/nologin ➝ /var/chroot/named
ntpd ➝ /sbin/nologin ➝ /var/chroot/ntpd
sshd ➝ /sbin/nologin ➝ /var/chroot/sshd
smmsp ➝ /sbin/nologin ➝ /nonexistent
uucp ➝ /usr/libexec/uucp/uucico ➝ /var/spool/uucppublic
nobody ➝ /sbin/nologin ➝ /nonexistent
jp ➝ /usr/pkg/bin/bash ➝ /home/jp

# Multiples of whitespace and swapped, first field removed
$ grep '^# [1-9]' /etc/hosts | awk '{print $3,$2}'
10.255.255.255 10.0.0.0
172.31.255.255 172.16.0.0
192.168.255.255 192.168.0.0

Use grep -o to display just the part that matched your pattern. This is particularly
handy when you can’t express delimiters in a way that lends itself to the above solu-
tions. For example, say you need to extract all IP addresses from a file, no matter
where they are. Note we use egrep because of the regular expression (regex), but -o
should work with whichever GNU grep flavor you use, but it is probably not sup-
ported on non-GNU versions. Check your documentation.

$ cat has_ipas
This is line 1 with 1 IPA: 10.10.10.10
Line 2 has 2; they are 10.10.10.11 and 10.10.10.12.
Line three is ftp_server=10.10.10.13:21.

$ egrep -o '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}' has_ipas
10.10.10.10
10.10.10.11
10.10.10.12
10.10.10.13

Discussion
The possibilities are endless, and we haven’t even scratched the surface here. This is
the very essence of what the Unix toolchain idea is all about. Take a number of small
tools that do one thing well and combine them as needed to solve problems.



266 | Chapter 13: Parsing and Similar Tasks

Also, the regex we used for IP addresses is naive and could match other things,
including invalid addresses. For a much better pattern, use the Perl Compatible Reg-
ular Expressions (PCRE) regex from Mastering Regular Expressions by Jeffrey E. F.
Friedl (O’Reilly), if your grep supports -P. Or use Perl.

$ grep -oP '([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\
d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])' has_ipas
10.10.10.10
10.10.10.11
10.10.10.12
10.10.10.13

$ perl -ne 'while ( m/([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.
([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])/g ) { print qq($1.$2.$3.
$4\n); }' has_ipas
10.10.10.10
10.10.10.11
10.10.10.12
10.10.10.13

See Also
• man cut

• man awk

• man grep

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Recipe 8.4, “Cutting Out Parts of Your Output”

• Recipe 13.14, “Trimming Whitespace”

• Recipe 15.10, “Finding My IP Address”

• Recipe 17.16, “Finding Lines in One File But Not in the Other”

13.13 Updating Specific Fields in Data Files

Problem
You need to extract certain parts (fields) of a line (record) and update them.

Solution
In the simple case, you want to extract a single field from a line, then perform some
operation on it. For that, you can use cut or awk. See Recipe 13.12, “Isolating Spe-
cific Fields in Data” for details.

For the more complicated case, you need to modify a field in a data file without
extracting it. If it’s a simple search and replace, use sed.



Updating Specific Fields in Data Files | 267

For example, let’s switch everyone from csh to sh on this NetBSD system.

$ grep csh /etc/passwd
root:*:0:0:Charlie &:/root:/bin/csh

$ sed 's/csh$/sh/' /etc/passwd | grep '^root'
root:*:0:0:Charlie &:/root:/bin/sh

You can use awk if you need to do arithmetic on a field or modify a string only in a
certain field:

$ cat data_file
Line 1 ends
Line 2 ends
Line 3 ends
Line 4 ends
Line 5 ends

$ awk '{print $1, $2+5, $3}' data_file
Line 6 ends
Line 7 ends
Line 8 ends
Line 9 ends
Line 10 ends

# If the second field contains '3', change it to '8' and mark it
$ awk '{ if ($2 == "3") print $1, $2+5, $3, "Tweaked" ; else  print $0; }' data_file
Line 1 ends
Line 2 ends
Line 8 ends Tweaked
Line 4 ends
Line 5 ends

Discussion
The possibilities here are as endless as your data, but hopefully the examples above
will give you enough of a start to easily modify your data.

See Also
• man awk

• man sed

• http://sed.sourceforge.net/sedfaq.html

• http://sed.sourceforge.net/sed1line.txt

• Recipe 11.7, “Figuring Out Date and Time Arithmetic”

• Recipe 13.12, “Isolating Specific Fields in Data”



268 | Chapter 13: Parsing and Similar Tasks

13.14 Trimming Whitespace

Problem
You need to trim leading and/or trailing whitespace from lines for fields of data.

Solution
These solutions rely on a bash-specific treatment of read and $REPLY. See the end of
the discussion for an alternate solution.

First, we’ll show a file with some leading and trailing whitespace. Note we add ~~ to
show the whitespace. Note the ➝  denotes a literal tab character in the output:

# Show the whitespace in our sample file
$ while read; do echo ~~"$REPLY"~~; done < whitespace
~~ This line has leading spaces.~~
~~This line has trailing spaces. ~~
~~ This line has both leading and trailing spaces. ~~
~~ ➝ Leading tab.~~
~~Trailing tab. ➝ ~~
~~ ➝ Leading and trailing tab. ➝ ~~
~~ ➝ Leading mixed whitespace.~~
~~Trailing mixed whitespace. ➝ ~~
~~ ➝ Leading and trailing mixed whitespace. ➝ ~~

To trim both leading and trailing whitespace use $IFS add the built-in REPLY variable
(see the discussion for why this works):

$ while read REPLY; do echo ~~"$REPLY"~~; done < whitespace
~~This line has leading spaces.~~
~~This line has trailing spaces.~~
~~This line has both leading and trailing spaces.~~
~~Leading tab.~~
~~Trailing tab.~~
~~Leading and trailing tab.~~
~~Leading mixed whitespace.~~
~~Trailing mixed whitespace.~~
~~Leading and trailing mixed whitespace.~~

To trim only leading or only trailing spaces, use a simple pattern match:

# Leading spaces only
$ while read; do echo "~~${REPLY## }~~"; done < whitespace
~~This line has leading spaces.~~
~~This line has trailing spaces. ~~
~~This line has both leading and trailing spaces. ~~
~~ ➝ Leading tab.~~
~~Trailing tab. ~~
~~ ➝ Leading and trailing tab. ➝ ~~
~~ ➝ Leading mixed whitespace.~~
~~Trailing mixed whitespace. ➝ ~~
~~ ➝ Leading and trailing mixed whitespace. ➝ ~~



Trimming Whitespace | 269

# Trailing spaces only
$ while read; do echo "~~${REPLY%% }~~"; done < whitespace
~~ This line has leading spaces.~~
~~This line has trailing spaces.~~
~~ This line has both leading and trailing spaces.~~
~~ ➝ Leading tab.~~
~~Trailing tab. ~~
~~ ➝ Leading and trailing tab. ➝ ~~
~~ ➝ Leading mixed whitespace.~~
~~Trailing mixed whitespace. ➝ ~~
~~ ➝ Leading and trailing mixed whitespace. ➝ ~~

Trimming only leading or only trailing whitespace (including tab) is a bit more
complicated:

# You need this either way
$ shopt -s extglob

# Leading whitespaces only
$ while read; do echo "~~${REPLY##+([[:space:]])}~~"; done < whitespace
~~This line has leading spaces.~~
~~This line has trailing spaces. ~~
~~This line has both leading and trailing spaces. ~~
~~Leading tab.~~
~~Trailing tab. ~~
~~Leading and trailing tab. ➝ ~~
~~Leading mixed whitespace.~~
~~Trailing mixed whitespace. ➝ ~~
~~Leading and trailing mixed whitespace. ➝ ~~

# Trailing whitespaces only
$ while read; do echo "~~${REPLY%%+([[:space:]])}~~"; done < whitespace
~~ This line has leading spaces.~~
~~This line has trailing spaces.~~
~~ This line has both leading and trailing spaces.~~
~~ ➝ Leading tab.~~
~~Trailing tab.~~
~~ ➝ Leading and trailing tab.~~
~~ ➝ Leading mixed whitespace.~~
~~Trailing mixed whitespace.~~
~~ ➝ Leading and trailing mixed whitespace.~~

Discussion
OK, at this point you are probably looking at these lines and wondering how we’re
going to make this comprehensible. It turns out there’s a simple, if subtle explanation.

Here we go. The first example used the default $REPLY variable that read uses when
you do not supply your own variable name(s). Chet Ramey (maintainer of bash)
made a design decision that, “[if] there are no variables, save the text of the line read
to the variable $REPLY [unchanged, else parse using $IFS].”

$ while read; do echo ~~"$REPLY"~~; done < whitespace



270 | Chapter 13: Parsing and Similar Tasks

But when we supply one or more variable names to read, it does parse the input,
using the values in $IFS (which are space, tab, and newline by default). One step of
that parsing process is to trim leading and trailing whitespace—just what we want:

$ while read REPLY; do echo ~~"$REPLY"~~; done < whitespace

To trim leading or trailing (but not both) spaces is easy using the ${##} or ${%%}
operators (see Recipe 6.7, “Testing with Pattern Matches”):

$ while read; do echo "~~${REPLY## }~~"; done < whitespace
$ while read; do echo "~~${REPLY%% }~~"; done < whitespace

But covering tabs is a little harder. If we had only tabs, we could use the ${##} or
${%%} operators and insert literal tabs using the Ctrl-V Ctrl-I key sequence. But that’s
risky since it’s probable there’s a mix of spaces and tabs, and some text editors or
unwary users may strip out the tabs. So we turn on extended globbing and use a
character class to make our intent clear. The [:space:] character class would work
without extglob, but we need to say “one or more occurrences” using +( ) or else it
will trim a single space or tabs, but not multiples or both on the same line.

# This works, need extglob for +( ) part
$ shopt -s extglob
$ while read; do echo "~~${REPLY##+([[:space:]])}~~"; done < whitespace
$ while read; do echo "~~${REPLY%%+([[:space:]])}~~"; done < whitespace

# This doesn't
$ while read; do echo "~~${REPLY##[[:space:]]}~~"; done < whitespace
~~This line has leading spaces.~~
~~This line has trailing spaces. ~~
~~This line has both leading and trailing spaces. ~~
~~Leading tab.~~
~~Trailing tab. ~~
~~Leading and trailing tab.     ~~
~~ ➝ Leading mixed whitespace.~~
~~Trailing mixed whitespace. ➝ ~~
~~ ➝ Leading and trailing mixed whitespace. ➝ ~~

Here’s a different take, exploiting the same $IFS parsing, but to parse out fields (or
words) instead of records (or lines):

$ for i in $(cat white_space); do echo ~~$i~~; done
~~This~~
~~line~~
~~has~~
~~leading~~
~~white~~
~~space.~~
~~This~~
~~line~~
~~has~~
~~trailing~~
~~white~~
~~space.~~



Compressing Whitespace | 271

~~This~~
~~line~~
~~has~~
~~both~~
~~leading~~
~~and~~
~~trailing~~
~~white~~
~~space.~~

Finally, although the original solutions rely on Chet’s design decision about read and
$REPLY, this solution does not:

shopt -s extglob

while IFS= read -r line; do
    echo "None: ~~$line~~"                   # preserve all whitespaces
    echo "Ld:   ~~${line##+([[:space:]])}~~" # trim leading whitespace
    echo "Tr:   ~~${line%%+([[:space:]])}~~" # trim trailing whitespace
    line="${line##+([[:space:]])}"           # trim leading and...
    line="${line%%+([[:space:]])}"           # ...trailing whitespace
    echo "All:  ~~$line~~"                   # Show all trimmed
done < whitespace

See Also
• Recipe 6.7, “Testing with Pattern Matches”

• Recipe 13.6, “Parsing Text with a read Statement”

13.15 Compressing Whitespace

Problem
You have runs of whitespace in a file (perhaps it is fixed length, space padded) and
you need to compress the spaces down to a single character or delimiter.

Solution
Use tr or awk as appropriate.

Discussion
If you are trying to compress runs of whitespace down to a single character, you can
use tr, but be aware that you may damage the file if it is not well formed. For exam-
ple, if fields are delimited by multiple whitespace characters but internally have
spaces, compressing multiple spaces down to one space will remove that distinction.
Imagine if the _ characters in the following example were spaces instead. Note the ➝

denotes a literal tab character in the output.



272 | Chapter 13: Parsing and Similar Tasks

$ cat data_file
Header1                  Header2                  Header3
Rec1_Field1              Rec1_Field2              Rec1_Field3
Rec2_Field1              Rec2_Field2              Rec2_Field3
Rec3_Field1              Rec3_Field2              Rec3_Field3

$ cat data_file | tr -s ' ' '\t'
Header1 ➝ Header2 ➝ Header3
Rec1_Field1 ➝ Rec1_Field2 ➝ Rec1_Field3
Rec2_Field1 ➝ Rec2_Field2 ➝ Rec2_Field3
Rec3_Field1 ➝ Rec3_Field2 ➝ Rec3_Field3

If your field delimiter is more than a single character, tr won’t work since it trans-
lates single characters from its first set into the matching single character in the sec-
ond set. You can use awk to combine or convert field separators. awk’s internal field
separator FS accepts regular expressions, so you can separate on pretty much any-
thing. There is a handy trick to this as well. An assignment to any field causes awk to
reassemble the record using the output field separator OFS. So assigning field one to
itself and then printing the record has the effect of translating FS to OFS without you
having to worry about how many records there are in the data.

In this example, multiple spaces delimit fields, but fields also have internal spaces, so
the more simple case of awk 'BEGIN { OFS = "\t" } { $1 = $1; print }' data_file1
won’t work. Here is a data file:

$ cat data_file1
Header1                  Header2                  Header3
Rec1 Field1              Rec1 Field2              Rec1 Field3
Rec2 Field1              Rec2 Field2              Rec2 Field3
Rec3 Field1              Rec3 Field2              Rec3 Field

In the next example, we assign two spaces to FS and tab to OFS. We then make an
assignment ($1 = $1) so awk rebuilds the record, but that results in strings of tabs
replacing the double spaces, so we use gsub to squash the tabs, then we print. Note
the ➝ denotes a literal tab character in the output. The output is a little hard to read,
so there is a hex dump as well. Recall that ASCII tab is 09 while ASCII space is 20.

$ awk 'BEGIN { FS = "  "; OFS = "\t" } { $1 = $1; gsub(/\t+/, "\t"); print }' data_
file1
Header1 ➝ Header2 ➝ Header3
Rec1 Field1 ➝ Rec1 Field2 ➝ Rec1 Field3
Rec2 Field1 ➝ Rec2 Field2 ➝ Rec2 Field3
Rec3 Field1 ➝ Rec3 Field2 ➝ Rec3 Field3

$ awk 'BEGIN { FS = "  "; OFS = "\t" } { $1 = $1; gsub(/\t+/, "\t"); print }' data_
file1 | hexdump -C
00000000  48 65 61 64 65 72 31 09  48 65 61 64 65 72 32 09  |Header1.Header2.|
00000010  48 65 61 64 65 72 33 0a  52 65 63 31 20 46 69 65  |Header3.Rec1 Fie|
00000020  6c 64 31 09 52 65 63 31  20 46 69 65 6c 64 32 09  |ld1.Rec1 Field2.|
00000030  52 65 63 31 20 46 69 65  6c 64 33 0a 52 65 63 32  |Rec1 Field3.Rec2|



Processing Fixed-Length Records | 273

00000040  20 46 69 65 6c 64 31 09  52 65 63 32 20 46 69 65  | Field1.Rec2 Fie|
00000050  6c 64 32 09 52 65 63 32  20 46 69 65 6c 64 33 0a  |ld2.Rec2 Field3.|
00000060  52 65 63 33 20 46 69 65  6c 64 31 09 52 65 63 33  |Rec3 Field1.Rec3|
00000070  20 46 69 65 6c 64 32 09  52 65 63 33 20 46 69 65  | Field2.Rec3 Fie|
00000080  6c 64 0a                                          |ld.|
00000083

You can also use awk to trim leading and trailing whitespace in the same way, but as
noted previously, this will replace your field separators unless they are already
spaces:

# Remove leading and trailing whitespace,
# but also replace TAB field separators with spaces
$ awk '{ $1 = $1; print }' white_space

See Also
• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk  by Arnold Robbins and Dale Dougherty (O’Reilly)

• Recipe 13.16, “Processing Fixed-Length Records”

• “tr Escape Sequences” in Appendix A

• “Table of ASCII Values” in Appendix A

13.16 Processing Fixed-Length Records

Problem
You need to read and process data that is in a fixed-length (also called fixed-width)
form.

Solution
Use Perl or gawk 2.13 or greater. Given a file like:

$ cat fixed-length_file
Header1-----------Header2-------------------------Header3---------
Rec1 Field1       Rec1 Field2                     Rec1 Field3
Rec2 Field1       Rec2 Field2                     Rec2 Field3
Rec3 Field1       Rec3 Field2                     Rec3 Field3

You can process it using GNU’s gawk, by setting FIELDWIDTHS to the correct field
lengths, setting OFS as desired, and making an assignment so gawk rebuilds the
record (see the awk trick in Recipe 13.14, “Trimming Whitespace”). However, gawk
does not remove the spaces used in padding the original record, so we use two gsubs
to do that, one for all the internal fields and the other for the last field in each record.
Finally, we just print. Note the ➝ denotes a literal tab character in the output. The
output is a little hard to read, so there is a hex dump as well. Recall that ASCII tab is
09 while ASCII space is 20.



274 | Chapter 13: Parsing and Similar Tasks

$ gawk ' BEGIN { FIELDWIDTHS = "18 32 16"; OFS = "\t" } { $1 = $1; gsub(/ +\t/, "\
t"); gsub(/ +$/, ""); print }' fixed-length_file
Header1----------- ➝ Header2------------------------- ➝ Header3---------
Rec1 Field1 ➝ Rec1 Field2 ➝ Rec1 Field3
Rec2 Field1 ➝ Rec2 Field2 ➝ Rec2 Field3
Rec3 Field1 ➝ Rec3 Field2 ➝ Rec3 Field3

$ gawk ' BEGIN { FIELDWIDTHS = "18 32 16"; OFS = "\t" } { $1 = $1; gsub(/ +\t/, "\
t"); gsub(/ +$/, ""); print }' fixed-length_file | hexdump -C
00000000  48 65 61 64 65 72 31 2d  2d 2d 2d 2d 2d 2d 2d 2d  |Header1---------|
00000010  2d 2d 09 48 65 61 64 65  72 32 2d 2d 2d 2d 2d 2d  |--.Header2------|
00000020  2d 2d 2d 2d 2d 2d 2d 2d  2d 2d 2d 2d 2d 2d 2d 2d  |----------------|
00000030  2d 2d 2d 09 48 65 61 64  65 72 33 2d 2d 2d 2d 2d  |---.Header3-----|
00000040  2d 2d 2d 2d 0a 52 65 63  31 20 46 69 65 6c 64 31  |----.Rec1 Field1|
00000050  09 52 65 63 31 20 46 69  65 6c 64 32 09 52 65 63  |.Rec1 Field2.Rec|
00000060  31 20 46 69 65 6c 64 33  0a 52 65 63 32 20 46 69  |1 Field3.Rec2 Fi|
00000070  65 6c 64 31 09 52 65 63  32 20 46 69 65 6c 64 32  |eld1.Rec2 Field2|
00000080  09 52 65 63 32 20 46 69  65 6c 64 33 0a 52 65 63  |.Rec2 Field3.Rec|
00000090  33 20 46 69 65 6c 64 31  09 52 65 63 33 20 46 69  |3 Field1.Rec3 Fi|
000000a0  65 6c 64 32 09 52 65 63  33 20 46 69 65 6c 64 33  |eld2.Rec3 Field3|
000000b0  0a                                                |.|
000000b1

If you don’t have gawk, you can use Perl, which is more straightforward anyway. We
use a non-printing while input loop (-n), unpack each record ($_) as it’s read, and
turn the resulting list back into a scalar by joining the elements with a tab. We then
print each record, adding a newline at the end:

$ perl -ne 'print join("\t", unpack("A18 A32 A16", $_) ) . "\n";' fixed-length_file
Header1----------- ➝ Header2------------------------- ➝ Header3---------
Rec1 Field1 ➝ Rec1 Field2 ➝ Rec1 Field3
Rec2 Field1 ➝ Rec2 Field2 ➝ Rec2 Field3
Rec3 Field1 ➝ Rec3 Field2 ➝ Rec3 Field3

$ perl -ne 'print join("\t", unpack("A18 A32 A16", $_) ) . "\n";' fixed-length_file |
hexdump -C
00000000  48 65 61 64 65 72 31 2d  2d 2d 2d 2d 2d 2d 2d 2d  |Header1---------|
00000010  2d 2d 09 48 65 61 64 65  72 32 2d 2d 2d 2d 2d 2d  |--.Header2------|
00000020  2d 2d 2d 2d 2d 2d 2d 2d  2d 2d 2d 2d 2d 2d 2d 2d  |----------------|
00000030  2d 2d 2d 09 48 65 61 64  65 72 33 2d 2d 2d 2d 2d  |---.Header3-----|
00000040  2d 2d 2d 2d 0a 52 65 63  31 20 46 69 65 6c 64 31  |----.Rec1 Field1|
00000050  09 52 65 63 31 20 46 69  65 6c 64 32 09 52 65 63  |.Rec1 Field2.Rec|
00000060  31 20 46 69 65 6c 64 33  0a 52 65 63 32 20 46 69  |1 Field3.Rec2 Fi|
00000070  65 6c 64 31 09 52 65 63  32 20 46 69 65 6c 64 32  |eld1.Rec2 Field2|
00000080  09 52 65 63 32 20 46 69  65 6c 64 33 0a 52 65 63  |.Rec2 Field3.Rec|
00000090  33 20 46 69 65 6c 64 31  09 52 65 63 33 20 46 69  |3 Field1.Rec3 Fi|
000000a0  65 6c 64 32 09 52 65 63  33 20 46 69 65 6c 64 33  |eld2.Rec3 Field3|
000000b0  0a                                                |.|
000000b1

See the Perl documentation for the pack and unpack template formats.



Processing Files with No Line Breaks | 275

Discussion
Anyone with any Unix background will automatically use some kind of delimiter in
output, since the textutils toolchain is never far from mind, so fixed-length (also
called fixed-width) records are rare in the Unix world. They are very common in the
mainframe world however, so they will occasionally crop up in large applications
that originated on big iron, such as some applications from SAP. As we’ve just seen,
it’s no problem to handle.

One caveat to this recipe is that it requires each record to end in a newline. Many old
mainframe record formats don’t, in which case you can use Recipe 13.17, “Process-
ing Files with No Line Breaks” to add newlines to the end of each record before
processing.

See Also
• man gawk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

• http://perldoc.perl.org/functions/unpack.html

• http://perldoc.perl.org/functions/pack.html

• Recipe 13.14, “Trimming Whitespace”

• Recipe 13.17, “Processing Files with No Line Breaks”

13.17 Processing Files with No Line Breaks

Problem
You have a large file with no line breaks, and you need to process it.

Solution
Pre-process the file and add line breaks in appropriate places. For example, Open-
Office.org’s Open Document Format (ODF) files are basically zipped XML files. It is
possible to unzip them and grep the XML, which we did a lot while writing this
book. See Recipe 12.5, “Comparing Two Documents” for a more comprehensive
treatment of ODF files. In this example, we insert a newline after every closing angle
bracket (>). That makes it much easier to process the file using grep or other textutils.
Note that we must enter a backslash followed immediately by the Enter key to
embed an escaped newline in the sed script:

$ wc -l content.xml
       1 content.xml

$ sed -e 's/>/>\
/g' content.xml | wc -l
    1687



276 | Chapter 13: Parsing and Similar Tasks

If you have fixed-length records with no newlines, do this instead, where 48 is the
length of the record.

$ cat fixed-length
Line_1_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_2_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_3_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_4_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_5_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_6_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_7_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_8_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_9_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_10_
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_11_
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZLine_12_
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ

$  wc -l fixed-length
       1 fixed-length

$ sed 's/.\{48\}/&\
/g;' fixed-length
Line_1_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_2_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_3_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_4_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_5_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_6_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_7_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_8_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_9_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_10_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_11_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_12_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ

$ perl -pe 's/(.{48})/$1\n/g;' fixed-length
Line_1_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_2_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_3_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_4_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_5_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_6_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_7_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_8_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_9_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_10_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_11_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ
Line_12_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZ



Converting a Data File to CSV | 277

Discussion
This happens often when people create output programatically, especially using
canned modules and especially with HTML or XML output.

Note the sed substitutions have an odd construct that allows an embedded newline.
In sed, a literal ampersand (&) on the righthand side (RHS) of a substitution is
replaced by the entire expression matched on the lefthand side (LHS), and the trail-
ing \ on the first line escapes the newline so the shell accepts it, but it’s still in the sed
RHS substitution. This is because sed doesn’t recognize \n as a metacharacter on the
RHS of s///.

See Also
• http://sed.sourceforge.net/sedfaq.html

• Effective awk Programming by Arnold Robbins (O’Reilly)

• sed & awk  by Arnold Robbins and Dale Dougherty (O’Reilly)

• Recipe 12.5, “Comparing Two Documents”

• Recipe 13.16, “Processing Fixed-Length Records”

13.18 Converting a Data File to CSV

Problem
You have a data file that you need to convert to a Comma Separated Values (CSV)
file.

Solution
Use awk to convert the data into CSV format:

$ awk 'BEGIN { FS="\t"; OFS="\",\"" } { gsub(/"/, "\"\""); $1 = $1; printf "\"%s\"\
n", $0}' tab_delimited
"Line 1","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 2","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 3","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 4","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"

You can do the same thing in Perl also:

$ perl -naF'\t' -e 'chomp @F; s/"/""/g for @F; print q(").join(q(","), @F).qq("\n);'
tab_delimited
"Line 1","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 2","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 3","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 4","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"



278 | Chapter 13: Parsing and Similar Tasks

Discussion
First of all, it’s tricky to define exactly what CSV really means. There is no formal
specification, and various vendors have implemented various versions. Our version
here is very simple, and should hopefully work just about anywhere. We place dou-
ble quotes around all fields (some implementations only quote strings, or strings
with internal commas), and we double internal double quotes.

To do that, we have awk split up the input fields using a tab as the field separator,
and set the output field separator (OFS) to ",". We then globally replace any double
quotes with two double quotes, make an assignment so awk rebuilds the record (see
the awk trick in Recipe 13.14, “Trimming Whitespace”) and print out the record
with leading and trailing double quotes. We have to escape double quotes in several
places, which looks a little cluttered, but otherwise this is very straightforward.

See Also
• awk FAQ

• Recipe 13.14, “Trimming Whitespace”

• Recipe 13.19, “Parsing a CSV Data File”

13.19 Parsing a CSV Data File

Problem
You have a Comma Separated Values (CSV) data file that you need to parse.

Solution
Unlike the previous recipe for converting to CSV, there is no easy way to do this,
since it’s tricky to define exactly what CSV really means.

Possible solutions for you to explore are:

• sed: http://sed.sourceforge.net/sedfaq4.html#s4.12

• awk: http://lorance.freeshell.org/csv/

• Perl: Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly) has a regex
to do this

• Perl: See the CPAN (http://www.cpan.org/) for various modules

• Load the CSV file into a spreadsheet (OpenOffice.org’s Calc and Microsoft’s
Excel both work), then copy and paste into a text editor and you should get tab
delimited output that you can now use easily



Parsing a CSV Data File | 279

Discussion
As noted in Recipe 13.18, “Converting a Data File to CSV,” there is no formal speci-
fication for CSV, and that fact, combined with data variations, makes this task much
harder than it sounds.

See Also
• Recipe 13.18, “Converting a Data File to CSV”



280

Chapter 14CHAPTER 14

Writing Secure Shell Scripts 15

Writing secure shell scripts?! How can shell scripts be secure when you can read the
source code?

Any system that depends on concealing implementation details is attempting to use
security by obscurity, and that is no security at all. Just ask the major software manu-
facturers whose source code is a closely guarded trade secret, yet whose products are
incessantly vulnerable to exploits written by people who have never seen that source
code. Contrast that with the code from OpenSSH and OpenBSD, which is totally
open, yet very secure.

Security by obscurity will never work for long, though some forms of it can be a use-
ful additional layer of security. For example, having daemons assigned to listen on
nonstandard port numbers will keep a lot of the so-called script-kiddies away. But
security by obscurity must never be the only layer of security because sooner or later,
someone is going to discover whatever you’ve hidden.

As Bruce Schneier says, security is a process. It’s not a product, object, or technique,
and it is never finished. As technology, networks, attacks and defenses evolve, so
must your security process. So what does it mean to write secure shell scripts?

Secure shell scripts will reliably do what they are supposed to do, and only what they
are supposed to do. They won’t lend themselves to being exploited to gain root
access, they won’t accidentally rm -rf /, and they won’t leak information, such as
passwords. They will be robust, but will fail gracefully. They will tolerate inadvert-
ent user mistakes and sanitize all user input. They will be as simple as possible, and
contain only clear, readable code and documentation so that the intention of each
line is unambiguous.

That sounds a lot like any well-designed, robust program, doesn’t it? Security should
be part of any good design process from the start—it shouldn’t be tacked on at the
end. In this chapter we’ve highlighted the most common security weaknesses and
questions, and shown you how to tackle them.



Writing Secure Shell Scripts | 281

A lot has been written about security over the years. If you’re interested, Practical
UNIX & Internet Security by Gene Spafford et al. (O’Reilly) is a good place to start.
Chapter 15 of Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins
(O’Reilly), is another excellent resource. There are also many good online refer-
ences, such as “A Lab engineer’s check list for writing secure Unix code” at http://
www.auscert.org.au/render.html?it=1975.

The following listing collects the most universal of the secure shell programming
techniques, so they are all in one place as a quick reference when you need them or
to copy into a script template. Be sure to read the full recipe for each technique so
you understand it.

#!/usr/bin/env bash
# cookbook filename: security_template

# Set a sane/secure path
PATH='/usr/local/bin:/bin:/usr/bin'
# It's almost certainly already marked for export, but make sure
\export PATH

# Clear all aliases.  Important: leading \ inhibits alias expansion
\unalias -a

# Clear the command path hash
hash -r

# Set the hard limit to 0 to turn off core dumps
ulimit -H -c 0 --

# Set a sane/secure IFS (note this is bash & ksh93 syntax only--not portable!)
IFS=$' \t\n'

# Set a sane/secure umask variable and use it
# Note this does not affect files already redirected on the command line
# 002 results in 0774 perms, 077 results in 0700 perms, etc...
UMASK=002
umask $UMASK

until [ -n "$temp_dir" -a ! -d "$temp_dir" ]; do
    temp_dir="/tmp/meaningful_prefix.${RANDOM}${RANDOM}${RANDOM}"
done
mkdir -p -m 0700 $temp_dir \
  || (echo "FATAL: Failed to create temp dir '$temp_dir': $?"; exit 100)

# Do our best to clean up temp files no matter what
# Note $temp_dir must be set before this, and must not change!
cleanup="rm -rf $temp_dir"
trap "$cleanup" ABRT EXIT HUP INT QUIT



282 | Chapter 14: Writing Secure Shell Scripts

14.1 Avoiding Common Security Problems

Problem
You want to avoid common security problems in your scripting.

Solution
Validate all external input, including interactive input and that from configuration
files and interactive use. In particular, never eval input that you have not checked
very thoroughly.

Use secure temporary files, ideally in secure temporary directories.

Make sure you are using trusted external executables.

Discussion
In a way, this recipe barely scratches the surface of scripting and system security. Yet
it also covers the most common security problems you’ll find.

Data validation, or rather the lack of it, is a huge deal in computer security right
now. This is the problem that leads to buffer overflows, which are by far the most
common class of exploit going around. bash doesn’t suffer from this issue in the
same way that C does, but the concepts are the same. In the bash world it’s more
likely that unvalidated input will contain something like ; rm -rf / than a buffer over-
flow; however, neither is welcome. Validate your data!

Race conditions are another big issue, closely tied to the problem of an attacker gain-
ing an ability to write over unexpected files. A race condition exists when two or
more separate events must occur in the correct order at the correct time without
external interference. They often result in providing an unprivileged user with read
and/or write access to files they shouldn’t be able to access, which in turn can result
in so-called privilege escalation, where an ordinary user can gain root access. Inse-
cure use of temporary files is a very common factor in this kind of attack. Using
secure temporary files, especially inside secure temporary directories, will eliminate
this attack vector.

Another common attack vector is trojaned utilities. Like the Trojan horse, these
appear to be one thing while they are in fact something else. The canonical example
here is the trojaned ls command that works just like the real ls command except
when run by root. In that case it creates a new user called r00t, with a default pass-
word known to the attacker and deletes itself. Using a secure $PATH is about the best
you can do from the scripting side. From the systems side there are many tools such
as Tripwire and AIDE to help you assure system integrity.



Setting a Secure $PATH | 283

See Also
• http://www.tripwiresecurity.com/

• http://www.cs.tut.fi/~rammer/aide.html

• http://osiris.shmoo.com/

14.2 Avoiding Interpreter Spoofing

Problem
You want to avoid certain kinds of setuid root spoofing attacks.

Solution
Pass a single trailing dash to the shell, as in:

#!/bin/bash -

Discussion
The first line of a script is a magic line (often called the shebang line) that tells the
kernel what interpreter to use to process the rest of the file. The kernel will also look
for a single option to the specified interpreter. There are some attacks that take
advantage of this fact, but if you pass an argument along, they are avoided. See http://
www.faqs.org/faqs/unix-faq/faq/part4/section-7.html for details.

However, hard-coding the path to bash may present a portability issue. See Recipe
15.1, “Finding bash Portably for #!” for details.

See Also
• Recipe 14.15, “Writing setuid or setgid Scripts”

• Recipe 15.1, “Finding bash Portably for #!”

14.3 Setting a Secure $PATH

Problem
You want to make sure you are using a secure path.

Solution
Set $PATH to a known good state at the beginning of every script:

# Set a sane/secure path
PATH='/usr/local/bin:/bin:/usr/bin'
# It's almost certainly already marked for export, but make sure
export PATH



284 | Chapter 14: Writing Secure Shell Scripts

Or use the getconf utility to get a path guaranteed by POSIX to find all of the stan-
dard utilities:

export PATH=$(getconf PATH)

Discussion
There are two portability problems with the example above. First, `` is more porta-
ble (but less readable) than $( ). Second, having the export command on the same
line as the variable assignment won’t always work. var='foo'; export var is more
portable than export var='foo'. Also note that the export command need only be
used once to flag a variable to be exported to child processes.

If you don’t use getconf, our example is a good default path for starters, though you
may need to adjust it for your particular environment or needs. You might also use
the less portable version:

export PATH='/usr/local/bin:/bin:/usr/bin'

Depending on your security risk and needs, you should also consider using absolute
paths. This tends to be cumbersome and can be an issue where portability is con-
cerned, as different operating systems put tools in different places. One way to miti-
gate these issues to some extent is to use variables. If you do this, sort them so you
don’t end up with the same command three times because you missed it scanning
the unsorted list.

One other advantage of this method is that it makes it very easy to see exactly what
tools your script depends on, and you can even add a simple function to make sure
that each tool is available and executable before your script really gets going.

#!/usr/bin/env bash
# cookbook filename: finding_tools

# export may or may not also be needed, depending on what you are doing

# These are fairly safe bets
_cp='/bin/cp'
_mv='/bin/mv'
_rm='/bin/rm'

# These are a little trickier
case $(/bin/uname) in
    'Linux')
        _cut='/bin/cut'
        _nice='/bin/nice'
        # [...]
    ;;
    'SunOS')
        _cut='/usr/bin/cut'
        _nice='/usr/bin/nice'



Clearing All Aliases | 285

        # [...]
    ;;
    # [...]
esac

Be careful about the variable names you use. Some programs like
InfoZip use environment variables such as $ZIP and $UNZIP to pass set-
tings to the program itself. So if you do something like ZIP='/usr/bin/
zip', you can spend days pulling your hair out wondering why it
works fine from the command line, but not in your script. Trust us.
We learned this one the hard way. Also RTFM.

See Also
• Recipe 6.14, “Branching Many Ways”

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 15.2, “Setting a POSIX $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 19.3, “Forgetting That the Current Directory Is Not in the $PATH”

• “Built-in Commands and Reserved Words” in Appendix A

14.4 Clearing All Aliases

Problem
You need to make sure that there are no malicious aliases in your environment for
security reasons.

Solution
Use the \unalias -a command to unalias any existing aliases.

Discussion
If an attacker can trick root or even another user into running a command, they will
be able to gain access to data or privileges they shouldn’t have. One way to trick
another user into running a malicious program is to create an alias to some other
common program (e.g., ls).

The leading \, which suppresses alias expansion, is very important because without
it you can do evil things like this:



286 | Chapter 14: Writing Secure Shell Scripts

$ alias unalias=echo
$ alias builtin=ls

$ builtin unalias vi
ls: unalias: No such file or directory
ls: vi: No such file or directory

$ unalias -a
-a

See Also
• Recipe 10.7, “Redefining Commands with alias”

• Recipe 10.8, “Avoiding Aliases, Functions”

• Recipe 16.6, “Shortening or Changing Command Names”

14.5 Clearing the Command Hash

Problem
You need to make sure that your command hash has not been subverted.

Solution
Use the hash -r command to clear entries from the command hash.

Discussion
On execution, bash “remembers” the location of most commands found in the $PATH
to speed up subsequent invocations.

If an attacker can trick root or even another user into running a command, they will
be able to gain access to data or privileges they shouldn’t have. One way to trick
another user into running a malicious program is to poison the hash so that the
wrong program may be run.

See Also
• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 15.2, “Setting a POSIX $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 19.3, “Forgetting That the Current Directory Is Not in the $PATH”



Setting a Secure $IFS | 287

14.6 Preventing Core Dumps

Problem
You want to prevent your script from dumping core in the case of an unrecoverable
error, since core dumps may contain sensitive data from memory such as passwords.

Solution
Use the bash built-in ulimit to set the core file size limit to 0, typically in your .bashrc
file:

ulimit -H -c 0 --

Discussion
Core dumps are intended for debugging and contain an image of the memory used
by the process at the time it failed. As such, the file will contain anything the process
had stored in memory (e.g., user-entered passwords).

Set this in a system-level file such as /etc/profile or /etc/bashrc to which users have no
write access if you don’t want them to be able to change it.

See Also
• help ulimit

14.7 Setting a Secure $IFS

Problem
You want to make sure your Internal Field Separator environment variable is clean.

Solution
Set it to a known good state at the beginning of every script using this clear (but not
POSIX-compliant) syntax:

# Set a sane/secure IFS (note this is bash & ksh93 syntax only--not portable!)
IFS=$' \t\n'

Discussion
As noted, this syntax is not portable. However, the canonical portable syntax is unre-
liable because it may easily be inadvertently stripped by editors that trim whitespace.
The values are traditionally space, tab, newline—and the order is important. $*,
which returns all positional parameters, the special ${!prefix@} and ${!prefix*}
parameter expansions, and programmable completion, all use the first value of $IFS
as their separator.



288 | Chapter 14: Writing Secure Shell Scripts

The typical method for writing that leaves a trailing space and tab on the first line:

1 IFS='• ➝ &#182;¶
2 '

Newline, space, tab is less likely to be trimmed, but changes the default order, which
may result in unexpected results from some commands.

1 IFS='&#182;¶
2 • ➝ '

See Also
• Recipe 13.14, “Trimming Whitespace”

14.8 Setting a Secure umask

Problem
You want to make sure you are using a secure umask.

Solution
Use the bash built-in umask to set a known good state at the beginning of every
script:

# Set a sane/secure umask variable and use it
# Note this does not affect files already redirected on the command line
# 002 results in 0774 perms, 077 results in 0700 perms, etc...
UMASK=002
umask $UMASK

Discussion
We set the $UMASK variable in case we need to use different masks elsewhere in the
program. You could just as easily do without it; it’s not a big deal.

umask 002

Remember that umask is a mask that specifies the bits to be taken away
from the default permissions of 777 for directories and 666 for files.
When in doubt, test it out:

# Run a new shell so you don't affect your current
environment
/tmp$ bash

# Check the current settings
/tmp$ touch um_current

# Check some other settings
/tmp$ umask 000 ; touch um_000
/tmp$ umask 022 ; touch um_022



Finding World-Writable Directories in Your $PATH | 289

/tmp$ umask 077 ; touch um_077

/tmp$ ls -l um_*
-rw-rw-rw-    1 jp       jp        0 Jul 22 06:05 um000
-rw-r--r--    1 jp       jp        0 Jul 22 06:05 um022
-rw-------    1 jp       jp        0 Jul 22 06:05 um077
-rw-rw-r--    1 jp       jp        0 Jul 22 06:05 umcurrent

# Clean up and exit the sub-shell
/tmp$ rm um_*
/tmp$ exit

See Also
• help umask

• http://linuxzoo.net/page/sec_umask.html

14.9 Finding World-Writable Directories in Your $PATH

Problem
You want to make sure that there are no world-writable directories in root’s $PATH.
To see why, read Recipe 14.10, “Adding the Current Directory to the $PATH.”

Solution
Use this simple script to check your $PATH. Use it in conjunction with su - or sudo to
check paths for other users:

#!/usr/bin/env bash
# cookbook filename: chkpath.1
# Check your $PATH for world-writable or missing directories

exit_code=0

for dir in ${PATH//:/ }; do
    [ -L "$dir" ] && printf "%b" "symlink, "
    if [ ! -d "$dir" ]; then
        printf "%b" "missing\t\t"
          (( exit_code++ ))
    elif [ "$(ls -lLd $dir | grep '^d.......w. ')" ]; then
          printf "%b" "world writable\t"
          (( exit_code++ ))
    else
          printf "%b" "ok\t\t"
    fi
    printf "%b" "$dir\n"
done
exit $exit_code



290 | Chapter 14: Writing Secure Shell Scripts

For example:

# ./chkpath
ok              /usr/local/sbin
ok              /usr/local/bin
ok              /sbin
ok              /bin
ok              /usr/sbin
ok              /usr/bin
ok              /usr/X11R6/bin
ok              /root/bin
missing         /does_not_exist
world writable  /tmp
symlink, world writable /tmp/bin
symlink, ok     /root/sbin

Discussion
We convert the $PATH to a space-delimited list using the technique from Recipe 9.11,
“Finding a File Using a List of Possible Locations,” test for symbolic links (-L), and
make sure the directory actually exists (-d). Then we get a long directory listing (-l),
dereferencing symbolic links (-L), and listing the directory name only (-d), not the
directory’s contents. Then we finally get to grep for world-writable directories.

As you can see, we spaced out the ok directories, while directories with a problem
may get a little cluttered. We also broke the usual rule of Unix tools being quiet
unless there’s a problem, because we felt it was a useful opportunity to see exactly
what is in your path and give it a once-over in addition to the automated check.

We also provide an exit code of zero on success with no problems detected in the
$PATH, or the count of errors found. With a little more tweaking, we can add the file’s
mode, owner, and group into the output, which might be even more valuable to
check:

#!/usr/bin/env bash
# cookbook filename: chkpath.2
# Check your $PATH for world-writable or missing directories, with 'stat'

exit_code=0

for dir in ${PATH//:/ }; do
    [ -L "$dir" ] && printf "%b" "symlink, "
    if [ ! -d "$dir" ]; then
        printf "%b" "missing\t\t\t\t"
        (( exit_code++ ))
    else
        stat=$(ls -lHd $dir | awk '{print $1, $3, $4}')
        if [ "$(echo $stat | grep '^d.......w. ')" ]; then
            printf "%b" "world writable\t$stat "
            (( exit_code++ ))
        else
            printf "%b" "ok\t\t$stat "



Adding the Current Directory to the $PATH | 291

        fi
    fi
    printf "%b" "$dir\n"

done
exit $exit_code

For example:

# ./chkpath ; echo $?
ok              drwxr-xr-x root root /usr/local/sbin
ok              drwxr-xr-x root root /usr/local/bin
ok              drwxr-xr-x root root /sbin
ok              drwxr-xr-x root root /bin
ok              drwxr-xr-x root root /usr/sbin
ok              drwxr-xr-x root root /usr/bin
ok              drwxr-xr-x root root /usr/X11R6/bin
ok              drwx------ root root /root/bin
missing                         /does_not_exist
world writable  drwxrwxrwt root root /tmp
symlink, ok             drwxr-xr-x root root /root/sbin
2

See Also
• Recipe 9.11, “Finding a File Using a List of Possible Locations”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 15.2, “Setting a POSIX $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 19.3, “Forgetting That the Current Directory Is Not in the $PATH”

14.10 Adding the Current Directory to the $PATH

Problem
Having to type ./script is tedious and you’d rather just add . (or an empty direc-
tory, meaning a leading or trailing : or a :: in the middle) to your $PATH.

Solution
We advise against doing this for any user, but we strongly advise against doing this
for root. If you absolutely must do this,  make sure . comes last. Never do it as root.

Discussion
As you know, the shell searches the directories listed in $PATH when you enter a com-
mand name without a path. The reason not to add . is the same reason not to allow
world-writable directories in your $PATH.



292 | Chapter 14: Writing Secure Shell Scripts

Say you are in /tmp and have . as the first thing in your $PATH. If you type ls and there
happens to be a file called /tmp/ls, you will run that file instead of the /bin/ls you
meant to run. Now what? Well, it depends. It’s possible (even likely given the name)
that /tmp/ls is a malicious script, and if you have just run it as root there is no telling
what it could do, up to and including deleting itself when it’s finished to remove the
evidence.

So what if you put it last? Well, have you ever typed mc instead of mv? We have. So
unless Midnight Commander is installed on your system, you could accidentally run
./mc when you meant /bin/mv, with the same results as above.

Just say no to dot!

See Also
• Section 2.13 of http://www.faqs.org/faqs/unix-faq/faq/part2/

• Recipe 9.11, “Finding a File Using a List of Possible Locations”

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 15.2, “Setting a POSIX $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 19.3, “Forgetting That the Current Directory Is Not in the $PATH”

14.11 Using Secure Temporary Files

Problem
You need to create a temporary file or directory, but are aware of the security impli-
cations of using a predictable name.

Solution
The easy and “usually good enough” solution is to just use $RANDOM inline in your
script. For example:

# Make sure $TMP is set to something
[ -n "$TMP" ] || TMP='/tmp'

# Make a "good enough" random temp directory
until [ -n "$temp_dir" -a ! -d "$temp_dir" ]; do
    temp_dir="/tmp/meaningful_prefix.${RANDOM}${RANDOM}${RANDOM}"
done
mkdir -p -m 0700 $temp_dir
  || { echo "FATAL: Failed to create temp dir '$temp_dir': $?"; exit 100 }



Using Secure Temporary Files | 293

# Make a "good enough" random temp file
until [ -n "$temp_file" -a ! -e "$temp_file" ]; do
    temp_file="/tmp/meaningful_prefix.${RANDOM}${RANDOM}${RANDOM}"
done
touch $temp_file && chmod 0600 $temp_file
  || { echo "FATAL: Failed to create temp file '$temp_file': $?"; exit 101 }

Even better, use both a random temporary directory and a random filename!

# cookbook filename: make_temp

# Make a "good enough" random temp directory
until [ -n "$temp_dir" -a ! -d "$temp_dir" ]; do
    temp_dir="/tmp/meaningful_prefix.${RANDOM}${RANDOM}${RANDOM}"
done
mkdir -p -m 0700 $temp_dir \
  || { echo "FATAL: Failed to create temp dir '$temp_dir': $?"; exit 100 }

# Make a "good enough" random temp file in the temp dir
temp_file="$temp_dir/meaningful_prefix.${RANDOM}${RANDOM}${RANDOM}"
touch $temp_file && chmod 0600 $temp_file \
  || { echo "FATAL: Failed to create temp file '$temp_file': $?"; exit 101 }

No matter how you do it, don’t forget to set a trap to clean up. As noted, $temp_dir
must be set before this trap is declared, and its value must not change. If those things
aren’t true, rewrite the logic to account for your needs.

# cookbook filename: clean_temp

# Do our best to clean up temp files no matter what
# Note $temp_dir must be set before this, and must not change!
cleanup="rm -rf $temp_dir"
trap "$cleanup" ABRT EXIT HUP INT QUIT

Discussion
$RANDOM has been available since at least bash-2.0, and using it is probably good
enough. Simple code is better and easier to secure than complicated code, so using
$RANDOM may make your code more secure than having to deal with the validation
and error-checking complexities of mktemp or /dev/urandom. You may also tend to
use it more because it is so simple. However, $RANDOM provides only numbers, while
mktemp provides numbers and upper- and lowercase letters, and urandom provides
numbers and lowercase letters, thus vastly increasing the key space.

However you create it, using a temporary directory in which to work has the follow-
ing advantages:

• mkdir -p -m 0700 $temp_dir avoids the race condition inherent in touch $temp_
file && chmod 0600 $temp_file.

• Files created inside the directory are not even visible to a non-root attacker out-
side the directory when 0700 permissions are set.



294 | Chapter 14: Writing Secure Shell Scripts

• A temporary directory makes it easy to ensure all of your temporary files are
removed at exit. If you have temp files scattered about, there’s always a chance
of forgetting one when cleaning up.

• You can choose to use meaningful names for temp files inside such a directory,
which may make development and debugging easier, and thus improve script
security and robustness.

• Use of a meaningful prefix in the path makes it clear what scripts are running
(this may be good or bad, but consider that ps or /proc do the same thing). More
importantly, it might highlight a script that has failed to clean up after itself,
which could possibly lead to an information leak.

The code above advises using a meaningful_prefix in the path name you are creating.
Some people will undoubtedly argue that since that is predictable, it reduces the
security. It’s true that part of the path is predictable, but we still feel the advantages
above outweigh this objection. If you still disagree, simply omit the meaningful prefix.

Depending on your risk and security needs, you may want to use random temporary
files inside the random temporary directory, as we did above. That will probably not
do anything to materially increase security, but if it makes you feel better, go for it.

We talked about a race condition in touch $temp_file && chmod 0600 $temp_file. One
way to avoid that is to do this:

saved_umask=$(umask)
umask 077
touch $temp_file
umask $saved_umask
unset saved_umask

We recommended using both a random temporary directory and a random (or semi-
random) filename since it provides more overall benefits.

If the numeric-only nature of $RANDOM really bothers you, consider combining some
other sources of pseudo-unpredictable and pseudorandom data and a hash function:

nice_long_random_string=$( (last ; who ; netstat -a ; free ; date \
  ; echo $RANDOM) | md5sum | cut -d' ' -f1 )

We do not recommend using the fallback method shown here because
the additional complexity is probably a cure that is worse than the dis-
ease. But it’s an interesting look at a way to make things a lot harder
than they need to be.

A theoretically more secure approach is to use the mktemp utility present on many
modern systems, with a fallback to /dev/urandom, also present on many modern sys-
tems, or even $RANDOM. The problem is that mktemp and /dev/urandom are not always
available, and dealing with that in practice in a portable way is much more compli-
cated than our solution.



Using Secure Temporary Files | 295

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Try to create a secure temp file name or directory
# Called like: $temp_file=$(MakeTemp <file|dir> [path/to/name-prefix])
# Returns the name of an a ra it in TEMP_NAME
# For example:
#        $temp_dir=$(MakeTemp dir /tmp/$PROGRAM.foo)
#        $temp_file=$(MakeTemp file /tmp/$PROGRAM.foo)
#
function MakeTemp {

    # Make sure $TMP is set to something
    [ -n "$TMP" ] || TMP='/tmp'

    local type_name=$1
    local prefix=${2:-$TMP/temp} # Unless prefix is defined, use $TMP + temp
    local temp_type=''
    local sanity_check=''

    case $type_name in
        file )
            temp_type=''
            ur_cmd='touch'
            #                   Regular file     Readable       Writable
Owned by me

sanity_check='test -f $TEMP_NAME -a -r $TEMP_NAME -a -w $TEMP_NAME -a
-O $TEMP_NAME'
            ;;
        dir|directory )
            temp_type='-d'
            ur_cmd='mkdir -p -m0700'

# Directory Readable Writable
Searchable       Owned by me

sanity_check='test -d $TEMP_NAME -a -r $TEMP_NAME -a -w $TEMP_NAME -a
-x $TEMP_NAME -a -O $TEMP_NAME'
            ;;
        * ) Error "\nBad type in $PROGRAM:MakeTemp!  Needs file|dir." 1 ;;
    esac

    # First try mktemp
    TEMP_NAME=$(mktemp $temp_type ${prefix}.XXXXXXXXX)

    # If that fails try urandom, if that fails give up
    if [ -z "$TEMP_NAME" ]; then
        TEMP_NAME="${prefix}.$(cat /dev/urandom | od -x | tr -d ' ' | head -1)"
        $ur_cmd $TEMP_NAME
    fi

    # Make sure the file or directory was actually created, or DIE
    if ! eval $sanity_check; then
        Error "\aFATAL ERROR: can't create temp $type_name with '$0:MakeTemp
$*'!\n" 2



296 | Chapter 14: Writing Secure Shell Scripts

    else
        echo "$TEMP_NAME"
    fi

} # end of function MakeTemp

See Also
• man mktemp

• Recipe 14.13, “Setting Permissions”

• Appendix B, particularly ./scripts.noah/mktmp.bash

14.12 Validating Input

Problem
You’ve asked for input (e.g., from a user or a program) and to ensure security or data
integrity you need to make sure you got what you asked for.

Solution
There are various ways to validate your input, depending on what the input is and
how strict you need to be.

Use pattern matching for simple “it matches or it doesn’t” situations (see Recipe 6.6,
“Testing for Equal,” Recipe 6.7, “Testing with Pattern Matches,” and Recipe 6.8,
“Testing with Regular Expressions”).

[[ "$raw_input" == *.jpg ]] && echo "Got a JPEG file."

Use a case statement when there are various things that might be valid (see Recipe 6.
14, “Branching Many Ways” and Recipe 6.15, “Parsing Command-Line Arguments”).

# cookbook filename: validate_using_case

case $raw_input in
    *.company.com        ) # Probably a local hostname
        ;;
    *.jpg                ) # Probably a JPEG file
        ;;
    *.[jJ][pP][gG]       ) # Probably a JPEG file, case insensitive
        ;;
    foo | bar            ) # entered 'foo' or 'bar
        ;;
    [0-9][0-9][0-9]      ) # A 3 digit number
        ;;
    [a-z][a-z][a-z][a-z] ) # A 4 lower-case char word
        ;;
    *                    ) # None of the above
        ;;
esac



Validating Input | 297

Use a regular expression when pattern matching isn’t specific enough and you have
bash version 3.0+ (see Recipe 6.8, “Testing with Regular Expressions”). This exam-
ple is looking for a three to six alphanumeric character filename with a .jpg exten-
sion (case sensitive):

[[ "$raw_input" =~ [[:alpha:]]{3,6}\.jpg ]] && echo "Got a JPEG file."

Discussion
For a larger and more detailed example, see the examples/scripts/shprompt in a recent
bash tarball. Note this was written by Chet Ramey, who maintains bash:

# shprompt -- give a prompt and get an answer satisfying certain criteria
#
# shprompt [-dDfFsy] prompt
#    s = prompt for string
#    f = prompt for filename
#    F = prompt for full pathname to a file or directory
#    d = prompt for a directory name
#    D = prompt for a full pathname to a directory
#    y = prompt for y or n answer
#
# Chet Ramey
# chet@ins.CWRU.Edu

For a similar example, see examples/scripts.noah/y_or_n_p.bash written circa 1993 by
Noah Friedman and later converted to bash version 2 syntax by Chet Ramey. Also in
the examples see: ./functions/isnum.bash, ./functions/isnum2, and ./functions/isvalidip.

See Also
• Recipe 3.5, “Getting User Input”

• Recipe 3.6, “Getting Yes or No Input”

• Recipe 3.7, “Selecting From a List of Options”

• Recipe 3.8, “Prompting for a Password”

• Recipe 6.6, “Testing for Equal”

• Recipe 6.7, “Testing with Pattern Matches”

• Recipe 6.8, “Testing with Regular Expressions”

• Recipe 6.14, “Branching Many Ways”

• Recipe 6.15, “Parsing Command-Line Arguments”

• Recipe 11.2, “Supplying a Default Date”

• Recipe 13.6, “Parsing Text with a read Statement”

• Recipe 13.7, “Parsing with read into an Array”

• Appendix B for bash examples



298 | Chapter 14: Writing Secure Shell Scripts

14.13 Setting Permissions

Problem
You want to set permissions in a secure manner.

Solution
If you need to set exact permissions for security reasons (or you are sure that you
don’t care what is already there, you just need to change it), use chmod with 4-digit
octal modes.

$ chmod 0755 some_script

If you only want to add or remove permissions, but need to leave other existing per-
missions unchanged, use the + and - operations in symbolic mode.

$ chmod +x some_script

If you try to recursively set permissions on all the files in a directory structure using
something like chmod -R 0644 some_directory then you’ll regret it because you’ve now
rendered any subdirectories non-executable, which means you won’t be able to
access their content, cd into them, or traverse below them. Use find and xargs with
chmod to set the files and directories individually.

$ find some_directory -type f | xargs chmod 0644  # File perms
$ find some_directory -type d | xargs chmod 0755  # Dir. perms

Of course, if you only want to set permissions on the files in a single directory (non-
recursive), just cd in there and set them.

When creating a directory, use mkdir -m mode new_directory since you not only
accomplish two tasks with one command, but you avoid any possible race condition
between creating the directory and setting the permissions.

Discussion
Many people are in the habit of using three-digit octal modes, but we like to use all
four possible digits to be explicit about what we mean to do with all attributes. We
also prefer using octal mode when possible because it’s very clear what permissions
you are going to end up with. You may also use the absolute operation (=) in sym-
bolic mode if you like, but we’re traditionalists who like the old octal method best.

Ensuring the final permissions when using the symbolic mode and the + or - opera-
tions is trickier since they are relative and not absolute. Unfortunately, there are
many cases where you can’t simply arbitrarily replace the existing permissions using
octal mode. In such cases you have no choice but to use symbolic mode, often using
+ to add a permission while not disturbing other existing permissions. Consult your
specific system’s chmod for details, and verify that your results are as you expect.

$ ls -l
-rw-r--r--  1 jp  users  0 Dec  1 02:09 script.sh



Leaking Passwords into the Process List | 299

# Make file read, write and executable for the owner using octal
$ chmod 0700 script.sh

$ ls -l
-rwx------  1 jp  users  0 Dec  1 02:09 script.sh

# Make file read and executable for everyone using symbolic
$ chmod ugo+rx *.sh

$ ls -l
-rwxr-xr-x  1 jp  users  0 Dec  1 02:09 script.sh

Note in the last example that although we added (+) rx to everyone (ugo), the owner
still has write (w). That’s what we wanted to do here, and that is often the case. But
do you see how, in a security setting, it might be easy to make a mistake and allow
an undesirable permission to slip through the cracks? That’s why we like to use the
absolute octal mode if possible, and of course we always check the results of our
command.

In any case, before you adjust the permissions on a large group of files, thoroughly
test your command. You may also want to backup the permissions and owners of the
files. See Recipe 17.8, “Capturing File Metadata for Recovery” for details.

See Also
• man chmod

• man find

• man xargs

• Recipe 17.8, “Capturing File Metadata for Recovery”

14.14 Leaking Passwords into the Process List

Problem
ps may show passwords entered on the command line in the clear. For example:

$ ./cheesy_app -u user -p password &
[1] 13301

$ ps
  PID TT STAT    TIME COMMAND
 5280 p0 S    0:00.08 -bash
 9784 p0 R+   0:00.00 ps
13301 p0 S    0:00.01 /bin/sh ./cheesy_app -u user -p password

Solution
Try really hard not to use passwords on the command line.



300 | Chapter 14: Writing Secure Shell Scripts

Discussion
Really. Don’t do that.

Many applications that provide a -p or similar switch will also prompt you if a pass-
word required and you do not provide it on the command line. That’s great for inter-
active use, but not so great in scripts. You may be tempted to write a trivial
“wrapper” script or an alias to try and encapsulate the password on the command
line. Unfortunately, that won’t work since the command is eventually run and so
ends up in the process list anyway. If the command can accept the password on
STDIN, you may be able to pass it in that way. That creates other problems, but at
least avoids displaying the password in the process list.

$ ./bad_app ~.hidden/bad_apps_password

If that won’t work, you’ll need to either find a new app, patch the one you are using,
or just live with it.

See Also
• Recipe 3.8, “Prompting for a Password”

• Recipe 14.20, “Using Passwords in Scripts”

14.15 Writing setuid or setgid Scripts

Problem
You have a problem you think you can solve by using the setuid or setgid bit on a
shell script.

Solution
Use Unix groups and file permissions and/or sudo to grant the appropriate users the
least privilege they need to accomplish their task.

Using the setuid or setgid bit on a shell script will create more problems—especially
security problems—than it solves. Some systems (such as Linux) don’t even honor
the setuid bit on shell scripts, so creating setuid shell scripts creates an unnecessary
portability problem in addition to the security risks.

Discussion
setuid root scripts are especially dangerous, so don’t even think about it. Use sudo.

setuid and setgid have a different meaning when applied to directories than they do
when applied to executable files. When one of these is set on a directory it causes
any newly created files or subdirectories to be owned by the directory’s owner or
group, respectively.



Restricting Guest Users | 301

Note you can check a file to see if it is setuid by using test -u or setgid by using test -g.

$ mkdir suid_dir sgid_dir

$ touch suid_file sgid_file

$ ls -l
total 4
drwxr-xr-x  2 jp  users  512 Dec  9 03:45 sgid_dir
-rw-r--r--  1 jp  users    0 Dec  9 03:45 sgid_file
drwxr-xr-x  2 jp  users  512 Dec  9 03:45 suid_dir
-rw-r--r--  1 jp  users    0 Dec  9 03:45 suid_file

$ chmod 4755 suid_dir suid_file

$ chmod 2755 sgid_dir sgid_file

$ ls -l
total 4
drwxr-sr-x  2 jp  users  512 Dec  9 03:45 sgid_dir
-rwxr-sr-x  1 jp  users    0 Dec  9 03:45 sgid_file
drwsr-xr-x  2 jp  users  512 Dec  9 03:45 suid_dir
-rwsr-xr-x  1 jp  users    0 Dec  9 03:45 suid_file

$ [ -u suid_dir ] && echo 'Yup, suid' || echo 'Nope, not suid'
Yup, suid

$ [ -u sgid_dir ] && echo 'Yup, suid' || echo 'Nope, not suid'
Nope, not suid

$ [ -g sgid_file ] && echo 'Yup, sgid' || echo 'Nope, not sgid'
Yup, sgid

$ [ -g suid_file ] && echo 'Yup, sgid' || echo 'Nope, not sgid'
Nope, not sgid

See Also
• man chmod

• Recipe 14.18, “Running As a Non-root User”

• Recipe 14.19, “Using sudo More Securely”

• Recipe 14.20, “Using Passwords in Scripts”

• Recipe 17.15, “Using sudo on a Group of Commands”

14.16 Restricting Guest Users
The material concerning the restricted shell in this recipe also appears in Learning the
bash Shell by Cameron Newman (O’Reilly).



302 | Chapter 14: Writing Secure Shell Scripts

Problem
You need to allow some guest users on your system and need to restrict what they
can do.

Solution
Avoid using shared accounts if possible, since you lose accountability and create
logistical headaches when users leave and you need to change the password and
inform the other users. Create separate accounts with the least possible permissions
necessary to do whatever is needed. Consider using:

• A chroot jail, as discussed in Recipe 14.17, “Using chroot Jails”

• SSH to allow non-interactive access to commands or resources, as discussed in
Recipe 14.21, “Using SSH Without a Password”

• bash’s restricted shell

Discussion
The restricted shell is designed to put the user into an environment where their abil-
ity to move around and write files is severely limited. It’s usually used for guest
accounts. You can make a user’s login shell restricted by putting rbash in the user’s
/etc/passwd entry if this option was included when bash was compiled.

The specific constraints imposed by the restricted shell disallow the user from doing
the following:

• Changing working directories: cd is inoperative. If you try to use it, you will get
the error message from bash cd: restricted.

• Redirecting output to a file: the redirectors >, >|, <>, and >> are not allowed.

• Assigning a new value to the environment variables $ENV, $BASH_ENV, $SHELL, or
$PATH.

• Specifying any commands with slashes (/) in them. The shell will treat files out-
side of the current directory as “not found.”

• Using the exec built-in.

• Specifying a filename containing a / as an argument to the . (source) built-in
command.

• Importing function definitions from the shell environment at startup.

• Adding or deleting built-in commands with the -f and -d options to the enable
built-in command.

• Specifying the -p option to the command built-in command.

• Turning off restricted mode with set +r.



Using chroot Jails | 303

These restrictions go into effect after the user’s .bash_profile and environment files are
run. In addition, it is wise to change the owner of the users’ .bash_profile and .bashrc
to root, and make these files read-only. The user’s home directory should also be made
read-only.

This means that the restricted shell user’s entire environment is set up in /etc/profile
and .bash_profile. Since the user can’t access /etc/profile and can’t overwrite .bash_
profile, this lets the system administrator configure the environment as he sees fit.

Two common ways of setting up such environments are to set up a directory of safe
commands and have that directory be the only one in PATH, and to set up a com-
mand menu from which the user can’t escape without exiting the shell.

The restricted shell is not proof against a determined attacker. It can
also be difficult to lock down as well as you think you have, since
many common applications such as Vi and Emacs allow shell escapes
that might bypass the restricted shell entirely.

Used wisely it can be a valuable additional layer of security, but it
should not be the only layer.

Note that the original Bourne shell has a restricted version called rsh, which may be
confused with the so-called r-tools (rsh, rcp, rlogin, etc.) Remote Shell program,
which is also rsh. The very insecure Remote Shell rsh has been mostly replaced (we
most sincerely hope) by SSH (the Secure Shell).

See Also
• Recipe 14.17, “Using chroot Jails”

• Recipe 14.21, “Using SSH Without a Password”

14.17 Using chroot Jails

Problem
You have to use a script or application that you don’t trust.

Solution
Consider placing it in a so-called chroot jail. The chroot command changes the root
directory of the current process to the directory you specify, then returns a shell or
exec’s a given command. That has the effect of placing the process, and thus the pro-
gram, into a jail from which it theoretically can’t escape to the parent directory. So if
that application is compromised or otherwise does something malicious, it can only
affect the small portion of the file system you restricted it to. In conjunction with
running as a user with very limited rights, this is a very useful layer of security to add.



304 | Chapter 14: Writing Secure Shell Scripts

Unfortunately, covering all the details of chroot is beyond the scope of this recipe,
since it would probably require a whole separate book. We present it here to pro-
mote awareness of the functionality.

Discussion
So why doesn’t everything run in chroot jails? Because many applications need to
interact with other applications, files, directories, or sockets all over the file system.
That’s the tricky part about using chroot jails; the application can’t see outside of its
walls, so everything it needs must be inside those walls. The more complicated the
application, the more difficult it is to run in a jail.

Some applications that must inherently be exposed to the Internet, such as DNS (e.g.,
BIND), web, and mail (e.g., Postfix) servers, may be configured to run in chroot jails
with varying degrees of difficulty. See the documentation for the distribution and spe-
cific applications you are running for details.

Another interesting use of chroot is during system recovery. Once you have booted
from a Live CD and mounted the root filesystem on your hard drive, you may need
to run a tool such as Lilo or Grub which, depending on your configuration, might
need to believe it’s really running onto the damaged system. If the Live CD and the
installed system are not too different, you can usually chroot into the mount point of
the damaged system and fix it. That works because all the tools, libraries, configura-
tion files, and devices already exist in the jail, since they really are a complete (if not
quite working) system. You might have to experiment with your $PATH in order to
find things you need once you’ve chrooted though (that’s an aspect of the “if the Live
CD and the installed system are not too different” caveat).

On a related note, the NSA’s Security Enhanced Linux (SELinux) implementation of
Mandatory Access Controls (MAC) may be of interest. MAC provides a very granu-
lar way to specify at a system level what is and is not allowed, and how various com-
ponents of the system may interact. The granular definition is called a security policy
and it has a similar effect to a jail, in that a given application or process can do only
what the policy allows it to do.

Red Hat Linux has incorporated SELinux into its enterprise product. Novell’s SUSE
product has a similar MAC implementation called AppArmor, and there are similar
implementations for Solaris, BSD, and OS X.

See Also
• man chroot

• http://www.nsa.gov/selinux/

• http://en.wikipedia.org/wiki/Mandatory_access_control

• http://olivier.sessink.nl/jailkit/

• http://www.jmcresearch.com/projects/jail/



Using sudo More Securely | 305

14.18 Running As a Non-root User

Problem
You’d like to run your scripts as a non-root user, but are afraid you won’t be able to
do the things you need to do.

Solution
Run your scripts under non-root user IDs, either as you or as dedicated users, and
run interactively as non-root, but configure sudo to handle any tasks that require ele-
vated privileges.

Discussion
sudo may be used in a script as easily as it may be used interactively. See the sudoers
NOPASSWD option especially. See Recipe 14.19, “Using sudo More Securely.”

See Also
• man sudo

• man sudoers

• Recipe 14.15, “Writing setuid or setgid Scripts”

• Recipe 14.19, “Using sudo More Securely”

• Recipe 14.20, “Using Passwords in Scripts”

• Recipe 17.15, “Using sudo on a Group of Commands”

14.19 Using sudo More Securely

Problem
You want to use sudo but are worried about granting too many people too many
privileges.

Solution
Good! You should be worrying about security. While using sudo is much more
secure than not using it, the default settings may be greatly improved.

Take the time to learn a bit about sudo itself and the /etc/sudoers file. In particular,
learn that in most cases you should not be using the ALL=(ALL) ALL specification! Yes,
that will work, but it’s not even remotely secure. The only difference between that
and just giving everyone the root password is that they don’t know the root pass-
word. They can still do everything root can do. sudo logs the commands it runs, but
that’s trivial to avoid by using sudo bash.



306 | Chapter 14: Writing Secure Shell Scripts

Second, give your needs some serious thought. Just as you shouldn’t be using the
ALL=(ALL) ALL specification, you probably shouldn’t be managing users one by one
either. The sudoers utility allows for very granular management and we strongly rec-
ommend using it. man sudoers provides a wealth of material and examples, especially
the section on preventing shell escapes.

sudoers allows for four kinds of aliases: user, runas, host, and command. Judicious
use of them as roles or groups will significantly reduce the maintenance burden. For
instance, you can set up a User_Alias for BUILD_USERS, then define the machines
those users need to run on with Host_Alias and the commands they need to run with
Cmnd_Alias. If you set a policy to only edit /etc/sudoers on one machine and copy it
around to all relevant machines periodically using scp with public-key authentica-
tion, you can set up a very secure yet usable system of least privilege.

When sudo asks for your password, it’s really asking for your pass-
word. As in, your user account. Not root. For some reason people
often get confused by this at first.

Discussion
Unfortunately, sudo is not installed by default on every system. It is usually installed
on Linux and OpenBSD; other systems will vary. You should consult your system
documentation and install it if it’s not already there.

You should always use visudo to edit your /etc/sudoers file. Like vipw,
visudo locks the file so that only one person can edit it at a time, and it
performs some syntax sanity checks before replacing the production
file so that you don’t accidentally lock yourself out of your system.

See Also
• man sudo

• man sudoers

• man visudo

• SSH, The Secure Shell: The Definitive Guide by Daniel J. Barrett (O’Reilly)

• Recipe 14.15, “Writing setuid or setgid Scripts”

• Recipe 14.18, “Running As a Non-root User”

• Recipe 14.20, “Using Passwords in Scripts”

• Recipe 17.15, “Using sudo on a Group of Commands”



Using Passwords in Scripts | 307

14.20 Using Passwords in Scripts

Problem
You need to hardcode a password in a script.

Solution
This is obviously a bad idea and should be avoided whenever possible. Unfortu-
nately, sometimes it isn’t possible to avoid it.

The first way to try to avoid doing this is to see if you can use sudo with the NOPASSWD
option to avoid having to hardcode a password anywhere. This obviously has its own
risks, but is worth checking out. See Recipe 14.19, “Using sudo More Securely” for
more details.

Another alternative may be to use SSH with public keys and ideally restricted com-
mands. See Recipe 14.21, “Using SSH Without a Password.”

If there is no other way around it, about the best you can do is put the user ID and
password in a separate file that is readable only by the user who needs it, then source
that file when necessary (Recipe 10.3, “Using Configuration Files in a Script”). Leave
that file out of revision control, of course.

Discussion
Accessing data on remote machines in a secure manner is relatively easy using SSH
(see Recipe 14.21, “Using SSH Without a Password” and Recipe 15.11, “Getting
Input from Another Machine”). It may even be possible to use that SSH method to
access other data on the same host, but it’s probably much more efficient to use sudo
for that. But what about accessing data in a remote database, perhaps using some
SQL command? There is not much you can do in that case.

Yes, you say, but what about crypt or the other password hashes? The problem is
that the secure methods for storing passwords all involve using what’s known as a
one-way hash. The password checks in, but it can’t check out. In other words, given
the hash, there is theoretically no way to get the plain-text password back out. And
that plain-text password is the point—we need it to access our database or what-
ever. So secure storage is out.

That leaves insecure storage, but the problem here is that it may actually be worse
than plain text because it might give you a false sense of security. If it really makes
you feel better, and you promise not to get a false sense of security, go ahead and use
ROT13 or something to obfuscate the password. ROT13 only handles ASCII letters,
so you could also use ROT47 to handle some punctuation as well.

$ ROT13=$(echo password | tr 'A-Za-z' 'N-ZA-Mn-za-m')

$ ROT47=$(echo password | tr '!-~' 'P-~!-O')



308 | Chapter 14: Writing Secure Shell Scripts

We really can’t stress enough that ROT13 or ROT47 are nothing more
than “security by obscurity” and thus are not security at all. They are
better than nothing, if and only if, you (or your management) do not
get a false sense that you are “secure” when you are not. Just be aware
of your risks. Having said that, the reality is, sometimes the benefit
outweighs the risk.

See Also
• http://en.wikipedia.org/wiki/ROT13

• Recipe 10.3, “Using Configuration Files in a Script”

• Recipe 14.15, “Writing setuid or setgid Scripts”

• Recipe 14.18, “Running As a Non-root User”

• Recipe 14.19, “Using sudo More Securely”

• Recipe 14.21, “Using SSH Without a Password”

• Recipe 15.11, “Getting Input from Another Machine”

• Recipe 17.15, “Using sudo on a Group of Commands”

14.21 Using SSH Without a Password

Problem
You need to use SSH or scp in a script and would like to do so without using a pass-
word. Or you’re using them in a cron job and can’t have a password.*

SSH1 (the protocol) and SSH1 (the executables) are deprecated and
considered less secure than the newer SSH2 protocol as implemented
by OpenSSH and SSH Communications Security. We strongly recom-
mend using SSH2 with OpenSSH and will not cover SSH1 here.

Solution
There are two ways to use SSH without a password, the wrong way and the right
way. The wrong way is to use a public-key that is not encrypted by a passphrase. The
right way is to use a passphrase protected public-key with ssh-agent or keychain.

We assume you are using OpenSSH; if not, consult your documentation (the com-
mands and files will be similar).

* We thank Richard Silverman and Daniel Barrett for their inspiration and excellent work in SSH, The Secure
Shell: The Definitive Guide (especially Chapters 2, 6, and 11) and Linux Security Cookbook, without which
this recipe would be a mere shadow of itself.



Using SSH Without a Password | 309

First, you need to create a key pair if you don’t already have one. Only one key pair
is necessary to authenticate you to as many machines as you configure, but you may
decide to use more than one key pair, perhaps for personal and work reasons. The
pair consists of a private key that you should protect at all costs, and a public key
(*.pub) that you can post on a billboard if you like. The two are related in a com-
plex mathematical way such that they can identify each other, but you can’t derive
one from the other.

