

MACHINE LEARNING METHODS
IN THE ENVIRONMENTAL SCIENCES

Neural Networks and Kernels

William W. Hsieh

Machine learning methods, having originated from computational intelligence
(i.e. artificial intelligence), are now ubiquitous in the environmental sciences. This
is the first single-authored textbook to give a unified treatment of machine learning
methods and their applications in the environmental sciences.

Machine learning methods began to infiltrate the environmental sciences in the
1990s. Today, thanks to their powerful nonlinear modelling capability, they are no
longer an exotic fringe species, as they are heavily used in satellite data processing,
in general circulation models (GCM), in weather and climate prediction, air qual-
ity forecasting, analysis and modelling of environmental data, oceanographic and
hydrological forecasting, ecological modelling, and in the monitoring of snow, ice
and forests, etc. End-of-chapter review questions are included, allowing readers to
develop their problem-solving skills and monitor their understanding of the mate-
rial presented. An appendix lists websites available for downloading computer code
and data sources. A resources website is available containing datasets for exercises,
and additional material to keep the book completely up-to-date.

This book presents machine learning methods and their applications in the
environmental sciences (including satellite remote sensing, atmospheric science,
climate science, oceanography, hydrology and ecology), written at a level suitable
for beginning graduate students and advanced undergraduates. It is also valuable
for researchers and practitioners in environmental sciences interested in applying
these new methods to their own work.

WILLIAM W. HSIEH is a Professor in the Department of Earth and Ocean Sci-
ences and in the Department of Physics and Astronomy, as well as Chair of
the Atmospheric Science Programme, at the University of British Columbia.
He is internationally known for his pioneering work in developing and apply-
ing machine learning methods in the environmental sciences. He has published
over 80 peer-reviewed journal publications covering areas of climate variability,
machine learning, oceanography, atmospheric science and hydrology.

MACHINE LEARNING METHODS IN
THE ENVIRONMENTAL SCIENCES

Neural Networks and Kernels

WILLIAM W. HSIEH
University of British Columbia

Vancouver, BC, Canada

C A M B R I D G E U N I V E R S I T Y P R E S S

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521791922

c© W. W. Hsieh 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-79192-2 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party Internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Contents

Preface page ix
List of abbreviations xii
1 Basic notions in classical data analysis 1

1.1 Expectation and mean 1
1.2 Variance and covariance 2
1.3 Correlation 3
1.4 Regression 7
1.5 Bayes theorem 12
1.6 Discriminant functions and classification 14
1.7 Clustering 16

Exercises 18
2 Linear multivariate statistical analysis 20

2.1 Principal component analysis (PCA) 20
2.2 Rotated PCA 40
2.3 PCA for vectors 48
2.4 Canonical correlation analysis (CCA) 49

Exercises 57
3 Basic time series analysis 58

3.1 Spectrum 58
3.2 Windows 65
3.3 Filters 66
3.4 Singular spectrum analysis 68
3.5 Multichannel singular spectrum analysis 74
3.6 Principal oscillation patterns 75
3.7 Spectral principal component analysis 82

Exercises 85
4 Feed-forward neural network models 86

4.1 McCulloch and Pitts model 87

v

vi Contents

4.2 Perceptrons 87
4.3 Multi-layer perceptrons (MLP) 92
4.4 Back-propagation 97
4.5 Hidden neurons 102
4.6 Radial basis functions (RBF) 105
4.7 Conditional probability distributions 108

Exercises 112
5 Nonlinear optimization 113

5.1 Gradient descent method 115
5.2 Conjugate gradient method 116
5.3 Quasi-Newton methods 120
5.4 Nonlinear least squares methods 121
5.5 Evolutionary computation and genetic algorithms 124

Exercises 126
6 Learning and generalization 127

6.1 Mean squared error and maximum likelihood 127
6.2 Objective functions and robustness 129
6.3 Variance and bias errors 133
6.4 Reserving data for validation 134
6.5 Regularization 135
6.6 Cross-validation 136
6.7 Bayesian neural networks (BNN) 138
6.8 Ensemble of models 145
6.9 Approaches to predictive uncertainty 150
6.10 Linearization from time-averaging 151

Exercises 155
7 Kernel methods 157

7.1 From neural networks to kernel methods 157
7.2 Primal and dual solutions for linear regression 159
7.3 Kernels 161
7.4 Kernel ridge regression 164
7.5 Advantages and disadvantages 165
7.6 The pre-image problem 167

Exercises 169
8 Nonlinear classification 170

8.1 Multi-layer perceptron classifier 171
8.2 Multi-class classification 175
8.3 Bayesian neural network (BNN) classifier 176
8.4 Support vector machine (SVM) classifier 177
8.5 Forecast verification 187

Contents vii

8.6 Unsupervised competitive learning 193
Exercises 195

9 Nonlinear regression 196
9.1 Support vector regression (SVR) 196
9.2 Classification and regression trees (CART) 202
9.3 Gaussian processes (GP) 206
9.4 Probabilistic forecast scores 211

Exercises 212
10 Nonlinear principal component analysis 213

10.1 Auto-associative NN for nonlinear PCA 214
10.2 Principal curves 231
10.3 Self-organizing maps (SOM) 233
10.4 Kernel principal component analysis 237
10.5 Nonlinear complex PCA 240
10.6 Nonlinear singular spectrum analysis 244

Exercises 251
11 Nonlinear canonical correlation analysis 252

11.1 MLP-based NLCCA model 252
11.2 Robust NLCCA 264

Exercises 273
12 Applications in environmental sciences 274

12.1 Remote sensing 275
12.2 Oceanography 286
12.3 Atmospheric science 292
12.4 Hydrology 312
12.5 Ecology 314

Exercises 317
Appendices

A Sources for data and codes 318
B Lagrange multipliers 319

References 322
Index 345

Preface

Machine learning is a major sub-field in computational intelligence (also called
artificial intelligence). Its main objective is to use computational methods to extract
information from data. Machine learning has a wide spectrum of applications
including handwriting and speech recognition, object recognition in computer
vision, robotics and computer games, natural language processing, brain–machine
interfaces, medical diagnosis, DNA classification, search engines, spam and fraud
detection, and stock market analysis. Neural network methods, generally regarded
as forming the first wave of breakthrough in machine learning, became popular in
the late 1980s, while kernel methods arrived in a second wave in the second half of
the 1990s.

In the 1990s, machine learning methods began to infiltrate the environmental
sciences. Today, they are no longer an exotic fringe species, since their presence is
ubiquitous in the environmental sciences, as illustrated by the lengthy References
section of this book. They are heavily used in satellite data processing, in gen-
eral circulation models (GCM) for emulating physics, in post-processing of GCM
model outputs, in weather and climate prediction, air quality forecasting, analysis
and modelling of environmental data, oceanographic and hydrological forecasting,
ecological modelling, and in monitoring of snow, ice and forests, etc.

This book presents machine learning methods (mainly neural network and ker-
nel methods) and their applications in the environmental sciences, written at a
level suitable for beginning graduate students and advanced undergraduates. It is
also aimed at researchers and practitioners in environmental sciences, who having
been intrigued by exotic terms like neural networks, support vector machines, self-
organizing maps, evolutionary computation, etc., are motivated to learn more about
these new methods and to use them in their own work. The reader is assumed to
know multivariate calculus, linear algebra and basic probability.

ix

x Preface

Chapters 1–3, intended mainly as background material for students, cover the
standard statistical methods used in environmental sciences. The machine learning
methods of later chapters provide powerful nonlinear generalizations for many
of these standard linear statistical methods. The reader already familiar with the
background material of Chapters 1–3 can start directly with Chapter 4, which intro-
duces neural network methods. While Chapter 5 is a relatively technical chapter
on nonlinear optimization algorithms, Chapter 6 on learning and generalization is
essential to the proper use of machine learning methods – in particular, Section
6.10 explains why a nonlinear machine learning method often outperforms a linear
method in weather applications but fails to do so in climate applications. Kernel
methods are introduced in Chapter 7. Chapter 8 covers nonlinear classification,
Chapter 9, nonlinear regression, Chapter 10, nonlinear principal component anal-
ysis, and Chapter 11, nonlinear canonical correlation analysis. Chapter 12 broadly
surveys applications of machine learning methods in the environmental sciences
(remote sensing, atmospheric science, oceanography, hydrology, ecology, etc.).
For exercises, the student could test the methods on data from their own area
or from some of the websites listed in Appendix A. Codes for many machine
learning methods are also available from sites listed in Appendix A. The book
website www.cambridge.org/hsieh also provides datasets for some of the
exercises given at the ends of the chapters.

On a personal note, writing this book has been both exhilarating and gru-
elling. When I first became intrigued by neural networks through discussions with
Dr Benyang Tang in 1992, I recognized that the new machine learning methods
would have a major impact on the environmental sciences. However, I also real-
ized that I had a steep learning curve ahead of me, as my background training was
in physics, mathematics and environmental sciences, but not in statistics nor com-
puter science. By the late 1990s I became convinced that the best way for me to
learn more about machine learning was to write a book. What I thought would take
a couple of years turned into a marathon of over eight years, as I desperately tried
to keep pace with a rapidly expanding research field. I managed to limp past the
finish line in pain, as repetitive strain injury from overusage of keyboard and mouse
struck in the final months of intensive writing!

I have been fortunate in having supervised numerous talented graduate students,
post-doctoral fellows and research associates, many of whom taught me far more
than I taught them. I received helpful editorial assistance from the staff at the Cam-
bridge University Press and from Max Ng. I am grateful for the support from my
two university departments (Earth and Ocean Sciences, and Physics and Astron-
omy), the Peter Wall Institute of Advanced Studies, the Natural Sciences and
Engineering Research Council of Canada and the Canadian Foundation for Climate
and Atmospheric Sciences.

Preface xi

Without the loving support from my family (my wife Jean and my daughters,
Teresa and Serena), and the strong educational roots planted decades ago by my
parents and my teachers, I could not have written this book.

Notation used in this book

In general, vectors are denoted by lower case bold letters (e.g. v), matrices by
upper case bold letters (e.g. A) and scalar variables by italics (e.g. x or J). A
column vector is denoted by v, while its transpose vT is a row vector, i.e. vT =
(v1, v2, . . . , vn) and v = (v1, v2, . . . , vn)

T, and the inner or dot product of two
vectors a · b = aTb = bTa. The elements of a matrix A are written as Ai j or
(A)i j . The probability for discrete variables is denoted by upper case P , whereas
the probability density for continuous variables is denoted by lower case p. The
expectation is denoted by E[. . .] or 〈. . .〉. The natural logarithm is denoted by ln
or log.

Abbreviations

AO = Arctic Oscillation
BNN = Bayesian neural network
CART = classification and regression tree
CCA = canonical correlation analysis
CDN = conditional density network
EC = evolutionary computation
EEOF = extended empirical orthogonal function
ENSO = El Niño-Southern Oscillation
EOF = empirical orthogonal function
GA = genetic algorithm
GCM = general circulation model (or global climate model)
GP = Gaussian process model
IC = information criterion
LP = linear projection
MAE = mean absolute error
MCA = maximum covariance analysis
MJO = Madden–Julian Oscillation
MLP = multi-layer perceptron neural network
MLR = multiple linear regression
MOS = model output statistics
MSE = mean squared error
MSSA = multichannel singular spectrum analysis
NAO = North Atlantic Oscillation
NLCCA = nonlinear canonical correlation analysis
NLCPCA = nonlinear complex PCA
NN = neural network
NLPC = nonlinear principal component
NLPCA = nonlinear principal component analysis

xii

Abbreviations xiii

NLSSA = nonlinear singular spectrum analysis
PC = principal component
PCA = principal component analysis
PNA = Pacific-North American teleconnection
POP = principal oscillation pattern
QBO = Quasi-Biennial Oscillation
RBF = radial basis function
RMSE = root mean squared error
SLP = sea level pressure
SOM = self-organizing map
SSA = singular spectrum analysis
SST = sea surface temperature (sum of squares in Chapter 1)
SVD = singular value decomposition
SVM = support vector machine
SVR = support vector regression

1

Basic notions in classical data analysis

The goal of data analysis is to discover relations in a dataset. The basic ideas of
probability distributions, and the mean and variance of a random variable are intro-
duced first. The relations between two variables are then explored with correlation
and regression analysis. Other basic notions introduced in this chapter include
Bayes theorem, discriminant functions, classification and clustering.

1.1 Expectation and mean

Let x be a random variable which takes on discrete values. For example, x can be
the outcome of a die cast, where the possible values are xi = i , with i = 1, . . . , 6.

The expectation or expected value of x from a population is given by

E[x] =
∑

i

xi Pi , (1.1)

where Pi is the probability of xi occurring. If the die is fair, Pi = 1/6 for all i , so
E[x] is 3.5. We also write

E[x] = μx , (1.2)

with μx denoting the mean of x for the population.
The expectation of a sum of random variables satisfies

E[ax + by + c] = a E[x] + b E[y] + c, (1.3)

where x and y are random variables, and a, b and c are constants.
For a random variable x which takes on continuous values over a domain �, the

expection is given by an integral,

E[x] =
∫

�

xp(x) dx, (1.4)

1

2 Basic notions in classical data analysis

where p(x) is the probability density function. For any function f (x), the
expectation is

E[f (x)] =
∫

�

f (x)p(x) dx (continuous case)

=
∑

i

f (xi)Pi (discrete case). (1.5)

In practice, one can sample only N measurements of x (x1, . . . , xN) from the
population. The sample mean x or 〈x〉 is calculated as

x ≡ 〈x〉 = 1

N

N∑
i=1

xi , (1.6)

which is in general different from the population mean μx . As the sample size
increases, the sample mean approaches the population mean.