Use ssh-keygen (might be ssh-keygen2 if you’re not using OpenSSH) to create a key
pair. -t is mandatory and its arguments are rsa or dsa. -b is optional and specifies the
number of bits in the new key (1024 is the default at the time of this writing). -C
allows you to specify a comment, but it defaults to user@hostname if you omit it. We
recommend at least using -t dsa -b 2048 and we recommend strongly against using
no passphrase. ssh-keygen also allows you to change your key file’s passphrase or
comment.

$ ssh-keygen
You must specify a key type (-t).
Usage: ssh-keygen [options]
Options:
  -b bits     Number of bits in the key to create.
  -c          Change comment in private and public key files.
  -e          Convert OpenSSH to IETF SECSH key file.
  -f filename Filename of the key file.
  -g          Use generic DNS resource record format.
  -i          Convert IETF SECSH to OpenSSH key file.
  -l          Show fingerprint of key file.
  -p          Change passphrase of private key file.
  -q          Quiet.
  -y          Read private key file and print public key.
  -t type     Specify type of key to create.
  -B          Show bubblebabble digest of key file.
  -H          Hash names in known_hosts file
  -F hostname Find hostname in known hosts file
  -C comment  Provide new comment.
  -N phrase   Provide new passphrase.
  -P phrase   Provide old passphrase.
  -r hostname Print DNS resource record.
  -G file     Generate candidates for DH-GEX moduli
  -T file     Screen candidates for DH-GEX moduli

$ ssh-keygen -t dsa -b 2048 -C 'This is my new key'
Generating public/private dsa key pair.
Enter file in which to save the key (/home/jp/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/jp/.ssh/id_dsa.
Your public key has been saved in /home/jp/.ssh/id_dsa.pub.
The key fingerprint is:
84:6f:45:fc:08:3b:ce:b2:4f:2e:f3:5e:b6:9f:65:63 This is my new key



310 | Chapter 14: Writing Secure Shell Scripts

$ ls -l id_dsa*
-rw-------  1 jp  jp  1264 Dec 13 23:39 id_dsa
-rw-r--r--  1 jp  jp  1120 Dec 13 23:39 id_dsa.pub

$ cat id_dsa.pub
ssh-dss
AAAAB3NzaC1kc3MAAAEBANpgvvTslst2m0ZJA0ayhh1Mqa3aWwU3kfv0m9+myFZ9veFsxM7IVxIjWfAlQh3jp
lY+Q78fMzCTiG+ZrGZYn8adZ9yg5/
wAC03KXm2vKt8LfTx6I+qkMR7v15NI7tZyhxGah5qHNehReFWLuk7JXCtRrzRvWMdsHc/
L2SA1Y4fJ9Y9FfVlBdE1Er+ZIuc5xIlO6D1HFjKjt3wjbAal+oJxwZJaupZ0Q7N47uwMslmc5ELQBRNDsaoqF
RKlerZASPQ5P+AH/+Cxa/fCGYwsogXSJJ0H5S7+QJJHFze35YZI/
+A1D3BIa4JBf1KvtoaFr5bMdhVAkChdAdMjo96xhbdEAAAAVAJSKzCEsrUo3KAvyUO8KVD6e0B/NAAAA/3u/
Ax2TIB/M9MmPqjeH67Mh5Y5NaVWuMqwebDIXuvKQQDMUU4EPjRGmS89Hl8UKAN0Cq/C1T+OGzn4zrbE06CO/
Sm3SRMP24HyIbElhlWV49sfLR05Qmh9fRl1s7ZdcUrxkDkr2J6on5cMVB9M2nIl90IhRVLd5RxP01u81yqvhv
E61ORdA6IMjzXcQ8ebuD2R733O37oGFD7e2O7DaabKKkHZIduL/zFbQkzMDK6uAMP8ylRJN0fUsqIhHhtc//
16OT2H6nMU09MccxZTFUfqF8xIOndElP6um4jXYk5Q30i/CtU3TZyvNeWVwyGwDi4wg2jeVe0YHU2Rh/
ZcZpwAAAQEAv2O86701U9sIuRijp8sO4h13eZrsE5rdn6aul/mkm+xAlO+WQeDXR/
ONm9BwVSrNEmIJB74tEJL3qQTMEFoCoN9Kp00Ya7Qt8n4gZ0vcZlI5u+cgyd1mKaggS2SnoorsRlb2Lh/
Hpe6mXus8pUTf5QT8apgXM3TgFsLDT+3rCt40IdGCZLaP+UDBuNUSKfFwCru6uGoXEwxaL08Nv1wZOc19qrc0
Yzp7i33m6i3a0Z9Pu+TPHqYC74QmBbWq8U9DAo+7yhRIhq/
fdJzk3vIKSLbCxg4PbMwx2Qfh4dLk+L7wOasKnl5//W+RWBUrOlaZ1ZP1/azsK0Ncygno/0F1ew== This is
my new key

Once you have a key pair, add your public key to the ~/.ssh/authorized_keys file in
your home directory on any other machines to which you wish to connect using this
key pair. You can use scp, cp with a floppy or USB key, or simple cut-and-paste from
terminal sessions to do that. The important part is that it all ends up on a single line.
While you can do it all in one command (e.g., scp id_dsa.pub remote_host:.ssh/
authorized_keys), we don’t recommend that even when you’re “absolutely sure” that
authorized_keys doesn’t exist. Instead, you can use a slightly more complicated but
much safer command, shown in bold:

$ ssh remote_host "echo $(cat ~/.ssh/id_dsa.pub) >> ~/.ssh/authorized_keys"
jp@remote_host's password:

$ ssh remote_host
Last login: Thu Dec 14 00:02:52 2006 from openbsd.jpsdomai
NetBSD 2.0.2 (GENERIC) #0: Wed Mar 23 08:53:42 UTC 2005

Welcome to NetBSD!

-bash-3.00$ exit
logout
Connection to remote_host closed.

As you can see, we were prompted for a password for the initial scp, but after that ssh
just worked. What isn’t shown above is the use of the ssh-agent, which cached the
passphrase to the key so that we didn’t have to type it.

The command above also assumes that ~/.ssh exists on both machines. If not, create it
using mkdir -m 0700 -p ~/.ssh. Your ~/.ssh directory must be mode 0700 or OpenSSH
will complain. It’s not a bad idea to use chmod 0600 ~/.ssh/authorized_keys as well.



Using SSH Without a Password | 311

It’s also worth noting that we’ve just set up a one-way relationship. We can SSH
from our local host to our remote host with no password, but the same is not true in
reverse, due to both lack of the private key and lack of the agent on the remote host.
You can simply copy your private key all over the place to enable a “web of pass-
wordless SSH,” but that complicates matters when you want to change your pass-
phrase and it makes it harder to secure your private key. If possible, you are better
off having one well protected and trusted machine from which you ssh out to remote
hosts as needed.

The SSH agent is clever and subtle in its use. We might argue it’s too clever. The way
it is intended to be used in practice is via an eval and command substitution: eval
`ssh-agent`. That creates two environment variables so that ssh or scp can find the
agent and ask it about your identities. That’s very slick, and it’s well documented in
many places. The only problem is that this is unlike any other program in common
use (except some of the features of less, see Recipe 8.15, “Doing More with less”)and
is totally obtuse to a new or uninformed user.

If you just run the agent, it prints out some details and looks like it worked. And it
did, in that it’s now running. But it won’t actually do anything, because the neces-
sary environment variables were never actually set. We should also mention in pass-
ing that the handy -k switch tells the agent to exit.

# The Wrong Way to use the Agent

# Nothing in the environment
$ set | grep SSH
$
$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-bACKp27592/agent.27592; export SSH_AUTH_SOCK;
SSH_AGENT_PID=24809; export SSH_AGENT_PID;
echo Agent pid 24809;

# Still nothing
$ set | grep SSH
$
# Can't even kill it, because -k needs $SSH_AGENT_PID
$ ssh-agent -k
SSH_AGENT_PID not set, cannot kill agent

# Is it even running?  Yes
$ ps x
  PID TT   STAT      TIME COMMAND
24809 ??  Is      0:00.01 ssh-agent
22903 p0  I       0:03.05 -bash (bash)
11303 p0  R+      0:00.00 ps -x

$ kill 24809

$ ps x
  PID TT   STAT      TIME COMMAND



312 | Chapter 14: Writing Secure Shell Scripts

22903 p0  I       0:03.06 -bash (bash)
30542 p0  R+      0:00.00 ps -x

# Still the Wrong Way to use the Agent
This is correct
$ eval `ssh-agent`
Agent pid 21642

# Hey, it worked!
$ set | grep SSH
SSH_AGENT_PID=21642
SSH_AUTH_SOCK=/tmp/ssh-ZfEsa28724/agent.28724

# Kill it - The wrong way
$ ssh-agent -k
unset SSH_AUTH_SOCK;
unset SSH_AGENT_PID;
echo Agent pid 21642 killed;

# Oops, the process is dead but it didn't clean up after itself
$ set | grep SSH
SSH_AGENT_PID=21642
SSH_AUTH_SOCK=/tmp/ssh-ZfEsa28724/agent.28724

# The Right Way to use the Agent
$ eval `ssh-agent`
Agent pid 19330

$ set | grep SSH
SSH_AGENT_PID=19330
SSH_AUTH_SOCK=/tmp/ssh-fwxMfj4987/agent.4987

$ eval `ssh-agent -k`
Agent pid 19330 killed

$ set | grep SSH
$

Intuitive isn’t it? Not. Very slick, very efficient, very subtle, yes. User friendly, not so
much.

OK, so once we have the agent running as expected we have to load our identities
using the ssh-add command. That’s very easy, we just run it, optionally with a list of
key files to load. It will prompt for all the passphrases needed. In this example we did
not list any keys, so it just used the default as set in the main SSH configuration file:

$ ssh-add
Enter passphrase for /home/jp/.ssh/id_dsa:
Identity added: /home/jp/.ssh/id_dsa (/home/jp/.ssh/id_dsa)



Using SSH Without a Password | 313

So now we can use SSH interactively, in this particular shell session, to log in to any
machine we’ve previously configured, without a password or passphrase. So what
about other sessions, scripts, or cron?

Use Daniel Robbins’ keychain (http://www.gentoo.org/proj/en/keychain/) script, which:

[acts] as a front-end to ssh-agent, allowing you to easily have one long-running ssh-
agent process per system, rather than per login session. This dramatically reduces the
number of times you need to enter your passphrase from once per new login session to
once every time your local machine is rebooted.

[...]

keychain also provides a clean, secure way for cron jobs to take advantage of RSA/DSA
keys without having to use insecure unencrypted private keys.

keychain is a clever, well-written and well-commented shell script that automates
and manages the otherwise tedious process of exporting those environment vari-
ables we discussed above into other sessions. It also makes them available to scripts
and cron. But you’re probably saying to yourself, wait a second here, you want me to
leave all my keys in this thing forever, until the machine reboots? Well, yes, but it’s
not as bad as it sounds.

First of all, you can always kill it, though that will also prevent scripts or cron from
using it. Second, there is a --clean option that flushes cached keys when you log in.
Sound backward? It actually makes sense. Here are the details, from keychain’s
author (first published by IBM developerWorks at http://www.ibm.com/
developerworks/, see http://www.ibm.com/developerworks/linux/library/l-keyc2/):

I explained that using unencrypted private keys is a dangerous practice, because it
allows someone to steal your private key and use it to log in to your remote accounts
from any other system without supplying a password. Well, while keychain isn’t vul-
nerable to this kind of abuse (as long as you use encrypted private keys, that is), there
is a potentially exploitable weakness directly related to the fact that keychain makes it
so easy to “hook in” to a long-running ssh-agent process. What would happen, I
thought, if some intruder were somehow able to figure out my password or pass-
phrase and log into my local system? If they were somehow able to log in under my
username, keychain would grant them instant access to my decrypted private keys,
making it a no-brainer for them to access my other accounts.

Now, before I continue, let’s put this security threat in perspective. If some malicious
user were somehow able to log in as me, keychain would indeed allow them to access
my remote accounts. Yet, even so, it would be very difficult for the intruder to steal my
decrypted private keys since they are still encrypted on disk. Also, gaining access to my
private keys would require a user to actually log in as me, not just read files in my
directory. So, abusing ssh-agent would be a much more difficult task than simply steal-
ing an unencrypted private key, which only requires that an intruder somehow gain
access to my files in ~/.ssh, whether logged in as me or not. Nevertheless, if an
intruder were successfully able to log in as me, they could do quite a bit of additional
damage by using my decrypted private keys. So, if you happen to be using keychain on
a server that you don’t log into very often or don’t actively monitor for security
breaches, then consider using the --clear option to provide an additional layer of
security.



314 | Chapter 14: Writing Secure Shell Scripts

The --clear option allows you to tell keychain to assume that every new login to your
account should be considered a potential security breach until proven otherwise.
When you start keychain with the --clear option, keychain immediately flushes all your
private keys from ssh-agent’s cache when you log in, before performing its normal
duties. Thus, if you’re an intruder, keychain will prompt you for passphrases rather
than giving you access to your existing set of cached keys. However, even though this
enhances security, it does make things a bit more inconvenient and very similar to run-
ning ssh-agent all by itself, without keychain. Here, as is often the case, one can opt for
greater security or greater convenience, but not both.

Despite this, using keychain with --clear still has advantages over using ssh-agent all by
itself; remember, when you use keychain --clear, your cron jobs and scripts will still be
able to establish passwordless connections; this is because your private keys are
flushed at login, not logout. Since a logout from the system does not constitute a
potential security breach, there’s no reason for keychain to respond by flushing ssh-
agent’s keys. Thus, the --clear option is an ideal choice for infrequently accessed serv-
ers that need to perform occasional secure copying tasks, such as backup servers, fire-
walls, and routers.

To actually use the keychain-wrapped ssh-agent from a script or cron, simply source
the file keychain creates from your script. keychain can also handle GPG keys:

[ -r ~/.ssh-agent ] && source ~/.ssh-agent \
 || { echo "keychain not runnin" >&2 ; exit 1; }

Discussion
When using SSH in a script, you don’t want to be prompted to authenticate or have
extraneous warnings displayed. The -q option will turn on quiet mode and suppress
warnings, while -o 'BatchMode yes' will prevent user prompts. Obviously if there is
no way for SSH to authenticate itself, it will fail, since it can’t even fall back to
prompting for a password. But that shouldn’t be a problem since you’ve made it this
far in this recipe.

SSH is an amazing, wonderful tool and there is a lot to it, so much that it fills
another book about this size. We highly recommend SSH, The Secure Shell: The
Definitive Guide by Richard E. Silverman and Daniel J. Barrett (O’Reilly) and for
everything you ever wanted to know (and more) about SSH.

Using public keys between OpenSSH and SSH2 Server from SSH Communications
Security can be tricky; see Chapter 6 in Linux Security Cookbook by Daniel J. Barrett
et al. (O’Reilly).

The IBM developerWorks articles on SSH by keychain author (and Gentoo Chief
Architect) Daniel Robbins are also a great reference (http://www.ibm.com/
developerworks/linux/library/l-keyc.html, http://www.ibm.com/developerworks/linux/
library/l-keyc2/, http://www.ibm.com/developerworks/linux/library/l-keyc3/).

If keychain doesn’t seem to be working, or if it works for a while then seems to stop,
you may have another script somewhere else re-running ssh-agent and getting things
out of sync. Check the following and make sure the PIDs and socket all agree.



Using SSH Without a Password | 315

Depending on your operating system, you may have to adjust your ps command; if
-ef doesn’t work, try -eu.

$ ps -ef | grep [s]sh-agent
jp 17364  0.0  0.0  3312 1132 ?        S    Dec16   0:00 ssh-agent

$ cat ~/.keychain/$HOSTNAME-sh
SSH_AUTH_SOCK=/tmp/ssh-UJc17363/agent.17363; export SSH_AUTH_SOCK;
SSH_AGENT_PID=17364; export SSH_AGENT_PID;

$ set | grep SSH_A
SSH_AGENT_PID=17364
SSH_AUTH_SOCK=/tmp/ssh-UJc17363/agent.17363

See Also
• http://www.gentoo.org/proj/en/keychain/

• http://www.ibm.com/developerworks/linux/library/l-keyc2/

Key Fingerprints
All flavors of SSH support fingerprints to facilitate key comparison and verification for
both user and host keys. As you may guess, bit-by-bit verification of long, seemingly
random data is tedious and error prone at best, and virtually impossible (say, over the
phone) at worst. Fingerprints provide an easier way to perform this verification. You
may have seen fingerprints in other applications, especially PGP/GPG keys.

The reason to verify keys in the first place is to prevent so-called man in the middle
attacks. If Alice sends her key to Bob, he must make sure that the key he receives is
actually from Alice, and that Eve has not intercepted it and sent her own key instead.
This requires an out-of-band communications channel, such as a telephone.

There are two fingerprint formats, the traditional hex format from PGP and a newer,
supposedly easier to read format called bubblebabble. When Bob receives Alice’s key,
he calls her up and reads her the fingerprint. If they match, they both know he has the
correct key.

$ ssh-keygen -l -f ~/.ssh/id_dsa
2048 84:6f:45:fc:08:3b:ce:b2:4f:2e:f3:5e:b6:9f:65:63 /home/jp/.ssh/id_dsa.pub

$ ssh-keygen -l -f ~/.ssh/id_dsa.pub
2048 84:6f:45:fc:08:3b:ce:b2:4f:2e:f3:5e:b6:9f:65:63 /home/jp/.ssh/id_dsa.pub

$ ssh-keygen -B -f ~/.ssh/id_dsa
2048 xosev-kytit-rakyk-tipos-bocuh-kotef-mupyc-hozok-zalip-pezad-nuxox /home/
jp/.ssh/id_dsa.pub

$ ssh-keygen -B -f ~/.ssh/id_dsa.pub
2048 xosev-kytit-rakyk-tipos-bocuh-kotef-mupyc-hozok-zalip-pezad-nuxox /home/
jp/.ssh/id_dsa.pub



316 | Chapter 14: Writing Secure Shell Scripts

• SSH, The Secure Shell: The Definitive Guide by Richard E. Silverman and Daniel
J. Barrett (O’Reilly)

• Linux Security Cookbook by Daniel J. Barrett et al. (O’Reilly)

• Practical Cryptography by Niels Ferguson and Bruce Schneier (Wiley)

• Applied Cryptography by Bruce Schneier (Wiley)

• Recipe 8.15, “Doing More with less”

14.22 Restricting SSH Commands

Problem
You’d like to restrict what an incoming SSH user or script can do.*

Solution
Edit the ~/.ssh/authorized_keys file, use SSH forced commands, and optionally dis-
able unnecessary SSH features. For example, suppose you want to allow an rsync
process without also allowing interactive use.

First, you need to figure out exactly what command is being run on the remote side.
Create a key (Recipe 14.21, “Using SSH Without a Password”) and add a forced
command to tell you. Edit the ~/.ssh/authorized_keys file and add:

command="/bin/echo Command was: $SSH_ORIGINAL_COMMAND"

before the key. It will look something like this, all on one line:

command="/bin/echo Command was: $SSH_ORIGINAL_COMMAND" ssh-dss
AAAAB3NzaC1kc3MAAAEBANpgvvTslst2m0ZJA0ayhh1Mqa3aWwU3kfv0m9+myFZ9veFsxM7IVxIjWfAlQh3jp
lY+Q78fMzCTiG+ZrGZYn8adZ9yg5/
wAC03KXm2vKt8LfTx6I+qkMR7v15NI7tZyhxGah5qHNehReFWLuk7JXCtRrzRvWMdsHc/
L2SA1Y4fJ9Y9FfVlBdE1Er+ZIuc5xIlO6D1HFjKjt3wjbAal+oJxwZJaupZ0Q7N47uwMslmc5ELQBRNDsaoqF
RKlerZASPQ5P+AH/+Cxa/fCGYwsogXSJJ0H5S7+QJJHFze35YZI/
+A1D3BIa4JBf1KvtoaFr5bMdhVAkChdAdMjo96xhbdEAAAAVAJSKzCEsrUo3KAvyUO8KVD6e0B/NAAAA/3u/
Ax2TIB/M9MmPqjeH67Mh5Y5NaVWuMqwebDIXuvKQQDMUU4EPjRGmS89Hl8UKAN0Cq/C1T+OGzn4zrbE06CO/
Sm3SRMP24HyIbElhlWV49sfLR05Qmh9fRl1s7ZdcUrxkDkr2J6on5cMVB9M2nIl90IhRVLd5RxP01u81yqvhv
E61ORdA6IMjzXcQ8ebuD2R733O37oGFD7e2O7DaabKKkHZIduL/zFbQkzMDK6uAMP8ylRJN0fUsqIhHhtc//
16OT2H6nMU09MccxZTFUfqF8xIOndElP6um4jXYk5Q30i/CtU3TZyvNeWVwyGwDi4wg2jeVe0YHU2Rh/
ZcZpwAAAQEAv2O86701U9sIuRijp8sO4h13eZrsE5rdn6aul/mkm+xAlO+WQeDXR/
ONm9BwVSrNEmIJB74tEJL3qQTMEFoCoN9Kp00Ya7Qt8n4gZ0vcZlI5u+cgyd1mKaggS2SnoorsRlb2Lh/
Hpe6mXus8pUTf5QT8apgXM3TgFsLDT+3rCt40IdGCZLaP+UDBuNUSKfFwCru6uGoXEwxaL08Nv1wZOc19qrc0
Yzp7i33m6i3a0Z9Pu+TPHqYC74QmBbWq8U9DAo+7yhRIhq/
fdJzk3vIKSLbCxg4PbMwx2Qfh4dLk+L7wOasKnl5//W+RWBUrOlaZ1ZP1/azsK0Ncygno/0F1ew== This is
my new key

* We thank Richard Silverman and Daniel Barrett for their inspiration and excellent work in SSH, The Secure
Shell: The Definitive Guide (especially Chapters 2, 6, and 11) and Linux Security Cookbook without which
this recipe would be a mere shadow of itself.



Restricting SSH Commands | 317

Now execute your command and see what the result is.

$ ssh remote_host 'ls -l /etc'
Command was: ls -l /etc

Now, the problem with this approach is that it will break a program like rsync that
depends on having the STDOUT/STDIN channel all to itself.

$ rsync -avzL -e ssh remote_host:/etc .
protocol version mismatch -- is your shell clean?
(see the rsync man page for an explanation)
rsync error: protocol incompatibility (code 2) at compat.c(64)

But we can work around that by modifying our forced command as follows:

command="/bin/echo Command was: $SSH_ORIGINAL_COMMAND >> ~/ssh_command"

So on the client side we try again:

$ rsync -avzL -e ssh 192.168.99.56:/etc .
rsync: connection unexpectedly closed (0 bytes received so far) [receiver]
rsync error: error in rsync protocol data stream (code 12) at io.c(420)

And on the remote host side we now have:

$ cat ../ssh_command
Command was: rsync --server --sender -vlLogDtprz . /etc

So we can update our forced command as necessary.

Two other things we can do are to set a from host restriction and disable SSH com-
mands. The host restriction specifies the hostname or IP address of the source host.
Disabling commands is also pretty intuitive:

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty

So when we put it all together, it looks like this (still all on one giant line):

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty,from="local_
client",command="rsync --server --sender -vlLogDtprz . /etc" ssh-dss
AAAAB3NzaC1kc3MAAAEBANpgvvTslst2m0ZJA0ayhh1Mqa3aWwU3kfv0m9+myFZ9veFsxM7IVxIjWfAlQh3jp
lY+Q78fMzCTiG+ZrGZYn8adZ9yg5/
wAC03KXm2vKt8LfTx6I+qkMR7v15NI7tZyhxGah5qHNehReFWLuk7JXCtRrzRvWMdsHc/
L2SA1Y4fJ9Y9FfVlBdE1Er+ZIuc5xIlO6D1HFjKjt3wjbAal+oJxwZJaupZ0Q7N47uwMslmc5ELQBRNDsaoqF
RKlerZASPQ5P+AH/+Cxa/fCGYwsogXSJJ0H5S7+QJJHFze35YZI/
+A1D3BIa4JBf1KvtoaFr5bMdhVAkChdAdMjo96xhbdEAAAAVAJSKzCEsrUo3KAvyUO8KVD6e0B/NAAAA/3u/
Ax2TIB/M9MmPqjeH67Mh5Y5NaVWuMqwebDIXuvKQQDMUU4EPjRGmS89Hl8UKAN0Cq/C1T+OGzn4zrbE06CO/
Sm3SRMP24HyIbElhlWV49sfLR05Qmh9fRl1s7ZdcUrxkDkr2J6on5cMVB9M2nIl90IhRVLd5RxP01u81yqvhv
E61ORdA6IMjzXcQ8ebuD2R733O37oGFD7e2O7DaabKKkHZIduL/zFbQkzMDK6uAMP8ylRJN0fUsqIhHhtc//
16OT2H6nMU09MccxZTFUfqF8xIOndElP6um4jXYk5Q30i/CtU3TZyvNeWVwyGwDi4wg2jeVe0YHU2Rh/
ZcZpwAAAQEAv2O86701U9sIuRijp8sO4h13eZrsE5rdn6aul/mkm+xAlO+WQeDXR/
ONm9BwVSrNEmIJB74tEJL3qQTMEFoCoN9Kp00Ya7Qt8n4gZ0vcZlI5u+cgyd1mKaggS2SnoorsRlb2Lh/
Hpe6mXus8pUTf5QT8apgXM3TgFsLDT+3rCt40IdGCZLaP+UDBuNUSKfFwCru6uGoXEwxaL08Nv1wZOc19qrc0
Yzp7i33m6i3a0Z9Pu+TPHqYC74QmBbWq8U9DAo+7yhRIhq/
fdJzk3vIKSLbCxg4PbMwx2Qfh4dLk+L7wOasKnl5//W+RWBUrOlaZ1ZP1/azsK0Ncygno/0F1ew== This is
my new key



318 | Chapter 14: Writing Secure Shell Scripts

Discussion
If you have any problems with ssh, the -v option is very helpful. ssh -v or ssh -v -v
will almost always give you at least a clue about what’s going wrong. Give them a try
when things are working to get an idea of what their output looks like.

If you’d like to be a little more open about what the key can and can’t do, look into
the OpenSSH Restricted Shell rssh (http://www.pizzashack.org/rssh/), which sup-
ports scp, sftp, rdist, rsync, and cvs.

You’d think restrictions like these would be very easy, but it turns out they are not.
The problem has to do with the way SSH (and the r-commands before it) actually
work. It’s a brilliant idea and it works very well, except that it’s hard to limit. To
vastly oversimplify it, you can think of SSH as connecting your local STDOUT to
STDIN on the remote side and the remote STDOUT to your local STDIN. So all
things like scp or rsync do is stream bytes from the local machine to the remote
machine as if over a pipe. But that very flexibility precludes SSH from being able to
restrict interactive access while allowing scp. There’s no difference. And that’s why
you can’t put lots of echo and debugging statements in your bash configuration files
(see Recipe 16.19, “Creating Self-Contained, Portable RC Files”); that output will
intermingle with the byte stream and cause havoc.

So how does rssh work? It provides a wrapper that you use instead of a default login
shell (like bash) in /etc/passwd. That wrapper determines what it will and will not
allow, but with much more flexibility than a plain old SSH-restricted command.

See Also
• SSH, The Secure Shell: The Definitive Guide by Richard E. Silverman and Daniel

J. Barrett (O’Reilly)

• Linux Security Cookbook by Daniel J. Barrett et al. (O’Reilly)

• Recipe 14.21, “Using SSH Without a Password”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

14.23 Disconnecting Inactive Sessions

Problem
You’d like to be able to automatically log out inactive users, especially root.

Solution
Set the $TMOUT environment variable in /etc/bashrc or ~/.bashrc to the number of sec-
onds of inactivity before ending the session. In interactive mode, once a prompt is
issued, if the user does not enter a command in $TMOUT seconds, bash will exit.



Disconnecting Inactive Sessions | 319

Discussion
$TMOUT is also used in the read built-in and the select command in scripts.

Don’t forget to set this as a read-only variable in a system-level file such as /etc/profile
or /etc/bashrc to which users have no write access if you don’t want them to be able
to change it.

declare -r TMOUT=3600

# Or:
readonly TMOUT=3600

Since the user has control over their own environment, you cannot
totally rely on $TMOUT, even if you set it as read-only, since the user
could just run a different shell. Think of it as a helpful reminder to
cooperative users, especially knowledgeable and interrupt-driven sys-
tem administrators who may get distracted (constantly).

See Also
• Recipe 16.19, “Creating Self-Contained, Portable RC Files”



320

Chapter 15CHAPTER 15

Advanced Scripting 16

Unix and POSIX have long promised compatibility and portability, and long strug-
gled to deliver it; thus, one of the biggest problems for advanced scripters is writing
scripts that are portable, i.e., that can work on any machine that has bash installed.
Writing scripts that run well on a wide variety of platforms is much more difficult
than we wish it were. There are many variations from one system to another that can
get in the way; for example, bash itself isn’t always installed in the same place, and
many common Unix commands have slightly different options (or give slightly differ-
ent output) depending on the operating system. In this chapter, we’ll look at several
of those problems, and show you how to solve them.

Many of other things that are periodically needed are not as simple as we’d like them
to be, either. So, we’ll also cover solutions for additional advanced scripting tasks,
such as automating processes using phases, sending email from your script, log-
ging to syslog, using your network resources, and a few tricks for getting input and
redirecting output.

Although this chapter is about advanced scripting, we’d like to stress the need for
clear code, written as simply as possible, and documented. Brian Kernighan, one of
the first Unix developers, put it well:

Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.

It’s easy to write very clever shell scripts that are very difficult, if not impossible, to
understand. The more clever you think you’re being now, as you solve the problem
de jour, the more you’ll regret it 6, 12, or 18 months from now when you (or worse
yet, someone else) have to figure out what you did and why it broke. If you have to
be clever, at least document how the script works (see Recipe 5.1, “Documenting
Your Script”)!



Finding bash Portably for #! | 321

15.1 Finding bash Portably for #!

Problem
You need to run a bash script on several machines, but bash is not always in the same
place. See Recipe 1.11, “Getting bash for xBSD.”

Solution
Use the /usr/bin/env command in the shebang line, as in #!/usr/bin/env bash. If your
system doesn’t have env in /usr/bin, ask your system administrator to install it, move
it, or create a symbolic link because this is the required location. For example, Red Hat
inexplicably uses /bin/env, but they at least create a symlink to the correct location.

You could also create symbolic links for bash itself, but using env is the canonical
and correct solution.

Discussion
env’s purpose is to “run a program in a modified environment,” but since it will
search the path for the command it is given to run, it works very well for this use.

You may be tempted to use #!/bin/sh instead. Don’t. If you are using bash-specific
features in your script, they will not work on machines that do not use bash in
Bourne shell mode for /bin/sh (e.g., BSD, Solaris, Ubuntu 6.10+). And even if you
aren’t using bash-specific features now, you may forget about that in the future. If
you are committed to using only POSIX features, by all means use #!/bin/sh (and
don’t develop on Linux, see Recipe 15.3, “Developing Portable Shell Scripts”), but
otherwise be specific.

You may sometimes see a space between #! and /bin/whatever. Historically there
were some systems that required the space, though in practice we haven’t seen one in
a long time. It’s very unlikely any system running bash will require the space, and the
lack of the space seems to be the most common usage now. But for the utmost his-
torical compatibility, use the space.

We have chosen to use #!/usr/bin/env bash in the longer scripts and functions we’ve
made available to download (see the end of the Preface for details), because that will
run unchanged on most systems. However, since env uses the $PATH to find bash, this
is arguably a security issue (see Recipe 14.2, “Avoiding Interpreter Spoofing”), albeit
a minor one in our opinion.



322 | Chapter 15: Advanced Scripting

Ironically, since we’re trying to use env for portability, shebang line
processing is not consistent across systems. Many, including Linux,
allow only a single argument to the interpreter. Thus #!/usr/bin/env
bash - will result in the error:

/usr/bin/env: bash -: No such file or directory

This is because the interpreter is /usr/bin/env and the single allowed
argument is bash -. Other systems, such as BSD and Solaris, don’t
have this restriction.

Since the trailing - is a common security practice (see Recipe 14.2,
“Avoiding Interpreter Spoofing”) and since this is supported on some
systems but not others, this is a security and portability problem.

You can use the trailing - for a tiny bit more security at a cost of porta-
bility, or omit it for portability at a cost of a tiny potential security risk.
Since env is searching the path anyway, using it should probably be
avoided if you have security concerns; thus the inability to portably
use the trailing - is tolerable.

Therefore, our advice is to omit the trailing - when using env for port-
ability, and to hard-code the interpreter and trailing - when security is
critical.

See Also
• The following web pages for information on shebang (/usr/bin/env):

— http://srfi.schemers.org/srfi-22/mail-archive/msg00069.html

— http://www.in-ulm.de/~mascheck/various/shebang/

— http://homepages.cwi.nl/~aeb/std/hashexclam-1.html

— http://www.faqs.org/faqs/unix-faq/faq/part3/, section 3.16: Why do some
scripts start with #! ... ?

• Recipe 1.11, “Getting bash for xBSD”

• Recipe 15.2, “Setting a POSIX $PATH”

• Recipe 15.3, “Developing Portable Shell Scripts”

• Recipe 15.6, “Using echo Portably”

15.2 Setting a POSIX $PATH

Problem
You are on a machine that provides older or proprietary tools (e.g., Solaris) and you
need to set your PATH so that you get POSIX-compliant tools.



Setting a POSIX $PATH | 323

Solution
Use the getconf utility:

PATH=$(PATH=/bin:/usr/bin getconf PATH)

Here are some default and POSIX paths on several systems:

# Red Hat Enterprise Linux (RHEL) 4.3
$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/$USER/bin

$ getconf PATH
/bin:/usr/bin

# Debian Sarge
$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games

$ getconf PATH
/bin:/usr/bin

# Solaris 10
$ echo $PATH
/usr/bin:

$ getconf PATH
/usr/xpg4/bin:/usr/ccs/bin:/usr/bin:/opt/SUNWspro/bin

# OpenBSD 3.7
$ echo $PATH
/home/$USER/bin:/bin:/sbin:/usr/bin:/usr/sbin:/usr/X11R6/bin:/usr/local/bin:/usr/
local/sbin:/usr/games

$ getconf PATH
/usr/bin:/bin:/usr/sbin:/sbin:/usr/X11R6/bin:/usr/local/bin

Discussion
getconf reports various system configuration variables, so you can use it to set a
default path. However, unless getconf itself is a built-in, you will need a minimal path
to find it, hence the PATH=/bin:/usr/bin part of the solution.

In theory, the variable you use should be CS_PATH. In practice, PATH worked every-
where we tested while CS_PATH failed on the BSDs.

See Also
• http://www.unixreview.com/documents/s=7781/uni1042138723500/

• Recipe 9.11, “Finding a File Using a List of Possible Locations”



324 | Chapter 15: Advanced Scripting

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 19.3, “Forgetting That the Current Directory Is Not in the $PATH”

15.3 Developing Portable Shell Scripts

Problem
You are writing a shell script that will need to run on multiple versions of multiple
Unix or POSIX operating systems.

Solution
First, try using the command built-in with its -p option to find the POSIX version of
program, e.g., in /usr/xpg4 or /usr/xpg6 on Solaris:

$ command -p program args

Then, if possible, find the oldest or least capable Unix machine and develop the
script on that platform. If you aren’t sure what the least capable platform is, use a
BSD variant or Solaris (and the older a version you can find, the better).

Discussion
command -p uses a default path that is guaranteed to find all of the POSIX-standard
utilities. If you’re sure your script will only ever run on Linux (famous last words),
then don’t worry about it; otherwise, avoid developing cross-platform scripts on
Linux or Windows (e.g., via Cygwin).

The problems with writing cross-platform shell scripts on Linux are:

1. /bin/sh is not the Bourne shell, it’s really /bin/bash in Bourne mode, except when
it’s /bin/dash (for example Ubuntu 6.10). Both are very good, but not perfect,
and none of the three work exactly the same, which can be very confusing. In
particular, the behavior of echo can change.

2. Linux uses the GNU tools instead of the original Unix tools.

Don’t get us wrong, we love Linux and use it every day. But it isn’t really Unix: it
does some things differently, and it has the GNU tools. The GNU tools are great,
and that’s the problem. They have a lot of switches and features that aren’t present
on other platforms, and your script will break in odd ways no matter how careful you
are about that. Conversely, Linux is so compatible with everything that scripts writ-
ten for any other Unix-like systems will almost always run on it. They may not be



Developing Portable Shell Scripts | 325

perfect (e.g., echo’s default behavior is to display \n instead of printing a newline),
but are often good enough.

There is an ironic Catch-22 here—the more shell features you use, the less you have
to depend on external programs that may or may not be there or work as expected.
While bash is far more capable than sh, it’s also one of the tools that may or may not
be there. Some form of sh will be on virtually any Unix or Unix-like system, but it
isn’t always quite what you think it is.

Another Catch-22 is that the GNU long options are much more readable in shell
code, but are often not present on other systems. So instead of being able to say sort
--field-separator=, unsorted_file > sorted_file, you have to use sort -t,
unsorted_file > sorted_file for portability.

But take heart: developing on a non-Linux system is easier than it’s ever been. If you
already have and use such systems then this is obviously a nonissue. But if you don’t
have such systems in-house, it’s now trivial to get them for free. Solaris and the BSDs
all run in virtual environments such as the free VMware Player or Server, which run
on Windows or Linux (and soon the Mac).

If you have a Mac running OS X, then you already have BSD—so you’re all set.

You can also easily test scripts using a virtualization environment like VMware. See
Recipe 15.4, “Testing Scripts in VMware.” The flaw in this solution is the systems
such as AIX and HP-UX that don’t run on an x86 architecture, and thus don’t run
under VMware. Again, if you have these systems, use them. If not, see Recipe 1.15,
“Getting bash Without Getting bash.”

See Also
• help command

• http://en.wikipedia.org/wiki/Debian_Almquist_shell

• http://en.wikipedia.org/wiki/Bash

• http://www.opensolaris.org/os/article/2006-02-27_getting_started_with_opensolaris_
using_vmware/

• http://www.testdrive.hp.com/os/

• http://www.testdrive.hp.com/faq/

• http://www.polarhome.com/

• http://www.faqs.org/faqs/hp/hpux-faq/preamble.html

• History of Unix, at http://www.levenez.com/unix/

• Recipe 1.15, “Getting bash Without Getting bash

• Recipe 15.4, “Testing Scripts in VMware

• Recipe 15.6, “Using echo Portably

• “echo Options and Escape Sequences” in Appendix A



326 | Chapter 15: Advanced Scripting

15.4 Testing Scripts in VMware

Problem
You need to develop cross-platform scripts but do not have the appropriate systems
or hardware.

Solution
If the target platforms run on the x86 architecture, download the free VMware Server
and build your own. Or search for prebuilt virtual machines on the VMware site, the
OS vendor or distributor’s site, or the Internet.

The flaw in this solution is the systems such as AIX and HP-UX that don’t run on an
x86 architecture, and thus don’t run under VMware. Again, if you have these sys-
tems, use them. If not, see the recipe Recipe 1.15, “Getting bash Without Getting
bash.”

Discussion
Testing shell scripts is usually not very resource intensive, so even moderate hard-
ware capable of running VMware or a similar virtualization package should be fine.
We mention VMware specifically because the Server and Player products are with-
out cost, they run on Linux and Windows (and soon the Mac), and are very easy to
use; but there are certainly other alternatives available.

If you install VMware Server on a Linux server, you don’t even need the overhead of
a GUI on the host machine—you can use the VNC-based VMware Console from
another Linux or Windows machine with a GUI. Minimal virtual machines with 128
MB of RAM, or sometimes even less, should be more than enough for a shell envi-
ronment for testing. Set up an NFS share to store your test scripts and data, and then
simply telnet or ideally SSH to the test system.

To get you started, here’s a trivial example using VMware player:

1. Get the free VMware Player for Windows or Linux from http://www.vmware.
com/player/.

2. Get a pre-built virtual machine image:

a. Ubuntu Linux 5.10 (Debian derivative), Firefox 1.0.7, and Gnome 2.12.1
form the basis for VMware’s “Browser Appliance v1.0.0” (258M at http://
www.vmware.com/vmtn/appliances/directory/browserapp.html).

b. PC-BSD is a BSD and KDE-based desktop distribution (609M at http://www.
pcbsd.org/?p=download#vmware).

3. Unzip whichever one you selected and open it in Player, creating a new VMware
UUID if prompted.



Using for Loops Portably | 327

Once you boot, which takes a while, you will have either an Ubuntu 5.10 Gnome-
based desktop with bash 3.0 or a BSD and KDE-based GUI desktop complete with
bash 3.1 (as of this writing). You could also run two instances of Player (or run
Server) and have both environments. Note these are both GUI distributions and so
require much more memory and CPU time than a minimal shell-only install; thus,
they are presented here as examples and quick and dirty solutions to get you started.
Despite the overhead, they are useful in that they are “official” images rather than
community-based images with widely variable code assurance and quality control.

VMware’s Browser Appliance has the VMware tools installed, while
PC-BSD does not, so they will behave a little differently with respect to
capturing and releasing your host machine’s keyboard and mouse
input. Pay careful attention to the bottom-left corner of Player’s win-
dow for status.

Full details for the wide variety of VMware implementation possibilities are readily
available via the VMware Forums and Google.

See Also
• http://www.vmware.com/

• http://www.vmware.com/player/

• http://www.vmware.com/vmtn/appliances/

• http://www.vmware.com/support/ws55/doc/new_guest_tools_ws.html

• http://www.ubuntu.org/

• http://www.pcbsd.org/

• Recipe 1.11, “Getting bash for xBSD”

• Recipe 1.15, “Getting bash Without Getting bash”

15.5 Using for Loops Portably

Problem
You need to do a for loop but want it to work on older versions of bash.

Solution
This method is portable back to bash-2.04+:

$ for ((i=0; i<10; i++)); do echo $i; done
0
1
2
3



328 | Chapter 15: Advanced Scripting

4
5
6
7
8
9

Discussion
There are nicer ways of writing this loop in newer versions of bash, but they are not
backwards compatible. As of bash-3.0+ you can use the syntax for {x..y}, as in:

$ for i in {1..10}; do echo $i; done
1
2
3
4
5
6
7
8
9
10

If your system has the seq command, you could also do this:

$ for i in $(seq 1 10); do echo $i; done
1
2
3
4
5
6
7
8
9
10

See Also
• help for

• man seq

• Recipe 6.12, “Looping with a Count”

• Recipe 6.13, “Looping with Floating-Point Values”

• Recipe 17.22, “Writing Sequences”



Using echo Portably | 329

15.6 Using echo Portably

Problem
You are writing a script that will run on multiple versions of Unix and Linux and you
need echo to behave consistently even if it is not running on bash.

Solution
Use printf "%b" whatever, or test for the system and set xpg_echo using shopt -s xpg_
echo as needed.

If you omit the "%b" format string (for example, printf whatever), then printf will try
to interpret any % characters in whatever, which is probably not what you want. The
"%b" format is an addition to the standard printf format that will prevent that misin-
terpretation and also expand backslash escape sequences in whatever.

Setting xpg_echo is less consistent since it only works on bash. It can be effective if
you are sure that you’ll only every run under bash, and not under sh or another simi-
lar shell that doesn’t use xpg_echo.

Using printf requires changes to how you write echo statements, but it’s defined by
POSIX and should be consistent across any POSIX shell anywhere. Specifically, you
have to write printf "%b" instead of just echo.

If you automatically type $b instead of %b you will be unhappy because
that will print a blank line, since you have specified a null format. That
is unless $b is actually defined, in which case the results depend on the
value of $b. Either way, this can be a very difficult bug to find since $b
and %b look very similar:

$ printf "%b" "Works"
Works

$ printf "$b" "Broken"

$

Discussion
In some shells, built-in echo behaves differently than the external echo used on other
systems. This is not always obvious when running on Linux since /bin/sh is actually
bash (usually; it could also be dash on Ubuntu 6.10+), and there are similar circum-
stances on some BSDs. The difference is in how echo does or does not expand back-
slash-escape sequences. Shell built-in versions tend not to expand, while external
versions (e.g., /bin/echo and /usr/bin/echo) tend to expand; but again, that can change
from system to system.



330 | Chapter 15: Advanced Scripting

Typical Linux (/bin/bash):

$ type -a echo
echo is a shell builtin
echo is /bin/echo

$ builtin echo "one\ttwo\nthree"
one\ttwo\nthree\n

$ /bin/echo "one\ttwo\nthree"
one\ttwo\nthree\n

$ echo -e "one\ttwo\nthree"
one ➝ two
three

$ /bin/echo -e "one\ttwo\nthree"
one ➝ two
three

$ shopt -s xpg_echo

$ builtin echo "one\ttwo\nthree"
one ➝ two
three

$ shopt -u xpg_echo

$ builtin echo "one\ttwo\nthree"
one\ttwo\nthree\n

Typical BSD (/bin/csh, then /bin/sh):

$ which echo
echo: shell built-in command.

$ echo "one\ttwo\nthree"
one\ttwo\nthree\n

$ /bin/echo "one\ttwo\nthree"
one\ttwo\nthree\n

$ echo -e "one\ttwo\nthree"
-e one\ttwo\nthree\n

$ /bin/echo -e "one\ttwo\nthree"
-e one\ttwo\nthree\n

$ printf "%b" "one\ttwo\nthree"
one ➝ two
three



Using echo Portably | 331

$ /bin/sh

$ echo "one\ttwo\nthree"
one\ttwo\nthree\n

$ echo -e "one\ttwo\nthree"
one ➝ two
three

$ printf "%b" "one\ttwo\nthree"
one ➝ two
three

Solaris 10 (/bin/sh):

$ which echo
/usr/bin/echo

$ type echo
echo is a shell builtin

$ echo "one\ttwo\nthree"
one ➝  two
three

$ echo -e "one\ttwo\nthree"
-e one ➝ two
three

$ printf "%b" "one\ttwo\nthree"
one ➝ two
three

See Also
• help printf

• man 1 printf

• http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

• Recipe 2.3, “Writing Output with More Formatting Control”

• Recipe 2.4, “Writing Output Without the Newline”

• Recipe 15.1, “Finding bash Portably for #!”

• Recipe 15.3, “Developing Portable Shell Scripts”

• Recipe 19.11, “Seeing Odd Behavior from printf”

• “printf” in Appendix A



332 | Chapter 15: Advanced Scripting

15.7 Splitting Output Only When Necessary

Problem
You want to split output only if the input exceeds your limit, but the split command
always creates at least one new file.

Solution
# cookbook filename: func_split

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Output fixed-size pieces of input ONLY if the limit is exceeded
# Called like:  Split <file> <prefix> <limit option> <limit argument>
# e.g. Split $output ${output}_ --lines 100
# See split(1) and wc(1) for option details
function Split {
    local file=$1
    local prefix=$2
    local limit_type=$3
    local limit_size=$4
    local wc_option

    # Sanity Checks
    if [ -z "$file" ]; then
        printf "%b" "Split: requires a file name!\n"
        return 1
    fi
    if [ -z "$prefix" ]; then
        printf "%b" "Split: requires an output file prefix!\n"
        return 1
    fi
    if [ -z "$limit_type" ]; then
        printf "%b" "Split: requires a limit option (e.g. --lines), see 'man split'!\
n"
        return 1
    fi
    if [ -z "$limit_size" ]; then
        printf "%b" "Split: requires a limit size (e.g. 100), see 'man split'!\n"
        return 1
    fi

    # Convert split options to wc options.  Sigh.
    # Not all options supported by all wc/split on all systems
    case $limit_type in
        -b|--bytes)      wc_option='-c';;
        -C|--line-bytes) wc_option='-L';;
        -l|--lines)      wc_option='-l';;
    esac

    # If whatever limit is exceeded
    if [ "$(wc $wc_option $file | awk '{print $1}')" -gt $limit_size ]; then



Viewing Output in Hex | 333

        # actually do something
        split --verbose $limit_type $limit_size $file $prefix
    fi
} # end of function Split

Discussion
Depending on your system, some options (e.g., -C) may not be available in split or wc.

See Also
• Recipe 8.13, “Counting Lines, Words, or Characters in a File”

15.8 Viewing Output in Hex

Problem
You need to see output in hex mode to verify that a certain whitespace or unprint-
able character is as expected.

Solution
Pipe the output though hexdump using the -C option for canonical output:

$ hexdump -C filename
00000000  4c 69 6e 65 20 31 0a 4c  69 6e 65 20 32 0a 0a 4c  |Line 1.Line 2..L|
00000010  69 6e 65 20 34 0a 4c 69  6e 65 20 35 0a 0a        |ine 4.Line 5..|
0000001e

For example, nl uses spaces (ASCII 20), then the line number, then a tab (ASCII 09)
in its output:

$ nl -ba filename | hexdump -C
00000000 20 20 20 20 20 31 09 4c  69 6e 65 20 31 0a 20 20  |     1.Line 1.  |
00000010  20 20 20 32 09 4c 69 6e  65 20 32 0a 20 20 20 20  |   2.Line 2.    |
00000020  20 33 09 0a 20 20 20 20  20 34 09 4c 69 6e 65 20  | 3..     4.Line |
00000030  34 0a 20 20 20 20 20 35  09 4c 69 6e 65 20 35 0a  |4.     5.Line 5.|
00000040  20 20 20 20 20 36 09 0a                           |     6..|
00000048

Discussion
hexdump is a BSD utility that also comes with many Linux distributions. Other sys-
tems, notably Solaris, do not have it by default. You can use the octal dump com-
mand od, but it’s a lot harder to read:

$ nl -ba filename | od -x
0000000 2020 2020 3120 4c09 6e69 2065 0a31 2020
0000020 2020 3220 4c09 6e69 2065 0a32 2020 2020
0000040 3320 0a09 2020 2020 3420 4c09 6e69 2065
0000060 0a34 2020 2020 3520 4c09 6e69 2065 0a35
0000100 2020 2020 3620 0a09
0000110



334 | Chapter 15: Advanced Scripting

$ nl -ba filename | od -tx1
0000000 20 20 20 20 20 31 09 4c 69 6e 65 20 31 0a 20 20
0000020 20 20 20 32 09 4c 69 6e 65 20 32 0a 20 20 20 20
0000040 20 33 09 0a 20 20 20 20 20 34 09 4c 69 6e 65 20
0000060 34 0a 20 20 20 20 20 35 09 4c 69 6e 65 20 35 0a
0000100 20 20 20 20 20 36 09 0a
0000110

There is also a simple Perl script available at http://www.khngai.com/perl/bin/
hexdump.txt that might work:

$ ./hexdump.pl filename

       /0 /1 /2 /3 /4 /5 /6 /7 /8 /9/ A /B /C /D /E /F   0123456789ABCDEF
0000 : 4C 69 6E 65 20 31 0A 4C 69 6E 65 20 32 0A 0A 4C   Line 1.Line 2..L
0010 : 69 6E 65 20 34 0A 4C 69 6E 65 20 35 0A 0A         ine 4.Line 5..

See Also
• man hexdump

• man od

• http://www.khngai.com/perl/bin/hexdump.txt

• http://gnuwin32.sourceforge.net/packages/hextools.htm

• “Table of ASCII Values” in Appendix A

15.9 Using bash Net-Redirection

Problem
You need to send or receive very simple network traffic but you do not have a tool
such as netcat installed.

Solution
If you have bash version 2.04+ compiled with --enable-net-redirections (it isn’t
compiled this way in Debian and derivatives), you can use bash itself. The following
example is also used in Recipe 15.10, “Finding My IP Address”:

$ exec 3<> /dev/tcp/www.ippages.com/80
$ echo -e "GET /simple/?se=1 HTTP/1.0\n" >&3
$ cat <&3
HTTP/1.1 200 OK
Date: Tue, 28 Nov 2006 08:13:08 GMT
Server: Apache/2.0.52 (Red Hat)
X-Powered-By: PHP/4.3.9
Set-Cookie: smipcomID=6670614; expires=Sun, 27-Nov-2011 08:13:09 GMT; path=/
Pragma: no-cache
Cache-Control: no-cache, must-revalidate
Content-Length: 125



Finding My IP Address | 335

Connection: close
Content-Type: text/plain; charset=ISO-8859-1

72.NN.NN.225 (US-United States) http://www..com Tue, 28 Nov 2006 08:13:09 UTC/GMT
flagged User Agent - reduced functionality

As noted, this recipe will probably not work under Debian and deriv-
atives such as Ubuntu since they expressly do not compile bash with
--enable-net-redirections.

Discussion
As noted in Recipe 15.12, “Redirecting Output for the Life of a Script,” it is possible
to use exec to permanently redirect file handles within the current shell session, so
the first command sets up input and output on file handle 3. The second line sends a
trivial command to a path on the web server defined in the first command. Note that
the user agent will appear as "-" on the web server side, which is what is causing the
“flagged User Agent” warning. The third command simply displays the results.

Both TCP and UDP are supported. Here is a trivial way to send syslog messages to a
remote server (although in production we recommend using the logger utility, which
is much more user friendly and robust):

echo "<133>$0[$$]: Test syslog message from bash" > /dev/udp/loghost.example.com/514

Since UDP is connectionless, this is actually much easier to use than the previous
TCP example. <133> is the syslog priority value for local0.notice, calculated according
to RFC 3164. See the RFC “4.1.1 PRI Part” and logger manpage for details. $0 is the
name and $$ is the process ID of the current program. The name will be -bash for a
login shell.

See Also
• man logger

• RFC 3164: The BSD Syslog Protocol, at http://www.faqs.org/rfcs/rfc3164.html

• Recipe 15.10, “Finding My IP Address”

• Recipe 15.12, “Redirecting Output for the Life of a Script”

• Recipe 15.14, “Logging to syslog from Your Script”

• Appendix B, particularly ./functions/gethtml

15.10 Finding My IP Address

Problem
You need to know the IP address of the machine you are running on.



336 | Chapter 15: Advanced Scripting

Solution
There is no good way to do this that will work on all systems in all situations, so we
will present several possible solutions.

First, you can parse output from ifconfig to look for IP addresses. These examples
will either return the first IP address that is not a loopback or nothing if there are no
interfaces configured or up.

# cookbook filename: finding_ipas

# IPv4 Using awk, cut and head
$ /sbin/ifconfig -a | awk '/(cast)/ { print $2 }' | cut -d':' -f2 | head -1

# IPv4 Using Perl, just for fun
$ /sbin/ifconfig -a | perl -ne 'if ( m/^\s*inet (?:addr:)?([\d.]+).*?cast/ ) { print
qq($1\n); exit 0; }'

# IPv6 Using awk, cut and head
$ /sbin/ifconfig -a | egrep 'inet6 addr: |address: ' | cut -d':' -f2- | cut -d'/' -f1
| head -1 | tr -d ' '

# IPv6 Using Perl, just for fun
$ /sbin/ifconfig -a | perl -ne 'if ( m/^\s*(?:inet6)? \s*addr(?:ess)?: ([0-9A-Fa-f:
]+)/ ) { print qq($1\n); exit 0; }'

Second, you can get your hostname and resolve back to an IP address. This is often
unreliable because today’s systems (especially workstations) might have incomplete
or incorrect hostnames and/or might be on a dynamic network that lacks proper
reverse lookup. Use at your own risk and test well.

$ host $(hostname)

Third, you may be more interested in your host’s external, routable address than its
internal RFC 1918 address. In that case you can use an external host such as http://
www.ippages.com/ or “FollowMeIP” (see below) to learn the address of your firewall
or NAT device. The catch here is that non-Linux systems often have no command-
line tool like wget installed by default. lynx or curl will also work, but they aren’t
usually installed by default either (although Mac OS X 10.4 has curl). Note the IP
address is deliberately obscured in the following examples:

$ wget -qO - http://www.ippages.com/simple/
72.NN.NN.225 (US-United States) http://www.ippages.com Mon, 27 Nov 2006 21:02:23 UTC/
GMT
(5 of 199 allowed today)
alternate access in XML format at: http://www.ippages.com/xml
alternate access via SOAP at: http://www.ippages.com/soap/server.php
alternate access via RSS feed at: http://www.ippages.com/rss.php
alternate access in VoiceXML format at: http://www.ippages.com/voicexml

$ wget -qO - http://www.ippages.com/simple/?se=1



Finding My IP Address | 337

72.NN.NN.225 (US-United States) http://www.ippages.com Tue, 28 Nov 2006 08:11:36 UTC/
GMT

$ wget -qO - http://www.ippages.com/simple/?se=1 | cut -d' ' -f1
72.NN.NN.225

$ lynx -dump http://www.ippages.com/simple/?se=1 | cut -d' ' -f1
72.NN.NN.225

$ curl -s http://www.ippages.com/simple/?se=1 | cut -d' ' -f1
72.NN.NN.225

If you do not have any of the programs used above, but you do have bash version
2.04+ compiled with --enable-net-redirections (it isn’t compiled this way in
Debian and derivatives), you can use bash itself. See Recipe 15.9, “Using bash Net-
Redirection” for details.

$ exec 3<> /dev/tcp/www.ippages.com/80
$ echo -e "GET /simple/?se=1 HTTP/1.0\n" >&3
$ cat <&3
HTTP/1.1 200 OK
Date: Tue, 28 Nov 2006 08:13:08 GMT
Server: Apache/2.0.52 (Red Hat)
X-Powered-By: PHP/4.3.9
Set-Cookie: smipcomID=6670614; expires=Sun, 27-Nov-2011 08:13:09 GMT; path=/
Pragma: no-cache
Cache-Control: no-cache, must-revalidate
Content-Length: 125
Connection: close
Content-Type: text/plain; charset=ISO-8859-1

72.NN.NN.225 (US-United States) http://www..com Tue, 28 Nov 2006 08:13:09 UTC/GMT
flagged User Agent - reduced functionality

$ exec 3<> /dev/tcp/www.ippages.com/80
$ echo -e "GET /simple/?se=1 HTTP/1.0\n" >&3
$ egrep '^[0-9.]+ ' <&3 | cut -d' ' -f1
72.NN.NN.225

“FollowMeIP” is a little different. It provides a client at http://ipserver.fmip.org/ but
you don’t actually need it. Note the use of a nonstandard port, so this won’t work at
sites with strict egress filtering (i.e., outgoing firewall rules).

# Using telnet
$ telnet ipserver.fmip.org 42750 2>&1 | egrep '^[0-9]+'
72.NN.NN.225

# Using native bash (easier, if it works for you)
$ exec 3<> /dev/tcp/ipserver.fmip.org/42750 && cat <&3
72.NN.NN.225



338 | Chapter 15: Advanced Scripting

Discussion
The awk and Perl code in the first solution above is interesting because of the operat-
ing system variations we will note here. But it turns out that the lines we’re inter-
ested in all contain either Bcast or broadcast (or inet6 addr: or address:), so once we
get those lines it’s just a matter of parsing out the field we want. Of course Linux
makes that harder by using a different format, but we’ve dealt with that too.

Not all systems require the path (if you aren’t root) or -a argument to ifconfig, but all
accept it, so it’s best to use /sbin/ifconfig -a and be done with it.

Here are ifconfig output examples from different machines:

# Linux
$ /sbin/ifconfig
eth0      Link encap:Ethernet  HWaddr 00:C0:9F:0B:8F:F6
          inet addr:192.168.99.11  Bcast:192.168.99.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:33073511 errors:0 dropped:0 overruns:0 frame:827
          TX packets:52865023 errors:0 dropped:0 overruns:1 carrier:7
          collisions:12922745 txqueuelen:100
          RX bytes:2224430163 (2121.3 Mb)  TX bytes:51266497 (48.8 Mb)
          Interrupt:11 Base address:0xd000

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:659102 errors:0 dropped:0 overruns:0 frame:0
          TX packets:659102 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:89603190 (85.4 Mb)  TX bytes:89603190 (85.4 Mb)

$ /sbin/ifconfig
eth0      Link encap:Ethernet  HWaddr 00:06:29:33:4D:42
          inet addr:192.168.99.144  Bcast:192.168.99.255  Mask:255.255.255.0
          inet6 addr: fe80::206:29ff:fe33:4d42/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:1246774 errors:14 dropped:0 overruns:0 frame:14
          TX packets:1063160 errors:0 dropped:0 overruns:0 carrier:5
          collisions:65476 txqueuelen:1000
          RX bytes:731714472 (697.8 MiB)  TX bytes:942695735 (899.0 MiB)

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:144664 errors:0 dropped:0 overruns:0 frame:0
          TX packets:144664 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:152181602 (145.1 MiB)  TX bytes:152181602 (145.1 MiB)

sit0      Link encap:IPv6-in-IPv4
          inet6 addr: ::127.0.0.1/96 Scope:Unknown



Finding My IP Address | 339

          UP RUNNING NOARP  MTU:1480  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:101910 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

# NetBSD
$ /sbin/ifconfig -a
pcn0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
        address: 00:0c:29:31:eb:19
        media: Ethernet autoselect (autoselect)
        inet 192.168.99.56 netmask 0xffffff00 broadcast 192.168.99.255
        inet6 fe80::20c:29ff:fe31:eb19%pcn0 prefixlen 64 scopeid 0x1
lo0: flags=8009<UP,LOOPBACK,MULTICAST> mtu 33196
        inet 127.0.0.1 netmask 0xff000000
        inet6 ::1 prefixlen 128
        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
ppp1: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
sl0: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 296
sl1: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 296
strip0: flags=0 mtu 1100
strip1: flags=0 mtu 1100

# OpenBSD, FreeBSD
$ /sbin/ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33224
        inet 127.0.0.1 netmask 0xff000000
        inet6 ::1 prefixlen 128
        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
le1: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST> mtu 1500
        address: 00:0c:29:25:df:00
        inet6 fe80::20c:29ff:fe25:df00%le1 prefixlen 64 scopeid 0x1
        inet 192.168.99.193 netmask 0xffffff00 broadcast 192.168.99.255
pflog0: flags=0<> mtu 33224
pfsync0: flags=0<> mtu 2020

# Solaris
$ /sbin/ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
        inet 127.0.0.1 netmask ff000000
pcn0: flags=1004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4> mtu 1500 index 2
        inet 192.168.99.159 netmask ffffff00 broadcast 192.168.99.255

# Mac
$ /sbin/ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
        inet 127.0.0.1 netmask 0xff000000
        inet6 ::1 prefixlen 128
        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
stf0: flags=0<> mtu 1280



340 | Chapter 15: Advanced Scripting

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
        inet6 fe80::20d:93ff:fe65:f720%en0 prefixlen 64 scopeid 0x4
        inet 192.168.99.155 netmask 0xffffff00 broadcast 192.168.99.255
        ether 00:0d:93:65:f7:20
        media: autoselect (100baseTX <half-duplex>) status: active
        supported media: none autoselect 10baseT/UTP <half-duplex> 10baseT/UTP <full-
duplex> 10baseT/UTP <full-duplex,hw-loopback> 100baseTX <half-duplex> 100baseTX
<full-duplex> 100baseTX <full-duplex,hw-loopback>
fw0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 2030
        lladdr 00:0d:93:ff:fe:65:f7:20
        media: autoselect <full-duplex> status: inactive
        supported media: autoselect <full-duplex>

See Also
• man awk

• man curl

• man cut

• man head

• man lynx

• man perl

• man wget

• http://www.ippages.com/ or http://www.showmyip.com/

• http://ipserver.fmip.org/

• http://www.faqs.org/rfcs/rfc1918.html

• Recipe 15.9, “Using bash Net-Redirection”

• Recipe 15.12, “Redirecting Output for the Life of a Script”

15.11 Getting Input from Another Machine

Problem
Your script needs to get input from another machine, perhaps to check if a file exists
or a process is running.

Solution
Use SSH with public keys and command substitution. To do this, set up SSH so that
you do not need a password, as described in Recipe 14.21, “Using SSH Without a
Password.” Next, tailor the command that SSH runs to output exactly what your
script needs as input. Then simply use command substitution.

#!/usr/bin/env bash
# cookbook filename: command_substitution

REMOTE_HOST='host.example.com'  # Required



Getting Input from Another Machine | 341

REMOTE_FILE='/etc/passwd'       # Required
SSH_USER='user@'                # Optional, set to '' to not use
#SSH_ID='-i ~/.ssh/foo.id'       # Optional, set to '' to not use
SSH_ID=''

result=$(
    ssh $SSH_ID $SSH_USER$REMOTE_HOST \
      "[ -r $REMOTE_FILE ] && echo 1 || echo 0"
) || { echo "SSH command failed!" >&2; exit 1; }

if [ $result = 1 ]; then
    echo "$REMOTE_FILE present on $REMOTE_HOST"
else
    echo "$REMOTE_FILE not present on $REMOTE_HOST"
fi

Discussion
We do a few interesting things here. First, notice how both $SSH_USER and $SSH_ID
work. They have an effect when they have a value, but when they are empty they
interpolate to the empty set and are ignored. This allows us to abstract the values in
the code, which lends itself to putting those values in a configuration file, putting the
code into a function, or both.

# Interpolated line of the variables have values:
ssh -i ~/.ssh/foo.id user@host.example.com [...]

# No values:
ssh host.example.com [...]

Next, we set up the command that SSH runs so that there is always output (0 or 1),
then check that $result is not empty. That’s one way to make sure that the SSH
command runs (see also Recipe 4.2, “Telling If a Command Succeeded or Not”). If
$result is empty, we group commands using a { } code block to issue an error mes-
sage and exit. But since we’re always getting output from the SSH command, we
have to test the value; we can’t just use if [ $result ]; then.

If we didn’t use the code block, we’d only issue the warning if the SSH command
returned an empty $result, but we’d always exit. Read the code again until you
understand why, because this is an easy way to get bitten. Likewise, if we’d tried to
use a ( ) subshell instead of the { } code block, our intent would fail because the exit
1 would exit the subshell, not the script. The script would then continue even after
the SSH command had failed—but the code would look almost correct, so this might
be tricky to debug.

We could have written the last test case as follows. Which form to use depends on
your style and the number of statements to execute in each situation. In this case it
doesn’t matter.

[ $result = 1 ] && echo "$REMOTE_FILE present on $REMOTE_HOST" \
                || echo "$REMOTE_FILE not present on $REMOTE_HOST"



342 | Chapter 15: Advanced Scripting

Finally, we’ve also been careful about formatting so that no lines are too long, but
the code is still readable and our intent is clear.

See Also
• Recipe 2.14, “Saving or Grouping Output from Several Commands”

• Recipe 4.2, “Telling If a Command Succeeded or Not”

• Recipe 14.21, “Using SSH Without a Password”

• Recipe 17.18, “Grepping ps Output Without Also Getting the grep Process
Itself”

• Recipe 17.19, “Finding Out Whether a Process Is Running”

15.12 Redirecting Output for the Life of a Script

Problem
You’d like to redirect output for an entire script and you’d rather not have to edit
every echo or printf statement.

Solution
Use a little known feature of the exec command to redirect STDOUT or STDERR:

# Optional, save the "old" STDERR
exec 3>&2

# Redirect any output to STDERR to an error log file instead
exec 2> /path/to/error_log

# script with "globally" redirected STDERR goes here

# Turn off redirect by reverting STDERR and closing FH3
exec 2>&3-

Discussion
Usually exec replaces the running shell with the command supplied in its arguments,
destroying the original shell. However, if no command is given, it can manipulate
redirection in the current shell. You are not limited to redirecting STDOUT or
STDERR, but they are the most common targets for redirection in this case.

See Also
• help exec

• Recipe 15.9, “Using bash Net-Redirection”



Working Around “argument list too long” Errors | 343

15.13 Working Around “argument list too long” Errors

Problem
You get an “argument list too long” error while trying to do an operation involving
shell wildcard expansion.

Solution
Use the xargs command, possibly in conjunction with find, to break up your argu-
ment list.

For simple cases, just use a for loop or find instead of ls:

$ ls /path/with/many/many/files/*e*
-/bin/bash: /bin/ls: Argument list too long

# Short demo, surrounding ~ are for illustration only
$ for i in ./some_files/*e*; do echo "~$i~"; done
~./some_files/A file with (parens)~
~./some_files/A file with [brackets]~
~./some_files/File with embedded
newline~
~./some_files/file with = sign~
~./some_files/file with spaces~
~./some_files/file with |~
~./some_files/file with:~
~./some_files/file with;~
~./some_files/regular_file~

$ find ./some_files -name '*e*' -exec echo ~{}~ \;
~./some_files~
~./some_files/A file with [brackets]~
~./some_files/A file with (parens)~
~./some_files/regular_file~
~./some_files/file with spaces~
~./some_files/file with = sign~
~./some_files/File with embedded
newline~
~./some_files/file with;~
~./some_files/file with:~
~./some_files/file with |~

$ for i in /path/with/many/many/files/*e*; do echo "$i"; done
[This works, but the output is too long to list]

$ find /path/with/many/many/files/ -name '*e*'
[This works, but the output is too long to list]



344 | Chapter 15: Advanced Scripting

The example above works correctly with the echo command, but when you feed that
"$i" into other programs, especially other shell constructs, $IFS and other parsing
may come into play. The GNU find and xargs take that into account with find -
print0 and xargs -0. (No, we don’t know why it’s -print0 and -0 instead of being
consistent.) These arguments cause find to use the null character (which can’t appear
in a filename) instead of whitespace as an output record separator, and xargs to use null
as its input record separator. That will correctly parse files containing odd characters.

$ find /path/with/many/many/files/ -name '*e*' -print0 | xargs -0 proggy

Discussion
Note that the default behavior of bash (and sh) is to return unmatched patterns
unchanged. That means you could end up with your for loop setting $i to ./some_
files/*e* if no files match the wildcard pattern. You can set the shopt -s nullglob
option to cause filename patterns that match no files to expand to a null string,
rather than expand to themselves.

You might assume that the for loop solution in the simple case would run into the
same problem as the ls command, but it doesn’t. Chet Ramey tells us:

ARG_MAX bounds the total space requirement of the exec* family of system calls, so the
kernel knows the largest buffer it will have to allocate. This is all three arguments to
execve: program name, argument vector, and environment.

The [ls command] fails because the total bytes taken up by the arguments to execve
exceeds ARG_MAX. The [for loop] succeeds because everything is done internally:
though the entire list is generated and stored, execve is never called.

Be careful that find doesn’t find too many files, since it will recursively descend into
all subdirectories by default while ls will not. Some versions of find have a -d option
to control how deep it goes. Using the for loop is probably easier.

Use the getconf ARG_MAX command to see what the limit is on your system. It varies
wildly (see also getconf LINE_MAX; see Table 15-1).

See Also
• http://www.gnu.org/software/coreutils/faq/coreutils-faq.html#Argument-list-too-long

• Recipe 9.2, “Handling File Names Containing Odd Characters”

Table 15-1. System limits

System ARG_MAX limits (bytes)

HP-UX 11 2048000

Solaris (8, 9, 10) 1048320

NetBSD 2.0.2, OpenBSD 3.7, OS/X 262144

Linux (Red Hat, Debian, Ubuntu) 131072

FreeBSD 5.4 65536



Sending Email from Your Script | 345

15.14 Logging to syslog from Your Script

Problem
You’d like your script to be able to log to syslog.

Solution
Use logger, Netcat, or bash’s built-in network redirection features.

logger is installed by default on most systems and is an easy way to send messages to
the local syslog service. However, it does not send syslog to remote hosts by itself. If
you need to do that, you can use bash or Netcat.

$ logger -p local0.notice -t $0[$$] test message

Netcat is known as the “TCP/IP Swiss Army knife” and is usually not installed by
default. It may also be prohibited as a hacking tool by some security policies, though
bash’s net-redirection features do pretty much the same thing. See the discussion in
Recipe 15.9, “Using bash Net-Redirection” for details on the <133>$0[$$] part.

# Netcat
$ echo "<133>$0[$$]: Test syslog message from Netcat" | nc -w1 -u loghost 514

# bash
$ echo "<133>$0[$$]: Test syslog message from bash" \
  > /dev/udp/loghost.example.com/514

Discussion
logger and Netcat have many more features than we include here. See the respective
manpages for details.

See Also
• man logger

• man nc

• Recipe 15.9, “Using bash Net-Redirection”

15.15 Sending Email from Your Script

Problem
You’d like your script to be able to send email, optionally with attachments.



346 | Chapter 15: Advanced Scripting

Solution
These solutions depend on a compatible mailer such as mail, mailx, or mailto, an
Message Transfer Agent (MTA) being installed and running, and proper configura-
tion of your email environment. Unfortunately, you can’t always count on all of that,
so these solutions must be well tested in your intended environment.

The first way to send mail from your script is to write some code to generate and
send a message, as follows:

# Simple
cat email_body | mail -s "Message subject" recipient1@example.com recipient2@example.
com

or:

# Attachment only
$ uuencode /path/to/attachment_file attachment_name | mail -s "Message Subject"
recipient1@example.com recipient2@example.com

or:

# Attachment and body
$ (cat email_body ; uuencode /path/to/attachment_file attachment_name) | mail -s
"Message Subject" recipient1@example.com recipient2@example.com

In practice, it’s not always that easy. For one thing, while uuencode will probably be
there, mail and friends may or may not, or their capabilities may vary. In some cases
mail and mailx are even the same program, hard- or soft-linked together. In produc-
tion, you will want to use some abstraction to allow for portability. For example,
mail works on Linux and the BSDs, but mailx is required for Solaris since its mail
lacks support for -s. mailx works on some Linux distributions (e.g., Debian), but not
others (e.g., Red Hat). We’re choosing the mailer based on hostname here, but
depending on your environment using uname -o might make more sense.

# cookbook filename: email_sample

# Define some mail settings.  Use a case statement with uname or hostname
# to tweak settings as required for your environment.
case $HOSTNAME in
    *.company.com     ) MAILER='mail'   ;;  # Linux and BSD
    host1.*           ) MAILER='mailx'  ;;  # Solaris, BSD and some Linux
    host2.*           ) MAILER='mailto' ;;  # Handy, if installed
esac
RECIPIENTS='recipient1@example.com recipient2@example.com'
SUBJECT="Data from $0"

[...]
# Create the body as a file or variable using echo, printf, or a here-document
# Create or modify $SUBJECT and/or $RECIPIENTS as needed
[...]

( echo $email_body ; uuencode $attachment $(basename $attachment) ) \
  | $MAILER -s "$SUBJECT" "$RECIPIENTS"



Sending Email from Your Script | 347

We should also note that sending attachments in this way depends somewhat on the
client you use to read the resulting message, too. Modern clients like Thunderbird
(and Outlook) will detect a uuencoded message and present it as an attachment.
Other clients may not. You can always save the message and uudecode it (uudecode is
smart enough to skip the message part and just handle the attachment part), but
that’s a pain.

The second way to send mail from your scripts is to outsource the task to cron.
While the exact feature set of cron varies from system to system, one thing in com-
mon is that any output from a cron job is mailed to the job’s owner or the user
defined using the MAILTO variable. So you can take advantage of that fact to get email-
ing for free, assuming that your email infrastructure works.

The proper way to design a script intended to run from cron (and many would argue
any script or Unix tool at all) is to make it silent unless it encounters a warning or
error. If necessary, use a -v argument to optionally allow a more verbose mode, but
don’t run it that way from cron, at least after you’ve finished testing. The reason for
this is as noted: cron emails you all the output. If you get an email message from cron
every time your script runs, you’ll soon start ignoring them. But if your script is silent
except when there’s a problem, you’ll only get a notification when there is a prob-
lem, which is ideal.