1.2 Variance and covariance

Fluctuation about the mean value is commonly characterized by the variance of the
population,

var(x) ≡ E[(x − μx)
2] = E[x2 − 2xμx + μ2

x] = E[x2] − μ2
x , (1.7)

where (1.3) and (1.2) have been invoked. The standard deviation s is the positive
square root of the population variance, i.e.

s2 = var(x). (1.8)

The sample standard deviation σ is the positive square root of the sample
variance, given by

σ 2 = 1

N − 1

N∑
i=1

(xi − x)2. (1.9)

As the sample size increases, the sample variance approaches the population vari-
ance. For large N , distinction is often not made between having N − 1 or N in the
denominator of (1.9).

Often one would like to compare two very different variables, e.g. sea surface
temperature and fish population. To avoid comparing apples with oranges, one usu-
ally standardizes the variables before making the comparison. The standardized
variable

xs = (x − x)/σ, (1.10)

1.3 Correlation 3

is obtained from the original variable by subtracting the sample mean and dividing
by the sample standard deviation. The standardized variable is also called the nor-
malized variable or the standardized anomaly (where anomaly means the deviation
from the mean value).

For two random variables x and y, with mean μx and μy respectively, their
covariance is given by

cov(x, y) = E[(x − μx)(y − μy)]. (1.11)

The variance is simply a special case of the covariance, with

var(x) = cov(x, x). (1.12)

The sample covariance is computed as

cov(x, y) = 1

N − 1

N∑
i=1

(xi − x)(yi − y). (1.13)

1.3 Correlation

The (Pearson) correlation coefficient, widely used to represent the strength of the
linear relationship between two variables x and y, is defined as

ρ̂xy = cov(x, y)

sx sy
, (1.14)

where sx and sy are the population standard deviations for x and y, respectively.
For a sample containing N pairs of (x , y) measurements or observations, the

sample correlation is computed by

ρ ≡ ρxy =

N∑
i=1

(xi − x)(yi − y)

[
N∑

i=1

(xi − x)2

] 1
2
[

N∑
i=1

(yi − y)2

] 1
2

, (1.15)

which lies between −1 and +1. At the value +1, x and y will show a perfect straight-
line relation with a positive slope; whereas at −1, the perfect straight line will have
a negative slope. With increasing noise in the data, the sample correlation moves
towards 0.

An important question is whether the obtained sample correlation can be con-
sidered significantly different from 0 – this is also called a test of the null (i.e.
ρ̂xy = 0) hypothesis. A common approach involves transforming to the variable

4 Basic notions in classical data analysis

t = ρ

√
N − 2

1 − ρ2
, (1.16)

which in the null case is distributed as the Student’s t distribution, with ν = N − 2
degrees of freedom.

For example, with N = 32 data pairs, ρ was found to be 0.36. Is this correlation
significant at the 5% level? In other words, if the true correlation is zero (ρ̂xy = 0),
is there less than 5% chance that we could obtain ρ ≥ 0.36 for our sample? To
answer this, we need to find the value t0.975 in the t-distribution, where t > t0.975

occur less than 2.5% of the time and t < −t0.975 occur less than 2.5% of the time
(as the t-distribution is symmetrical), so altogether |t | > t0.975 occur less than 5%
of the time. From t-distribution tables, we find that with ν = 32 − 2 = 30, t0.975 =
2.04.

From (1.16), we have

ρ2 = t2

N − 2 + t2
, (1.17)

so substituting in t0.975 = 2.04 yields ρ0.05 = 0.349, i.e. less than 5% of the sample
correlation values will indeed exceed ρ0.05 in magnitude if ρ̂xy = 0. Hence our
ρ = 0.36>ρ0.05 is significant at the 5% level based on a ‘2-tailed’ t test. For mod-
erately large N (N ≥10), an alternative test involves using Fisher’s z-transformation
(Bickel and Doksum, 1977).

Often the observations are measurements at regular time intervals, i.e. time
series, and there is autocorrelation in the time series – i.e. neighbouring data points
in the time series are correlated. Autocorrelation is well illustrated by persistence
in weather patterns, e.g. if it rains one day, it increases the probability of rain the
following day. With autocorrelation, the effective sample size may be far smaller
than the actual number of observations in the sample, and the value of N used in
the significance tests will have to be adjusted to represent the effective sample size.

A statistical measure is said to be robust if the measure gives reasonable results
even when the model assumptions (e.g. data obeying Gaussian distribution) are not
satisfied. A statistical measure is said to be resistant if the measure gives reason-
able results even when the dataset contains one or a few outliers (an outlier being
an extreme data value arising from a measurement or recording error, or from an
abnormal event).

Correlation assumes a linear relation between x and y; however, the sample
correlation is not robust to deviations from linearity in the relation, as illustrated
in Fig. 1.1a where ρ ≈ 0 even though there is a strong (nonlinear) relationship
between the two variables. Thus the correlation can be misleading when the under-
lying relation is nonlinear. Furthermore, the sample correlation is not resistant to

1.3 Correlation 5

1

0

1

y y

x

(b)

x

(a)

0
0 1 2 3 0 1 2 3

Fig. 1.1 (a) An example showing that correlation is not robust to deviations from
linearity. Here the strong nonlinear relation between x and y is completely missed
by the near-zero correlation coefficient. (b) An example showing that correlation
is not resistant to outliers. Without the single outlier, the correlation coefficient
changes from positive to negative.

outliers, where in Fig. 1.1b if the outlier datum is removed, ρ changes from being
positive to negative.

1.3.1 Rank correlation

For the correlation to be more robust and resistant to outliers, the Spearman rank
correlation is often used instead. If the data {x1, . . . , xN } are rearranged in order
according to their size (starting with the smallest), and if x is the nth member, then
rank(x) ≡ rx = n. The correlation is then calculated for rx and ry instead, which
can be shown to simplify to

ρrank = ρrx ry = 1 −
6

N∑
i=1

(rxi − ryi)
2

N (N 2 − 1)
. (1.18)

For example, if six measurements of x yielded the values 1, 3, 0, 5, 3, 6 then
the corresponding rx values are 2, 3.5, 1, 5, 3.5, 6, (where the tied values were all
assigned an averaged rank). If measurements of y yielded 2, 3, −1, 5, 4,−99 (an
outlier), then the corresponding ry values are 3, 4, 2, 6, 5, 1. The Spearman rank
correlation is +0.12, whereas in contrast the Pearson correlation is −0.61, which
shows the strong influence exerted by an outlier.

An alternative robust and resistant correlation is the biweight midcorrelation (see
Section 11.2.1).

6 Basic notions in classical data analysis

1.3.2 Autocorrelation

To determine the degree of autocorrelation in a time series, we use the autocorrela-
tion coefficient, where a copy of the time series is shifted in time by a lag of l time
intervals, and then correlated with the original time series. The lag-l autocorrelation
coefficient is given by

ρ(l) =

N−l∑
i=1

[(xi − x)(xi+l − x)]
N∑

i=1

(xi − x)2

, (1.19)

where x is the sample mean. There are other estimators of the autocorrelation
function, besides the non-parametric estimator given here (von Storch and Zwiers,
1999, p. 252). The function ρ(l), which has the value 1 at lag 0, begins to decrease
as the lag increases. The lag where ρ(l) first intersects the l-axis is l0, the first zero
crossing. A crude estimate for the effective sample size is Neff = N/ l0. From sym-
metry, one defines ρ(−l) = ρ(l). In practice, ρ(l) cannot be estimated reliably
when l approaches N , since the numerator of (1.19) would then involve summing
over very few terms.

The autocorrelation function can be integrated to yield a decorrelation time scale
or integral time scale

T =
∫ ∞

−∞
ρ(l) dl (continuous case)

=
(

1 + 2
L∑

l=1

ρ(l)

)
�t (discrete case), (1.20)

where �t is the time increment between adjacent data values, and the maximum lag
L used in the summation is usually not more than N/3, as ρ(l) cannot be estimated
reliably when l becomes large. The effective sample size is then

Neff = N�t/T, (1.21)

with N�t the data record length. When the decorrelation time scale is large,
Neff � N .

With two time series x and y, both with N samples, the effective sample size is
often estimated by

Neff = N∑L
l=−L

[
ρxx(l)ρyy(l) + ρxy(l)ρyx(l)

] , (1.22)

1.4 Regression 7

(Emery and Thomson, 1997), though sometimes the ρxyρyx terms are ignored
(Pyper and Peterman, 1998).

1.3.3 Correlation matrix

If there are M variables, e.g. M stations reporting the air pressure, then correlations
between the variables lead to a correlation matrix

C =

⎡
⎢⎢⎣

ρ11 ρ12 · · · ρ1M

ρ21 ρ22 · · · ρ2M

· · · · · · · · · · · ·
ρM1 ρM2 · · · ρM M

⎤
⎥⎥⎦ , (1.23)

where ρi j is the correlation between the i th and the j th variables. The diagonal
elements of the matrix satisfy ρi i = 1, and the matrix is symmetric, i.e. ρi j = ρ j i .
The j th column of C gives the correlations between the variable j and all other
variables.

1.4 Regression

Regression, introduced originally by Galton (1885), is used to find a linear relation
between a dependent variable y and one or more independent variables x.

1.4.1 Linear regression

For now, consider simple linear regression where there is only one independent
variable x , and the dataset contains N pairs of (x, y) measurements. The relation is

yi = ỹi + ei = a0 + a1xi + ei , i = 1, . . . , N , (1.24)

where a0 and a1 are the regression parameters, ỹi is the yi predicted or described
by the linear regression relation, and ei is the error or the residual unaccounted
for by the regression (Fig. 1.2). As regression is commonly used as a prediction
tool (i.e. given x , use the regression relation to predict y), x is referred to as the
predictor or independent variable, and y, the predictand, response or dependent
variable. Curiously, the term ‘predictand’, widely used within the atmospheric–
oceanic community, is not well known outside.

The error

ei = yi − ỹi = yi − a0 − a1xi . (1.25)

8 Basic notions in classical data analysis

x

y

yi
x

i

i

e

aa

Fig. 1.2 Illustrating linear regression. A straight line ỹi = a0 + a1xi is fitted to
the data, where the parameters a0 and a1 are determined from minimizing the sum
of the square of the error ei , which is the vertical distance between the i th data
point and the line.

By finding the optimal values of the parameters a0 and a1, linear regression
minimizes the sum of squared errors (SSE) ,

SSE =
N∑

i=1

ei
2, (1.26)

yielding the best straight line relation between y and x . Because the SSE is
minimized, this method is also referred to as the least squares method.

Differentiation of (1.26) by a0 yields

N∑
i=1

(yi − a0 − a1xi) = 0. (1.27)

Differentiation of (1.26) by a1 gives

N∑
i=1

(yi − a0 − a1xi)xi = 0. (1.28)

These two equations are called the normal equations, from which we will obtain
the optimal values of a0 and a1.

From (1.27), we have

a0 = 1

N

∑
yi − a1

N

∑
xi , i.e. a0 = y − a1x . (1.29)

Substituting (1.29) into (1.28) yields

a1 =
∑

xi yi − N x y∑
x2

i − N x x
. (1.30)

1.4 Regression 9

Equations (1.29) and (1.30) provide the optimal values of a0 and a1 for minimizing
the SSE, thereby yielding the best straight line fit to the data in the x-y plane. The
parameter a1 gives the slope of the regression line, while a0 gives the y-intercept.

1.4.2 Relating regression to correlation

Since regression and correlation are two approaches to extract linear relations
between two variables, one would expect the two to be related. Equation (1.30)
can be rewritten as

a1 =
∑

(xi − x)(yi − y)∑
(xi − x)2

. (1.31)

Comparing with the expression for the sample correlation, (1.15), we see that

a1 = ρxy
σy

σx
, (1.32)

i.e. the slope of the regression line is the correlation coefficient times the ratio of
the standard deviation of y to that of x .

It can also be shown that

σ 2
e = σ 2

y (1 − ρ2
xy), (1.33)

where 1−ρ2
xy is the fraction of the variance of y not accounted for by the regression.

For example, if ρxy = 0.5, then 1 −ρ2
xy = 0.75, i.e. 75% of the variance of y is not

accounted for by the regression.

1.4.3 Partitioning the variance

It can be shown that the variance, i.e. the total sum of squares (SST), can be parti-
tioned into two: the first part is that accounted for by the regression relation, i.e. the
sum of squares due to regression (SSR), and the remainder is the sum of squared
errors (SSE):

SST = SSR + SSE, (1.34)

where

SST =
N∑

i=1

(yi − y)2, (1.35)

SSR =
N∑

i=1

(ỹi − y)2, (1.36)

10 Basic notions in classical data analysis

SSE =
N∑

i=1

(yi − ỹi)
2. (1.37)

How well the regression fitted the data can be characterized by

R2 = SSR

SST
= 1 − SSE

SST
, (1.38)

where R2 approaches 1 when the fit is very good. Note that R is called the multiple
correlation coefficient, as it can be shown that it is the correlation between ỹ and y
(Draper and Smith, 1981, p. 46), and this holds even when there are multiple
predictors in the regression, a situation to be considered in the next subsection.

1.4.4 Multiple linear regression

Often one encounters situations where there are multiple predictors xl, (l =
1, . . . , k) for the response variable y. This type of multiple linear regression
(MLR) has the form

yi = a0 +
k∑

l=1

xilal + ei , i = 1, . . . , N . (1.39)

In vector form,

y = Xa + e, (1.40)

where

y =
⎡
⎢⎣

y1
...

yN

⎤
⎥⎦ , X =

⎡
⎢⎣

1 x11 · · · xk1
...

...
...

...

1 x1N · · · xk N

⎤
⎥⎦ , (1.41)

a =
⎡
⎢⎣

a0
...

ak

⎤
⎥⎦ , e =

⎡
⎢⎣

e1
...

eN

⎤
⎥⎦ . (1.42)

The SSE is then

SSE = eTe = (y − Xa)T(y − Xa), (1.43)

where the superscript T denotes the transpose. To minimize SSE with respect to a,
we differentiate the SSE by a and set the derivatives to zero, yielding the normal
equations,

XT(y − Xa) = 0. (1.44)

1.4 Regression 11

Thus

XTXa = XTy, (1.45)

and the optimal parameters are given by

a = (XTX)−1 XTy. (1.46)

A major problem with multiple regression is that often a large number of predic-
tors are available, though only a few of these are actually significant. If all possible
predictors are used in building a MLR model, one often ‘overfits’ the data, i.e. too
many parameters are used in the model so that one is simply fitting to the noise
in the data. While the fit to the data may appear very impressive, such overfit-
ted MLR models generally perform poorly when used to make predictions based
on new predictor data. Automatic procedures, e.g. stepwise multiple regression
(Draper and Smith, 1981), have been devised to eliminate insignificant predictors,
thereby avoiding an overfitted MLR model.

Another approach to the overfitting problem in MLR is ridge regression, where
penalty is placed on excessive use of large regression parameters. With ridge
regression, the parameters are constrained to lie within a hypersphere of certain
radius to prevent use of large regression parameters, and minimization of the SSE
is performed with this constraint (Draper and Smith, 1981). Penalty methods are
also commonly used in neural network models to prevent overfitting (Section 6.5).

1.4.5 Perfect Prog and MOS

In many branches of environmental sciences, physical (or dynamical) prediction
models have surpassed statistical models. For instance, in numerical weather fore-
casting, the governing equations of the atmosphere are solved by finite-element or
spectral methods on supercomputers. Such dynamical models can be integrated for-
ward in time to give weather forecasts. Nevertheless regression is commonly used
to assist and improve the raw forecasts made by the dynamical models (Wilks,
1995). The reason is that the variables in the dynamical model usually have poor
resolution and are sometimes too idealized. For instance, the lowest temperature
level in the model may be some considerable distance above the ground. Fur-
thermore, the local topography may be completely missed in the low resolution
dynamical model. Thus it would be difficult to use the output from such a dynami-
cal model directly to predict the ground temperature at a village located in a valley.
Furthermore, some local variables such as ozone concentration or precipitation
may not even be variables carried in the dynamical model.

12 Basic notions in classical data analysis

The Perfect Prog (abbreviation for perfect prognosis) scheme computes a
multiple regression relation from the historical data archive:

y(t) = x(t)Ta + e(t), (1.47)

where y is the response, x the predictors, and e the error. During actual fore-
casting, x(t) is provided by the forecasts from the dynamical model, and y(t) is
predicted by the above regression relation. The problem with this scheme is that
while the regression model was developed or trained using historical data for x, the
actual forecasts used the dynamical model forecasts for x. Hence, the systematic
error between the dynamical model forecasts and real data has not been taken into
account – i.e. perfect prognosis is assumed, whence the name of this scheme.

In contrast, a better approach is the model output statistics (MOS) scheme, where
the dynamical model forecasts have been archived, so the regression was devel-
oped using y(t) from the data archive and x(t) from the dynamical model forecast
archive. Since x was from the dynamical model forecasts during both model train-
ing and actual forecasting, the model bias in the Perfect Prog scheme has been
eliminated. While MOS is more accurate than Perfect Prog, it is considerably more
difficult to implement since a slight modification of the dynamical model would
require regeneration of the dynamical model forecast archive and recalculation of
the regression relations.

In summary, even in areas where physical or dynamical models outperform sta-
tistical models in forecasting, post-processing of the dynamical model outputs by
regression in the form of Perfect Prog or MOS can often enhance the dynamical
model predictions. We shall see that machine learning methods can further improve
the post-processing of dynamical model outputs (Section 12.3.4).

1.5 Bayes theorem

Bayes theorem, named after the Reverend Thomas Bayes (1702–1761), plays a
central role in modern statistics (Jaynes, 2003; Le and Zidek, 2006). Historically, it
had a major role in the debate around the foundations of statistics, as the traditional
‘frequentist’ school and the Bayesian school disagreed on how probabilities should
be assigned in applications. Frequentists assign probabilities to random events
according to their frequencies of occurrence or to subsets of populations as propor-
tions of the whole. In contrast, Bayesians describe probabilities in terms of beliefs
and degrees of uncertainty, similarly to how the general public uses probability. For
instance, a sports fan prior to the start of a sports tournament asserts that team A has
a probability of 60% for winning the tournament. However, after a disappointing
game, the fan may modify the winning probability to 30%. Bayes theorem provides
the formula for modifiying prior probabilities in view of new data.

1.5 Bayes theorem 13

We will use a classification problem to illustrate the Bayes approach. Suppose a
meteorologist wants to classify the approaching weather state as either storm (C1),
or non-storm (C2). Assume there is some a priori probability (or simply prior prob-
ability) P(C1) that there is a storm, and some prior probability P(C2) that there is
no storm. For instance, from the past weather records, 15% of the days were found
to be stormy during this season, then the meteorologist may assign P(C1) = 0.15,
and P(C2) = 0.85. Now suppose the meteorologist has a barometer measuring a
pressure x at 6 a.m. The meteorologist would like to obtain an a posteriori proba-
bility (or simply posterior probability) P(C1|x), i.e. the conditional probability of
having a storm on that day given the 6 a.m. pressure x . In essence, he would like
to improve on his simple prior probability with the new information x .

The joint probability density p(Ci , x) is the probability density that an event
belongs to class Ci and has value x , (noting that a small p is used in this book to
denote a probability density, versus P for probability). The joint probability density
can be written as

p(Ci , x) = P(Ci |x)p(x), (1.48)

with p(x) the probability density of x . Alternatively, p(Ci , x) can be written as

p(Ci , x) = p(x |Ci)P(Ci), (1.49)

with p(x |Ci), the conditional probability density of x , given that the event belongs
to class Ci . Equating the right hand sides of these two equations, we obtain

P(Ci |x) = p(x |Ci)P(Ci)

p(x)
, (1.50)

which is Bayes theorem. Since p(x) is the probability density of x without regard
to which class, it can be decomposed into

p(x) =
∑

i

p(x |Ci)P(Ci). (1.51)

Substituting this for p(x) in (1.50) yields

P(Ci |x) = p(x |Ci)P(Ci)∑
i p(x |Ci)P(Ci)

, (1.52)

where the denominator on the right hand side is seen as a normalization factor for
the posterior probabilities to sum to unity. Bayes theorem says that the posterior
probability P(Ci |x) is simply p(x |Ci) (the likelihood of x given the event is of
class Ci) multiplied by the prior probability P(Ci), and divided by a normalization
factor. The advantage of Bayes theorem is that the posterior probability is now
expressed in terms of quantities which can be estimated. For instance, to estimate
p(x |Ci), the meteorologist can divide the 6 a.m. pressure record into two classes,

14 Basic notions in classical data analysis

and estimate p(x |C1) from the pressure distribution for stormy days, and p(x |C2)

from the pressure distribution for non-stormy days.
For the general situation, the scalar x is replaced by a feature vector x, and the

classes are C1, . . . , Ck , then Bayes theorem becomes

P(Ci |x) = p(x|Ci)P(Ci)∑
i p(x|Ci)P(Ci)

, (1.53)

for i = 1, . . . , k.
If instead of the discrete variable Ci , we have a continuous variable w, then

Bayes theorem (1.50) takes the form

p(w|x) = p(x |w)p(w)

p(x)
. (1.54)

1.6 Discriminant functions and classification

Once the posterior probabilities P(Ci |x) have been estimated from (1.53), we can
proceed to classification: Given a feature vector x, we choose the class C j having
the highest posterior probability, i.e.

P(C j |x) > P(Ci |x), for all i 	= j. (1.55)

This is equivalent to

p(x|C j)P(C j) > p(x|Ci)P(Ci), for all i 	= j. (1.56)

In the feature space, the pattern classifier has divided the space into decision
regions R1, . . . , Rk , so that if a feature vector lands within Ri , the classifier will
assign the class Ci . The decision region Ri may be composed of several disjoint
regions, all of which are assigned the class Ci . The boundaries between decision
regions are called decision boundaries or decision surfaces.

To justify the decison rule (1.56), consider the probability Pcorrect of a new pattern
being classified correctly:

Pcorrect =
k∑

j=1

P(x ∈ R j , C j), (1.57)

where P(x ∈ R j , C j) gives the probability that the pattern which belongs to class
C j has its feature vector falling within the decision region R j , hence classified
correctly as belonging to class C j . Note that Pcorrect can be expressed as

1.6 Discriminant functions and classification 15

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2
(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

(b)

Fig. 1.3 (a) A linear decision boundary separating two classes of data denoted by
circles and plus signs respectively. (b) A nonlinear decision boundary.

Pcorrect =
k∑

j=1

P(x ∈ R j |C j)P(C j),

=
k∑

j=1

∫
R j

p(x|C j)P(C j)dx. (1.58)

To maximize Pcorrect, one needs to maximize the integrand by choosing the decision
regions so that x is assigned to the class C j satisfying (1.56), which justifies the
decision rule (1.56).

In general, classification need not be based on probability distribution functions,
since in many situations, p(x|Ci) and P(Ci) are not known. The classification pro-
cedure is then formulated in terms of discriminant functions, which tell us which
class we should assign to the given predictor data point x. For example, in Fig. 1.3a,
x = (x1, x2)

T, and the two classes are separated by the line x2 = x1. Hence the
discriminant function can be simply y(x) = −x1 + x2, with C2 assigned when
y(x) > 0, and C1 otherwise. Hence the decision boundary is given by y(x) = 0.

When there are more than two classes, the discriminant functions are y1(x), . . .,
yk(x), where a feature vector x is assigned to class C j if

y j (x) > yi (x), for all i 	= j. (1.59)

Clearly (1.55) is a special case of (1.59). An important property of a discriminant
function yi (x) is that it can be replaced by f (yi (x)), for any monotonic function

16 Basic notions in classical data analysis

f , since the classification is unchanged as the relative magnitudes of the discrim-
inant functions are preserved by f . There are many classical linear discriminant
analysis methods (e.g. Fisher’s linear discriminant) (Duda et al., 2001), where the
discriminant function is a linear combination of the inputs, i.e.

yi (x) =
∑

l

wil xl + wi0 ≡ wT
i x + wi0, (1.60)

with parameters wi and wi0. Based on (1.59), the decision boundary between class
C j and Ci is obtained from setting y j (x) = yi (x), yielding a hyperplane decision
boundary described by

(w j − wi)
Tx + (w j0 − wi0) = 0. (1.61)

Suppose x and x′ both lie within the decision region R j . Consider any point x̃
lying on a straight line connecting x and x′, i.e.

x̃ = ax + (1 − a)x′, (1.62)

with 0 ≤ a ≤ 1. Since x and x′ both lie within R j , they satisfy y j (x) > yi (x) and
y j (x′) > yi (x′) for all i 	= j . Since the discriminant function is linear, we also have

y j (x̃) = ay j (x) + (1 − a)y j (x′), (1.63)

hence y j (x̃) > yi (x̃) for all i 	= j . Thus any point on the straight line joining
x and x′ must also lie within R j , meaning that the decision region R j is simply
connected and convex. As we shall see later, with neural network methods, the
decision boundaries can be curved surfaces (Fig. 1.3b) instead of hyperplanes, and
the decision regions need not be simply connected nor convex.

1.7 Clustering

In machine learning, there are two general approaches, supervised learning and
unsupervised learning. An analogy for the former is students in a French class
where the teacher demonstrates the correct French pronunciation. An analogy for
the latter is students working on a team project without supervision. In unsuper-
vised learning, the students are provided with learning rules, but must rely on
self-organization to arrive at a solution, without the benefit of being able to learn
from a teacher’s demonstration.

When we perform regression in (1.24), the training dataset consists of pairs of
predictors and predictands (xi , yi), y = 1, . . . , N . Here yi serves the role of the
teacher or target for the regression model output ỹi , i.e. ỹi is fitted to the given
target data, similar to students trying to imitate the French accent of their teacher,

1.7 Clustering 17

hence the learning is supervised. Classification can be regarded as the discrete ver-
sion of regression. For instance, with regression we are interested in predicting the
air temperature in degrees Celsius, whereas with classification, we are interested
in predicting whether the temperature will be ‘cold’, ‘normal’ or ‘warm’. Since the
classes are specified in the target data, classification is also supervised learning.

Clustering or cluster analysis is the unsupervised version of classification. The
goal of clustering is to group the data into a number of subsets or ‘clusters’, such
that the data within a cluster are more closely related to each other than data from
other clusters. For instance, in the simple and widely used K-means clustering, one
starts with initial guesses for the mean positions of the K clusters in data space

0 0.5 1
−0.2

0

0.2

0.4

0.6
(a) Iteration = 0

x1

x 2

0 0.5 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
(b) Iteration = 1

x1

x 2

0 0.5 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
(c) Iteration = 2

x1

x 2

0 0.5 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
(d) Iteration = 3

x1

x 2

Fig. 1.4 (a) The initial guesses for the two cluster centres are marked by the aster-
isk and the circled asterisk. The data points closest to the asterisk are plotted as
dots, while those closest to the circled asterisk are shown as circles. The location
of the cluster centres and their associated clusters are shown after (b) One, (c)
Two, (d) Three iterations of the K -means clustering algorithm.

18 Basic notions in classical data analysis

(to be referred to as the cluster centres), then iterates the following two steps till
convergence:

(i) For each data point, find the closest cluster centre (based on Euclidean distance).
(ii) For each cluster, reassign the cluster centre to be the mean position of all the data

belonging to that cluster.

Figure 1.4 illustrates K -means clustering. As K , the number of clusters, is
specified by the user, choosing a different K will lead to very different clusters.