Discussion
Note that mailto is intended to be a multimedia and MIME-aware update to mail,
and thus you could avoid using uuencode for sending attachments, but it’s not as
widely available as mail or mailx. If all else fails, elm or mutt may be used in place of
mail, mailx, or mailto, thought they are even less likely to be installed by default than
mail*. Also, some versions of these programs support a -r option to supply a return
address in case you want to supply one. mutt also has a -a option that makes send-
ing attachments a breeze.

cat "$message_body" | mutt -s "$subject" -a "$attachment_file" "$recipients"

mpack is another tool worth looking into, but it is very unlikely to be installed by
default. Check your system’s software repository or download the source from ftp://
ftp.andrew.cmu.edu/pub/mpack/. From the manpage:

The mpack program encodes the named file in one or more MIME messages. The
resulting messages are mailed to one or more recipients, written to a named file or set
of files, or posted to a set of newsgroups.

Another way to handle the various names and locations of mail clients is shown in
Chapter 8 of Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins
(O’Reilly):

# cookbook filename: email_sample_css
# From Chapter 8 of Classic Shell Scripting



348 | Chapter 15: Advanced Scripting

for MAIL in /bin/mailx /usr/bin/mailx /usr/sbin/mailx /usr/ucb/mailx /bin/mail /usr/
bin/mail; do
    [ -x $MAIL ] && break
done
[ -x $MAIL ] || { echo 'Cannot find a mailer!' >&2; exit 1; }

uuencode is an old method for translating binary data into ASCII text for transmis-
sion over links that could not support binary, which is to say most of the Internet
before it became the Internet and the Web. We have it on good authority that at least
some such links still remain, but even if you never encounter one it’s still useful to be
able to convert an attachment into an otherwise ASCII medium in such a way that
modern mail clients will recognize it. See also uudecode and mimencode. Note that
uuencoded files are about one-third larger than their binary equivalent, so you prob-
ably want to compress the file before uuencoding it.

The problem with email, aside from the differing front-end Mail User Agent (MUA)
programs like mail and mailx, is that there are a lot of moving parts that must all
work together. This is exacerbated by the spam problem because mail administra-
tors have had to so severely lock down mail servers that it can easily affect your
scripts. All we can say here is to fully test your solution, and talk to your system and
mail administrators if necessary.

One other problem you might see is that some workstation-oriented Linux distribu-
tions, such as Ubuntu, don’t install or run an MTA by default since they assume you
will be using a full-featured GUI client such as Evolution or Thunderbird. If that’s
the case, command-line MUAs and email from cron won’t work either. Consult your
distribution’s support groups for help with this as needed.

See Also
• man mail

• man mailx

• man mailto

• man mutt

• man uuencode

• man cron

• man 5 crontab

15.16 Automating a Process Using Phases

Problem
You have a long job or process you need to automate, but it may require manual
intervention and you need to be able to restart at various points in the progress. You
might use a GOTO to jump around, but bash doesn’t have that.



Automating a Process Using Phases | 349

Solution
Use a case statement to break your script up into sections or phases.

First, we’ll define a standardized way to get answers from the user:

# cookbook filename: func_choice

function choice {
    # Let the user make a choice about something and return a standardized
    # answer.  How the default is handled and what happens next is up to
    # the if/then after the choice in main

    local answer
    printf "%b" "\a"        # Ring the bell
    read -p "$*" answer
    case "$answer" in
        [yY1] ) choice='y';;
        [nN0] ) choice='n';;
        *     ) choice="$answer";;
    esac
} # end of function choice

Then, we’ll set up our phases:

# cookbook filename: using_phases

# Main Loop
until [ "$phase" = "Finished." ]; do

    case $phase in

        phase0 )
            ThisPhase=0
            NextPhase="$(( $ThisPhase + 1 ))"
            echo '############################################'
            echo "Phase$ThisPhase  = Initialization of FooBarBaz build"
            # Things that should only be initialized at the beginning of a
            # new build cycle go here
# ...
            echo "Phase${ThisPhase}=Ending"
            phase="phase$NextPhase"
            ;;

# ...

    phase20 )
        ThisPhase=20
        NextPhase="$(( $ThisPhase + 1 ))"
        echo '############################################'
        echo "Phase$ThisPhase = Main processing for FooBarBaz build"



350 | Chapter 15: Advanced Scripting

# ...

        choice "[P$ThisPhase] Do we need to stop and fix anything? [y/N]: "
        if [ "$choice" = "y" ]; then
            echo "Re-run '$MYNAME phase${ThisPhase}' after handling this."
            exit $ThisPhase
        fi

        echo "Phase${ThisPhase}=Ending"
        phase="phase$NextPhase"
        ;;

# ...

        * )
            echo "What the heck?!?  We should never get HERE!  Gonna croak!"
            echo "Try $0 -h"
            exit 99
            phase="Finished."
            ;;
    esac
    printf "%b" "\a"        # Ring the bell
done

Discussion
Since exit codes only go up to 255, the exit $ThisPhase line limits you to that many
phases. And our exit 99 line limits you even more, although that one is easily
adjusted. If you require more than 254 phases (plus 255 as the error code), you have
our sympathy. You can either come up with a different exit code scheme, or chain
several scripts together.

You should probably set up a usage and/or summary routine that lists the various
phases:

Phase0  = Initialization of FooBarBaz build
...
Phase20 = Main processing for FooBarBaz build
...
Phase28 ...

You can probably grep most of the text out of the code with something like grep
'Phase$ThisPhase' my_script.

You may also want to log to a local flat file, syslog, or some other mechanism. In that
case, define a function like logmsg and use it as appropriate in the code. It could be as
simple as:



Automating a Process Using Phases | 351

function logmsg {
    # Write a timestamped log message to the screen and logfile
    # Note tee -a to append
    printf "%b" "`date '+%Y-%m-%d %H:%M:%S'`: $*" | tee -a $LOGFILE
} # end of function logmsg

You may note that this script violates our usual standard of being silent unless it
encounters a problem. Since it is designed to be interactive, we’re OK with that.

See Also
• Recipe 3.5, “Getting User Input”

• Recipe 3.6, “Getting Yes or No Input”

• Recipe 15.14, “Logging to syslog from Your Script”



352

Chapter 16CHAPTER 16

Configuring and Customizing bash 17

Would you want to work in an environment where you couldn’t adjust things to
your liking? Imagine not being able to adjust the height of your chair, or being forced
to walk the long way to the lunchroom, just because someone else thought that was
the “right way.” That sort of inflexibility wouldn’t be acceptable for long; however,
that’s what most users expect, and accept, from their computing environments. But
if you’re used to thinking of your user interface as something inflexible and
unchangeable, relax—the user interface is not carved in stone. bash lets you custom-
ize it so that it works with you, rather than against you.

bash gives you a very powerful and flexible environment. Part of that flexibility is the
extent to which it can be customized. If you’re a casual Unix user, or if you’re used
to a less flexible environment, you might not be aware of what’s possible. This chap-
ter shows you how to configure bash to suit your individual needs and style. If you
think the Unix cat command has a ridiculous name (most non-Unix people would
agree), you can define an alias that renames it. If you use a few commands all the
time, you can assign abbreviations to them, too—or even misspellings that corre-
spond to your favorite typing errors (e.g., “mroe” for the more command). You can
create your own commands, which can be used the same way as standard Unix com-
mands. You can alter the prompt so that it contains useful information (like the cur-
rent directory). And you can alter the way bash behaves; for example, you can make
it case-insensitive, so that it doesn’t care about the difference between upper- and
lowercase. You will be surprised and pleased at how much you can improve your
productivity with a few simple bash tweaks, especially to readline.

For more information about customizing and configuring bash, see Chapter 3 of
Learning the bash Shell by Cameron Newham (O’Reilly).



Customizing Your Prompt | 353

16.1 bash Startup Options

Problem
You’d like to understand the various options you can use when starting bash, but
bash --help is not helping you.

Solution
In addition to bash --help, try bash -c "help set" and bash -c help, or just helpset
and help if you are already running in a bash shell.

Discussion
bash sometimes has several different ways to set the same option, and this is an
example of that. You can set options on startup (for example, bash -x), then later
turn the same option off interactively using set +x.

See Also
• Appendix A

• Recipe 19.12, “Testing bash Script Syntax”

16.2 Customizing Your Prompt

Problem
The default bash prompt is usually something uninformative that ends with $ and
doesn’t tell you much, so you would like to customize it to show information you
find useful.

Solution
Customize the $PS1 and $PS2 variables as you desire.

The default prompt varies depending on your system. bash itself will show its major
and minor version (\s-\v\$), for example, bash-3.00$. However, your operating sys-
tem may have its own default, such as [user@host ~]$ ([\u@\h \W]\$) for Fedora Core
5. This solution presents eight basic prompts and three fancier prompts.

Basic prompts

Here are eight examples of more useful prompts that will work with bash-1.14.7 or
newer. The trailing \$ displays # if the effective UID is zero (i.e., you are root) and $
otherwise:



354 | Chapter 16: Configuring and Customizing bash

1. Username@hostname, the date and time, and the current working directory:
$ export PS1='[\u@\h \d \A] \w \$ '
[jp@freebsd Wed Dec 28 19:32] ~ $ cd /usr/local/bin/
[jp@freebsd Wed Dec 28 19:32] /usr/local/bin $

2. Username@long-hostname, the date and time in ISO 8601 format, and the base-
name of the current working directory (\W):

$ export PS1='[\u@\H \D{%Y-%m-%d %H:%M:%S%z}] \W \$ '
[jp@freebsd.jpsdomain.org 2005-12-28 19:33:03-0500] ~ $ cd /usr/local/bin/
[jp@freebsd.jpsdomain.org 2005-12-28 19:33:06-0500] bin $

3. Username@hostname, bash version, and the current working directory (\w):
$ export PS1='[\u@\h \V \w] \$ '
[jp@freebsd 3.00.16] ~ $ cd /usr/local/bin/
[jp@freebsd 3.00.16] /usr/local/bin $

4. New line, username@hostname, base PTY, shell level, history number, newline,
and full working directory name ($PWD):

$ export PS1='\n[\u@\h \l:$SHLVL:\!]\n$PWD\$ '

[jp@freebsd ttyp0:3:21]
/home/jp$ cd /usr/local/bin/

[jp@freebsd ttyp0:3:22]
/usr/local/bin$

PTY is the number of the pseudoterminal (in Linux terms) to which you are con-
nected. This is useful when you have more than one session and are trying to
keep track of which is which. Shell level is the depth of subshells you are in.
When you first log in it’s 1, and as you run subprocesses (for example, screen) it
increments, so after running screen it would normally be 2. The history line is
the number of the current command in the command history.

5. Username@hostname, the exit status of the last command, and the current
working directory. Note the exit status will be reset (and thus useless) if you exe-
cute any commands from within the prompt:

$ export PS1='[\u@\h $? \w \$ '
[jp@freebsd 0 ~ $ cd /usr/local/bin/
[jp@freebsd 0 /usr/local/bin $ true
[jp@freebsd 0 /usr/local/bin $ false
[jp@freebsd 1 /usr/local/bin $ true
[jp@freebsd 0 /usr/local/bin $

6. One other interesting example is showing the number of jobs the shell is cur-
rently managing. This can be useful if you run a lot of background jobs and for-
get that they are there:

$ export PS1='\n[\u@\h jobs:\j]\n$PWD\$ '

[jp@freebsd jobs:0]
/tmp$ ls -lar /etc > /dev/null &
[1] 96461



Customizing Your Prompt | 355

[jp@freebsd jobs:1]
/tmp$
[1]+  Exit 1                  ls -lar /etc >/dev/null

[jp@freebsd jobs:0]
/tmp$

7. Let’s go really crazy and show everything. Username@hostname, tty, level, his-
tory, jobs, version, and full working directory:

$ export PS1='\n[\u@\h t:\l l:$SHLVL h:\! j:\j v:\V]\n$PWD\$ '

[jp@freebsd t:ttyp1 l:2 h:91 j:0 v:3.00.16]
/home/jp$

8. The next prompt is one you will either love or hate. It shows username@host-
name, T for ptty, L for shell level, C for command number, and the date and time
in ISO 8601:

$ export PS1='\n[\u@\h:T\l:L$SHLVL:C\!:\D{%Y-%m-%d_%H:%M:%S_%Z}]\n$PWD\$ '

[jp@freebsd:Tttyp1:L1:C337:2006-08-13_03:47:11_EDT]
/home/jp$ cd /usr/local/bin/

[jp@freebsd:Tttyp1:L1:C338:2006-08-13_03:47:16_EDT]
/usr/local/bin$

This prompt shows very clearly who did what, when, and where and is great for
documenting steps you took for some task via a simple copy and paste from a
scroll-back buffer. But some people find it much too cluttered and distracting.

Fancy prompts

Here are three fancy prompts that use ANSI escape sequences for colors, or to set the
title bar in an xterm. But be aware that these will not always work. There is a bewil-
dering array of variables in system settings, xterm emulation, and SSH and telnet cli-
ents, all of which can affect these prompts.

Also, such escape sequences should be surrounded by \[ and \], which tells bash
that the enclosed characters are non-printing. Otherwise, bash will be confused
about line lengths and wrap lines in the wrong place.

1. Username@hostname, and the current working directory in light blue (color not
shown in print):

$ export PS1='\[\033[1;34m\][\u@\h:\w]\$\[\033[0m\] '
[jp@freebsd:~]$
[jp@freebsd:~]$ cd /tmp
[jp@freebsd:/tmp]$

2. Username@hostname, and the current working directory in both the xterm title
bar and in the prompt itself. If you are not running in an xterm this may pro-
duce garbage in your prompt:



356 | Chapter 16: Configuring and Customizing bash

$ export PS1='\[\033]0;\u@\h:\w\007\][\u@\h:\w]\$ '
[jp@ubuntu:~]$
[jp@ubuntu:~]$ cd /tmp
[jp@ubuntu:/tmp]$

3. Both color and xterm updates:
$ export PS1='\[\033]0;\u@\h:\w\007\]\[\033[1;34m\][\u@\h:\w]\$\[\033[0m\] '
[jp@ubuntu:~]$
[jp@ubuntu:~]$ cd /tmp
[jp@ubuntu:/tmp]$

To save some tedious typing, the prompts from above are in the bash Cookbook
download (http://www.bashcookbook.com), in the file ./ch16/prompts, shown here:

# cookbook filename: prompts

# User name @ short hostname, the date and time and the current working
# directory (CWD):
export PS1='[\u@\h \d \A] \w \$ '

# User name @ long hostname, the date and time in ISO 8601 format and the
# basename of the current working directory (\W):
export PS1='[\u@\H \D{%Y-%m-%d %H:%M:%S%z}] \W \$ '

# User name @ short hostname, bash version, and the current working
# directory (\w):
export PS1='[\u@\h \V \w] \$ '

# New line, user name @ hostname, base PTY, shell level, history number, new
# line, and full working directory name ($PWD).
export PS1='\n[\u@\h \l:$SHLVL:\!]\n$PWD\$ '

# User name @ short hostname, the exit status of the last command and the
# current working directory.
export PS1='[\u@\h $? \w \$ '

# Number of jobs in the background
export PS1='\n[\u@\h jobs:\j]\n$PWD\$ '

# User, short hostname, tty, level, history, jobs, version and full
# working directory name:
export PS1='\n[\u@\h t:\l l:$SHLVL h:\! j:\j v:\V]\n$PWD\$ '

# user@host, T for ptty, L for shell level, C for command number, and the
# date and time in ISO 8601.
export PS1='\n[\u@\h:T\l:L$SHLVL:C\!:\D{%Y-%m-%d_%H:%M:%S_%Z}]\n$PWD\$ '



Customizing Your Prompt | 357

# User name @ short hostname, and the current working directory in light
# blue:
export PS1='\[\033[1;34m\][\u@\h:\w]\$\[\033[0m\] '

# User name @ short hostname, and the current working directory in both the
# xterm title bar and in the prompt itself.
export PS1='\[\033]0;\u@\h:\w\007\][\u@\h:\w]\$ '

# Both color and xterm updates:
export PS1='\[\033]0;\u@\h:\w\007\]\[\033[1;34m\][\u@\h:\w]\$\[\033[0m\] '

Discussion
Note that the export command need only be used once to flag a variable to be
exported to child processes.

Assuming the promptvars shell option is set, which it is by default, prompt strings are
decoded, expanded via parameter expansion, command substitution, and arithmetic
expansion, quotes are removed, and they are finally displayed. Prompt strings are
$PS1, $PS2, $PS3, and $PS4. The command prompt is $PS1. The $PS2 prompt is the sec-
ondary prompt displayed when bash needs more information to complete a com-
mand. It defaults to > but you may use anything you like. $PS3 is the select prompt
(see Recipe 16.16, “Adding New Features to bash Using Loadable Built-ins” and
Recipe 16.17, “Improving Programmable Completion”), which defaults to “#?”, and
$PS4 is the xtrace (debugging) prompt, with a default of “+”. Note that the first char-
acter of $PS4 is replicated as many times as needed to denote levels of indirection in
the currently executing command:

$ export PS2='Secondary> '

$ for i in *
Secondary> do
Secondary> echo $i
Secondary> done
cheesy_app
data_file
hard_to_kill
mcd
mode

$ export PS3='Pick me: '

$ select item in 'one two three'; do echo $item; done
1) one two three
Pick me: ^C

$ export PS4='+ debugging> '



358 | Chapter 16: Configuring and Customizing bash

$ set -x

$ echo $( echo $( for i in *; do echo $i; done ) )
+++ debugging> for i in '*'
+++ debugging> echo cheesy_app
+++ debugging> for i in '*'
+++ debugging> echo data_file
+++ debugging> for i in '*'
+++ debugging> echo hard_to_kill
+++ debugging> for i in '*'
+++ debugging> echo mcd
+++ debugging> for i in '*'
+++ debugging> echo mode
++ debugging> echo cheesy_app data_file hard_to_kill mcd mode
+ debugging> echo cheesy_app data_file hard_to_kill mcd mode
cheesy_app data_file hard_to_kill mcd mode

Since the prompt is only useful when you are running bash interactively, the best
place to set it is globally in /etc/bashrc or locally in ~/.bashrc.

As a style note, we recommend putting a space character as the last character in the
$PS1 string. It makes it easier to read what is on your screen by separating the prompt
string from the commands that you type. For this, and because your string may con-
tain other spaces or special characters, it is a good idea to use double or even single
quotes to quote the string when you assign it to $PS1.

There are at least three easy ways to display your current working directory (CWD)
in your prompt: \w, \W, and $PWD. \W will print the basename or last part of the direc-
tory, while \w will print the entire path; note that both will print ~ instead of what-
ever $HOME is set to when you are in your home directory. That drives some people
crazy, so to print the entire CWD, use $PWD. Printing the entire CWD will cause the
prompt to change length, and can even wrap in deep directory structures. That can
drive other people crazy. Here is a function to truncate it and a prompt to use the
function:

# cookbook filename: func_trunc_PWD

function trunc_PWD {
    # $PWD truncation code adapted from The Bash Prompt HOWTO:
    # 11.10. Controlling the Size and Appearance of $PWD
    # http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/x783.html

    # How many characters of the $PWD should be kept
    local pwdmaxlen=30
    # Indicator that there has been directory truncation:
    local trunc_symbol='...'
    # Temp variable for PWD
    local myPWD=$PWD

    # Replace any leading part of $PWD that matches $HOME with '~'
    # OPTIONAL, comment out if you want the full path!



Customizing Your Prompt | 359

    myPWD=${PWD/$HOME/~}

    if [ ${#myPWD} -gt $pwdmaxlen ]; then
        local pwdoffset=$(( ${#myPWD} - $pwdmaxlen ))
        echo "${trunc_symbol}${myPWD:$pwdoffset:$pwdmaxlen}"
    else
        echo "$myPWD"
    fi
}

And a demonstration:

$ source file/containing/trunc_PWD

[jp@freebsd ttyp0:3:60]
~/this is a bunch/of really/really/really/long directories/did I mention really/
really/long$ export PS1='\n[\u@\h \l:$SHLVL:\!]\n$(trunc_PWD)\$ '

[jp@freebsd ttyp0:3:61]
...d I mention really/really/long$

You will notice that the prompts above are single quoted so that $ and other special
characters are taken literally. The prompt string is evaluated at display time, so the
variables are expanded as expected. Double quotes may also be used, though in that
case you must escape shell metacharacters, e.g., by using \$ instead of $.

The command number and the history number are usually different: the history
number of a command is its position in the history list, which may include com-
mands restored from the history file, while the command number is the position in
the sequence of commands executed during the current shell session.

There is also a special variable called $PROMPT_COMMAND, which if set is interpreted as a
command to execute before the evaluation and display of $PS1. The issue with that,
and with using command substitution from within the $PS1 prompt, is that these
commands are executed every time the prompt is displayed, which is often. For
example, you could embed a command substitution such as $(ls -1 | wc -l) in your
prompt to give you a count of files in the current working directory. But on an old or
heavily utilized system in a large directory, that may result in significant delays before
the prompt is presented and you can get on with your work. Prompts are best left
short and simple (notwithstanding some of the monsters shown in the Solutions sec-
tion). Define functions or aliases to easily run on demand instead of cluttering up
and slowing down your prompt.

To work around ANSI or xterm escapes that produce garbage in your prompt if they
are not supported, you can use something like this in your rc file:

case $TERM in
    xterm*) export PS1='\[\033]0;\u@\h:\w\007\]\[\033[1;34m\][\u@\h:\w]\$\[\033[0m\]
' ;;
         *) export PS1='[\u@\h:\w]\$ ' ;;
esac

See the section “Prompt String Customizations” in Appendix A.



360 | Chapter 16: Configuring and Customizing bash

Colors

In the ANSI example we just discussed, 1;34m means “set the character attribute to
light, and the character color to blue.” 0m means “clear all attributes and set no color.”
See the section “ANSI Color Escape Sequences” in Appendix A for the codes. The
trailing m indicates a color escape sequence.

Here is a script that displays all the possible combinations. If this does not display
colors on your terminal, then ANSI color is not enabled or supported.

#!/usr/bin/env bash
# cookbook filename: colors
#
# Daniel Crisman's ANSI color chart script from
# The Bash Prompt HOWTO: 6.1. Colours
# http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/x329.html.
#
# This file echoes a bunch of color codes to the
#   terminal to demonstrate what's available.  Each
#   line is the color code of one foreground color,
#   out of 17 (default + 16 escapes), followed by a
#   test use of that color on all nine background
#   colors (default + 8 escapes).
#

T='gYw' # The test text

echo -e "\n             40m     41m     42m     43m\
     44m     45m     46m     47m";

for FGs in '    m' '   1m' ' 30m' '1;30m' '  31m' '1;31m' '  32m' \
           '1;32m' '  33m' '1;33m' '  34m' '1;34m' '  35m' '1;35m' \
           '  36m' '1;36m' '  37m' '1;37m';
  do FG=${FGs// /}
  echo -en " $FGs \033[$FG  $T  "
  for BG in 40m 41m 42m 43m 44m 45m 46m 47m;
    do echo -en "$EINS \033[$FG\033[$BG  $T  \033[0m";
  done
  echo;
done
echo

See Also
• Bash Reference Manual

• ./examples/scripts.noah/prompt.bash in the bash source tarball

• http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html

• http://sourceforge.net/projects/bashish

• Recipe 1.1, “Decoding the Prompt”

• Recipe 3.7, “Selecting from a List of Options”



Change Your $PATH Permanently | 361

• Recipe 16.10, “Using Secondary Prompts: $PS2, $PS3, $PS4”

• Recipe 16.16, “Adding New Features to bash Using Loadable Built-ins”

• Recipe 16.17, “Improving Programmable Completion”

• Recipe 16.18, “Using Initialization Files Correctly”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• “Prompt String Customizations” in Appendix A

• “ANSI Color Escape Sequences” in Appendix A

16.3 Change Your $PATH Permanently

Problem
You need to permanently change your path.

Solution
First you need to discover where the path is set, and then update it. For your local
account, it’s probably set in ~/.profile or ~/.bash_profile. Find the file with grep -l
PATH ~/.[^.]* and edit it with your favorite editor; then source the file to have the
change take effect immediately.

If you are root and you need to set the path for the entire system, the basic proce-
dure is the same, but there are different files in /etc where the $PATH may be set,
depending on your operating system and version. The most likely file is /etc/profile,
but /etc/bashrc, /etc/rc, /etc/default/login, ~/.ssh/environment, and the PAM /etc/
environment files are also possible.

Discussion
The grep -l PATH ~/.[^.]* command is interesting because of the nature of shell wild-
card expansion and the existence of the /. and /.. directories. See Recipe 1.5, “Show-
ing All Hidden (dot) Files in the Current Directory,” for details.

The locations listed in the $PATH have security implications, especially when you are
root. If a world-writable directory is in root’s path before the typical directories (i.e.,
/bin, /sbin), then a local user can create files that root might execute, doing arbitrary
things to the system. This is the reason that the current directory (.) should not be in
root’s path either.

To be aware of this issue and avoid it:

• Make root’s path as short as possible, and never use relative paths.

• Avoid having world-writable directories in root’s path.



362 | Chapter 16: Configuring and Customizing bash

• Consider setting explicit paths in shell scripts run by root.

• Consider hardcoding absolute paths to utilities used in shell scripts run by root.

• Put user or application directories last in the $PATH, and then only for unprivi-
leged users.

See Also
• Recipe 1.5, “Showing All Hidden (dot) Files in the Current Directory”

• Recipe 4.1, “Running Any Executable”

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 16.4, “Change Your $PATH Temporarily”

16.4 Change Your $PATH Temporarily

Problem
You want to easily add or remove a directory to or from your $PATH for this session
only.

Solution
There are several ways to handle this problem.

You can prepend or append the new directory, using PATH="newdir:$PATH" or
PATH="$PATH:newdir", though you should make sure the directory isn’t already in the
$PATH.

If you need to edit something in the middle of the path, you can echo the path to the
screen, then use your terminal’s kill and yank (copy and paste) facility to duplicate it
on a new line and edit it. Or, you can add the “Macros that are convenient for shell
interaction” from the readline documentation at http://tiswww.tis.case.edu/php/chet/
readline/readline.html#SEC12, specifically:

# edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
# [...]
# Edit variable on current line.
"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="

Then pressing Ctrl-X P will display the $PATH on the current line for you to edit,
while typing any variable name and pressing Meta Ctrl-V will display that variable
for editing. Very handy.



Change Your $PATH Temporarily | 363

For simple cases you can use this quick function (adapted slightly from Red Hat
Linux’s /etc/profile):

# cookbook filename: func_pathmunge

# Adapted from Red Hat Linux

function pathmunge {
    if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
        if [ "$2" = "after" ] ; then
            PATH="$PATH:$1"
        else
            PATH="$1:$PATH"
        fi
    fi
}

The egrep pattern looks for the value in $1 between two : or (|) at the beginning (^)
or end ($) of the $PATH string. We chose to use a case statement in our function, and
to force a leading and trailing : to do the same thing. Ours is theoretically faster since
it uses a shell built-in, but the Red Hat version is more concise. Our version is also an
excellent illustration of the fact that the if command works on exit codes, so the first
if works by using the exit code set by grep, while the second requires the use of the
test operator ( [ ] ).

For more complicated cases when you’d like a lot of error checking you can source
and then use the following more generic functions:

# cookbook filename: func_tweak_path

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Add a directory to the beginning or end of your path as long as it's not
# already present.  Does not take into account symbolic links!
# Returns:  1 or sets the new $PATH
# Called like:  add_to_path <directory> (pre|post)
function add_to_path {
    local location=$1
    local directory=$2

    # Make sure we have something to work with
    if [ -z "$location" -o  -z "$directory" ]; then
        echo "$0:$FUNCNAME: requires a location and a directory to add" >&2
        echo "e.g. add_to_path pre /bin" >&2
        return 1
    fi

    # Make sure the directory is not relative
    if [ $(echo $directory | grep '^/') ]; then
        : echo "$0:$FUNCNAME: '$directory' is absolute" >&2
    else
        echo "$0:$FUNCNAME: can't add relative directory '$directory' to the \$PATH"
>&2
        return 1
    fi



364 | Chapter 16: Configuring and Customizing bash

    # Make sure the directory to add actually exists
    if [ -d "$directory" ]; then
        : echo "$0:$FUNCNAME: directory exists" >&2
    else
        echo "$0:$FUNCNAME: '$directory' does not exist--aborting" >&2
        return 1
    fi

    # Make sure it's not already in the PATH
    if [ $(contains "$PATH" "$directory") ]; then
        echo "$0:$FUNCNAME: '$directory' already in \$PATH--aborting" >&2
    else
        : echo "$0:$FUNCNAME: adding directory to \$PATH" >&2
    fi

    # Figure out what to do
    case $location in
        pre*  ) PATH="$directory:$PATH" ;;
        post* ) PATH="$PATH:$directory" ;;
        *     ) PATH="$PATH:$directory" ;;
    esac

    # Clean up the new path, then set it
    PATH=$(clean_path $PATH)

} # end of function add_to_path

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Remove a directory from your path, if present.
# Returns:  sets the new $PATH
# Called like:  rm_from_path <directory>
function rm_from_path {
    local directory=$1

    # Remove all instances of $directory from $PATH
    PATH=${PATH//$directory/}

    # Clean up the new path, then set it
    PATH=$(clean_path $PATH)

} # end of function rm_from_path

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Remove leading/trailing or duplicate ':', remove duplicate entries
# Returns:  echos the "cleaned up" path
# Called like:  cleaned_path=$(clean_path $PATH)
function clean_path {
    local path=$1
    local newpath
    local directory



Change Your $PATH Temporarily | 365

    # Make sure we have something to work with
    [ -z "$path" ] && return 1

    # Remove duplicate directories, if any
    for directory in ${path//:/ }; do
        contains "$newpath" "$directory" && newpath="${newpath}:${directory}"
    done

    # Remove any leading ':' separators
    # Remove any trailing ':' separators
    # Remove any duplicate ':' separators
    newpath=$(echo $newpath | sed 's/^:*//; s/:*$//; s/::/:/g')

    # Return the new path
    echo $newpath

} # end of function clean_path

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Determine if the path contains a given directory
# Return 1 if target is contained within pattern, 0 otherwise
# Called like:  contains $PATH $dir
function contains {
    local pattern=":$1:"
    local target=$2

    # This will be a case-sensitive comparison unless nocasematch is set
    case $pattern in
        *:$target:* ) return 1;;
        *           ) return 0;;
    esac
} # end of function contains

Use as follows:

$ source chpath

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin:/home/jp/bin

$ add_to_path pre foo
-bash:add_to_path: can't add relative directory 'foo' to the $PATH

$ add_to_path post ~/foo
-bash:add_to_path: '/home/jp/foo' does not exist--aborting

$ add_to_path post '~/foo'
-bash:add_to_path: can't add relative directory '~/foo' to the $PATH

$ rm_from_path /home/jp/bin

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin



366 | Chapter 16: Configuring and Customizing bash

$ add_to_path /home/jp/bin
-bash:add_to_path: requires a location and a directory to add
e.g. add_to_path pre /bin

$ add_to_path post /home/jp/bin

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin:/home/jp/bin

$ rm_from_path /home/jp/bin

$ add_to_path pre /home/jp/bin

$ echo $PATH
/home/jp/bin:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin

Discussion
There are four interesting things about this problem and the functions presented in
func_tweak_path in the Solution.

First, if you try to modify your path or other environment variables in a shell script, it
won’t work because scripts run in subshells that go away when the script termi-
nates, taking any modified environment variables with them. So instead, we source
the functions into the current shell and run them from there.

Second, you may notice that add_to_path post ~/foo returns “does not exist” while
add_to_path post '~/foo' returns “can’t add relative directory.” That’s because ~/foo
is expanded by the shell to /home/jp/foo before the function ever sees it. Not account-
ing for shell expansion is a common mistake. Use the echo command to see what the
shell will actually pass to your scripts and functions.

Next, you may note the use of lines such as echo "$0:$FUNCNAME: requires a directory
to add" >&2. $0:$FUNCNAME is a handy way to identify exactly where an error message
is coming from. $0 is always the name of the current program (-bash in the solu-
tion’s example, and the name of your script or program in other cases). Adding the
function name makes it easier to track down problems when debugging. Echoing to
>&2 sends the output to STDERR, where runtime user feedback, especially including
warnings or errors, should go.

Finally, you can argue that the functions have inconsistent interfaces, since add_to_path
and remove_from_path actually set $PATH, while clean_path displays the cleaned up path
and contains returns true or false. We might not do it that way in production either,
but it makes this example more interesting and shows different ways to do things. And
we might argue that the interfaces make sense given what the functions do.



Setting Your $CDPATH | 367

See Also
• For similar but much more concise, if less clear, $PATH manipulation functions,

see ./examples/functions/pathfuncs in any recent bash tarball

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Appendix B

16.5 Setting Your $CDPATH

Problem
You want to make it easier to switch between several directories in various locations.

Solution
Set your $CDPATH appropriately. Your commonly used directories will likely be
unique, so for a contrived example, suppose you spend a lot of time working with
init’s rc directories:

/home/jp$ cd rc3.d
bash: cd: rc3.d: No such file or directory

/home/jp$ export CDPATH='.:/etc'

/home/jp$ cd rc3.d
/etc/rc3.d

/etc/rc3.d$ cd rc5.d
/etc/rc5.d

/etc/rc5.d$

/etc/rc5.d$ cd games
bash: cd: games: No such file or directory

/etc/rc5.d$ export CDPATH='.:/etc:/usr'

/etc/rc5.d$ cd games
/usr/games

/usr/games$



368 | Chapter 16: Configuring and Customizing bash

Discussion
According to the bash Reference, $CDPATH is “a colon-separated list of directories
used as a search path for the cd built-in command.” Think of it as $PATH for cd. It’s a
little subtle, but can be very handy.

If the argument to cd begins with a slash, $CDPATH will not be used. If $CDPATH is used,
the absolute pathname to the new directory is printed to STDOUT, as in the exam-
ple above.

Watch out when running bash in POSIX mode (e.g., as /bin/sh or with
--posix). As the bash Reference notes:

“If $CDPATH is set, the cd built-in will not implicitly append the current
directory to it. This means that cd will fail if no valid directory name
can be constructed from any of the entries in $CDPATH, even if a direc-
tory with the same name as the name given as an argument to cd exists
in the current directory.”

To avoid this, explicitly include . in $CDPATH. However, if you do that,
then another subtle point noted in the bash Reference comes into play:

“If a nonempty directory name from $CDPATH is used, or if ‘-’ is the first
argument, and the directory change is successful, the absolute path-
name of the new working directory is written to the standard output.”

In other words, pretty much every time you use cd it will echo the new
path to STDOUT, which is not the standard behavior.

Common directories to include in $CDPATH are:

.
The current directory (see the warning above)

~/
Your home directory

..
The parent directory

../..
The grandparent directory

~/.dirlinks
A hidden directory containing nothing but symbolic links to other commonly
used directories

The above suggestions result in this:

export CDPATH='.:~/:..:../..:~/.dirlinks'



Shortening or Changing Command Names | 369

See Also
• help cd

• Recipe 16.13, “Creating a Better cd Command”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 18.1, “Moving Quickly Among Arbitrary Directories”

16.6 Shortening or Changing Command Names

Problem
You’d like to shorten a long or complex command you use often, or you’d like to
rename a command you can’t remember or find awkward to type.

Solution
Do not manually rename or move executable files, as many aspects of Unix and
Linux depend on certain commands existing in certain places; instead, you should
use aliases, functions, and possibly symbolic links.

According to the bash Reference, “Aliases allow a string to be substituted for a word
when it is used as the first word of a simple command. The shell maintains a list of
aliases that may be set and unset with the alias and unalias built-in commands.” This
means that you can rename commands, or create a macro, by listing many com-
mands in one alias. For example, alias copy='cp' or alias ll.='ls -ld .*'.

Aliases are only expanded once, so you can change how a command works, as with
alias ls='ls -F', without going into an endless loop. In most cases only the first
word of the command line is checked for alias expansion, and aliases are strictly text
substitutions; they cannot use arguments to themselves. In other words, you can’t do
alias='mkdir $1 && cd $1' because that doesn’t work.

Functions are used in two different ways. First, they can be sourced into your inter-
active shell, where they become, in effect, shell scripts that are always held in mem-
ory. They are usually small, and are very fast since they are already in memory and
are executed in the current process, not in a spawned subshell. Second, they may be
used within a script as subroutines. Functions do allow arguments. For example:

# cookbook filename: func_calc

# Trivial command line calculator
function calc {
    # INTEGER ONLY! --> echo The answer is: $(( $* ))
    # Floating point
    awk "BEGIN {print \"The answer is: \" $* }";
} # end of calc



370 | Chapter 16: Configuring and Customizing bash

For personal or system-wide use, you are probably better off using aliases or func-
tions to rename or tweak commands, but symbolic links are very useful in allowing a
command to be in more than one place at a time. For example, Linux systems almost
always use /bin/bash while other systems may use /usr/bin/bash, /usr/local/bin/bash, or
/usr/pkg/bin/bash. While there is a better way to handle this particular issue (using
env; see Recipe 15.1, “Finding bash Portably for #!”), in general symbolic links may
be used as a workaround. We do not recommend using hard links, as they are harder
to see if you are not looking for them, and they are more easily disrupted by badly
behaved editors and such. Symbolic links are just more obvious and intuitive.

Discussion
Usually, only the first word of a command line is checked for alias expansion. How-
ever, if the last character of the value of that alias is a space, the next word will be
checked as well. In practice, this is rarely an issue.

Since aliases can’t use arguments (unlike in csh), you’ll need to use a function if you
need to pass in arguments. Since both aliases and functions reside in memory, this is
not a big difference.

Unless the expand_aliases shell option is set, aliases are not expanded when the shell
is not interactive. Best practices for writing scripts dictate that you not use aliases,
since they may not be present on another system. You also need to define functions
inside your script, or explicitly source them before use (see Recipe 19.14, “Avoiding
“command not found” When Using Functions”). Thus, the best place to define them
is in your global /etc/bashrc or your local ~/.bashrc.

See Also
• Recipe 10.4, “Defining Functions”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Recipe 10.7, “Redefining Commands with alias”

• Recipe 14.4, “Clearing All Aliases”

• Recipe 15.1, “Finding bash Portably for #!”

• Recipe 16.18, “Using Initialization Files Correctly”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 19.14, “Avoiding “command not found” When Using Functions”



Adjusting readline Behavior Using .inputrc | 371

16.7 Adjusting Shell Behavior and Environment

Problem
You want to adjust your shell environment to account for the way you work, your
physical location, your language, and more.

Solution
See the table in the section “Adjusting Shell Behavior Using set, shopt, and Environ-
ment Variables” in Appendix A.

Discussion
There are three ways to adjust various aspects of your environment. set is standard-
ized in POSIX and uses one-letter options. shopt is specifically for bash shell options.
And there are many environment variables in use for historical reasons, as well as for
compatibility with many third-party applications. How you adjust what and where,
can be be very confusing. The table in the section “Adjusting Shell Behavior Using
set, shopt, and Environment Variables” in Appendix A will help you sort it out, but
it’s too big to duplicate here.

See Also
• help set

• help shopt

• Bash Docs (http://www.bashcookbook.com)

• “Adjusting Shell Behavior Using set, shopt, and Environment Variables” in
Appendix A

16.8 Adjusting readline Behavior Using .inputrc

Problem
You’d like to adjust the way bash handles input, especially command completion.
For example, you’d like it to be case-insensitive.

Solution
Edit or create a ~/.inputrc or /etc/inputrc file as appropriate. There are many parame-
ters you can adjust to your liking. To have readline use your file when it initializes,
set $INPUTRC; for example, set INPUTRC='~/.inputrc'. To re-read the file and apply or
test after making changes, use bind -f filename.



372 | Chapter 16: Configuring and Customizing bash

We recommend you explore the bind command and the readline documentation,
especially bind -v, bind -l, bind -s, and bind -p, though the last one is rather long
and cryptic.

Some useful settings for users from other environments, notably Windows, are (see
the section “Readline Init File Syntax” in Appendix A):

# settings/inputrc:  # readline settings
# To re-read (and implement changes to this file) use:
# bind -f $SETTINGS/inputrc

# First, include any systemwide bindings and variable
# assignments from /etc/inputrc
# (fails silently if file doesn't exist)
$include /etc/inputrc

$if Bash
  # Ignore case when doing completion
    set completion-ignore-case on
  # Completed dir names have a slash appended
    set mark-directories on
  # Completed names which are symlinks to dirs have a slash appended
    set mark-symlinked-directories on
  # List ls -F for completion
    set visible-stats on
  # Cycle through ambiguous completions instead of list
    "\C-i": menu-complete
  # Set bell to audible
    set bell-style audible
  # List possible completions instead of ringing bell
    set show-all-if-ambiguous on

  # From the readline documentation at
  # http://tiswww.tis.case.edu/php/chet/readline/readline.html#SEC12
  # Macros that are convenient for shell interaction
  # edit the path
    "\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
  # prepare to type a quoted word -- insert open and close double quotes
  # and move to just after the open quote
    "\C-x\"": "\"\"\C-b"
  # insert a backslash (testing backslash escapes in sequences and macros)
    "\C-x\\": "\\"
  # Quote the current or previous word
    "\C-xq": "\eb\"\ef\""
  # Add a binding to refresh the line, which is unbound
    "\C-xr": redraw-current-line
  # Edit variable on current line.
    #"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
    "\C-xe": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif



Keeping a Private Stash of Utilities by Adding ~/bin | 373

You will want to experiment with these and other settings. Also note the $include to
use the system settings, but make sure you can change them if you like. See Recipe
16.20, “Getting Started with a Custom Configuration,” for the downloadable file.

Discussion
Many people are not aware of how customizable, not to mention powerful and flexi-
ble, the GNU Readline library is. Having said that, there is no “one size fits all”
approach. You should work out a configuration that suits your needs and habits.

Note the first time readline is called it performs its normal startup file processing,
including looking at $INPUTRC, or defaulting to ~/.inputrc if that’s not set.

See Also
• help bind

• Readline docs at http://www.bashcookbook.com

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 16.20, “Getting Started with a Custom Configuration”

16.9 Keeping a Private Stash of Utilities
by Adding ~/bin

Problem
You have a stash of personal utilities you like to use, but you are not root on the sys-
tem and can’t place them into the normal locations like /bin or /usr/local/bin, or there
is some other reason to separate them.

Solution
Create a ~/bin directory, place your utilities in it and add it to your path:

$ PATH="$PATH:~/bin"

You’ll want to make this change in one of your shell initialization files, such as ~/.bashrc.
Some systems already add $HOME/bin as the last directory in a nonprivileged user
account by default, so check first.

Discussion
As a fully qualified shell user (well, you bought this book), you’ll certainly be creat-
ing lots of scripts. It’s inconvenient to invoke scripts with their full pathname. By col-
lecting your scripts in a ~/bin directory, you can make your scripts look like regular
Unix programs—at least to you.



374 | Chapter 16: Configuring and Customizing bash

For security reasons, don’t put your bin directory at the start of your path. Starting
your path with ~/bin makes it easy to override system commands—which is incon-
venient, if it happens accidentally (we’ve all done it), and dangerous if it’s done
maliciously.

See Also
• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 16.6, “Shortening or Changing Command Names”

• Recipe 19.4, “Naming Your Script Test”

16.10 Using Secondary Prompts: $PS2, $PS3, $PS4

Problem
You’d like to understand what the $PS2, PS3, and PS4 prompts do.

Solution
$PS2 is called the secondary prompt string and is used when you are interactively
entering a command that you have not completed yet. It is usually set to “> ” but you
can redefine it. For example:

[jp@freebsd jobs:0]
/home/jp$ export PS2='Secondary: '

[jp@freebsd jobs:0]
/home/jp$ for i in $(ls)
Secondary: do
Secondary: echo $i
Secondary: done
colors
deepdir
trunc_PWD

$PS3 is the select prompt, and is used by the select statement to prompt the user for a
value. It defaults to #?, which isn’t very intuitive. You should change it before using
the select command; for example:

[jp@freebsd jobs:0]
/home/jp$ select i in $(ls)
Secondary: do
Secondary: echo $i
Secondary: done



Using Secondary Prompts: $PS2, $PS3, $PS4 | 375

1) colors
2) deepdir
3) trunc_PWD
#? 1
colors
#? ^C

[jp@freebsd jobs:0]
/home/jp$ export PS3='Choose a directory to echo: '

[jp@freebsd jobs:0]
/home/jp$ select i in $(ls); do echo $i; done
1) colors
2) deepdir
3) trunc_PWD
Choose a directory to echo: 2
deepdir
Choose a directory to echo: ^C

$PS4 is displayed during trace output. Its first character is shown as many times as
necessary to denote the nesting depth. The default is “+ ”. For example:

[jp@freebsd jobs:0]
/home/jp$ cat demo
#!/usr/bin/env bash

set -o xtrace

alice=girl
echo "$alice"

ls -l $(type -path vi)

echo line 10
ech0 line 11
echo line 12

[jp@freebsd jobs:0]
/home/jp$ ./demo
+ alice=girl
+ echo girl
girl
++ type -path vi
+ ls -l /usr/bin/vi
-r-xr-xr-x  6 root  wheel  285108 May  8  2005 /usr/bin/vi
+ echo line 10
line 10
+ ech0 line 11
./demo: line 11: ech0: command not found
+ echo line 12
line 12

[jp@freebsd jobs:0]
/home/jp$ export PS4='+xtrace $LINENO: '



376 | Chapter 16: Configuring and Customizing bash

[jp@freebsd jobs:0]
/home/jp$ ./demo
+xtrace 5: alice=girl
+xtrace 6: echo girl
girl
++xtrace 8: type -path vi
+xtrace 8: ls -l /usr/bin/vi
-r-xr-xr-x  6 root  wheel  285108 May  8  2005 /usr/bin/vi
+xtrace 10: echo line 10
line 10
+xtrace 11: ech0 line 11
./demo: line 11: ech0: command not found
+xtrace 12: echo line 12
line 12

Discussion
The $PS4 prompt uses the $LINENO variable, which when used in a function under ver-
sions of bash prior to 2.0 returns the number of simple commands executed, rather
than the actual line number in the function. Also note the single quotes, which defer
expansion of the variable until display time.

See Also
• Recipe 1.1, “Decoding the Prompt”

• Recipe 3.7, “Selecting from a List of Options”

• Recipe 6.16, “Creating Simple Menus”

• Recipe 6.17, “Changing the Prompt on Simple Menus”

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 19.13, “Debugging Scripts”

16.11 Synchronizing Shell History Between Sessions

Problem
You run more than one bash session at a time and you would like to have a shared
history between them. You’d also like to prevent the last session closed from clob-
bering the history from any other sessions.

Solution
Use the history command to synchronize your history between sessions manually or
automatically.



Setting Shell History Options | 377

Discussion
Using default settings, the last shell to gracefully exit will overwrite your history file,
so unless it is synchronized with any other shells you had open at the same time, it
will clobber their histories. Using the shell option shown in Recipe 16.12, “Setting
Shell History Options,” to append rather than overwrite the history file helps, but
keeping your history in sync across sessions may offer additional benefits.

Manually synchronizing history involves writing an alias to append the current his-
tory to the history file, then re-reading anything new in that file into the current
shell’s history:

$ history -a
$ history -n

# OR, 'history sync'
alias hs='history -a ; history -n'

The disadvantage to this approach is that you must manually run the commands in
each shell when you want to synchronize your history.

To automate that approach, you could use the $PROMPT_COMMAND variable:

PROMPT_COMMAND='history -a ; history -n'

The value of $PROMPT_COMMAND is interpreted as a command to execute each time the
default interactive prompt $PS1 is displayed. The disadvantage to that approach is
that it runs those commands every time $PS1 is displayed. That is very often, and on a
heavily loaded or slower system that can cause it significant slowdown in your shell,
especially if you have a large history.

See Also
• help history

• Recipe 16.12, “Setting Shell History Options”

16.12 Setting Shell History Options

Problem
You’d like more control over your command-line history.

Solution
Set the $HIST* variables and shell options as desired.



378 | Chapter 16: Configuring and Customizing bash

Discussion
The $HISTFILESIZE variable sets the number of lines permitted in the $HISTFILE. The
default for $HISTSIZE is 500 lines, and $HISTFILE is ~/.bash_history unless you are in
POSIX mode, in which case it’s ~/.sh_history. Increasing $HISTSIZE may be useful,
and unsetting it causes the $HISTFILE length to be unlimited. Changing $HISTFILE
probably isn’t necessary, except that if it is not set or the file is not writable, no his-
tory will be written to disk. The $HISTSIZE variable sets the number of lines permit-
ted in the history stack in memory.

$HISTIGNORE and $HISTCONTROL control what goes into your history in the first place.
$HISTIGNORE is more flexible since it allows you to specify patterns to decide what
command lines to save to the history. $HISTCONTROL is more limited in that it sup-
ports only the few keywords listed here (any other value is ignored):

ignorespace
Command lines that begin with a space character are not saved in the history
list.

ignoredups
Command lines that match the previous history entry are not saved in the his-
tory list.

ignoreboth
Shorthand for both ignorespace and ignoredups.

erasedups
All previous command lines that match the current line are removed from the
history list before that line is saved.

If $HISTCONTROL is not set, or does not contain any of these keywords, all commands
are saved to the history list, subject to processing $HISTIGNORE. The second and sub-
sequent lines of a multiline compound command are not tested, and are added to the
history regardless of the value of $HISTCONTROL.

(Material in the preceding paragraphs has been adapted from Edition 2.5b of The
GNU Bash Reference Manual for bash Version 2.05b, last updated July 15, 2002;
http://www.gnu.org/software/bash/manual/bashref.html.)

As of bash version 3, there is a fascinating new variable called $HISTTIMEFORMAT. If set
and non-null, it specifies an strftime format string to use when displaying or writing
the history. If you don’t have bash version 3, but you do use a terminal with a scroll-
back buffer, adding a date and time stamp to your prompt can also be very helpful.
See Recipe 16.2, “Customizing Your Prompt.” Watch out because stock bash does
not put a trailing space after the format, but some systems (e.g., Debian) have
patched it to do so:

bash-3.00# history
    1  ls -la
    2  help history



Setting Shell History Options | 379

    3  help fc
    4  history

# Ugly
bash-3.00# export HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S'

bash-3.00# history
    1  2006-10-25_20:48:04ls -la
    2  2006-10-25_20:48:11help history
    3  2006-10-25_20:48:14help fc
    4  2006-10-25_20:48:18history
    5  2006-10-25_20:48:39export HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S'
    6  2006-10-25_20:48:41history

# Better
bash-3.00# HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S; '

bash-3.00# history
    1  2006-10-25_20:48:04; ls -la
    2  2006-10-25_20:48:11; help history
    3  2006-10-25_20:48:14; help fc
    4  2006-10-25_20:48:18; history
    5  2006-10-25_20:48:39; export HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S'
    6  2006-10-25_20:48:41; history
    7  2006-10-25_20:48:47; HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S; '
    8  2006-10-25_20:48:48; history

# Getting tricky now
bash-3.00# HISTTIMEFORMAT=': %Y-%m-%d_%H:%M:%S; '

bash-3.00# history
    1  : 2006-10-25_20:48:04; ls -la
    2  : 2006-10-25_20:48:11; help history
    3  : 2006-10-25_20:48:14; help fc
    4  : 2006-10-25_20:48:18; history
    5  : 2006-10-25_20:48:39; export HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S'
    6  : 2006-10-25_20:48:41; history
    7  : 2006-10-25_20:48:47; HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S; '
    8  : 2006-10-25_20:48:48; history

The last example uses the : built-in with the ; metacharacter to encapsulate the date
stamp into a “do nothing” command (e.g., : 2006-10-25_20:48:48;). This allows you
to reuse a literal line from the history file without having to bother parsing out the
date stamp. Note the space after the : is required.

There are also shell options to configure history-file handling. If histappend is set, the
shell appends to the history file; otherwise it overwrites the history file. Note that it is
still truncated to $HISTSIZE. If cmdhist is set, multiline commands are saved as a sin-
gle line, with semicolons added as needed. If lithist is set, multiline commands are
saved with embedded newlines.



380 | Chapter 16: Configuring and Customizing bash

See Also
• help history

• help fc

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 16.7, “Adjusting Shell Behavior and Environment”

• Recipe 16.11, “Synchronizing Shell History Between Sessions”

16.13 Creating a Better cd Command

Problem
You cd into a lot of deep directories and would like to type cd ..... instead of cd ../
../../.. to move up four levels.

Solution
Use this function:

# cookbook filename: func_cd

# Allow use of 'cd ...' to cd up 2 levels, 'cd ....' up 3, etc. (like 4NT/4DOS)
# Usage: cd ..., etc.
function cd {

    local option= length= count= cdpath= i= # Local scope and start clean

    # If we have a -L or -P sym link option, save then remove it
    if [ "$1" = "-P" -o "$1" = "-L" ]; then
        option="$1"
        shift
    fi

    # Are we using the special syntax?  Make sure $1 isn't empty, then
    # match the first 3 characters of $1 to see if they are '...' then
    # make sure there isn't a slash by trying a substitution; if it fails,
    # there's no slash.  Both of these string routines require Bash 2.0+
    if [ -n "$1" -a "${1:0:3}" = '...' -a "$1" = "${1%/*}" ]; then
        # We are using special syntax
        length=${#1}  # Assume that $1 has nothing but dots and count them
        count=2       # 'cd ..' still means up one level, so ignore first two

        # While we haven't run out of dots, keep cd'ing up 1 level
        for ((i=$count;i<=$length;i++)); do
            cdpath="${cdpath}../" # Build the cd path
        done

        # Actually do the cd
        builtin cd $option "$cdpath"
    elif [ -n "$1" ]; then



Creating and Changing into a New Directory in One Step | 381

        # We are NOT using special syntax; just plain old cd by itself
        builtin cd $option "$*"
    else
        # We are NOT using special syntax; plain old cd by itself to home dir
        builtin cd $option
    fi
} # end of cd

Discussion
The cd command takes an optional -L or -P argument that respectively follow sym-
bolic links or follow the physical directory structure. Either way, we have to take
them into account if we want to redefine how cd works.

Then, we make sure $1 isn’t empty and match the first three characters of $1 to see if
they are ‘...’. We then make sure there isn’t a slash by trying a substitution; if it
fails, there’s no slash. Both of these string routines require bash version 2.0+. After
that, we build the actual cd command using a portable for loop and finally use the
builtin command to use the shell cd and not create an endless loop by recursively
calling our cd function. We also pass in the -L or -P argument if present.

See Also
• help cd

• http://jpsoft.com for the 4NT shell, which is the source of this idea

• Recipe 15.5, “Using for Loops Portably”

• Recipe 16.5, “Setting Your $CDPATH”

• Recipe 16.14, “Creating and Changing into a New Directory in One Step”

• Recipe 16.15, “Getting to the Bottom of Things”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 18.1, “Moving Quickly Among Arbitrary Directories”

16.14 Creating and Changing into a New Directory in
One Step

Problem
You often create new directories and immediately change into them for some opera-
tion, and all that typing is tedious.

Solution
Add the following function to an appropriate configuration file such as your ~/.bashrc
file and source it:



382 | Chapter 16: Configuring and Customizing bash

# cookbook filename: func_mcd

# mkdir newdir then cd into it
# usage: mcd (<mode>) <dir>
function mcd {
    local newdir='_mcd_command_failed_'
    if [ -d "$1" ]; then         # Dir exists, mention that...
        echo "$1 exists..."
        newdir="$1"
    else
        if [ -n "$2" ]; then     # We've specified a mode
            command mkdir -p -m $1 "$2" && newdir="$2"
        else                     # Plain old mkdir
            command mkdir -p "$1" && newdir="$1"
        fi
    fi
    builtin cd "$newdir"         # No matter what, cd into it
} # end of mcd

For example:

$ source mcd

$ pwd
/home/jp

$ mcd 0700 junk

$ pwd
/home/jp/junk

$ ls -ld .
drwx------  2 jp  users  512 Dec  6 01:03 .

Discussion
This function allows you to optionally specify a mode for the mkdir command to use
when creating the directory. If the directory already exists, it will mention that fact
but still cd into it. We use the command command to make sure that we ignore any
shell functions for mkdir, and the builtin command to make sure we only use the
shell cd.

We also assign _mcd_command_failed_ to a local variable in case the mkdir fails. If it
works, the correct new directory is assigned. If it fails, when the cd tries to execute it
will display a reasonably useful message, assuming you don’t have a lot of _mcd_
command_failed_ directories lying around:

$ mcd /etc/junk
mkdir: /etc/junk: Permission denied
-bash: cd: _mcd_command_failed_: No such file or directory

You might think that we could easily improve this using break or exit if the mkdir
fails. break only works in a for, while, or until loop and exit will actually exit our



Getting to the Bottom of Things | 383

shell, since a sourced function runs in the same process as the shell. We could, how-
ever, use return, which we will leave as an exercise for the reader.

command mkdir -p "$1" && newdir="$1" || exit 1  # This will exit our shell
command mkdir -p "$1" && newdir="$1" || break   # This will fail

You could also place the following in a trivial function, but we obviously prefer the
more robust version given in the solution:

function mcd { mkdir "$1" && cd "$1"; }

See Also
• man mkdir

• help cd

• help function

• Recipe 16.13, “Creating a Better cd Command”

• Recipe 16.18, “Using Initialization Files Correctly”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 16.20, “Getting Started with a Custom Configuration”

16.15 Getting to the Bottom of Things

Problem
You work in a lot of narrow but deep directory structures, where all the content is at
the bottom and you’re tired of having to manually cd so many levels.

Solution
alias bot='cd $(dirname $(find . | tail -1))'

Discussion
This use of find in a large directory structure such as /usr could take a while and isn’t
recommended.

Depending on how your directory structure is set up, this may not work for you;
you’ll have to try it and see. The find . will simply list all the files and directories in
the current directory and below, the tail -1 will grab the last line, dirname will
extract just the path, and cd will take you there. It may be possible for you to tweak
the command to get it to put you in the right place. For example:

alias bot='cd $(dirname $(find . | sort -r | tail -5 | head -1))'
alias bot='cd $(dirname $(find . | sort -r | grep -v 'X11' | tail -3 | head -1))'



384 | Chapter 16: Configuring and Customizing bash

Keep trying the part in the inner-most parentheses, especially tweaking the find com-
mand, until you get the results you need. Perhaps there is a key file or directory at the
bottom of the structure, in which case the following function might work:

function bot { cd $(dirname $(find . | grep -e "$1" | head -1)); }

Note that aliases can’t use arguments, so this must be a function. We use grep
rather than a -name argument to find because grep is much more flexible. Depend-
ing on your structure, you might want to use tail instead of head. Again, test the find
command first.

See Also
• man find

• man dirname

• man head

• man tail

• man grep

• man sort

• Recipe 16.13, “Creating a Better cd Command”

• Recipe 16.14, “Creating and Changing into a New Directory in One Step”

16.16 Adding New Features to bash Using Loadable
Built-ins

The material in this recipe also appears in Learning the bash Shell by Cameron
Newham (O’Reilly).

Problem
You have something that you’d like bash to do, but there’s no built-in command for
it. For efficiency reasons, you want it to be built-in to the shell rather than an external
program. Or, you already have the code in C and don’t want to or can’t rewrite it.

Solution
Use the dynamically loadable built-ins introduced in bash version 2.0. The bash
archive contains a number of pre-written built-ins in the directory ./examples/
loadables/, especially the canonical hello.c. You can build them by uncommenting the
lines in the file Makefile that are relevant to your system, and typing make. We’ll take
one of these built-ins, tty, and use it as a case study for built-ins in general.



Adding New Features to bash Using Loadable Built-ins | 385

The following is a list of the built-ins provided in bash version 3.2’s ./examples/
loadables/:

Discussion
On systems that support dynamic loading, you can write your own built-ins in C,
compile them into shared objects, and load them at any time from within the shell
with the enable built-in.

We will discuss briefly how to go about writing a built-in and loading it in bash. The
discussion assumes that you have experience with writing, compiling, and linking C
programs.

tty will mimic the standard Unix command tty. It will print the name of the termi-
nal that is connected to standard input. The built-in will, like the command, return
true if the device is a TTY and false if it isn’t. In addition, it will take an option, -s,
which specifies that it should work silently (i.e., print nothing and just return a
result).

The C code for a built-in can be divided into three distinct sections: the code that
implements the functionality of the built-in, a help text message definition, and a
structure describing the built-in so that bash can access it.

The description structure is quite straightforward and takes the form:

struct builtin builtin_name_struct = {
    "builtin_name",

function_name,
    BUILTIN_ENABLED,

help_array,
    "usage",
    0
};

The trailing _struct is required on the first line to give the enable built-in a way to
find the symbol name. builtin_name is the name of the built-in as it appears in bash.
The next field, function-name, is the name of the C function that implements the
built-in. We’ll look at this in a moment. BUILTIN_ENABLED is the initial state of the
built-in, whether it is enabled or not. This field should always be set to BUILTIN_
ENABLED. help_array is an array of strings that are printed when help is used on the

basename.c id.c push.c truefalse.c
cat.c ln.c realpath.c tty.c
cut.c logname.c rmdir.c uname.c
dirname.c mkdir.c sleep.c unlink.c
finfo.c necho.c strftime.c whoami.c
getconf.c pathchk.c sync.c perl/bperl.c
head.c print.c tee.c perl/iperl.c
hello.c printenv.c template.c



386 | Chapter 16: Configuring and Customizing bash

built-in. usage is the shorter form of help: the command and its options. The last
field in the structure should be set to 0.

In our example we’ll call the built-in tty, the C function tty_builtin, and the help
array tty_doc. The usage string will be tty [-s]. The resulting structure looks like
this:

struct builtin tty_struct = {
    "tty",
    tty_builtin,
    BUILTIN_ENABLED,
    tty_doc,
    "tty [-s]",
    0
};

The next section is the code that does the work. It looks like this:

tty_builtin (list)
    WORD_LIST *list;
{
    int opt, sflag;
    char *t;

    reset_internal_getopt ( );
    sflag = 0;
    while ((opt = internal_getopt (list, "s")) != -1)
    {
      switch (opt)
      {
          case 's':
              sflag = 1;
              break;
          default:
              builtin_usage ( );
              return (EX_USAGE);
      }
    }
    list = loptend;

    t = ttyname (0);
    if (sflag == 0)
        puts (t ? t : "not a tty");
    return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);
}

Built-in functions are always given a pointer to a list of type WORD_LIST. If the built-in
doesn’t actually take any options, you must call no_options(list) and check its
return value before any further processing. If the return value is nonzero, your func-
tion should immediately return with the value EX_USAGE.



Adding New Features to bash Using Loadable Built-ins | 387

You must always use internal_getopt rather than the standard C library getopt to
process the built-in options. Also, you must reset the option processing first by call-
ing reset_internal_getopt.

Option processing is performed in the standard way, except if the options are incor-
rect, in which case you should return EX_USAGE. Any arguments left after option pro-
cessing are pointed to by loptend. Once the function is finished, it should return the
value EXECUTION_SUCCESS or EXECUTION_FAILURE.

In the case of our tty built-in, we then just call the standard C library routine
ttyname, and if the -s option wasn’t given, print out the name of the TTY (or “not a
tty” if the device wasn’t). The function then returns success or failure, depending
upon the result from the call to ttyname.

The last major section is the help definition. This is simply an array of strings, the
last element of the array being NULL. Each string is printed to standard output when
help is run on the built-in. You should, therefore, keep the strings to 76 characters or
less (an 80-character standard display minus a 4-character margin). In the case of
tty, our help text looks like this:

char *tty_doc[] = {
  "tty writes the name of the terminal that is opened for standard",
  "input to standard output.  If the `-s' option is supplied, nothing",
  "is written; the exit status determines whether or not the standard",
  "input is connected to a tty.",
  (char *)NULL
};

The last things to add to our code are the necessary C header files. These are stdio.h
and the bash header files config.h, builtins.h, shell.h, and bashgetopt.h.

Here is the C program in its entirety:

# cookbook filename: builtin_tty.c

#include "config.h"
#include <stdio.h>
#include "builtins.h"
#include "shell.h"
#include "bashgetopt.h"

extern char *ttyname ( );

tty_builtin (list)
    WORD_LIST *list;
{
    int opt, sflag;
    char *t;

    reset_internal_getopt ( );
    sflag = 0;
    while ((opt = internal_getopt (list, "s")) != -1)



388 | Chapter 16: Configuring and Customizing bash

    {
        switch (opt)
        {
            case 's':
                sflag = 1;
                break;
            default:
                builtin_usage ( );
                return (EX_USAGE);
        }
    }
    list = loptend;

    t = ttyname (0);
    if (sflag == 0)
        puts (t ? t : "not a tty");
    return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);
}

char *tty_doc[] = {
    "tty writes the name of the terminal that is opened for standard",
    "input to standard output.  If the `-s' option is supplied, nothing",
    "is written; the exit status determines whether or not the standard",
    "input is connected to a tty.",
    (char *)NULL
};

struct builtin tty_struct = {
    "tty",
    tty_builtin,
    BUILTIN_ENABLED,
    tty_doc,
    "tty [-s]",
    0
};

We now need to compile and link this as a dynamic shared object. Unfortunately, dif-
ferent systems have different ways to specify how to compile dynamic shared objects.

The configure script should put the correct commands into the Makefile automati-
cally. If for some reason it doesn’t, Table 16-1 lists some common systems and the
commands needed to compile and link tty.c. Replace archive with the path of the
top level of the bash archive.

Table 16-1. Common systems and commands to compile and link tty.c

System Commands

SunOS 4 cc -pic -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
ld -assert pure-text -o tty tty.o

SunOS 5 cc -K pic -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
cc -dy -z text -G -i -h tty -o tty tty.o

SVR4, SVR4.2, Irix cc -K PIC -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
ld -dy -z text -G -h tty -o tty tty.o



Improving Programmable Completion | 389

After you have compiled and linked the program, you should have a shared object
called tty. To load this into bash, just type enable -f tty tty. You can remove a
loaded built-in at any time with the -d option, e.g., enable -d tty.

You can put as many built-ins as you like into one shared object as long as the three
main sections for each built-in are in the same C file. It is best, however, to keep the
number of built-ins per shared object small. You will also probably find it best to
keep similar built-ins, or built-ins that work together (e.g., pushd, popd, dirs), in the
same shared object.

bash loads a shared object as a whole, so if you ask it to load one built-in from a
shared object that has 20 built-ins, it will load all 20 (but only one will be enabled).
For this reason, keep the number of built-ins small to save loading memory with
unnecessary things, and group similar built-ins so that if the user enables one of
them, all of them will be loaded and ready in memory for enabling.

See Also
• ./examples/loadables in any bash tarball newer than 2.0

16.17 Improving Programmable Completion
This recipe was adapted directly from Learning the bash Shell by Cameron Newham
(O’Reilly).

Problem
You love bash’s programmable completion but wish it could be more aware of con-
text, especially for commands that you use often.

Solution
Find and install additional programmable completion libraries, or write your own.
Some examples are provided in the bash tarball in ./examples/complete. Some distribu-
tions (e.g., SUSE) have their own version in /etc/profile.d/complete.bash. However, the
largest and most well known of the third-party libraries is certainly Ian Macdonald’s,

AIX cc -K -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
ld -bdynamic -bnoentry -bexpall -G -o tty tty.o

Linux cc -fPIC -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
ld -shared -o tty tty.o

NetBSD, FreeBSD cc -fpic -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
ld -x -Bshareable -o tty tty.o

Table 16-1. Common systems and commands to compile and link tty.c (continued)

System Commands



390 | Chapter 16: Configuring and Customizing bash

which you may download as a tarball or RPM from http://www.caliban.org/bash/
index.shtml#completion or http://freshmeat.net/projects/bashcompletion/. This library is
already included in Debian (and derivatives like Ubuntu and MEPIS), and it is present
in Fedora Extras as well as other third-party repositories.

According to Ian’s README: “Many of the completion functions
assume GNU versions of the various text utilities that they call (e.g.,
grep, sed, and awk). Your mileage may vary.”

At the time of this writing there are 103 modules provided by the bash-completion-
20060301.tar.gz library. The following is an excerpted list:

# bash alias completion
# bash export completion
# bash shell function completion
# chown(1) completion
# chgrp(1) completion
# RedHat & Debian GNU/Linux if{up,down} completion
# cvs(1) completion
# rpm(8) completion
# chsh(1) completion
# chkconfig(8) completion
# ssh(1) completion
# GNU make(1) completion
# GNU tar(1) completion
# jar(1) completion
# Linux iptables(8) completion
# tcpdump(8) completion
# ncftp(1) bookmark completion
# Debian dpkg(8) completion
# Java completion
# PINE address-book completion
# mutt completion
# Python completion
# Perl completion
# FreeBSD package management tool completion
# mplayer(1) completion
# gpg(1) completion
# dict(1) completion
# cdrecord(1) completion
# yum(8) completion
# smartctl(8) completion
# vncviewer(1) completion
# svn completion



Improving Programmable Completion | 391

Discussion
Programmable completion is a feature that was introduced in bash version 2.04. It
extends the built-in textual completion by providing hooks into the completion
mechanism. This means that it is possible to write virtually any form of completion
desired. For instance, if you were typing the man command, wouldn’t it be nice to be
able to hit Tab and have the manual sections listed for you. Programmable comple-
tion allows you to do this and much more.

This recipe will only look at the basics of programmable completion. If you need to
delve into the inner depths and actually write your own completion code, first check
the libraries of completion commands developed by other people to see if what you
want has already been done or is available for use as an example. We’ll just outline
the basic commands and procedures needed to use the completion mechanism,
should you ever need to work on it yourself.

In order to be able to do textual completion in a particular way, you first have to tell
the shell how to do it when you press the Tab key. This is done via the complete
command.

The main argument of complete is a name that can be the name of a command or
anything else that you want textual completion to work with. As an example we will
look at the gunzip utility that allows compressed archives of various types to be
uncompressed. Normally, if you were to type:

$ gunzip [TAB][TAB]

you would get a list of filenames from which to complete. This list will include all
kinds of things that are unsuitable for gunzip. What we really would like is the sub-
set of those files that are suitable for the utility to work on. We can set this up by
using complete:

complete -A file -X '!*.@(Z|gz|tgz)' gunzip

Note that in order for @(Z|gz|tgz) to work, you will need extended pattern match-
ing switched on via shopt -s extglob.

Here we are telling the completion mechanism that when the gunzip command is
typed in we want it to do something special. The -A flag is an action and takes a vari-
ety of arguments. In this case we provide file as the argument, which asks the mech-
anism to provide a list of files as possible completions. The next step is to cut this
down by selecting only the files that we know will work with gunzip. We’ve done
this with the -X option, which takes as its argument a filter pattern. When applied to
the completion list, the filter removes anything matching the pattern, i.e., the result
is everything that doesn’t match the pattern. gunzip can uncompress a number of file
types, including those with the extensions .Z, .gz, and .tgz. We want to match all file-
names with extensions that have one of these three patterns. We then have to negate
this with a ! (remember, the filter removes the patterns that match).



392 | Chapter 16: Configuring and Customizing bash

We can actually try this out first and see what completions would be returned with-
out having to use complete to install the completion. We can do this via the compgen
command:

compgen -A file -X '!*.@(Z|gz|tgz)'

This produces a list of completion strings (assuming you have some files in the cur-
rent directory with these extensions). compgen is useful for trying out filters to see
what completion strings are produced. It is also needed when more complex comple-
tion is required. We’ll see an example of this later in the recipe.

Once we install the complete command above, either by sourcing a script that con-
tains it or executing it on the command line, we can use the augmented completion
mechanism with the gunzip command:

$gunzip [TAB][TAB]
archive.tgz  archive1.tgz  file.Z
$gunzip

You can probably see that there are other things we could do. What about providing
a list of possible arguments for specific options to a command? For instance, the kill
command takes a process ID, but can optionally take a signal name preceded by a
dash (-) or a signal name following the option -n. We could complete with PIDs but,
if there is a dash or a -n, it’ll have to be done with signal names.

This is slightly more complex than the one-line example above. Here we will need
some code to distinguish what has already been typed in. We’ll also need to get the
PIDs and the signal names. We’ll put the code in a function and call the function via
the completion mechanism. Here’s the code to call our function, which we’ll name
_kill:

complete -F _kill kill

The -F option to complete tells it to call the function named _kill when it is perform-
ing textual completion for the kill command. The next step is to code the function:

# cookbook filename: func_kill

_kill( ) {
    local cur
        local sign

    COMPREPLY=( )
    cur=${COMP_WORDS[COMP_CWORD]}

    if (($COMP_CWORD == 2)) && [[ ${COMP_WORDS[1]} == -n ]]; then
       # return list of available signals
           _signals
    elif (($COMP_CWORD == 1 )) && [[ "$cur" == -* ]]; then
       # return list of available signals
       sign="-"
       _signals
        else



Improving Programmable Completion | 393

       # return list of available PIDs
       COMPREPLY=( $( compgen -W '$( command ps axo pid | sed 1d )' $cur ) )
    fi
}

The code is fairly standard, apart from the use of some special environment vari-
ables and a call to a function called _signals, which we’ll come to shortly.

The variable $COMPREPLY is used to hold the result that is returned to the completion
mechanism. It is an array that holds a set of completion strings. Initially this is set to
an empty array.

The local variable $cur is a convenience variable to make the code more readable
because the value is used in several places. Its value is derived from an element in the
array $COMP_WORDS. This array holds the individual words on the current command
line. $COMP_CWORD is an index into the array; it gives the word containing the current
cursor position. The value of $cur is the word currently containing the cursor.

The first if statement tests for the condition where the kill command is followed by
the -n option. If the first word was -n and we are on the second word, then we need
to provide a list of signal names for the completion mechanism.

The second if statement is similar, except this time we are looking to complete on
the current word, which starts with a dash and is followed by anything else. The
body of this if again calls _signals but this time it sets the sign variable to a dash.
The reason for this will become obvious when we look at the _signals function.

The remaining part in the else block returns a list of process IDs. This uses the
compgen command to help create the array of completion strings. First it runs the ps
command to obtain a list of PIDs and then pipes the result through sed to remove the
first line (which is the heading “PID”). This is then given as an argument to the -W
option of compgen, which takes a word list. compgen then returns all completion
strings that match the value of the variable $cur and the resulting array is assigned to
$COMPREPLY.

compgen is important here because we can’t just return the complete list of PIDs pro-
vided by ps. The user may have already typed part of a PID and then attempted com-
pletion. As the partial PID will be in the variable $cur, compgen restricts the results to
those that match or partially match that value. For example if $cur had the value 5
then compgen would return only values beginning with a “5”, such as 5, 59, or 562.

The last piece of the puzzle is the _signals function:

# cookbook filename: func_signals

_signals( ) {
    local i

    COMPREPLY=( $( compgen -A signal SIG${cur#-} ))

    for (( i=0; i < ${#COMPREPLY[@]}; i++ )); do



394 | Chapter 16: Configuring and Customizing bash

       COMPREPLY[i]=$sign${COMPREPLY[i]#SIG}
    done
}

While we can get a list of signal names by using complete’s -A signal, the names are
unfortunately not in a form that is very usable and so we can’t use this to directly
generate the array of names. The names generated begin with the letters “SIG”, while
the names needed by the kill command don’t. The _signal function should assign an
array of signal names to $COMPREPLY, optionally preceded by a dash.

First we generate the list of signal names with compgen. Each name starts with the
letters “SIG”. In order to get complete to provide the correct subset if the user has
begun to type a name, we add “SIG” to the beginning of the value in $cur. We also
take the opportunity to remove any preceding dash that the value has so it will
match.

We then loop on the array, removing the letters “SIG” and adding a dash if needed
(the value of the variable sign) to each entry.

Both complete and compgen have many other options and actions; far more than we
can cover here. If you are interested in taking programmable completion further, we
recommend looking in the bash manual and downloading some of the many exam-
ples that are available on the Internet or in the bash tarball in ./examples/complete.

See Also
• help complete

• help compgen

• ./examples/complete in any bash tarball newer than 2.04

• http://www.caliban.org/bash/index.shtml#completion

• http://freshmeat.net/projects/bashcompletion

16.18 Using Initialization Files Correctly

Problem
You’d like to know just what the heck is with all the initialization, or rc, files.