Exercises

(1.1) A variable y is measured by two instruments placed 50 km apart in the east-
west direction. Values are recorded daily for 100 days. The autocorrelation
function of y shows the first zero crossing (i.e. the smallest lag at which
the autocorrelation is zero) occurring at 6 days (for both stations). Further-
more, y at one station is correlated with the y at the second station, with
the second time series shifted in time by various lags. The maximum corre-
lation occurred with y from the eastern station lagging y from the western
station by 2 days. Assuming a sinusoidal wave is propagating between the
two stations, estimate the period, wavelength, and the speed and direction of
propagation.

(1.2) Given two time series of daily observations over 42 days, the Pearson cor-
relation was found to be −0.65. (a) Assuming the daily observations are
independent, is the correlation significant? (b) If autocorrelation shows a
decorrelation time scale of 6 days, is the correlation significant?

(1.3) Regression (y = ax +b) and correlation are related. What are the conditions
when a dataset of (x, y) values yields a large correlation ρ (e.g. ρ = 0.9) but
a small regression parameter a (a = 0.01)? Is it possible for ρ and a to have
opposite signs?

(1.4) Using the data file provided in the book website (given in the Preface), com-
pare the Pearson correlation with the Spearman rank correlation for the time
series x and y (each with 40 observations). Repeat the comparison for the
time series x2 and y2 (from the same data file as above), where x2 and y2 are
the same as x and y, except that the fifth data point in y is replaced by an
outlier in y2. Repeat the comparison for the time series x3 and y3, where x3

and y3 are the same as x and y, except that the fifth data point in x and y
is replaced by an outlier in x3 and y3. Make scatterplots of the data points
in the x–y space, the x2–y2 space and the x3–y3 space. Also plot the linear
regression line in the scatterplots.

Exercises 19

(1.5) Using the data file provided in the book website, perform multiple linear
regression with predictors x1, x2 and x3, and the response variable y. Rank
the importance of the predictors in their influence on y.

(1.6) Suppose a test for the presence of a toxic chemical in a lake gives the follow-
ing results: if a lake has the toxin, the test returns a positive result 99% of the
time; if a lake does not have the toxin, the test still returns a positive result
2% of the time. Suppose only 5% of the lakes contain the toxin. According
to Bayes theorem, what is the probability that a positive test result for a lake
turns out to be a false positive?

2

Linear multivariate statistical analysis

As one often encounters datasets with more than a few variables, multivariate sta-
tistical techniques are needed to extract the information contained in these datasets
effectively. In the environmental sciences, examples of multivariate datasets are
ubiquitous – the air temperatures recorded by all the weather stations around the
globe, the satellite infrared images composed of numerous small pixels, the gridded
output from a general circulation model, etc. The number of variables or time series
from these datasets ranges from thousands to millions. Without a mastery of multi-
variate techniques, one is overwhelmed by these gigantic datasets. In this chapter,
we review the principal component analysis method and its many variants, and the
canonical correlation analysis method. These methods, using standard matrix tech-
niques such as singular value decomposition, are relatively easy to use, but suffer
from being linear, a limitation which will be lifted with neural network and kernel
methods in later chapters.

2.1 Principal component analysis (PCA)

2.1.1 Geometric approach to PCA

We have a dataset with variables y1, . . . , ym . These variables have been sampled
n times. In many situations, the m variables are m time series each containing n
observations in time. For instance, one may have a dataset containing the monthly
air temperature measured at m stations over n months. If m is a large number,
we would like to capture the essence of y1, . . . , ym by a smaller set of variables
z1, . . . , zk (i.e. k < m; and hopefully k � m, for truly large m). This is the
objective of principal component analysis (PCA), also called empirical orthog-
onal function (EOF) analysis in meteorology and oceanography. We first begin
with a geometric approach, which is more intuitive than the standard eigenvector
approach to PCA.

20

2.1 Principal component analysis (PCA) 21

z2
y2

z1ri

y1

Fig. 2.1 The PCA problem formulated as a minimization of the sum of r2
i , where

ri is the shortest distance from the i th data point to the first PCA axis z1.

y2z2

z1

y1

z2

z1

θ

Fig. 2.2 Rotation of coordinate axes by an angle θ in a 2-dimensional space.

Let us start with only two variables, y1 and y2, as illustrated in Fig. 2.1. Clearly
the bulk of the variance is along the axis z1. If ri is the distance between the i th
data point and the axis z1, then the optimal z1 is found by minimizing

∑n
i=1 r2

i .
This type of geometric approach to PCA was first proposed by Pearson (1901).
Note that PCA treats all variables equally, whereas regression divides variables into
independent and dependent variables (cf. Fig. 2.1 and Fig. 1.2), hence the straight
line described by z1 is in general different from the regression line.

In 3-D, z1 is the best 1-D line fit to the data, while z1 and z2 span a 2-D plane
giving the best plane fit to the data. In general, with an m-dimensional dataset, we
want to find the k-dimensional hyperplane giving the best fit.

2.1.2 Eigenvector approach to PCA

The more systematic eigenvector approach to PCA is due to Hotelling (1933).
Here again with the 2-D example, a data point is transformed from its old coor-
dinates (y1, y2) to new coordinates (z1, z2) via a rotation of the coordinate system
(Fig. 2.2):

z1 = y1 cos θ + y2 sin θ,

z2 = −y1 sin θ + y2 cos θ. (2.1)

22 Linear multivariate statistical analysis

In the general m-dimensional problem, we want to introduce new coordinates

z j =
m∑

l=1

e jl yl, j = 1, . . . , m. (2.2)

The objective is to find

e1 = [e11, . . . , e1m]T, (2.3)

which maximizes var(z1), i.e. find the coordinate transformation such that the
variance of the dataset along the direction of the z1 axis is maximized.

With

z1 =
m∑

l=1

e1l yl = eT
1 y, y = [y1, . . . , ym]T, (2.4)

i.e. projecting the data point y onto the vector e1 gives a distance of z1 along the e1

direction, we have

var(z1) = E [(z1 − z1)(z1 − z1)] = E [eT
1 (y − y)(y − y)Te1], (2.5)

where we have used the vector property aTb = bTa. Thus,

var(z1) = eT
1 E [(y − y)(y − y)T] e1 = eT

1 Ce1, (2.6)

where the covariance matrix C is given by

C = E [(y − y)(y − y)T]. (2.7)

Clearly, the larger is the vector norm ‖e1‖, the larger var(z1) will be. Hence, we
need to place a constraint on ‖e1‖ while we try to maximize var(z1). Let us impose
a normalization constraint ‖e1‖ = 1, i.e.

eT
1 e1 = 1. (2.8)

Thus our optimization problem is to find e1 which maximizes eT
1 Ce1, subject to the

constraint

eT
1 e1 − 1 = 0. (2.9)

The method of Lagrange multipliers is commonly used to tackle optimization
under constraints (see Appendix B). Instead of finding stationary points of eT

1 Ce1,
we search for the stationary points of the Lagrange function L ,

L = eT
1 Ce1 − λ(eT

1 e1 − 1), (2.10)

where λ is a Lagrange multiplier. Differentiating L by the elements of e1, and
setting the derivatives to zero, we obtain

Ce1 − λe1 = 0, (2.11)

2.1 Principal component analysis (PCA) 23

which says that λ is an eigenvalue of the covariance matrix C, with e1 the
eigenvector. Multiplying this equation by eT

1 on the left, we obtain

λ = eT
1 Ce1 = var(z1). (2.12)

Since eT
1 Ce1 is maximized, so are var(z1) and λ. The new coordinate z1, called the

principal component (PC), is found from (2.4).
Next, we want to find z2 – our task is to find e2 which maximizes var(z2) =

eT
2 Ce2, subject to the constraint eT

2 e2 = 1, and the constraint that z2 be uncorrelated
with z1, i.e. the covariance between z2 and z1 be zero,

cov(z1, z2) = 0. (2.13)

As C = CT, we can write

0 = cov(z1, z2) = cov(eT
1 y, eT

2 y)

= E[eT
1 (y − y)(y − y)Te2] = eT

1 E[(y − y)(y − y)T]e2

= eT
1 Ce2 = eT

2 Ce1 = eT
2λ1e1 = λ1eT

2 e1 = λ1eT
1 e2 . (2.14)

The orthogonality condition

eT
2 e1 = 0, (2.15)

can be used as a constraint in place of (2.13).
Upon introducing another Lagrange multiplier γ , we want to find an e2 which

gives a stationary point of the Lagrange function L ,

L = eT
2 Ce2 − λ(eT

2 e2 − 1) − γ eT
2 e1. (2.16)

Differentiating L by the elements of e2, and setting the derivatives to zero, we
obtain

Ce2 − λe2 − γ e1 = 0. (2.17)

Left multiplying this equation by eT
1 yields

eT
1 Ce2 − λeT

1 e2 − γ eT
1 e1 = 0. (2.18)

On the left hand side, the first two terms are both zero from (2.14) while the third
term is simply γ , so we have γ = 0, and (2.17) reduces to

Ce2 − λe2 = 0. (2.19)

Once again λ is an eigenvalue of C, with e2 the eigenvector. As

λ = eT
2 Ce2 = var(z2), (2.20)

24 Linear multivariate statistical analysis

which is maximized, this λ = λ2 is as large as possible with λ2 < λ1. (The case
λ2 = λ1 is degenerate and will be discussed later.) Hence, λ2 is the second largest
eigenvalue of C, with λ2 = var(z2). This process can be repeated for z3, z4, . . .

How do we reconcile the geometric approach of the previous subsection and the
present eigenvector approach? First we subtract the mean y from y, so the trans-
formed data are centred around the origin with y = 0. In the geometric approach,
we minimize the distance between the data points and the new axis. If the unit
vector e1 gives the direction of the new axis, then the projection of a data point
(described by the vector y) onto e1 is (eT

1 y)e1. The component of y normal to e1 is
y − (eT

1 y)e1. Thus, minimizing the distance between the data points and the new
axis amounts to minimizing

ε = E[‖ y − (eT
1 y)e1‖2]. (2.21)

Simplifying this yields

ε = E[‖y‖2 − (eT
1 y)yTe1] = var(y) − var(eT

1 y), (2.22)

where var(y) ≡ E[‖y‖2], with y assumed to be zero. Since var(y) is constant,
minimizing ε is equivalent to maximizing var(eT

1 y), which is equivalent to maxi-
mizing var(z1). Hence the geometric approach of minimizing the distance between
the data points and the new axis is equivalent to the eigenvector approach in finding
the largest eigenvalue λ, which is simply max[var(z1)].

So far, C is the data covariance matrix, but it can also be the data correlation
matrix, if one prefers correlation over covariance. In combined PCA, where two
or more variables with different units are combined into one large data matrix for
PCA – e.g. finding the PCA modes of the combined sea surface temperature data
and the sea level pressure data – then one needs to normalize the variables, so that
C is the correlation matrix.

2.1.3 Real and complex data

In general, for y real,

C ≡ E[(y − y)(y − y)T], (2.23)

implies that CT = C, i.e. C is a real, symmetric matrix. A positive semi-definite
matrix A is defined by the property that for any v �= 0, it follows that vTAv ≥ 0
(Strang, 2005). From the definition of C (2.23), it is clear that vTCv ≥ 0 is satisfied.
Hence C is a real, symmetric, positive semi-definite matrix.

If y is complex, then

C ≡ E[(y − y)(y − y)T∗], (2.24)

2.1 Principal component analysis (PCA) 25

with complex conjugation denoted by the superscript asterisk. As CT∗ = C, C
is a Hermitian matrix. It is also a positive semi-definite matrix. Theorems on
Hermitian, positive semi-definite matrices tell us that C has real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0,

m∑
j=1

λ j = var(y), (2.25)

with corresponding orthonormal eigenvectors, e1, . . . , em , and that the k eigenvec-
tors corresponding to λ1, . . . , λk minimize

εk = E[‖(y − y) −
k∑

j=1

(eT
j (y − y))e j‖2], (2.26)

which can be expressed as

εk = var(y) −
k∑

j=1

λ j . (2.27)

2.1.4 Orthogonality relations

Thus PCA amounts to finding the eigenvectors and eigenvalues of C. The orthonor-
mal eigenvectors then provide a basis, i.e. the data y can be expanded in terms of
the eigenvectors e j :

y − y =
m∑

j=1

a j (t)e j , (2.28)

where a j (t) are the expansion coefficients. To obtain a j (t), left multiply the above
equation by eT

i , and use the orthonormal relation of the eigenvectors,

eT
i e j = δi j , (2.29)

(with δi j denoting the Kronecker delta function, which equals 1 if i = j , and 0
otherwise) to get

a j (t) = eT
j (y − y), (2.30)

i.e. a j (t) is obtained by projection of the data vector y−y onto the eigenvector e j , as
the right hand side of this equation is simply a dot product between the two vectors.
The nomenclature varies considerably in the literature: a j are called principal com-
ponents, scores, temporal coefficients and amplitudes; while the eigenvectors e j are
also referred to as principal vectors, loadings, spatial patterns and EOFs (Empiri-
cal Orthogonal Functions). In this book, we prefer calling a j principal components
(PCs), e j eigenvectors or EOFs (and the elements e ji loadings), and j the mode

26 Linear multivariate statistical analysis

number. Note that for time series, a j is a function of time while e j is a function of
space, hence the names temporal coefficients and spatial patterns describe them
well. However, in many cases, the dataset may not consist of time series. For
instance, the dataset could be plankton collected from various oceanographic sta-
tions – t then becomes the label for a station, while ‘space’ here could represent
the various plankton species, and the data y(t) = [y1(t), . . . , ym(t)]T could be the
amount of species 1, . . . , m found in station t . Another example comes from the
multi-channel satellite image data, where images of the Earth’s surface have been
collected at several frequency channels. Here t becomes the location label for a
pixel in an image, and ‘space’ indicates the various frequency channels.

There are two important properties of PCAs. The expansion
∑k

j=1 a j (t)e j (x),
with k ≤ m, explains more of the variance of the data than any other linear com-
bination

∑k
j=1 b j (t)f j (x). Thus PCA provides the most efficient way to compress

data, using k eigenvectors e j and corresponding time series a j .
The second important property is that the time series in the set {a j } are

uncorrelated. We can write

a j (t) = eT
j (y − y) = (y − y)Te j . (2.31)

For i �= j ,

cov(ai , a j) = E[eT
i (y − y)(y − y)Te j] = eT

i E[(y − y)(y − y)T]e j

= eT
i Ce j = eT

i λ j e j = λ j eT
i e j = 0, (2.32)

implying zero correlation between ai (t) and a j (t). Hence PCA extracts the uncor-
related modes of variability of the data field. Note that no correlation between ai (t)
and a j (t) only means no linear relation between the two, there may still be non-
linear relations between them, which can be extracted by nonlinear PCA methods
(Chapter 10).

When applying PCA to gridded data over the globe, one should take into account
the decrease in the area of a grid cell with latitude. By scaling the variance from
each grid cell by the area of the cell (which is proportional to the cosine of the
latitude φ), one can avoid having the anomalies in the higher latitudes overweighted
in the PCA (North et al., 1982). This scaling of the variance can be accomplished
simply by multiplying the anomaly yl −yl at the lth grid cell by the factor (cos φ)1/2

for that cell.

2.1.5 PCA of the tropical Pacific climate variability

Let us illustrate the PCA technique with data from the tropical Pacific, a region
renowned for the El Niño phenomenon (Philander, 1990). Every 2–10 years, a sud-
den warming of the coastal waters occurs off Peru. As the maximum warming

2.1 Principal component analysis (PCA) 27

occurs around Christmas, the local fishermen called this warming ‘El Niño’ (the
Child in Spanish), after the Christ child. During normal times, the easterly equato-
rial winds drive surface waters offshore, forcing the cool, nutrient-rich, sub-surface
waters to upwell, thereby replenishing the nutrients in the surface waters, hence the
rich biological productivity and fisheries in the Peruvian waters. During an El Niño,
upwelling suddenly stops and the Peruvian fisheries crash. A major El Niño can
bring a maximum warming of 5 ◦C or more to the surface waters off Peru. Some-
times the opposite of an El Niño develops, i.e. anomalously cool waters appear in
the equatorial Pacific, and this has been named the ‘La Niña’ (the girl in Spanish)
(also called ‘El Viejo’, the old man, by some researchers). Unlike El Niño episodes,
which were documented as far back as 1726, La Niña episodes were not noticed
until recent decades, because its cool sea surface temperature (SST) anomalies are
located much further offshore than the El Niño warm anomalies, and La Niña does
not harm the Peruvian fisheries. The SST averaged over some regions (Niño 3,
Niño 3.4, Niño 4, etc.) of the equatorial Pacific (Fig. 2.3) are shown in Fig. 2.4,
where El Niño warm episodes and La Niña cool episodes can easily be seen.

Let us study the monthly tropical Pacific SST from NOAA (Reynolds and Smith,
1994; Smith et al., 1996) for the period January 1950 to August 2000, (where the
original 2◦ by 2◦ resolution data had been combined into 4◦ by 4◦ gridded data; and
each grid point had its climatological seasonal cycle removed, and smoothed by a
3 month moving average). The SST field has two spatial dimensions, but can easily
be rearranged into the form of y(t) for the analysis with PCA. The first six PCA
modes account for 51.8%, 10.1%, 7.3%, 4.3%, 3.5% and 3.1%, respectively, of
the total SST variance. The spatial patterns (i.e. the eigenvectors) for the first three

30N

20N

10N

EQ

10S

20S

30S
120E 150E 180

Niño 4

Niño 3.4

Niño 3

Niño 1+2

150W 120W 90W

Fig. 2.3 Regions of interest in the tropical Pacific: Niño 1+2 (0◦-10◦S, 80◦W-
90◦W), Niño 3 (5◦S-5◦N, 150◦W-90◦W, shaded in dark grey), Niño 3.4 (5◦S-5◦N,
170◦W-120◦W) and Niño 4 (5◦S-5◦N, 160◦E-150◦W, shaded in light grey). SST
anomalies averaged over each of these regions are used as indices. The Niño 3
and Niño 3.4 SST anomalies are commonly used as indices for El Niño/La Niña
episodes. (Figure downloaded from the website of Climate Prediction Center,
NOAA.)

28 Linear multivariate statistical analysis

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−4

−2

0

2

4

N
in

o
3

SS
T

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−4

−2

0

2

4

N
in

o
3.

4
SS

T

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−2

−1

0

1

2

N
in

o
4

SS
T

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−10

−5

0

5

SO
I

Year

Fig. 2.4 The monthly SST anomalies in Niño 3, Niño 3.4 and Niño 4 (in ◦C), and
the monthly Southern Oscillation Index, SOI [i.e. standardized Tahiti sea level
pressure (SLP) minus standardized Darwin SLP]. During El Niño episodes, the
SST rises in Niño 3 and Niño 3.4 while the SOI drops. The reverse occurs during
a La Niña episode. The grid mark for a year marks the January of that year.

modes are shown in Fig. 2.5, and the associated PC time series in Fig. 2.6. All three
modes have their most intense variability located close to the equator (Fig. 2.5).
Only until the fourth mode and beyond (not shown), do we find modes where their
most intense variability occurs off equator. It turns out that the first three modes are

2.1 Principal component analysis (PCA) 29

SST mode 1

2

2

2

2
2

2

44

4

4

6

66

150E 180 150W 120W 90W

20S

10S

 0

10N

20N

SST mode 2

2

2

2 2

2 2

4

4

6 8

−4

−4

−4
−2

−2

−2

−2

150E 180 150W 120W 90W

20S

10S

 0

10N

20N

SST mode 3

2

2

2

2

2 2

2 2

2

2 2

2

4

4 4

44

4

−4
−4

−2
−2 −2

150E 180 150W 120W 90W

20S

10S

 0

10N

20N

(a)

(b)

(c)

Fig. 2.5 The spatial patterns (i.e. eigenvectors or EOFs) of PCA modes (a) 1, (b) 2
and (c) 3 for the SST. Positive contours are indicated by the solid curves, negative
contours by dashed curves, and the zero contour by the thick solid curve. The
contour unit is 0.01 ◦C. The eigenvectors have been normalized to unit norm.

30 Linear multivariate statistical analysis

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
–50

0

50

100
(a)

(b)

(c)

Principal components for SST modes 1 to 3

PC
 f

or
 m

od
e

1

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
–20

–10

0

10

20

30

PC
 f

or
 m

od
e

2

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
–20

–10

0

10

20

30

Year

PC
 f

or
 m

od
e

3

Fig. 2.6 The principal component time series for the SST modes (a) 1, (b) 2 and (c) 3.

all related to the El Niño/La Niña phenomenon. That it takes at least three modes
to represent this phenomenon accurately is a result of the limitations of a linear
approach like PCA – later we will see how a single nonlinear PCA mode by neural
network (NN) modelling can accurately represent the El Niño/La Niña oscillation
(Section 10.1.2).

Mode 1 (Fig. 2.5a) shows the largest SST anomalies occurring in the eastern and
central equatorial Pacific. The mode 1 PC (Fig. 2.6) closely resembles the Niño3.4
SST (Fig. 2.4), which is commonly used as an index for El Niño/La Niña. The SST
anomalies associated with mode 1 at a given time are the product of PC at that time
and the spatial EOF pattern.

2.1 Principal component analysis (PCA) 31

Mode 2 (Fig. 2.5b) has, along the equator, positive anomalies near the east and
negative anomalies further west. Its PC (Fig. 2.6) shows positive values during
both El Niño and La Niña episodes. Mode 3 (Fig. 2.5c) shows the largest anomaly
occurring in the central equatorial Pacific, and the PC (Fig. 2.6) shows a rising
trend after the mid 1970s.

Since the late nineteenth century, it has been known that the normal high air
pressure (at sea level) in the eastern equatorial Pacific and the low pressure in the
western equatorial Pacific and Indian Ocean may undergo a see-saw oscillation
once very 2–10 years. The ‘Southern Oscillation’ (termed by Sir Gilbert Walker in
the 1920s) is the east-west seesaw oscillation in the sea level pressure (SLP) cen-
tred in the equatorial Pacific. The SLP of Tahiti (in the eastern equatorial Pacific)
minus that of Darwin (in the western equatorial Pacific/Indian Ocean domain) is
commonly called the Southern Oscillation Index (SOI). Clearly the SOI is neg-
atively correlated with the Niño3.4 SST index (Fig. 2.4), i.e. when an El Niño
occurs, the SLP of the eastern equatorial Pacific drops relative to the SLP of the
western equatorial Pacific/Indian Ocean domain. By the mid 1960s, El Niño, the
oceanographic phenomenon, has been found to be connected to the Southern Oscil-
lation, the atmospheric phenomenon, and the coupled phenomenon named the El
Niño-Southern Oscillation (ENSO).

Let us also consider the tropical Pacific monthly SLP data from COADS (Com-
prehensive Ocean-Atmosphere Data Set) (Woodruff et al., 1987) during January
1950 to August 2000. The 2◦ by 2◦ resolution data were combined into 10◦ longi-
tude by 4◦ latitude gridded data, with climatological seasonal cycle removed, and
smoothed by a 3 month running average. PCA of the data resulted in the first six
modes accounting for 29.5%, 16.5%, 4.8%, 3.4%, 2.5% and 2.2%, respectively, of
the total variance. The first three spatial modes (Fig. 2.7) and their associated PCs
(Fig. 2.8) are also shown. The first mode describes the east-west seesaw in the SLP
associated with the Southern Oscillation (Fig. 2.7a).

2.1.6 Scaling the PCs and eigenvectors

There are various options for scaling of the PCs {a j (t)} and the eigenvectors {e j }.
One can introduce an arbitrary scale factor α,

a′
j = 1

α
a j , e′

j = αe j , (2.33)

so that

y − y =
∑

j

a′
j e

′
j . (2.34)

32 Linear multivariate statistical analysis

SLP mode 1

5

5

10

10

−15

−10

−10 −
10

−5

−5

150E 180 150W 120W 90W

15S

10S

 5S

 0

 5N

10N

15N

SLP mode 2

5

5

5
10

10

1010

15
15

150E 180 150W 120W 90W

15S

10S

 5S

 0

 5N

10N

15N

SLP mode 3
5

5

5

5

10 10

−15

−15
−

10

−
10

−10

−10

−5

−
5

−5

−5

150E 180 150W 120W 90W

15S

10S

 5S

 0

 5N

10N

15N

(a)

(b)

(c)

Fig. 2.7 The spatial patterns of PCA modes (a) 1, (b) 2 and (c) 3 for the SLP.
The contour unit is 0.01 mb. Positive contours are indicated by the solid curves,
negative contours by dashed curves, and the zero contour by the thick solid curve.

2.1 Principal component analysis (PCA) 33

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−2020

−10

0

10

20

30
(a)

(b)

(c)

Principal components for SLP modes 1 to 3

PC
 f

or
 m

od
e

1

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−20

−10

0

10

20

PC
 f

or
 m

od
e

2

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−10

−5

0

5

10

Year

PC
 f

or
 m

od
e

3

Fig. 2.8 The principal component time series for the SLP modes (a) 1, (b) 2 and
(c) 3. PC1 is clearly well correlated with the SST PC1 in Fig. 2.6.

Thus a j (t) and e j are defined only up to an arbitrary scale factor. With α = −1,
one reverses the sign of both a j (t) and e j , which is often done to make them more
interpretable.

Our choice for the scaling has so far been

eT
i e j = δi j , (2.35)

which was the choice of Lorenz (1956). The variance of the original data y is then
contained in {a j (t)}, with

34 Linear multivariate statistical analysis

var(y) = E

⎡
⎣ m∑

j=1

a2
j

⎤
⎦ . (2.36)

Another common choice is Hotelling’s original choice

a′
j = 1√

λ j
a j , e′

j = √
λ j e j , (2.37)

whence

var(y) =
m∑

j=1

λ j =
m∑

j=1

‖e′
j‖2, (2.38)

cov(a′
i , a′

j) = δi j . (2.39)

The variance of the original data is now contained in {e j (t)} instead. In sum, regard-
less of the arbitrary scale factor, the PCA eigenvectors are orthogonal and the PCs
are uncorrelated.

If PCA is performed on the standardized variables ỹl , i.e. yl with mean removed
and normalized by standard deviation, then one can show that the correlation

ρ(a′
j (t), ỹl(t)) = e′

jl, (2.40)

the lth element of e′
j (Jolliffe, 2002, p. 25). Hence the lth element of e′

j conveniently
provides the correlation between the PC a′

j and the standardized variable ỹl , which
is a reason why Hotelling’s scaling (2.37) is also widely used.

2.1.7 Degeneracy of eigenvalues

A degenerate case arises when λi = λ j , (i �= j). When two eigenvalues are equal,
their eigenspace is 2-D, i.e. a plane in which any two orthogonal vectors can be
chosen as the eigenvectors – hence the eigenvectors are not unique. If l eigenval-
ues are equal, l non-unique orthogonal vectors can be chosen in the l-dimensional
eigenspace.

A simple example of degeneracy is illustrated by a propagating plane wave,

h(x, y, t) = A cos(ky − ωt), (2.41)

which can be expressed in terms of two standing waves:

h = A cos(ky) cos(ωt) + A sin(ky) sin(ωt). (2.42)

If we perform PCA on h(x, y, t), we get two modes with equal eigenvalues. To see
this, note that in the x-y plane, cos(ky) and sin(ky) are orthogonal, while cos(ωt)
and sin(ωt) are uncorrelated, so (2.42) satisfies the properties of PCA modes in

2.1 Principal component analysis (PCA) 35

that the eigenvectors are orthogonal and the PCs are uncorrelated. Equation (2.42)
is a PCA decomposition, with the two modes having the same amplitude A, hence
the eigenvalues λ1 = λ2, and the case is degenerate. Thus propagating waves in
the data lead to degeneracy in the eigenvalues. If one finds eigenvalues of very
similar magnitudes from a PCA analysis, that implies near degeneracy and there
may be propagating waves in the data. In reality, noise in the data usually precludes
λ1 = λ2 exactly. Nevertheless, when λ1 ≈ λ2, the near degeneracy causes the
eigenvectors to be rather poorly defined (i.e. very sensitive to noise in the data)
(North et al., 1982).