Solution
Here’s the cheat sheet for files and what do with them. Some or all of these files may
be missing from your system, depending on how it is set up. Systems that use bash
by default (e.g., Linux) tend to have a complete set; systems that use some other shell
by default are usually missing at least some of them.



Using Initialization Files Correctly | 395

/etc/profile
Global login environment file for Bourne and similar login shells. We recom-
mend you leave this alone unless you are the system administrator and know
what you are doing.

/etc/bashrc (Red Hat) /etc/bash.bashrc (Debian)
Global environment file for interactive bash subshells. We recommend you leave
this alone unless you are the system administrator and know what you are
doing.

/etc/bash_completion
If this exists, it’s almost certainly the configuration file for Ian Macdonald’s pro-
grammable completion library (see Recipe 16.17, “Improving Programmable
Completion”). We recommend looking into it—it’s pretty cool.

/etc/inputrc
Global GNU Readline configuration. We recommend tweaking this as desired
for the entire system (if you are the administrator), or tweaking ~/.inputrc for just
you (Recipe 16.20, “Getting Started with a Custom Configuration”). This is not
executed or sourced but read in via Readline and $INPUTRC, and $include (or bind
-f). Note that it may contain include statements to other Readline files.

~/.bashrc
Personal environment file for interactive bash subshells. We recommend that
you place your aliases, functions, and fancy prompts here.

~/.bash_profile
Personal profile for bash login shells. We recommend that you make sure this
sources ~/.bashrc, then ignore it.

~/.bash_login
Personal profile file for Bourne login shells; only used by bash if ~/.bash_profile is
not present. We recommend you ignore this.

~/.profile
Personal profile file for Bourne login shells; only used by bash if ~/.bash_profile
and ~/.bash_login are not present. We recommend you ignore this unless you
also use other shells that use it.

~/.bash_history
Default storage file for your shell command history. We recommend you use the
history tools (Recipe 16.12, “Setting Shell History Options”) to manipulate it
instead of trying to directly edit it. This is not executed or sourced, it’s just a
data file.

~/.bash_logout
Executed when you logout. We recommend you place any cleanup routines, (e.g.,
Recipe 17.7, “Clearing the Screen When You Log Out”) here. This is only exe-
cuted on a clean logout (i.e., not if your session dies due to a dropped WAN
link).



396 | Chapter 16: Configuring and Customizing bash

~/.inputrc
Personal customizations for GNU Readline. We recommend tweaking this as
desired (Recipe 16.20, “Getting Started with a Custom Configuration”). This is
not executed or sourced but read in via Readline and $INPUTRC, and $include (or
bind -f) and note that it may contain include statements to other Readline files.

We realize this list is a bit is tricky to follow, however, each OS or distribution may
differ, since it’s up the the vendor exactly how these files are written. To really
understand how your system works, read each of the files listed above. You can also
temporarily add echo name_of_file >&2 to the very first line of any of them that are
executed or sourced (i.e., skip /etc/inputrc, ~/.inputrc, and ~/.bash_history). Note that
may interfere with some programs (notably scp and rsync) that are confused by extra
output on STDOUT or STDERR, so remove these statements when you are finished.
See the warning in Recipe 16.19, “Creating Self-Contained, Portable RC Files” for
more details.

Use Table 16-2 as a guideline only, since it’s not necessarily how your system will
work. (In addition to the login-related rc files listed in Table 16-2, the ~/.bash_logout
rc file is used when you log out cleanly from an interactive session.)

Table 16-2. bash login rc files on Ubuntu 6.10 and Fedora Core 5

Interactive login shell
Interactive non-login shell
(bash)

Noninteractive shell
(script) (bash /dev/null) Noninteractive (bash -c ‘:’)

Ubuntu 6.10:

/etc/profile

/etc/bash.bashrc

~/.bash_profilea

~/.bashrc

/etc/bash_completion

a If ~/.bash_profile is not found, then ~/.bash_login or ~/.profile will be attempted in that order.

Ubuntu 6.10:

/etc/bash.bashrc

~/.bashrc

/etc/bash_completion

Ubuntu 6.10:

N/A

Ubuntu 6.10:

N/A

Fedora Core 5:

/etc/profilebc

/etc/profile.d/colorls.sh

/etc/profile.d/glib2.sh

/etc/profile.d/krb5.sh

/etc/profile.d/lang.sh

/etc/profile.d/less.sh

/etc/profile.d/vim.sh

/etc/profile.d/which-2.sh

~/.bash_profilea

~/.bashrc

/etc/bashrc

b If $INPUTRC is not set and ~/.inputrc does not exist, set $INPUTRC to /etc/inputrc.
c Red Hat /etc/profile also sources /etc/profile.d/*.sh files; see Recipe 4.10, “Running All Scripts in a Directory” for details.

Fedora Core 5:

~/.bashrc

/etc/bashrc

Fedora Core 5:

N/A

Fedora Core 5:

N/A



Using Initialization Files Correctly | 397

For more detail see the “Bash Startup Files” section in the Bash Reference Manual
(http://www.gnu.org/software/bash/manual/bashref.html).

Discussion
One of the tricky things in Unix or Linux is figuring out where to change something
like the $PATH or prompt on the rare occasions when you do want to do it for the
whole system. Different operating systems and even versions can put things in differ-
ent places. This command has a pretty good chance of finding out where your sys-
tem $PATH is set, for example:

$ grep 'PATH=' /etc/{profile,*bash*,*csh*,rc*}

If that doesn’t work, the only thing you can really do is grep all of /etc., as in:

# find /etc -type f | xargs grep 'PATH='

Note that unlike most of the code in this book, this is better run as root. You can run
it as a regular user and get some results, but you may miss something and you’ll
almost certainly get some “Permission denied” errors.

One of the other tricky things is figuring out what you can tweak and where to do
that for your personal account. We hope this chapter has given you a lot of great
ideas in that regard.

See Also
• man grep

• man find

• man xargs

• The “Bash Startup Files” section in the Bash Reference Manual (http://www.gnu.
org/software/bash/manual/bashref.html)

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.12, “Setting Shell History Options”

• Recipe 16.17, “Improving Programmable Completion”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 17.7, “Clearing the Screen When You Log Out”



398 | Chapter 16: Configuring and Customizing bash

16.19 Creating Self-Contained, Portable RC Files

Problem
You work on a number of machines, some of which you have limited or full root
control over, and some of which you do not, and you want to replicate a consistent
bash environment while still allowing custom settings by operating system, machine,
or other (e.g., work, home) criteria.

Solution
Put all of your customizations in files in a settings subdirectory, copy or rsync that
directory to a location such as ~/ or /etc, and use includes and symbolic links (e.g., ln
-s ~/settings/screenrc ~/.screenrc) as necessary. Use logic in your customization
files to account for criteria such as operating system, location, etc.

You may also choose not to use leading dots in the filenames to make it a little easier
to manage the files. As you saw in Recipe 1.5, “Showing All Hidden (dot) Files in the
Current Directory,” the leading dot causes ls not to show the file by default, thus
eliminating some clutter in your home directory listing. But since we’ll be using a
directory that exists only to hold configuration files, using the dot is not necessary.
Note that dot files are usually not used in /etc either, for the same reason.

See Recipe 16.20, “Getting Started with a Custom Configuration” for a sample to get
you started.

Discussion
Here are the assumptions and criteria we used in developing this solution:

Assumptions

• You have a complex environment in which you control some, but not all, of the
machines you use.

• For machines you control, one machine exports /opt/bin and all other machines
NFS-mount it, so all configuration files reside there. We used /opt/bin because
it’s short and less likely to collide with existing directories than /usr/local/bin, but
feel free to use whatever makes sense.

• For some machines with partial control, a system-wide configuration in /etc is
used.

• For machines on which you have no administrative control, dot files are used in
~/.

• You have settings that will vary from machine to machine, and in different envi-
ronments (e.g., home or work).



Creating Self-Contained, Portable RC Files | 399

Criteria

• Require as few changes as possible when moving configuration files between
operating systems and environments.

• Supplement, but do not replace, operating system default or system administra-
tor supplied configurations.

• Provide enough flexibility to handle the demands made by conflicting settings (e.g.,
work and home CVS).

While it may be tempting to put echo statements in your configura-
tion files to see what’s going on, be careful. If you do that, scp, rsync,
and probably any other rsh-like programs will fail with mysterious
errors such as:

scp
protocol error: bad mode

rsync
protocol version mismatch - is your shell clean?
(see the rsync manpage for an explanation)
rsync error: protocol incompatibility (code 2) at compat.
c(62)

ssh itself works since it is actually interactive and the output is dis-
played on the screen rather than confusing the data stream. See the
discussion in Recipe 14.22, “Restricting SSH Commands,” for details
on why this happens.

For debugging, put these two lines near the top of /etc/profile or ~/.bash_profile, but
see our warning note about confusing the data stream:

export PS4='+xtrace $LINENO: '
set -x

As an alternative (or in addition) to using set -x, you can add lines such as the fol-
lowing to any or all of your configuration files:

# E.g. in ~/.bash_profile
case "$-" in
    *i*) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Interactive" \
              "~/.bash_profile ssh=$SSH_CONNECTION" >> ~/rc.log ;;
    *  ) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Non-interactive" \
              "~/.bash_profile ssh=$SSH_CONNECTION" >> ~/rc.log ;;
esac

# In ~/.bashrc
case "$-" in
    *i*) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Interactive" \
              "~/.bashrc ssh=$SSH_CONNECTION" >> ~/rc.log ;;
    *  ) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Non-interactive" \
              "~/.bashrc ssh=$SSH_CONNECTION" >> ~/rc.log ;;
esac



400 | Chapter 16: Configuring and Customizing bash

Since there is no output to the terminal, this will not interfere with commands as we
note in the warning. Run a tail -f ~/rc.log command in one session and run your
troublesome command (e.g., scp, cvs) from elsewhere to determine which configura-
tion files are in use. You can then more easily track down the problem.

When making any changes to your configuration files, we strongly advise that you
open two sessions. Make all your changes in one session and then log it out and back
in. If you broke something so that you can’t log back in, fix it from the second ses-
sion and then try again from the first one. Do not log out of both terminals until you
are absolutely sure you can log back in again. This goes triple if any changes you’re
making could affect root.

You really do need to log out and back in again. Sourcing the changed files is a help,
but leftovers from the previous environment may allow things to work temporarily,
until you start clean and then things are broken. Make changes to the running envi-
ronment as necessary, but don’t change the files until you are ready to test; other-
wise you’ll forget and possibly be locked out if something is wrong.

See Also
• Recipe 1.5, “Showing All Hidden (dot) Files in the Current Directory”

• Recipe 14.23, “Disconnecting Inactive Sessions”

• Recipe 16.18, “Using Initialization Files Correctly”

• Recipe 16.20, “Getting Started with a Custom Configuration”

16.20 Getting Started with a Custom Configuration

Problem
You’d like to tweak your environment but aren’t quite sure where to start.

Solution
Here are some samples to give you an idea of what you can do. We follow the sug-
gestion in Recipe 16.19, “Creating Self-Contained, Portable RC Files” to keep cus-
tomizations separate for easy back-outs and portability between systems.

For system-wide profile settings, add the following to /etc/profile. Since that file is
also used by the true Bourne shell, be careful not to use any bash-only features (e.g.,
source instead of .) if you do this on a non-Linux system. Linux uses bash as the
default shell for both /bin/sh and /bin/bash (except when it doesn’t, as in Ubuntu 6–
10+, which uses dash). For user-only settings, add it to only one of ~/.bash_profile,
~/.bash_login, or ~/.profile, in that order, whichever exists first:



Getting Started with a Custom Configuration | 401

# cookbook filename: add_to_bash_profile

# If we're running in bash, search for then source our settings
# You can also just hard code $SETTINGS, but this is more flexible
if [ -n "$BASH_VERSION" ]; then
    for path in /opt/bin /etc ~ ; do
        # Use the first one found
        if [ -d "$path/settings" -a -r "$path/settings" -a -x "$path/settings" ]
        then
            export SETTINGS="$path/settings"
        fi
    done
    source "$SETTINGS/bash_profile"
    #source "$SETTINGS/bash_rc"      # If necessary
fi

For system-wide environment settings, add the following to /etc/bashrc (or /etc/bash.
bashrc):

# cookbook filename: add_to_bashrc

# If we're running in bash, and it isn't already set,
# search for then source our settings
# You can also just hard code $SETTINGS, but this is more flexible
if [ -n "$BASH_VERSION"  ]; then
    if [ -z "$SETTINGS" ]; then
        for path in /opt/bin /etc ~ ; do
            # Use the first one found
            if [ -d "$path/settings" -a -r "$path/settings" -a -x "$path/settings" ]
            then
                export SETTINGS="$path/settings"
            fi
        done
    fi
    source "$SETTINGS/bashrc"
fi

Sample bash_profile:

# cookbook filename: bash_profile

# settings/bash_profile: Login shell environment settings
# To re-read (and implement changes to this file) use:
# source $SETTINGS/bash_profile

# Fail-safe.  This should be set when we're called, but if not, the
# "not found" error messages should be pretty clear.
# Use leading ':' to prevent this from being run as a program after
# it is expanded.
: ${SETTINGS:='SETTINGS_variable_not_set'}

# DEBUGGING only--will break scp, rsync
# echo "Sourcing $SETTINGS/bash_profile..."
# export PS4='+xtrace $LINENO: '
# set -x



402 | Chapter 16: Configuring and Customizing bash

# Debugging/logging--will not break scp, rsync
#case "$-" in
#    *i*) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Interactive" \
#              "$SETTINGS/bash_profile ssh=$SSH_CONNECTION" >> ~/rc.log ;;
#    *  ) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Non-interactive" \
#              "$SETTINGS/bash_profile ssh=$SSH_CONNECTION" >> ~/rc.log ;;
#esac

# Use the keychain (http://www.gentoo.org/proj/en/keychain/) shell script
# to manage ssh-agent, if it's available.  If it's not, you should look
# into adding it.
for path in $SETTINGS ${PATH//:/ }; do
    if [ -x "$path/keychain" ]; then
        # Load default id_rsa and/or id_dsa keys, add others here as needed
        # See also --clear --ignore-missing --noask --quiet --time-out
        $path/keychain ~/.ssh/id_?sa
        break
    fi
done

# Apply interactive subshell customizations to login shells too.
# The system profile file in /etc probably already does this.
# If not, it's probably better to do in manually in wherever you:
# source "$SETTINGS/bash_profile"
# But just in case...
#for file in /etc/bash.bashrc /etc/bashrc ~/.bashrc; do
#    [ -r "$file" ] && source $file && break  # Use the first one found
#done

# Do site or host specific things here
case $HOSTNAME in
    *.company.com     ) # source $SETTINGS/company.com
                      ;;
    host1.*           ) # host1 stuff
                      ;;
    host2.company.com ) # source .bashrc.host2
                      ;;
    drake.*           ) # echo DRAKE in bash_profile.jp!
                      ;;
esac

# Do this last because we basically fork off from here.  If we exit screen
# we return to a fully configured session.  The screen session gets configured
# as well, and if we never leave it, well, this session isn't that bloated.

# Only run if we are not already running screen AND '~/.use_screen' exists.
if [ $TERM != "screen" -a "$USING_SCREEN" != "YES" -a -f ~/.use_screen ]; then
    # We'd rather use 'type -P' here, but that was added in bash-2.05b and we
    # use systems we don't control with versions older than that.  We can't
    #  easily use 'which' since on some systems that produces output whether



Getting Started with a Custom Configuration | 403

    # the file is found or not.
    for path in ${PATH//:/ }; do
        if [ -x "$path/screen" ]; then
            # If screen(1) exists and is executable, run our wrapper
            [ -x "$SETTINGS/run_screen" ] && $SETTINGS/run_screen
        fi
    done
fi

Sample bashrc (we know this is long, but read it for ideas):

# cookbook filename: bashrc

# settings/bash_profile: subshell environment settings
# To re-read (and implement changes to this file) use:
# source $SETTINGS/bashrc

# Fail-safe.  This should be set when we're called, but if not, the
# "not found" error messages should be pretty clear.
# Use leading ':' to prevent this from being run as a program after
# it is expanded.
: ${SETTINGS:='SETTINGS_variable_not_set'}

# DEBUGGING only--will break scp, rsync
# echo "Sourcing $SETTINGS/bash_profile..."
# export PS4='+xtrace $LINENO: '
# set -x

# Debugging/logging--will not break scp, rsync
#case "$-" in
#    *i*) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Interactive" \
#              "$SETTINGS/bashrc ssh=$SSH_CONNECTION" >> ~/rc.log ;;
#    *  ) echo "$(date '+%Y-%m-%d_%H:%M:%S_%Z') Non-interactive" \
#              "$SETTINGS/bashrc ssh=$SSH_CONNECTION" >> ~/rc.log ;;
#esac

# In theory this is also sourced from /etc/bashrc (/etc/bash.bashrc )
# or ~/.bashrc to apply all these settings to login shells too.  In practice
# if these settings only work sometimes (like in subshells), verify that.

# Set some more useful prompts
# Interactive command line prompt.
# ONLY set one of these if we really are interactive, since lots of people
# (even use sometimes) test to see if a shell is interactive using
# something like:  if [ "$PS1" ]; then
case "$-" in
    *i*)
        #export PS1='\n[\u@\h t:\l l:$SHLVL h:\! j:\j v:\V]\n$PWD\$ '
        #export PS1='\n[\u@\h:T\l:L$SHLVL:C\!:\D{%Y-%m-%d_%H:%M:%S_%Z}]\n$PWD\$ '
        export PS1='\n[\u@\h:T\l:L$SHLVL:C\!:J\j:\D{%Y-%m-%d_%H:%M:%S_%Z}]\n$PWD\$ '
        #export PS2='> '                              # Secondary (i.e. continued)
prompt



404 | Chapter 16: Configuring and Customizing bash

        #export PS3='Please make a choice: '          # Select prompt
        export PS4='+xtrace $LINENO: '                # xtrace (debug) prompt
    ;;
esac

# Make sure custom inputrc is handled, if we can find it, note different
# names. Also note different order, since for this one we probably want
# our custom settings to over-ride the system file, if present.
for file in $SETTINGS/inputrc ~/.inputrc /etc/inputrc; do
    [ -r "$file" ] && export INPUTRC="$file" && break # Use first found
done

# No core files by default
# See also /etc/security/limits.conf on many Linux systems.
ulimit -S -c 0 > /dev/null 2>&1

# Don't let CTRL-D exit the shell
set -o ignoreeof

# Set various aspects of the bash history
export HISTSIZE=5000          # Num. of commands in history stack in memory
export HISTFILESIZE=5000      # Num. of commands in history FILE
export HISTCONTROL=ignoreboth # bash < 3, omit dups & lines starting with space
export HISTIGNORE='&:[ ]*'    # bash >= 3, omit dups & lines starting with space
#export HISTTIMEFORMAT='%Y-%m-%d_%H:%M:%S_%Z=' # bash >= 3, time-stamp hist file
shopt -s histappend           # Append rather than overwrite history on exit
shopt -q -s cdspell           # Auto-fix minor typos in interactive use of 'cd'
shopt -q -s checkwinsize      # Update the values of LINES and COLUMNS
shopt -q -s cmdhist           # Make multi-line commands 1 line in history
set -o notify   # (or set -b) # Immediate notification of bckgrnd job termintn.

# Other bash settings
export LC_COLLATE='C'         # Set traditional C sort order (e.g. UC first)
export HOSTFILE='/etc/hosts'  # Use /etc/hosts for host name completion
export CDPATH='~/:.:..:../..' # Similar to $PATH, but for use by 'cd'
# Note that the '.' in $CDPATH is needed so that cd will work under POSIX mode
# but this will also cause cd to echo the new directory to STDOUT!

# Import bash completion settings, if they exist in the default location.
# This can take a second or two on a slow system, so you may not always
# want to do it, even if it does exist (which it doesn't by default on many
# systems, e.g. Red Hat).
# [ -r /etc/bash_completion ] && source /etc/bash_completion

# Use a lesspipe filter, if we can find it.  This sets the $LESSOPEN variable
# Globally replace the $PATH ':' delimiter with space for use in a list
for path in $SETTINGS /opt/bin ~/ ${PATH//:/ }; do
    # Use first one found of 'lesspipe.sh' (preferred) or 'lesspipe' (Debian)
    [ -x "$path/lesspipe.sh" ] && eval $("$path/lesspipe.sh") && break
    [ -x "$path/lesspipe" ]    && eval $("$path/lesspipe")    && break
done

# Set other less & editor prefs (overkill)
export LESS="--LONG-PROMPT --LINE-NUMBERS --QUIET"



Getting Started with a Custom Configuration | 405

export VISUAL='vi'  # Set a default that should always work
# We'd rather use 'type -P' here, but that was added in bash-2.05b and we use
# systems we don't control with versions older than that.  We can't easily
# use 'which' since that produces output whether the file is found or not.
for path in ${PATH//:/ }; do
    # Overwrite VISUAL if we can find nano
    [ -x "$path/nano" ] \
      && export VISUAL='nano --smooth --const --nowrap --suspend' && break
done
# See above notes re: nano for why we're using this for loop
for path in ${PATH//:/ }; do
    # Alias vi to vim in binary mode if we can
    [ -x "$path/vim" ] && alias vi='vim -b' && break
done
export EDITOR="$VISUAL"      # Yet Another Possibility
export SVN_EDITOR="$VISUAL"  # Subversion
alias edit=$VISUAL           # Provide a command to use on all systems

# Set ls options and aliases
# Note all the colorizing may or may not work depending on your terminal
# emulation and settings, esp. ANSI color. But it shouldn't hurt to have.
# See above notes re: nano for why we're using this for loop
for path in ${PATH//:/ }; do
    [ -r "$path/dircolors" ] && eval "$(dircolors)" \
      && LS_OPTIONS='--color=auto' && break
done
export LS_OPTIONS="$LS_OPTIONS -F -h"
# Using dircolors may cause csh scripts to fail with an
# "Unknown colorls variable `do'." error.  The culprit is the ":do=01;35:"
# part in the LS_COLORS environment variable.  For a possible solution see
# http://forums.macosxhints.com/showthread.php?t=7287
# eval "$(dircolors)"
alias ls="ls $LS_OPTIONS"
alias ll="ls $LS_OPTIONS -l"
alias ll.="ls $LS_OPTIONS -ld"  # Usage: ll. ~/.*
alias la="ls $LS_OPTIONS -la"

# Useful aliases
alias bot='cd $(dirname $(find . | tail -1))'
alias clr='cd ~/ && clear'   # Clear and return $HOME
alias cls='clear'            # DOS-ish for clear
alias copy='cp'              # DOS-ish for cp
#alias cp='cp -i'            # Annoying Red Hat default from /root/.bashrc
alias cvsst='cvs -qn update' # Hack to get concise CVS status (like svn st)
alias del='rm'               # DOS-ish for rm
alias diff='diff -u'         # Make unified diffs the default
alias jdiff="diff --side-by-side --ignore-case --ignore-blank-lines\
 --ignore-all-space --suppress-common-lines" # Useful GNU diff command
alias dir='ls'               # DOS-ish for ls
alias hr='history -a && history -n' # Append current, then re-read history
alias ipconfig='ifconfig'    # Windows-ish for ifconfig
alias md='mkdir'             # DOS-ish for mkdir
alias move='mv'              # DOS-ish for mv
#alias mv='mv -i'            # Annoying Red Hat default from /root/.bashrc



406 | Chapter 16: Configuring and Customizing bash

alias ntsysv='rcconf'        # Debian rcconf is pretty close to Red Hat ntsysv
alias pathping='mtr'         # mtr - a network diagnostic tool
alias r='fc -s'              # Recall and execute 'command' starting with...
alias rd='rmdir'             # DOS-ish for rmdir
alias ren='mv'               # DOS-ish for mv/rename
#alias rm='rm -i'            # Annoying Red Hat default from /root/.bashrc
alias svnpropfix='svn propset svn:keywords "Id URL"'
alias tracert='traceroute'   # DOS-ish for traceroute
alias vzip='unzip -lvM'      # View contents of ZIP file
alias wgetdir="wget --non-verbose --recursive --no-parent --no-directories\
 --level=1"                  # Grab a whole directory using wget
alias zonex='host -l'        # Extract (dump) DNS zone

# if the script exists and is executable, create an alias to get
# web server headers
for path in ${PATH//:/ }; do
    [ -x "$path/lwp-request" ] && alias httpdinfo='lwp-request -eUd' && break
done

# Try to use kbdrate to make the keyboard go faster, but don't complain if
# it's not there.  Easier/faster to throw out error if it's not there...
kbdrate -r 30.0 -d 250 &> /dev/null

# Useful functions

# mkdir newdir then cd into it
# usage: mcd (<mode>) <dir>
function mcd {
    local newdir='_mcd_command_failed_'
    if [ -d "$1" ]; then         # Dir exists, mention that...
        echo $1 exists...
    else
        if [ -n "$2" ]; then     # We've specified a mode
            command mkdir -p -m $1 "$2" && newdir="$2"
        else                     # Plain old mkdir
            command mkdir -p "$1" && newdir="$1"
        fi
    fi
    builtin cd "$newdir"         # No matter what, cd into it
} # end of mcd

# Trivial command line calculator
function calc {
    # INTEGER ONLY! --> echo The answer is: $(( $* ))
    # Floating point
    awk "BEGIN {print \"The answer is: \" $* }";
} # end of calc

# Allow use of 'cd ...' to cd up 2 levels, 'cd ....' up 3, etc. (like 4NT/4DOS)
# Usage: cd ..., etc.
function cd {



Getting Started with a Custom Configuration | 407

    local option= length= count= cdpath= i= # Local scope and start clean

    # If we have a -L or -P sym link option, save then remove it
    if [ "$1" = "-P" -o "$1" = "-L" ]; then
        option="$1"
        shift
    fi

    # Are we using the special syntax?  Make sure $1 isn't empty, then
    # match the first 3 characters of $1 to see if they are '...' then
    # make sure there isn't a slash by trying a substitution; if it fails,
    # there's no slash.  Both of these string routines require Bash 2.0+
    if [ -n "$1" -a "${1:0:3}" = '...' -a "$1" = "${1%/*}" ]; then
        # We are using special syntax
        length=${#1}  # Assume that $1 has nothing but dots and count them
        count=2       # 'cd ..' still means up one level, so ignore first two

        # While we haven't run out of dots, keep cd'ing up 1 level
        for ((i=$count;i<=$length;i++)); do
            cdpath="${cdpath}../" # Build the cd path
        done

        # Actually do the cd
        builtin cd $option "$cdpath"
    elif [ -n "$1" ]; then
        # We are NOT using special syntax; just plain old cd by itself
        builtin cd $option "$*"
    else
        # We are NOT using special syntax; plain old cd by itself to home dir
        builtin cd $option
    fi
} # end of cd

# Do site or host specific things here
case $HOSTNAME in
    *.company.com     ) # source $SETTINGS/company.com
                      ;;
    host1.*           ) # host1 stuff
                      ;;
    host2.company.com ) # source .bashrc.host2
                      ;;
    drake.*           ) # echo DRAKE in bashrc.jp!
                        export TAPE=/dev/tape
                      ;;
esac

Sample inputrc:

# cookbook filename: inputrc

# settings/inputrc:  # readline settings
# To re-read (and implement changes to this file) use:
# bind -f $SETTINGS/inputrc



408 | Chapter 16: Configuring and Customizing bash

# First, include any systemwide bindings and variable
# assignments from /etc/inputrc
# (fails silently if file doesn't exist)
$include /etc/inputrc

$if Bash
  # Ignore case when doing completion
    set completion-ignore-case on
  # Completed dir names have a slash appended
    set mark-directories on
  # Completed names which are symlinks to dirs have a slash appended
    set mark-symlinked-directories on
  # List ls -F for completion
    set visible-stats on
  # Cycle through ambiguous completions instead of list
    "\C-i": menu-complete
  # Set bell to audible
    set bell-style audible
  # List possible completions instead of ringing bell
    set show-all-if-ambiguous on

  # From the readline documentation at
  # http://tiswww.tis.case.edu/php/chet/readline/readline.html#SEC12
  # Macros that are convenient for shell interaction
  # edit the path
    "\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
  # prepare to type a quoted word -- insert open and closed double quotes
  # and move to just after the open quote
    "\C-x\"": "\"\"\C-b"
  # insert a backslash (testing backslash escapes in sequences and macros)
    "\C-x\\": "\\"
  # Quote the current or previous word
    "\C-xq": "\eb\"\ef\""
  # Add a binding to refresh the line, which is unbound
    "\C-xr": redraw-current-line
  # Edit variable on current line.
    #"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
    "\C-xe": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif

Sample bash_logout:

# cookbook filename: bash_logout

# settings/bash_logout:  execute on shell logout

# Clear the screen on logout to prevent information leaks, if not already
# set as an exit trap elsewhere
[ "$PS1" ] && clear

Sample run_screen (for GNU screen, which you may need to install):

#!/usr/bin/env bash
# cookbook filename: run_screen



Getting Started with a Custom Configuration | 409

# run_screen--Wrapper script intended to run from a "profile" file to run
# screen at login time with a friendly menu.

# Sanity check
if [ "$TERM" == "screen" ]; then
    printf "%b" "According to \$TERM = '$TERM' we're *already* using" \
      " screen.\nAborting...\n"
    exit 1
elif [ "$USING_SCREEN" == "YES" ]; then
    printf "%b" "According to \$USING_SCREEN = '$USING_SCREEN' we're"
      " *already* using screen.\nAborting...\n"
    exit 1
fi

# The "$USING_SCREEN" variable is for the rare cases when screen does NOT set
# $TERM=screen.  This can happen when 'screen' in not in TERMCAP or friends,
# as is the case on a Solaris 9 box we use but don't control.  If we don't
# have some way to tell when we're inside screen, this wrapper goes into an
# ugly and confusing endless loop.

# Seed list with Exit and New options and see what screens are already running;
# The select list is white space delimited, and we only want actual screen
# sessions, so use awk to filter for those, then remove any tabs from
# 'screen -ls' output.
available_screens="Exit New $(screen -ls | awk '/\)$/ { print $1$2$3 }' \
  | tr -d ' ')"

# Print a warning if using run time feedback
run_time_feedback=0
[ "$run_time_feedback" == 1 ] && printf "%b" "
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
'screen' Notes:

1) If you reconnect to a screen that is already Attached, you will 'steal'
that existing screen.

2) A session marked 'multi' is in multi-user mode, so be careful about
re-attaching to it.

3) Sessions marked 'unreachable' or 'dead' should be investigated and
removed with the -wipe option if appropriate.\n\n"

# Present a list of choices
PS3='Choose a screen for this session: '
select selection in $available_screens; do
    if [ "$selection" == "Exit" ]; then
        break
    elif [ "$selection" == "New" ]; then
        export USING_SCREEN=YES
        exec screen -c $SETTINGS/screenrc -a \
                    -S $USER.$(date '+%Y-%m-%d_%H:%M:%S%z')
        break
    elif [ "$selection" ]; then



410 | Chapter 16: Configuring and Customizing bash

        # Pull out just the part we need using cut
        # We'd rather use a 'here string' [$(cut -d'(' -f1 <<< $selection)]
        # than this echo, but they are only in bash-2.05b+.
        screen_to_use=$(echo $selection | cut -d'(' -f1)
        exec screen -dr $screen_to_use
        break
    else
        printf "%b" "Invalid selection.\n"
    fi
done

Discussion
See the code and the code’s comments for details.

Something interesting happens if you set $PS1 at inappropriate times, or if you set
traps using clear. Many people use code like this to test to see if the current shell is
interactive:

if [ "$PS1" ]; then
    : Interactive code here
fi

If you arbitrarily set $PS1 if the shell isn’t interactive, or if you set a trap using just
clear instead of [ "$PS1" ] && clear, you’ll get errors like this when using scp or ssh
non-interactively:

# e.g. from tput
No value for $TERM and no -T specified

# e.g. from clear
TERM environment variable not set.

See Also
• Chapters 17–19

• Recipe 16.18, “Using Initialization Files Correctly”

• Recipe 16.19, “Creating Self-Contained, Portable RC Files”

• Recipe 17.5, “Sharing a Single bash Session”

• Appendix C



411

Chapter 17 CHAPTER 17

Housekeeping and Administrative Tasks18

These recipes cover tasks that come up in the course of using or administering com-
puters. They are presented here because they don’t fit well anywhere else in the
book.

17.1 Renaming Many Files

Problem
You want to rename many files, but mv *.foo *.bar doesn’t work. Or, you want to
rename a group of files in arbitrary ways.

Solution
We presented a simple loop to change file extensions in Recipe 5.18, “Changing
Pieces of a String”; see that recipe for more details. Here is a for loop example:

for FN in *.bad
do
    mv "${FN}" "${FN%bad}bash"
done

What about more arbitrary changes? For example, say you are writing a book and
want the chapter file names to follow a certain format, but the publisher has a con-
flicting format. You could name the files like chNN=Title=Author.odt, then use a sim-
ple for loop and cut in a command substitution to rename them.

$ for i in *.odt; do mv "$i" "$(echo $i | cut -d'=' -f1,3)"; done

Discussion
You should always use quotes around file arguments in case there’s a space. While
testing the code in the solution we also used echo and angle brackets to make it very
clear what the arguments are (using set -x is also helpful).



412 | Chapter 17: Housekeeping and Administrative Tasks

Once we were very sure our command worked, we removed the angle brackets and
replaced echo with mv.

# Testing
$ for i in *.odt; do echo "<$i>" "<$(echo $i | cut -d'=' -f1,3)>"; done
<ch01=Beginning Shell Scripting=JP.odt> <ch01=JP.odt>
<ch02=Standard Output=CA.odt> <ch02=CA.odt>
<ch03=Standard Input=CA.odt> <ch03=CA.odt>
<ch04=Executing Commands=CA.odt> <ch04=CA.odt>
[...]

# Even more testing
$ set -x

$ for i in *.odt; do echo "<$i>" "<$(echo $i | cut -d'=' -f1,3)>"; done
++xtrace 1: echo ch01=Beginning Shell Scripting=JP.odt
++xtrace 1: cut -d= -f1,3
+xtrace 535: echo '<ch01=Beginning Shell Scripting=JP.odt>' '<ch01=JP.odt>'
<ch01=Beginning Shell Scripting=JP.odt> <ch01=JP.odt>
++xtrace 1: echo ch02=Standard Output=CA.odt
++xtrace 1: cut -d= -f1,3
+xtrace 535: echo '<ch02=Standard Output=CA.odt>' '<ch02=CA.odt>'
<ch02=Standard Output=CA.odt> <ch02=CA.odt>
++xtrace 1: echo ch03=Standard Input=CA.odt
++xtrace 1: cut -d= -f1,3
+xtrace 535: echo '<ch03=Standard Input=CA.odt>' '<ch03=CA.odt>'
<ch03=Standard Input=CA.odt> <ch03=CA.odt>
++xtrace 1: echo ch04=Executing Commands=CA.odt
++xtrace 1: cut -d= -f1,3
+xtrace 535: echo '<ch04=Executing Commands=CA.odt>' '<ch04=CA.odt>'
<ch04=Executing Commands=CA.odt> <ch04=CA.odt>

$ set +x
+xtrace 536: set +x

We have for loops like this throughout the book since they’re so handy. The trick
here is plugging the right values into the arguments to mv, or cp, or whatever. In this
case we’d already used the = as a delimiter, and all we cared about was the first field,
so it was pretty easy.

To figure out the values you need, use the ls (or find) command to list the files you
are working on and pipe them into whatever tool chain seems appropriate, often cut,
awk, or sed. bash parameter expansion (Recipe 5.18, “Changing Pieces of a String”)
is also very handy here:

$ ls *.odt | cut -d'=' -f1

Hopefully, a recipe somewhere in the book will give you the details you need to
come up with the right values for the arguments, then you just plug all the pieces in
and go. Be sure to test using echo first and watch out for spaces or other odd charac-
ters in file names: they’ll get you every time.



Using GNU Texinfo and Info on Linux | 413

Don’t name your script rename. We are aware of at least two different
rename commands in major Linux flavors, and there are certainly
many others. Red Hat’s util-linux package includes a rename from_
string to_string file_name tool. Debian and derivatives include Larry
Wall’s Perl-based rename in their Perl packages, and have a related
renameutils package. And Solaris, HP-UX and some BSD’s document a
rename system call, though that is not easily end-user accessible. Try
the rename manpage on your system and see what you get.

See Also
• man mv

• man rename

• help for

• Recipe 5.18, “Changing Pieces of a String”

• Recipe 9.2, “Handling File Names Containing Odd Characters”

• Recipe 17.12, “Removing or Renaming Files Named with Special Characters”

• Recipe 19.13, “Debugging Scripts”

17.2 Using GNU Texinfo and Info on Linux

Problem
You are having trouble accessing documentation because much of the documenta-
tion for GNU tools on Linux are in Texinfo documents, the traditional manpages are
just a stub, and the default info program is user-hostile (and you don’t feel like learn-
ing yet another single-use program).

Solution
Pipe the info command into a useful pager, such as less.

$ info bash | less

Discussion
info is basically a stand-alone version of the Emacs info reader, so if you are an
Emacs fan, maybe it will make sense to you. However, piping it into less is a quick
and simple way to view the documentation using a tool with which you’re already
familiar.

The idea behind Texinfo is good: generate various output formats from a single
source. It’s not new, since many other mark-up languages exist to do the same thing;
we even talk about one in Recipe 5.2, “Embedding Documentation in Shell Scripts.”
But if that’s the case, why isn’t there a TeX to man output filter? Perhaps because



414 | Chapter 17: Housekeeping and Administrative Tasks

manpages follow a standard, structured, and time-tested format while Texinfo is
more free form.

There are other Texinfo viewers and converters if you don’t like info, such as pinfo,
info2www, tkman, and even info2man (which cheats and converts to POD and then
to manpage format).

See Also
• man info

• man man

• http://en.wikipedia.org/wiki/Texinfo

• Recipe 5.2, “Embedding Documentation in Shell Scripts”

17.3 Unzipping Many ZIP Files

Problem
You want to unzip many ZIP files in a directory, but unzip *.zip doesn’t work.

Solution
Put the pattern in single quotes:

unzip '*.zip'

You could also use a loop to unzip each file:

for x in /path/to/date*/name/*.zip; do unzip "$x"; done

or:

for x in $(ls /path/to/date*/name/*.zip 2>/dev/null); do unzip $x; done

Discussion
Unlike many Unix commands (e.g., gzip and bzip2), the last argument to unzip isn’t
an arbitrarily long list of files. To process the command unzip *.zip, the shell
expands the wildcard, so (assuming you have files named zipfile1.zip to zipfile4.zip)
unzip *.zip expands to unzip zipfile1.zip zipfile2.zip zipfile3.zip zipfile4.zip.
This command attempts to extract zipfile2.zip, zipfile3.zip, and zipfile4.zip from
zipfile1.zip. That command will fail unless zipfile1.zip actually contains files with
those names.

The first method prevents the shell from expanding the wildcard by using single
quotes. However, that only works if there is only one wildcard. The second and third
methods work around that by running an explicit unzip command for each ZIP file
found when the shell expands the wildcards, or returns the result of the ls command.



Recovering Disconnected Sessions Using screen | 415

The ls version is used because the default behavior of bash (and sh) is to return
unmatched patterns unchanged. That means you would be trying to unzip a file
called /path/to/date*/name/*.zip if no files match the wildcard pattern. ls will simply
return null on STDOUT, and an error that we throw away on STDERR. You can set
the shopt -s nullglob option to cause filename patterns that match no files to
expand to a null string, rather than themselves.

See Also
• man unzip

• http://www.info-zip.org/pub/infozip

• Recipe 15.13, “Working Around “argument list too long” Errors”

17.4 Recovering Disconnected Sessions Using screen

Problem
You run long processes over SSH, perhaps over the WAN, and when you get discon-
nected you lose a lot of work. Or perhaps you started a long job from work, but need
to go home and be able to check on the job later; you could run your process using
nohup, but then you won’t be able to reattach to it when your connection comes
back or you get home.

Solution
Install and use GNU screen.

Using screen is very simple. Type screen or screen -a. The -a option includes all of
screen’s capabilities even at the expense of some redraw (thus bandwidth) efficiency.
Honestly, we use -a but have never noticed a difference.

When you do this, it will look like nothing happened, but you are now running
inside a screen. echo $SHLVL should return a number greater than one if this worked
(see also :L$SHLVL in Recipe 16.2, “Customizing Your Prompt”). To test it, do an ls
-la, then kill your terminal (do not exit cleanly, as you will exit screen as well). Log
back into the machine and type screen -r to reconnect to screen. If that doesn’t put
you back where you left off, try screen -d -r. If that doesn’t work, try ps auwx | grep
[s]creen to see if screen is still running, and then try man screen for troubleshooting
information—but it should just work. If you run into problems with that ps com-
mand on a system other than Linux, see Recipe 17.19, “Finding Out Whether a Pro-
cess Is Running.”

Starting screen with something like the following will make it easier to figure out
what session to reattach to later if necessary: screen -aS "$(whoami).$(date '+%Y-%m-
%d_%H:%M:%S%z')". See the run_screen script in Recipe 16.20, “Getting Started with a
Custom Configuration.”



416 | Chapter 17: Housekeeping and Administrative Tasks

To exit out of screen and your session, keep typing exit until all the sessions are
gone. You can also type Ctrl-A Ctrl-\ or Ctrl-A :quit to exit screen itself (assuming
you haven’t changed the default meta-key of Ctrl-A yet).

Discussion
According to the screen web site:

Screen is a full-screen window manager that multiplexes a physical terminal between
several processes (typically interactive shells). Each virtual terminal provides the func-
tions of a DEC VT100 terminal and, in addition, several control functions from the
ISO 6429 (ECMA 48, ANSI X3.64) and ISO 2022 standards (e.g., insert/delete line and
support for multiple character sets). There is a scrollback history buffer for each vir-
tual terminal and a copy-and-paste mechanism that allows moving text regions
between windows.

What that means is you can have more than one session in a single SSH terminal
(think DeskView on i286/386). But it also allows you to SSH into a machine, start a
process, disconnect your terminal and go home, then reconnect and pick up—not
where you left off, but where the process has continued to. And it allows multiple
people to share a single session for training, troubleshooting, or collaboration (see
Recipe 17.5, “Sharing a Single bash Session”).

Caveats

screen is often installed by default on Linux but rarely on other systems. The screen
binary must run SUID root so it can write to the appropriate usr/dev pseudotermi-
nals (tty). If screen doesn’t work, this is a likely reason why (to fix it, enter chmod u+s
/usr/bin/screen as root).

screen interferes with in-line transfer protocols like zmodem. Newer versions of
screen have configuration settings that deal with this; see the manpages.

Configuration

The default Emacs mode of bash command-line editing uses Ctrl-A to go to the start
of the line. That’s also the screen command mode, or metakey, so if you use Ctrl-A a
lot like we do, you may want to add the following to your ~/.screenrc file:

# Sample settings for ~/.screenrc
# Change the C-a default to C-n (use C-n n to send literal ^N)
 escape ^Nn

 # Yes annoying audible bell, please
 vbell off

 # detach on hangup
 autodetach on

 # make the shell in every window a login shell
 shell -$SHELL



Sharing a Single bash Session | 417

See Also
• screen manpage

• http://www.gnu.org/software/screen

• http://en.wikipedia.org/wiki/GNU_Screen

• http://jmcpherson.org/screen.html

• http://aperiodic.net/screen

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 17.5, “Sharing a Single bash Session”

• Recipe 17.6, “Logging an Entire Session or Batch Job”

• Recipe 17.9, “Creating an Index of Many Files”

• Recipe 17.18, “Grepping ps Output Without Also Getting the grep Process
Itself”

17.5 Sharing a Single bash Session

Problem
You need to share a single bash session for training or troubleshooting purposes, and
there are too many people for “over the shoulder” to work. Or you need to help
someone who’s located somewhere else, and you need to share a session across a
network.

Solution
Use GNU screen in multiuser mode. The following assumes that you have not
changed the default metakey from Ctrl-A as described in Recipe 17.4, “Recovering
Disconnected Sessions Using screen.” If you have, then use your new metakey (e.g.,
Ctrl-N) instead.

As the host do the following:

1. screen -S session_name (no spaces allowed); e.g., screen -S training.

2. Ctrl-A :addacl usernames of accounts (comma delimited, no spaces!) which may
access the display; e.g., Ctrl-A :addacl alice,bob,carol. Note this allows full
read/write access.

3. Use the Ctrl-A :chacl usernames permbits list command to refine permissions if
needed.

4. Turn on multiuser mode: Ctrl-A :multiuser on.



418 | Chapter 17: Housekeeping and Administrative Tasks

As the viewer, do this:

1. Use screen -x user/name to connect to a shared screen; e.g., screen -x host/
training.

2. Hit Ctrl-A K to kill the window and end the session.

Discussion
See Recipe 17.4, “Recovering Disconnected Sessions Using screen,” for necessary
details.

For multiuser mode, /tmp/screens must exist and be world-readable and executable.

screen versions 3.9.15-8 to 4.0.1-1 from Red Hat (i.e., RHEL3) are broken and
should not be used if you want multiuser mode to work. Version 4.0.2-5 or later
should work; for example, http://mirror.centos.org/centos/4.2/os/i386/CentOS/RPMS/
screen-4.0.2-5.i386.rpm (or later) works even on RHEL3. Once you start using the
new version of screen, existing screen sockets in $HOME/.screen are not found and
are thus orphaned and unusable. Log out of all sessions, and use the new version to cre-
ate new sockets in /tmp/screens/S-$USER, then remove the $HOME/.screen directory.

See Also
• man screen

• http://www.gnu.org/software/screen

• Recipe 9.11, “Finding a File Using a List of Possible Locations”

• Recipe 16.20, “Getting Started with a Custom Configuration”

• Recipe 17.4, “Recovering Disconnected Sessions Using screen”

• Recipe 17.6, “Logging an Entire Session or Batch Job”

17.6 Logging an Entire Session or Batch Job

Problem
You need to capture all the output from an entire session or a long batch job.

Solution
There are many ways to solve this problem, depending on your needs and environment.

The simplest solution is to turn on logging to memory or disk in your terminal pro-
gram. The problems with that are that your terminal program may not allow that,
and when it gets disconnected you lose your log.

The next simplest solution is to modify the job to log itself, or redirect the entire
thing to tee or a file. For example, one of the following might work:



Logging an Entire Session or Batch Job | 419

$ long_noisy_job >& log_file
$ long_noisy_job 2>&1 | tee log_file

$ ( long_noisy_job ) >& log_file
$ ( long_noisy_job ) 2>&1 | tee log_file

The problems here are that you may not be able to modify the job, or the job itself
may do something that precludes these solutions (e.g., if it requires user input, it
could get stuck asking for the input before the prompt is actually displayed). That
can happen because STDOUT is buffered, so the prompt could be in the buffer wait-
ing to be displayed when more data comes in, but no more data will come in since
the program is waiting for input.

There is an interesting program called script that exists for this very purpose and it’s
probably already on your system. You run script, and it logs everything that happens
to the logfile (called a typescript) you’ve given it, which is OK if you want to log the
entire session—just start script, then run your job. But if you only want to capture
part of the session, there is no way to have your code start script, run something to
log it, then stop script again. You can’t script script because once you run it, you’re in
a subshell at a prompt (i.e., you can’t do something like script file_to_log_to some_
command_to_run).

Our final solution uses the terminal multiplexer screen. With screen, you can turn
whole session logging on or off from inside your script. Once you are already run-
ning screen, do the following in your script:

# Set a logfile and turn on logging
screen -X logfile /path/to/logfile && screen -X log on

# your commands here

# Turn logging back off
screen -X log off

Discussion
We suggest you try the solutions in order, and use the first one that meets your
needs. Unless you have very specific needs, script will probably work. But just in
case, it can be handy to know about the screen option.

See Also
• man script

• man screen

• Recipe 17.5, “Sharing a Single bash Session”



420 | Chapter 17: Housekeeping and Administrative Tasks

17.7 Clearing the Screen When You Log Out

Problem
You use or administer some systems that do not clear the screen when you log out,
and you’d rather not leave the tail end of whatever you were working on visible,
since that could be an information leak.

Solution
Put the clear command in your ~/.bash_logout:.

# ~/.bash_logout

# Clear the screen on exit from the shell to prevent information leaks,
# if not already set as an exit trap in bash_profile
[ "$PS1" ] && clear

Or set a trap to run clear on shell termination:

# ~/.bash_profile
# Trap to clear the screen on exit from the shell to prevent
# information leaks, if not already set in ~/.bash_logout
trap ' [ "$PS1" ] && clear ' 0

Note that if you are connecting remotely and your client has a scroll-back buffer,
whatever you were working on may still be in there. clear also has no effect on your
shell’s command history.

Discussion
Setting a trap to clear the screen is probably overkill, but could conceivably cover an
error situation in which ~/.bash_logout is not executed. If you are really paranoid you
can set both, but in that case you may also wish to look into TEMPEST and Faraday
cages.

If you skip the test to determine whether the shell is interactive, you’ll get errors like
this under some circumstances:

# e.g., from tput
No value for $TERM and no -T specified

# e.g., from clear
TERM environment variable not set.

See Also
• http://en.wikipedia.org/wiki/TEMPEST

• http://en.wikipedia.org/wiki/Faraday_cag

• Recipe 16.20, “Getting Started with a Custom Configuration”



Capturing File Metadata for Recovery | 421

17.8 Capturing File Metadata for Recovery

Problem
You want to create a list of files and details about them for archive purposes, for
example, to verify backups, re-create directories, etc. Or maybe you are about to do a
large chmod -R and need a back-out plan. Or perhaps you keep /etc/* in a revision
control system that does not preserve permissions or ownership.

Solution
Use GNU find with some printf formats:

#!/usr/bin/env bash
# cookbook filename: archive_meta-data

printf "%b" "Mode\tUser\tGroup\tBytes\tModified\tFileSpec\n" > archive_file
find / \( -path /proc -o -path /mnt -o -path /tmp -o -path /var/tmp \
  -o -path /var/cache -o -path /var/spool \) -prune \
  -o -type d -printf 'd%m\t%u\t%g\t%s\t%t\t%p/\n' \
  -o -type l -printf 'l%m\t%u\t%g\t%s\t%t\t%p -> %l\n' \
  -o         -printf  '%m\t%u\t%g\t%s\t%t\t%p\n' \) >> archive_file

Note that the -printf expression is in the GNU version of find.

Discussion
The (-path /foo -o -path ...) -prune part removes various directories you probably
don’t want to bother with, e.g., -type d is for directories. The printf format is pre-
fixed with a d, then uses an octal mode, user, group, and so forth. -type l is for sym-
bolic links and also shows you where the link points. With the contents of this file
and some additional scripting, you can determine at a high level if anything has
changed, or re-create mangled ownership or permissions. Note that this does not
take the place of more security-oriented programs like Tripwire, AIDE, Osiris, or
Samhain.

See Also
• man find

• Chapter 9

• http://www.tripwiresecurity.com

• http://sourceforge.net/projects/aide

• http://osiris.shmoo.com

• http://la-samhna.de/samhain/index.html



422 | Chapter 17: Housekeeping and Administrative Tasks

17.9 Creating an Index of Many Files

Problem
You have a number of files for which you’d like to create an index.

Solution
Use the find command in conjunction with head, grep, or other commands that can
parse out comments or summary information from each file.

For example, if the second line of all your shell scripts follows the format “name—
description” then this example will create a nice index:

$ for i in $(grep -El '#![[:space:]]?/bin/sh' *); do head -2 $i | tail -1; done

Discussion
As noted, this technique depends on each file having some kind of summary infor-
mation, such as comments, that may be parsed out. We then look for a way to iden-
tify the type of file, in this case a shell script, and grab the second line of each file.

If the files do not have easily parsed summary information, you can try something
like this and manually work through the output to create an index:

for dir in $(find . -type d); do head -15 $dir/*; done

Watch out for binary files!

See Also
• man find

• man grep

• man head

• man tail

17.10 Using diff and patch

Problem
You can never remember how to use diff to create patches that may later be applied
using patch.



Using diff and patch | 423

Solution
If you are creating a simple patch for a single file, use:

$ diff -u original_file modified_file > your_patch

If you are creating a patch for multiple files in parallel directory structures, use:

$ cp -pR original_dirs/ modified_dirs/

# Make changes here

$ diff -Nru original_dirs/ modified_dirs/ > your_comprehensive_patch

To be especially careful, force diff to treat all files as ASCII using -a, and set your lan-
guage and timezone to the universal defaults as shown:

$ LC_ALL=C TZ=UTC diff -aNru original_dirs/ modified_dirs/ > your_comprehensive_patch

$ LC_ALL=C TZ=UTC diff -aNru original_dirs/ modified_dirs/
diff -aNru original_dirs/changed_file modified_dirs/changed_file
--- original_dirs/changed_file  2006-11-23 01:04:07.000000000 +0000
+++ modified_dirs/changed_file  2006-11-23 01:04:35.000000000 +0000
@@ -1,2 +1,2 @@
 This file is common to both dirs.
-But it changes from one to the other.
+But it changes from 1 to the other.
diff -aNru original_dirs/only_in_mods modified_dirs/only_in_mods
--- original_dirs/only_in_mods  1970-01-01 00:00:00.000000000 +0000
+++ modified_dirs/only_in_mods  2006-11-23 01:05:58.000000000 +0000
@@ -0,0 +1,2 @@
+While this file is only in the modified dirs.
+It also has two lines, this is the last.
diff -aNru original_dirs/only_in_orig modified_dirs/only_in_orig
--- original_dirs/only_in_orig  2006-11-23 01:05:18.000000000 +0000
+++ modified_dirs/only_in_orig  1970-01-01 00:00:00.000000000 +0000
@@ -1,2 +0,0 @@
-This file is only in the original dirs.
-It has two lines, this is the last.

To apply a patch file, cd to the directory of the single file, or to the parent of the
directory tree and use the patch command:

cd /path/to/files
patch -Np1 < your_patch

The -N argument to patch prevents it from reversing patches or re-applying patches
that have already been made. -p number removes number of leading directories to
allow for differences in directory structure between whoever created the patch and
whoever is applying it. Using -p1 will often work; if not, experiment with -p0, then
-p2, etc. It’ll either work or complain and ask you what to do, in which case you
cancel and try something else unless you really know what you are doing.



424 | Chapter 17: Housekeeping and Administrative Tasks

Discussion
diff can produce output in various forms, some of which are more useful than oth-
ers. Unified output, using -u, is generally considered the best because it is both rea-
sonably human-readable yet very robust when used with patch. It provides three
lines of context around the change, which allows a human reader to get oriented and
allows the patch command to work correctly even if the file to be patched is different
than the one used to create the patch. As long as the context lines are intact, patch
can usually figure it out. Context output, using -c, is similar to -u output, but is
more redundant and not quite as easy to read. The ed format, using -e, produces a
script suitable for use with the ancient ed editor. Finally, the default output is similar
to the ed output, with a little more human-readable context.

# Unified format (preferred)
$ diff -u original_file modified_file
--- original_file       2006-11-22 19:29:07.000000000 -0500
+++ modified_file       2006-11-22 19:29:47.000000000 -0500
@@ -1,9 +1,9 @@
-This is original_file, and this line is different.
+This is modified_file, and this line is different.
 This line is the same.
 So is this one.
 And this one.
 Ditto.
-But this one is different.
+But this 1 is different.
 However, not this line.
 And this is the last same, same, same.

# Context format
$ diff -c original_file modified_file
*** original_file       Wed Nov 22 19:29:07 2006
--- modified_file       Wed Nov 22 19:29:47 2006
***************
*** 1,9 ****
! This is original_file, and this line is different.
  This line is the same.
  So is this one.
  And this one.
  Ditto.
! But this one is different.
  However, not this line.
  And this is the last same, same, same.

--- 1,9 ----
! This is modified_file, and this line is different.
  This line is the same.
  So is this one.
  And this one.
  Ditto.
! But this 1 is different.
  However,



Using diff and patch | 425

# 'ed' format
$ diff -e original_file modified_file
6c
But this 1 is different.
.
1c
This is modified_file, and this line is different.
.

# Normal format
$ diff original_file modified_file
1c1
< This is original_file, and this line is different.
---
> This is modified_file, and this line is different.
6c6
< But this one is different.
---
> But this 1 is different.

The -r and -N arguments to diff are simple yet powerful. -r means, as usual, recur-
sive operation though the directory structure, while -N causes diff to pretend that any
file found in one directory structure also exists in the other as an empty file. In the-
ory, that has the effect of creating or removing files as needed; however, in practice
-N is not supported on all systems (notably Solaris) and it may end up leaving zero-
byte files lying around on others. Some versions of patch default to using -b, which
leaves lots of .orig files laying around, and some versions (notably Linux) are less
chatty than others (notably BSD). Many versions (not Solaris) of diff also support the
-p argument, which tries to show which C function the patch affects.

Resist the urge to do something like diff -u prog.c.orig prog.c. This has the poten-
tial to cause all kinds of confusion since patch may also create .orig files. Also resist
the urge to do something like diff -u prog/prog.c new/prog/prog.c since patch will
get very confused about the unequal number of directory names in the paths.

See Also
• man diff

• man patch

• man cmp

• http://directory.fsf.org/GNU/wdiff.html

• http://furius.ca/xxdiff/ for a great GUI diff (and more) tool



426 | Chapter 17: Housekeeping and Administrative Tasks

17.11 Counting Differences in Files

Problem
You have two files and need to know about how many differences exist between
them.

Solution
Count the hunks (i.e., sections of changed data) in diff’s output:

$ diff -C0 original_file modified_file | grep -c "^\*\*\*\*\*"
2

$ diff -C0 original_file modified_file
*** original_file       Fri Nov 24 12:48:35 2006
--- modified_file       Fri Nov 24 12:48:43 2006
***************
*** 1 ****
! This is original_file, and this line is different.
--- 1 ----
! This is modified_file, and this line is different.
***************
*** 6 ****
! But this one is different.
--- 6 ----
! But this 1 is different.

wdiff
There is another little known tool called wdiff that is also of interest here. wdiff com-
pares files to detect changes in words, as defined by surrounding whitespace. It can
handle differing line breaks and tries to use termcap strings to produce more readable
output. It can be handy when comparing line-by-line is not granular enough, and it is
similar to the word diff feature of Emacs. Note that it is rarely installed on a system by
default. See http://directory.fsf.org/GNU/wdiff.html or your system’s packaging tool.
Here is an example of wdiff’s output:

$ wdiff original_file modified_file
This is [-original_file,-] {+modified_file,+} and this line is different.
This line is the same.
So is this one.
And this one.
Ditto.
But this [-one-] {+1+} is different.
However, not this line.
And this is the last same, same, same.



Counting Differences in Files | 427

If you only need to know whether the files are different and not how many differ-
ences there are, use cmp. It will exit at the first difference, which can save time on
large files. Like diff it is silent when the files are identical, but it reports the location
of the first difference if not:

$ cmp original_file modified_file
original_file modified_file differ: char 9, line 1

Discussion
Hunk is actually the technical term, though we’ve also seen hunks referred to as
chunks in some places. Note that it is possible, in theory, to get slightly different
results for the same files across different machines or versions of diff, since the num-
ber of hunks is a result of the algorithm diff uses. You will certainly get different
answers when using different diff output formats, as demonstrated below.

We find a zero-context contextual diff to be the easiest to use for this purpose, and
using -C0 instead of -c creates fewer lines for grep to have to search. A unified diff
tends to combine more changes than expected into one hunk, leading to fewer differ-
ences being reported:

$ diff -u original_file modified_file | grep -c "^@@"
1

$ diff -u original_file modified_file
--- original_file       2006-11-24 12:48:35.000000000 -0500
+++ modified_file       2006-11-24 12:48:43.000000000 -0500
@@ -1,8 +1,8 @@
-This is original_file, and this line is different.
+This is modified_file, and this line is different.
 This line is the same.
 So is this one.
 And this one.
 Ditto.
-But this one is different.
+But this 1 is different.
 However, not this line.
 And this is the last same, same, same.

A normal or ed style diff works too, but the grep pattern is more complicated.
Though not shown in this example, a multiline change in normal grep output might
look like 2,3c2,3, thus requiring character classes and more typing than is the case
using -C0:

$ diff -e original_file modified_file | egrep -c '^[[:digit:],]+[[:alpha:]]+'
2

$ diff original_file modified_file | egrep -c '^[[:digit:],]+[[:alpha:]]+'
2

$ diff original_file modified_file
1c1



428 | Chapter 17: Housekeeping and Administrative Tasks

< This is original_file, and this line is different.
---
> This is modified_file, and this line is different.
6c6
< But this one is different.
---
> But this 1 is different.

See Also
• man diff

• man cmp

• man grep

• http://en.wikipedia.org/wiki/Diff

17.12 Removing or Renaming Files Named with Special
Characters

Problem
You need to remove or rename a file that was created with a special character that
causes rm or mv to behave in unexpected ways. The canonical example of this is any
file starting with a dash, such as -f or --help, which will cause any command you try
to use to interpret the filename as an argument.

Solution
If the file begins with a dash, use -- to signal the end of arguments to the command,
or use a full (/tmp/-f) or relative (./-f) path. If the file contains other special characters
that are interpreted by the shell, such as a space or asterisk, use shell quoting. If you
use filename completion (the Tab key by default), it will automatically quote special
characters for you. You can also use single-quotes around the troublesome name.

$ ls
--help                         this is a *crazy* file name!

$ mv --help help
mv: unknown option -- -
usage: mv [-fiv] source target
       mv [-fiv] source ... directory

$ mv -- --help my_help

$ mv this\ is\ a\ \*crazy\*\ file\ name\! this_is_a_better_name

$ ls
my_help                this_is_a_better_name



Prepending Data to a File | 429

Discussion
To understand what is actually being executed after shell expansion, preface your
command with echo:

$ rm *
rm: unknown option -- -
usage: rm [-f|-i] [-dPRrvW] file ...

$ echo rm *
rm --help this is a *crazy* file name!

See Also
• http://www.gnu.org/software/coreutils/faq/coreutils-faq.html#How-do-I-remove-

files-that-start-with-a-dash_003f

• Sections 2.1 and 2.2 of http://www.faqs.org/faqs/unix-faq/faq/part2/

• Recipe 1.6, “Using Shell Quoting”

17.13 Prepending Data to a File

Problem
You want to prepend data to an existing file, for example to add a header after sorting.

Solution
Use cat in a subshell.

temp_file="temp.$RANDOM$RANDOM$$"
(echo 'static header line1'; cat data_file) > $temp_file \
  && cat $temp_file > data_file
rm $temp_file
unset temp_file

You could also use sed, the streaming editor. To prepend static text, note that back-
slash escape sequences are expanded in GNU sed but not in some other versions.
Also, under some shells the trailing backslashes may need to be doubled:

# Any sed, e.g., Solaris 10 /usr/bin/sed
$ sed -e '1i\
> static header line1
> ' data_file
static header line1
1 foo
2 bar
3 baz

$ sed -e '1i\
> static header line1\
> static header line2



430 | Chapter 17: Housekeeping and Administrative Tasks

> ' data_file
static header line1
static header line2
1 foo
2 bar
3 baz

# GNU sed
$ sed -e '1istatic header line1\nstatic header line2' data_file
static header line1
static header line2
1 foo
2 bar
3 baz

To prepend an existing file:

$ sed -e '$r data_file' header_file
Header Line1
Header Line2
1 foo
2 bar
3 baz

Discussion
This one seems to be a love/hate kind of thing. People either love the cat solution or
love the sed solution, but not both. The cat version is probably faster and simpler,
the sed solution is arguably more flexible.

You can also store a sed script in a file, instead of leaving it on the command line.
And of course you would usually redirect the output into a new file, like sed -e '$r
data' header > new_file, but note that will change the file’s inode and may change
other attributes such as permissions or ownership. To preserve everything but the
inode, use -i for in-place editing if your version of sed supports that. Don’t use -i
with the reversed header file prepend form shown previously or you will edit your
header file. Also note that Perl has a similar -i option that also writes a new file like
sed, though Perl itself works rather differently than sed for this example:

# Show inode
$ ls -i data_file
509951 data_file

$ sed -i -e '1istatic header line1\nstatic header line2' data_file

$ cat data_file
static header line1
static header line2
1 foo
2 bar
3 baz



Prepending Data to a File | 431

# Verify inode has changed
$ ls -i data_file
509954 data_file

To preserve everything (or if your sed does not have -i or you want to use the
prepend file method mentioned earlier):

# Show inode
$ ls -i data_file
509951 data_file

# $RANDOM is bash only, you can use mktemp on other systems
$ temp_file=$RANDOM$RANDOM

$ sed -e '$r data_file' header_file > $temp_file

# Only cat if the source exists and is not empty!
$ [ -s "$temp_file" ] && cat $temp_file > data

$ unset temp_file

$ cat data_file
Header Line1
Header Line2
1 foo
2 bar
3 baz

# Verify inode has NOT changed
$ ls -i data_file
509951 data

Prepending a header file to a data file is interesting because it’s rather counterintui-
tive. If you try to read the header_file file into the data_file file at line one, you get
this:

$ sed -e '1r header_file' data_file
1 foo
Header Line1
Header Line2
2 bar
3 baz

So instead, we simply append the data to the header file and write the output to
another file. Again, don’t try to use sed -i or you will edit your header file.

Another way to prepend data is to use cat reading from STDIN with a here-document
or a here-string. Note that here-strings are not available until bash 2.05b or newer, and
they don’t do backslash escape sequence expansion, but they avoid all the sed version
issues.

# Using a here-document
$ cat - data_file <<EoH
> Header line1



432 | Chapter 17: Housekeeping and Administrative Tasks

> Header line2
> EoH
Header line1
Header line2
1 foo
2 bar
3 baz

# Using a here-string in bash-2.05b+, no  backslash escape sequence expansion
$ cat - data_file <<<'Header Line1'
Header Line1
1 foo
2 bar
3 baz

See Also
• man cat

• man sed

• http://sed.sourceforge.net/sedfaq.html

• http://sed.sourceforge.net/sed1line.txt

• http://tldp.org/LDP/abs/html/x15507.html

• Recipe 14.11, “Using Secure Temporary Files”

• Recipe 17.14, “Editing a File in Place”

17.14 Editing a File in Place

Problem
You want to edit an existing file without affecting the inode or permissions.

Solution
This is trickier than it sounds because many tools you might ordinarily use, such as
sed, will write to a new file (thus changing the inode) even if they go out of their way
to preserve other attributes.

The obvious solution is to simply edit the file and make your updates. However, we
admit that that may be of limited use in a scripting situation. Or is it?

In Recipe 17.13, “Prepending Data to a File,” you saw that sed writes a brand new
file one way or another; however, there is an ancestor of sed that doesn’t do that. It’s
called, anticlimactically, ed, and it is just as ubiquitous as its other famous descen-
dant, vi. And interestingly, ed is scriptable. So here is our “prepend a header” exam-
ple again, this time using ed:



Editing a File in Place | 433

# Show inode
$ ls -i data_file
306189 data_file

# Use printf "%b" to avoid issues with 'echo -e' or not.
$ printf "%b" '1\ni\nHeader Line1\nHeader Line2\n.\nw\nq\n' | ed -s data_file
1 foo

$ cat data_file
Header Line1
Header Line2
1 foo
2 bar
3 baz

# Verify inode has NOT changed
$ ls -i data_file
306189 data_file

Discussion
Of course you can store an ed script in a file, just as you can with sed. In this case, it
might be useful to see what that file looks like, to explain the mechanics of the ed
script:

$ cat ed_script
1
i
Header Line1
Header Line2
.
w
q

$ ed -s data_file < ed_script
1 foo

$ cat data_file
Header Line1
Header Line2
1 foo
2 bar
3 baz

The 1 in the ed script means to go to the first line. i puts us into insert mode, and the
next two lines are literal. A single . all by itself on a line exits insert mode, w writes
the file and q quits. The -s suppresses some output, specifically for use in scripts, but
you can see from the 1 foo that not everything is suppressed; of course, ed -s data_
file < ed_script > /dev/null takes care of that.

One disadvantage to ed is that there isn’t that much documentation for it anymore.
It’s been around since the beginning of Unix, but it’s not commonly used anymore
even though it exists on every system we checked. Since both vi (via ex) and sed



434 | Chapter 17: Housekeeping and Administrative Tasks

(spiritually at least*) are descended from ed, you should be able to figure out any-
thing you might want to do. Note that ex is a symbolic link to vi or a variant on
many systems, while ed is just ed.

Another way to accomplish the same effect is to use sed or some other tool, write the
changed file into a new file, then cat it back into the original file. This is obviously
inefficient. It is also easier to say than to do safely because if the change fails for any
reason you could end up writing nothing back over the original file (see the example
in Recipe 17.13, “Prepending Data to a File”).

See Also
• man ed

• man ex

• ls -l `which ex`

• http://sed.sourceforge.net/sedfaq.html

• Recipe 17.13, “Prepending Data to a File”

17.15 Using sudo on a Group of Commands

Problem
You are running as a regular user and need to sudo several commands at once, or you
need to use redirection that applies to the commands and not to sudo.

Solution
Use sudo to run a subshell in which you may group your commands and use pipe-
lines and redirection:

sudo bash -c 'command1 && command2 || command3'

This requires the ability to run a shell as root. If you can’t, have your system adminis-
trator write a quick script and add it to your sudo privilege specification.

Discussion
If you try something like sudo command1 && command2 || command3 you’ll find that
command2 and command3 are running as you, not as root. That’s because sudo’s influ-
ence only extends to the first command and your shell is doing the redirection.

Note the use of the -c argument to bash, which causes it to just execute the given
commands and exit. Without that you will just end up running a new interactive

* http://www.columbia.edu/~rh120/ch106.x09



Using sudo on a Group of Commands | 435

root shell, which is probably not what you wanted. But as noted above, with -c you
are still running a (non-interactive) root shell, so you need to have the sudo rights to
do that. Mac OS X and some Linux distributions, such as Ubuntu, actually disable
the root user to encourage you to only log in as a normal user and sudo as needed
(the Mac hides this better) for administration. If you are using an OS like that, or
have rolled your own sudo setup, you should be fine. However, if you are running a
locked-down environment, this recipe may not work for you.

To learn whether you may use sudo and what you are and are not allowed to do, use
sudo -l. Almost any other use of sudo will probably trigger a security message to your
administrator tattling on you. You can try using sudo sudo -V | less as a regular user
or just sudo -V | less if you are already root to get a lot of information about how
sudo is compiled and configured on your system.

su and sudo
It’s always been a best practice to run as a regular user and only use root privileges
when absolutely necessary. While the su command is handy, many argue that sudo is
better. For example:

• It takes more work to get sudo working properly (in other words, locked down
rather than just "ALL=(ALL) ALL") and it can be slightly less convenient to use,
but it can also foster more secure work-practices.

• You can forget that you have su’d to root and do something unfortunate.

• Having to type sudo all the time makes you think about what you are doing a lit-
tle more.

• sudo allows delegation of individual commands to other users without sharing
root’s password.

Both commands can incorporate logging, and there are some tricks that can make each
command work very much like the other; however, there are still some significant dif-
ferences. The two most important are that with sudo you enter your own password to
confirm your identity before being allowed to execute a command. Thus, root’s pass-
word is not shared if more than one person needs some root privileges. Which brings
us to the second difference; sudo can be very specific about what commands a given user
can and cannot execute. That restriction can be tricky, since many applications allow
you to shell out and do something else, so if you are able to sudo into vi, you can shell
out and have an unrestricted root prompt. Still, used carefully sudo is an excellent tool.



436 | Chapter 17: Housekeeping and Administrative Tasks

See Also
• man su

• man sudo

• man sudoers

• man visudo

• sudo

• https://help.ubuntu.com/community/RootSudo

• Recipe 14.15, “Writing setuid or setgid Scripts”

• Recipe 14.18, “Running As a Non-root User”

• Recipe 14.19, “Using sudo More Securely”

• Recipe 14.20, “Using Passwords in Scripts”

17.16 Finding Lines in One File But Not in the Other

Problem
You have two data files and you need to compare them and find lines that exist in
one file but not in the other.

Solution
Sort the files and isolate the data of interest using cut or awk if necessary, and then
use comm, diff, grep, or uniq depending on your needs.

comm is designed for just this type of problem:

$ cat left
record_01
record_02.left only
record_03
record_05.differ
record_06
record_07
record_08
record_09
record_10

$ cat right
record_01
record_02
record_04
record_05
record_06.differ
record_07
record_08
record_09.right only
record_10



Finding Lines in One File But Not in the Other | 437

# Only show lines in the left file
$ comm -23 left right
record_02.left only
record_03
record_05.differ
record_06
record_09

# Only show lines in the right file
$ comm -13 left right
record_02
record_04
record_05
record_06.differ
record_09.right only

# Only show lines common to both files
$ comm -12 left right
record_01
record_07
record_08
record_10

diff will quickly show you all the differences from both files, but its output is not ter-
ribly pretty and you may not need to know all the differences. GNU grep’s -y and -w
options can be handy for readability, but you can get used to the regular output as
well. Some systems (e.g., Solaris) may use sdiff instead of diff -y or have a separate
binary such as bdiff to process very large files.

$ diff -y -W 60 left right
record_01                       record_01
record_02.left only          |  record_02
record_03                    |  record_04
record_05.differ             |  record_05
record_06                    |  record_06.differ
record_07                       record_07
record_08                       record_08
record_09                    |  record_09.right only
record_10                       record_10

$ diff -y -W 60 --suppress-common-lines left right
record_02.left only          |  record_02
record_03                    |  record_04
record_05.differ             |  record_05
record_06                    |  record_06.differ
record_09                    |  record_09.right only

$ diff left right
2,5c2,5
< record_02.left only
< record_03
< record_05.differ
< record_06
---



438 | Chapter 17: Housekeeping and Administrative Tasks

> record_02
> record_04
> record_05
> record_06.differ
8c8
< record_09
---
> record_09.right only

grep can show you when lines exist only in one file and not the other, and you can
figure out which file if necessary. But since it’s doing regular expression matches, it
will not be able to handle differences within the line unless you edit the file that
becomes the pattern file, and it will also get very slow as the file sizes grow.

This example shows all the lines that exist in the file left but not in the file right:

$ grep -vf right left
record_03
record_06
record_09

Note that only “record_03” is really missing; the other two lines are simply different.
If you need to detect such variations, you’ll need to use diff. If you need to ignore
them, use cut or awk as necessary to isolate the parts you need into temporary files.

uniq -u can show you only lines that are unique in the files, but it will not tell you
which file the line came from (if you need to know that, use one of the previous solu-
tions). uniq -d will show you only lines that exist in both files:

$ sort right left | uniq -u
record_02
record_02.left only
record_03
record_04
record_05
record_05.differ
record_06
record_06.differ
record_09
record_09.right only

$ sort right left | uniq -d
record_01
record_07
record_08
record_10

Discussion
comm is your best choice if it’s available and you don’t need the power of diff.

You may need to sort and/or cut or awk into temporary files and work from those if
you can’t disrupt the original files.



Keeping the Most Recent N Objects | 439

See Also
• man cmp

• man diff

• man grep

• man uniq

17.17 Keeping the Most Recent N Objects

Problem
You need to keep the most recent N logfiles or backup directories, and purge the
remainder, no matter how many there are.