2.1.8 A smaller covariance matrix

Let the data matrix be

Y =
⎡
⎣ y11 · · · y1n

· · · · · · · · ·
ym1 · · · ymn

⎤
⎦ , (2.43)

where m is the number of spatial points and n the number of time points. The
columns of this matrix are simply the vectors y(t1), y(t2), . . . , y(tn). Assuming

1

n

n∑
i=1

y ji = 0, (2.44)

i.e. the temporal mean has been removed, then

C = 1

n
YYT (2.45)

is an m × m matrix. The theory of singular value decomposition (SVD) (see Sec-
tion 2.1.10) tells us that the non-zero eigenvalues of YYT (an m × m matrix) are
exactly the non-zero eigenvalues of YTY (an n × n matrix).

In most problems, the size of the two matrices is very different. For instance,
for global 5◦ × 5◦ monthly sea level pressure data collected over 50 years, the
total number of spatial grid points is m = 2592 while the number of time points
is n = 600. Obviously, it will be much easier to solve the eigen problem for the
600 × 600 matrix than that for the 2592 × 2592 matrix.

Hence, when n < m, considerable computational savings can be made by first
finding the eigenvalues {λ j } and eigenvectors {v j } for the alternative covariance
matrix

C′ = 1

n
YTY, (2.46)

36 Linear multivariate statistical analysis

i.e.
1

n
YTYv j = λ j v j . (2.47)

Since

λ j Yv j = Yλ j v j = Y
1

n
YTYv j ,(

1

n
YYT

)
(Yv j) = λ j (Yv j). (2.48)

This equation is easily seen to be of the form

Ce j = λ j e j , (2.49)

with

e j = Yv j , (2.50)

which means e j is an eigenvector for C. In summary, solving the eigen problem
for the smaller matrix C′ yields the eigenvalues {λ j } and eigenvectors {v j }. The
eigenvectors {e j } for the bigger matrix C are then obtained from (2.50).

2.1.9 Temporal and spatial mean removal

Given a data matrix Y as in (2.43), what type of mean are we trying to remove from
the data? So far, we have removed the temporal mean, i.e. the average of the j th
row, from each datum y ji . We could instead have removed the spatial mean, i.e. the
average of the i th column, from each datum y ji .

Which type of mean should be removed is very dependent on the type of data one
has. For most applications, one removes the temporal mean. However, for satellite
sensed sea surface temperature data, the precision is much better than the accuracy.
Also, the subsequent satellite image may be collected by a different satellite, which
would have different systematic errors. So it is more appropriate to subtract the
spatial mean of an image from each pixel (as was done in Fang and Hsieh, 1993).

It is also possible to remove both the temporal and spatial means, by subtract-
ing the average of the j th row and then the average of the i th column from each
datum y ji .

2.1.10 Singular value decomposition

Instead of solving the eigen problem of the data covariance matrix C, a computa-
tionally more efficient way to perform PCA is via singular value decomposition
(SVD) of the m × n data matrix Y given by (2.43) (Kelly, 1988). Without loss of
generality, we can assume m ≥ n, then the SVD theorem (Strang, 2005) says that

2.1 Principal component analysis (PCA) 37

Y = ESFT =

E

E′
m × n

0

m × m

S

S′
n × n

0
m × n

FT

n × n
. (2.51)

The m × m matrix E contains an m × n sub-matrix E′ – and if m > n, some
zero column vectors. The m × n matrix S contains the diagonal n × n sub-matrix
S′, and possibly some zero row vectors. FT is an n × n matrix. (If m < n, one can
apply the above arguments to the transpose of the data matrix.)

E and F are orthonormal matrices, i.e. they satisfy

ETE = I, FTF = I, (2.52)

where I is the identity matrix. The leftmost n columns of E contain the n left singu-
lar vectors, and the columns of F the n right singular vectors, while the diagonal
elements of S′ are the singular values.

The covariance matrix C can be rewritten as

C = 1

n
YYT = 1

n
ESSTET , (2.53)

where (2.51) and (2.52) have been invoked. The matrix

SST ≡ �, (2.54)

is diagonal and zero everywhere, except in the upper left n × n corner, contain-
ing S′2.

Right multiplying (2.53) by nE gives

nCE = E�, (2.55)

where (2.54) and (2.52) have been invoked, and � contains the eigenvalues for
the matrix nC. Instead of solving the eigen problem (2.55), we use SVD to get
E from Y by (2.51). Equation (2.55) implies that there are only n eigenvalues in
� from S′2, and the eigenvalues = (singular values)2. As (2.55) and (2.49) are
equivalent except for the constant n, the eigenvalues in � are simply nλ j , with λ j

the eigenvalues from (2.49).
Similarly, for the other covariance matrix

C′ = 1

n
YTY, (2.56)

we can rewrite it as

C′ = 1

n
FS′2FT , (2.57)

38 Linear multivariate statistical analysis

and ultimately,

nC′F = FS′2 . (2.58)

Hence the eigen problem (2.58) has the same eigenvalues as (2.55).
The PCA decomposition

y(t) =
∑

j

e j a j (t) , (2.59)

is equivalent to the matrix form

Y = EAT =
∑

j

e j aT
j , (2.60)

where the eigenvector e j is the j th column in the matrix E, and the PC a j (t) is the
vector a j , the j th column in the matrix A. Equations (2.51) and (2.60) yield

AT = SFT. (2.61)

Hence by the SVD (2.51), we obtain the eigenvectors e j from E, and the PCs a j (t)
from A in (2.61). We can also left multiply (2.60) by ET, and invoke (2.52) to get

AT = ETY. (2.62)

There are many computing packages (e.g. MATLAB) with standard codes for
performing SVD. Kelly (1988) pointed out that the SVD approach to PCA is at
least twice as fast as the eigen approach, as SVD requires O(mn2) operations to
compute, while the eigen approach requires O(mn2) to compute the smaller of C
or C′, then O(n3) to solve the eigen problem, and then O(mn2) to get the PCs.

2.1.11 Missing data

Missing data produce gaps in data records. If the gaps are small, one can inter-
polate the missing values using neighbouring data. If the gaps are not small, then
instead of

C = 1

n
YYT, (2.63)

(assuming that the means have been removed from the data), one computes

ckl = 1

n′
∑

i

′
yki yil (2.64)

where the prime denotes that the summation is only over i with neither yki nor yil

missing – with a total of n′ terms in the summation. The eigenvectors e j can then

2.1 Principal component analysis (PCA) 39

be obtained from this new covariance matrix. The principal components a j cannot
be computed from

a j (tl) =
∑

i

e ji yil, (2.65)

as some values of yil are missing. Instead a j is estimated (von Storch and
Zwiers, 1999, Section 13.2.8) as a least squares solution to minimizing E[‖y −∑

a j e j‖2], i.e.

a j (tl) =
∑′

i e ji yil∑′
i |e ji |2 , (2.66)

where for a given value of l, the superscript prime means that the summations are
only over i for which yil is not missing.

PCA is also used to supply missing data. With climate data, one often finds the
earlier records to be sparse. Suppose the data record can be divided into two parts,
Y which contains no missing values, and Ỹ which contains missing values. From
(2.60), PCA applied to Y yields E, which contains the eigenvectors e j . The PCs for
Ỹ are then computed from (2.66)

ã j (tl) =
∑′

i e ji ỹil∑′
i |e ji |2 . (2.67)

The missing values in Ỹ are filled in Ỹ′, where

Ỹ′ = EÃT, (2.68)

where the j th column of Ã is given by ã j (tl). More sophisticated interpolation of
missing data by PCA is described by Kaplan et al. (2000).

2.1.12 Significance tests

In practice, the higher PCA modes, which basically contain noise, are rejected.
How does one decide how many modes to retain? There are some ‘rules of thumb’.
One of the simplest approaches is to plot the eigenvalues λ j as a function of the
mode number j . Hopefully, from the plot, one finds an abrupt transition from large
eigenvalues to small eigenvalues around mode number k. One can then retain the
first k modes. Alternatively, the Kaiser test rejects the modes with eigenvalues λ

less than the mean value λ.
Computationally more involved is the Monte Carlo test (Preisendorfer, 1988),

which involves setting up random data matrices Rl (l = 1, . . . , L), of the same
size as the data matrix Y. The random elements are normally distributed, with the
variance of the random data matching the variance of the actual data. Principal

40 Linear multivariate statistical analysis

component analysis is performed on each of the random matrices, yielding eigen-
values λ

(l)
j . Assume for each l, the set of eigenvalues is sorted in descending order.

For each j , one examines the distribution of the L values of λ
(l)
j , and finds the level

λ0.05, which is exceeded by only 5% of the λ
(l)
j values. The eigenvalues λ j from Y

which failed to rise above this λ0.05 level are then rejected. If the data have strong
autocorrelation, then the dimension of Rl should be reduced, with the effective
sample size neff replacing the sample size n.

Since the Monte Carlo method performs PCA on L matrices and L is typically
about 100–1000, it can be costly for large data matrices. Hence asymptotic methods
based on the central limit theorem are often used in the case of large data matrices
(Mardia et al., 1979, pp. 230–237; Preisendorfer, 1988, pp. 204–206).

2.2 Rotated PCA

In PCA, the linear mode which accounts for the most variance of the dataset is
sought. However, as illustrated in Fig. 2.9, the resulting eigenvectors may not align
close to local data clusters, so the eigenvectors may not represent actual physical
states well. Rotated PCA (RPCA) methods rotate the PCA eigenvectors, so that
they point closer to the local clusters of data points. Thus the rotated eigenvectors

e2 e2

e2
e2

e1 e1

e1e1

(a) (b)

(c) (d)~

e2

e2 ~

e1
~

e1
~

Fig. 2.9 The case of PCA applied to a dataset composed of (a) a single cluster, (b)
two clusters, (c) and (d) four clusters. In (c), an orthonormal rotation has yielded
rotated eigenvectors ẽ j , (j = 1, 2) which pass much closer to the data clusters
than the unrotated eigenvectors e j . In (d), an oblique rotation is used instead of an
orthonormal rotation to spear through the data clusters. The dashed lines indicate
the orthonormally rotated eigenvectors. Eigenvectors which failed to approach
any data clusters generally bear little resemblance to physical states. (Based on
Preisendorfer (1988).)

2.2 Rotated PCA 41

may bear greater resemblance to actual physical states (though they account for
less variance) than the unrotated eigenvectors. Rotated PCA, also called rotated
EOF analysis, and in statistics, PC factor analysis, is a more general but also
more subjective technique than PCA. This dichotomy between PCA and RPCA
methods arises because it is generally impossible to have a linear solution simulta-
neously (a) explaining maximum global variance of the data, and (b) approaching
local data clusters. Thus PCA excels in (a) while RPCA excels in (b). However, in
the nonlinear PCA (NLPCA) approach using neural networks (Chapter 10), both
objectives (a) and (b) can be attained together, thereby unifying the PCA and RPCA
approaches.

Let us quickly review the rotation of vectors and matrices. Given a matrix P
composed of the column vectors p1, . . . , pm , and a matrix Q containing the column
vectors q1, . . . , qm , P can be transformed into Q by Q = PR, i.e.

qil =
∑

j

pi j r jl, (2.69)

where R is a rotation matrix with elements r jl . When R is orthonormal, i.e.

RTR = I, (2.70)

the rotation is called an orthonormal rotation. Clearly,

R−1 = RT, (2.71)

for an orthonormal rotation. If R is not orthonormal, the rotation is an oblique
rotation.

Given the data matrix Y,

Y = (yil) =
⎛
⎝ m∑

j=1

ei j a jl

⎞
⎠ =

∑
j

e j aT
j = EAT, (2.72)

we rewrite it as

Y = ERR−1AT = ẼÃT, (2.73)

with

Ẽ = ER (2.74)

and

ÃT = R−1AT. (2.75)

Note that E has been rotated into Ẽ, and A into Ã.
If R is orthonormal, (2.71) and (2.75) yield

Ã = AR. (2.76)

42 Linear multivariate statistical analysis

To see the orthogonality properties of the rotated eigenvectors, we note that

ẼTẼ = RTETER = RTDR, (2.77)

where the diagonal matrix D is

D = diag(eT
1 e1, . . . , eT

mem). (2.78)

If eT
j e j = 1, for all j , then D = I and (2.77) reduces to

ẼTẼ = RTR = I, (2.79)

which means the {ẽ j } are orthonormal. Hence the rotated eigenvectors {ẽ j } are
orthonormal only if the original eigenvectors {e j } are orthonormal. If {e j } are
orthogonal but not orthonormal, then {ẽ j } are in general not orthogonal.

From (2.32), the PCs {a j (tl)} are uncorrelated, i.e. the covariance matrix

CAA = diag(α2
1, . . . , α

2
m), (2.80)

where

aT
j a j = α2

j . (2.81)

With the rotated PCs, their covariance matrix is

CÃÃ = cov(RTAT, AR) = RT cov(AT, A) R = RT CAA R. (2.82)

Hence CÃÃ is diagonal only if CAA = I, i.e. aT
j a j = 1, for all j .

There are now two cases.

Case a: If we choose eT
j e j = 1, for all j , then we cannot have aT

j a j = 1, for all j . This
implies that {ã j } are not uncorrelated, but {ẽ j } are orthonormal.

Case b: If we choose aT
j a j = 1, for all j , then we cannot have eT

j e j = 1, for all j . This
implies that {ã j } are uncorrelated, but {ẽ j } are not orthonormal.

Thus there is a notable difference between PCA and RPCA: PCA can have both
{e j } orthonormal and {a j } uncorrelated, but RPCA can only possess one of these
two properties.

In general, out of a total of m PCA modes, only the k leading ones are selected
for rotation, while the higher modes are discarded as noise. As there are many pos-
sible criteria for rotation, there are many RPCA schemes – Richman (1986) listed
5 orthogonal and 14 oblique rotation schemes. The varimax scheme proposed by
Kaiser (1958) is the most popular among orthogonal rotation schemes. For illus-
tration, suppose that only the first two eigenvectors are chosen for rotation. The
data are first projected onto the two PCA eigenvectors e j (j = 1, 2) to get the first
two PCs

a j (tl) =
∑

i

e ji yil . (2.83)

2.2 Rotated PCA 43

e2e2

~

a2
~

a1

a2
e1

a1

~

e1
~

Fig. 2.10 The coordinates of a data point in the original coordinate system (a1,
a2), and in the rotated coordinate system (ã1, ã2).

With the rotated eigenvectors ẽ j , the rotated PCs are

ã j (tl) =
∑

i

ẽ j i yil . (2.84)

A common objective in rotation is to make ã2
j (tl) either as large as possible,

or as close to zero as possible, i.e. to maximize the variance of the square of the
rotated PCs. Figure 2.10 illustrates a rotation which has yielded |ã1| < |a1|, |a2| <

|ã2|, i.e. instead of intermediate magnitudes for a1, a2, the rotated PCs have either
larger or smaller magnitudes. Geometrically, this means the rotated axes (i.e. the
eigenvectors) point closer to actual data points than the unrotated axes, hence the
rotated eigenvectors have closer resemblance to observed states than the unrotated
ones. In the event the rotated vector ẽ2 actually passes through the data point in
Fig. 2.10, then |ã1| is zero, while |ã2| assumes its largest possible value.

The varimax criterion is to maximize f (Ã) = ∑k
j=1 var(ã2

j), i.e.

f (Ã) =
k∑

j=1

⎧⎨
⎩1

n

n∑
l=1

[ã2
j (tl)]2 −

[
1

n

n∑
l=1

ã2
j (tl)

]2
⎫⎬
⎭ . (2.85)

Kaiser (1958) found an iterative algorithm for finding the rotation matrix R (see
also Preisendorfer, 1988, pp. 273–277).

If {ẽ j } are not required to be orthogonal, one can concentrate on the eigenvectors
individually, so as to best ‘spear’ through local data clusters (Fig. 2.9d), as done in
oblique rotations, e.g. the procrustes method (Preisendorfer, 1988, pp. 278–282).

In the above varimax criterion, (2.85) maximizes the variance of the rotated
squared PCs. An alternative (which is actually the one used in traditional fac-
tor analysis) is to maximize the variance of the rotated squared loadings ẽ2

j i ,
i.e. maximize

44 Linear multivariate statistical analysis

f (Ẽ) =
k∑

j=1

⎧⎨
⎩ 1

m

m∑
i=1

[ẽ2
j i]2 −

[
1

m

m∑
i=1

ẽ2
j i

]2
⎫⎬
⎭ , (2.86)

(with some user choices on how the loadings are to be normalized described in von
Storch and Zwiers, 1999). That the squared loadings are made as large as possi-
ble or as close to zero as possible means that many of the loadings are essentially
set to zero, yielding loading patterns which have more localized features than the
unrotated patterns. For instance, Horel (1981) showed both the rotated and unro-
tated loading patterns for the 500 mb height data of winter months in the Northern
Hemisphere, with the rotated patterns showing more regionalized anomalies than
the unrotated patterns, where the anomalies were spread all over the Northern
Hemisphere.

These two ways of performing rotation can be seen as working with either the
data matrix or the transpose of the data matrix. In PCA, using the transpose of
the data matrix does not change the results (but can be exploited to save consider-
able computional time by working with the smaller data covariance matrix as seen
in Section 2.1.8). In RPCA, taking the transpose reverses the role of the PCs and
the loadings, thereby changing from a rotational criterion on the loadings to one
on the PCs. Richman (1986, Section 6) mentioned that applying a rotational crite-
rion on the loadings yielded loading patterns with far fewer anomaly centres than
observed in typical 700 mb height anomaly maps of the Northern Hemisphere,
whereas applying a rotational criterion on PCs yielded loading patterns in good
agreement with commonly observed patterns.

To summarize, we list the disadvantages of the PCA and those of the RPCA.
There are four main disadvantages with PCA.

(1) Domain shape dependence: often the PCA spatial modes (i.e. eigenvectors) are related
simply to the spatial harmonics rather than to physical states.

(2) Subdomain instability: if the domain is divided into two parts, then the PCA mode 1
spatial patterns for the subdomains may not be similar to the spatial mode calculated
for the whole domain, as illustrated in Fig. 2.11.

(3) Degeneracy: if λi ≈ λ j , the near degeneracy of eigenvalues means that the eigenvec-
tors ei and e j cannot be estimated accurately by PCA.

(4) Neglect of regional correlated patterns: small regional correlated patterns tend to be
ignored by PCA, as PCA spatial modes tend to be related to the dominant spatial
harmonics.

RPCA improves on all 1–4 above.
There are also four disadvantages with RPCA.

(1) Many possible choices for the rotation criterion: Richman (1986) listed 19 types of
rotation scheme. Critics complain that rotation is too subjective. Furthermore, the
rotational criterion can be applied to the loadings or to the PCs, yielding different
results.

2.2 Rotated PCA 45

(a) (b)

Fig. 2.11 The first four PCA spatial modes of the 3-day precipitation during May
to August over the central USA. (a) The left panels show the four modes com-
puted for the whole domain. (b) The right panels show the modes computed
separately for the northern and southern halves of the full domain. The dashed
lines in (b) indicate the boundary of the two halves. The insets show the basic
harmonic patterns found by the modes. (Reproduced from Richman (1986, Fig. 2)
with permission of the Royal Meteorological Society.)

46 Linear multivariate statistical analysis

(2) Dependence on k, the number of PCA modes chosen for rotation: if the first k PCA
modes are selected for rotation, changing k can lead to large changes in the RPCAs.
For instance, in RPCA, if one first chooses k = 3, then one chooses k = 4, the first
three RPCAs are changed. In contrast, in PCA, if one first chooses k = 3, then k = 4,
the first three PCAs are unchanged.

(3) Dependence on how the PCA eigenvectors and PCs are normalized before rotation is
performed.

(4) Less variance explained: the variance of the data accounted for by the first k RPCA
modes is ≤ the variance explained by the first k PCA modes.

−60 −40 −20 0 20 40 60 80
−20

−15

−10

−5

0

5

10

15

20

25

PC1

PC
2

Fig. 2.12 PCA with and without rotation for the tropical Pacific SST. In the PC1-
PC2 plane of the scatter plot, where the monthly data are shown as dots, the cool
La Niña states lie in the upper left corner, while the warm El Niño states lie in
the upper right corner. The first PCA eigenvector lies along the horizontal line,
and the second PCA, along the vertical line. A varimax rotation is performed on
the first three PCA eigenvectors. The first RPCA eigenvector, shown as a dashed
line, spears through the cluster of El Niño states in the upper right corner, thereby
yielding a more accurate description of the SST anomalies during an El Niño.
The second dashed line shows the second RPCA eigenvector, which is orthogonal
to the first RPCA eigenvector, (though it may not seem so in this 2-dimensional
projection of 3-dimensional vectors).

2.2 Rotated PCA 47

Let us return to the tropical Pacific SST PCA modes. The PC1-PC2 values are
shown as dots in a scatter plot (Fig. 2.12), where the cool La Niña states lie in the
upper left corner, and the warm El Niño states in the upper right corner. The first
PCA eigenvector lies along the horizontal line, and the second PCA along the ver-
tical line, neither of which would come close to the El Niño nor the La Niña states.
Using the varimax criterion on the squared PCs, a rotation is performed on the
first three PCA eigenvectors. The first RPCA eigenvector, shown as a dashed line,
spears through the cluster of El Niño states in the upper right corner, thereby yield-
ing a more accurate description of the SST anomalies during El Niño (Fig. 2.13a)
than the first PCA mode (Fig. 2.5a), which did not fully represent the intense warm-
ing of Peruvian waters during El Niño. In terms of variance explained, the first
RPCA mode explained only 91.7% as much variance as the first PCA mode. The
second RPCA eigenvector, also shown as a dashed line in Fig. 2.12, did not improve

RPCA mode 1

2

2
2

2

2

4

4

4

6

6
8

150E 180 150W 120W 90W

20S

10S

 0

10N

20N

RPCA mode 2

2

2
4

6

−6

−4

−4

−2 −2
−2

−2

−2

−2

−2

−2

150E 180 150W 120W 90W

20S

10S

 0

10N

20N

(a)

(b)

Fig. 2.13 The varimax RPCA spatial modes (a) 1 and (b) 2 for the SST. The
contour unit is 0.01 ◦C. More intense SST anomalies are found in the equatorial
waters off Peru in the RPCA mode 1 than in the PCA mode 1.

48 Linear multivariate statistical analysis

much on the second PCA mode, with the RPCA spatial pattern shown in Fig. 2.13b
(cf. Fig. 2.5b).

2.3 PCA for vectors

When one has vector variables, e.g. wind velocity (u, v), there are several options
for performing PCA. (a) One can simply apply PCA to the u field and to the v field
separately. (b) One can do a combined PCA, i.e. treat the v variables as though they
were extra u variables, so the data matrix becomes

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u11 · · · u1n

· · · · · · · · ·
um1 · · · umn

v11 · · · v1n

· · · · · · · · ·
vm1 · · · vmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2.87)

where m is the number of spatial points and n the number of time points. In cases
(a) and (b), the vector can of course be generalized to more than two dimensions.
If the vector is two-dimensional, then one has option (c) as well, namely one can
combine u and v into a complex variable, and perform a complex PCA (Hardy,
1977; Hardy and Walton, 1978).

Let

w = u + iv. (2.88)

Applying PCA to w allows the data matrix to be expressed as

Y =
∑

j

e j a∗T
j , (2.89)

where the superscript ∗T denotes the complex conjugate transpose. Since the
covariance matrix is Hermitian and positive semi-definite (see Section 2.1.3),
the eigenvalues of C are real and non-negative, though e j and a j are in general
complex.

If we write the lth component of a j as

al j = |al j | eiθl j , (2.90)

then

Yil =
∑

j

ei j e
−iθ jl |a jl |. (2.91)

2.4 Canonical correlation analysis (CCA) 49

One can interpret ei j e−iθ jl as each complex element of e j being rotated by the same
angle θ jl during the lth time interval. Similarly, each element of e j is amplified by
the same factor |a jl |.

When PCA is applied to real variables, the real e j and a j can both be multiplied
by −1. When PCA is applied to complex variables, an arbitrary phase φ j can be
attached to the complex e j and a j , as follows

Y =
∑

j

(e j e
iφ j)(e−iφ j a∗T

j). (2.92)

Often the arbitrary phase is chosen to make interpretation of the modes easier.
For instance, in analysis of the tropical Pacific wind field, Legler (1983) chose φ j

so that e−iφ j a∗T
j lies mainly along the real axis. In the ocean, dynamical theory

predicts the near-surface wind-driven current to spiral and diminish with depth, in
the shape of an ‘Ekman spiral’. This fascinating spiral shape was detected by the
complex PCA (Stacey et al., 1986).

2.4 Canonical correlation analysis (CCA)

Given a set of variables {y j }, PCA finds the linear modes accounting for the max-
imum amount of variance in the dataset. When there are two sets of variables
{xi } and {y j }, canonical correlation analysis (CCA), first introduced by Hotelling
(1936), finds the modes of maximum correlation between {xi } and {y j }, rendering
CCA a standard tool for discovering linear relations between two fields. CCA is a
generalization of the Pearson correlation between two variables x and y to two sets
of variables {xi } and {y j }. Thus CCA can be viewed as a ‘double-barrelled PCA’.
A variant of the CCA method finds the modes of maximum covariance between
{xi } and {y j } – this variant is called the maximum covariance analysis (MCA) by
von Storch and Zwiers (1999), and because it uses the SVD matrix technique, it
is also simply called the SVD (singular value decomposition) method by other
researchers, though this name is confusing as it is used to denote both a matrix
technique and a multivariate statistical technique.

In PCA, one finds a linear combination of the y j variables, i.e. eT
1 y, which has

the largest variance (subject to ‖e1‖ = 1). Next, one finds eT
2 y with the largest

variance, but with eT
2 y uncorrelated with eT

1 y, and similarly for the higher modes.
In CCA, one finds f1 and g1, so that the correlation between fT

1 x and gT
1 y is

maximized. Next find f2 and g2 so that the correlation between fT
2 x and gT

2 y is
maximized, with fT

2 x and gT
2 y uncorrelated with both fT

1 x and gT
1 y, and so forth for

the higher modes.

50 Linear multivariate statistical analysis

2.4.1 CCA theory

Consider two datasets

x(t) = xil, i = 1, . . . nx , l = 1, . . . , nt , (2.93)

and

y(t) = y jl, j = 1, . . . , ny, l = 1, . . . , nt , (2.94)

i.e. x and y need not have the same spatial dimensions, but need the same time
dimension nt . Assume x and y have zero means. Let

u = fTx, v = gTy. (2.95)

The correlation

ρ = cov(u, v)√
var(u) var(v)

= cov(fTx, gTy)√
var(u) var(v)

= fTcov(x, y)g√
var(fTx) var(gTy)

, (2.96)

where we have invoked

cov(fTx, gTy) = E[fTx(gTy)T] = E[fTxyTg] = fTE[xyT]g. (2.97)

We want u and v, the two canonical variates or canonical correlation coor-
dinates, to have maximum correlation between them, i.e. f and g are chosen to
maximize ρ. We are of course free to normalize f and g as we like, because if f
and g maximize ρ, so will αf and βg, for any positive α and β. We choose the
normalization condition

var(fTx) = 1 = var(gTy). (2.98)

Since

var(fTx) = cov(fTx, fTx) = fTcov(x, x)f ≡ fTCxx f, (2.99)

and

var(gTy) = gTCyyg, (2.100)

equation (2.98) implies

fTCxx f = 1, gTCyyg = 1. (2.101)

With (2.98), (2.96) reduces to

ρ = fTCxyg, (2.102)

where Cxy = cov(x, y).