Solution
Create an ordered list of the objects, pass them as arguments to a function, shift the
arguments by N, and return the remainder:

# cookbook filename: func_shift_by

# Pop a given number of items from the top of a stack,
# such that you can then perform an action on whatever is left.
# Called like:  shift_by <# to keep> <ls command, or whatever>
# Returns:  the remainder of the stack or list
#
# For example, list some objects, then keep only the top 10.
#
# It is CRITICAL that you pass the items in order with the objects to
# be removed at the top (or front) of the list, since all this function
# does is remove (pop) the number of entries you specify from the top
# of the list.
#
# You should experiment with echo before using rm!
#
# For example:
#      rm -rf $(shift_by $MAX_BUILD_DIRS_TO_KEEP $(ls -rd backup.2006*))
#
function shift_by {

# If $1 is zero or greater than $#, the positional parameters are
# not changed.  In this case that is a BAD THING!
if (( $1 == 0 || $1 > ( $# - 1 ) )); then
   echo ''
else
   # Remove the given number of objects (plus 1) from the list.
   shift $(( $1 + 1 ))



440 | Chapter 17: Housekeeping and Administrative Tasks

   # Return whatever is left
   echo "$*"
 fi
}

If you try to shift the positional parameters by zero or by more than
the total number of positional parameters ($#), shift will do nothing.
If you are using shift to process a list then delete what it returns, that
will result in you deleting everything. Make sure to test the argument
to shift to make sure that it’s not zero and it is greater than the num-
ber of positional parameters. Our shift_by function does this.

For example:

$ source shift_by

$ touch {1..9}

$ ls ?
1 2 3 4 5 6 7 8 9

$ shift_by 3 $(ls ?)
4 5 6 7 8 9

$ shift_by 5 $(ls ?)
6 7 8 9

$ shift_by 5 $(ls -r ?)
4 3 2 1

$ shift_by 7 $(ls ?)
8 9

$ shift_by 9 $(ls ?)

# Keep only the last 5 objects
$ echo "rm -rf $(shift_by 5 $(ls ?))"
rm -rf 6 7 8 9

# In production we'd test this first!  See discussion.
$ rm -rf $(shift_by 5 $(ls ?))

$ ls ?
1 2 3 4 5

Discussion
Make sure you fully test both the argument returned and what you intend to do with it.
For example, if you are deleting old data, use echo to test the command that would be
performed before doing it live. Also test that you have a value at all, or else you could
end up doing rm -rf and getting an error. Never do something like rm -rf /$variable,



Keeping the Most Recent N Objects | 441

because if $variable is ever null you will start deleting the root directory, which is par-
ticularly bad if you are running as root!

$files_to_nuke=$(shift_by 5 $(ls ?))
[ -n $files_to_nuke ] && rm -rf "$files_to_nuke"

This recipe takes advantage of the fact that arguments to a function are affected by
the shift command inside that function, which makes it trivial to pop objects off the
stack (otherwise we’d have to do some fancy substring or for loop operations). We
must shift by n+1 because the first argument ($1) is actually the count of the items to
shift, leaving $2..N as the objects in the stack. We could also write it more verbosely
this way:

function shift_by {
    shift_count=$1
    shift

    shift $shift_count

    echo "$*"
}

It’s possible you may run afoul of your system’s ARG_MAX (see Recipe 15.13, “Work-
ing Around “argument list too long” Errors,” for details) if the paths to the objects
are very long or you have a very large number of objects to handle. In the former
case, you may be able to create some breathing room by changing directories closer
to the objects to shorten the paths, or by using symbolic links. In the latter case, you
can use this more complicated for loop:

objects_to_keep=5
counter=1

for file in /path/with/many/many/files/*e*; do
    if [ $counter -gt $objects_to_keep ]; then
        remainder="$remainder $file"
    fi
    (( counter++ ))
done

[ -n "$remainder" ] && echo "rm -rf $remainder"

A common method of doing a similar operation is a trickle-down scheme such as the
following:

rm -rf backup.3/
mv     backup.2/ backup.3/
mv     backup.1/ backup.2/
cp -al backup.0/ backup.1/

This works very well in many cases, especially when combined with hard links to
conserve space while allowing multiple backups (see Rob Flickenger’s Linux Server
Hacks, Hack #42 [O’Reilly]). However, if the number of existing objects fluctuates
or is not known in advance, this method won’t work.



442 | Chapter 17: Housekeeping and Administrative Tasks

See Also
• help for

• help shift

• Linux Server Hacks, Hack #42, by Rob Flickenger (O’Reilly)

• Recipe 13.5, “Parsing Output with a Function Call”

• Recipe 15.13, “Working Around “argument list too long” Errors”

17.18 Grepping ps Output Without Also Getting the
grep Process Itself

Problem
You want to grep output from the ps command without also getting the grep process
itself.

Solution
Change the pattern you are looking for so that it is a valid regular expression that
will not match the literal text that ps will display:

$ ps aux | grep 'ssh'
root   366  0.0  1.2  340  1588 ?? Is   20Oct06  0:00.68 /usr/sbin/sshd
root 25358  0.0  1.9  472  2404 ?? Ss   Wed07PM  0:02.16 sshd: root@ttyp0
jp   27579  0.0  0.4  152   540 p0 S+    3:24PM  0:00.04 grep ssh

$ ps aux | grep '[s]sh'
root   366  0.0  1.2  340  1588 ?? Is   20Oct06  0:00.68 /usr/sbin/sshd
root 25358  0.0  1.9  472  2404 ?? Ss   Wed07PM  0:02.17 sshd: root@ttyp0

Discussion
This works because [s] is a regular expression character class containing a single
lowercase letter s, meaning that [s]sh will match ssh but not the literal string grep
[s]sh that ps will display.

The other less efficient and more clunky solution you might see is something like
this:

$ ps aux | grep 'ssh' | grep -v grep

See Also
• man ps

• man grep



Finding Out Whether a Process Is Running | 443

17.19 Finding Out Whether a Process Is Running

Problem
You need to determine whether a process is running, and you might or might not
already have a process ID (PID).

Solution
If you don’t already have a PID, grep the output of the ps command to see if the pro-
gram you are looking for is running. See Recipe 17.18, “Grepping ps Output With-
out Also Getting the grep Process Itself,” for details on why our pattern is [s]sh.

$ [ "$(ps -ef | grep 'bin/[s]shd')" ] && echo 'ssh is running' || echo 'ssh not
running'

That’s nice, but you know it’s not going to be that easy, right? Right. It’s difficult
because ps can be wildly different from system to system.

# cookbook filename: is_process_running

# Can you believe this?!?
case `uname` in
    Linux|AIX) PS_ARGS='-ewwo pid,args'   ;;
    SunOS)     PS_ARGS='-eo pid,args'     ;;
    *BSD)      PS_ARGS='axwwo pid,args'   ;;
    Darwin)    PS_ARGS='Awwo pid,command' ;;
esac

if ps $PS_ARGS | grep -q 'bin/[s]shd'; then
    echo 'sshd is running'
else
    echo 'sshd not running'
fi

If you do have a PID, say from a lock file or an environment variable, just search for
it. Be careful to match the PID up with some other recognizable string so that you
don’t have a collision where some other random process just happens to have the
stale PID you are using. Just obtain the PID and use it in the grep or in a -p argu-
ment to ps:

# Linux
$ ps -wwo pid,args -p 1394 | grep 'bin/sshd'
 1394 /usr/sbin/sshd

# BSD
$ ps ww -p 366 | grep 'bin/sshd'
366 ?? Is   0:00.76 /usr/sbin/sshd



444 | Chapter 17: Housekeeping and Administrative Tasks

Discussion
The test and grep portion of the solution requires a little explanation. You need " "
around the $( ) so that if grep outputs anything, the test is true. If the grep is silent
because nothing matches, then the test is false. You just have to make sure your ps
and greps do exactly what you want.

Unfortunately, the ps command is one of the most fragmented in all of Unix. It
seems like every flavor of Unix and Linux has different arguments and processes
them in different ways. All we can tell you is that you’ll need to thoroughly test
against all systems on which your script will be running.

You can easily search for anything you can express as a regular expression, but make
sure your expressions are specific enough not to match anything else. That’s why we
used bin/[s]shd instead of just [s]shd, which would also match user connections
(see Recipe 17.18, “Grepping ps Output Without Also Getting the grep Process
Itself”). At the same time, /usr/sbin/[s]shd might be bad in case some crazy system
doesn’t use that location. There is often a fine line between too much and not
enough specificity. For example, you may have a program that can run multiple
instances using different configuration files, so make sure you search for the config
file as well if you need to isolate the correct instance. The same thing may apply to
users, if you are running with enough rights to see other users’ processes.

Watch out for Solaris since its ps is hard-coded to limit arguments to
only 80 characters. If you have long paths or commands and still need
to check for a config filename, you may run into that limit.

See Also
• man ps

• man grep

• Recipe 17.18, “Grepping ps Output Without Also Getting the grep Process
Itself”

17.20 Adding a Prefix or Suffix to Output

Problem
You’d like to add a prefix or a suffix to each line of output from a given command
for some reason. For example, you’re collecting last statistics from many machines
and it’s much easier to grep or otherwise parse the data you collect if each line con-
tains the hostname.



Adding a Prefix or Suffix to Output | 445

Solution
Pipe the appropriate data into a while read loop and printf as needed. For example,
this prints the $HOSTNAME, followed by a tab, followed by any nonblank lines of out-
put from the last command:

$ last | while read i; do [[ -n "$i" ]] && printf "%b" "$HOSTNAME\t$i\n"; done

# Write a new logfile
$ last | while read i; do [[ -n "$i" ]] && printf "%b" "$HOSTNAME\t$i\n"; done >
last_$HOSTNAME.log

Or you can use awk to add text to each line:

$ last | awk "BEGIN { OFS=\"\t\" } ! /^\$/ { print \"$HOSTNAME\", \$0}"

$ last | awk "BEGIN { OFS=\"\t\" } ! /^\$/ { print \"$HOSTNAME\", \$0}" \
    > last_$HOSTNAME.log

Discussion
We use [[ -n "$i" ]] to remove any blank lines from the last output, and then we
use printf to display the data. Quoting for this method is simpler, but it uses more
steps (last, while, and read, as opposed to just last and awk). You may find one
method easier to remember, more readable, or faster than the other, depending on
your needs.

There is a trick to the awk command we used here. Often you will see single quotes
surrounding awk commands to prevent the shell from interpreting awk variables as
shell variables. However in this case we want the shell to interpolate $HOSTNAME, so we
surround the command with double quotes. That requires us to use backslash
escapes on the elements of the command that we do not want the shell to handle,
namely the internal double quotes and the awk $0 variable, which contains the cur-
rent line.

For a suffix, simply move the $0 variable:

$ last | while read i; do [[ -n "$i" ]] && printf "%b" "$i\t$HOSTNAME\n"; done

$ last | awk "BEGIN { OFS=\"\t\" } ! /^\$/ { print \"$HOSTNAME\", \$0}"

You could also use Perl or sed (note the ➝ denotes a literal tab character, typed by
pressing Ctrl-V then Ctrl-I):

$ last | perl -ne "print qq($HOSTNAME\t\$_) if ! /^\s*$/;"

$ last | sed "s/./$HOSTNAME ➝ &/; /^$/d"

In the Perl command, we use qq( ) instead of double quotes to avoid having to
escape them. The last part is a regular expression that matches a line containing
either nothing or only whitespace, and $_ is the Perl idiom for the current line. In the
sed command we replace any line containing at least one character with the prefix
and the character that matched (&), then delete any blank lines.



446 | Chapter 17: Housekeeping and Administrative Tasks

See Also
• Effective awk Programming by  Arnold Robbins

• sed & awk by  Arnold Robbins and Dale Dougherty

• Recipe 1.6, “Using Shell Quoting”

• Recipe 13.14, “Trimming Whitespace”

• Recipe 13.17, “Processing Files with No Line Breaks”

17.21 Numbering Lines

Problem
You need to number the lines of a text file for reference or for use as an example.

Solution
Thanks to Michael Wang for contributing the following shell-only implementation
and reminding us about cat -n. Note that our sample file named lines has a trailing
blank line:

$ i=0; while IFS= read -r line; do (( i++ )); echo "$i $line"; done < lines
1 Line 1
2 Line 2
3
4 Line 4
5 Line 5
6

Or a useful use of cat:

$ cat -n lines
     1  Line 1
     2  Line 2
     3
     4  Line 4
     5  Line 5
     6

$ cat -b lines
     1  Line 1
     2  Line 2

     3  Line 4
     4  Line 5



Numbering Lines | 447

Discussion
If you only need to display the line numbers on the screen, you can use less -N:

$ /usr/bin/less -N filename
      1 Line 1
      2 Line 2
      3
      4 Line 4
      5 Line 5
      6
lines (END)

Line numbers are broken in old versions of less on some obsolete
Red Hat systems. Check your version with less -V. Version
358+iso254 (e.g., Red Hat 7.3 & 8.0) is known to be bad. Version
378+iso254 (e.g., RHEL3) and version 382 (RHEL4, Debian Sarge)
are known to be good; we did not test other versions. The problem is
subtle and may be related to an older iso256 patch. You can easily
compare last line numbers as the vi and Perl examples are correct.

You can also use vi (or view, which is read-only vi) with the :set nu! command:

$ vi filename
      1 Line 1
      2 Line 2
      3
      4 Line 4
      5 Line 5
      6
~
:set nu!

vi has many options, so you can start vi by doing things like vi +3 -c 'set nu!'
filename to turn on line numbering and place your cursor on line 3. If you’d like
more control over how the numbers are displayed, you can also use nl, awk, or perl:

$ nl lines
     1  Line 1
     2  Line 2

     3  Line 4
     4  Line 5

$ nl -ba lines
     1  Line 1
     2  Line 2
     3
     4  Line 4
     5  Line 5
     6



448 | Chapter 17: Housekeeping and Administrative Tasks

$ awk '{ print NR, $0 }' filename
1 Line 1
2 Line 2
3
4 Line 4
5 Line 5
6

$ perl -ne 'print qq($.\t$_);' filename
1 ➝ Line 1
2 ➝ Line 2
3 ➝

4 ➝ Line 4
5 ➝ Line 5
6 ➝

NR and $. are the line number in the current input file in awk and Perl respectively, so
it’s easy to use them to print the line number. Note that we are using a ➝ to denote
a Tab character in the Perl output, while awk uses a space by default.

See Also
• man cat

• man nl

• man awk

• man less

• man vi

• Recipe 8.15, “Doing More with less”

17.22 Writing Sequences

Problem
You need to generate a sequence of numbers, possibly with other text, for testing or
some other purpose.

Solution
Use awk because it should work everywhere no matter what:

$ awk 'END { for (i=1; i <= 5; i++) print i, "text"}' /dev/null
1 text
2 text
3 text
4 text
5 text

$ awk 'BEGIN { for (i=1; i <= 5; i+=.5) print i}' /dev/null



Writing Sequences | 449

1
1.5
2
2.5
3
3.5
4
4.5
5

Discussion
On some systems, notably Solaris, awk will hang waiting for a file unless you give it one,
such as /dev/null. This has no effect on other systems, so it’s fine to use everywhere.

Note that the variable in the print statement is i, not $i. If you accidentally use $i it
will be interpolated as a field from the current line being processed. Since we’re pro-
cessing nothing, that’s what you’ll get if you use $i by accident (i.e., nothing).

The BEGIN or END patterns allow for startup or cleanup operations when actually pro-
cessing files. Since we’re not processing a file, we need to use one of them so that
awk knows to actually do something even though it has no normal input. In this
case, it doesn’t matter which we use.

There is a GNU utility called seq that does exactly what this recipe calls for, but it
does not exist by default on many systems, for example BSD, Solaris, and Mac OS X.
It offers some useful formatting options and is numeric only.

Thankfully, as of bash 2.04 and later, you can do arithmetic integer for loops:

# Bash 2.04+ only, integer only
$ for ((i=1; i<=5; i++)); do echo "$i text"; done
1 text
2 text
3 text
4 text
5 text

As of bash 3.0 and later, there is also the {x..y} brace expansion, which allows inte-
gers or single characters:

# Bash 3.0+ only, integer or single character only
$ printf "%s text\n" {1..5}
1 text
2 text
3 text
4 text
5 text

$ printf "%s text\n" {a..e}
a text
b text
c text
d text
e text



450 | Chapter 17: Housekeeping and Administrative Tasks

See Also
• man seq

• man awk

• http://www.faqs.org/faqs/computer-lang/awk/faq/

17.23 Emulating the DOS Pause Command

Problem
You are migrating from DOS/Windows batch files and want to emulate the DOS
pause command.

Solution
To do that, use the read -p command in a function:

pause ( )
{
    read -p 'Press any key when ready...'
}

Discussion
The -p option followed by a string argument prints the string before reading input.
In this case the string is the same as the DOS pause command’s output.

See Also
• help read

17.24 Commifying Numbers

Problem
You’d like to add a thousands-place separator to long numbers.

Solution
Depending on your system and configuration, you may be able to use printf’s ' for-
mat flag with a suitable local. Thanks to Chet Ramey for this solution, which is by
far the easiest if it works:

$ LC_NUMERIC=en_US.UTF-8 printf "%'d\n" 123456789
123,456,789

$ LC_NUMERIC=en_US.UTF-8 printf "%'f\n" 123456789.987
123,456,789.987000



Commifying Numbers | 451

Thanks to Michael Wang for contributing the following shell-only implementation
and relevant discussion:

# cookbook filename: func_commify

function commify {
    typeset text=${1}

    typeset bdot=${text%%.*}
    typeset adot=${text#${bdot}}

    typeset i commified
    (( i = ${#bdot} - 1 ))

    while (( i>=3 )) && [[ ${bdot:i-3:1} == [0-9] ]]; do
        commified=",${bdot:i-2:3}${commified}"
        (( i -= 3 ))
    done
    echo "${bdot:0:i+1}${commified}${adot}"
}

Discussion
The shell function is written to follow the same logical process as a person using a
pencil and paper. First you examine the string and find the decimal point, if any. You
ignore everything after the dot, and work on the string before the dot.

The shell function saves the string before the dot in $bdot, and after the dot (includ-
ing the dot) in $adot. If there is no dot, then everything is in $bdot, and $adot is
empty. Next a person would move from right to left in the part before the dot and
insert a comma when these two conditions are met:

• There are four or more characters left.

• The character before the comma is a number.

The function implements this logic in the while loop.

Tom Christiansen and Nathan Torkington’s Perl Cookbook, Second Edition
(O’Reilly), Recipe 2.16 also provides a string processing solution:

# cookbook filename: perl_sub_commify

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Add comma thousands separator to numbers
# Returns:  input string, with any numbers commified
# From Perl Cookbook2 2.16, pg 84
sub commify {
    @_ == 1 or carp ('Sub usage: $withcomma = commify($somenumber);');

    # From _Perl_Cookbook_1 page 64, 2.17 or _Perl_Cookbook_2 page 84, 2.16



452 | Chapter 17: Housekeeping and Administrative Tasks

    my $text = reverse $_[0];
    $text =~ s/(\d\d\d)(?=\d)(?!\d*\.)/$1,/g;
    return scalar reverse $text;

}

The United States uses a comma as the thousands separator, but many
other countries use a period.

See Also
• http://sed.sourceforge.net/sedfaq4.html#s4.14

• Perl Cookbook, Second Edition, Recipe 2.16, by Tom Christiansen and Nathan
Torkington (O’Reilly)

• Recipe 13.18, “Converting a Data File to CSV”



453

Chapter 18 CHAPTER 18

Working Faster by Typing Less19

Despite all the improvements in processor speed, transmission rates, network speed,
and I/O capabilities, there is still a limiting factor in many uses of bash—the typing
speed of the user. Scripting has been our focus, of course, but interactive use of bash
is still a significant part of its use and usefulness. Many of the scripting techniques
we have described can be used interactively as well, but then you find yourself faced
with a lot of typing, unless you know some shortcuts.

Now “back in the day,” when Unix was first invented, there were teletype machines
that could only crank out about 10 characters per second, and a good touch typist
could type faster than the keyboard could handle it. It was in this milieu that Unix
was developed and some of its terseness is likely due to the fact that no one wanted
to type more than absolutely necessary to get across their command.

At the other end of the historical perspective (i.e., now) processors are so fast that
they can be quite idle while waiting for user input, and can look back through histo-
ries of previous commands as well as in directories along your $PATH to find possible
commands and valid arguments even before you finish typing them.

Combining techniques developed for each of these situations, we can greatly reduce
the amount of typing required to issue shell commands—and not just out of sheer
laziness. Rather, you may quickly find that these keystroke-saving measures are so
useful because of the increased accuracy they provide, the mistakes they help you
avoid, and the backups that you don’t need to reload.

18.1 Moving Quickly Among Arbitrary Directories

Problem
Do you find yourself moving frequently between two or more directories? Are you
changing directories to here, then there, and then back again? Do you tire of always
typing long path names since the directories never seem to be close by?



454 | Chapter 18: Working Faster by Typing Less

Solution
Use the pushd and popd built-in commands to manage a stack of directory locations,
and to switch between them easily. Here is a simple example:

$ cd /tmp/tank
$ pwd
/tmp/tank

$ pushd /var/log/cups
/var/log/cups /tmp/tank

$ pwd
/var/log/cups

$ ls
access_log  error_log  page_log

$ popd
/tmp/tank

$ ls
empty  full

$ pushd /var/log/cups
/var/log/cups /tmp/tank

$ pushd
/tmp/tank /var/log/cups

$ pushd
/var/log/cups /tmp/tank

$ pushd
/tmp/tank /var/log/cups

$ dirs
/tmp/tank /var/log/cups

Discussion
Stacks are last in, first out mechanisms, which is how these commands behave. When
you pushd to a new directory, it keeps the previous directory on a stack. Then when
you popd, it pops the current location off of the stack and puts you back in that first
location. When you change locations using these commands, they will print the val-
ues on the stack, left to right, corresponding to the top-to-bottom ordering of a
stack.

If you pushd without any directory, it swaps the top item on the stack with the next
one down, so that you can alternate between two directories using repeated pushd
commands with no arguments. You can do the same thing using the cd - command.



Repeating the Last Command | 455

You can still cd to locations—that will change the current directory, which is also the
top of the directory stack. If you can’t remember what is on your stack of directo-
ries, use the dirs command to echo the stack, left-to-right. For a more stack-like dis-
play, use the -v option:

$ dirs -v
 0  /var/tmp
 1  ~/part/me/scratch
 2  /tmp
$

The tilde (~) is a shorthand for your home directory. The numbers can be used to
reorder the stack. If you pushd +2 then bash will put the #2 entry on the top of the
stack (and cd you there) and push the others down:

$ pushd +2
/tmp /var/tmp ~/part/me/scratch
$ dirs -v
 0  /tmp
 1  /var/tmp
 2  ~/part/me/scratch
$

Once you get a little practice with these commands, you will find it much faster and
easier to move repeatedly between directories.

See Also
• Recipe 1.2, “Showing Where You Are”

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 16.5, “Setting Your $CDPATH”

• Recipe 16.13, “Creating a Better cd Command”

• Recipe 16.20, “Getting Started with a Custom Configuration”

18.2 Repeating the Last Command

Problem
You just typed a long and difficult command line, one with long pathnames and
complicated sets of arguments. Now you need to run it again. Do you have to type it
all again?

Solution
There are two very different solutions to this problem. First, just type two exclama-
tion marks at the prompt, and bash will echo and repeat the previous command. For
example:

$ /usr/bin/somewhere/someprog -g -H -yknot -w /tmp/soforthandsoon
...



456 | Chapter 18: Working Faster by Typing Less

$ !!
/usr/bin/somewhere/someprog -g -H -yknot -w /tmp/soforthandsoon
...

The other (more modern) solution involves using the arrow keys. Typing the up-
arrow key will scroll back through the previous commands that you have issued.
When you find the one you want, just press the Enter key and that command will be
run (again).

Description
The command is echoed when you type !! (sometimes called bang bang) so that you
can see what is running.

See Also
• Recipe 16.8, “Adjusting readline Behavior Using .inputrc”

• Recipe 16.12, “Setting Shell History Options”

18.3 Running Almost the Same Command

Problem
After running a long and difficult-to-type command, you get an error message indi-
cating that you made one tiny little typo in the middle of that command line. Do you
have to retype the whole line?

Solution
The !! command that we discussed in Recipe 18.2, “Repeating the Last Command”
allows you to add an editing qualifier. How good are your sed-like skills? Add a colon
after the bang-bang and then a sed-like substitution expression, as in the following
example:

$ /usr/bin/somewhere/someprog -g -H -yknot -w /tmp/soforthandsoon
Error: -H not recognized.  Did you mean -A?

$ !!:s/H/A/
/usr/bin/somewhere/someprog -g -A -yknot -w /tmp/soforthandsoon
...

You can always just use the arrow keys to navigate your history and commands, but
for long commands on slow links this syntax is great once you get used to it.

Discussion
If you’re going to use this feature, just be careful with your substitutions. If you had
tried to change the -g option by typing !!:s/g/h/ you would have ended up changing



Substituting Across Word Boundaries | 457

the first letter g, which is at the end of the command name, and you would be trying
to run /usr/bin/somewhere/someproh.

The comparison with sed is apt here because the substitution is applied successively
to each word in the command line. That means that the expressions that you use for
substitutions cannot cross word boundaries. You could not, for example, use:

s/-g -A/-gA/

as a command, since the -g and -A are separate words to bash.

But that doesn’t mean that your changes can’t effect the whole line. If you want to
change all occurrences of an expression in a command line, you need to precede the
s with a g (for global substitution), as follows:

$ /usr/bin/somewhere/someprog -g -s -yknots -w /tmp/soforthandsoon
...

$ !!:gs/s/S/
/usr/bin/Somewhere/Someprog -g -S -yknotS -w /tmp/SoforthandSoon
...

Why does this g have to appear before the s and not after it, like in sed syntax? Well,
anything that appears after the closing slash is considered new text to append to the
command—which is quite handy if you want to add another argument to the com-
mand when you run it again.

See Also
• Recipe 16.8, “Adjusting readline Behavior Using .inputrc”

• Recipe 16.12, “Setting Shell History Options”

• Recipe 18.2, “Repeating the Last Command”

18.4 Substituting Across Word Boundaries

Problem
The !!:s/a/b/ syntax is restricted to substitutions within a word; what if you need to
make a substitution that crosses word boundaries?

Solution
Use the caret (^) substitution mechanism:

$ /usr/bin/somewhere/someprog -g -A -yknot -w /tmp/soforthandsoon
...

$ ^-g -A^-gB^
/usr/bin/somewhere/someprog -gB -yknot -w /tmp/soforthandsoon



458 | Chapter 18: Working Faster by Typing Less

You can always just use the arrow keys to navigate your history and commands, but
for long commands on slow links this syntax is great once you get used to it.

Discussion
Write the substitution on the command line by starting with a caret (^) and then the
text you want replaced, then another caret and the new text. A trailing (third) caret is
needed only if you want to add more text at the end of the line, as in:

$ /usr/bin/somewhere/someprog -g -A -yknot
...

$ ^-g -A^-gB^ /tmp^
/usr/bin/somewhere/someprog -gB -yknot /tmp

If you want to remove something, substitute an empty value; i.e., don’t put anything
for the new text. Here are two examples:

$ /usr/bin/somewhere/someprog -g -A -yknot /tmp
...
$ ^-g -A^^
/usr/bin/somewhere/someprog -yknot /tmp
...
$ ^knot^
/usr/bin/somewhere/someprog -gA -y /tmp
...
$

The first example uses all three carets. The second example leaves off the third caret;
since we want to replace the “knot” with nothing, we just end the line with a new-
line (the Enter key).

The use of the caret substitution not only spans word boundaries, it’s just plain
handy. Many bash users find it easier to use than !!:s/.../.../ syntax. Wouldn’t
you agree?

See Also
• Recipe 16.8, “Adjusting readline Behavior Using .inputrc”

• Recipe 16.12, “Setting Shell History Options”

18.5 Reusing Arguments

Problem
Reusing the last command was easy with !! but you might not want the whole com-
mand. How can you reuse just the last argument?



Finishing Names for You | 459

Solution
Use !$ to indicate the last command. Use !:1 for the first argument on the command
line, !:2 for the second, and so on.

Discussion
It is quite common to hand the same filename to a series of commands. One of the
most common occurrences might be the way a programmer would edit and then
compile, edit and then compile.... Here, the !$ comes in quite handy:

$ vi /some/long/path/name/you/only/type/once
...
$ gcc !$
gcc /some/long/path/name/you/only/type/once
...
$ vi !$
vi /some/long/path/name/you/only/type/once
...
$ gcc !$
gcc /some/long/path/name/you/only/type/once

Get the idea? It saves a lot of typing but it also avoids errors. If you mistype the file-
name when you compile, then you are not compiling the file that you just edited.
With !$ you always get the name of the file on which you just worked. If the argu-
ment you want is buried in the middle of the command line, you can get at it with
the numbered “bang-colon” commands. Here’s an example:

$ munge /opt/my/long/path/toa/file | more
...
$ vi !:1
vi /opt/my/long/path/toa/file

You might be tempted to try to use !$, but in this instance it would yield more, which
is not the name of the file that you want to edit.

See Also
• The bash manpage to read about “Word Designators”

18.6 Finishing Names for You

Problem
Some of these path names are pretty long. This is a computer that bash is running on...
can’t it help?



460 | Chapter 18: Working Faster by Typing Less

Solution
When in doubt, press the Tab key. bash will try to finish the pathname for you. If it
does nothing, it may be because there are no matches, or because there is more than
one. Press the Tab key a second time and it will list the choices and then repeat the
command up to where you stopped typing, so that you can continue. Type a bit
more (to disambiguate) then press the Tab key again to have bash finish off the argu-
ment for you.

Discussion
bash is even smart enough to limit the selection to certain types of files. If you type
“unzip” and then the beginning of a pathname, and then you press the Tab key, it
will only finish off with files that end in .zip even if you have other files whose names
match as much as you have typed. For example:

$ ls
myfile.c     myfile.o     myfile.zip
$ ls -lh myfile<tab><tab>
myfile.c     myfile.o     myfile.zip
$ ls -lh myfile.z<tab>ip
-rw-r--r--     1 me mygroup 1.9M 2006-06-06 23:26 myfile.zip
$ unzip -l myfile<tab>.zip
...

See Also
• Recipe 16.8, “Adjusting readline Behavior Using .inputrc”

• Recipe 16.17, “Improving Programmable Completion”

18.7 Playing It Safe

Problem
It is so easy to type the wrong character by mistrake (see!). Even for simple bash
commands this can be quite serious—you could move or remove the wrong files.
When pattern matching is added to the mix, the results can be even more exciting, as
a typo in the pattern can lead to wildly different-than-intended consequences.
What’s a conscientious person to do?

Solution
You can use these history features and keyboard shortcuts to repeat arguments with-
out retyping them, thereby reducing the typos. If you need a tricky pattern match for
files, try it out with echo to see that it works, and then when you’ve got it right use !$
to use it for real. For example:

$ ls



Playing It Safe | 461

ab1.txt  ac1.txt  jb1.txt  wc3.txt
$ echo *1.txt
ab1.txt ac1.txt jb1.txt
$ echo [aj]?1.txt
ab1.txt ac1.txt jb1.txt
$ echo ?b1.txt
ab1.txt jb1.txt
$ rm !$
rm ?b1.txt
$

Discussion
The echo is a way to see the results of your pattern match. Once you’re convinced it
gives you what you want, then you can use it for your intended command. Here we
remove the named files—not something that one wants to get wrong.

Also, when you’re using the history commands, you can add a :p modifier and it will
cause bash to print but not execute the command—another handy way to see if you
got your history substitutions right. From the Solution’s example, we add:

$ echo ?b1.txt
ab1.txt jb1.txt

$ rm !$:p
rm ?b1.txt
$

The :p modifier caused bash to print but not execute the command—but notice that
the argument is ?b1.txt and not expanded to the two filenames. That shows you
what will be run, and only when it is run will the shell expand that pattern to the two
filenames. If you want to see how it will be expanded, use the echo command.

See Also
• The bash manpage on “Modifiers” for more colon (:) modifiers that can be used

on history commands

• “Command-Line Processing Steps” in Appendix C



462

Chapter 19CHAPTER 19

Tips and Traps: Common Goofs
for Novices 20

Nobody’s perfect. We all make mistakes, especially when we are first learning some-
thing new. We have all been there, done that. You know, the silly mistake that seems
so obvious once you’ve had it explained, or the time you thought for sure that the
system must be broken because you were doing it exactly right, only to find that you
were off by one little character, one which made all the difference. Certain mistakes
seem common, almost predictable, among beginners. We’ve all had to learn the hard
way that scripts don’t run unless you set execute permissions on them—a real new-
bie kind of error. Now that we’re experienced, we never make those mistakes any-
more. What, never? Well, hardly ever. After all, nobody’s perfect.

19.1 Forgetting to Set Execute Permissions

Problem
You got your script all written and want to try it out, but when you go to run the
script you get an error message:

$ ./my.script
bash: ./my.script: Permission denied
$

Solution
You have two choices. First, you could invoke bash and give it the name of the script
as a parameter:

$ bash my.script

Or second (and better still), you could set the execute permission on the script so
that you can run it directly:

$ chmod a+x my.script
$ ./my.script



Fixing “No such file or directory” Errors | 463

Discussion
Either method will get the script running. You’ll probably want to set the execute
permissions on the script if you intend to use it over and over. You only have to set
the permissions once, thereafter allowing you to invoke it directly. With the permis-
sions set it feels more like a command, since you don’t have to explicitly invoke bash
(of course behind the scenes bash is still being invoked, but you don’t have to type
it).

In setting the execute permissions, we used a+x to give execute permissions to all.
There’s little reason to restrict execute permissions on the file unless it is in some
directory where others might accidentally encounter your executable (e.g., if as a sys-
tem admin you were putting something of your own in /usr/bin). Besides, if the file
has read permissions for all then others can still execute the script if they use our first
form of invocation, with the explicit reference to bash. Common permissions on
shell scripts are 0700 for the suspicious/careful folk (giving read/write/execute per-
mission to only the owner) and 0755 for the more open/carefree folk (giving read and
execute permissions to all others).

See Also
• man chmod

• Recipe 14.13, “Setting Permissions”

• Recipe 15.1, “Finding bash Portably for #!”

• Recipe 19.3, “Forgetting That the Current Directory Is Not in the $PATH”

19.2 Fixing “No such file or directory” Errors

Problem
You’ve set the execute permission as described in Recipe 19.1, “Forgetting to Set
Execute Permissions,” but when you run the script you get a “No such file or direc-
tory” error.

Solution
Try running the script using bash explicitly:

$ bash ./busted

If it works, you have some kind of permissions error, or a typo in your shebang line.
If you get a bunch more errors, you probably have the wrong line endings. This can
happen if you edit the file on Windows (perhaps via Samba), or if you’ve simply cop-
ied the file around.



464 | Chapter 19: Tips and Traps: Common Goofs for Novices

To fix it, try the dos2unix program if you have it, or see Recipe 8.11, “Converting
DOS Files to Linux Format.” Note that if you use dos2unix it will probably create a
new file and delete the old one, which will change the permissions and might also
change the owner or group and affect hard links. If you’re not sure what any of that
means, the key point is that you’ll probably have to chmod it again (Recipe 19.1,
“Forgetting to Set Execute Permissions”).

Discussion
If you really do have bad line endings (i.e., anything that isn’t ASCII 10 or hex 0a),
the error you get depends on your shebang line. Here are some examples for a script
named busted:

$ cat busted
#!/bin/bash -
echo "Hello World!"

# This works
$ ./busted
Hello World!

# But if the file gets DOS line endings, we get:
$ ./busted
: invalid option
Usage:  /bin/bash [GNU long option] [option] ...
[...]

# Different shebang line
$ cat ./busted
#!/usr/bin/env bash
echo "Hello World!"

$ ./busted
: No such file or directory

See Also
• Recipe 8.11, “Converting DOS Files to Linux Format”

• Recipe 14.2, “Avoiding Interpreter Spoofing”

• Recipe 15.1, “Finding bash Portably for #!”

• Recipe 19.1, “Forgetting to Set Execute Permissions”



Forgetting That the Current Directory Is Not in the $PATH | 465

19.3 Forgetting That the Current Directory Is Not in
the $PATH

Problem
You’ve got your script all written and want to try it out—you even remembered to
add the execute permissions to the script, but when you go to run the script you get
an error message:

$ my.script
bash: my.script: command not found
$

Solution
Either add the current directory to the $PATH variable, which we do not recommend,
or reference the script via the current directory with a leading ./ before the script
name, as in:

$ ./my.script

Discussion
It is a common mistake for beginners to forget to add the leading ./ to the script that
they want to execute. We have had a lot of discussion about the $PATH variable, so we
won’t repeat ourselves here except to remind you of a solution for frequently used
scripts.

A common practice is to keep your useful and often-used scripts in a directory called
bin inside of your home directory, and to add that bin directory to your $PATH vari-
able so that you can execute those scripts without needing the leading ./.

The important part about adding your own bin directory to your $PATH variable is to
place the change that modifies your $PATH variable in the right startup script. You
don’t want it in the .bashrc script because that gets invoked by every subshell, which
would mean that your path would get added to every time you “shell out” of an edi-
tor, or run some other commands. You don’t need repeated copies your bin direc-
tory in the $PATH variable.

Instead, put it in the appropriate login profile for bash. According to the bash
manpage, when you log in bash “looks for ~/.bash_profile, ~/.bash_login, and ~/.profile,
in that order, and reads and executes commands from the first one that exists and is
readable.” So edit whichever one of those you already have in your home directory or
if none exists, create ~/.bash_profile and put this line in at the bottom of the file (or
elsewhere if you understand enough of what else the profile is doing):

PATH="${PATH}:$HOME/bin"



466 | Chapter 19: Tips and Traps: Common Goofs for Novices

See Also
• Recipe 4.1, “Running Any Executable”

• Recipe 14.3, “Setting a Secure $PATH”

• Recipe 14.9, “Finding World-Writable Directories in Your $PATH”

• Recipe 14.10, “Adding the Current Directory to the $PATH”

• Recipe 15.2, “Setting a POSIX $PATH”

• Recipe 16.3, “Change Your $PATH Permanently”

• Recipe 16.4, “Change Your $PATH Temporarily”

• Recipe 16.9, “Keeping a Private Stash of Utilities by Adding ~/bin”

• Recipe 16.18, “Using Initialization Files Correctly”

19.4 Naming Your Script Test

Problem
You typed up a bash script to test out some of this interesting material that you’ve
been reading about. You typed it exactly right, you even remembered to set the exe-
cute permissions on the file and put the file in one of the directories in $PATH, but
when you try to run it, nothing happens.

Solution
Name it something other than test. That name is a shell built-in command.

Discussion
It is natural enough to want to name a file test when you just want a quick scratch
file for trying out some small bit of code. The problem is that test is a shell built-in
command, making it a kind of shell reserved word. You can see this with the type
command:

$ type test
test is a shell builtin
$

Since it is a built-in, no adjusting of the path will override this. You would have to
create an alias, but we strongly advise against it in this case. Just name your script
something else, or invoke it with a pathname, as in: ./test or /home/path/test.

See Also
• “Built-in Commands and Reserved Words” in Appendix A



Expecting to Change Exported Variables | 467

19.5 Expecting to Change Exported Variables

Problem
A common beginner mistake is to treat exported shell variables like globals in a pro-
gramming environment. But exported variables are only one way: they are included
in the environment of the invoked shell script, but if you change their values, those
changes are not seen by the calling script.

Here is the first of two scripts. This one will set a value, invoke a second script, and
then display the value after the second script completes, so as to see what (if any-
thing) has changed:

$ cat first.sh
#
# a simple example of a common mistake
#
# set the value:
export VAL=5
printf "VAL=%d\n" $VAL
# invoke our other script:
./second.sh
#
# now see what changed (hint: nothing!)
printf "%b" "back in first\n"
printf "VAL=%d\n" $VAL
$

The second script messes with a variable named $VAL, too:

$ cat second.sh
printf "%b" "in second\n"
printf "initially VAL=%d\n" $VAL
VAL=12
printf "changed so VAL=%d\n" $VAL
$

When we run the first script (which invokes the second one, too) here’s what we get:

$ ./first.sh
VAL=5
in second
initially VAL=5
changed so VAL=10
back in first
VAL=5
$

Solution
The old joke goes something like this:

Patient: “Doctor, it hurts when I do this.”

Doctor: “Then don’t do that.”



468 | Chapter 19: Tips and Traps: Common Goofs for Novices

The solution here is going to sound like the doctor’s advice: don’t do that. You will
have to structure your shell scripts so that such a hand-off is not necessary. One way
to do that is by explicitly echoing the results of the second script so that the first
script can invoke it with the $( ) operator (or `` for the old shell hands). In the first
script, the line ./second.sh becomes VAL=$(./second.sh), and the second script has
to echo the final value (and only the final value) to STDOUT (it could redirect its
other messages to STDERR):

$ cat second.sh
printf "%b" "in second\n"           >&2
printf "initially VAL=%d\n" $VAL    >&2
VAL=12
printf "changed so VAL=%d\n" $VAL   >&2
echo $VAL
$

Discussion
Exported environment variables are not globals that are shared between scripts. They
are a one-way communication. All the exported environment variables are mar-
shaled and passed together as part of the invocation of a Linux or Unix (sub) pro-
cess (see the fork(2) manpage). There is no mechanism whereby these environment
variables are passed back to the parent process. (Remember that a parent process can
fork lots and lots of subprocesses...so if you could return values from a child pro-
cess, which child’s values would the parent get?)

See Also
• Recipe 5.5, “Exporting Variables”

• Recipe 10.4, “Defining Functions”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

19.6 Forgetting Quotes Leads to “command not
found” on Assignments

Problem
Your script is assigning some values to a variable, but when you run it, the shell
reports “command not found” on part of the value of the assignment.

$ cat goof1.sh
#!/bin/bash -
# common goof:
#  X=$Y $Z
# isn't the same as
#  X="$Y $Z"
#
OPT1=-l



Forgetting Quotes Leads to “command not found” on Assignments | 469

OPT2=-h
ALLOPT=$OPT1 $OPT2
ls $ALLOPT .
$
$ ./goof1.sh
goof1.sh: line 10: -h: command not found
aaa.awk  cdscript.prev  ifexpr.sh  oldsrc  xspin2.sh
$

Solution
You need quotes around the righthand side of the assignment to $ALLOPT. What is
written above as:

ALLOPT=$OPT1 $OPT2

really should be:

ALLOPT="$OPT1 $OPT2"

Discussion
It isn’t just that you’ll lose the embedded spaces between the arguments; it is pre-
cisely because there are spaces that this problem arises. If the arguments were com-
bined with an intervening slash, for example, or by no space at all, this problem
wouldn’t crop up—it would all be a single word, and thus a single assignment.

But that intervening space tells bash to parse this into two words. The first word is a
variable assignment. Such assignments at the beginning of a command tell bash to set
a variable to a given value just for the duration of the command—the command
being the word that follows next on the command line. At the next line, the variable
is back to its prior value (if any) or just not set.

The second word of our example statement is therefore seen as a command. That
word is the command that is reported as “not found.” Of course it is possible that
the value for $OPT2 might have been something that actually was the name of an exe-
cutable (though not likely in this case with ls). Such a situation could lead to very
undesirable results.

Did you notice, in our example, that when ls ran, it didn’t use the long format out-
put even though we had (tried to) set the -l option? That shows that $ALLOPT was no
longer set. It had only been set for the duration of the previous command, which was
the attempt to run the (nonexistent) -h command.

An assignment on a line by itself sets a variable for the remainder of the script. An
assignment at the beginning of a line, one that has an additional command invoked
on that line, sets the variable only for the execution of that command.

It’s generally a good idea to quote your assignments to a shell variable. That way you
are assured of getting only one assignment and not encountering this problem.



470 | Chapter 19: Tips and Traps: Common Goofs for Novices

See Also
• Recipe 5.9, “Handling Parameters with Blanks”

19.7 Forgetting That Pattern Matching Alphabetizes
Warning—bash will alphabetize the data in a pattern match:

$ echo x.[ba]
x.a x.b
$

Even though you specified b then a in the square brackets, when the pattern match-
ing is done and the results found, they will be alphabetized before being given to the
command to execute. That means that you don’t want to do this:

$ mv x.[ba]
$

thinking that it will expand to:

$ mv x.b x.a

Rather, it will expand to:

$ mv x.a x.b

since it alpha-sorts them before putting them in the command line, which is exactly
the opposite of what you intended!

19.8 Forgetting That Pipelines Make Subshells

Problem
You have a script that works just fine, reading input in a while loop:

COUNT=0
while read PREFIX GUTS
do
    # ...
    if [[ $PREFIX == "abc" ]]
    then
        let COUNT++
    fi
    # ...
done
echo $COUNT



Forgetting That Pipelines Make Subshells | 471

and then you change it to read from a file:

cat $1 | while read PREFIX GUTS
do
    # ...

only now it no longer works...$COUNT keeps coming out as zero.

Solution
Pipelines create subshells. Changes in the while loop do not effect the variables in the
outer part of the script, as the while loop is run in a subshell.

One solution: don’t do that (if you can help it). In this example, instead of using cat
to pipe the file’s content into the while statement, you could use I/O redirection to
have the input come from a redirected input rather than setting up a pipeline:

COUNT=0
while read PREFIX GUTS
do
    # ...

done < $1

echo $COUNT

Such a rearrangement might not be appropriate for your problem, in which case
you’ll have to find other techniques.

Discussion
If you add an echo statement inside the while loop, you can see $COUNT increasing,
but once you exit the loop, $COUNT will be back to zero. The way that bash sets up the
pipeline of commands means that each command in the pipeline will execute in its
own subshell. So the while loop is in a subshell, not in the main shell. If you have
exported $COUNT, then the while loop will begin with the same value that the main
shell script was using for $COUNT, but since the while loop is executing in a subshell
there is no way to get the value back up to the parent shell.

Depending on how much information you need to get back to the parent shell and
how much more work the outer level needs to do after the pipeline, there are differ-
ent techniques you could use. One technique is to take the additional work and
make it part of a subshell that includes the while loop. For example:

COUNT=0
cat $1 | ( while read PREFIX GUTS
do
  # ...
done
echo $COUNT )



472 | Chapter 19: Tips and Traps: Common Goofs for Novices

The placement of the parentheses is crucial here. What we’ve done is explicitly delin-
eated a section of the script to be run in a subshell. It includes both the while loop
and the other work that we want to do after the while loop completes (here all we’re
doing is echoing $COUNT). Since the while and the echo statements are not a pipeline,
they will both run in the same subshell created by virtue of the parentheses. The
$COUNT that was accumulated during the while loop will remain until the end of the
subshell—that is, until the end-parenthesis is reached.

If you do use this technique it might be good to format the statements a bit differ-
ently, to make the use of the parenthesized subshell stand out more. Here’s the
whole script reformatted:

COUNT=0
cat $1 |
(
    while read PREFIX GUTS
    do
        # ...
        if [[ $PREFIX == "abc" ]]
        then
            let COUNT++
        fi
       # ...
    done
    echo $COUNT
)

We can extend this technique if there is much more work to be done after the while
loop. The remaining work could be put in a function call or two, again keeping them
in the subshell. Otherwise, the results of the while loop can be echoed (as is done
here) and then piped into the next phase of work (which will also execute in its own
subshell), which can read the results from the while loop:

COUNT=0
cat $1 |
(
    while read PREFIX GUTS
    do
        # ...
        if [[ $PREFIX == "abc" ]]
        then
            let COUNT++
        fi
        # ...
    done
    echo $COUNT
) | read COUNT
# continue on...



Making Your Terminal Sane Again | 473

See Also
• bash FAQ #E4 at http://tiswww.tis.case.edu/~chet/bash/FAQ

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Recipe 19.5, “Expecting to Change Exported Variables”

19.9 Making Your Terminal Sane Again

Problem
You have aborted an SSH session and now you can’t see what you are typing. Or
perhaps you accidentally displayed a binary file and your terminal window is now
gibberish.

Solution
Type stty sane and then the Enter key, even if you can’t see what you are typing, to
restore sane terminal settings. You may want to hit Enter a few times first, to make
sure you don’t have anything else on your input line before you start typing the stty
command.

If you do this a lot, you might consider creating an alias that’s easier to type blind.

Discussion
Aborting some older versions of ssh at a password prompt may leave terminal echo
(the displaying of characters as you type them, not the shell echo command) turned
off so you can’t see what you are typing. Depending on what kind of terminal emula-
tion you are using, displaying a binary file can also accidentally change terminal set-
tings. In either case, stty’s sane setting attempts to return all terminal settings to their
default values. This includes restoring echo capability, so that what you type on the
keyboard appears in your terminal window. It will also likely undo whatever strange-
ness has occurred with other terminal settings.

Your terminal application may also have some kind of reset function, so explore the
menu options and documentation. You may also want to try the reset and tset com-
mands, though in our testing stty sane worked as desired while reset and tset were
more drastic in what they fixed.

See Also
• man reset

• man stty

• man tset



474 | Chapter 19: Tips and Traps: Common Goofs for Novices

19.10 Deleting Files Using an Empty Variable

Problem
You have a variable that you think contains a list of files to delete, perhaps to clean
up after your script. But in fact, the variable is empty and Bad Things happen.

Solution
Never do:

rm -rf $files_to_delete

Never, ever, ever do:

rm -rf /$files_to_delete

Use this instead:

[ "$files_to_delete" ] && rm -rf $files_to_delete

Discussion
The first example isn’t too bad, it’ll just throw an error. The second one is pretty bad
because it will try to delete your root directory. If you are running as a regular user
(and you should be, see Recipe 14.18, “Running As a Non-root User”), it may not be
too bad, but if you are running as root then you’ve just killed your system but good.
(Yes, we’ve done this.)

The solution is easy. First, make sure that there is some value in the variable you’re
using, and second, never precede that variable with a /.

See Also
• Recipe 14.18, “Running As a Non-root User”

• Recipe 18.7, “Playing It Safe”

19.11 Seeing Odd Behavior from printf

Problem
Your script is giving you values that don’t match what you expected. Consider this
simple script and its output:

$ bash oddscript
good nodes: 0
bad nodes: 6
miss nodes: 0
GOOD=6 BAD=0 MISS=0
$
$ cat oddscript
#!/bin/bash -



Seeing Odd Behavior from printf | 475

badnode=6

printf "good nodes: %d\n" $goodnode
printf "bad nodes: %d\n" $badnode
printf "miss nodes: %d\n" $missnode
printf "GOOD=%d BAD=%d MISS=%d\n" $goodnode $badnode $missnode

Why is 6 showing up as the value for the good count, when it is supposed to be the
value for the bad count?

Solution
Either give the variables an initial value (e.g., 0) or put quotes around the references
to them on printf lines.

Discussion
What’s happening here? bash does its substitutions on that last line and when it eval-
uates $goodnode and $missnode they both come out null, empty, not there. So the line
that is handed off to printf to execute looks like this:

printf "GOOD=%d BAD=%d MISS=%d\n" 6

When printf tries to print the three decimal values (the three %d formats) it has a
value (i.e., 6) for the first one, but doesn’t have anything for the next two, so they
come out zero and we get:

GOOD=6 BAD=0 MISS=0

You can’t really blame printf, since it never saw the other arguments; bash had done
its parameter substitution before printf ever got to run.

Even declaring them as integer values, like this:

declare -i goodnode badnode missnode

isn’t enough. You need to actually assign them a value.

The other way to avoid this problem is to quote the arguments when they are used in
the printf statement, like this:

printf "GOOD=%d BAD=%d MISS=%d\n" "$goodnode" "$badnode" "$missnode"

Then the first argument won’t disappear, but an empty string will be put in its place,
so that what printf gets are the three needed arguments:

printf "GOOD=%d BAD=%d MISS=%d\n" "" "6" ""

While we’re on the subject of printf, it has one other odd behavior. We have just
seen how it behaves when there are too few arguments; when there are too many
arguments, printf will keep repeating and reusing the format line and it will look like
you are getting multiple lines of output when you expected only one.



476 | Chapter 19: Tips and Traps: Common Goofs for Novices

Of course this can be put to good use, as in the following case:

$ dirs
/usr/bin /tmp ~/scratch/misc
$ printf "%s\n" $(dirs)
/usr/bin
/tmp
~/scratch/misc
$

The printf takes the directory stack (i.e., the output from the dirs command) and
displays the directories one per line, repeating and reusing the format, as described
earlier.

Let’s summarize:

1. Initialize your variables, especially if they are numbers and you want to use them
in printf statements.

2. Put quotes around your arguments if they could ever be null, and especially
when used in printf statements.

3. Make sure you have the correct number of arguments, especially considering
what the line will look like after the shell substitutions have occurred.

4. If you don’t need the special formatting that printf offers (e.g., %05d), consider
using a simple echo statement.

See Also
• http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

• Recipe 2.3, “Writing Output with More Formatting Control”

• Recipe 2.4, “Writing Output Without the Newline”

• Recipe 15.6, “Using echo Portably”

• “printf” in Appendix A

19.12 Testing bash Script Syntax

Problem
You are editing a bash script and want to make sure that your syntax is correct.

Solution
Use the -n argument to bash to test syntax often, ideally after every save, and cer-
tainly before committing any changes to a revision control system:

$ bash -n my_script
$

$ echo 'echo "Broken line' >> my_script



Debugging Scripts | 477

$ bash -n my_script
my_script: line 4: unexpected EOF while looking for matching `"'
my_script: line 5: syntax error: unexpected end of file

Discussion
The -n option is tricky to find in the bash manpage or other reference material since
it’s located under the set built-in. It is noted in passing in bash --help for -D, but it is
never explained there. This flag tells bash to “read commands but do not execute
them,” which of course will find bash syntax errors.

As with all syntax checkers, this will not catch logic errors or syntax errors in other
commands called by the script.

See Also
• man bash

• bash --help

• bash -c “help set”

• Recipe 16.1, “bash Startup Options”

19.13 Debugging Scripts

Problem
You can’t figure out what’s happening in your script and why it doesn’t work as
expected.

Solution
Add set -x to the top of the script when you run it. Or use set -x to turn on xtrace
before a troublesome spot and set +x to turn it off after. You may also wish to experi-
ment with the $PS4 prompt (Recipe 16.2, “Customizing Your Prompt”). xtrace also
works on the interactive command line (Recipe 16.2, “Customizing Your Prompt”).
Here’s a script that we suspect is buggy:

#!/usr/bin/env bash
# cookbook filename: buggy
#

set -x

result=$1

[ $result = 1 ] \
  && { echo "Result is 1; excellent."  ; exit 0;   } \
  || { echo "Uh-oh, ummm, RUN AWAY! "  ; exit 120; }



478 | Chapter 19: Tips and Traps: Common Goofs for Novices

Now we invoke this script, but first we set and export the value of the PS4 prompt.
bash will print out the value of PS4 before each command that it displays during an
execution trace (i.e., after a set -x ):

$ export PS4='+xtrace $LINENO:'
$ echo $PS4
+xtrace $LINENO:

$ ./buggy
+xtrace 4: result=
+xtrace 6: '[' = 1 ']'
./buggy: line 6: [: =: unary operator expected
+xtrace 8: echo 'Uh-oh, ummm, RUN AWAY! '
Uh-oh, ummm, RUN AWAY!

$ ./buggy 1
+xtrace 4: result=1
+xtrace 6: '[' 1 = 1 ']'
+xtrace 7: echo 'Result is 1; excellent.'
Result is 1; excellent.

$ ./buggy 2
+xtrace 4: result=2
+xtrace 6: '[' 2 = 1 ']'
+xtrace 8: echo 'Uh-oh, ummm, RUN AWAY! '
Uh-oh, ummm, RUN AWAY!

$ /tmp/jp-test.sh 3
+xtrace 4: result=3
+xtrace 6: '[' 3 = 1 ']'
+xtrace 8: echo 'Uh-oh, ummm, RUN AWAY! '
Uh-oh, ummm, RUN AWAY!

Discussion
It may seem odd to turn something on using - and turn it off using +, but that’s just
the way it worked out. Many Unix tools use -n for options or flags, and since you
need a way to turn -x off, +x seems natural.

As of bash 3.0 there are a number of new variables to better support debugging:
$BASH_ARGC, $BASH_ARGV, $BASH_SOURCE, $BASH_LINENO, $BASH_SUBSHELL, $BASH_
EXECUTION_STRING, and $BASH_COMMAND. This is in addition to existing bash variables
like $LINENO and the array variable $FUNCNAME.

Using xtrace is a very handy debugging technique, but it is not the same as having a
real debugger. See The Bash Debugger Project (http://bashdb.sourceforge.net/), which
contains patched sources to bash that enable better debugging support as well as
improved error reporting. In addition, this project contains, in their words, “the
most comprehensive source-code debugger for bash that has been written.”



Avoiding “command not found” When Using Functions | 479

See Also
• help set

• man bash

• Chapter 9 in Cameron Newham’s Learning the bash Shell (O’Reilly), which
includes a shell script for debugging other shell scripts

• Recipe 16.1, “bash Startup Options”

• Recipe 16.2, “Customizing Your Prompt”

• Recipe 17.1, “Renaming Many Files”

19.14 Avoiding “command not found” When Using
Functions

Problem
You are used to other languages, such as Perl, which allow you to call a function in a
section of your code that comes before the actual function definition.

Solution
Shell scripts are read and executed in a top-to-bottom linear way, so you must define
any functions before you use them.

Discussion
Some other languages, such as Perl, go through intermediate steps during which the
entire script is parsed as a unit. That allows you to write your code so that main( ) is
at the top, and function (or subroutines) are defined later. By contrast, a shell script
is read into memory and then executed one line at a time, so you can’t use a func-
tion before you define it.

See Also
• Recipe 10.4, “Defining Functions”

• Recipe 10.5, “Using Functions: Parameters and Return Values”

• Appendix C



480 | Chapter 19: Tips and Traps: Common Goofs for Novices

19.15 Confusing Shell Wildcards and Regular
Expressions

Problem
Sometimes you see .* sometimes just *, and sometimes you see [a-z]* but it means
something other than what you thought. You use regular expressions for grep and
sed but not in some places in bash. You can’t keep it all straight.

Solution
Relax; take a deep breath. You’re probably confused because you’re learning so
much (or just using it too infrequently to remember it). Practice makes perfect, so
keep trying.

The rules aren’t that hard to remember for bash itself. After all, regular expression
syntax is only used with the =~ comparison operator in bash. All of the other expres-
sions in bash use shell pattern matching.

Discussion
The pattern matching used by bash uses some of the same symbols as regular expres-
sions, but with different meanings. But it is also the case that you often have calls in
your shell scripts to commands that use regular expressions—commands like grep
and sed.

We asked Chet Ramey, the current keeper of the bash source and all-around bash
guru, if it was really the case that the =~ was the only use of regular expressions in
bash. He concurred. He also was kind enough to supply a list of the various parts of
bash syntax that use shell pattern matching. We’ve covered most, but not all of these
topics in various recipes in this book. We offer the list here for completeness.

Shell pattern matching is performed by:

• Filename globbing (pathname expansion)

• == and != operators for [[

• case statements

• $GLOBIGNORE handling

• $HISTIGNORE handling

• ${parameter#[#]word}

• ${parameter%[%]word}

• ${parameter/pattern/string}

• Several bindable readline commands (glob-expand-word, glob-complete-word,
etc.)



Confusing Shell Wildcards and Regular Expressions | 481

• complete -G and compgen -G

• complete -X and compgen -X

• The help built-in’s `pattern` argument

Thanks, Chet!

See Also
• Learn to read the manpage for bash and refer to it often—it is long but precise. If

you want an online version of the bash manpage or other bash-related docu-
ments, visit http://www.bashcookbook.com for the latest bash information.

• Keep this book handy for reference, too.

• Recipe 5.18, “Changing Pieces of a String”

• Recipe 6.6, “Testing for Equal”

• Recipe 6.7, “Testing with Pattern Matches”

• Recipe 6.8, “Testing with Regular Expressions”

• Recipe 13.14, “Trimming Whitespace”



482

Appendix AAPPENDIX A

Reference Lists 1

This appendix collects many tables of values, settings, operators, commands, vari-
ables, and more in one place for easy reference.

bash Invocation
Here are the options you can use when invoking current versions of bash. The multi-
character options must appear on the command line before the single-character
options. Login shells are usually invoked with the options -i (interactive), -s (read
from standard input), and -m (enable job control).

In addition to these listed in Table A-1, any set option can be used on the command
line; see the “set Options” section later in this chapter. In particular, the -n option is
invaluable for syntax checking, see Recipe 19.12, “Testing bash Script Syntax.”

Table A-1. Command-line options to bash

Option Meaning

-c string Commands are read from string, if present. Any arguments after string are inter-
preted as positional parameters, starting with $0.

-D A list of all double-quoted strings preceded by $ is printed on the standard output.
These are the strings that are subject to language translation when the current locale is
not C or POSIX. This also turns on the -n option.

-i Interactive shell. Ignores signals TERM, INT, and QUIT. With job control in effect,
TTIN, TTOU, and TSTP are also ignored.

-l Makes bash act as if invoked as a login shell.

-o option Takes the same arguments as set -o.

-O, +O shopt-option shopt-option is one of the shell options accepted by the shopt built-in. If shopt-
option is present, -O sets the value of that option; +O unsets it. If shopt-option is
not supplied, the names and values of the shell options accepted by shopt are printed
on the standard output. If the invocation option is +O, the output is displayed in a for-
mat that may be reused as input.



Prompt String Customizations | 483

Prompt String Customizations
Table A-2 shows a summary of the prompt customizations that are available. The
customizations \[ and \] are not available in bash versions prior to 1.14. \a, \e, \H, \
T, \@, \v, and \V are not available in versions prior to 2.0. \A, \D, \j, \l, and \r are
only available in later versions of bash 2.0 and in bash 3.0.

-s Reads commands from the standard input. If an argument is given to bash, this flag
takes precedence (i.e., the argument won’t be treated as a script name and standard
input will be read).

-r Restricted shell.

-v Prints shell input lines as they’re read.

- Signals the end of options and disables further option processing. Any options after this
are treated as filenames and arguments. -- is synonymous with -.

--debugger Arranges for the debugger profile to be executed before the shell starts. Turns on
extended debugging mode and shell function tracing in bash 3.0 or later.

--dump-strings Does the same as -D.

--dump-po-strings Does the same as -D but the output is in the GNU gettext portable object (po) file
format.

--help Displays a usage message and exits.

--login Makes bash act as if invoked as a login shell. Same as -l.

--noediting Does not use the GNU readline library to read command lines if interactive.

--noprofile Does not read the startup file /etc/profile or any of the personal initialization files.

--norc Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by
default if the shell is invoked as sh.

--posix Changes the behavior of bash to follow the POSIX standard more closely where the
default operation of bash is different.

--quiet Shows no information on shell startup. This is the default.

--rcfile file,
--init-file file

Executes commands read from file instead of the initialization file ~/.bashrc, if the
shell is interactive.

--verbose Equivalent to -v.

--version Shows the version number of this instance of bash and then exits.

Table A-2. Prompt string format codes

Command Meaning Added

\a The ASCII bell character (007). bash-1.14.7

\A The current time in 24-hour HH:MM format. bash-2.05

\d The date in “Weekday Month Day” format.

Table A-1. Command-line options to bash (continued)

Option Meaning



484 | Appendix A: Reference Lists

ANSI Color Escape Sequences
Table A-3 shows the ANSI color escape sequences.

\D {format} The format is passed to strftime(3) and the result is inserted into the
prompt string; an empty format results in a locale-specific time represen-
tation; the braces are required.

bash-2.05b

\e The ASCII escape character (033). bash-1.14.7

\H The hostname. bash-1.14.7

\h The hostname up to the first “.“.

\j The number of jobs currently managed by the shell. bash-2.03

\l The basename of the shell’s terminal device name. bash-2.03

\n A carriage return and line feed.

\r A carriage return. bash-2.01.1

\s The name of the shell.

\T The current time in 12-hour HH:MM:SS format. bash-1.14.7

\t The current time in HH:MM:SS format.

\@ The current time in 12-hour a.m./p.m. format. bash-1.14.7

\u The username of the current user.

\v The version of bash (e.g., 2.00). bash-1.14.7

\V The release of bash; the version and patchlevel (e.g., 3.00.0). bash-1.14.7

\w The current working directory.

\W The basename of the current working directory.

\# The command number of the current command.

\! The history number of the current command.

\$ If the effective UID is 0, print a #, otherwise print a $.

\nnn Character code in octal.

\\ Print a backslash.

\[ Begin a sequence of nonprinting characters, such as terminal control
sequences.

\] End a sequence of nonprinting characters.

Table A-3. ANSI color escape sequences

Code Character attribute FG code Foreground color BG code Background color

0 Reset all attributes 30 Black 40 Black

1 Bright 31 Red 41 Red

2 Dim 32 Green 42 Green

Table A-2. Prompt string format codes (continued)

Command Meaning Added



Built-in Commands and Reserved Words | 485

Built-in Commands and Reserved Words
Table A-4 shows a summary of all built-in commands and reserved words. The let-
ters in the Type column of the table have the following meanings: R = reserved word,
blank = built-in.

4 Underscore 33 Yellow 43 Yellow

5 Blink 34 Blue 44 Blue

7 Reverse 35 Magenta 45 Magenta

8 Hidden 36 Cyan 46 Cyan

37 White 47 White

Table A-4. Built-in commands and reserved words

Command Type Summary

! R Logical NOT of a command exit status.

: Do nothing (just do expansions of any arguments).

. Read file and execute its contents in current shell.

alias Set up shorthand for command or command line.

bg Put job in background.

bind Bind a key sequence to a readline function or macro.

break Exit from surrounding for, select, while, or until loop.

builtin Execute the specified shell built-in.

case R Reserved word. Multi-way conditional construct.

cd Change working directory.

command Run a command bypassing shell function lookup.

compgen Generate possible completion matches.

complete Specify how completion should be performed.

continue Skip to next iteration of for, select, while, or until loop.

declare Declare variables and give them attributes. Same as typeset.

dirs Display the list of currently remembered directories.

disown Remove a job from the job table.

do R Part of a for, select, while, or until looping construct.

done R Part of a for, select, while, or until looping construct.

echo Output arguments.

elif R Part of an if construct.

else R Part of an if construct.

enable Enable and disable built-in shell commands.

Table A-3. ANSI color escape sequences (continued)

Code Character attribute FG code Foreground color BG code Background color



486 | Appendix A: Reference Lists

esac R End of a case construct.

eval Run the given arguments through command-line processing.

exec Replace the shell with the given program.

exit Exit from the shell.

export Create environment variables.

fc Fix command (edit history file).

fg End  background job in foreground.

fi R Part of an if construct.

for R Looping construct.

function R Define a function.

getopts Process command-line options.

hash Full pathnames are determined and remembered.

help Display helpful information on built-in commands.

history Display command history.

if R Conditional construct.

in R Part of a case construct.

jobs List any background jobs.

kill Send a signal to a process.

let Arithmetic variable assignment.

local Create a local variable.

logout Exit a login shell.

popd Remove a directory from the directory stack.

pushd Add a directory to the directory stack.

pwd Print the working directory.

read Read a line from standard input.

readonly Make variables read-only (unassignable).

return Return from the surrounding function or script.

select R Menu-generation construct.

set Set options.

shift Shift command-line arguments.

suspend Suspend execution of a shell.

test Evaluate a conditional expression.

then R Part of an if construct.

time R Run command pipeline and print execution times. The format of the output can
be controlled with TIMEFORMAT.

times Print the accumulated user and system times for processes run from the shell.

Table A-4. Built-in commands and reserved words (continued)

Command Type Summary



Built-in Shell Variables | 487

Built-in Shell Variables
Table A-5 shows a complete list of environment variables available in bash 3.0. The
letters in the Type column of the table have the following meanings: A = Array, L =
colon-separated list, R = read-only, U = unsetting it causes it to lose its special
meaning.

Note that the variables beginning BASH_ and beginning COMP, as well as the variables
DIRSTACK, FUNCNAME, GLOBIGNORE, GROUPS, HISTIGNORE, HOSTNAME, HISTTIMEFORMAT, LANG,
LC_ALL, LC_COLLATE, LC_MESSAGE, MACHTYPE, PIPESTATUS, SHELLOPTS, and TIMEFORMAT are
not available in versions prior to 2.0. BASH_ENV replaces ENV found in earlier versions.

trap Set up a signal-catching routine.

type Identify the source of a command.

typeset Declare variables and give them attributes. Same as declare.

ulimit Set/show process resource limits.

umask Set/show file permission mask.

unalias Remove alias definitions.

unset Remove definitions of variables or functions.

until R Looping construct.

wait Wait for background job(s) to finish.

while R Looping construct.

Table A-5. Built-in shell environment variables

Variable Type Description

* R A single string containing the positional parameters given to the current script or func-
tion, separated by the first character of $IFS (e.g., arg1 arg2 arg3).

@ R Each of the positional parameters given to the current script or function, given as a list
of double-quoted strings (e.g., "arg1" "arg2" "arg3").

# R The number of arguments given to the current script or function.

- R Options given to the shell on invocation.

? R Exit status of the previous command.

_ R Last argument to the previous command.

$ R Process ID of the shell process.

! R Process ID of the last background command.

0 R Name of the shell or shell script.

BASH The full pathname used to invoke this instance of bash.

BASH_ARGC A An array of values, which are the number of parameters in each frame of the current
bash execution call stack. The number of parameters to the current subroutine (shell
function or script executed with . or source) is at the top of the stack.

Table A-4. Built-in commands and reserved words (continued)

Command Type Summary



488 | Appendix A: Reference Lists

BASH_ARGV A All of the parameters in the current bash execution call stack. The final parameter of
the last subroutine call is at the top of the stack; the first parameter of the initial call is
at the bottom.

BASH_COMMAND The command currently being executed or about to be executed, unless the shell is
executing a command as the result of a trap, in which case it is the command execut-
ing at the time of the trap.

BASH_EXECUTION_
STRING

The command argument to the -c invocation option.

BASH_ENV The name of a file to run as the environment file when the shell is invoked.

BASH_LINENO A An array whose members are the line numbers in source files corresponding to each
member of @var{FUNCNAME}. ${BASHLINENO[$i]} is the line number in the
source file where ${FUNCNAME[$i + 1]} was called. The corresponding source
filename is ${BASHSOURCE[$i + 1]}.

BASH_REMATCH AR An array whose members are assigned by the =~ binary operator to the [[ conditional
command. The element with index 0 is the portion of the string matching the entire
regular expression. The element with index n is the portion of the string matching the
nth parenthesized subexpression.

BASH_SOURCE A An array containing the source filenames corresponding to the elements in the
$FUNCNAME array variable.

BASH_SUBSHELL Incremented by 1 each time a subshell or subshell environment is spawned. The initial
value is 0. A subshell is a forked copy of the parent shell and shares it’s environment.

BASH_VERSION The version number of this instance of bash.

BASH_VERSINFO AR Version information for this instance of bash. Each element of the array holds parts of
the version number.

CDPATH L A list of directories for the cd command to search.

COMP_CWORD An index into ${COMPWORDS} of the word containing the current cursor position.
This variable is available only in shell functions invoked by the programmable comple-
tion facilities.

COMP_LINE The current command line. This variable is available only in shell functions and exter-
nal commands invoked by the programmable completion facilities.

COMP_POINT The index of the current cursor position relative to the beginning of the current com-
mand. If the current cursor position is at the end of the current command, the value of
this variable is equal to ${#COMPLINE}. This variable is available only in shell func-
tions and external commands invoked by the programmable completion facilities.

COMP_WORDBREAKS U The set of characters that the Readline library treats as word separators when perform-
ing word completion. If COMP_WORDBREAKS is unset, it loses its special properties,
even if it is subsequently reset.

COMP_WORDS A An array of the individual words in the current command line. This variable is available
only in shell functions invoked by the programmable completion facilities.

COMPREPLY A The possible completions generated by a shell function invoked by the programmable
completion facility.

DIRSTACK ARU The current contents of the directory stack.

EUID R The effective user ID of the current user.

Table A-5. Built-in shell environment variables (continued)

Variable Type Description



Built-in Shell Variables | 489

FUNCNAME ARU An array containing the names of all shell functions currently in the execution call
stack. The element with index 0 is the name of any currently-executing shell function.
The bottom-most element is “main.” This variable exists only when a shell function is
executing.

FCEDIT The default editor for the fc command.

FIGNORE L A list of names to ignore when doing filename completion.

GLOBIGNORE L A list of patterns defining filenames to ignore during pathname expansion.

GROUPS AR An array containing a list of groups of which the current user is a member.

IFS The Internal Field Separator: a list of characters that act as word separators. Normally
set to space, tab, and newline.

HISTCMD U The history number of the current command.

HISTCONTROL A list of patterns, separated by colons (:), which can have the following values:
ignorespace: lines beginning with a space are not entered into the history list;
ignoredups: lines matching the last history line are not entered; erasedups: all
previous lines matching the current line to are removed from the history list before the
line is saved; ignoreboth: enables both ignorespace and ignoredups.

HISTFILE The name of the command history file.

HISTIGNORE A list of patterns to decide what should be retained in the history list.

HISTSIZE The number of lines kept in the command history.

HISTFILESIZE The maximum number of lines kept in the history file.

HISTTIMEFORMAT If set and not null, its value is used as a format string for strftime(3) to print the time-
stamp associated with each history entry displayed by the history built-in. If this vari-
able is set, timestamps are written to the history file so they may be preserved across
shell sessions.

HOME The home (login) directory.

HOSTFILE The file to be used for hostname completion.

HOSTNAME The name of the current host.

HOSTTYPE The type of machine bash is running on.

IGNOREEOF The number of EOF characters received before exiting an interactive shell.

INPUTRC The readline startup file.

LANG Used to determine the locale category for any category not specifically selected with a
variable starting with LC_.

LC_ALL Overrides the value of $LANG and any other LC_ variable specifying a locale category.

LC_COLLATE Determines the collation order used when sorting the results of pathname expansion.

LC_CTYPE Determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.

LC_MESSAGES This variable determines the locale used to translate double-quoted strings preceded
by a $.

LC_NUMERIC Determines the locale category used for number formatting.

LINENO U The number of the line that just ran in a script or function.

MACHTYPE A string describing the system on which bash is executing.

Table A-5. Built-in shell environment variables (continued)

Variable Type Description



490 | Appendix A: Reference Lists

MAIL The name of the file to check for new mail.

MAILCHECK How often (in seconds) to check for new mail.

MAILPATH L A list of filenames to check for new mail, if $MAIL is not set.

OLDPWD The previous working directory.

OPTARG The value of the last option argument processed by getopts.

OPTERR If set to 1, display error messages from getopts.

OPTIND The number of the first argument after options.

OSTYPE The operating system on which bash is executing.

PATH L The search path for commands.

PIPESTATUS A An array variable containing a list of exit status values from the processes in the most
recently executed foreground pipeline.

POSIXLY_CORRECT If in the environment when bash starts, the shell enters posix mode before reading the
startup files, as if the --posix invocation option had been supplied. If it is set while
the shell is running, bash enables posix mode, as if the command set -o posix had
been executed.

PROMPT_COMMAND The value is executed as a command before the primary prompt is issued.

PS1 The primary command prompt string.

PS2 The prompt string for line continuations.

PS3 The prompt string for the select command.

PS4 The prompt string for the xtrace option.

PPID R The process ID of the parent process.

PWD The current working directory.

RANDOM U A random number between 0 and 32767 (215 - 1).

REPLY The user’s response to the select command; result of the read command if no variable
names are given.

SECONDS U The number of seconds since the shell was invoked.

SHELL The full pathname of the shell.

SHELLOPTS LR A list of enabled shell options.

SHLVL Incremented by 1 each time a new instance (not a subshell) of bash is invoked. This is
intended to be a count of how deeply your bash shells are nested.

TIMEFORMAT Specifies the format for the output from using the time reserved word on a command
pipeline.

TMOUT If set to a positive integer, the number of seconds after which the shell automatically
terminates if no input is received.

UID R The user ID of the current user.

auto_resume Controls how job control works (values are exact, substring, or something other
than those keywords).

histchars Specifies what to use as the history control characters. Normally set to the string !^#.

Table A-5. Built-in shell environment variables (continued)

Variable Type Description



set Options | 491

set Options
The options in Table A-6 can be turned on with the set -arg command. They are all
initially off except where noted. Full names, where listed, are arguments to set that
can be used with set -o. The full names braceexpand, histexpand, history, keyword,
and onecmd are not available in versions of bash prior to 2.0. Also, in those versions,
hashing is switched with -d.

Table A-6. set options

Option Full name (-o) Meaning

-a allexport Export all subsequently defined or modified variables.

-B braceexpand The shell performs brace expansion. This is on by default.

-b notify Report the status of terminating background jobs immediately.

-C noclobber Don’t allow redirection to overwrite existing files.

-E errtrace Any trap on ERR is inherited by shell functions, command substitutions, and commands
executed in a subshell environment.

-e errexit Exit the shell when a simple command exits with nonzero status. A simple command is
a command not part of a while, until, or if; nor part of a && or || list; nor a com-
mand whose return value is inverted by !.

emacs Use Emacs-style command-line editing.

-f noglob Disable pathname expansion.

-H histexpand Enable ! style history substitution. On by default in an interactive shell.

history Enable command history. On by default in interactive shells.

-h hashall Enable the hashing of commands.

ignoreeof Disallow Ctrl-D to exit the shell.

-k keyword All arguments in the form of assignment statements are placed in the environment for a
command, not just those that precede the command name.

-m monitor Enable job control (on by default in interactive shells).

-n noexec Read commands and check syntax but do not execute them. Ignored for interactive
shells.

-P physical Do not follow symbolic links on commands that change the current directory. Use the
physical directory.

-p privileged Script is running in suid mode.

pipefail The return value of a pipeline is the value of the last (rightmost) command to exit with a
nonzero status, or zero if all commands in the pipeline exit successfully. This option is
disabled by default.

posix Change the default behavior to that of POSIX 1003.2 where it differs from the standard.

-T functrace Any trap on DEBUG is inherited by shell functions, command substitutions, and com-
mands executed in a subshell environment.

-t onecmd Exit after reading and executing one command.

-u nounset Treat undefined variables as errors, not as null.

-v verbose Print shell input lines before running them.



492 | Appendix A: Reference Lists

shopt Options
The shopt options are set with shopt -s arg and unset with shopt -u arg (see
Table A-7). Versions of bash prior to 2.0 had environment variables to perform some
of these settings. Setting them equated to shopt -s. The variables (and corresponding
shopt options) were: allow_null_glob_expansion (nullglob), cdable_vars (cdable_
vars), command_oriented_history (cmdhist), glob_dot_filenames (dotglob), no_exit_
on_failed_exec (execfail). These variables no longer exist.

The options extdebug, failglob, force_fignore, and gnu_errfmt are not available in
versions of bash prior to 3.0.

vi Use vi-style command-line editing.

-x xtrace Print commands (after expansions) before running them.

- Signals the end of options. All remaining arguments are assigned to the positional
parameters. -x and -v are turned off. If there are no remaining arguments to set, the
positional arguments remain unchanged.

-- With no arguments following, unset the positional parameters. Otherwise, the posi-
tional parameters are set to the following arguments (even if they begin with -).

Table A-7. shopt options

Option Meaning if set

cdable_vars An argument to cd that is not a directory is assumed to be the name of a variable
whose value is the directory to change to.

cdspell Minor errors in the spelling of a directory supplied to the cd command will be cor-
rected if there is a suitable match. This correction includes missing letters, incorrect
letters, and letter transposition. It works for interactive shells only.

checkhash Commands found in the hash table are checked for existence before being executed
and nonexistence forces a $PATH search.

checkwinsize Checks the window size after each command and, if it has changed, updates the vari-
ables $LINES and $COLUMNS accordingly.

cmdhist Attempt to save all lines of a multiline command in a single history entry.

dotglob Filenames beginning with a . are included in pathname expansion.

execfail A noninteractive shell will not exit if it cannot execute the argument to an exec. Inter-
active shells do not exit if exec fails.

expand_aliases Aliases are expanded.

extdebug Behavior intended for use by debuggers is enabled. This includes: the -F option of
declare displays the source filename and line number corresponding to each function
name supplied as an argument; if the command run by the DEBUG trap returns a
nonzero value, the next command is skipped and not executed; and if the command
run by the DEBUG trap returns a value of 2, and the shell is executing in a subroutine,
a call to return is simulated.

Table A-6. set options (continued)

Option Full name (-o) Meaning



shopt Options | 493

extglob Extended pattern matching features are enabled.

failglob Patterns that fail to match filenames during pathname expansion result in an expan-
sion error.

force_fignore The suffixes specified by the $FIGNORE shell variable cause words to be ignored
when performing word completion even if the ignored words are the only possible
completions.

gnu_errfmt Shell error messages are written in the standard GNU error message format.

histappend The history list is appended to the file named by the value of the variable
$HISTFILE when the shell exits, rather than overwriting the file.

histreedit If readline is being used, the opportunity is given for re-editing a failed history
substitution.

histverify If readline is being used, the results of history substitution are not immediately
passed to the shell parser. Instead, the resulting line is loaded into the readline edit-
ing buffer, allowing further modification.

hostcomplete If readline is being used, an attempt will be made to perform hostname completion
when a word beginning with @ is being completed.

huponexit bash will send SIGHUP to all jobs when an interactive login shell exits.

interactive_comments Allows a word beginning with # and all subsequent characters on the line to be
ignored in an interactive shell.

lithist If the cmdhist option is enabled, multiline commands are saved to the history with
embedded newlines rather than using semicolon separators where possible.

login_shell If bash is started as a login shell. This is a read-only value.

mailwarn If the file being checked for mail has been accessed since the last time it was checked,
the message “The mail in mailfile has been read” is displayed.

no_empty_cmd_completion If readline is being used, no attempt will be made to search the PATH for possible
completions when completion is attempted on an empty line.

nocaseglob bash matches filenames in a case-insensitive fashion when performing pathname
expansion.

nullglob Cause patterns that match no files to expand to null strings rather than to
themselves.

progcomp Programmable completion facilities are enabled. Default is on.

promptvars Prompt strings undergo variable and parameter expansion after being expanded.

restricted_shell Set if the shell is started in restricted mode. The value cannot be changed.

shift_verbose The shift built-in prints an error if it has shifted past the last positional parameter.

sourcepath The source built-in uses the value of $PATH to find the directory containing the file
supplied as an argument.

xpg_echo echo expands backslash-escape sequences by default.

Table A-7. shopt options

Option Meaning if set



494 | Appendix A: Reference Lists

Adjusting Shell Behavior Using set, shopt, and
Environment Variables
Table A-8 combines Tables A-5, A-6, and A-7 and provides a quick way to look for
what you can configure and which of the three mechanisms you use to configure it.
The options are loosely grouped according to function or purpose, but it’s worth-
while to scan the entire table to get an overall sense of what you can configure.

The “Set option” column contains the options that can be turned on with the set -arg
command. All are initially off except where noted. Items in the “Set full name” col-
umn, where listed, are arguments to set that can be used with set -o. The full names
braceexpand, histexpand, history, keyword, and onecmd are not available in versions of
bash prior to 2.0. Also, in those versions, hashing is switched with -d.

The “Shopt option” column shows the options set with shopt -s arg and unset with
shopt -u arg. Versions of bash prior to 2.0 had environment variables to perform
some of these settings. Setting them equated to shopt -s. The variables (and corre-
sponding shopt options) were: allow_null_glob_expansion (nullglob), cdable_vars
(cdable_vars), command_oriented_history (cmdhist), glob_dot_filenames (dotglob),
no_exit_on_failed_exec (execfail). These variables no longer exist.

The options extdebug, failglob, force_fignore, and gnu_errfmt are not available in
versions of bash prior to 3.0.

The “Environment variable” column lists environment variables that affect bash con-
figuration and operation. The letters in the Type column of the table have the follow-
ing meanings: A = Array, L = colon-separated list, R = read-only, U = unsetting it
causes it to lose its special meaning.

Note that the variables beginning BASH_ and beginning COMP, as well as the variables
DIRSTACK, FUNCNAME, GLOBIGNORE, GROUPS, HISTIGNORE, HOSTNAME, HISTTIMEFORMAT, LANG,
LC_ALL, LC_COLLATE, LC_MESSAGE, MACHTYPE, PIPESTATUS, SHELLOPTS, and TIMEFORMAT are
not available in versions prior to 2.0. BASH_ENV replaces ENV found in earlier versions.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description

COMP_CWORD An index into ${COMPWORDS} of the
word containing the current cursor
position. This variable is available only
in shell functions invoked by the pro-
grammable completion facilities.

COMP_LINE The current command line. This vari-
able is available only in shell func-
tions and external commands
invoked by the programmable com-
pletion facilities.



Adjusting Shell Behavior Using set, shopt, and Environment Variables | 495

COMP_POINT The index of the current cursor posi-
tion relative to the beginning of the
current command. If the current cur-
sor position is at the end of the cur-
rent command, the value of this
variable is equal to ${#COMPLINE}.
This variable is available only in shell
functions and external commands
invoked by the programmable com-
pletion facilities.

COMP_
WORDBREAKS

U The set of characters that the Readline
library treats as word separators when
performing word completion. If
COMP_WORDBREAKS is unset, it loses
its special properties, even if it is sub-
sequently reset.

COMP_WORDS A An array of the individual words in the
current command line. This variable is
available only in shell functions
invoked by the programmable com-
pletion facilities.

COMPREPLY A The possible completions generated
by a shell function invoked by the pro-
grammable completion facility.

FIGNORE L A list of names to ignore when doing
filename completion.

force_
fignore

The suffixes specified by the
FIGNORE shell variable cause words
to be ignored when performing word
completion even if the ignored words
are the only possible completions.

hostcomple
te

If readline is being used, an attempt
will be made to perform hostname
completion when a word beginning
with @ is being completed.

HOSTFILE The file to be used for hostname
completion.

no_empty_
cmd_
completion

If readline is being used, no attempt
will be made to search the PATH for
possible completions when comple-
tion is attempted on an empty line.

progcomp Programmable completion facilities
are enabled. Default is on.

INPUTRC The readline startup file.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



496 | Appendix A: Reference Lists

-C noclobber Don’t allow redirection to overwrite
existing files.

-t onecmd Exit after reading and executing one
command.

-P physical Do not follow symbolic links on com-
mands that change the current direc-
tory. Use the physical directory.

restricted
_shell

Set if the shell is started in restricted
mode. The value cannot be changed.

SHELLOPTS LR A list of enabled shell options.

sourcepath The source built-in uses the value of
$PATH to find the directory contain-
ing the file supplied as an argument.

BASH_ARGC A An array of values, which are the
number of parameters in each frame
of the current bash execution call
stack. The number of parameters to
the current subroutine (shell function
or script executed with . or source)
is at the top of the stack.

BASH_ARGV A All of the parameters in the current
bash execution call stack. The final
parameter of the last subroutine call is
at the top of the stack; the first
parameter of the initial call is at the
bottom.

BASH_
COMMAND

The command currently being exe-
cuted or about to be executed, unless
the shell is executing a command as
the result of a trap, in which case it is
the command executing at the time of
the trap.

BASH_LINENO A An array whose members are the line
numbers in source files corresponding
to each member of
@var{FUNCNAME}.
${BASHLINENO[$i]} is the line
number in the source file where
${FUNCNAME[$i +1]}was called.
The corresponding source filename is
${BASHSOURCE[$i + 1]}.

BASH_SOURCE A An array containing the source filena-
mes corresponding to the elements in
the $FUNCNAME array variable.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



Adjusting Shell Behavior Using set, shopt, and Environment Variables | 497

-E errtrace Any trap on ERR is inherited by shell
functions, command substitutions,
and commands executed in a subshell
environment.

extdebug Behavior intended for use by debug-
gers is enabled. This includes: the -F
option of declare displays the source
filename and line number corre-
sponding to each function name sup-
plied as an argument; if the command
run by the DEBUG trap returns a non-
zero value, the next command is
skipped and not executed; and if the
command run by the DEBUG trap
returns a value of 2, and the shell is
executing in a subroutine, a call to
return is simulated.

FUNCNAME ARU An array containing the names of all
shell functions currently in the execu-
tion call stack. The element with index
0 is the name of any currently-execut-
ing shell function. The bottom-most
element is “main.” This variable exists
only when a shell function is
executing.

-T functrace Any trap on DEBUG is inherited by
shell functions, command substitu-
tions, and commands executed in a
subshell environment.

LINENO U The number of the line that just ran in
a script or function.

-n noexec Read commands and check syntax but
do not execute them. Ignored for
interactive shells.

-v verbose Print shell input lines before running
them.

-x xtrace Print commands (after expansions)
before running them.

BASH_
SUBSHELL

Incremented by 1 each time a subshell
or subshell environment is spawned.
The initial value is 0. A subshell is a
forked copy of the parent shell and
shares it’s environment.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



498 | Appendix A: Reference Lists

SHLVL Incremented by 1 each time a new
instance (not a subshell) of bash is
invoked. This is intended to be a count
of how deeply your bash shells are
nested.

-a allexport Export all subsequently defined or
modified variables.

BASH_ENV The name of a file to run as the envi-
ronment file when the shell is
invoked.

BASH_
EXECUTION_
STRING

The command argument to the -c
invocation option.

BASH_
VERSINFO

AR Version information for this instance
of bash. Each element of the array
holds parts of the version number.

BASH_
VERSION

The version number of this instance of
bash.

- R Options given to the shell on
invocation.

- Signals the end of options. All remain-
ing arguments are assigned to the
positional parameters. -x and -v are
turned off. If there are no remaining
arguments to set, the positional argu-
ments remain unchanged.

gnu_errfmt Shell error messages are written in
the standard GNU error message for-
mat.

HOME The home (login) directory.

HOSTNAME The name of the current host.

HOSTTYPE The type of machine bash is running
on.

huponexit bash will send SIGHUP to all jobs
when an interactive login shell exits.

-- With no arguments following, unset
the positional parameters. Otherwise,
the positional parameters are set to
the following arguments (even if they
begin with -).

IFS The Internal Field Separator: a list of
characters that act as word separa-
tors. Normally set to space, tab, and
newline.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



Adjusting Shell Behavior Using set, shopt, and Environment Variables | 499

-k keyword Place keyword arguments in the envi-
ronment for a command.

LANG Used to determine the locale category
for any category not specifically
selected with a variable starting with
LC_.

LC_ALL Overrides the value of $LANG and any
other LC_ variable specifying a locale
category.

LC_COLLATE Determines the collation order used
when sorting the results of pathname
expansion.

LC_CTYPE Determines the interpretation of char-
acters and the behavior of character
classes within pathname expansion
and pattern matching.

LC_MESSAGES This variable determines the locale
used to translate double-quoted
strings preceded by a $.

LC_NUMERIC Determines the locale category used
for number formatting.

login_
shell

If bash is started as a login shell. This
is a read-only value.

MACHTYPE A string describing the system on
which bash is executing.

PATH L The search path for commands.

SECONDS U The number of seconds since the shell
was invoked.

-B braceexpand The shell performs brace expansion.
This is on by default.

dotglob Filenames beginning with a . are
included in pathname expansion.

expand_
aliases

Aliases are expanded.

extglob Extended pattern matching features
are enabled.

failglob Patterns that fail to match filenames
during pathname expansion result in
an expansion error.

GLOBIGNORE L A list of patterns defining filenames to
ignore during pathname expansion.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



500 | Appendix A: Reference Lists

nocaseglob bash matches filenames in a case-
insensitive fashion when performing
pathname expansion.

-f noglob Disable pathname expansion.

nullglob Cause patterns that match no files to
expand to null strings rather than to
themselves.

checkhash Commands found in the hash table
are checked for existence before being
executed, and nonexistence forces a
$PATH search.

-h hashall Disable the hashing of commands.

cmdhist Attempt to save all lines of a multiline
command in a single history entry.

histappend The history list is appended to the file
named by the value of the variable
$HISTFILE when the shell exits,
rather than overwriting the file.

histchars Specifies what to use as the history
control characters. Normally set to the
string !^#.

HISTCMD U The history number of the current
command.

HISTCONTROL A list of patterns, separated by colons
(:), which can have the following val-
ues. ignorespace: lines beginning
with a space are not entered into the
history list. ignoredups: lines
matching the last history line are not
entered. erasedups: all previous
lines matching the current line to are
removed from the history list before
the line is saved. ignoreboth:
enables both ignorespace and
ignoredups.

-H histexpand Enable ! style history substitution. On
by default in an interactive shell.

HISTFILE The name of the command history
file.

HISTFILESIZ
E

The maximum number of lines kept in
the history file.

HISTIGNORE A list of patterns to decide what
should be retained in the history list.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



Adjusting Shell Behavior Using set, shopt, and Environment Variables | 501

history Enable command history. On by
default in interactive shells.

histreedit If readline is being used, the opportu-
nity is given for re-editing a failed his-
tory substitution.

HISTSIZE The number of lines kept in the com-
mand history.

HISTTIMEFOR
MAT

If set and not null, its value is used as a
format string for strftime(3) to print
the timestamp associated with each
history entry displayed by the history
built-in. If this variable is set, time-
stamps are written to the history file
so they may be preserved across shell
sessions.

histverify If readline is being used, the results of
history substitution are not immedi-
ately passed to the shell parser.
Instead, the resulting line is loaded
into the readline editing buffer, allow-
ing further modification.

lithist If the cmdhist option is enabled,
multiline commands are saved to the
history with embedded newlines
rather than using semicolon separa-
tors where possible.

IGNOREEOF The number of EOF characters
received before exiting an interactive
shell.

ignoreeof Disallow Ctrl-D to exit the shell.

cdable_
vars

An argument to cd that is not a direc-
tory is assumed to be the name of a
variable whose value is the directory
to change to.

CDPATH L A list of directories for the cd com-
mand to search.

cdspell Minor errors in the spelling of a direc-
tory supplied to the cd command will
be corrected if there is a suitable
match. This correction includes miss-
ing letters, incorrect letters, and letter
transposition. It works for interactive
shells only.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



502 | Appendix A: Reference Lists

checkwinsi
ze

Checks the window size after each
command and, if it has changed,
updates the variables $LINES and
$COLUMNS accordingly.

DIRSTACK ARU The current contents of the directory
stack.

emacs Use Emacs-style command-line
editing.

FCEDIT The default editor for the fc
command.

interactiv
e_comments

Allows a word beginning with # and
all subsequent characters on the line
to be ignored in an interactive shell.

OLDPWD The previous working directory.

PROMPT_
COMMAND

The value is executed as a command
before the primary prompt is issued.

promptvars Prompt strings undergo variable and
parameter expansion after being
expanded.

PS1 The primary command prompt string.

PS2 The prompt string for line
continuations.

PS3 The prompt string for the select
command.

PS4 The prompt string for the xtrace
option.

PWD The current working directory.

shift_
verbose

The shift built-in prints an error if it
has shifted past the last positional
parameter.

TIMEFORMAT Specifies the format for the output
from using the time reserved word on
a command pipeline.

TMOUT If set to a positive integer, the number
of seconds after which the shell auto-
matically terminates if no input is
received.

_ R Last argument to the previous
command.

vi Use vi-style command-line editing.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



Adjusting Shell Behavior Using set, shopt, and Environment Variables | 503

auto_resume Controls how job control works (val-
ues are exact, substring, or something
other than those keywords).

-m monitor Enable job control (on by default in
interactive shells).

-b notify Report the status of terminating back-
ground jobs immediately.

MAIL The name of the file to check for new
mail.

MAILCHECK How often (in seconds) to check for
new mail.

MAILPATH L A list of file names to check for new
mail, if $MAIL is not set.

mailwarn If the file being checked for mail has
been accessed since the last time it
was checked, the message “The mail
in mailfile has been read” is displayed.

pipefail The return value of a pipeline is the
value of the last (rightmost) com-
mand to exit with a nonzero status, or
zero if all commands in the pipeline
exit successfully. This option is dis-
abled by default.

PIPESTATUS A An array variable containing a list of
exit status values from the processes
in the most recently executed fore-
ground pipeline.

posix Change the default behavior to that of
POSIX 1003.2 where it differs from the
standard.

POSIXLY_
CORRECT

If in the environment when bash
starts, the shell enters posix mode
before reading the startup files, as if
the --posix invocation option had
been supplied. If it is set while the
shell is running, bash enables posix
mode, as if the command set -o
posix had been executed.

xpg_echo echo expands backslash-escape
sequences by default.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



504 | Appendix A: Reference Lists

BASH_
REMATCH

AR An array whose members are
assigned by the =~ binary operator to
the [[ conditional command. The
element with index 0 is the portion of
the string matching the entire regular
expression. The element with index n
is the portion of the string matching
the nth parenthesized subexpression.

0 R Name of the shell or shell script.

* R A single string containing the posi-
tional parameters given to the current
script or function, separated by the
first character of $IFS (e.g., arg1
arg2 arg3).

@ R Each of the positional parameters
given to the current script or function,
given as a list of double-quoted
strings (e.g., "arg1" "arg2"
"arg3").

BASH The full pathname used to invoke this
instance of bash.

$ R Process ID of the shell process.

-e errexit Exit the shell when a simple command
exits with nonzero status. A simple
command is a command not part of a
while, until, or if; nor part of a
&& or || list; nor a command whose
return value is inverted by !.

EUID R The effective user ID of the current
user.

! R Process ID of the last background
command.

execfail A noninteractive shell will not exit if it
cannot execute the argument to an
exec. Interactive shells do not exit if
exec fails.

GROUPS AR An array containing a list of groups of
which the current user is a member.

-u nounset Treat undefined variables as errors,
not as null.

OPTARG The value of the last option argument
processed by getopts.

OPTERR If set to 1, display error messages from
getopts.

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



Test Operators | 505

Test Operators
The operators in Table A-9 are used with test and the [...] and [[...]] constructs.
They can be logically combined with -a (“and”) and -o (“or”) and grouped with
escaped parenthesis (\(...\)). The string comparisons < and > and the [[...]] con-
struct are not available in versions of bash prior to 2.0, and =~ is only available in
bash version 3.0 and later as noted.

OPTIND The number of the first argument
after options.

OSTYPE The operating system on which bash
is executing.

# R The number of arguments given to
the current script or function.

PPID R The process ID of the parent process.

-p privileged Script is running in suid mode.

? R Exit status of the previous command.

RANDOM U A random number between 0 and
32767 (2^15 - 1).

REPLY The user’s response to the select
command; result of the read com-
mand if no variable names are given.

SHELL The full pathname of the shell.

UID R The user ID of the current user.

Table A-9. Test operators

Operator True if

-a file file exists, deprecated, same as -e

-b file file exists and is a block device file

-c file file exists and is a character device file

-d file file exists and is a directory

-e file file exists; same as -a

-f file file exists and is a regular file

-g file file exists and has its setgid bit set

-G file file exists and is owned by the effective group ID

-h file file exists and is a symbolic link, same as -L

-k file file exists and has its sticky bit set

-L file file exists and is a symbolic link, same as -h

Table A-8. Adjusting shell behavior using set, shopt, and environment variables (continued)

Set
option Set full name Shopt option

Environment
variable

Env. var.
type Description



506 | Appendix A: Reference Lists

I/O Redirection
Table A-10 is a complete list of I/O redirectors. Note that there are two formats for
specifying STDOUT and STDERR redirection: &>file and >&file. The second of
these (which is the one used throughout this book) is the preferred way.

-n string string is non-null

-N file file was modified since it was last read

-O file file exists and is owned by the effective user ID

-p file file exists and is a pipe or named pipe (FIFO file)

-r file file exists and is readable

-s file file exists and is not empty

-S file file exists and is a socket

-t N File descriptor N points to a terminal

-u file file exists and has its setuid bit set

-w file file exists and is writeable

-x file file exists and is executable, or file is a directory that can be searched

-z string string has a length of zero

fileA -nt fileB fileA modification time is newer than fileA

fileA -ot fileB fileA modification time is older than fileA

fileA -ef fileB fileA and fileB point to the same file

stringA = stringB stringA equals stringB (POSIX version)

stringA == stringB stringA equals stringB

stringA != stringB stringA does not match stringB

stringA =~ regexp stringA matches the extended regular expression regexpa

stringA < stringB stringA sorts before stringB lexicographically

stringA > stringB stringA sorts after stringB lexicographically

exprA -eq exprB Arithmetic expressions exprA and exprB are equal

exprA -ne exprB Arithmetic expressions exprA and exprB are not equal

exprA -lt exprB exprA is less than exprB

exprA -gt exprB exprA is greater than exprB

exprA -le exprB exprA is less than or equal to exprB

exprA -ge exprB exprA is greater than or equal to exprB

exprA -a exprB exprA is true and exprB is true

exprA -o exprB exprA is true or exprB is true

a Only available in bash version 3.0 and later. May only be used inside [[...]].

Table A-9. Test operators (continued)

Operator True if



I/O Redirection | 507

Table A-10. Input/output redirection

Redirector Function

cmd1 | cmd2 Pipe; take standard output of cmd1 as standard input to cmd2.

> file Direct standard output to file.

< file Take standard input from file.

>> file Direct standard output to file; append to file if it already exists.

>| file Force standard output to file even if noclobber is set.

n>| file Force output to file from file descriptor n even if noclobber is set.

<> file Use file as both standard input and standard output.

n<> file Use file as both input and output for file descriptor n.

<< label Here-document.

n> file Direct file descriptor n to file.

n< file Take file descriptor n from file.

>> file Direct file descriptor n to file; append to file if it already exists.

n>& Duplicate standard output to file descriptor n.

n<& Duplicate standard input from file descriptor n.

n>&m File descriptor n is made to be a copy of the output file descriptor m.

n<&m File descriptor n is made to be a copy of the input file descriptor m.

&>file Directs standard output and standard error to file.

<&- Close the standard input.

>&- Close the standard output.

n>&- Close the output from file descriptor n.

n<&- Close the input from file descriptor n.

n>&word If n is not specified, the standard output (file descriptor 1) is used; if the digits in word do not specify
a file descriptor open for output, a redirection error occurs; as a special case, if n is omitted, and word
does not expand to one or more digits, the standard output and standard error are redirected as
described previously.

n<&word If word expands to one or more digits, the file descriptor denoted by n is made to be a copy of that
file descriptor; if the digits in word do not specify a file descriptor open for input, a redirection error
occurs; if word evaluates to -, file descriptor n is closed; if n is not specified, the standard input (file
descriptor 0) is used.

n>&digit- Moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1) if n is not
specified.

n<&digit- Moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0) if n is not
specified; digit is closed after being duplicated to n.



508 | Appendix A: Reference Lists

echo Options and Escape Sequences
echo accepts a number of arguments (see Table A-11).

echo accepts a number of escape sequences that start with a backslash.

These sequences in Table A-12 exhibit fairly predictable behavior, except for \f,
which on some displays causes a screen clear while on others it causes a line feed,
and it ejects the page on most printers. \v is somewhat obsolete; it usually causes a
line feed.

The \n, \0, and \x sequences are even more device-dependent and can be used for
complex I/O, such as cursor control and special graphics characters.

Table A-11. echo options

Options Function

-e Turns on the interpretation of backslash-escaped characters

-E Turns off the interpretation of backslash-escaped characters on systems where this mode is the
default

-n Omits the final newline (same as the \c escape sequence)

Table A-12. echo escape sequences

Sequence Character printed

\a Alert or Ctrl-G (bell)

\b Backspace or Ctrl-H

\c Omit final newline

\e Escape character (same as \E)

\E Escape character

\f Formfeed or Ctrl-L

\n Newline (not at end of command) or Ctrl-J

\r Return (Enter) or Ctrl-M

\t Tab or Ctrl-I

\v Vertical Tab or Ctrl-K

\nnnn The eight-bit character whose value is the octal (base-8) value nnn where nnn is 1 to 3 digits

\0nnn The eight-bit character whose value is the octal (base-8) value nnn where nnn is 0 to 3 digits

\xHH The eight-bit character whose value is the hexadecimal (base-16) value HH (one or two digits)

\\ Single backslash



printf | 509

printf
The printf command, available in bash since version 2.02, has two parts (beyond the
command name): a format string and a variable number of arguments:

printf format-string [arguments]

format-string describes the format specifications; this is best supplied as a string
constant in quotes. arguments is a list, such as a list of strings or variable values that
correspond to the format specifications.

The format is reused as necessary to use up all of the arguments. If the format
requires more arguments than are supplied, the extra format specifications behave as
if a zero value or null string, as appropriate, had been supplied.

A format specification is preceded by a percent sign (%), and the specifier is one of the
characters described below. Two of the main format specifiers are %s for strings and
%d for decimal integers (see Table A-13).

The printf command can be used to specify the width and alignment of output fields.
A format expression can take three optional modifiers following % and preceding the
format specifier:

%flags width.precision format-specifier

The width of the output field is a numeric value. When you specify a field width, the
contents of the field are right-justified by default. You must specify a flag of - to get
left-justification (the rest of the flags are shown in the table). Thus, %-20s outputs a

Table A-13. printf format specifiers

Format character Meaning

%c ASCII character (prints first character of corresponding argument)

%d, %i Decimal (base 10) integer

%e Floating-point format ([-]d.precisione[+-]dd)—see the text after the table for the meaning of
precision

%E Floating-point format ([-]d.precisionE[+-]dd)

%f Floating-point format ([-]ddd.precision)

%g %e or %f conversion, whichever is shorter, with trailing zeros removed

%G %E or %f conversion, whichever is shortest, with trailing zeros removed

%o Unsigned octal value

%s String

%u Unsigned decimal value

%x Unsigned hexadecimal number; uses a-f for 10 to 15

%X Unsigned hexadecimal number; uses A-F for 10 to 15

%% Literal %



510 | Appendix A: Reference Lists

left-justified string in a field 20-characters wide. If the string is less than 20 charac-
ters, the field is padded with whitespace to fill. In the following examples, we put our
format specifier between a pair of | in our format string so you can see the width of
the field in the output. The first example right-justifies the text:

printf "|%10s|\n" hello@

It produces:

|     hello|

The next example left-justifies the text:

printf "|%-10s|\n" hello

It produces:

|hello     |

The precision modifier, used for decimal or floating-point values, controls the num-
ber of digits that appear in the result. For string values, it controls the maximum
number of characters from the string that will be printed.

You can even specify both the width and precision dynamically, via values in the
printf argument list. You do this by specifying asterisks in the format expression,
instead of literal values:

$ myvar=42.123456
$ mysig=6
$ printf "|%*.*G|\n" 5 $mysig $myvar
|42.1235|

In this example, the width is 5, the precision is 6, and the value to print comes from
the value of $myvar. The precision is optional and its exact meaning varies by control
letter, as shown in Table A-14.

Table A-14. Meaning of “precision” based on printf format specifier

Format What “precision” means

%d, %I, %o, %u, %x, %X The minimum number of digits to print. When the value has fewer digits, it is padded
with leading zeros. The default precision is 1.

%e, %E The minimum number of digits to print. When the value has fewer digits, it is padded
with zeros after the decimal point. The default precision is 10. A precision of 0 inhibits
printing of the decimal point.

%f The number of digits to the right of the decimal point.

%g, %G The maximum number of significant digits.

%s The maximum number of characters to print.

%b [POSIX Shell—may be nonportable to other versions of printf.] When used instead of
%s, expands echo-style escape sequences in the argument string (see Table A-15).

%q [POSIX Shell—may be nonportable to other versions of printf.] When used instead of
%s, prints the string argument in such a way that it can be used for shell input.



printf | 511

%b and %q are additions to bash (and other POSIX compliant shells) which provide
useful features at the expense of nonportability to versions of the printf command
found in some other shells and in other places in Unix. Here are two examples to
make their functions a little clearer:

%q shell quotes:

$ printf "%q\n" "greetings to the world"
greetings\ to\ the\ world

%b echo-style escapes:

$ printf "%s\n" 'hello\nworld'
hello\nworld
$ printf "%b\n" 'hello\nworld'
hello
world

Table A-15 shows the escape sequences that will be translated in a string printed
with the %b format.

Finally, one or more flags may precede the field width and the precision in a printf
format specifier. We’ve already seen the - flag for left-justification. The rest of the
flags are shown in Table A-16.

Table A-15. printf escape sequences

Escape sequence Meaning

\e Escape character

\a Bell character

\b Backspace character

\f Form-feed character

\n Newline character

\r Carriage return character

\t Tab character

\v Vertical tab character

\' Single-quote character

\" Double-quote character

\\ Backslash character

\nnn 8-bit character whose ASCII value is the 1, 2, or 3 digit octal number nnn

\xHH 8-bit character whose ASCII value is the 1 or 2 digit hexadecimal number HH

Table A-16. printf flags

Character Description

- Left-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.



512 | Appendix A: Reference Lists

Examples
These examples for printf use some shell variables, assigned as follows in Table A-17:

PI=3.141592653589

Here is one more example that will not display well in the table. The traditional way
to write printf statements is to embed all formatting, including things like newlines,
in the format string. This is shown in the table. That is encouraged, but you don’t
have to do it that way, and sometimes it’s easier if you don’t. Note the ➝ denotes a
Tab character in the output:

$ printf "%b" "\aRing terminal bell, then tab\t then newline\nThen line 2.\n"
Ring terminal bell, then tab ➝ then newline
Then line 2.

+ Always prefix numeric values with a sign, even if the value is positive.

# Use an alternate form: %o has a preceding 0; %x and %X are prefixed with 0x and 0X, respectively;
%e, %E and %f always have a decimal point in the result; and %g and %G do not have trailing zeros
removed.

0 Pad output with zeros, not spaces. This only happens when the field width is wider than the converted
result. In the C language, this flag applies to all output formats, even non-numeric ones. For bash, it
only applies to the numeric formats.

' Format with thousands’ grouping characters if %i, %d, %u, %f, %F, %g, or %G (although this is POSIX,
it’s still not always implemented).

Table A-17. printf examples

printf statement Result Comment

printf '%f\n' $PI 3.141593 Note the default rounding.

# not what you want
printf '%f.5\n' $PI

3.14.5 A common mistake—the format specifier should be on the other
side of the %f; since it isn’t, the .5 is just appended like any text.

printf '%.5f\n' $PI 3.14159 Gives five places to the right of the decimal point.

printf '%+.2f\n' $PI +3.14 Leading + sign, only two digits to the right of the decimal point.

printf '[%.4s]\n' s string [s]

[stri]

Truncates to four characters; with only one character, we get only
one character-wide output, not reuse of format string.

printf '[%4s]\n' s string [ s]

[string]

Assures us of a minimum four-character field width, right-
justified; doesn’t truncate, though.

printf '[%-4.4s]\n' s
string

[s ]

[stri]

Does it all—minimum width of four, maximum width of four,
truncating if necessary, and left justifies (due to the minus sign) if
shorter than four.

Table A-16. printf flags (continued)

Character Description



Date and Time String Formatting with strftime | 513

See Also
• http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Date and Time String Formatting with strftime
Table A-18 shows common date and time string formatting options. Consult your
system’s manpages for date and strftime(3), as both the options and what they mean
vary from system to system.

Table A-18. strftime format codes

Format Description

%% A literal %.

%a The locale’s abbreviated weekday name (Sun..Sat).

%A The locale’s full weekday name (Sunday..Saturday).

%B The locale’s full month name (January..December).

%b or %h The locale’s abbreviated month name (Jan..Dec).

%c The locale’s default/preferred date and time representation.

%C The century (a year divided by 100 and truncated to an integer) as a decimal number (00..99).

%d The day of the month as a decimal number (01..31).

%D The date in the format %m/%d/%y (MM/DD/YY). Note that the United States uses MM/DD/YY while
everyone else uses DD/MM/YY, so this format is ambiguous and should be avoided. Use %F instead, since
it’s a recognized standard and it sorts well.

%e The day of month as a blank padded decimal number ( 1..31).

%F The date in the format %Y-%m-%d (the ISO 8601 date format: CCYY-MM-DD); except when it’s the full
month name, as on HP-UX.

%g The two-digit year corresponding to the %V week number (YY).

%G The four-digit year corresponding to the %V week number (CCYY).

%H The hour (24-hour clock) as a decimal number (00..23).

%h or %b The locale’s abbreviated month name (Jan..Dec).

%I The hour (12-hour clock) as a decimal number (01..12).

%j The day of the year as a decimal number (001..366).

%k The hour (24-hour clock) as a blank padded decimal number ( 0..23).

%l The hour (12-hour clock) as a blank padded decimal number ( 1,12).

%m The month as a decimal number (01..12).

%M The minute as a decimal number (00..59).

%n A literal newline.

%N Nanoseconds (000000000..999999999). [GNU]

%p The locale’s equivalent of either “AM” or “PM”.

%P The locale’s equivalent of either “am” or “pm”. [GNU]



514 | Appendix A: Reference Lists

Pattern-Matching Characters
The material in this section is adapted from the Bash Reference Manual (http://www.
gnu.org/software/bash/manual/bashref.html; see Table A-19).

%r The locale’s representation of 12-hour clock time using AM/PM notation (HH:MM:SS AM/PM).

%R The time in the format %H:%M (HH:MM).

%s The number of seconds since the Epoch, UTC (January 1, 1970 at 00:00:00).

%S The second as a decimal number (00..61). The range of seconds is (00-61) instead of (00-59) to allow for
the periodic occurrence of leap seconds and double leap seconds.

%t A literal tab.

%T The time in the format %H:%M:%S (HH:MM:SS).

%u The weekday (Monday as the first day of the week) as a decimal number (1..7).

%U The week number of the year (Sunday as the first day of the week) as a decimal number (00..53).

%v The date in the format %e-%b-%Y (D-MMM-CCYY). [Not standard]

%V The week number of the year (Monday as the first day of the week) as a decimal number (01..53). Accord-
ing to ISO 8601 the week containing January 1 is week 1 if it has four or more days in the new year, other-
wise it is week 53 of the previous year, and the next week is week 1. The year is given by the %G
conversion specification.

%w The weekday (Sunday as the first day of the week) as a decimal number (0..6).

%W The week number of the year (Monday as the first day of the week) as a decimal number (00..53).

%x The locale’s appropriate date representation.

%X The locale’s appropriate time representation.

%y The year without century as a decimal number (00..99).

%Y The year with century as a decimal number.

%z The offset from UTC in the ISO 8601 format [-]hhmm.

%Z The time zone name.

Table A-19. Pattern-matching characters

Character Meaning

* Matches any string, including the null string.

? Matches any single character.

[ ... ] Matches any one of the enclosed characters.

[! ... ] or [^ ... ] Matches any character not enclosed.

Table A-18. strftime format codes (continued)

Format Description



tr Escape Sequences | 515

The following POSIX character classes may be used within [ ], e.g., [[:alnum:]];
consult the grep or egrep manpage on your system for more details.

[[:alnum:]] [[:alpha:]] [[:ascii:]] [[:blank:]] [[:cntrl:]] [[:digit:]]
[[:graph:]] [[:lower:]] [[:print:]] [[:punct:]] [[:space:]] [[:upper:]]
[[:word:]] [[:xdigit:]]

The word character class matches letters, digits, and the character _.

[=c=] matches all characters with the same collation weight (as defined by the cur-
rent locale) as the character c, while [.symbol.] matches the collating symbol symbol.

These character classes are affected by the locale setting. To get the traditional Unix
values, use LC_COLLATE=C or LC_ALL=C.

extglob Extended Pattern-Matching Operators
The operators in Table A-20 apply when using shopt -s extglob. Matches are case-
sensitive, but you may use shopt -s nocasematch (bash 3.1+) to change that. This
option affects case and [[ commands.

tr Escape Sequences

Table A-20. extglob extended pattern-matching operators

Grouping Meaning

@( ... ) Only one occurrence

*( ... ) Zero or more occurrences

+( ... ) One or more occurrences

?( ... ) Zero or one occurrences

!( ... ) Not these occurrences, but anything else

Table A-21. tr escape sequences

Sequence Meaning

\ooo Character with octal value ooo (1-3 octal digits)

\\ A backslash character (i.e., escapes the backslash itself)

\a “Audible” bell, the ASCII BEL character (since “b” was taken for backspace)

\b Backspace

\f Form feed

\n Newline

\r Return

\t Tab (sometimes called a horizontal tab)

\v Vertical tab



516 | Appendix A: Reference Lists

Readline Init File Syntax
The GNU Readline library provides the command line on which you type to commu-
nicate with bash and some other GNU utilities. It is amazingly configurable, but
most people are not aware of this.

Tables A-22, A-23, and A-24 are a subset of what is available to work with. See the
Readline documentation for the full details.

The following is adapted directly from Chet Ramey’s documentation (http://tiswww.
tis.case.edu/~chet/readline/readline.html).

You can modify the run-time behavior of Readline by altering the values of variables
in Readline using the set command within the init file. The syntax is simple:

set variable value

Here, for example, is how to change from the default Emacs-like key binding to use
vi line-editing commands:

set editing-mode vi

Variable names and values, where appropriate, are recognized without regard to
case. Unrecognized variable names are ignored.

Boolean variables (those that can be set to on or off) are set to on if the value is null
or empty, on (case-insensitive), or 1. Any other value results in the variable being set
to off.

Table A-22. Readline configuration settings

Variable Description

bell-style Controls what happens when Readline wants to ring the terminal bell. If set to none,
Readline never rings the bell. If set to visible, Readline uses a visible bell if one is
available. If set to audible (the default), Readline attempts to ring the terminal’s bell.

bind-tty-special-chars If set to on, Readline attempts to bind the control characters treated specially by the
kernel’s terminal driver to their Readline equivalents.

comment-begin The string to insert at the beginning of the line when the insert-comment command is
executed. The default value is #.

completion-ignore-case If set to on, Readline performs filename matching and completion in a case-insensitive
fashion. The default value is off.

completion-query-items The number of possible completions that determines when the user is asked whether
the list of possibilities should be displayed. If the number of possible completions is
greater than this value, Readline will ask the user whether he wishes to view them; oth-
erwise, they are simply listed. This variable must be set to an integer value greater than
or equal to 0. A negative value means Readline should never ask. The default limit is
100.

convert-meta If set to on, Readline will convert characters with the eighth bit set to an ASCII key
sequence by stripping the eighth bit and prefixing an Esc character, converting them to
a meta-prefixed key sequence. The default value is on.



Readline Init File Syntax | 517

disable-completion If set to on, Readline will inhibit word completion. Completion characters will be
inserted into the line as if they had been mapped to self-insert. The default is off.

editing-mode The editing-mode variable controls which default set of key bindings is used. By default,
Readline starts up in Emacs editing mode, where the keystrokes are most similar to
Emacs. This variable can be set to either emacs or vi.

enable-keypad When set to on, Readline will try to enable the application keypad when it is called.
Some systems need this to enable the arrow keys. The default is off.

expand-tilde If set to on, tilde (~) expansion is performed when Readline attempts word completion.
The default is off.

history-preserve-point If set to on, the history code attempts to place the point (the current cursor position) at
the same location on each history line retrieved with previous-history or next-history.
The default is off.

horizontal-scroll-mode This variable can be set to either on or off. Setting it to on means that the text of the
lines being edited will scroll horizontally on a single screen line when they are longer
than the width of the screen, instead of wrapping onto a new screen line. By default,
this variable is set to off.

input-meta If set to on, Readline will enable eight-bit input (it will not clear the eighth bit in the
characters it reads), regardless of what the terminal claims it can support. The default
value is off. The name meta-flag is a synonym for this variable.

isearch-terminators The string of characters that should terminate an incremental search without subse-
quently executing the character as a command. If this variable has not been given a
value, the characters Esc and C-J will terminate an incremental search.

keymap Sets Readline’s idea of the current keymap for key binding commands. Acceptable key-
map names are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-
move, vi-command, and vi-insert. vi is equivalent to vi-command; emacs is
equivalent to emacs-standard. The default value is emacs. The value of the edit-
ing-mode variable also affects the default keymap.

mark-directories If set to on, completed directory names have a slash appended. The default is on.

mark-modified-lines This variable, when set to on, causes Readline to display an asterisk (*) at the start of
history lines that have been modified. This variable is off by default.

mark-symlinked-
directories

If set to on, completed names which are symbolic links to directories have a slash
appended (subject to the value of mark-directories). The default is off.

match-hidden-files This variable, when set to on, causes Readline to match files whose names begin with a
. (hidden files) when performing filename completion, unless the leading . is supplied
by the user in the filename to be completed. This variable is on by default.

output-meta If set to on, Readline will display characters with the eighth bit set directly rather than
as a meta-prefixed escape sequence. The default is off.

page-completions If set to on, Readline uses an internal more-like pager to display a screenful of possible
completions at a time. This variable is on by default.

print-completions-
horizontally

If set to on, Readline will display completions with matches sorted horizontally in
alphabetical order, rather than down the screen. The default is off.

show-all-if-ambiguous This alters the default behavior of the completion functions. If set to on, words that
have more than one possible completion cause the matches to be listed immediately
instead of ringing the bell. The default value is off.

Table A-22. Readline configuration settings (continued)

Variable Description



518 | Appendix A: Reference Lists

emacs Mode Commands
The material in this section also appears in Learning the bash Shell by Cameron
Newham (O’Reilly).

Table A-23 is a complete list of readline Emacs editing mode commands.

show-all-if-unmodified This alters the default behavior of the completion functions in a fashion similar to
show-all-if-ambiguous. If set to on, words that have more than one possible
completion without any possible partial completion (the possible completions don’t
share a common prefix) cause the matches to be listed immediately instead of ringing
the bell. The default value is off.

visible-stats If set to on, a character denoting a file’s type is appended to the filename when listing
possible completions. The default is off.

Table A-23. emacs mode commands

Command Meaning

Ctrl-A Move to beginning of line.

Ctrl-B Move backward one character.

Ctrl-D Delete one character forward.

Ctrl-E Move to end of line.

Ctrl-F Move forward one character.

Ctrl-G Abort the current editing command and ring the terminal bell.

Ctrl-J Same as Return.

Ctrl-K Delete (kill) forward to end of line.

Ctrl-L Clear screen and redisplay the line.

Ctrl-M Same as Return.

Ctrl-N Next line in command history.

Ctrl-O Same as Return, then display next line in history file.

Ctrl-P Previous line in command history.

Ctrl-R Search backward.

Ctrl-S Search forward.

Ctrl-T Transpose two characters.

Ctrl-U Kill backward from point to the beginning of line.

Ctrl-V Make the next character typed verbatim.

Ctrl-V Tab Insert a Tab.

Ctrl-W Kill the word behind the cursor, using whitespace as the boundary.

Ctrl-X / List the possible filename completions of the current word.

Ctrl-X ~ List the possible username completions of the current word.

Table A-22. Readline configuration settings (continued)

Variable Description



emacs Mode Commands | 519

Ctrl-X $ List the possible shell variable completions of the current word.

Ctrl-X @ List the possible hostname completions of the current word.

Ctrl-X ! List the possible command name completions of the current word.

Ctrl-X ( Begin saving characters into the current keyboard macro.

Ctrl-X ) Stop saving characters into the current keyboard macro.

Ctrl-X e Re-execute the last keyboard macro defined.

Ctrl-X Ctrl-R Read in the contents of the readline initialization file.

Ctrl-X Ctrl-V Display version information on this instance of bash.

Ctrl-Y Retrieve (yank) last item killed.

Delete Delete one character backward.

Ctrl-[ Same as Esc (most keyboards).

Esc-B Move one word backward.

Esc-C Change word after point to all capital letters.

Esc-D Delete one word forward.

Esc-F Move one word forward.

Esc-L Change word after point to all lowercase letters.

Esc-N Nonincremental forward search.

Esc-P Nonincremental reverse search.

Esc-R Undo all the changes made to this line.

Esc-T Transpose two words.

Esc-U Change word after point to all uppercase letters.

Esc-Ctrl-E Perform shell alias, history, and word expansion on the line.

Esc-Ctrl-H Delete one word backward.

Esc-Ctrl-Y Insert the first argument to the previous command (usually the second word) at point.

Esc-Delete Delete one word backward.

Esc-^ Perform history expansion on the line.

Esc-< Move to first line of history file.

Esc-> Move to last line of history file.

Esc-. Insert last word in previous command line after point.

Esc-_ Same as above.

Tab Attempt filename completion on current word.

Esc-? List the possible completions of the text before point.

Esc-/ Attempt filename completion on current word.

Esc-~ Attempt username completion on current word.

Esc-$ Attempt variable completion on current word.

Esc-@ Attempt hostname completion on current word.

Table A-23. emacs mode commands (continued)

Command Meaning



520 | Appendix A: Reference Lists

vi Control Mode Commands
The material in this section also appears in Learning the bash Shell by Cameron
Newham (O’Reilly).

Table A-24 shows a complete list of readline vi control mode commands.

Esc-! Attempt command name completion on current word.

Esc-Tab Attempt completion from text in the command history.

Esc-~ Attempt tilde expansion on the current word.

Esc-\ Delete all the spaces and Tabs around point.

Esc-* Insert all of the completions that would be generated by Esc-= before point.

Esc-= List the possible completions before point.

Esc-{ Attempt filename completion and return the list to the shell enclosed within braces.

Table A-24. vi mode commands

Command Meaning

h Move left one character.

l Move right one character.

w Move right one word.

b Move left one word.

W Move to beginning of next nonblank word.

B Move to beginning of preceding nonblank word.

e Move to end of current word.

E Move to end of current nonblank word.

0 Move to beginning of line.

. Repeat the last a insertion.

^ Move to first nonblank character in line.

$ Move to end of line.

i Insert text before current character.

a Insert text after current character.

I Insert text at beginning of line.

A Insert text at end of line.

R Overwrite existing text.

dh Delete one character backward.

dl Delete one character forward.

db Delete one word backward.

Table A-23. emacs mode commands (continued)

Command Meaning



vi Control Mode Commands | 521

dw Delete one word forward.

dB Delete one nonblank word backward.

dW Delete one nonblank word forward.

d$ Delete to end of line.

d0 Delete to beginning of line.

D Equivalent to d$ (delete to end of line).

dd Equivalent to 0d$ (delete entire line).

C Equivalent to c$ (delete to end of line, enter input mode).

cc Equivalent to 0c$ (delete entire line, enter input mode).

x Equivalent to dl (delete character forwards).

X Equivalent to dh (delete character backwards).

k or - Move backward one line.

j or + Move forward one line.

G Move to line given by repeat count.

/string Search forward for string.

?string Search backward for string.

n Repeat search forward.

N Repeat search backward.

fx Move right to next occurrence of x.

Fx Move left to previous occurrence of x.

tx Move right to next occurrence of x, then back one space.

Tx Move left to previous occurrence of x, then forward one space.

; Redo last character finding command.

, Redo last character finding command in opposite direction.

\ Do filename completion.

* Do wildcard expansion (onto command line).

\= Do wildcard expansion (as printed list).

~ Invert (twiddle) case of current character(s).

\ Append last word of previous command, enter input mode.

Ctrl-L Start a new line and redraw the current line on it.

# Prepend # (comment character) to the line and send it to history.

Table A-24. vi mode commands (continued)

Command Meaning



522 | Appendix A: Reference Lists

Table of ASCII Values
Many of our favorite computer books have an ASCII chart. Even in the era of GUIs
and web servers you may be surprised to find that you still need to look up a charac-
ter every now and then. It’s certainly useful when working with tr or finding some
special sequence of escape characters.

muInt Octal Hex ASCII

0 000 00 ^@

1 001 01 ^A

2 002 02 ^B

3 003 03 ^C

4 004 04 ^D

5 005 05 ^E

6 006 06 ^F

7 007 07 ^G

8 010 08 ^H

9 011 09 ^I

10 012 0a ^J

11 013 0b ^K

12 014 0c ^L

13 015 0d ^M

14 016 0e ^N

15 017 0f ^O

16 020 10 ^P

17 021 11 ^Q

18 022 12 ^R

19 023 13 ^S

20 024 14 ^T

21 025 15 ^U

22 026 16 ^V

23 027 17 ^W

24 030 18 ^X

25 031 19 ^Y

26 032 1a ^Z

27 033 1b ^[

28 034 1c ^\

29 035 1d ^]

30 036 1e ^^

31 037 1f ^_

32 040 20

33 041 21 !

34 042 22 “

35 043 23 #

36 044 24 $

37 045 25 %

38 046 26 &

39 047 27 ‘

40 050 28 (

41 051 29 )

42 052 2a *

43 053 2b +

44 054 2c ,

45 055 2d -

46 056 2e .

47 057 2f /

48 060 30 0

49 061 31 1

50 062 32 2

51 063 33 3

52 064 34 4

53 065 35 5

54 066 36 6

55 067 37 7

56 070 38 8

57 071 39 9

58 072 3a :

59 073 3b ;

60 074 3c <

61 075 3d =

Int Octal Hex ASCII



523 | Appendix A: Reference Lists

62 076 3e >

63 077 3f ?

64 100 40 @

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4a J

75 113 4b K

76 114 4c L

77 115 4d M

78 116 4e N

79 117 4f O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5a Z

91 133 5b [

92 134 5c \

93 135 5d ]

94 136 5e ^

Int Octal Hex ASCII

95 137 5f _

96 140 60 `

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6a j

107 153 6b k

108 154 6c l

109 155 6d m

110 156 6e n

111 157 6f o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7a z

123 173 7b {

124 174 7c |

125 175 7d }

126 176 7e ~

127 177 7f ^?

Int Octal Hex ASCII



524

Appendix BAPPENDIX B

Examples Included with bash 2

The bash tarball archive includes an examples directory that is well worth exploring
(after you’ve finished reading this book, of course). It includes sample code, scripts,
functions, and startup files.

Startup-Files Directory Examples
The startup-files directory provides many examples of what you can put in your own
startup files. In particular, bash_aliases has many useful aliases. Bear in mind that if
you copy these files wholesale, you’ll have to edit them for your system because
many of the paths will be different. Refer to Chapter 16 for further information on
changing these files to suit your needs.

The functions directory contains many function definitions that you might find use-
ful. Among them are:

basename
The basename utility, missing from some systems

dirfuncs
Directory manipulation facilities

dirname
The dirname utility, missing from some systems

whatis
An implementation of the Tenth Edition Bourne shell whatis built-in

whence
An almost exact clone of the Korn shell whence built-in

If you come from a Korn shell background, you may find kshenv especially helpful.
This contains function definitions for some common Korn facilities such as whence,
print, and the two-parameter cd built-ins.



Startup-Files Directory Examples | 525

The scripts directory contains many examples of bash scripts. The two largest scripts
are examples of the complex things you can do with shell scripts. The first is a
(rather amusing) adventure game interpreter and the second is a C shell interpreter.
The other scripts include examples of precedence rules, a scrolling text display, a
“spinning wheel” progress display, and how to prompt the user for a particular type
of answer.

Not only are the script and function examples useful for including in your environ-
ment, they also provide many alternative examples that you can learn from when
reading this book. We encourage you to experiment with them.

Table B-1 is an index of what you will find as of bash 3.1 or newer.

Table B-1. Paths for bash 3.1 and newer

Path Description X-ref

./bashdb Deprecated sample implementation of a bash debugger.

./complete Shell completion code.

./functions Example functions.

./functions/array-stuff Various array functions (ashift, array_sort, reverse).

./functions/array-to-string Convert an array to a string.

./functions/autoload An almost ksh-compatible ‘autoload’ (no lazy load). ksh

./functions/autoload.v2 An almost ksh-compatible ‘autoload’ (no lazy load). ksh

./functions/autoload.v3 A more ksh-compatible ‘autoload’ (with lazy load). ksh

./functions/basename A replacement for basename(1). basename

./functions/basename2 Fast basename(1) and dirname(1) functions for bash/sh. basename, dirname

./functions/coproc.bash Start, control, and end co-processes.

./functions/coshell.bash Control shell co-processes (see coprocess.bash).

./functions/coshell.README README for coshell and coproc.

./functions/csh-compat A C-shell compatibility package. csh

./functions/dirfuncs Directory manipulation functions from the book The Korn Shell.

./functions/dirname A replacement for dirname(1). dirname

./functions/emptydir Find out if a directory is empty.

./functions/exitstat Display the exit status of processes.

./functions/external Like command, but forces the use of external command.

./functions/fact Recursive factorial function.

./functions/fstty Front-end to sync TERM changes to both stty(1) and readline ‘bind’. stty.bash

./functions/func Print out definitions for functions named by arguments.

./functions/gethtml Get a web page from a remote server (wget(1) in bash).

./functions/getoptx.bash getopt function that parses long-named options.



526 | Appendix B: Examples Included with bash

./functions/inetaddr Internet address conversion (inet2hex and hex2inet).

./functions/inpath Return zero if the argument is in the path and executable. inpath

./functions/isnum.bash Test user input on numeric or character value.

./functions/isnum2 Test user input on numeric values, with floating point.

./functions/isvalidip Test user input for valid IP addresses.

./functions/jdate.bash Julian date conversion.

./functions/jj.bash Look for running jobs.

./functions/keep Try to keep some programs in the foreground and running.

./functions/ksh-cd ksh-like cd: cd [-LP] [dir [change]]. ksh

./functions/ksh-compat-test ksh-like arithmetic test replacements. ksh

./functions/kshenv Functions and aliases to provide the beginnings of a ksh environ-
ment for bash.

ksh

./functions/login Replace the login and newgrp built-ins in old Bourne shells.

./functions/lowercase Rename files to lowercase. rename lower

./functions/manpage Find and print a manpage. fman

./functions/mhfold Print MH folders, useful only because folders(1) doesn’t print mod
date/times.

./functions/notify.bash Notify when jobs change status.

./functions/pathfuncs Path related functions (no_path, add_path, pre-path, del_
path).

path

./functions/README README

./functions/recurse Recursive directory traverser.

./functions/repeat2 A clone of the C shell built-in repeat. repeat, csh

./functions/repeat3 A clone of the C shell built-in repeat. repeat, csh

./functions/seq Generate a sequence from m to n; m defaults to 1.

./functions/seq2 Generate a sequence from m to n; m defaults to 1.

./functions/shcat Readline-based pager. cat, readline pager

./functions/shcat2 Readline-based pagers. cat, readline pager

./functions/sort-pos-params Sort the positional parameters.

./functions/substr A function to emulate the ancient ksh built-in. ksh

./functions/substr2 A function to emulate the ancient ksh built-in. ksh

./functions/term A shell function to set the terminal type interactively or not.

./functions/whatis An implementation of the 10th Edition Unix sh built-in whatis(1)
command.

./functions/whence An almost ksh-compatible whence(1) command.

./functions/which An emulation of which(1) as it appears in FreeBSD.

./functions/xalias.bash Convert csh alias commands to bash functions. csh, aliasconv

Table B-1. Paths for bash 3.1 and newer (continued)

Path Description X-ref



Startup-Files Directory Examples | 527

./functions/xfind.bash A find(1) clone.

./loadables/ Example loadable replacements.

./loadables/basename.c Return nondirectory portion of pathname. basename

./loadables/cat.c cat(1) replacement with no options—the way cat was intended. cat, readline pager

./loadables/cut.c cut(1) replacement.

./loadables/dirname.c Return directory portion of pathname. dirname

./loadables/finfo.c Print file info.

./loadables/getconf.c POSIX.2 getconf utility.

./loadables/getconf.h Replacement definitions for ones the system doesn’t provide.

./loadables/head.c Copy first part of files.

./loadables/hello.c Obligatory “Hello World” / sample loadable.

./loadables/id.c POSIX.2 user identity.

./loadables/ln.c Make links.

./loadables/logname.c Print login name of current user.

./loadables/Makefile.in Simple makefile for the sample loadable built-ins.

./loadables/mkdir.c Make directories.

./loadables/necho.c echo without options or argument interpretation.

./loadables/pathchk.c Check pathnames for validity and portability.

./loadables/print.c Loadable ksh-93 style print built-in.

./loadables/printenv.c Minimal built-in clone of BSD printenv(1).

./loadables/push.c Anyone remember TOPS-20?

./loadables/README README

./loadables/realpath.c Canonicalize pathnames, resolving symlinks.

./loadables/rmdir.c Remove directory.

./loadables/sleep.c Sleep for fractions of a second.

./loadables/strftime.c Loadable built-in interface to strftime(3).

./loadables/sync.c Sync the disks by forcing pending filesystem writes to complete.

./loadables/tee.c Duplicate standard input.

./loadables/template.c Example template for loadable built-in.

./loadables/truefalse.c True and false built-ins.

./loadables/tty.c Return terminal name.

./loadables/uname.c Print system information.

./loadables/unlink.c Remove a directory entry.

./loadables/whoami.c Print out username of current user.

Table B-1. Paths for bash 3.1 and newer (continued)

Path Description X-ref



528 | Appendix B: Examples Included with bash

./loadables/perl/ Illustrates how to build a Perl interpreter into bash.

./misc Miscellaneous

./misc/aliasconv.bash Convert csh aliases to bash aliases and functions. csh, xalias

./misc/aliasconv.sh Convert csh aliases to bash aliases and functions. csh, xalias

./misc/cshtobash Convert csh aliases, environment variables, and variables to bash
equivalents.

csh, xalias

./misc/README README

./misc/suncmd.termcap SunView TERMCAP string.

./obashdb Modified version of the Korn Shell debugger from Bill Rosenblatt’s
Learning the Korn Shell.

./scripts.noah Noah Friedman’s collection of scripts (updated to bash v2 syntax by
Chet Ramey).

./scripts.noah/aref.bash Pseudo-arrays and substring indexing examples.

./scripts.noah/bash.sub.bash Library functions used by require.bash.

./scripts.noah/bash_version.
bash

A function to slice up $BASH_VERSION.

./scripts.noah/meta.bash Enable and disable eight-bit readline input.

./scripts.noah/mktmp.bash Make a temporary file with a unique name.

./scripts.noah/number.bash A fun hack to translate numerals into English.

./scripts.noah/PERMISSION Permissions to use the scripts in this directory.

./scripts.noah/prompt.bash A way to set PS1 to some predefined strings.

./scripts.noah/README README

./scripts.noah/remap_keys.
bash

A front end to bind to redo readline bindings. readline

./scripts.noah/require.bash Lisp-like require/provide library functions for bash.

./scripts.noah/send_mail.
bash

Replacement SMTP client written in bash.

./scripts.noah/shcat.bash bash replacement for cat(1). cat

./scripts.noah/source.bash Replacement for source that uses current directory.

./scripts.noah/string.bash The string(3) functions at the shell level.

./scripts.noah/stty.bash Front-end to stty(1) that changes readline bindings too. fstty

./scripts.noah/y_or_n_p.
bash

Prompt for a yes/no/quit answer. ask

Table B-1. Paths for bash 3.1 and newer (continued)

Path Description X-ref



Startup-Files Directory Examples | 529

./scripts.v2 John DuBois’ ksh script collection (converted to bash v2 syntax by
Chet Ramey).

./scripts.v2/arc2tarz Convert an arc archive to a compressed tar archive.

./scripts.v2/bashrand Random number generator with upper and lower bounds and
optional seed.

random

./scripts.v2/cal2day.bash Convert a day number to a name.

./scripts.v2/cdhist.bash cd replacement with a directory stack added.

./scripts.v2/corename Tell what produced a core file.

./scripts.v2/fman Fast man(1) replacement. manpage

./scripts.v2/frcp Copy files using ftp(1) but with rcp-type command-line syntax.

./scripts.v2/lowercase Change filenames to lowercase. rename lower

./scripts.v2/ncp A nicer front end for cp(1) (has -i, etc)..

./scripts.v2/newext Change the extension of a group of files. rename

./scripts.v2/nmv A nicer front end for mv(1) (has -i, etc).. rename

./scripts.v2/pages Print specified pages from files.

./scripts.v2/PERMISSION Permissions to use the scripts in this directory.

./scripts.v2/pf A pager front end that handles compressed files.

./scripts.v2/pmtop Poor man’s top(1) for SunOS 4.x and BSD/OS.

./scripts.v2/README README

./scripts.v2/ren Rename files by changing parts of filenames that match a pattern. rename

./scripts.v2/rename Change the names of files that match a pattern. rename

./scripts.v2/repeat Execute a command multiple times. repeat

./scripts.v2/shprof Line profiler for bash scripts.

./scripts.v2/untar Unarchive a (possibly compressed) tarfile into a directory.

./scripts.v2/uudec Carefully uudecode(1) multiple files.

./scripts.v2/uuenc uuencode(1) multiple files.

./scripts.v2/vtree Print a visual display of a directory tree. tree

./scripts.v2/where Show where commands that match a pattern are.

./scripts Example scripts.

./scripts/adventure.sh Text adventure game in bash!

./scripts/bcsh.sh Bourne shell’s C shell emulator. csh

./scripts/cat.sh Readline-based pager. cat, readline pager

./scripts/center Center a group of lines.

./scripts/dd-ex.sh Line editor using only /bin/sh, /bin/dd, and /bin/rm.

./scripts/fixfiles.bash Recurse a tree and fix files containing various bad characters.

./scripts/hanoi.bash The inevitable Towers of Hanoi in bash.

Table B-1. Paths for bash 3.1 and newer (continued)

Path Description X-ref



530 | Appendix B: Examples Included with bash

./scripts/inpath Search $PATH for a file the same name as $1; return TRUE if found. inpath

./scripts/krand.bash Produces a random number within integer limits. random

./scripts/line-input.bash Line input routine for GNU Bourne Again Shell plus terminal-control
primitives.

./scripts/nohup.bash bash version of nohup command.

./scripts/precedence Test relative precedences for && and || operators.

./scripts/randomcard.bash Print a random card from a card deck. random

./scripts/README README

./scripts/scrollbar Display scrolling text.

./scripts/scrollbar2 Display scrolling text.

./scripts/self-repro A self-reproducing script (careful!).

./scripts/showperm.bash Convert ls(1) symbolic permissions into octal mode.

./scripts/shprompt Display a prompt and get an answer satisfying certain criteria. ask

./scripts/spin.bash Display a spinning wheel to show progress.

./scripts/timeout Give rsh(1) a shorter timeout.

./scripts/vtree2 Display a tree printout of the direcotry with disk use in 1k blocks. tree

./scripts/vtree3 Display a graphical tree printout of dir. tree

./scripts/vtree3a Display a graphical tree printout of dir. tree

./scripts/websrv.sh A web server in bash!

./scripts/xterm_title Print the contents of the xterm title bar.

./scripts/zprintf Emulate printf (obsolete since printf is now a bash built-in).

./startup-files Example startup files.

./startup-files/Bash_aliases Some useful aliases (written by Fox).

./startup-files/Bash_profile Sample startup file for bash login shells (written by Fox).

./startup-files/bash-profile Sample startup file for bash login shells (written by Ramey).

./startup-files/bashrc Sample Bourne Again Shell init file (written by Ramey).

./startup-files/Bashrc.bfox Sample Bourne Again Shell init file (written by Fox).

./startup-files/README README

./startup-files/apple Example startup files for Mac OS X.

./startup-files/apple/aliases Sample aliases for Mac OS X.

./startup-files/apple/bash.
defaults

Sample User preferences file.

./startup-files/apple/
environment

Sample Bourne Again Shell environment file.

./startup-files/apple/login Sample login wrapper.

Table B-1. Paths for bash 3.1 and newer (continued)

Path Description X-ref



Startup-Files Directory Examples | 531

./startup-files/apple/logout Sample logout wrapper.

./startup-files/apple/rc Sample Bourne Again Shell config file.

./startup-files/apple/README README

Table B-1. Paths for bash 3.1 and newer (continued)

Path Description X-ref



532

Appendix CAPPENDIX C

Command-Line Processing 3

Throughout the book we’ve seen a variety of ways in which the shell processes input
lines, especially using read. We can think of this process as a subset of the things the
shell does when processing command lines. This appendix provides a more detailed
description of the steps involved in processing the command line and how you can
get bash to make a second pass with eval. The material in this appendix also appears
in Learning the bash Shell by Cameron Newham (O’Reilly).

Command-Line Processing Steps
We’ve touched upon command-line processing throughout this book; we’ve men-
tioned how bash deals with single quotes (''), double quotes (""), and backslashes
(\); how it separates characters on a line into words, even allowing you to specify
the delimiter it uses via the environment variable $IFS; how it assigns the words to
shell variables (e.g., $1, $2, etc); and how it can redirect input and output to/from
files or to other processes (pipeline). In order to be a real expert at shell scripting (or
to debug some gnarly problems), you might need to understand the various steps
involved in command-line processing—especially the order in which they occur.

Each line that the shell reads from STDIN or from a script is called a pipeline because
it contains one or more commands separated by zero or more pipe characters (|).
Figure C-1 shows the steps in command-line processing. For each pipeline it reads,
the shell breaks it up into commands, sets up the I/O for the pipeline, then does the
following for each command.

1. Splits the command into tokens that are separated by the fixed set of metachar-
acters: space, tab, newline, ;, (, ), <, >, |, and &. Types of tokens include words,
keywords, I/O redirectors, and semicolons.

2. Checks the first token of each command to see if it is a keyword with no quotes
or backslashes. If it’s an opening keyword such as if and other control-structure
openers, function, {, or (, then the command is actually a compound command.
The shell sets things up internally for the compound command, reads the next



Command-Line Processing Steps | 533

Figure C-1. Steps in command-line processing

2

1

3

4

5

6

7

8

9

11

10

12

split into tokens

check 1st token

not keyword

opening keyword other keyword

check 1st token

not alias

alias

brace expansion

tilde expansion

parameter expansion

command substitution

arithmetic substitution

word splitting

command lookup: function, built-in command,
executable file

run
command

do
ub

le 
qu

ot
es

sin
gl

e q
uo

te
s

m
ak

e a
rg

um
en

ts 
in

to
 n

ex
t c

om
m

an
d

ex
pa

nd
ed

 al
ia

s

re
ad

 n
ex

t
co

m
m

an
d

syntax error

do
ub

le 
qu

ot
es

eval

pathname expansion



534 | Appendix C: Command-Line Processing

command, and starts the process again. If the keyword isn’t a compound com-
mand opener (e.g., it is a control-structure “middle” like then, else, or do; an
“end” like fi or done; or a logical operator), the shell signals a syntax error.

3. Checks the first word of each command against the list of aliases. If a match is
found, it substitutes the alias’ definition and goes back to Step 1; otherwise, it
goes on to Step 4. This scheme allows recursive aliases. It also allows aliases for
keywords to be defined, e.g., alias aslongas=while or alias procedure=function.

4. Performs brace expansion. For example, a{b,c} becomes ab ac.

5. Substitutes the user’s home directory ($HOME) for tilde if it is at the beginning of a
word.

6. Substitutes user’s home directory for ~user.

7. Performs parameter (variable) substitution for any expression that starts with a
dollar sign ($).

8. Does command substitution for any expression of the form $(string).

9. Evaluates arithmetic expressions of the form $((string)).

10. Takes the parts of the line that resulted from parameter, command, and arith-
metic substitution and splits them into words again. This time it uses the charac-
ters in $IFS as delimiters instead of the set of metacharacters in Step 1.

11. Performs pathname expansion, a.k.a. wildcard expansion, for any occurrences of
*, ?, and [/] pairs.

12. Uses the first word as a command by looking up its source in the following
order: as a function command, then as a built-in, then as a file in any of the
directories in $PATH.

13. Runs the command after setting up I/O redirection and other such things.

That’s a lot of steps—and it’s not even the whole story! But before we go on, an
example should make this process clearer. Assume that the following command has
been run:

alias ll="ls -l"

Further assume that a file exists called .hist537 in user alice’s home directory,
which is /home/alice, and that there is a double-dollar-sign variable $$ whose value
is 2537 (remember $$ is the process ID, a number unique among all currently run-
ning processes).

Now let’s see how the shell processes the following command:

ll $(type -path cc) ~alice/.*$(($$%1000))

Here is what happens to this line:

1. ll $(type -path cc) ~alice/.*$(($$%1000)) splits the input into words.

2. ll is not a keyword, so Step 2 does nothing.



Command-Line Processing Steps | 535

3. ls -l $(type -path cc) ~alice/.*$(($$%1000)) substitutes ls -l for its alias ll.
The shell then repeats Steps 1 through 3; Step 2 splits the ls -l into two words.

4. ls -l $(type -path cc) ~alice/.*$(($$%1000)) does nothing.

5. ls -l $(type -path cc) /home/alice/.*$(($$%1000)) expands ~alice into /home/
alice.

6. ls -l $(type -path cc) /home/alice/.*$((2537%1000)) substitutes 2537 for $$.

7. ls -l /usr/bin/cc /home/alice/.*$((2537%1000)) does command substitution on
type -path cc.

8. ls -l /usr/bin/cc /home/alice/.*537 evaluates the arithmetic expression
2537%1000.

9. ls -l /usr/bin/cc /home/alice/.*537 does nothing.

10. ls -l /usr/bin/cc /home/alice/.hist537 substitutes the filename for the wild-
card expression .*537.

11. The command ls is found in /usr/bin.

12. /usr/bin/ls is run with the option -l and the two arguments.

Although this list of steps is fairly straightforward, it is not the whole story. There are
still five ways to modify this process: quoting; using command, builtin, or enable; and
using the advanced command eval.

Quoting
You can think of quoting as a way of getting the shell to skip some of the 12 steps

described earlier. In particular:

• Single quotes ('') bypass everything from Step 1 through Step 10—including
aliasing. All characters inside a pair of single quotes are untouched. You can’t
have single quotes inside single quotes—even if you precede them with back-
slashes.

• Double quotes ("") bypass Steps 1 through 4, plus Steps 9 and 10. That is, they
ignore pipe characters, aliases, tilde substitution, wildcard expansion, and split-
ting into words via delimiters (e.g., blanks) inside the double quotes. Single
quotes inside double quotes have no effect. But double quotes do allow parame-
ter substitution, command substitution, and arithmetic expression evaluation.
You can include a double quote inside a double-quoted string by preceding it
with a backslash (\). You must also backslash-escape $, ` (the archaic command
substitution delimiter), and \ itself.

Table C-1 has simple examples to show how these work; they assume the statement
person=hatter was run and user alice’s home directory is /home/alice.



536 | Appendix C: Command-Line Processing

If you are wondering whether to use single or double quotes in a particular shell pro-
gramming situation, it is safest to use single quotes unless you specifically need
parameter, command, or arithmetic substitution.

eval
We have seen that quoting lets you skip steps in command-line processing. Then
there’s the eval command, which lets you go through the process again. Performing
command-line processing twice may seem strange, but it’s actually very powerful: it
lets you write scripts that create command strings on the fly and then pass them to
the shell for execution. This means that you can give scripts “intelligence” to modify
their own behavior as they are running.

The eval statement tells the shell to take eval’s arguments and run them through the
command-line processing steps all over again. To help you understand the implica-
tions of eval, we’ll start with a trivial example and work our way up to a situation in
which we’re constructing and running commands on the fly.

eval ls passes the string “ls” to the shell to execute; the shell prints a list of files in
the current directory. Very simple; there is nothing about the string “ls” that needs to
be sent through the command-processing steps twice. But consider this:

listpage="ls | more"
$listpage

Instead of producing a paginated file listing, the shell will treat | and more as argu-
ments to ls, and ls will complain that no files of those names exist. Why? Because the
pipe character appears as a pipe in Step 6 when the shell evaluates the variable,
which is after it has actually looked for pipe characters. The variable’s expansion
isn’t even parsed until Step 9. As a result, the shell will treat | and more as arguments
to ls, so that ls will try to find files called | and more in the current directory!

Now consider eval $listpage instead of just $listpage. When the shell gets to the
last step, it will run the command eval with arguments ls, |, and more. This causes

Table C-1. Examples of using single and double quotes

Expression Value

$person hatter

"$person" hatter

\$person $person

`$person' $person

"'$person'" ’hatter’

~alice /home/alice

"~alice" ~alice

`~alice' ~alice



Command-Line Processing Steps | 537

the shell to go back to Step 1 with a line that consists of these arguments. It finds | in
Step 2 and splits the line into two commands, ls and more. Each command is pro-
cessed in the normal (and in both cases trivial) way. The result is a paginated list of
the files in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that
requires considerable programming cleverness to be used most effectively. It even has
a bit of the flavor of artificial intelligence, in that it enables you to write programs
that can “write” and execute other programs. You probably won’t use eval for every-
day shell programming, but it’s worth taking the time to understand what it can do.



538

Appendix DAPPENDIX D

Revision Control 4

Revision control systems are a way to not only travel back in time, but to see what
has changed at various points in your timeline. They are also called versioning or ver-
sion control systems, which is actually a more technically accurate name. Such a sys-
tem allows you to maintain a central repository of files in a project, and to keep track
of changes to those files, as well as the reason for those changes. Some revision con-
trol systems allow more than one developer to work concurrently on the same
project, or even the same file.

Revision control systems are essential to modern software development efforts, but
they are also useful in many other areas, such as writing documentation, tracking
system configurations (e.g., /etc), and even writing books. We kept this book under
revision control using Subversion while writing it.

Some of the useful features of revision control systems include:

• Making it very difficult to lose code, especially when the repository is properly
backed up.

• Facilitating change control practices, and encourage documenting why a change
is being made.

• Allowing people in multiple locations to work together on a project, and to keep
up with others’ changes, without losing data by saving on top of each other.

• Allowing one person to work from multiple locations over time without losing
work or stepping on changes made at other locations.

• Allowing you to back out changes easily or to see exactly what has changed
between one revision and another (except binary files). If you follow effective
logging practices, they will even tell you why a change was made.

• Allowing, usually, a form of keyword expansion that lets you embed revision
metadata in nonbinary files.

There are many different free and commercial revision control systems, and we would
like to strongly encourage you to use one. If you already have one, use it. If you don’t,



CVS | 539

we’ll briefly cover three of the most common systems (CVS, Subversion, and RCS), all
of which either come with or are available for every major modern operating system.

Before using a revision control system, you must first decide:

• Which system or product to use

• The location of the central repository, if applicable

• The structure of the projects or directories in the repository

• The update, commit, tag, and branch polices

This only scratches the surface; see O’Reilly’s Essential CVS by Jennifer Vesperman
and Version Control with Subversion by Ben Collins-Sussman et al. for more in-depth
introductions to revision control and complete details on their respective systems.
Both have excellent treatments of the general concepts, although the Subversion
book covers repository structure in more detail due to its more fluid nature.

Both also cover revision control policy. If your company has change control or
related policies, use them. If not, we recommend you commit and update early and
often. If you are working as a team, we strongly recommend reading one or both of
the books and carefully planning out a strategy. It will save vast amounts of time in
the long run.

CVS
The Concurrent Versions System (CVS) is a widely used and mature revision control
system, with command-line tools for all major modern operating systems (including
Windows), and GUI tools for some of them (notably Windows).

Pros
• It is everywhere and is very mature.

• Many Unix system administrators and virtually every open source or free soft-
ware developer is familiar with it.

• It’s easy to use for simple projects.

• It’s easy to access remote repositories.

• It’s based on RCS, which allows for some hacking of the central repository.

Cons
• Commits are not atomic, so the repository could be left in an inconsistent state if

a commit fails half-way through.

• Commits are by file only; you must also tag if you need to reference a group of
files.



540 | Appendix D: Revision Control

• Directory structure support is poor.

• Does not allow easy renaming of files and directories while retaining history.

• Poor support for binary files, and little support for other objects such as sym-
bolic links.

• Based on RCS, which allows for some hacking of the central repository.

CVS tracks revisions by file, which means that each file has its own
internal CVS revision number. As each file is changed, that number
changes, so a single project can’t be tracked by a single revision num-
ber, since each file is different. Use tags for that kind of tracking.

Example
This example is not suitable for enterprise or multiuser access (see the “More
Resources” section in the Preface). This is just to show how easy the basics are. This
example has the EDITOR environment variable set to nano (export EDITOR='nano --
smooth --const --nowrap --suspend'), which some people find more user-friendly
than the default vi.

The cvs command (with no options), the cvs help command (where help is not a
valid argument, but is easy to remember and still triggers a useful response), and the
cvs --help cvs_command command are very useful.

Create a new repository for personal use in a home directory:

/home/jp$ mkdir -m 0775 cvsroot
/home/jp$ chmod g+srwx cvsroot
/home/jp$ cvs -d /home/jp/cvsroot init

Create a new project and import it:

/home/jp$ cd /tmp

/tmp$ mkdir 0700 scripts

/tmp$ cd scripts/

/tmp/scripts$ cat << EOF > hello
> #!/bin/sh
> echo 'Hello World!'
> EOF

/tmp/scripts$ cvs -d /home/jp/cvsroot import scripts shell_scripts NA

GNU nano 1.2.4 File: /tmp/cvsnJgYmG

Initial import of shell scripts
CVS: ----------------------------------------------------------------------
CVS: Enter Log.  Lines beginning with `CVS:' are removed automatically



CVS | 541

CVS:
CVS: ----------------------------------------------------------------------

                                       [ Wrote 5 lines ]

N scripts/hello

No conflicts created by this import

Check out the project and update it:

/tmp/scripts$ cd
/home/jp$ cvs -d /home/jp/cvsroot/ checkout scripts
cvs checkout: Updating scripts
U scripts/hello

/home/jp$ cd scripts

/home/jp/scripts$ ls -l
total 8.0K
drwxr-xr-x  2 jp jp 4.0K Jul 20 00:27 CVS/
-rw-r--r--  1 jp jp   30 Jul 20 00:25 hello

/home/jp/scripts$ echo "Hi Mom..." >> hello

Check the status of your sandbox. The second command is a hack to give you a short
summary status since the real status command is a little verbose:

/home/jp/scripts$ cvs status
cvs status: Examining .
===================================================================
File: hello             Status: Locally Modified

   Working revision:    1.1.1.1 Thu Jul 20 04:25:44 2006
   Repository revision: 1.1.1.1 /home/jp/cvsroot/scripts/hello,v
   Sticky Tag:          (none)
   Sticky Date:         (none)
   Sticky Options:      (none)

/home/jp/scripts$ cvs -qn update
M hello

Add a new script to revision control:

/home/jp/scripts$ cat << EOF > mcd
> #!/bin/sh
> mkdir -p "$1"
> cd "$1"
> EOF

/home/jp/scripts$ cvs add mcd
cvs add: scheduling file `mcd' for addition
cvs add: use `cvs commit' to add this file permanently



542 | Appendix D: Revision Control

Commit changes:

/home/jp/scripts$ cvs commit
cvs commit: Examining .

GNU nano 1.2.4 File: /tmp/cvsY1xcKa

* Tweaked hello
* Added mcd
CVS: ----------------------------------------------------------------------
CVS: Enter Log.  Lines beginning with `CVS:' are removed automatically
CVS:
CVS: Committing in .
CVS:
CVS: Modified Files:
CVS:    hello
CVS: Added Files:
CVS:    mcd
CVS: ----------------------------------------------------------------------

                                      [ Wrote 12 lines ]

/home/jp/cvsroot/scripts/hello,v  <--  hello
new revision: 1.2; previous revision: 1.1
/home/jp/cvsroot/scripts/mcd,v  <--  mcd
initial revision: 1.1

Update the sandbox, make another change, then check the difference:

/home/jp/scripts$ cvs update
cvs update: Updating .

/home/jp/scripts$ vi hello

/home/jp/scripts$ cvs diff hello
Index: hello
===================================================================
RCS file: /home/jp/cvsroot/scripts/hello,v
retrieving revision 1.2
diff -r1.2 hello
3c3
< Hi Mom...
---
> echo 'Hi Mom...'

Commit the change, avoiding the editor by putting the log entry on the command
line:

/home/jp/scripts$ cvs -m '* Fixed syntax error' commit
/home/jp/cvsroot/scripts/hello,v  <--  hello
new revision: 1.3; previous revision: 1.2

See the history of the file:

/home/jp/scripts$ cvs log hello



CVS | 543

RCS file: /home/jp/cvsroot/scripts/hello,v
Working file: hello
head: 1.3
branch:
locks: strict
access list:
symbolic names:
        NA: 1.1.1.1
        shell_scripts: 1.1.1
keyword substitution: kv
total revisions: 4;     selected revisions: 4
description:
----------------------------
revision 1.3
date: 2006-07-20 04:46:25 +0000;  author: jp;  state: Exp;  lines: +1 -1
* Fixed syntax error
----------------------------
revision 1.2
date: 2006-07-20 04:37:37 +0000;  author: jp;  state: Exp;  lines: +1 -0
* Tweaked hello
* Added mcd
----------------------------
revision 1.1
date: 2006-07-20 04:25:44 +0000;  author: jp;  state: Exp;
branches:  1.1.1;
Initial revision
----------------------------
revision 1.1.1.1
date: 2006-07-20 04:25:44 +0000;  author: jp;  state: Exp;  lines: +0 -0
Initial import of shell scripts
=============================================================================

Add some revision metadata that is automatically kept up-to-date by the revision
control system itself. Commit it and examine the change:

/home/jp/scripts$ vi hello

/home/jp/scripts$ cat hello
#!/bin/sh
$Id$
echo 'Hello World!'
echo 'Hi Mom...'

/home/jp/scripts$ cvs ci -m'Added ID keyword' hello
/home/jp/cvsroot/scripts/hello,v  <--  hello
new revision: 1.4; previous revision: 1.3

/home/jp/scripts$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'



544 | Appendix D: Revision Control

Compare the current revision to r1.2, revert to that older (broken) revision, realize
we goofed and get the most recent revision back:

/home/jp/cvs.scripts$ cvs diff -r1.2 hello
Index: hello
===================================================================
RCS file: /home/jp/cvsroot/scripts/hello,v
retrieving revision 1.2
retrieving revision 1.4
diff -r1.2 -r1.4
1a2
> # $Id$
3c4
< Hi Mom...
---
> echo 'Hi Mom...'

/home/jp/scripts$ cvs update -r1.2 hello
U hello

/home/jp/scripts$ cat hello
#!/bin/sh
echo 'Hello World!'
Hi Mom...

/home/jp/cvs.scripts$ cvs update -rHEAD hello
U hello

/home/jp/cvs.scripts$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

See Also
• man cvs

• man rcs2log

• man cvs-pserver

• The official CVS web site, at http://www.nongnu.org/cvs/

• CVS Docs and Cederqvist manual, at http://ximbiot.com/cvs/manual/

• Windows shell extention for CVS, at http://www.tortoisecvs.org/

• “Introduction to CVS,” at http://linux.oreillynet.com/lpt/a/1420

• “CVS Administration,” at http://linux.oreillynet.com/lpt/a/1421

• “Tracking Changes in CVSm,” at http://linux.oreillynet.com/lpt/a/2443

• “CVS Third-Party Tools,” at http://www.onlamp.com/lpt/a/2895

• “Top 10 CVS Tips,” at http://www.oreillynet.com/lpt/a/2015



Subversion | 545

• “CVS Branch and Tag Primer,” at http://www.psc.edu/~semke/cvs_branches.html

• “CVS Best Practices,” at http://www.tldp.org/REF/CVS-BestPractices/html/index.
html

• Essential CVS by Jennifer Vesperman

• Recipe 16.14, “Creating and Changing into a New Directory in One Step”

Subversion
According to the Subversion web site, “The goal of the Subversion project is to build
a version control system that is a compelling replacement for CVS in the open source
community.” Enough said.

Pros
• Newer than CVS and RCS.

• Simpler and arguably easier to understand and use than CVS (less historical
baggage).

• Atomic commits means the commit either fails or succeeds as a whole, and
makes it easy to track the state of an entire project as a single revision.

• Easy to access remote repositories.

• Allows easy renaming of files and directories while retaining history.

• Easily handles binary files (no native diff support) and other objects such as sym-
bolic links.

• Central repository hacking is more officially supported, but less trivial.

Cons
• Not 100 percent CVS compatible for more complicated projects (e.g., branching

and tagging).

• Can be more complicated to build or install from scratch due to many depen-
dencies. Use the version that came with your operating system if possible.

SVN tracks revisions by repository, which means that each commit
has its own internal SVN revision number. Thus consecutive commits
by a single person may not have consecutive revision numbers since
the global repository revision is incremented as other changes (possi-
bly to other projects) are committed by other people.



546 | Appendix D: Revision Control

Example
This example is not suitable for enterprise or multiuser access (see the “More
Resources” section in the Preface). This is just to show how easy the basics are. This
example also has the EDITOR environment variable set to nano (export EDITOR='nano
--smooth --const --nowrap --suspend'), which some people find more user-friendly
than the default vi.

The svn help and svn help help commands are very useful.

Create a new repository for personal use in a home directory:

/home/jp$ svnadmin --fs-type=fsfs create /home/jp/svnroot

Create a new project and import it:

/home/jp$ cd /tmp

/tmp$ mkdir -p -m 0700 scripts/trunk scripts/tags scripts/branches

/tmp$ cd scripts/trunk

/tmp/scripts/trunk$ cat << EOF > hello
> #!/bin/sh
> echo 'Hello World!'
> EOF

/tmp/scripts/trunk$ cd ..

/tmp/scripts$ svn import /tmp/scripts file:///home/jp/svnroot/scripts

GNU nano 1.2.4 File: svn-commit.tmp

Initial import of shell scripts
--This line, and those below, will be ignored--

A    .

                                       [ Wrote 4 lines ]

Adding         /tmp/scripts/trunk
Adding         /tmp/scripts/trunk/hello
Adding         /tmp/scripts/branches
Adding         /tmp/scripts/tags

Committed revision 1.

Check out the project and update it:

/tmp/scripts$ cd

/home/jp$ svn checkout file:///home/jp/svnroot/scripts
A  scripts/trunk
A  scripts/trunk/hello
A  scripts/branches



Subversion | 547

A  scripts/tags
Checked out revision 1.

/home/jp$ cd scripts

/home/jp/scripts$ ls -l
total 12K
drwxr-xr-x  3 jp jp 4.0K Jul 20 01:12 branches/
drwxr-xr-x  3 jp jp 4.0K Jul 20 01:12 tags/
drwxr-xr-x  3 jp jp 4.0K Jul 20 01:12 trunk/

/home/jp/scripts$ cd trunk/

/home/jp/scripts/trunk$ ls -l
total 4.0K
-rw-r--r--  1 jp jp 30 Jul 20 01:12 hello

/home/jp/scripts/trunk$ echo "Hi Mom..." >> hello

Check the status of your sandbox. Note how the svn status command is similar to
our cvs -qn update hack in the “CVS” section earlier in this appendix:

/home/jp/scripts/trunk$ svn info
Path: .
URL: file:///home/jp/svnroot/scripts/trunk
Repository UUID: 29eeb329-fc18-0410-967e-b075d748cc20
Revision: 1
Node Kind: directory
Schedule: normal
Last Changed Author: jp
Last Changed Rev: 1
Last Changed Date: 2006-07-20 01:04:56 -0400 (Thu, 20 Jul 2006)

/home/jp/scripts/trunk$ svn status -v
                1        1 jp           .
M               1        1 jp           hello

/home/jp/scripts/trunk$ svn status
M      hello

/home/jp/scripts/trunk$ svn update
At revision 1.

Add a new script to revision control:

/home/jp/scripts/trunk$ cat << EOF > mcd
> #!/bin/sh
> mkdir -p "$1"
> cd "$1"
> EOF

/home/jp/scripts/trunk$ svn st
?      mcd
M      hello



548 | Appendix D: Revision Control

/home/jp/scripts/trunk$ svn add mcd
A         mcd

Commit changes:

/home/jp/scripts/trunk$ svn ci

GNU nano 1.2.4 File: svn-commit.tmp

* Tweaked hello
* Added mcd
--This line, and those below, will be ignored--

M    trunk/hello
A    trunk/mcd

                                       [ Wrote 6 lines ]

Sending        trunk/hello
Adding         trunk/mcd
Transmitting file data ..
Committed revision 2.

Update the sandbox, make another change, then check the difference:

/home/jp/scripts/trunk$ svn up
At revision 2.

/home/jp/scripts/trunk$ vi hello

/home/jp/scripts/trunk$ svn diff hello
Index: hello
===================================================================
--- hello       (revision 2)
+++ hello       (working copy)
@@ -1,3 +1,3 @@
 #!/bin/sh
 echo 'Hello World!'
-Hi Mom...
+echo 'Hi Mom...'

Commit the change, avoiding the editor by putting the log entry on the command
line:

/home/jp/scripts/trunk$ svn -m '* Fixed syntax error' commit
Sending        trunk/hello
Transmitting file data .
Committed revision 3.

See the history of the file:

/home/jp/scripts/trunk$ svn log hello
------------------------------------------------------------------------
r3 | jp | 2006-07-20 01:23:35 -0400 (Thu, 20 Jul 2006) | 1 line

* Fixed syntax error



Subversion | 549

------------------------------------------------------------------------
r2 | jp | 2006-07-20 01:20:09 -0400 (Thu, 20 Jul 2006) | 3 lines

* Tweaked hello
* Added mcd

------------------------------------------------------------------------
r1 | jp | 2006-07-20 01:04:56 -0400 (Thu, 20 Jul 2006) | 2 lines

Initial import of shell scripts

------------------------------------------------------------------------

Add some revision metadata, and tell the system to expand it. Commit it and exam-
ine the change:

/home/jp/scripts$ vi hello

/home/jp/scripts$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

home/jp/scripts/trunk$ svn propset svn:keywords "Id" hello
property 'svn:keywords' set on 'hello'

/home/jp/scripts/trunk$ svn ci -m'Added ID keyword' hello
Sending        hello

Committed revision 4.

/home/jp/scripts/trunk$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

Compare the current revision to r2, revert to that older (broken) revision, realize we
goofed and get the most recent revision back:

/home/jp/scripts/trunk$ svn diff -r2 hello
Index: hello
===================================================================
--- hello       (revision 2)
+++ hello       (working copy)
@@ -1,3 +1,4 @@
 #!/bin/sh
+# $Id$
 echo 'Hello World!'
-Hi Mom...
+echo 'Hi Mom...'

Property changes on: hello
______________________________________________________________ _ _ _ _ _



550 | Appendix D: Revision Control

Name: svn:keywords
   + Id

/home/jp/scripts/trunk$ svn update -r2 hello
UU hello
Updated to revision 2.

/home/jp/scripts/trunk$ cat hello
#!/bin/sh
echo 'Hello World!'
Hi Mom...

/home/jp/scripts/trunk$ svn update -rHEAD hello
UU hello
Updated to revision 4.

/home/jp/scripts/trunk$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

See Also
• man svn

• man svnadmin

• man svndumpfilter

• man svnlook

• man svnserve

• man svnversion

• The Subversion web site at http://subversion.tigris.org/

• TortoiseSVN: Simple SVN frontend for Explorer (cool!), at http://tortoisesvn.
tigris.org/

• Version Control with Subversion, at http://svnbook.red-bean.com/

• SVN static builds for Solaris, Linux, and Mac OS X at http://www.uncc.org/
svntools/clients/

• “Subversion for CVS Users,” at http://osdir.com/Article203.phtml

• Version control system comparison, at http://better-scm.berlios.de/comparison/
comparison.html

• Recipe 16.14, “Creating and Changing into a New Directory in One Step”

RCS
RCS was a revolution in its time, and is the underlying basis for CVS.



RCS | 551

Pros
• It’s better than nothing.

Cons
• Does not allow concurrent access to the same file.

• Does not have the inherent concept of a central repository, though you can go
out of your way to create one using symbolic links.

• No concept of remote repositories.

• Only tracks changes to files, and does not store or consider directories at all.

• Poor support for binary files, and no support for other objects such as symbolic
links. Unlike CVS or SVN, which have a single main end-user binary, RCS is a
collection of binaries.

Example
Create a new script directory for personal use in a home directory:

/home/jp$ mkdir -m 0754 bin

Create some scripts:

/home/jp$ cd bin

/tmp/scripts/bin$ cat << EOF > hello
> #!/bin/sh
> echo 'Hello World!'
> EOF

/home/jp/bin$ ci hello
hello,v  <--  hello
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>> Obligatory Hello World
>> .
initial revision: 1.1
done

/home/jp/bin$ ls -l
total 4.0K
-r--r--r--  1 jp jp 228 Jul 20 02:25 hello,v

Huh? What happened? It turns out that if a directory called RCS does not exist, the
current directory is used for the RCS file. And if the -u or -l switches are not used,
the file is checked in and then removed. -l causes the file to be checked back out and
locked so you can edit it, while -u is unlocked (that is, read-only). OK, let’s try that
again. First, let’s get our file back, then create an RCS directory and check it in again.



552 | Appendix D: Revision Control

/home/jp/bin$ co -u hello
hello,v  -->  hello
revision 1.1 (unlocked)
done

/home/jp/bin$ ls -l
total 8.0K
-r--r--r--  1 jp jp  30 Jul 20 02:29 hello
-r--r--r--  1 jp jp 228 Jul 20 02:25 hello,v

/home/jp/bin$ rm hello,v
rm: remove write-protected regular file `hello,v'? y

/home/jp/bin$ mkdir -m 0755 RCS

/home/jp/bin$ ci -u hello
RCS/hello,v  <--  hello
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>> Obligatory Hello World
>> .
initial revision: 1.1
done

/home/jp/bin$ ls -l
total 8.0K
drwxr-xr-x  2 jp jp 4.0K Jul 20 02:31 RCS/
-r--r--r--  1 jp jp   30 Jul 20 02:29 hello

/home/jp/bin$ ls -l RCS
total 4.0K
-r--r--r--  1 jp jp 242 Jul 20 02:31 hello,v

Note that our original file is now read-only. This is to remind us to check it out using
co -l before working on it. Let’s do that:

/home/jp/bin$ co -l hello
RCS/hello,v  -->  hello
revision 1.1 (locked)
done

/home/jp/bin$ ls -l
total 8.0K
drwxr-xr-x  2 jp jp 4.0K Jul 20 02:39 RCS/
-rw-r--r--  1 jp jp   30 Jul 20 02:39 hello

/home/jp/bin$ echo "Hi Mom..." >> hello

Commit changes, but keep a copy locked for editing:

/home/jp/bin$ ci -l hello
RCS/hello,v  <--  hello
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single '.' or end of file:
>> * Tweaked hello



RCS | 553

>> .
done

/home/jp/bin$ ls -l
total 8.0K
drwxr-xr-x  2 jp jp 4.0K Jul 20 02:44 RCS/
-rw-r--r--  1 jp jp   40 Jul 20 02:39 hello

Make another change, then check the difference:

/home/jp/bin$ vi hello

/home/jp/bin$ rcsdiff hello
===================================================================
RCS file: RCS/hello,v
retrieving revision 1.2
diff -r1.2 hello
3c3
< Hi Mom...
---
> echo 'Hi Mom...'

Commit the change, and keep an unlocked copy for actual use:

/home/jp/bin$ ci -u -m'* Fixed syntax error' hello
RCS/hello,v  <--  hello
new revision: 1.3; previous revision: 1.2
done

/home/jp/bin$ ls -l
total 8.0K
drwxr-xr-x  2 jp jp 4.0K Jul 20 02:46 RCS/
-r--r--r--  1 jp jp   47 Jul 20 02:45 hello

See the history of the file:

/home/jp/bin$ rlog hello

RCS file: RCS/hello,v
Working file: hello
head: 1.3
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 3;     selected revisions: 3
description:
Obligatory Hello World
----------------------------
revision 1.3
date: 2006/07/20 06:46:30;  author: jp;  state: Exp;  lines: +1 -1
* Fixed syntax error
----------------------------
revision 1.2
date: 2006/07/20 06:43:54;  author: jp;  state: Exp;  lines: +1 -0



554 | Appendix D: Revision Control

* Tweaked hello
----------------------------
revision 1.1
date: 2006/07/20 06:31:06;  author: jp;  state: Exp;
Obligatory Hello World
=============================================================================

Add some revision metadata, and tell the system to expand it. Commit it and exam-
ine the change:

/home/jp/bin$ co -l hello
RCS/hello,v  -->  hello
revision 1.3 (locked)
done

/home/jp/bin$ vi hello

/home/jp/bin$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

/home/jp/bin$ ci -u -m'Added ID keyword' hello
RCS/hello,v  <--  hello
new revision: 1.4; previous revision: 1.3
done

/home/jp/bin$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

Compare the current revision to r1.2, revert to that older (broken) revision, realize
we goofed and get the most recent revision back:

/home/jp/bin$ rcsdiff -r1.2 hello
===================================================================
RCS file: RCS/hello,v
retrieving revision 1.2
diff -r1.2 hello
1a2
> # $Id$
3c4
< Hi Mom...
---
> echo 'Hi Mom...'

/home/jp/bin$ co -r hello
RCS/hello,v  -->  hello
revision 1.4
writable hello exists; remove it? [ny](n): y
done



RCS | 555

/home/jp/bin$ cat hello
#!/bin/sh
# $Id$
echo 'Hello World!'
echo 'Hi Mom...'

Workon Script
Here is a script that may make life with RCS a little easier. It facilitates using an RCS
“repository” and automates much of the process of checking files in and out to work
on them, hence the name. We recommend that you use Subversion or CVS if possi-
ble, but if you must use RCS you may find this helpful:

#!/usr/bin/env bash
# cookbook filename: workon
# workon--Work on a file in RCS

# Set a sane/secure path and export it
PATH=/usr/local/bin:/bin:/usr/bin
export PATH

VERSION='$Version: 1.4 $' # JP Vossen
COPYRIGHT='Copyright 2004-2006 JP Vossen (http://www.jpsdomain.org/)'
LICENSE='GNU GENERAL PUBLIC LICENSE'

CAT='/bin/cat'
if [ "$1" = "-h" -o "$1" = "--help" -o -z "$1" ]; then
    ${CAT} <<-EoN
    Usage: $0 {file}

    Work on a file in RCS.  Create the RCS subdirectory if necessary.
    Do the initial checkin if necessary, prompting for a message.
    Must be in the same directory as the file to be worked on.
EoN
    exit 0
fi

# Use a pseudo central repository
RCSHOMEDIR='/home/rcs'

# Make sure $VISUAL is set to something
[ "$VISUAL" ] || VISUAL=vi

###################################################################
# Start of Main program

# Make sure RCS Home Dir exists
if [ ! -d $RCSHOMEDIR ]; then
    echo "Creating $RCSHOMEDIR..."
    mkdir -p $RCSHOMEDIR
fi

# Make sure there is no local RCS directory



556 | Appendix D: Revision Control

if [ -d RCS -a ! -L RCS ]; then
    echo "Local 'RCS' already exists--exiting!"
    exit 2
fi

# Make sure the destdir exists
if [ ! -d $RCSHOMEDIR$PWD ]; then
    echo "Creating $RCSHOMEDIR$PWD..."
    mkdir -p $RCSHOMEDIR$PWD
fi

# Make sure the link exists
if [ ! -L RCS ]; then
    echo "Linking RCS --> $RCSHOMEDIR$PWD."
    ln -s $RCSHOMEDIR$PWD RCS
fi

if [ ! -f "RCS/$1,v" ]; then
    # If the file is not ALREADY in RCS add it as v1.0.

    echo 'Adding "Initial Revision/Default" of file to RCS...'

    # Get input
    echo -n 'Describe this file: '
    read logmsg

    # Check in v1.0
    ci -u1.0 -t-"$logmsg" -m'Initial Revision/Default' $1

else
    # If the file is in RCS, work on it.

    # Checkout the file in locked mode for editing
    co -l $1

    # Edit the file locally
    $VISUAL $1

    # Check the file back in, but keep a read-only copy out for use
    ci -u $1
fi

See Also
• man ci

• man co

• man ident

• man merge

• man rcs

• man rcsclean



Other | 557

• man rcsdiff

• man rcsmerge

• man rlog

• man rcsfreeze

• Applying RCS and SCCS, Chapter 3, by Tan Bronson and Don Bolinger
(O’Reilly)

• “BSD Tricks: Introductory Revision Control,” at http://www.onlamp.com/lpt/a/
428

Other
Finally, it is worth noting that some word processors, such as OpenOffice.org Writer
and Microsoft Word, have three relevant features: document comparison, change
tracking, and versions.

Document Comparison
Document Comparison allows you to compare documents when their native file for-
mat makes use of other diff tools difficult. You would use this when you have two
copies of a document that didn’t have change tracking turned on, or when you need
to merge feedback from various sources.

While it is trivial to unzip the content.xml file from a given OpenDoc file, the result
has no line breaks and is not terribly pretty or readable. See Recipe 12.5, “Compar-
ing Two Documents” for a bash script that will do this low-level kind of difference.

Refer to the table below for information on how to access the built-in GUI compari-
son function, which is much easier than trying to do it manually.

Change Tracking and Versions
The change-tracking feature saves information about changes made to a document.
Review mode uses various copyediting markup on the screen to display who did
what, when. This is obviously useful for all kinds of creation and editing purposes,
but please read our warnings.

The versions feature allows you to save more than one version of a document in a
single file. This can be handy in all sorts of odd ways. For example, we’ve seen router
configurations copied and pasted from a terminal into different versions inside the
same document for archival and change control purposes.



558 | Appendix D: Revision Control

The change tracking and versions features will cause your document
to continually grow in size, since items that are changed are still kept
and deleted items are not really deleted, but only marked as deleted.

If accidentally turned on, change tracking and versions can be very
dangerous information leaks! For example, if you send similar propos-
als to competing companies after doing a search and replace and other
editing, someone at one of those companies can see exactly what you
changed and when you changed it. The most recent versions of these
tools have various methods that attempt to warn you or clear private
information before a given document is converted to PDF or emailed.

Take a look at any word processor attachments you receive in email,
especially from vendors. You may be surprised.

Accessing These Features

Table D-1. Word processor functions

Feature Writer menu option Word menu option

Document comparisons Edit ➝ Compare Document Tools ➝ Compare and Merge Documents

Change tracking Edit ➝ Changes Tools ➝ Track Changes

Versions File ➝ Versions File ➝ Versions



559

Appendix E APPENDIX E

Building bash from Source5

In this appendix we’ll show you how to get the latest version of bash and install it on
your system from source, and we’ll discuss potential problems you might encounter
along the way. We’ll also look briefly at the examples that come with bash and how
you can report bugs to the bash maintainer. The material in this appendix also
appears in Learning the bash Shell by Cameron Newham (O’Reilly).

Obtaining bash
If you have a direct connection to the Internet, you should have no trouble obtaining
bash; otherwise, you’ll have to do a little more work. The bash home page is located
at http://www.gnu.org/software/bash/bash.html and you can find the very latest details
of the current distribution and where to obtain it from there.

You can also get bash on CD-ROM by ordering it directly from the Free Software
Foundation, either via the web-ordering page at http://order.fsf.org or from:

The Free Software Foundation (FSF)
59 Temple Place – Suite 330
Boston, MA 02111-1307 USA
Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: order@fsf.org

(Valid as of Thursday April 20, 2006 11:45:40 PDT.)

Unpacking the Archive
Having obtained the archive file by one of the above methods, you need to unpack it
and install it on your system. Unpacking can be done anywhere—we’ll assume
you’re unpacking it in your home directory. Installing it on the system requires you
to have root privileges. If you aren’t a system administrator with root access, you can



560 | Appendix E: Building bash from Source

still compile and use bash; you just can’t install it as a system-wide utility. The first
thing to do is uncompress the archive file: gunzip bash-3.1.tar.gz. Then you need to
untar the archive: tar -xf bash-3.1.tar. The -xf means “extract the archived mate-
rial from the specified file.” This will create a directory called bash-3.1 in your home
directory. If you do not have the gunzip utility, you can obtain it in the same way you
obtained bash or simply use gzip -d instead.

The archive contains all of the source code needed to compile bash and a large
amount of documentation and examples. We’ll look at these things and how you go
about making a bash executable in the rest of this appendix.

What’s in the Archive
The bash archive contains a main directory (bash-3.1 for the current version) and a
set of files and subdirectories. Among the first files you should examine are:

CHANGES
A comprehensive list of bug fixes and new features since the last version

COPYING
The GNU Copyleft for bash

MANIFEST
A list of all the files and directories in the archive

NEWS
A list of new features since the last version

README
A short introduction and instructions for compiling bash

You should also be aware of two directories:

doc
Information related to bash in various formats

examples
Examples of startup files, scripts, and functions

The other files and directories in the archive are mostly things that are needed dur-
ing the build. Unless you are going to go hacking into the internal workings of the
shell, they shouldn’t concern you.

Documentation
The doc directory contains a few articles that are worth reading. Indeed, it would be
well worth printing out the manual entry for bash so you can use it in conjunction
with this book. The README file gives a short summary of the files.



What’s in the Archive | 561

The document you’ll most often use is the manpage entry bash.1. The file is in troff
format—the same format used by the manpages. You can read it by processing it
with the text-formatter nroff and piping the output to a pager utility; e.g., nroff -man
bash.1 | more should do the trick. You can also print it off by piping it to the line-
printer (lp). This summarizes all of the facilities your version of bash has and is the
most up-to-date reference you can get. This document is also available through the
man facility once you’ve installed the package, but sometimes it’s nice to have a
hardcopy so you can write notes all over it.

Of the other documents, FAQ is a Frequently Asked Questions document with
answers, readline.3 is the manual entry for the readline facility, and article.ms is an
article about the shell that appeared in Linux Journal, and was written by the current
bash maintainer Chet Ramey.

Configuring and Building bash
To compile bash “straight out of the box” is easy—you just type ./configure and
then make! The configure script attempts to work out whether you have various utili-
ties and C library functions, and their location on your system. It then stores the rele-
vant information in the file config.h. It also creates a file called config.status, which is
a script you can run to recreate the current configuration information. While
configure is running, it prints out information on what it is searching for and where it
finds it.

The configure script also sets the location that bash will be installed; the default is the
/usr/local area (/usr/local/bin for the executable, /usr/local/man for the manual entries,
etc). If you don’t have root privileges and want it in your own home directory, or you
wish to install bash in some other location, you’ll need to provide configure with the
path you want to use. You can do this with the --exec-prefix option. For example:

$ configure --exec-prefix=/usr

specifies that the bash files will be placed under the /usr directory. Note that config-
ure prefers option arguments be given with an equals sign (=).

After the configuration finishes and you type make, the bash executable is built. A
script called bashbug is also generated, which allows you to report bugs in the for-
mat the bash maintainers want. We’ll look at how to use it later in this appendix.

Once the build finishes, you can see if the bash executable works by typing ./bash.

To install bash, type make install. This will create all of the necessary directories
(bin, info, man and its subdirectories) and copy the files to them.

If you’ve installed bash in your home directory, be sure to add your own bin path to
your PATH and your own man path to MANPATH.



562 | Appendix E: Building bash from Source

bash comes preconfigured with nearly all of its features enabled, but it is possible to
customize your version by specifying what you want with the --enable feature and --
disable feature command-line options to configure. Table E-1 provides a list of the
configurable features and a short description of what those features do.

The options disabled-builtins and xpg-echo-default are disabled by default. The
others are enabled.

Table E-1. bash configurable features

Feature Description

alias Support for aliases.

arith-for-command Support for the alternate form of the for command that behaves like the C language for
statement.

array-variables Support for one-dimensional arrays.

bang-history C-shell-like history expansion and editing.

brace-expansion Brace expansion.

command-timing Support for the time command.

cond-command Support for the [[ conditional command.

cond-regexp Support for matching POSIX regular expressions using the =~ binary operator in the [[
conditional command.

directory-stack Support for the pushd, popd, and dirs directory manipulation commands.

disabled-builtins Whether a built-in can be run with the builtin command, even if it has been disabled
with enable -n.

dparen-arithmetic Support for ((...)).

help-builtin Support for the help built-in.

history History via the fc and history commands.

job-control Job control via fg, bg, and jobs if supported by the operating system.

multibyte Support for multibyte characters if the operating system provides the necessary support.

net-redirections Special handling of filenames of the form /dev/tcp/HOST/PORT and /dev/udp/HOST/
PORT when used in redirections.

process-substitution Whether process substitution occurs, if supported by the operating system.

prompt-string-decoding Whether backslash escaped characters in PS1, PS2, PS3, and PS4 are allowed.

progcomp Programmable completion facilities. If readline is not enabled, this option has no effect .

readline readline editing and history capabilities.

restricted Support for the restricted shell, the -r option to the shell, and rbash.

select The select construct.

usg-echo-default
xpg-echo-default

Make echo expand backslash-escaped characters by default, without requiring the -e
option. This sets the default value of the xpg_echo shell option to on, which makes
bash’s echo behave more like the version specified in the Single Unix Specification, Ver-
sion 2.



What’s in the Archive | 563

Many other shell features can be turned on or off by modifying the file config-.top.h.
For further details on this file and on configuring bash in general, see INSTALL.

Finally, to clean up the source directory and remove all of the object files and execut-
ables, type make clean. Make sure you’ve run make install first; otherwise, you’ll
have to rerun the installation from scratch.

Testing bash
There are a series of tests that can be run on your newly built version of bash to see if
it is running correctly. The tests are scripts that are derived from problems reported
in earlier versions of the shell. Running these tests on the latest version of bash
shouldn’t cause any errors.

To run the tests just type make tests in the main bash directory. The name of each
test is displayed, along with some warning messages, and then it is run. Successful
tests produce no output (unless otherwise noted in the warning messages).

If any of the tests fail, you’ll see a list of things that represent differences between
what is expected and what happened. If this occurs, you should file a bug report with
the bash maintainer; see the “Reporting Bugs” section later in this appendix for infor-
mation on how to do this.

Potential Problems
Although bash has been installed on a large number of different machines and oper-
ating systems, there are occasionally problems. Usually the problems aren’t serious
and a bit of investigation can result in a quick solution.

If bash didn’t compile, the first thing to do is check that configure guessed your
machine and operating system correctly. Then check the file NOTES, which con-
tains some information on specific Unix systems. Also look in INSTALL for addi-
tional information on how to give configure specific compilation instructions.

Installing bash as a Login Shell
See Recipe 1.9, “Setting bash As Your Default Shell.”

Examples
See Appendix B for examples included with bash.



564 | Appendix E: Building bash from Source

Who Do I Turn To?
No matter how good something is or how much documentation comes with it, you’ll
eventually come across something that you don’t understand or that doesn’t work.
In such cases it can’t be stressed enough to carefully read the documentation (in more
casual computer parlance: RTFM). In many cases, this will answer your question or
point out what you’re doing wrong.

Sometimes you’ll find this only adds to your confusion or confirms that there is
something wrong with the software. The next thing to do is to talk to a local bash
guru to sort out the problem. If that fails, or there is no guru, you’ll have to turn to
other means (currently only via the Internet).

Asking Questions
If you have any questions about bash, there are currently two ways to go about get-
ting them answered. You can email questions to bash-maintainers@gnu.org or you
can post your question to the USENET newsgroup gnu.bash.bug.

In both cases either the bash maintainer or some knowledgeable person on
USENET will give you advice. When asking a question, try to give a meaningful
summary of your question in the subject line (see http://www.catb.org/~esr/faqs/
smart-questions.html).

Reporting Bugs
Bug reports should be sent to bug-bash@gnu.org, and include the version of bash and
the operating system it is running on, the compiler used to compile bash, a descrip-
tion of the problem, a description of how the problem was produced, and, if possi-
ble, a fix for the problem. The best way to do this is with the bashbug script, installed
with bash.

Before you run bashbug, make sure that you’ve set your EDITOR environment variable
to your favorite editor and have exported it (bashbug defaults to Emacs, which might
not be installed on your system). When you execute bashbug it will enter the editor
with a partially blank report form. Some of the information (bash version, operating
system version, etc.) will have been filled in automatically. We’ll take a brief look at
the form, but most of it is self-explanatory.

The From: field should be filled out with your email address. For example:

From: confused@wonderland.oreilly.com

Next comes the Subject: field; make an effort to fill it out, as this makes it easier for
the maintainers when they need to look up your submission. Just replace the line
surrounded by square brackets with a meaningful summary of the problem.



Who Do I Turn To? | 565

The next few lines are a description of the system and should not be touched. Then
comes the Description: field. You should provide a detailed description of the prob-
lem and how it differs from what is expected. Try to be as specific and concise as
possible when describing the problem.

The Repeat-By: field is where you describe how you generated the problem; if neces-
sary, list the exact keystrokes you used. Sometimes you won’t be able to reproduce
the problem yourself, but you should still fill out this field with the events leading up
to the problem. Attempt to reduce the problem to the smallest possible form. For
example, if it was a large shell script, try to isolate the section that produced the
problem and include only that in your report.

Lastly, the Fix: field is where you can provide the necessary patch to fix the problem
if you’ve investigated it and found out what was going wrong. If you have no idea
what caused the problem, just leave the field blank.

If the maintainer can easily reproduce and then identify the problem, it
will be fixed faster. So make sure your Repeat-By (and ideally Fix) sec-
tions are as good as you can make them. Reading http://www.catb.org/
~esr/faqs/smart-questions.html is also encouraged.

Once you’ve finished filling in the form, save it and exit your editor. The form will
automatically be sent to the maintainers.





567

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers and Symbols
- dash, 392
! exclamation point, 11
- operations, 298
!! double exclamation point (bang

bang), 150, 456
!$ exclamation, dollar sign, 459
" double quotes, 12, 30, 254
# pound, 82
# pound, trailing, 4
#!, and finding bash, 321
#!/bin/sh, 321
$ dollar sign, 29, 81, 109, 153
$ dollar sign, trailing, 4
$- syntax, lists current shell option flags, 15
$$ double dollar sign, 243
$( ) (see also ``), 147
$( ) dollar sign, parentheses, 46
$(( )) expression, 108
$* dollar, asterisk, 91
$? dollar sign, question mark, 74
$@ dollar, at sign, 94
${!prefix*}, for parameters programmable

completion, 287
${!prefix@}, 287
${#} dollar sign, bracket, pound sign,

bracket, 96, 248
${#VAR}, 97
${:=} syntax, 101
${:?} syntax, 103
${:-} syntax, 99
${1:0:1} syntax, 248
${parameter#[#]word}, 480

${parameter%[%]word}, 480
${parameter/pattern/string}, 480
${VAR#alt}, 97
${variable/pattern/replacement}, 195
$0 variable, 236
$COMP_WORDS, 393
$COMPREPLY, 393
$cur variable, 393
$FUNCNAME, 206
$HISTCONTROL, 378
$HISTFILE, 378
$HISTFILESIZE variable, 378
$HISTIGNORE, 378
$HISTSIZE, 378
$HISTTIMEFORMAT, 378
$i, don’t use (see also $x), 85
$i, use of, in awk, 157
$IFS (bash Internal Field Separator), 287
$IFS=':', 196
$include (readline), 201, 373
$INPUTRC, 371
$LESS variable, 182
$LESSCLOSE, 182
$LESSOPEN, 182
$PASSWD, 65
$PATH, 6, 68, 195, 283, 361, 362–366
$PROMPT_COMMAND, 359
$PS1, 353, 357, 410
$PS2, 353, 374
$PS3, 357, 374
$PS4, 357, 376
$PWD, 358
$RANDOM, 292
$REPLY, 64



568 | Index

$result, 341
$SCRIPT, 79
$SSH_ID, 341
$SSH_USER, 341
$STAT, 70
$temp_dir, 293
$TMOUT variable, 318
$UMASK variable, 288
$UNZIP, 78
$VERBOSE, 98
$x, don’t use (see also $i), 85
$ZIP, 78
% percent sign, 31
& ampersand, 72
&& double-ampersands, 72
&> ampersand, greater than sign, 38
'{}', holds filenames during command

execution, 193
( ) parentheses, 42, 190
(( )) double parentheses, 127
(-) dash, 40
* asterisk, 9, 10, 121
** double asterisk, 109
*.pub public key, 309
*.txt, for pattern matching, 11
+ operations, 298
+ plus sign, 40
, comma operator, 110
. dot, 68, 201
. dot files, 11
. period, 152
.* period, asterisk, 10, 152
./ leading dot

slash character, 7
./ leading dot and slash character, 69
.[!.]*, 11
.bash.0, 27
.deb files (see also .rpm), 173
.FAQ, 26
.html, 27
.INTRO, 26
.jpg, 121
.ps, 27
.rbash.0, 27
.rpm (see also .deb files), 173
/ slash, 35, 105
/ slash with -F, 9
/bin/bash, 370
/dev/nul, 148
/etc/bash.bashrc, 395
/etc/bash_completion, 395
/etc/bashrc, 395, 401

/etc/inputrc, 395
/etc/passwd file, 16
/etc/profile, 395, 400
/etc/shells, 20
/etc/shells, list of valid shells, 16
/proc/core for accessing passwords, 65
/sbin/ifconfig -a, 338
/tmp for scratch directory, 35
/tmp/ls, 292
/usr partition, 17
/usr/bin/env command, 321
:- assignment operator, 101
: colons, 68
:+ variable operator, 203
:= colon, equal sign, 102
; semicolon, 72, 112
< less than symbol, 55
<<- syntax, 59
<= greater than, equal sign, 240
<a> tags, 253
= (or ==), for string comparisons, 119
= equal sign, 81, 109
== double equal signs, 240
> greater than sign, 33, 48, 55
>& greater than sign, ampersand, 38
>> double greater than, 39, 115
>outputfile, 29
? question mark, 121
?, shell pattern matching operator, 11, 514
@ at sign, 9, 203
[ [ ] ] double bracket, 121
[ ] single brackets, 10, 126, 152
[ bracket, 10
\ backslash, 152, 153
\ leading backslash, 285
\; backslash, semicolon, 193
\<inputfile, omitting allows output to go

anywhere, 29
\{n,m\}, for repetition (regular

expressions), 153
\c, for echo escape sequence, 33
\unalias -a command, 285
\w, 358
\W, to print basename, 358
^ caret, 11, 153
_mcd_command_failed_, 382
_signals, 393
_struct, 385
`` backward quotes (see also $( )), 46
{ } braces, 42
{{ }} double braces, code block, 341
{x..y} brace expansion, 449



Index | 569

| (vertical bar) pipe
' single quote, 12, 30, 152, 254, 535
|| double pipes, 77
pipe characters (|), 532
pipe symbol (|)
pipeline, 532

~ tilde, 4
~/.bash_history, 395
~/.bash_login, 395
~/.bash_logout, 395
~/.bash_profile, 395
~/.bashrc, 395
~/.inputrc, 396
~/.profiles, 395
~/bin directory, 373
0m, clears all attributes and set no color, 360
-1 option, 9

A
-a flag, 6
-a operator, 9, 115
-A option (mkisofs), 244
absolute pathname, 35
absolute paths, hardcoding, 284, 362
accessing data, on remote machines, 307
accounts, shared, 302
Add/Remove Applications, 19
adding directories, 362
Advanced Bash-Scripting Guide, 27
AIDE, 282
AIX, 22
aliases

avoiding, 213
clearing, 285
commands, redefining with, 211
expand_aliases, 370
expansion, suppressing with \ leading

backslash, 285
Host_Alias, 306
malicious, 285
processing on command line, 534
' (single quote) with, 212
recursive, 534
\unalias -a command, 285
User_Alias, 306

ampersand (&) to run commands in the
background, 72

AND (-a), 117
AND constructs, 190
ANSI color escape sequences, 484
ANSI escape sequence, 355, 359

AppArmor, 304
application directories, 362
Application Software for NetBSD, 20
apropos, searches manpage for

expressions, 7
archives, 22, 388

ar archives, 173
Archive Center, 22
archiving data, 421
untaring, 175

ARG_MAX, 344
arguments

${ } syntax for variables, 105
$VERBOSE, 98
breaking up, 343
cd (current directory) command, 368
counting, 96
getopts, 249–252
insufficient, 104
list too long error, 343
looping over, 91
options with, 98, 249
parsing, 134, 231, 248
positional parameters, 101
quotes, around file, 411
real arguments, 98
repeat without retyping, 460
reusing, 458
-v argument, 98

arithmetic
$ (dollar sign), 109
$(( )) expression, 108
** (double asterisk), for raising to a

power, 109
assignment operators, 109
comma operator (,), 110
dates and times, 225
equal sign (=), 109
expansion, 103
integer expressions, 108
integer for loops, 449
let statement, 108
operators, 109
spaces, 109
while looping construct, 126

arithmetic expressions
evaluation of, 534

arrays
initialization of, 107, 255
output, parsing into, 255
single-dimension, 106
variables, using, 106, 123



570 | Index

article.ms, bash article, 26
assignment operators, 109
associative arrays (hashes in awk), 159
asterisk

*dollar, asterisk, 91
in strings, 10
match any number of characters, 121
means file is executable, 9
means to repeat zero or more

occurrences, 152
at sign (@), 9, 203
attacker, non-root, 293
attacks, man in the middle, 315
automating processes, 348–351
available space, tracking on MP3

players, 238
awk

awk command, 265
awk program, 157
awk utility, 155
to split on multiples of whitespace, 265

B
backslash (\), 12, 153
backslash, semicolon (\;), 193
backup directories, 439–442
backward quotes (``) (see also $( )), 46
bad line endings, 464
Barrett, Daniel, 308, 316
basename command, 136
bash, 16

bash --version, checks for bash
installation, 16

built-in umask, 288
documentation, 25
environment replication, 398
functions, 203
installation instructions, 26
Ramey, Chet, 21, 25
redirector, 39
session, sharing a single, 417
tarballs, 297
version 3.0, for pattern matching, 123
version 3.1+, for changing case

sensitivity, 124
bash $IFS (Internal Field Separator), 254,

258, 268, 270
bash invocation, 482
bash.1, manpage, 26
bashbug.0, manpage formatted, 27
bashbug.1, bashbug manpage, 26
bash-completion library, list of modules, 390

bashgetopt.h, 387
bash_logout, sample of, 408
bash_profile, sample of, 401
bashrc, sample of, 403
bashref, Bash Reference Guide, 27
bashref.info, reference manual by

makeinfo, 26
bashref.texi, reference manual, 26
bashtop, 25
batch job, logging, 418
bdiff, 437
Beagle, desktop search engine, 194
Beebe, Nelson H.F., 281
BEGIN keyword (awk), 158
bg, to unpause the job, 73
bin directory, 69
bind commands, 372
bit buckets, 148
bits, take away from default

permissions, 288
blank spaces, 109
blanks, embedded, 92
blocks, 192
Boolean flags, 202
Bourne shells, /etc/profile, global login

environment file, 395
brace expansion, 534
braces ({ }), 42, 87, 91
bracket ([), in strings, 10
branching construct, 111
branching, multiway, 132
Browser Appliance v1.0.0, 326
browser, viewing photos with, 233
BSD, 20, 325
buffer overflows, 282
built-in commands

bash, network redirection feature, 345
BUILTIN_ENABLED, 385
builtin_name, 385
builtins.0, built-ins manpage, 27
builtins.1, 26
builtins.h, 387
C code, 385
commands, replacing, 13
turn off commands, 14
description structure, 385
enable -a, lists commands, 14
enable command, 14
enable -n, turns off shell commands, 14
./examples/loadables/, 384
help command, 14
loadables, 384



Index | 571

loading, 385
memory and conserving when

loading, 389
popd command, 454
pushd command, 454
pwd (print working directory

command), 5
shell cd, using, 382
shell functions and aliases, ignoring, 213
shift command, 135
test command, 118
textual completion, extending, 391
tty command, 385
unmask, 288
writing, 385

bytes, 192
bzip2, file compression, 172

C
C header files, 387
-c option (grep), 146
cached SSH keys, flushing, 313
call by value, 88
canonical portable syntax for bash $IFS, 287
caret (^), 11, 153
case, identify options, 248
case-insensitive search, 57, 149
case sensitivity, 133, 177
case statement, 132, 232, 250, 349
cat command, 34, 72, 236
cat program, 244
cdAnnotation, 244
cd (current directory) command, 42, 74,

214, 368, 380–381
cdrecord, 242
CDs, burning, 242
CentOS, 19, 170
CHANGES, bash change history, 26
changing command names, 369
changing directories, 381
changing the exported value, 88
characters

asterisk (*), match any number of, 121
backslash (\), matches special, 153
caret (^), to negate character class, 11
counting, 180
-d option (cut), specify delimiters, 178
-d option (tr), for deleting, 178
default, for paper and screen, 85
exclamation point (!) to negate class, 11
for enclosed non-printing, 355
leading with, other than a tab, 60

odd characters in file names, 186
parsing one at a time, 260
patterns for matching, 152
pound (#), 82
question mark (?), for matching a single

character, 121
renaming or removing files with

special, 428
space characters, 92
tabs, 59
tr command, for translation of, 176
translation of, 176
unprintable, 333
whitespace, 333

chmod, 298
choice function, prompts for and verify a

package date, 62
chpass -s shell, changes default shell, 16
chroot command, 303
chroot Jails, 303
chroot, and system recovery, 304
chsh -l, lists valid shells, 16
chsh -s /bin/bash, makes bash default

shell, 16
chsh -s, changes default shell, 16
chsh, opens editor, 16
Classic Shell Scripting (O’Reilly), 25, 281
--clean option, flushes cached SSH keys, 313
clear command, 420
clear, using with traps, 410
clobber a file, 53
cmdhist, 379
Cmnd_Alias (sudo), 306
cmp, 427
code, running interactively, 15
colon, equals sign (:=), 102
colons (:), to separate directories, 68
color escape sequence, and trailing m, 360
comm, 438
comma operator (,), 110
Comma Separated Values (CSV), 277
command

changing a typo in, 456
command, 197, 213, 324, 382
eval command, 536
exit status ($?), 70
for compiling and linking, 388
hash, 286
line calculator, 142
lines, repeating, 455
names, changing or shortening, 369
not found errors, 204, 468, 479



572 | Index

command (continued)
number, 359
-p, 324
quoting affecting, 535
redefine with alias, 211
run several in sequence, 71
running in the background, 73
separating with semicolons, 72
substitution, 103, 340
using sudo on several, 434
verify success of, 69, 74

command-line processing
repeating, 536

commas, as the thousands separator, 452
comments, 82, 97, 309
comparison operators, 120
COMPAT, compatibility issues, 26
compgen, 392, 393, 481
complete command, 391, 481
completion strings, viewing, 392
compound commands, 114
compressed archives, uncompressing, 391
compressed files, 154, 172
compression algorithms, 173
config.h, 387
configuration and customization

$CDPATH directories, 367–368
$COMP_WORDS, 393
$COMPREPLY, 393
$cur variable, 393
$HISTCONTROL, 378
$HISTFILE, 378
$HISTFILESIZE variable, 378
$HISTIGNORE, 378
$HISTSIZE, 378
$HISTTIMEFORMAT, 378
$include, 373
$INPUTRC, 371
$PATH, 362–366
$PATH, change permanently, 361
$PROMPT_COMMAND, 359
$PS1, command prompt, 353, 357
$PS1, errors with, 410
$PS2, 353, 374
$PS3, select prompt, 357, 374
$PS4 prompt, 376
$PWD, to print entire CWD, 358
/etc/bash.bashrc (Debian), global

environment file, 395
/etc/bash_completion, for programmable

completion library, 395

/etc/bashrc (Red Hat), bash sub-shells
global environment file, 395

/etc/bashrc, for system-wide environment
settings, 401

/etc/inputrc, for global GNU Readline
configuration, 395

/etc/profile, Bourne shells global login
environment file, 395

/etc/profile, system-wide profile
settings, 400

\W, to print basename, 358
\w, to print entire path, 358
_mcd_command_failed_, 382
_signals, 393
_struct, 385
~/.bash_history, command history

default storage file, 395
~/.bash_login, for Bourne login shells

personal profile files, 395
~/.bash_logout, 395
~/.bash_profile, for bash login shells

personal profiles, 395
~/.bashrc, for bash sub-shells personal

environment files, 395
~/.inputrc, for GNU Readline

customizations, 396
~/.profile, for Bourne logging shells

personal profile files, 395
~/bin directory, 373
0m, clears all attributes and set no

color, 360
absolute paths, hardcoding, 362
alias, 369
ANSI, 359
ANSI escape sequence, 355
application directories, 362
archive, 388
bash -c help, 353
bash-completion library, list of

modules, 390
bash environment, replication, 398
bashgetopt.h, 387
bash --help, 353
bash login rc files, 396
bash_logout, sample of, 408
bash_profile, sample of, 401
bashrc, sample of, 403
bash -x, 353
bind commands, 372
built-in

commands, 382
list of loadables, 385



Index | 573

memory and conserving when
loading, 389

textual completion, extending, 391
writing, 385

BUILTIN_ENABLED, 385
builtin_name, 385
builtins.h, 387
C code, 385
C header files, 387
cd argument, 368
clear, using with traps, 410
cmdhist, 379
command

command, 382
names, changing or shortening, 369
number, 359

compgen, 392, 393
complete command, 391
completion strings, viewing, 392
compressed archives, uncompressing, 391
config.h, 387
configuration files, using in bash

scripts, 202
configure script, 388
Ctrl-X P, displays $PATH, 362
beginning custom configuration, 400
CWD (current working directory), 358
description structure, for built-ins, 385
directories, creating and changing in one

step, 381
directories, using find command in many

levels, 383
downloads for this book, 356
dynamic shared objects, 388
echo statements, care when using, 399
egrep pattern, 363
enable built-in, 385
enclosed non-printing characters, 355
environment settings, system-wide, 401
erasedups, 378
error messages, identifying, 366
EX_USAGE, 386
./examples/loadables/, for pre-written

built-ins, 384
EXECUTION_FAILURE, 387
EXECUTION_SUCCESS, 387
exit code, 363
exit status ($?), 354
expand_aliases, 370
export command, 357
Fedora Core 5, 353
function-name, 385

functions, 369
grep -l PATH ~/.[^.]*, 361
gunzip utility, 391
hello.c, 384
help_array, 385
histappend, 379
history, between sessions and

synchronization, 376
history command, 376
history number, 359
history options, setting, 377
history sharing, automation of, 377
if command, 363
ignoreboth, 378
ignoredups, 378
ignorespace, 378
improving cd commands, 380
.inputrc, 371
inputrc, sample of, 407
internal_getopt, 387
jobs, number being currently

managed, 354
kill command, 392
leading dots in filenames, 398
libraries, third-party, 389
lithist, 379
loadable built-ins, 384
loptend, 387
macros, for shell interaction

documentation, 362
Makefile, 384
Meta Ctrl-V, displays variable for

editing, 362
mkdir command, 382
no_options(list), 386
NULL, 387
options, 353
PATH="$PATH:newdir", 362
paths, 361, 362, 366
personal utilities, 373
POSIX mode, 368
profile settings, system-wide, 400
programmable completion, 389
prompts, 353, 355, 359
prompt strings, 357
promptvars shell option, 357
PTY, pseudo-terminal number, 354
RC (initialization) files, 394, 398–400
readline, 362, 371
reset_internal_getopt, 387
root, set paths, 361



574 | Index

configuration and customization (continued)
run_screen, sample of, 408
-s option (example loadable built-in), 385
secondary prompts, 374
select statement, 374
settings subdirectory, 398
set +x, 353
shell.h, 387
shells, levels of, 354
signal names, 392
startup options, 353
stdio.h, 387
strftime, 378
symbolic links, 370
trailing m, indicates color escape

sequence, 360
tty built-in, 385
ttyname, 387
unalias, 369
usage, short form of help, 386
WORD_LIST, 386
world-writable directory, avoid in root’s

path, 361
xterms, 355, 359
xtrace, for debugging prompt, 357

configuration files, 200–203
configure script, 388
continue statement, 163
converters, for documents, 414
converting dates and times to Epoch

seconds, 222
converting Epoch seconds to human-readable

dates and times, 223
Conway, Damian, 84
Copernic Desktop Search, 194
core dumps, 65, 287
CPIO files, 173
creating directories, 381
creating RC files, 398–400
cron, 228, 347
cron jobs, and passwords, 308
cross-platform scripts, 326
crypt hashes, 307
CS_PATH, 323
C strftime( ) function (man 3 strftime), for

formatting options, 217
CSV (Comma Separated Values), 277, 278
Ctrl-A K, to kill the window and end the

session, 418
Ctrl-X P, displays $PATH, 362
cur_weekday, 222
curl, 336

current working directory, 358
custom configuration, introduction to, 400
cut command, 170, 264
CWD (current working directory), 358
Cygwin, 23
cygwin1.dll, 23

D
D/M/YY formats, avoid, 218
-d option (date)

-d option, 170, 219, 221
-d option (cut) specify delimiters, 178
-d option (tr), 178

daemon, 199
dash (-), 40, 392
dash, shell, 324
dashes, print a line of, 230
data

accessing on remote machines, 307
archiving, 421
files, updating specific fields, 266
fixed-length, 273
fixed-width, 273
isolating fields, 264
numeric, 166
prepending, 429–432
subsets, 170
validation, 282

databases, setup with MySQL, 262
dates and times

%z format, 218
arithmetic, 225
C strftime( ) function (man 3 strftime), for

formatting options, 217
converting to specific day and time, 223
crons, 228
crontab, 228
cur_weekday, 222
-d option, 219, 221
D/M/YY formats, avoid, 218
date command, 216
date ranges, automating, 220
DAY, caution using, 221
Daylight Saving Time, 227
day, ranges, 229
day of week for the given day, 222
DD/MM/YY formats, avoid, 218
default dates, 218
end of month of the given month, 222
end_month, 222
Epoch seconds, 222, 223, 227
formatting options, 217



Index | 575

gawk, 216
getdate, 220
GNU date command, 216, 219, 221, 224
ISO 8601, displays dates and times, 218
leap years, 226, 227
Linux Vixie Cron, 228
M/D/YY formats, avoid, 218
MM/DD/YY formats, avoid, 218
NTP (Network Time Protocol), 226
number of days between two dates, 222
Perl, 223, 224, 227
pn_day, 222
pn_day_nr, 222
pn_month, 222
pn_weekday, 222
previous and next x days of the given

day, 222
previous and next x months, 222
scripts, running on Nth day, 228
seconds, 226, 227
SQL query, 219
strftime format specification, 217
string formatting with strftime, 513
this week, caution using, 221
time zones, 218, 226
tomorrow’s, 224
Unix command, omits the year, 226
UnixReview, 221

DAY, caution using, 221
Daylight Saving Time, 227
day of week for the given day, 222
DD/MM/YY formats, avoid, 218
Debian, 17, 173, 183, 197
DEBUG signal, 210
debugging, and core dumps, 287
declare option, 210
default dates, 218
default values, 99, 100
deleting characters, 178
delimiters, 170
description structure, for built-ins, 385
desktop search engine, 194
developerWorks (IBM), 313
diff, 246, 422–425, 437
digit octal modes, 298
direct parsing, ${#} dollar sign, bracket,

pound sign, bracket, 248
directories, 361

$CDPATH directories, 368
$PATH errors, 465
add or remove, 362

adding current to $PATH, 291
application, 362
backups of, 439–442
colons (:), to separate, 68
creating and changing in one step, 381
find command, using in many levels, 383
moving among arbitrary ones, 453
names, parsing off, 175
photos, viewing, 232
relative, 173
tar archives, 175
temporary, 282
world-writable, 289–291, 361

disconnected sessions, 415
display variables for editing, 362
divert output, 47
documentation, 25, 83, 362
documents, comparing, 244
dollar sign ($), 29, 81, 109, 153

variable substitution, 534
dollar sign, brace, pound sign, brace

(${#}), 96
dollar sign, parentheses ($( )), for command

substitution, 46
dollar, asterisk ($*), 91
dollar, at sign ($@), 94
DOS

carriage returns (\r), deletion, 178
endlines, converting to Unix, 173
files, convert to Linux, 178
pause command, 450

dos2unix, 464
dot (.) files, 10, 11, 201
dot directory, 68
double asterisk (**), for raising to a

power, 109
double braces ({{ }}) code block, 341
double bracket compound statement

([ [ ] ]), 121
double dollar sign variable ($$), 243
double equals signs (==), 240
double exclamation point (!!) history

operator, 150
double greater than operator (>>), 115
double parentheses ((( ))) construct, 127
double quotes ("), 30, 254, 535
double-ampersands (&&), 72
downloads for this book, 356
duplicate lines, removing, 171
dynamic shared objects, 388



576 | Index

E
-e option, escape sequence (echo), 33
echo *, ls command substitute, 11
echo command, 29, 32, 70, 214, 329–331
echo options and escape sequences, 508
echo portability, 329
echo statements, care when using, 399
ed script, 433
egrep, 265, 363
egress filtering, 337
elif, 111
else clause, 111
else-if (elif), 111
Emacs and vi, allow shell escapes, 303
Emacs mode commands, 518
email, sending, 345–348
embedded blanks, 92
embedding documentation, in shell

scripts, 83
EMIT function, 236
empty variables, 474
enable -a, lists built-in commands, 14
enable built-in, 385
enable command, 14
enable -n, turns off shell built-in

commands, 14
end of month, 222
END keyword (awk), 158
end_month, 222
endlines, converting to Unix to DOS, 173
end-user documentation, 83
env (export -p), 88
env command, 321
environment settings, system-wide, 401
EOF (end-of-input word), 237
end-of-input word (EOP), 237
Epoch seconds, 222, 223, 227
eq operator, 120
-eq operator, for numeric comparisons, 119
equal sign (= sign), 109
erasedups, 378
ERR signal, 210
error messages, 37, 77, 103, 251, 366
errors, and core dumps, 287
ERROUT function, 236
escape sequences, 33, 179
eval command, 536
EX_USAGE., 386
./examples/loadables/, 384
exclamation point (!) to negate character

class, 11
-exec, 185

exec command, 335, 342
exec option, 193
executables

$PATH, 68
$SCRIPT, 79
$STAT, 70
. (dot) with ls, supersedes normal ls

command, 68
./ (leading dot and slash character), 69
|| syntax, for error/debug messages, 77
ampersand (&) to run commands in the

background, 72
asterisk (*), 9
bg, to unpause the job, 73
bin directory, 69
cd command, 74
colons (:), to separate directories, 68
commands, 69, 71, 72, 74
conditional execution, of if statement, 75
dot directory, 68
double-ampersands (&&), to run the next

program, 72
echo command, 70
error messages, 77
executePermissions, forgetting to set, 462
exit, 70
exit status ($?), 70, 74
fg command, reconnects to a background

job, 73
file permissions, 69
for looping, 67
hangup (hup) signal, 76
if statement, 71, 74, 75
if/then/else branching, 67
InfoZip, 78
job number, 73
jobs, running unattended, 76
kill command, 76
locate executables, 68
nohup command, 76
Permissions, forgetting to set

execute, 462
PID (process ID, $$), 73
rm command, 74
run a command, 67
scripts, running a series of, 79
set -e flag, 76
variable names, use with care, 78
variables, running commands from, 78
while loops, 75

EXECUTION_FAILURE, 387
EXECUTION_SUCCESS, 387



Index | 577

exglob extended pattern-matching
operators, 515

exit, 70, 350
exit 0, 84
exit code, 363
exit status ($?), 74, 354
expand_aliases, 370
export command, 357
exported environment variables, 468
exported value, changing, 88
exported variables, 87, 467
expressions, short-circuited, 117
ext script, 57
external commands, 13
extglob option (extended pattern

matching), 122

F
-f option (awk) counting string values, 160
-F option (awk) to delineate fields, 155
-F option (ls), shows type of file with trailing

designators, 9
-F switch (tail), 39
-f switch (tail), 39
FC (see Fedora Core)
feature creep, 230
Fedora Core

'ps' command, 170
bash login rc files, 396
customize the $PS1 and $PS2

variables, 353
Red Hat distributions, 19

fg command, reconnects to a background
job, 73

field delimiter, 272
field separator, 168, 254, 272
fields, 170, 264, 266
FIELDWIDTHS, 273
FILE1 -ef FILE2, for locating identical

files, 116
FILE1 -nt FILE2, checks modification

date, 116
FILE1 -ot FILE2 , for locating “is older than

dates”, 116
filenames

$( ) dollar sign, parentheses, for filenames
on command lines, 147

${ } argument, 105
'{}', holds names during command

execution, 193
.jpg, 121
= (equal) symbols in, 81

delimit substitutions, 105
delimit the reference, 105
file characteristics, testing, 114
filename expansion, 10
finding, 186
for loop, 105
ls, shows names of, 9
mv command, 105
odd characters in, 186
operators, string-manipulation, 106
and quotes, 93
random, for security, 293
renaming, 105, 411
searches, 147
slash (/), 105
use of meaningful ones, 294

files
$( ) dollar sign, parentheses, for filenames

on command lines, 147
.[!.]*, for filename expansion patterns, 11
.0, for formatted manual pages, 27
.html, for HTML versions, 27
.ps, for postscript versions, 27
/etc/passwd file, 16
= (equals) symbols, in filenames, 81
AND (-a), 117
batch job, logging, 418
characteristic, testing for more than

one, 117
compression, 172
converting to CSV, 277
counting differences of, 426
CSV data file, parsing, 278
data files, compare and find lines in, 436
deleting using an empty variable, 474
descriptor, 38
editing in place, 432
expression, short-circuited, 117
extensions, 174
extensions, uncompressing, 174
file characteristics, testing, 114
file command, 175
file handles, 335
FILESIZE function, 240
finding by content, 192
finding by date, 189
finding by size, 192
finding by type, 191
finding content quickly, 194
finding existing files quickly, 194
finding with list of locations, 195
for information on specific files, 8



578 | Index

files (continued)
index for several, 422
info, 413
info command, 413
info program, 413
line breaks, eliminate, 275
ls -l, provides file details, 9
ls options, 9
metadata recovery, 421
-mtime predicate to find, 190
naming, 173
operations, speeding up resulting, 187
OR (-o), 117
overwrite, 172
permissions, 69
quotes, around file arguments, 411
Red Hat, util-linux package, 413
rename commands, 413
rename from_string to_string file_

name, 413
renaming, 411
sessions, logging, 418
-size predicate to find, 192
symbolic links, 188
system-level, 287
tar command, 172
temporary files, and security, 282, 292
test options, 116
testing, 117
Texinfo, 413
Unix permissions, 300
unzipping, 246
updating specific fields, 266
ZIP, 246, 414

find command
find utility, 185
finding by file content, 192
finding by file date, 189
finding by file size, 192
finding by file type, 191
finding existing files quickly, 194
finding file by content quickly, 194
finding files with list of locations, 195
finding IP addresses, 335–338
listing files, 145
Metadata, capturing for recovery, 421
MP3 files, locating, 239
phrases, searching for, 163
printf formats, 421
xargs command, 343

fingerprints, 315

Firefox 1.0.7, 326
fixed-length data (fixed-width), 273
fixed-width data, 273
flags, 163, 249
floating-point values, 131
fmt command, 181
-follow predicate to find, 188
FollowMeIP, 337
for loop, 67, 85, 91, 130, 157, 327, 343, 449
for syntax, for looping with a count, 130
forced commands, SSH, 316
Fox, Brian, 1
FreeBSD, 20, 183, 197
FREESPACE function, 239
frequently asked questions

.FAQ, 26
awk program, 155
bash default shell, 17
bash official documentation, 25
BSD syslog protocol, 335
chmod command, 53
counting string value, 161
current directory to the $PATH,

avoiding, 292
data as histograms, 162
data, discarding portions of, 155
DOS pause command, 450
editing a file in place, 432
file permissions, 53
finding bash for #!, 322
free shell accounts, 25
hidden (.) dot files, 12
interpreter spoofing attacks, 283
IP addresses, finding, 340
noclobber option, 53
pipelines and subshells, 473
prepend data to a file, 429
removing or renaming files named with

special characters, 428
reversing word order, 158
RFC 3164, 335
spoofing attacks, avoiding, 283
summing a list of numbers, 159
testing scripts, 325
text paragraphs after a found phrase, 164
Unix shell differences, 27
writing sequences, 448
xargs, “argument list too long”

errors, 343
Friebel, Wolfgang, 183
Friedman, Noah, 297



Index | 579

function
arguments, 369
avoiding, 213
call, 256
definitions, 204
function-name, 385
parameters, 205
values, 205

G
gawk, 216
getconf ARG_MAX command, 344
getconf utility, 284, 323
getdate, 220
getline command, 159
getopts, 134, 249, 249–252
globbing (extended pattern matching), 10,

122
Gnome 2.12.1, 326
gnome-apt, 19
GNU

/etc/inputrc, for global Readline
configuration, 395

~/.inputrc, 396
date command, 216, 219, 221, 224
find, 344, 421
grep, 437
Linux, 324
long options, 325
Readline customizations, 396
Readline library, 373
run_screen, sample of, 408
screen, installation, 415
sed utility, 429
seq utility, 449
tar utility, 173
Texinfo, 413
Text Utils, 23
xargs, 344

Google Desktop Search, 194
GOTO, 348
greater than sign (>) redirect output, 48
greater than, equal sign (<=), 240
grep, 254, 262

awk, outputting to, 159
-c option, 427
-c, created fewer lines to search for, 427
complex pattern searches, 152
compressed files, 154
egrep, 265, 363
ext script, for parameterization, 57
filename output, 262

find command, 383, 421
grep '<a', 254
grep command, 56
grep -l PATH ~/.[^.]*, 361
grep -o, 265
grep -v, 151
gzcat, 154
-h switch, 146
-i option, 149
-i option, (grep), makes search

case-insensitive, 57
-l option, 147
output, 442
pipelines, 150
ps command, 442
-q (quiet) option, 148
regular expression, 152
single quote ('), 254
supply with a source of input, 146
text-related utilities, 144
variables, to find specific, 90
vary output with options, 146
zgrep, 154

groff -Tascii, 27
Groupe Bull, 22
gsub, 272
guest users, restricting, 301
GUI, 19
GUI Rpmdrake, 19
gunzip utility, 391
gzip, file compression, 172

H
-h for getting help, 6, 14
-H option (grep), 193
-h switch (grep), 146
hangup (hup) signal, 76
hash -r command, 286
hash, one-way, 307
hashes, 159, 307
head commands, 39
header lines, 40
hello.c, 384
help_array, 385
help command, 6, 14
here-document, 56

<<- for indenting, 59
<< syntax, 56
data kept with script, 56
HTML in scripts, 236
indenting for readability, 59
odd behavior in, 57



580 | Index

Hex, viewing output, 333
hexdump, 333
hidden (dot) files, 10
histappend, 379
history

!! (double exclamation point)
operator, 150

~/.bash_history, for default storage
file, 395

CHANGES, to change bash, 26
histogram, 161
history command, 376
history number, 359
setting shell options, 377
sharing, automation of, 377
synchronization between sessions, 376

Host_Alias, 306
host, external, 336
host restriction, 317
.html for versions, 27
HTML, parsing, 253
hunks, sections of changed data, 426

I
-i option (xargs), 187
-i option, (grep), makes search

case-insensitive, 57
I/O redirection, 506
IBM, 22
if command, 363
if list, 112
if statement, 71, 74, 75, 100, 111, 240
if test, 97
if/then, to identify options, 248
if/then/else branching, 67
ifconfig, 336
ignoreboth, 378
ignoredups, 378
ignorespace, 378
-iname predicate to find, 189
indenting for readability, 59
index, for several files, 422
info command, 413
info2man, Texinfo viewer and converter, 414
info2www, Texinfo viewer and

converter, 414
InfoZip, 78, 285
initialization (rc) files, 394
input

$INPUTRC, for readline, 371
$PASSWD, 65
$REPLY, 64

$THISPACKAGE, 62
/etc/inputrc, for readline, 395
/proc/core, for accessing passwords, 65
<< syntax, for here-documents, 56
<<- syntax, for indenting

here-documents, 59
choice function, prompts for and verify a

package date, 62
command filename, 55
core dumps, accessing passwords, 65
EOF (end-of-input word), 237
getting input, from other machines, 340
grep command, 56
here-document, indenting for

readability, 59
inputrc, sample of, 407
leading characters, 60
-p option (read), 60, 65
password prompt, 65
preprocessors, 182
printf, 65
read statement, 60
redirection, (< less than symbol), 55
REPLY, 60
root, 65
-s option (read), 65
select, 64
SSH certificates, 65
stty sane, to fix echo, 66
stty sane, to restore echo, 66
tab character, 59
user input, 60
validation, 296
whitespace, trailing, 59
yes or no input, 61

.inputrc, 371
inputrc, sample of, 407
INSTALL, bash installation instructions, 26
integer expressions, 108
Internal Field Separator (bash $IFS), 254,

268, 270, 287
internal_getopt, 387
IP address, 167, 335–338
ireset_internal_getopt, 387
ISO 8601, displays dates and times, 218

J
-j, for bzip2, 173
job number, 73
jobs, 76, 354



Index | 581

K
k (kilobytes), 192
KDE-based desktop distribution, 326
Kernighan, Brian, 320
key pair, creation, 309
keychain, 308, 313–315
keyphrase, 163
keyword command, 214
keywords, processing on command line, 532
kill command, 76, 392
kill -l, 207, 211
Knoppix, 19
kpackage, 19

L
-l chpass, changes bash default shell, 16
-l option (grep), 147
-L option (ls), for linked file information, 9
-l option (ls), for long listing, 9
-l option (unzip), to convert Unix end

lines, 173
-L, (pwd, cd) displays logical path, 5
last in, first out mechanisms, 454
leading characters, 60
leading dot and slash (./), for accessing

current directory, 7
leading dots in filenames, 398
leading, trim, 268–271
leap years, 226, 227
Learning the bash Shell, 25, 301, 384, 389
lefthand side (LHS), 277
less command, 44, 155, 182
less utility, 155
less -V, 447
lesspipe*, 182
lesspipe.sh, 183
let statement, 108
LHS (lefthand side), 277
libraries, third-party, 389
line breaks, eliminate, 275
line counting, 180
lines, numbering, 446
lines, removing duplicates, 171
links, symbolic, 188, 237
Linux

$PATH, changing, 397
/bin/bash, 370
/etc/apt/sources.list, 19
/etc/profile, 363

Add/Remove Applications, 19
application installation, 17
application upgrades, 17
bash versions, 17
CentOS, 19
crontab, 228
Debian, 17
DOS files, convert to Linux, 178
error message, 19
FC (Fedora Core), 19
gnome-apt, 19
GUI Rpmdrake, 19
info, 413
Knoppix, 19
kpackage, 19
Linux API emulation, 23
Linux API functionality, 23
Mandrake, 19
Mandriva, 19
MEPIS, 19
Red Hat, 363
Red Hat Enterprise Linux (RHEL), 19,

197
root, 17
sort comparisons, 169
SUSE, 19, 183
Synaptic, 19
tarball.tar.gz, 172
Ubuntu, 326
Vixie Cron, 228
YaST, 19

Linux Security Cookbook, 308
listing, of all built-ins commands, 14
lithist, 379
Live CDs, 19
-ll option, (unzip), convert DOS end lines to

Unix, 173
loadable built-ins, 384
locale setting, when sorting, 168
locate, 7, 194
locating identical files, 116
locating “is older than” dates, 116
log messages, eliminating by error, 151
logger, 335, 345
logging, 418
logmsg, 350
looping, 130
loptend, 387
ls -a, shows all files, 10
ls command, shows filenames, 7
ls -d, 10



582 | Index

ls -l, 9, 156
ls options, 9
ls, shows filenames, 9
lynx, 336

M
m (trailing), indicates color escape

sequence, 360
MAC (Mandatory Access Controls), 304
Mac OS X

/bin/sh, 21
10.4, and curl, 336
bash-2.05, 21
bash versions, 21
BSD, 325
chsh, opens editor, 16
cut command, garbles output, 170
Darwin, 21
DarwinPorts, 21
default user shell, 3
Fink, 21
HMUG, 21
Mac OS 10.2 (Jaguar), 21
Mac OS 10.4 (Tiger), 21
source bash, 21
sudo, 435

Macdonald, Ian, 389
macros, for shell interaction

documentation, 362
mail, 346
Mail User Agent (MUA), 348
mail*, 347
MAILTO variable, 347
mailx, 346
Makefile, 384
malicious script, /tmp/ls, 292
man command, 6
man in the middle attacks, 315
man sudoers, 306
Mandatory Access Controls (MAC), 304
Mandrake, 19
Mandriva, 19
manpages, 6, 27
manual pages, formatting, 27
Mastering Regular Expressions, 266
M/D/YY formats, avoid, 218
meaningful_prefix, and security, 294
menus, 137
MEPIS, 19
Message Transfer Agent (MTA), 346
metacharacters, 532

Meta Ctrl-V, displays variable for
editing, 362

meta key (screen command mode), 416
Microsoft Services for Unix, 24
Midnight Commander, 292
MIME-aware update, to mail, 347
mkdir command, 382
mkdir -p -m 0700 $temp_dir, avoids race

condition, 293
mkisofs, 242
mktemp, 293
MM/DD/YY formats, avoid, 218
modification dates, 116
MP3 files

$$ (double dollar sign) variable, 243
<= (greater than, equals sign), 240
== (double equals signs), 240
-A option (mkisofs), 244
available space, tracking when

loading, 238
cat program, 244
cdAnnotation, 244
cdrecord, 242
CDs, burning, 242
FILESIZE function, 240
find command, 239
FREESPACE function, 239
if statements, 240
loading, tracking available space

automatically, 238
mkisofs, 242
MP3 player, 237, 238
-p option (mkisofs), 244
REDUCE function, 240
-V parameter (mkisofs), 244
while loop, 239

MP3 player, loading, 237
mpack, 347
-mtime predicate to find, 190
MUA (Mail User Agent), 348
multiplication symbol, 143
mysql command, 263
MySQL, databases setup with, 262

N
N log files, 439–442
-n option (sort), for sorting numbers, 166
-name '*.txt', to narrow searches using

find, 193
-name predicate to find, 185
NetBSD, 20, 169
Netcat, 334, 345



Index | 583

Net-redirection, 334
network redirection feature, 345
network traffic, 334
new line with echo, -n option, 32
NEWS, changes to versions of bash, 25
NF variable (awk), 156, 160
no command-line tools, 336
No such file or directory error, 463
no_options(list), 386
noclobber option, 52
nohup command, 76, 200
NOPASSWD option, 307
NOT constructs, 190
NOTES, configuration and operation

notes, 26
NSA’s Security Enhanced Linux

(SELinux), 304
NSF, to store test scripts and data, 326
NTP (Network Time Protocol), 216, 226
null, 101, 387
null strings, and shopt -s nullglob

option, 344
number of days between two dates, 222
-number switch (head, tail), changes number

of lines, 39
numbering line, 446
numbers, 158, 450
numeric data, sorting, 166

O
-o options (recipe 6.4), 243
octal dump command (od), 333
octal modes, 298
od (octal dump command), 333
ODF (Open Document Format), 245, 275
OFS (awk output field separator), 272
one file per line option (ls -1), 9
online references, shell security, 281
Open Document Format (ODF), 245, 275
OpenBSD, 20, 280
OpenSSH, 280, 308, 318
operations, speeding up resulting, 187
operators

!! (double exclamation point) history, 150
*.txt, for pattern matching, 11
:- assignment operator, 101
:+ variable operator, 203
?, shell pattern matching operator, 11,

514
-a operator, 115
assignment, 109

comma operator (,), 110
comparison, 120
double greater than operator (>>), 115
eq operator, 120
-eq operator, for numeric

comparisons, 119
extended pattern-matching, 10
Perl, 120
redirection, 38
string-manipulation, 106

option filename, 116
options

and arguments, 249
filename, 116
history options, 377
promptvars shell option, 357
-s option (example loadable builtin), 385
setting on startup, 353
standalone, 249
turn off interactively, 353

OR (-o), 117
OR constructs, 190
Outlook, 347
output

$( ) (dollar sign, parentheses), for
command substitution, 46

&> (ampersand, greater than sign), sends
STDOUT and STDERR to same
file, 38

/dev/null, 41
> (greater than sign) redirect output,

33, 35, 48
>& (greater than sign, ampersand), sends

STDOUT and STDERR to same
file, 38

>> (double greater than), append the
output, 39

| (pipe symbol)
-1 (ls minus one) option, 36
adding prefix or suffix to, 444
bit bucket, 41
braces ({ }), for grouping output, 42
buffered, 49
-C option, (ls), redirects output, 35
clobber a file, 53
control over placement of, 31
display beginning of file, 39
display end of file, 39
divert output, 47
double quotes ("), to preserve spacing, 30
dump unwanted data, 41



584 | Index

output (continued)
echo command, 29
eliminating output, 41
file descriptor, 38
formatting control, 31
function call, 256
grouping from several commands, 41
head commands, 39
header lines, 40
header lines, skipping, 40
less command, 44
line output, keeping selected

portions, 156
ls command, 35
messages.out, 37
-n option, new line with echo, 32
newline default, 32
noclobber option, 52
-number switch (head, tail), changes

number of lines, 39
OFS (awk field separator), 272
output messages, redirect to different

files, 37
overwriting, 52
parentheses ( ), redirects subshell’s

execution, 42
parsing into an array, 255
partial elimination, 155
pathnames, for redirecting output, 34
piped I/O, 44
plus (+) sign for offsetting top of the

file, 40
printf, 31
programs, connecting two, 43, 46
redirect messages, 37, 48, 342
redirection operators, 38
reserved words, 42
rm command, 46
save to other files, 34
saving from a command, 33
single quote ('), to preserve spacing, 30
sorted, 165
split, 332
STDERR (>&2), 38
STDIN (standard in), 49
STDOUT (standard output), 37, 49, 50
tail commands, 39
tee command, 45, 50
unbuffered, 49
using as input, 43
viewing, in Hex, 333

P
-p option (mkisofs), 244
-p option (read), 60, 65
-p option (trap), 210
package dates, verification, 62
paragraphs, rewrapping, 181
parameters

$* (unquoted), 95
$@ (unquoted), 95
${!prefix*}, for programmable

completion, 287
${!prefix@}, for expansion, 287
${parameter#[#]word}, 480
${parameter%[%]word}, 480
${parameter/pattern/string}, 480
embedded blanks, 92
errors in, 94
errors using $*, 94
expansion of, 103
function parameters, 205
positional arguments, 101
quotes, around, 93
unsetting of, 103
-V parameter (mkisofs, 244

parentheses ( ), 42, 190
parsing

${#}, for direct parsing, 248
arguments, 231, 248
characters, one at a time, 260
command-line arguments, 134
CSV data file, 278
directory names, 175
HTML, 253
output into an array, 255
output, with a function call, 256
with read into an array, 258
text, with a read statement, 257

passphrase, changing and protection, 308
passwd, changes bash default shell, 16
passwords, 65, 299, 307, 308
patch, 422–425
path, security, 283
PATH="$PATH:newdir", 362
PATH="newdir:$PATH", 362
pathnames

absolute, 176
expansion of, 534
using Tab key to finish the name, 459

paths
absolute, 284
modifying, 366



Index | 585

permanently change, 361
setting explicit, 362
updates, 361

pattern matching
${parameter/pattern/string}, 480
${variable/pattern/replacement}, 195
*.txt, 11
.jpg, 121
?, shell pattern matching operator, 11,

514
asterisk (*), match any number of

characters, 121
bash alphabetizes, 470
bash version 3.0, 123
case sensitivity, 122
double bracket compound statement

([ [ ] ]), for matches on righthand
side of equals operator, 121

egrep, 363
extglob option, for extended

matching, 122
globbing (extended pattern

matching), 122
patterns, strings containing an asterisk (*),

exclamation sign (!), or bracket
([), 10

question mark (?), for matching a single
character, 121

and regular expressions, 152
searches, ignoring case, 149
searching with complex patterns, 152
symbols, grouping, 122
symbols to use for, 480
testing strings with, 121

pattern-matching characters, 514
pause command (DOS), 450
PC-BSD, 326
PCRE (Perl Compatible Regular

Expressions), 266
percent sign (%) to format specifications, 31
period (.), 152
period, asterisk (.*), with file wildcards, 10
Perl, 84, 120, 224, 227, 266
Perl Best Practices, 84
Perl Cookbook, 451
Perl’s date and time data structure, 223
Permission denied, error message, 462
permission information storage, 7
permissions, 298
personal utilities, 373
phases, 348

phone-number lookups script, 56
photo albums, 233–237
photos, 232, 233
phrases, searching for, 163
PID (process ID, $$), 73, 443
pinfo, Texinfo viewer and converter, 414
piped I/O, 44
pipeline searches, 149
pipelines, subshell creation, 470
pkg_add (bash installation/update), 20
pkg_add -vr, 20
plural function, 260
plural noun, 259
pn_day, 222
pn_day_nr, 222
pn_month, 222
pn_weekday, 222
POD (Plain Old Documentation), 84
pod2* programs, 84
Polar Home, 24
popd built-in commands, 454
POSIX, 168, 211, 284, 321, 322, 368
postscript file versions (.ps), 27
pound (#) character, 82
pr command, 181
Practical UNIX & Internet Security

(O’Reilly), 281
predicates, 185
prepend data, 429–432
previous and next x days of the given

day, 222
previous and next x days of the given day,

non-recursive, 222
previous and next x months, 222
-print condition (find), 185
-print0 (find, xargs -0), 186
printf, 31, 65, 135, 329, 474, 509
private key, 309
problems, portability, 284
processes

automating, 348–351
verify it is running, 443

profile settings, system-wide, 400
programmable completion, 287, 389
prompt string customizations, 483
prompts

# (pound) trailing prompt means root, 4
$ dollar sign, trailing, means logged as a

regular user, 4
$PROMPT_COMMAND, 359
$PS1, command prompt, 357



586 | Index

prompts (continued)
$PS2 (secondary prompt string), 374
$PS3, select prompt, 357, 374
$PS4, 376
~ (tilde), default for home directory, 4
0m, clears all attributes and set no

color, 360
basic examples of, 353
changing, on simple menus, 138
choice function, 62
customizing, 353
default prompts, 4
directory location, 5
downloads for this book, 356
find and run particular commands, 6
keep short and simple, 359
-L, (pwd, cd) displays logical path, 5
password prompt, 65
printing strings, with -p option (read),

60, 65
promptvars shell option, 357
pwd (print working directory) built-in

command, 5
root, 5
secondary, 374
to show everything, 355
strings, 357
su command, 5
sudo command, 5
who did what, when, and where, 355
xtrace, 357

ps, showing passwords on command
line, 299

PTY, pseudo-terminal number, 354
public key, 309, 310
pushd built-in commands, 454
pwd (print working directory) built-in

command, 5

Q
-q (quiet) option (grep), 148
-Q option (ls), for quote names, 9
question mark (?), 10, 121
quoting

" double quotes, 12
$* (unquoted), 95
$@ (unquoted), 95
$VAR expression, 119
' (single quote), 12, 30, 152, 212
\ (backslash), 12
in arguments, 32
backward quotes (``) (see also $( )), 46

command not found errors, 468
command-line, 12, 535
double quotes ("), to preserve output

spacing, 30
filenames, 93
parameters, 93
-Q option (ls), for quote names, 9
quotes, 411, 468
smart quotes, removing, 179
trailing spaces, 12
unquoted text, 12
variable references, 93

R
-r option (ls), for reverse sort order, 9
-R option (ls), to recurse though

subdirectories, 9
-r options, 245
r00t, 282
race condition, 282, 293
Ramey, Chet

=~, and use of regular expressions in
bash, 480

bash web site, 21, 25
for loops, 344
input validation, 297
Mac OS 10.2 (Jaguar), 21
Mac OS 10.4 (Tiger), 21
using printf with a suitable local, 450

rbash.1, for shell manpage, 26
RC (initialization) files, 394
RC files, creating portable files, 398–400
RE (regular expression), 145, 152, 159
RE (regular expressions), for pattern

matching, 122
read statement, 60, 129, 257, 258
readability, indenting for, 59
readline, 201, 362, 371
readline.3, readline manpage, 26
README, bash description, 25
real arguments, 98
reconnect to a background job, 73
recovering sessions, 415
Red Hat, 183, 196, 304, 321, 413
Red Hat Enterprise Linux (RHEL), 19, 197
redirecting operator (>), 200
redirection operators, 38
REDUCE function, 240
regular expressions (RE), confusing with shell

wildcards, 480
relative directory, 173
relative pathname, 35



Index | 587

removing directories, 362
rename commands, 413
rename from_string to_string file_name, 413
rename, Perl-based, 413
repetition mechanism, for searches

(\{n,m\}), 153
replace, and search globally, 254
REPLY, 60, 268–271
reserved words, 42
RETURN signal, 210
RHS (righthand side), 277
rm command, 46, 74
Robbins, Arnold, 281
Robbins, Daniel, 313, 314
root account, 4, 16, 65, 361
ROT13, 307
ROT47, 308
RPM (Red Hat Package Manager), 22, 173
RPN (postfix) notation, 140
RPN calculator, 139
rsh (Remote Shell), 303
rssh, 318
rsync, 317
run commands from variables, 78
run commands in the background, 72
run several commands at once, 72
run several commands in sequence, 71
run the next program, 72
run_screen, sample of, 408
running scripts, several at one time, 79

S
-s option (example loadable built-in), 385
-S option (ls), to sort by file size, 9
-s option (read), 65
-S, turns off stable sort on NetBSD, set buffer

size otherwise (sort), 168
Schneier, Bruce, 280
scp, using without a password, 308
screen command mode (meta key), 416
screen

caveats, 416
for sharing a single bash session, 417
clearing when logging out, 420

script-kiddies, 280
scripts, 203, 419

" (double quotes), 254
# pound, 82
$ (*dollar, asterisk), 91
$* (unquoted), 95
$@ (unquoted), 95
${#}, 96

${#}, for direct parsing, 248
${#VAR}, 97
${:=} operator, 101
${:?} syntax, 103
${:-} syntax, 99
${1:0:1} syntax, tests 1st character of 1st

argument, 248
${VAR#alt}, 97
$0 variable, 236
$i variable, don’t use (see also $x), 85
$include, 201
$VERBOSE, 98
$x syntax, 85
' (single quote), 254
.bad, 105
/tmp/ls, and malicious, 292
:- assignment operator, 101
:+ variable operator, 203
:= (colon, equals sign), 102
<a> tags, 253
@ (at sign), 203
~/bin directory, collecting in, 373
-a operator, 115
arguments, 91, 96, 104, 231, 248
arithmetic expansion, 103
array, 106, 107, 255
awk script, 175
basename command, 136
bash $IFS (Internal Field Separator), 258
bash functions, 203
behavior, changing, 125
bit placement, 85
braces ({ }), 87, 91
branching construct, 111
breaking a line, 86
browser, viewing photos with, 233
call by value, 88
case statement, 250
case, identify options, 248
cat command, 236
character default, for paper and

screen, 85
characters, one at a time, 260
colon (:), 83
command not found error, 204
command substitution, 103
comments, 82
compound commands, 114
configuration files, 200–203
configure script, 388
daemon, 199
data validation, 282
DEBUG signal, 210



588 | Index

scripts (continued)
debugging, 477
default values, 99, 100
delimit substitutions, 105
diff, to compare content of two

documents, 246
directory, 232, 291
documentation, 82
documents, comparing, 244
dot (.), 201
double greater than operator (>>), 115
double parentheses ((( ))) construct, 127
ed script, 433
else clause, 111
else-if (elif), 111
EMIT function, 236
end-user documentation, 83
env (export -p), 88
EOF (end-of-input word), 237
error messages, 103, 251
ERROUT function, 236
exit 0, 84
exported value, changing, 88
extglob option (extended pattern

matching), 122
feature creep, 230
field separator, 254
file characteristics, testing, 114
file test options, 116
FILE1 -ef FILE2, for locating identical

files, 116
FILE1 -nt FILE2, checks modification

date, 116
FILE1 -ot FILE2, for locating is “older

than dates”, 116
flags, 249
for loop, 85, 91, 105
function call, parsing output, 256
function definitions, 204
function parameters, 205
functions, 85
function values, 205
getopts, 134, 249–252
grep, 90, 254
here-document, 83, 236
HTML, parsing, 253
if list, 112
if statement, 100, 111
if test, 97
if/then, to identify options, 248
indentation, 85
keychain, 313

kill -l, 207, 211
line breaks, 85
log messages, eliminating by error, 151
mv command, 105
nohup command, 200
NOPASSWD option, 307
null, 101
ODF (Open Document Format), 245
opening comments, 97
operators, string-manipulation, 106
option arguments, 98
options, standalone, 249
options, with arguments, 249
output, parsing into an array, 255
output, writing across several

statements, 32
-p option (trap), 210
parameters, 90, 92, 101, 103
passwords, 307
pattern matching, case sensitivity, 122
Perl, 84
photo albums, 233–237
plural function, 260
plural noun, 259
POD (Plain Old Documentation), 84
print a line of dashes, 230
printf, 135
quotes, around parameters, 93
RE (regular expressions), for pattern

matching, 122
read statement, parsing, 257, 258
readability, 85
readline, 201
redirecting operator (>), 200
redirections, 125
RETURN signal, 210
root account, 4
running a series of, 79
running on Nth day, 228
scp, using without a password, 308
search and replace, globally, 254
searches, complex, 152
searches, narrowing, 151
security problems with, 282
semicolon (;), 112
set command, 89
setgid, 300
setuid, 300
shell scripting, 3
shift built-in command, 135
shift statement, 250
signal handlers, 208



Index | 589

signal number, 208
slash (/), 105
sourcing, 201
space characters, 92
square brackets ([ ]), 126
STDERR (>&2), 200
STDIN (standard input), 200
STDOUT (standard output), 200
string constants, using for default, 102
substring function, 260
symbolic links, 237
syntax, verifying correctness of using

bash, 476
test command, 113
test -t option, 125
test, avoid naming as, 466
then (if), 112
tilde (~), for expansion, 103
trap interrupts, 207
trap signals, 207
trap utility, 207
trapping, 207–211
tty, 199
unzipping files, 246
USAGE function, 236
-v argument (for verbose), 98, 347
variable errors, 94
variable names, 85, 86
variable reference, use full syntax, 87
variables, 87, 89, 478
while loop, 126, 128
while read, 127
whitespace, 85
word content, document

comparison, 245
write only syntax, 82
xtrace, for debugging, 478
zero returns, 127
ZIP files, 246

scripts, writing advanced
#!/bin/sh, avoid using, 321
$result, 341
$SSH_ID, 341
$SSH_USER, 341
/sbin/ifconfig -a, 338
/usr/bin/env command, 321
{ } braces, 341
ARG_MAX, 344
ARG_MAX, limits in bytes, 344
arguments, breaking up, 343
arguments, list too long error, 343
bash portables, finding, 321

bash, built-in network redirection
feature, 345

Browser Appliance v1.0.0, 326
BSD, 325
case statement, 349
characters, unprintable, 333
command command, 324
command -p, 324
command substitution, 340
cron, 347
cross-platform scripts, 326
cross-platform scripts, avoid, 324
CS_PATH, 323
curl, 336
echo, 329–331
echo portability, 329
egress filtering, 337
email, sending, 345–348
env command, 321
exec command, 335, 342
exit, 350
file handles, 335
find command, 343
Firefox 1.0.7, 326
FollowMeIP, 337
for loop, 343
for loop portables, 327
getconf ARG_MAX command, 344
getconf utility, 323
Gnome 2.12.1, 326
GNU long options, 325
GOTO, 348
hexdump, 333
host, external, 336
ifconfig, 336
input, getting from other machines, 340
IP address, external and routable, 336
IP addresses finding, 335–338
KDE-based desktop distribution, 326
logger, 345
logger utility, 335
logmsg, 350
lynx, 336
Mac OS X, 325
Mac OS X 10.4, and curl, 336
mail, 346
mail*, 347
mailto, 346
MAILTO variable, 347
mailx, 346
MIME-aware update, to mail, 347
mpack, 347



590 | Index

scripts, writing advanced (continued)
MTA (Message Transfer Agent), 346
MUA (Mail User Agent), 348
Netcat, 334, 345
Net-redirection, 334
network traffic, 334
no command-line tools, 336
NSF, to store test scripts and data, 326
od (octal dump command), 333
Outlook, 347
output, redirect for entire script, 342
output, split, 332
output, viewing in Hex, 333
PC-BSD, 326
phases, 348
POSIX, 321
POSIX $PATH, setting, 322
printf "%b", 329
processes, automating, 348–351
Red Hat, 321
script testing in VMware, 326
shell scripts, portable, 324
shopt -s nullglob option, expands files to a

null string, 344
Solaris, 325, 333
split command, 332
SSH, with public keys, 340
syslog messages, 335
syslog priority value, 335
syslog, log to, 345
Thunderbird, 347
Ubuntu Linux 5.10, 326
UDP, 335
uuencode, 346
-v argument (for verbose), 347
virtual machines, prebuilt, 326
virtualization packages, getting free, 326
VMware, 325
VMware player, 326
VMware Server, 326
VNC-based VMware Console, 326
wget, 336
whitespace, 333
writing portable scripts, 320
x86 architecture, 326
xargs command, 343
xpg_echo, 329

sdiff, 437
searches

${variable/pattern/replacement}, 195

$IFS=':', 196
$PATH, 195
\{n,m\}, repetition mechanism, 153
AND constructs, 190
apropos, searches manpage for

expressions, 7
Beagle, desktop search engine, 194
-c, created fewer lines to search for

(diff), 427
command command, 197
complex, 152
Copernic Desktop Search, 194
desktop search engines, 194
files, 194, 195
finding by file content, 192
finding by file date, 189
finding by file size, 192
finding by file type, 191
-follow predicate to find, 188
for filenames, 147
Google Desktop Search, 194
-i option, (grep), makes search

case-insensitive, 57
-iname predicate to find, 189
-l option, with grep, 147
locate, 194
-mtime predicate to find, 190
-name '*.txt', to narrow searches using

find, 193
narrowing, 151
NOT constructs, 190
OR constructs, 190
phrases, searching for, 163
pipeline, 149
repetition mechanism for, 153
search and replace, globally, 254
-size predicate to find, 192
slocate, 194
Social Security Number, 153
source command, 195
Spotlight, desktop search engines, 194
true or false, 148
-type d (find directories), 191
type -P, 195
-type predicate to find, 191
-v option (grep), 151

secondary prompt string ($PS2), 374
seconds, 226, 227
secure paths, 283
secure shell programming techniques, 281



Index | 591

security
$IFS (bash Internal Field Separator), 287
$PATH, 283
$RANDOM, 292
$temp_dir, 293
$TMOUT variable, 318
$UMASK variable, 288
*.pub (public key), 309
/tmp/ls, malicious script, 292
\unalias -a command, 285
~/bin, security problems, 374
absolute paths, 284
accessing data, on remote machines, 307
accounts, shared, 302
AIDE, 282
aliases, clearing, 285
aliases, malicious, 285
AppArmor, 304
attacker, non-root, 293
Bourne shell, 303
buffer overflows, 282
canonical portable syntax for bash

$IFS, 287
chroot command, 303
chroot Jails, 303
--clean option, flushes cached SSH keys

(keychain), 313
command hash, 286
comments, changing, 309
common problems with, 282
core dumps, 287
cron jobs, using without a password, 308
crypt hashes, 307
data validation, 282
debugging, and core dumps, 287
directories, temporary, 282
Emacs and vi, allow shell escapes, 303
filenames, use of meaningful ones, 294
files, temporary, 292
fingerprints, 315
from host restriction, 317
getconf utility, 284
guest users, restricting, 301
hash -r command, 286
Host_Alias, 306
input, validation, 296
key pair, creation, 309
keychain, 308, 313–315
leading backslash, supress alias

expansion, 285
MAC (Mandatory Access Controls), 304

man in the middle attacks, 315
man sudoers, 306
meaningful_prefix, 294
mkdir -p -m 0700 $temp_dir, avoids race

condition, 293
mktemp, 293
NOPASSWD option, 307
one-way hash, 307
online references, shell security, 281
OpenSSH Restricted Shell, 318
passphrase, 308
passwords, 299, 307
permissions, setting, 298
policy, 304
POSIX, 284
private key, 309
problems, portability, 284
ps, showing passwords on command

line, 299
public key, 310
r00t, 282
race condition, 282, 293
and random filenames, 293
rbash, restricting login shells, 302
Red Hat Linux, 304
restricted shell, 302
ROT13, 307
ROT47, 308
rsh (Remote Shell), 303
rssh, 318
rsync, 317
scp, using without a password, 308
secure paths, 283
secure shell programming

techniques, 281
SELinux (NSA’s Security Enhanced

Linux), 304
sessions, inactive, 318
setgid, 300
setuid, 300
setuid root spoofing, 283
shebang line, 283
SSH commands, 308, 316–318
ssh-add command, 312
ssh-agent, 308
ssh-keygen (ssh-keygen2), 309
sudo bash, 305
sudoers, 306
system integrity, securing of, 282
temporary files and, 282
trap, setting, 293



592 | Index

security (continued)
Tripwire, 282
Trojan horse, 282
trojaned utilities, 282
ulimit, 287
umask, secure, 288
Unix, file permissions, 300
Unix groups, 300
unprivileged users, 282
urandom, 293
user, non-root, 305
User_Alias, 306
users, inactive, 318
vi and Emacs, allow shell escapes, 303
visudo, for editing, 306
world-writable directories, 289–291

sed, 277
select prompt ($PS3), 64, 137, 357, 374
SELinux (NSA’s Security Enhanced

Linux), 304
semantic differences, with parentheses, 42
semicolon (;), 72, 112
separators for numbers, 450
seq command, to generate floating-point

values, 131
sequences, writing, 448
sessions, 318, 376, 415, 418
set, 371, 482
set command, 89
set -e, 76
set -o functrace option, 210
set -o posix, 211
setgid, 300
settings subdirectory, 398
setuid, 300
setuid root spoofing, 283
SGI, 22
shebang line, 283
shells

$- syntax, lists current option flags, 15
$IFS (bash Internal Field Separator), 268
.rbash.0 , for restricted manpage, 27
/dev/nul for portable scripts, 148
/etc/bash.bashrc (Debian) global

environment file, subshell
environment file, 395

/etc/bashrc (Red Hat), bash subshells
global environment file, 395

/etc/shells, 20
/etc/shells, list of valid, 16
~/.bash_login, for Bourne login personal

profile files, 395

~/.profile, for Bourne logging personal
profile files, 395

backslash (\), for expansion of, 12
bash $IFS (bash Internal Field

Separator), 254
bash $IFS (Internal Field Separator), 270
bash shell, 16
Bourne shell (sh), 1, 3, 303, 395
built-in commands, to ignore functions

and aliases, 213
C Shell (csh), 1
cd command, 382
changing root shell on Unix, 17
chpass -s shell, changes default shell, 16
chsh -l, lists valid, 16
chsh -s /bin/bash, makes bash default, 16
chsh -s, changes default, 16
chsh, changes setting in, 16
Cygwin, 3
Emacs, allow shell escapes, 303
embedding documentation in scripts, 83
enable -n, turns off commands, 14
environment adjustment, 371
expand_aliases, 370
free accounts, 24
functions, 203, 221
history options, setting, 377
history, between sessions and

synchronization, 376
Korn shell (ksh), 1
-l option, 16
levels of, 354
Linux default user shell, 3
Mac OS X default user shell, 3
macros, for interaction

documentation, 362
online references, for security, 281
OpenBSD, 280
OpenSSH, 280
OpenSSH Restricted Shell, 318
parentheses ( ), redirects subshell’s

execution, 42
passwd -e, changes bash default, 16
passwd, changes bash default, 16
pipelines, subshell creation, 470
promptvars option, 357
rbash, restricting login, 302
restricted, 302
rsh (Remote Shell), 303
script security, 280
script testing in VMware, 326
scripting (programming), 3



Index | 593

secure shell programming
techniques, 281

set, 371, 482
shell.h, 387
shopt, 371
shopt -s command, turns on shell

options, 122
standard shell, 1
subshells, 42
Unix shell, 2
usermod -s /usr/bin/bash, changes

default, 16
variables, testing for equal, 119
vi and Emacs, allow shell escapes, 303
wildcards, confusing with regular

expressions, 480
writing portble scripts, 324
Writing Shell Scripts, documentation

for, 27
shift, 231
shift built-in command, 135
shift statement, 250
shopt, 371
shopt -s command, turns on shell

options, 122
shopt -s nocasematch, changes case

sensitivity, 124
shopt -s nocasematch, for bash versions

3.1+, 133
shopt -s nullglob option, expands files to a

null string, 344
short form of help, usage, 386
short-circuited expressions, 117
signal handlers, 208
signal names, 392
signal number, 208
Silverman, Richard, 308, 316
single brackets ([ ]), 10, 153
-size predicate to find, 192
slash (/), 35, 105
slocate, 7, 194
smart quotes, removing, 179
Social Security number searches, 153
Software Porting, 22
Solaris, 325

2.x, 22
7, 22
8, 22
cut command, 170
less, 183
sort comparisons, 169
virtual environments, 325

sort
command, 167
comparisons, 169
IP addresses, 167
numeric data, 166
options, 166
pre-sorting, 167
stable, 168
utility, 165

source code, for bash, 26
source command, 195, 201
source tree, 261
sourcing, scripts, 201
space characters, 92
Spafford, Gene, 281
split command, 332
spoofing, setuid root, 283
Spotlight, desktop search engines, 194
SQL query, 219
square brackets ([ ]), 126
SSH

$SSH_ID, 341
$SSH_USER, 341
certificates, 65
commands, disable, 317
fingerprint support, 315
forced commands, 316
host restriction, 317
how the ssh command works, 318
OpenSSH, 308
OpenSSH Restricted Shell, 318
password, without using a, 308
public keys, 340
rssh, 318
SSH commands, restricting, 316–318
SSH Communications Security, 308
SSH forced commands, 316
ssh -v, to locate problems with, 318
ssh-add command, 312
ssh-agent, 308
ssh-keygen (ssh-keygen2), 309

stacks, 454
startup options, 353
STDERR (>&2), 38, 50, 200, 247
STDIN (standard input), 49, 200
stdio.h, 387
STDOUT (standard output), 37, 49, 50, 200
strftime, 378
strftime format specification, 217
strings

$-, list current shell option flags, 15
${parameter/pattern/string}, 480



594 | Index

strings (continued)
$PS2 (secondary prompt string), 374
* (asterisk), matches file patterns, 10
= (or ==), for string comparisons, 119
? question mark, 10
[ bracket, 10
associative arrays (hashes in awk), 159
asterisk (*), 121
built-in test command, 118
characteristics, testing, 118
characters, parsing, one at a time, 260
completion strings, viewing, 392
constant strings, using for default, 102
double bracket compound statement

([ [ ] ]), 121
embedded spacing, 32
-f option (awk) for counting values, 160
filenames, renaming, 105, 411
find all occurrences, 145
first digits, 31
left-align strings, 31
max specifiers, 31
min specifiers, 31
negative sign on specifier, 31
NF variable, for counting string values

(awk), 160
null strings, 344
operators, for string-manipulation, 106
output, variations, 146
-p option (read), for printing a prompt

string, 60, 65
pattern matches, 121
question mark (?), match single

character, 121
quotes, 32, 119
rename from_string to_string file_

name, 413
searches, ignoring case, 149
second digit, 31
shopt -s nullglob option, expands files to a

null string, 344
single brackets ([), in, 10
substring function, 260
values, counting, 159

stty sane, to fix or disable echo, 473
stty sane, to restore echo, 66
su command, 5, 435
sub-expressions, to populate array

variables, 123
subsets, data, 170
subshells, 42
substitutions, across boundaries, 457

substring function, 260
Subversion, 128, 261, 538
sudo, 5, 17, 435
sudo bash, 305
sudo security, 305
sudoers, 306
Sunfreeware, 22
SUSE, 19
svn command, 128
svn status command, 261
symbolic links, 188, 237, 370
Synaptic, 19
syntactic differences, with parentheses, 42
syntax, canonical portable for bash $IFS, 287
syntax, verifying correctness of using

bash, 476
syslog, 335, 345
system integrity, securing of, 282
system-wide environment settings, 401
system-wide profile settings, 400

T
-t option (sort), 168
tab character, 59, 170, 271
Tab key, 460
table of contents, view with tar -t, 175
tail commands, 39
tar archives, checking unique

directories, 175
tar command, 172
tar -t, view table of contents, 175
tarball, 172, 297
tee command, 45, 50
temporary file security, 282
terminal window, viewing gibberish, 473
test command, 113
test operators, 505
test -t option, 125
Texinfo, 413, 414
text-related utilities

!! (double exclamation point) history
operator, 150

$ (dollar sign), 153
$( ) dollar sign, parentheses, for filenames

on command lines, 147
$LESS variable, 182
$LESSCLOSE, 182
$LESSOPEN, 182
' single quote, for searches, 152
. period (in regular expressions), 152
.deb files, 173



Index | 595

/dev/nul (for portable shell scripts), 148
[ ] single brackets, 153
\ (backslash), in searches, 152
\{n,m\}, repetition mechanism, 153
^ (caret), matches beginning of line, 153
^total, 159
absolute pathnames, 176
ar archives, 173
associative arrays (hashes in awk), 159
asterisk (*), 152
awk program, 144, 157
awk utility, 155
backslash (\), matches special

characters, 153
BEGIN keyword (awk), 158
bit buckets, 148
bzip2, file compression, 172
-c option (grep), 146
case sensitivity, eliminating, 177
case-insensitive search, 149
character translation, 176
compressed files, grepping, 154
compression algorithms, 173
continue statement, 163
CPIO files, 173
cut command, 170
-d option (cut), specify delimiters, 178
-d option (tr), delete characters, 178
-d option, specify delimiters, 170
data subsets, 170
delimiters, 170
directories, and tar archives, 175
directory names, parsing off, 175
DOS carriage returns (\r), deletion, 178
DOS files, convert to Linux, 178
duplicate lines, removing, 171
END keyword (awk), 158
escape sequences, 179
extensions, uncompressing, 174
-f option (awk) counting string

values, 160
-F option (awk), to delineate fields, 155
field separator, 168
fields, 170
file command, 175
file compression, 172
file extensions, 174
files, naming, 173
files, overwriting, 172
flags, turning off, 163
fmt command, 181
for loop, 157

getline command, 159
GNU tar, 173
grep compressed files, 154
grep program, 144
gzcat, 154
gzip, file compression, 172
-h switch (grep), to grep, 146
histogram, 161
input preprocessors, 182
input source, with grep, 146
IP addresses, sorting, 167
-j, for bzip2, 173
keyphrase, 163
-l option (unzip), to convert Unix end

lines, 173
-l option, with grep, 147
less manpage, 182
less pager, 182
less utility, 155
lesspipe*, 182
lesspipe.sh, 183
line output, keeping selected

portions, 156
-ll option, (unzip) convert end lines to

Unix, 173
locale setting, when sorting, 168
log messages, eliminating by error, 151
ls -l command, keeping selected portions

of line output, 156
-n option (sort), for sorting numbers, 166
NetBSD, stable sorts, 168
NF variable (awk), 156, 160
numbers, summing a list, 158
numeric data, sorting, 166
options (with grep), 146
output, partial elimination, 155
output, variations, 146
paragraphs, rewrapping, 181
phrases, searching for, 163
pipeline searches, 149
POSIX, 168
pr command, 181
pre-sort, 167
-q (quiet) option (grep), 148
RE (regular expression), 152, 159
relative directory, 173
repetition mechanism, for searches, 153
return value of 0, 148
RPM (Red Hat Package Manager), 173
-S, turns off stable sort on NetBSD, set

buffer size otherwise (sort), 168
searches, 149, 151, 152, 153



596 | Index

text-related utilities (continued)
sed program, 144
smart quotes, removing, 179
sort comparisons, 169
sort options, 166
sort utility, 165
stable sort, 168
string values, counting, 159
-t option (sort), 168
tab character, 170
tar command, 172
tar -t, view table of contents, 175
tarball, 172
tarball.tar.gz, 172
tarball.tar.Z, 172
textutils, 275
tr command, character translation, 176
tr utility, 179
true or false searches, 148
-u option (sort), to remove duplicates

when sorting, 167
uniq, viewing duplicate lines, 171
-v option (grep), for searches, 151
wc (word count) command, 180
words, reversing order of, 157
write only expressions, 153
-Z, for compress using GNU tar, 173
-z, for gzip using tar, 173
zcat, 154
zgrep, 154

then (if), 112
third-party libraries, 389
this week, caution using, 221
thousands-place separator, 450
Thunderbird, 347
tilde (~), 4, 103
time zones, 218, 226
tkman, Texinfo viewer and converter, 414
tokens, processing on command line, 532
tomorrow’s date, getting with Perl, 224
tr command, character translation, 176
tr escape sequences, 515
tr utility, 179
trailing m, indicates color escape

sequence, 360
translation of characters, 176
trap interrupts, 207
trap utility, 207
trapping, 207–211, 293
tree, filesystem hierarchy, 35
Tripwire, 282
Trojan horse, 282

trojaned utilities, 282
Tru64 Unix, 22
true or false searches, 148
tty, 199
tty built-in, 385
ttyname, 387
turn off built-in commands, 14
txt versions (ASCII text), 27
type command, 13, 213
-type d (find directories), 191
type -P, 195
-type predicate to find, 191

U
u option (sort), to remove duplicates when

sorting, 167
Ubuntu

6.10, bash login rc files, 396
cut command, 170
Debian-derived systems, 19
lesspipe, 183
Linux 5.10, 326
sudo, 435
using dash, 21, 321, 324, 329, 368, 400

UCLA, 22
UDP, 335
ulimit, 287
umask, secure, 288
unalias, 369
uncompressing compressed archives, 391
uncompressing files, 174
uniq, viewing duplicate lines, 171
Unix

$PATH, changing, 397
bash versions, 22
BSD Unixes, 17
date command, 216
dates and times, commands omit the

year, 226
file permissions, 300
groups, 300
-l option, to convert end lines to

DOS, 173
-ll option, (unzip) convert DOS end lines

to, 173
Microsoft Services, 24
root shells, changing, 17
shell, 1
tarball.tar.gz, 172
tarball.tar.Z, 172
UnixReview, 221



Index | 597

unprivileged users, 282
unzip files, 246, 414
updates, to paths, 361
urandom, 293
USAGE function, 236
usage message, 203
usage, short form of help, 386
user

documentation, 83
inactive, 318
non-root, 305
unprivileged, 282
usermod -s /usr/bin/bash, changes default

shell, 16
user directories, 362
user input, 60
utilities, personal, 373
uuencode, 346

V
-v argument (for verbose), 98, 347
-v option, for searches, 151
-V parameter (mkisofs), 244
values, counting, 159
variables

$ (dollar sign), 81
$* (errors using), 94
$* (unquoted), 95
$@, 94
$@ (unquoted), 95
$0 variable, 236
$HIST* variables, 377
$HISTFILE, 378
$HISTFILESIZE variable, 378
$HISTTIMEFORMAT, 378
$LESSCLOSE, 182
$LESSOPEN, 182
$PS1, 353, 357, 410
$PS2, 353
$PS3, 64, 137, 357, 374
$PS4, 357, 376
= (equals) symbols, in commands, 81
array variable, 106, 123
arrays, 255
braces ({ }), 87
call by value, 88
commands, distinguish between variables

and, 81
env (export -p), 88
-eq operator, for numeric

comparisons, 119

errors in, 94
exported value, changing, 88
exporting, 87
grep command, 90
MAILTO, 347
name=value syntax, 80
names, 78, 80, 86
reference, use full syntax, 87
running commands from, 78
R-value syntax, 81
set command, 89
spell out names of, 85
syntax, 80
testing for equal shells, 119
values, viewing of, 89

vi, 447
vi and Emacs, allow shell escapes, 303
vi control mode commands, 520
viewers, for documents, 414
viewing completion strings, 392
viewing photos, with a browser, 233
viewing, output in Hex, 333
view command, to verify password file

consistency, 16
virtual machines, prebuilt, 326
virtualization packages, getting free, 326
visudo, for editing, 306
VMware, 325
VMware player, 326
VNC-based VMware Console, 326

W
Wall, Larry, 413
Wang, Michael, 446, 451
wc (word count) command, 180
wdiff, 426
wget, 336
which command, 6, 13
which utility, 196
while loop, 75, 126, 128, 239
while read, 127
whitespace, 59, 268–271, 333
wildcards, 10, 480
Windows

bash, 23
Cygwin, 23
GNU Text Utils, 23
Linux-like environment, 23

word content, document comparison, 245
word counting, 180
WORD_LIST, 386



598 | Index

words, reversing order of, 157
world-writable directories, 289–291, 361
write only expressions, 124, 153

X
x86 architecture, 326
xargs command, 186, 343
xpg_echo, 329
xterm, 355, 359
xtrace, 357, 478

Y
YaST, 19
yes or no input, 61
yesterday’s date, getting with Perl, 224

Z
-Z, for compress using GNU tar, 173
-z, for gzip using tar, 173
zcat, 154
zero returns, 127
zeroth, 123, 206
zgrep, 154
ZIP files, 246, 414



About the Authors
Carl Albing is a veteran Java, C, and bash programmer, having worked with Linux
and Unix since his days at St. Olaf College in the mid-1970s. An author and teacher
as well, he has made technical presentations for conferences and corporations in the
U.S., Canada, and Europe. With a Bachelor’s degree in Mathematics and a Master’s
in International Management, he continues to pursue his studies. He currently works
as a software engineer for the supercomputer company Cray, Inc. and as an indepen-
dent consultant. Carl is co-author of Java Application Development on Linux from
Prentice Hall PTR. He can be reached via his web site www.carlalbing.com or by
visiting www.oreilly.com and searching for Albing.

JP Vossen has been working with computers since the early 1980s and has been in
the IT industry since the early 90s, specializing in information security since the late
90s. He’s been fascinated with scripting and automation since he first understood
what an autoexec.bat was, and he was delighted to discover the power and flexibility
of bash and GNU on Linux in the mid-90s. He has previously written for Informa-
tion Security Magazine and SearchSecurity.com, among others. On those few
occasions when he’s not in front of a computer, he is usually taking something apart,
putting something together, or both.

Cameron Newham is an information technology developer living in the United
Kingdom. Originally from Australia, Cameron completed a Bachelor of Science
degree in Information Technology and Geography at the University of Western
Australia. In his spare time, he can be found working on his project to digitally
record buildings of architectural interest in England. He also has more than a passing
interest in a diverse range of subjects including photography, space science, digital
imaging, ecclesiology, and architectural history. He is co-author of Learning the bash
Shell from O’Reilly.

Colophon
The animal on the cover of bash Cookbook is a wood turtle (Glyptemys insculpta) and
is named so because its shell looks like it was carved from wood. The wood turtle
can be found in forests and is very common in North America, particularly in Nova
Scotia through to the Great Lakes region. The wood turtle is an omnivorous and lazy
eater; it will eat whatever crosses its path, including plants, worms, and slugs (a
favorite). But this isn’t to say wood turtles are slow—in fact, they can be quite agile
and quick to learn. Some researchers have seen wood turtles stamping on the ground
to mimic the sound of raindrops, which lures worms out to their certain death.

Wood turtles are threatened by human expansion into their territories. They nest on
the sandy banks of rivers, streams, and ponds, which are prone to erosion, damming,



and use by outdoor enthusiasts. Roadside fatalities, toxic pollution, and the pet trade
have also taken a toll on the wood turtle population, so much so that in many states
and provinces, they are considered a threatened species.

The cover image is from Dover Pictoral Archive. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.




	bash Cookbook
	Table of Contents
	Preface
	Who Should Read This Book
	About This Book
	GNU Software
	A Note About Code Examples
	Useless Use of cat
	A Note About Perl
	More Resources

	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Enabled
	Acknowledgments
	Reviewers
	O’Reilly
	From the Authors
	Carl
	JP
	Cameron



	Beginning bash
	Why bash?
	The bash Shell
	1.1 Decoding the Prompt
	Problem
	Solution
	Discussion
	See Also

	1.2 Showing Where You Are
	Problem
	Solution
	Discussion
	See Also

	1.3 Finding and Running Commands
	Problem
	Solution
	Discussion
	See Also

	1.4 Getting Information About Files
	Problem
	Solution
	Discussion
	See Also

	1.5 Showing All Hidden (dot) Files in the Current Directory
	Problem
	Solution
	Discussion
	See Also

	1.6 Using Shell Quoting
	Problem
	Solution
	Discussion
	See Also

	1.7 Using or Replacing Built-ins and External Commands
	Problem
	Solution
	Discussion
	See Also

	1.8 Determining If You Are Running Interactively
	Problem
	Solution
	Discussion
	See Also

	1.9 Setting bash As Your Default Shell
	Problem
	Solution
	Discussion
	See Also

	1.10 Getting bash for Linux
	Problem
	Solution
	Discussion
	See Also

	1.11 Getting bash for xBSD
	Problem
	Solution
	Discussion
	See Also

	1.12 Getting bash for Mac OS X
	Problem
	Solution
	Discussion
	See Also

	1.13 Getting bash for Unix
	Problem
	Solution
	Discussion
	See Also

	1.14 Getting bash for Windows
	Problem
	Solution
	Discussion
	See Also

	1.15 Getting bash Without Getting bash
	Problem
	Solution
	Discussion
	See Also

	1.16 Learning More About bash Documentation
	Problem
	Solution
	Official documentation
	Other documentation

	See Also


	Standard Output
	2.1 Writing Output to the Terminal/Window
	Problem
	Solution
	Discussion
	See Also

	2.2 Writing Output but Preserving Spacing
	Problem
	Solution
	Discussion
	See Also

	2.3 Writing Output with More Formatting Control
	Problem
	Solution
	Discussion
	See Also

	2.4 Writing Output Without the Newline
	Problem
	Solution
	Discussion
	See Also

	2.5 Saving Output from a Command
	Problem
	Solution
	Discussion
	See Also

	2.6 Saving Output to Other Files
	Problem
	Solution
	Discussion
	See Also

	2.7 Saving Output from the ls Command
	Problem
	Solution
	Discussion
	See Also

	2.8 Sending Both Output and Error Messages to Different Files
	Problem
	Solution
	Discussion
	See Also

	2.9 Sending Both Output and Error Messages to the Same File
	Problem
	Solution
	Discussion
	See Also

	2.10 Appending Rather Than Clobbering Output
	Problem
	Solution
	Discussion
	See Also

	2.11 Using Just the Beginning or End of a File
	Problem
	Solution
	Discussion
	See Also

	2.12 Skipping a Header in a File
	Problem
	Solution
	Discussion
	See Also

	2.13 Throwing Output Away
	Problem
	Solution
	Discussion
	See Also

	2.14 Saving or Grouping Output from Several Commands
	Problem
	Solution
	Discussion
	See Also

	2.15 Connecting Two Programs by Using Output As Input
	Problem
	Solution
	Discussion
	See Also

	2.16 Saving a Copy of Output Even While Using It As Input
	Problem
	Solution
	Discussion
	See Also

	2.17 Connecting Two Programs by Using Output As Arguments
	Problem
	Solution
	Discussion
	See Also

	2.18 Using Multiple Redirects on One Line
	Problem
	Solution
	Discussion
	See Also

	2.19 Saving Output When Redirect Doesn’t Seem to Work
	Problem
	Solution
	Discussion
	See Also

	2.20 Swapping STDERR and STDOUT
	Problem
	Solution
	Discussion
	See Also

	2.21 Keeping Files Safe from Accidental Overwriting
	Problem
	Solution
	Discussion
	See Also

	2.22 Clobbering a File on Purpose
	Problem
	Solution
	Discussion
	See Also


	Standard Input
	3.1 Getting Input from a File
	Problem
	Solution
	Discussion
	See Also

	3.2 Keeping Your Data with Your Script
	Problem
	Solution
	Discussion
	See Also

	3.3 Preventing Weird Behavior in a Here-Document
	Problem
	Solution
	Discussion
	See Also

	3.4 Indenting Here-Documents
	Problem
	Solution
	Discussion
	See Also

	3.5 Getting User Input
	Problem
	Solution
	Discussion
	See Also

	3.6 Getting Yes or No Input
	Problem
	Solution
	Discussion
	See Also

	3.7 Selecting from a List of Options
	Problem
	Solution
	Discussion
	See Also

	3.8 Prompting for a Password
	Problem
	Solution
	Discussion
	See Also


	Executing Commands
	4.1 Running Any Executable
	Problem
	Solution
	Discussion
	See Also

	4.2 Telling If a Command Succeeded or Not
	Problem
	Solution
	Discussion
	See Also

	4.3 Running Several Commands in Sequence
	Problem
	Solution
	Discussion

	4.4 Running Several Commands All at Once
	Problem
	Solution
	Discussion
	See Also

	4.5 Deciding Whether a Command Succeeds
	Problem
	Solution
	Discussion
	See Also

	4.6 Using Fewer if Statements
	Problem
	Solution
	Discussion
	See Also

	4.7 Running Long Jobs Unattended
	Problem
	Solution
	Discussion
	See Also

	4.8 Displaying Error Messages When Failures Occur
	Problem
	Solution
	Discussion
	See Also

	4.9 Running Commands from a Variable
	Problem
	Solution
	Discussion
	See Also

	4.10 Running All Scripts in a Directory
	Problem
	Solution
	Discussion
	See Also


	Basic Scripting: Shell Variables
	5.1 Documenting Your Script
	Problem
	Solution
	Discussion
	See Also

	5.2 Embedding Documentation in Shell Scripts
	Problem
	Solution
	Discussion
	See Also

	5.3 Promoting Script Readability
	Problem
	Solution
	Discussion
	See Also

	5.4 Separating Variable Names from Surrounding Text
	Problem
	Solution
	Discussion
	See Also

	5.5 Exporting Variables
	Problem
	Solution
	Discussion
	See Also

	5.6 Seeing All Variable Values
	Problem
	Solution
	Discussion
	See Also

	5.7 Using Parameters in a Shell Script
	Problem
	Solution
	Discussion
	See Also

	5.8 Looping Over Arguments Passed to a Script
	Problem
	Solution
	Discussion
	See Also

	5.9 Handling Parameters with Blanks
	Problem
	Solution
	Discussion
	See Also

	5.10 Handling Lists of Parameters with Blanks
	Problem
	Solution
	Discussion
	See Also

	5.11 Counting Arguments
	Problem
	Solution
	Discussion
	See Also

	5.12 Consuming Arguments
	Problem
	Solution
	Discussion
	See Also

	5.13 Getting Default Values
	Problem
	Solution
	Discussion
	See Also

	5.14 Setting Default Values
	Problem
	Solution
	Discussion
	See Also

	5.15 Using null As a Valid Default Value
	Problem
	Solution
	Discussion
	See Also

	5.16 Using More Than Just a Constant String for Default
	Problem
	Solution
	Discussion
	See Also

	5.17 Giving an Error Message for Unset Parameters
	Problem
	Solution
	Discussion
	See Also

	5.18 Changing Pieces of a String
	Problem
	Solution
	Discussion
	See Also

	5.19 Using Array Variables
	Problem
	Solution
	Description
	See Also


	Shell Logic and Arithmetic
	6.1 Doing Arithmetic in Your Shell Script
	Problem
	Solution
	Discussion
	See Also

	6.2 Branching on Conditions
	Problem
	Solution
	Discussion
	See Also

	6.3 Testing for File Characteristics
	Problem
	Solution
	Discussion
	See Also

	6.4 Testing for More Than One Thing
	Problem
	Solution
	Discussion
	See Also

	6.5 Testing for String Characteristics
	Problem
	Solution
	Discussion
	See Also

	6.6 Testing for Equal
	Problem
	Solution
	Discussion
	See Also

	6.7 Testing with Pattern Matches
	Problem
	Solution
	Discussion
	See Also

	6.8 Testing with Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	6.9 Changing Behavior with Redirections
	Problem
	Solution
	Discussion
	See Also

	6.10 Looping for a While
	Problem
	Solution
	Discussion
	See Also

	6.11 Looping with a read
	Problem
	Solution
	Discussion
	See Also

	6.12 Looping with a Count
	Problem
	Solution
	Discussion
	See Also

	6.13 Looping with Floating-Point Values
	Problem
	Solution
	Discussion
	See Also

	6.14 Branching Many Ways
	Problem
	Solution
	Discussion
	See Also

	6.15 Parsing Command-Line Arguments
	Problem
	Solution
	Discussion
	See Also

	6.16 Creating Simple Menus
	Problem
	Solution
	Discussion
	See Also

	6.17 Changing the Prompt on Simple Menus
	Problem
	Solution
	Discussion
	See Also

	6.18 Creating a Simple RPN Calculator
	Problem
	Solution
	Discussion
	See Also

	6.19 Creating a Command-Line Calculator
	Problem
	Solution
	Discussion
	See Also


	Intermediate Shell Tools I
	7.1 Sifting Through Files for a String
	Problem
	Solution
	Discussion
	See Also

	7.2 Getting Just the Filename from a Search
	Problem
	Solution
	Discussion
	See Also

	7.3 Getting a Simple True/False from a Search
	Problem
	Solution
	Discussion
	See Also

	7.4 Searching for Text While Ignoring Case
	Problem
	Solution
	Discussion
	See Also

	7.5 Doing a Search in a Pipeline
	Problem
	Solution
	Discussion
	See Also

	7.6 Paring Down What the Search Finds
	Problem
	Solution
	Discussion
	See Also

	7.7 Searching with More Complex Patterns
	7.8 Searching for an SSN
	Problem
	Solution
	Discussion
	See Also

	7.9 Grepping Compressed Files
	Problem
	Solution
	Discussion
	See Also

	7.10 Keeping Some Output, Discarding the Rest
	Problem
	Solution
	Discussion
	See Also

	7.11 Keeping Only a Portion of a Line of Output
	Problem
	Solution
	Discussion
	See Also

	7.12 Reversing the Words on Each Line
	Problem
	Solution
	Discussion
	See Also

	7.13 Summing a List of Numbers
	Problem
	Solution
	Discussion
	See Also

	7.14 Counting String Values
	Problem
	Solution
	Discussion
	See Also

	7.15 Showing Data As a Quick and Easy Histogram
	Problem
	Solution
	Discussion
	See Also

	7.16 Showing a Paragraph of Text After a Found Phrase
	Problem
	Solution
	Discussion
	See Also


	Intermediate Shell Tools II
	8.1 Sorting Your Output
	Problem
	Solution
	Discussion
	See Also

	8.2 Sorting Numbers
	Problem
	Solution
	Discussion
	See Also

	8.3 Sorting IP Addresses
	Problem
	Solution
	Discussion
	See Also

	8.4 Cutting Out Parts of Your Output
	Problem
	Solution
	Discussion
	See Also

	8.5 Removing Duplicate Lines
	Problem
	Solution
	Discussion
	See Also

	8.6 Compressing Files
	Problem
	Solution
	Discussion
	See Also

	8.7 Uncompressing Files
	Problem
	Solution
	Discussion
	See Also

	8.8 Checking a tar Archive for Unique Directories
	Problem
	Solution
	Discussion
	See Also

	8.9 Translating Characters
	Problem
	Solution
	Discussion
	See Also

	8.10 Converting Uppercase to Lowercase
	Problem
	Solution
	Discussion
	See Also

	8.11 Converting DOS Files to Linux Format
	Problem
	Solution
	Discussion
	See Also

	8.12 Removing Smart Quotes
	Problem
	Solution
	Discussion
	See Also

	8.13 Counting Lines, Words, or Characters in a File
	Problem
	Solution
	Discussion
	See Also

	8.14 Rewrapping Paragraphs
	Problem
	Solution
	Discussion
	See Also

	8.15 Doing More with less
	Problem
	Solution
	Discussion
	See Also


	Finding Files: find, locate, slocate
	9.1 Finding All Your MP3 Files
	Problem
	Solution
	Discussion
	See Also

	9.2 Handling Filenames Containing Odd Characters
	Problem
	Solution
	Discussion
	See Also

	9.3 Speeding Up Operations on Found Files
	Problem
	Solution
	See Also

	9.4 Finding Files Across Symbolic Links
	Problem
	Solution
	Discussion
	See Also

	9.5 Finding Files Irrespective of Case
	Problem
	Solution
	Discussion
	See Also

	9.6 Finding Files by Date
	Problem
	Solution
	Discussion
	See Also

	9.7 Finding Files by Type
	Problem
	Solution
	Discussion
	See Also

	9.8 Finding Files by Size
	Problem
	Solution
	Discussion
	See Also

	9.9 Finding Files by Content
	Problem
	Solution
	Discussion
	See Also

	9.10 Finding Existing Files and Content Fast
	Problem
	Solution
	Discussion
	See Also

	9.11 Finding a File Using a List of Possible Locations
	Problem
	Solution
	Discussion
	See Also


	Additional Features for Scripting
	10.1 “Daemon-izing” Your Script
	Problem
	Solution
	Discussion
	See Also

	10.2 Reusing Code with Includes and Sourcing
	Problem
	Solution
	Discussion
	See Also

	10.3 Using Configuration Files in a Script
	Problem
	Solution
	Discussion
	See Also

	10.4 Defining Functions
	Problem
	Solution
	Discussion
	See Also

	10.5 Using Functions: Parameters and Return Values
	Problem
	Solution
	Discussion
	See Also

	10.6 Trapping Interrupts
	Problem
	Solution
	Discussion
	See Also

	10.7 Redefining Commands with alias
	Problem
	Solution
	Discussion
	See Also

	10.8 Avoiding Aliases, Functions
	Problem
	Solution
	Discussion
	See Also


	Working with Dates and Times
	11.1 Formatting Dates for Display
	Problem
	Solution
	Discussion
	See Also

	11.2 Supplying a Default Date
	Problem
	Solution
	Discussion
	See Also

	11.3 Automating Date Ranges
	Problem
	Solution
	Discussion
	See Also

	11.4 Converting Dates and Times to Epoch Seconds
	Problem
	Solution
	Discussion
	See Also

	11.5 Converting Epoch Seconds to Dates and Times
	Problem
	Solution
	Discussion
	See Also

	11.6 Getting Yesterday or Tomorrow with Perl
	Problem
	Solution
	Discussion
	See Also

	11.7 Figuring Out Date and Time Arithmetic
	Problem
	Solution
	Discussion
	See Also

	11.8 Handling Time Zones, Daylight Saving Time, and Leap Years
	Problem
	Solution
	See Also

	11.9 Using date and cron to Run a Script on the Nth Day
	Problem
	Solution
	Discussion
	See Also


	End-User Tasks As Shell Scripts
	12.1 Starting Simple by Printing Dashes
	Problem
	Solution
	Discussion
	See Also

	12.2 Viewing Photos in an Album
	Problem
	Solution
	Discussion
	See Also

	12.3 Loading Your MP3 Player
	Problem
	Solution
	Discussion
	See Also

	12.4 Burning a CD
	Problem
	Solution
	Discussion
	See Also

	12.5 Comparing Two Documents
	Problem
	Solution
	Discussion
	See Also


	Parsing and Similar Tasks
	13.1 Parsing Arguments for Your Shell Script
	Problem
	Solution
	Discussion
	See Also

	13.2 Parsing Arguments with Your Own Error Messages
	Problem
	Solution
	Discussion
	See Also

	13.3 Parsing Some HTML
	Problem
	Solution
	Discussion
	See Also

	13.4 Parsing Output into an Array
	Problem
	Solution
	Discussion
	See Also

	13.5 Parsing Output with a Function Call
	Problem
	Solution
	Discussion
	See Also

	13.6 Parsing Text with a read Statement
	Problem
	Solution
	Discussion
	See Also

	13.7 Parsing with read into an Array
	Problem
	Solution
	Discussion
	See Also

	13.8 Getting Your Plurals Right
	Problem
	Solution
	Discussion
	See Also

	13.9 Taking It One Character at a Time
	Problem
	Solution
	Discussion
	See Also

	13.10 Cleaning Up an SVN Source Tree
	Problem
	Solution
	Discussion
	See Also

	13.11 Setting Up a Database with MySQL
	Problem
	Solution
	Discussion
	See Also

	13.12 Isolating Specific Fields in Data
	Problem
	Solution
	Discussion
	See Also

	13.13 Updating Specific Fields in Data Files
	Problem
	Solution
	Discussion
	See Also

	13.14 Trimming Whitespace
	Problem
	Solution
	Discussion
	See Also

	13.15 Compressing Whitespace
	Problem
	Solution
	Discussion
	See Also

	13.16 Processing Fixed-Length Records
	Problem
	Solution
	Discussion
	See Also

	13.17 Processing Files with No Line Breaks
	Problem
	Solution
	Discussion
	See Also

	13.18 Converting a Data File to CSV
	Problem
	Solution
	Discussion
	See Also

	13.19 Parsing a CSV Data File
	Problem
	Solution
	Discussion
	See Also


	Writing Secure Shell Scripts
	14.1 Avoiding Common Security Problems
	Problem
	Solution
	Discussion
	See Also

	14.2 Avoiding Interpreter Spoofing
	Problem
	Solution
	Discussion
	See Also

	14.3 Setting a Secure $PATH
	Problem
	Solution
	Discussion
	See Also

	14.4 Clearing All Aliases
	Problem
	Solution
	Discussion
	See Also

	14.5 Clearing the Command Hash
	Problem
	Solution
	Discussion
	See Also

	14.6 Preventing Core Dumps
	Problem
	Solution
	Discussion
	See Also

	14.7 Setting a Secure $IFS
	Problem
	Solution
	Discussion
	See Also

	14.8 Setting a Secure umask
	Problem
	Solution
	Discussion
	See Also

	14.9 Finding World-Writable Directories in Your $PATH
	Problem
	Solution
	Discussion
	See Also

	14.10 Adding the Current Directory to the $PATH
	Problem
	Solution
	Discussion
	See Also

	14.11 Using Secure Temporary Files
	Problem
	Solution
	Discussion
	See Also

	14.12 Validating Input
	Problem
	Solution
	Discussion
	See Also

	14.13 Setting Permissions
	Problem
	Solution
	Discussion
	See Also

	14.14 Leaking Passwords into the Process List
	Problem
	Solution
	Discussion
	See Also

	14.15 Writing setuid or setgid Scripts
	Problem
	Solution
	Discussion
	See Also

	14.16 Restricting Guest Users
	Problem
	Solution
	Discussion
	See Also

	14.17 Using chroot Jails
	Problem
	Solution
	Discussion
	See Also

	14.18 Running As a Non-root User
	Problem
	Solution
	Discussion
	See Also

	14.19 Using sudo More Securely
	Problem
	Solution
	Discussion
	See Also

	14.20 Using Passwords in Scripts
	Problem
	Solution
	Discussion
	See Also

	14.21 Using SSH Without a Password
	Problem
	Solution
	Discussion
	See Also

	14.22 Restricting SSH Commands
	Problem
	Solution
	Discussion
	See Also

	14.23 Disconnecting Inactive Sessions
	Problem
	Solution
	Discussion
	See Also


	Advanced Scripting
	15.1 Finding bash Portably for #!
	Problem
	Solution
	Discussion
	See Also

	15.2 Setting a POSIX $PATH
	Problem
	Solution
	Discussion
	See Also

	15.3 Developing Portable Shell Scripts
	Problem
	Solution
	Discussion
	See Also

	15.4 Testing Scripts in VMware
	Problem
	Solution
	Discussion
	See Also

	15.5 Using for Loops Portably
	Problem
	Solution
	Discussion
	See Also

	15.6 Using echo Portably
	Problem
	Solution
	Discussion
	See Also

	15.7 Splitting Output Only When Necessary
	Problem
	Solution
	Discussion
	See Also

	15.8 Viewing Output in Hex
	Problem
	Solution
	Discussion
	See Also

	15.9 Using bash Net-Redirection
	Problem
	Solution
	Discussion
	See Also

	15.10 Finding My IP Address
	Problem
	Solution
	Discussion
	See Also

	15.11 Getting Input from Another Machine
	Problem
	Solution
	Discussion
	See Also

	15.12 Redirecting Output for the Life of a Script
	Problem
	Solution
	Discussion
	See Also

	15.13 Working Around “argument list too long” Errors
	Problem
	Solution
	Discussion
	See Also

	15.14 Logging to syslog from Your Script
	Problem
	Solution
	Discussion
	See Also

	15.15 Sending Email from Your Script
	Problem
	Solution
	Discussion
	See Also

	15.16 Automating a Process Using Phases
	Problem
	Solution
	Discussion
	See Also


	Configuring and Customizing bash
	16.1 bash Startup Options
	Problem
	Solution
	Discussion
	See Also

	16.2 Customizing Your Prompt
	Problem
	Solution
	Basic prompts
	Fancy prompts

	Discussion
	Colors

	See Also

	16.3 Change Your $PATH Permanently
	Problem
	Solution
	Discussion
	See Also

	16.4 Change Your $PATH Temporarily
	Problem
	Solution
	Discussion
	See Also

	16.5 Setting Your $CDPATH
	Problem
	Solution
	Discussion
	See Also

	16.6 Shortening or Changing Command Names
	Problem
	Solution
	Discussion
	See Also

	16.7 Adjusting Shell Behavior and Environment
	Problem
	Solution
	Discussion
	See Also

	16.8 Adjusting readline Behavior Using .inputrc
	Problem
	Solution
	Discussion
	See Also

	16.9 Keeping a Private Stash of Utilities by Adding ~/bin
	Problem
	Solution
	Discussion
	See Also

	16.10 Using Secondary Prompts: $PS2, $PS3, $PS4
	Problem
	Solution
	Discussion
	See Also

	16.11 Synchronizing Shell History Between Sessions
	Problem
	Solution
	Discussion
	See Also

	16.12 Setting Shell History Options
	Problem
	Solution
	Discussion
	See Also

	16.13 Creating a Better cd Command
	Problem
	Solution
	Discussion
	See Also

	16.14 Creating and Changing into a New Directory in One Step
	Problem
	Solution
	Discussion
	See Also

	16.15 Getting to the Bottom of Things
	Problem
	Solution
	Discussion
	See Also

	16.16 Adding New Features to bash Using Loadable Built-ins
	Problem
	Solution
	Discussion
	See Also

	16.17 Improving Programmable Completion
	Problem
	Solution
	Discussion
	See Also

	16.18 Using Initialization Files Correctly
	Problem
	Solution
	Discussion
	See Also

	16.19 Creating Self-Contained, Portable RC Files
	Problem
	Solution
	Discussion
	Assumptions
	Criteria

	See Also

	16.20 Getting Started with a Custom Configuration
	Problem
	Solution
	Discussion
	See Also


	Housekeeping and Administrative Tasks
	17.1 Renaming Many Files
	Problem
	Solution
	Discussion
	See Also

	17.2 Using GNU Texinfo and Info on Linux
	Problem
	Solution
	Discussion
	See Also

	17.3 Unzipping Many ZIP Files
	Problem
	Solution
	Discussion
	See Also

	17.4 Recovering Disconnected Sessions Using screen
	Problem
	Solution
	Discussion
	Caveats
	Configuration

	See Also

	17.5 Sharing a Single bash Session
	Problem
	Solution
	Discussion
	See Also

	17.6 Logging an Entire Session or Batch Job
	Problem
	Solution
	Discussion
	See Also

	17.7 Clearing the Screen When You Log Out
	Problem
	Solution
	Discussion
	See Also

	17.8 Capturing File Metadata for Recovery
	Problem
	Solution
	Discussion
	See Also

	17.9 Creating an Index of Many Files
	Problem
	Solution
	Discussion
	See Also

	17.10 Using diff and patch
	Problem
	Solution
	Discussion
	See Also

	17.11 Counting Differences in Files
	Problem
	Solution
	Discussion
	See Also

	17.12 Removing or Renaming Files Named with Special Characters
	Problem
	Solution
	Discussion
	See Also

	17.13 Prepending Data to a File
	Problem
	Solution
	Discussion
	See Also

	17.14 Editing a File in Place
	Problem
	Solution
	Discussion
	See Also

	17.15 Using sudo on a Group of Commands
	Problem
	Solution
	Discussion
	See Also

	17.16 Finding Lines in One File But Not in the Other
	Problem
	Solution
	Discussion
	See Also

	17.17 Keeping the Most Recent N Objects
	Problem
	Solution
	Discussion
	See Also

	17.18 Grepping ps Output Without Also Getting the grep Process Itself
	Problem
	Solution
	Discussion
	See Also

	17.19 Finding Out Whether a Process Is Running
	Problem
	Solution
	Discussion
	See Also

	17.20 Adding a Prefix or Suffix to Output
	Problem
	Solution
	Discussion
	See Also

	17.21 Numbering Lines
	Problem
	Solution
	Discussion
	See Also

	17.22 Writing Sequences
	Problem
	Solution
	Discussion
	See Also

	17.23 Emulating the DOS Pause Command
	Problem
	Solution
	Discussion
	See Also

	17.24 Commifying Numbers
	Problem
	Solution
	Discussion
	See Also


	Working Faster by Typing Less
	18.1 Moving Quickly Among Arbitrary Directories
	Problem
	Solution
	Discussion
	See Also

	18.2 Repeating the Last Command
	Problem
	Solution
	Description
	See Also

	18.3 Running Almost the Same Command
	Problem
	Solution
	Discussion
	See Also

	18.4 Substituting Across Word Boundaries
	Problem
	Solution
	Discussion
	See Also

	18.5 Reusing Arguments
	Problem
	Solution
	Discussion
	See Also

	18.6 Finishing Names for You
	Problem
	Solution
	Discussion
	See Also

	18.7 Playing It Safe
	Problem
	Solution
	Discussion
	See Also


	Tips and Traps: Common Goofs for Novices
	19.1 Forgetting to Set Execute Permissions
	Problem
	Solution
	Discussion
	See Also

	19.2 Fixing “No such file or directory” Errors
	Problem
	Solution
	Discussion
	See Also

	19.3 Forgetting That the Current Directory Is Not in the $PATH
	Problem
	Solution
	Discussion
	See Also

	19.4 Naming Your Script Test
	Problem
	Solution
	Discussion
	See Also

	19.5 Expecting to Change Exported Variables
	Problem
	Solution
	Discussion
	See Also

	19.6 Forgetting Quotes Leads to “command not found” on Assignments
	Problem
	Solution
	Discussion
	See Also

	19.7 Forgetting That Pattern Matching Alphabetizes
	19.8 Forgetting That Pipelines Make Subshells
	Problem
	Solution
	Discussion
	See Also

	19.9 Making Your Terminal Sane Again
	Problem
	Solution
	Discussion
	See Also

	19.10 Deleting Files Using an Empty Variable
	Problem
	Solution
	Discussion
	See Also

	19.11 Seeing Odd Behavior from printf
	Problem
	Solution
	Discussion
	See Also

	19.12 Testing bash Script Syntax
	Problem
	Solution
	Discussion
	See Also

	19.13 Debugging Scripts
	Problem
	Solution
	Discussion
	See Also

	19.14 Avoiding “command not found” When Using Functions
	Problem
	Solution
	Discussion
	See Also

	19.15 Confusing Shell Wildcards and Regular Expressions
	Problem
	Solution
	Discussion
	See Also


	Reference Lists
	bash Invocation
	Prompt String Customizations
	ANSI Color Escape Sequences
	Built-in Commands and Reserved Words
	Built-in Shell Variables
	set Options
	shopt Options
	Adjusting Shell Behavior Using set, shopt, and Environment Variables
	Test Operators
	I/O Redirection
	echo Options and Escape Sequences
	printf
	Examples
	See Also

	Date and Time String Formatting with strftime
	Pattern-Matching Characters
	extglob Extended Pattern-Matching Operators
	tr Escape Sequences
	Readline Init File Syntax
	emacs Mode Commands
	vi Control Mode Commands
	Table of ASCII Values

	Examples Included with bash
	Startup-Files Directory Examples

	Command-Line Processing
	Command-Line Processing Steps
	Quoting
	eval


	Revision Control
	CVS
	Pros
	Cons
	Example
	See Also

	Subversion
	Pros
	Cons
	Example
	See Also

	RCS
	Pros
	Cons
	Example
	Workon Script
	See Also

	Other
	Document Comparison
	Change Tracking and Versions
	Accessing These Features


	Building bash from Source
	Obtaining bash
	Unpacking the Archive
	What’s in the Archive
	Documentation
	Configuring and Building bash
	Testing bash
	Potential Problems
	Installing bash as a Login Shell
	Examples

	Who Do I Turn To?
	Asking Questions
	Reporting Bugs


	Index