2.4 Canonical correlation analysis (CCA) 51

The problem is to maximize (2.102) subject to constraints (2.101). We will again
use the method of Lagrange multipliers (Appendix B), where we incoroporate the
constraints into the Lagrange function L ,

L = fTCxyg + α(fTCxx f − 1) + β(gTCyyg − 1), (2.103)

where α and β are the unknown Lagrange multipliers. To find the stationary points
of L , we need

∂L

∂f
= Cxyg + 2αCxx f = 0, (2.104)

and
∂L

∂g
= CT

xyf + 2βCyyg = 0. (2.105)

Hence

C−1
xx Cxyg = −2αf, (2.106)

and

C−1
yy CT

xyf = −2βg. (2.107)

Substituting (2.107) into (2.106) yields

C−1
xx CxyC−1

yy CT
xy f ≡ M f f = λf, (2.108)

with λ = 4αβ. Similarly, substituting (2.106) into (2.107) gives

C−1
yy CT

xyC
−1
xx Cxy g ≡ Mgg = λg. (2.109)

Both these equations can be viewed as eigenvalue equations, with M f and Mg

sharing the same non-zero eigenvalues λ. As M f and Mg are known from the
data, f can be found by solving the eigenvalue problem (2.108). Then βg can be
obtained from (2.107). Since β is unknown, the magnitude of g is unknown, and the
normalization conditions (2.101) are used to determine the magnitude of g and f.
Alternatively, one can use (2.109) to solve for g first, then obtain f from (2.106) and
the normalization condition (2.101). The matrix M f is of dimension nx ×nx , while
Mg is ny × ny , so one usually picks the smaller of the two to solve the eigenvalue
problem.

From (2.102),

ρ2 = fTCxyg gTCT
xyf = 4αβ (fTCxx f) (gTCyyg), (2.110)

where (2.104) and (2.105) have been invoked. From (2.101), (2.110) reduces to

ρ2 = λ. (2.111)

52 Linear multivariate statistical analysis

The eigenvalue problems (2.108) and (2.109) yield n number of λs, with n =
min(nx , ny). Assuming the λs to be all distinct and non-zero, we have for each λ j

(j = 1, . . . , n), a pair of eigenvectors, f j and g j , and a pair of canonical variates,
u j and v j , with correlation ρ j = √

λ j between the two. It can also be shown that

cov(u j , uk) = cov(v j , vk) = δ jk, and cov(u j , vk) = 0 if j �= k. (2.112)

Let us write the forward mappings from the variables x(t) and y(t) to the
canonical variates u(t) = [u1(t), . . . , un(t)]T and v(t) = [v1(t), . . . , vn(t)]T as

u = [fT
1 x, . . . , fT

n x]T = FTx, v = GTy. (2.113)

Next, we need to find the inverse mapping from u = [u1, . . . , un]T and v =
[v1, . . . , vn]T to the original variables x and y. Let

x = Fu, y = Gv. (2.114)

We note that

cov(x, u) = cov(x,FTx) = E[x(FTx)T] = E[x xTF] = CxxF, (2.115)

and

cov(x, u) = cov(F u, u) = F cov(u, u) = F. (2.116)

Equations (2.115) and (2.116) imply

F = CxxF . (2.117)

Similarly,

G = CyyG. (2.118)

Hence the inverse mappings F and G (from the canonical variates to x and y) can
be calculated from the forward mappings FT and GT . The matrix F is composed
of column vectors F j , and G, of column vectors G j . Note that F j and G j are the
canonical correlation patterns associated with u j and v j , the canonical variates. In
general, orthogonality of vectors within a set is not satisfied by any of the four sets
{F j }, {G j }, {f j } and {g j }, while

cov(ui , u j) = cov(vi , v j) = cov(ui , v j) = 0, for i �= j. (2.119)

Figure 2.14 schematically illustrates the canonical correlation patterns.

2.4 Canonical correlation analysis (CCA) 53

x3

y2

y1

y3

G1

F1
F2

G2

x2

x1

Fig. 2.14 Illustrating the CCA solution in the x and y spaces. The vectors F1 and
G1 are the canonical correlation patterns for mode 1, and u1(t) is the amplitude
of the ‘oscillation’ along F1, and v1(t), the amplitude along G1. The vectors F1
and G1 have been chosen so that the correlation between u1 and v1 is maximized.
Next F2 and G2 are found, with u2(t) the amplitude of the ‘oscillation’ along F2,
and v2(t) along G2. The correlation between u2 and v2 is again maximized, but
with cov(u1, u2) = cov(v1, v2) = cov(u1, v2) = cov(v1, u2) = 0. In general, F2 is
not orthogonal to F1, and G2 not orthogonal to G1. Unlike PCA, F1 and G1 need
not be oriented in the direction of maximum variance. Solving for F1 and G1 is
analogous to performing rotated PCA in the x and y spaces separately, with the
rotations determined from maximizing the correlation between u1 and v1.

2.4.2 Pre-filter with PCA

When x and y contain many variables, it is common to use PCA to pre-filter the
data to reduce the dimensions of the datasets, i.e. apply PCA to x and y separately,
extract the leading PCs, then apply CCA to the leading PCs of x and y.

Using Hotelling’s choice of scaling for the PCAs (Eq. 2.37), we express the PCA
expansions as

x =
∑

j

a′
j e

′
j , y =

∑
j

a′′
j e

′′
j . (2.120)

CCA is then applied to

x̃ = [a′
1, . . . , a′

mx
]T, ỹ = [a′′

1 , . . . , a′′
my

]T, (2.121)

where only the first mx and my modes are used. Another reason for using the PCA
pre-filtering is that when the number of variables is not small relative to the sample
size, the CCA method may become unstable (Bretherton et al., 1992). The reason is
that in the relatively high-dimensional x and y spaces, among the many dimensions
and using correlations calculated with relatively small samples, CCA can often find
directions of high correlation but with little variance, thereby extracting a spurious
leading CCA mode, as illustrated in Fig. 2.15. This problem can be avoided by
pre-filtering using PCA, as this avoids applying CCA directly to high-dimensional
input spaces (Barnett and Preisendorfer, 1987).

With Hotelling’s scaling,

cov(a′
j , a′

k) = δ jk, cov(a′′
j , a′′

k) = δ jk, (2.122)

54 Linear multivariate statistical analysis

a

a

b
b

1 2
3

c

c

x-space y-space
d

d

4 1 2
3 4

Fig. 2.15 Illustrating how CCA may end up extracting a spurious leading mode
when working with relatively high-dimensional input spaces. With the ellipses
denoting the data clouds in the two input spaces, the dotted lines illustrate direc-
tions with little variance but by chance with high correlation (as illustrated by
the perfect order in which the data points 1, 2, 3 and 4 are arranged in the x and
y spaces). Since CCA finds the correlation of the data points along the dotted
lines to be higher than that along the dashed lines (where the data points a, b, c
and d in the x-space are ordered as b, a, d and c in the y-space), the dotted lines
are chosen as the first CCA mode. Maximum covariance analysis (MCA), which
looks for modes of maximum covariance instead of maximum correlation, would
select the dashed lines over the dotted lines since the lengths of the lines do count
in the covariance but not in the correlation, hence MCA is stable even without
pre-filtering by PCA.

leading to

Cx̃ x̃ = Cỹ ỹ = I. (2.123)

Equations (2.108) and (2.109) simplify to

Cx̃ ỹCT
x̃ ỹ f ≡ M f f = λf, (2.124)

CT
x̃ ỹCx̃ ỹ g ≡ Mgg = λg. (2.125)

As M f and Mg are positive semi-definite symmetric matrices, the eigenvectors {f j }
{g j } are now sets of orthogonal vectors. Equations (2.117) and (2.118) simplify to

F = F, G = G. (2.126)

Hence {F j } and {G j } are also two sets of orthogonal vectors, and are identical to
{f j } and {g j }, respectively. Because of these nice properties, pre-filtering by PCA
(with the Hotelling scaling) is recommended when x and y have many variables
(relative to the sample size). However, the orthogonality holds only in the reduced

2.4 Canonical correlation analysis (CCA) 55

Fig. 2.16 The CCA mode 1 for (a) the SLP anomalies and (b) the SST anomalies
of the tropical Pacific. As u1(t) and v1(t) fluctuate together from one extreme
to the other as time progresses, the SLP and SST anomaly fields, oscillating as
standing wave patterns, evolve from an El Niño to a La Niña state. The pattern
in (a) is scaled by ũ1 = [max(u1) − min(u1)]/2, and (b) by ṽ1 = [max(v1) −
min(v1)]/2. Contour interval is 0.5 hPa in (a) and 0.5 ◦C in (b).

dimensional spaces, x̃ and ỹ. If transformed into the original space x and y, {F j }
and {G j } are in general not two sets of orthogonal vectors.

Figure 2.16 shows the mode 1 CCA of the tropical Pacific sea level pressure
(SLP) field and the SST field, showing clearly the Southern Oscillation pattern in
the SLP and the El Niño/La Niña pattern in the SST. The canonical variates u and v

(not shown) fluctuate with time, both attaining high values during El Niño, low val-
ues during La Niña, and neutral values around zero during normal conditions. Note
that CCA is widely used for seasonal climate prediction (Barnston and Ropelewski,
1992; Shabbar and Barnston, 1996).

56 Linear multivariate statistical analysis

2.4.3 Singular value decomposition and maximum covariance analysis

Instead of maximizing the correlation as in CCA, one can maximize the covari-
ance between two datasets. This alternative method is often called singular value
decomposition (SVD). However, von Storch and Zwiers (1999) proposed the name
maximum covariance analysis (MCA) as being more appropriate. The reason is
that the name SVD is already used to denote a matrix technique (Strang, 2005), so
there is potential confusion in using it to denote a statistical technique. In this book,
we will follow the suggestion of von Storch and Zwiers, and refer to the statistical
method as MCA, retaining the name SVD for the matrix technique.

Note that MCA is identical to CCA except that it maximizes the covariance
instead of the correlation. As mentioned in the previous subsection, CCA can
be unstable when working with a relatively large number of variables, in that
directions with high correlation but negligible variance may be selected by CCA,
hence the recommended pre-filtering of data by PCA before applying CCA. By
using covariance instead of correlation, MCA does not have the unstable nature of
CCA (Fig. 2.15), and does not need pre-filtering by PCA. Bretherton et al. (1992)
compared the MCA (‘SVD’) and the CCA.

In MCA, one simply performs SVD (see Section 2.1.10) on the data covariance
matrix Cxy ,

Cxy = USVT, (2.127)

where the matrix U contains the left singular vectors fi , V the right singular vectors
gi , and S the singular values. Maximum covariance between ui and vi is attained
(Bretherton et al., 1992) with

ui = fT
i x, vi = gT

i y. (2.128)

The inverse transform is given by

x =
∑

i

ui fi , y =
∑

i

vi gi . (2.129)

For most applications, MCA yields rather similar results to CCA (with PCA pre-
filtering) (Bretherton et al., 1992; Wallace et al., 1992).

The matrix technique SVD can also be used to solve the CCA problem:
instead of solving the eigenequations (2.108) and (2.109), simply perform SVD
on (C−1/2

xx CxyC
−1/2
yy). When the data have been prefiltered by PCA, then instead

of solving eigenequations (2.124) and (2.125), simply perform SVD on Cx̃ ỹ

(Bretherton et al., 1992). Conversely, eigenequations can be used instead of SVD
to solve the MCA problem (von Storch and Zwiers, 1999).

Exercises 57

Exercises

(2.1) Suppose principal component analysis (PCA) allows one to write the data
matrix Y = E AT, where

E =
[

0.7071 −0.7071
0.7071 0.7071

]
, AT =

[
1 3 −2 −1
2 −1 1 −3

]
,

with E the matrix of eigenvectors, and A the principal components. Write
down the 2 × 2 rotation matrix R for rotating eigenvectors anticlockwise
by 30◦. Derive the rotated matrix of eigenvectors and the rotated principal
components.

(2.2) In principal component analysis (PCA) under the Hotelling (1933) scaling
(Section 2.1.6), one has cov(a′

i , a′
j) = δi j , where a′

i is the i th principal com-
ponent. Suppose each variable y′

l (t) in a dataset has its mean removed and
has been normalized by its standard deviation. Prove that upon applying PCA
(with Hotelling scaling) to this normalized dataset, the lth element of the
j th eigenvector (e′

jl) is simply the correlation between a′
j (t) and y′

l (t), i.e.
ρ(a′

j (t), y′
l (t)) = e′

jl .
(2.3) Canonical correlation analysis (CCA) was used to analyze a set of x vari-

ables consisting of air pressure observations from three stations, and y
variables consisting of precipitation observations from two stations. For the
first CCA mode, the canonical variates u(t) = 4.5,−5.0, −1.0, 5.5, and
v(t) = 2.5, −4.0, 1.5, 4.0, for t = 1, 2, 3, 4, and the corresponding canon-
ical patterns are FT = [0.4, −0.5, 0.7], and GT = [0.8, 0.6], respectively.
(a) What is the canonical correlation coefficient ρ between u and v? (b) If
at t = 5, air pressure data are available, yielding u = 3.6, but the precipita-
tion sensors are not working, estimate the precipitation at the two stations at
t = 5.

(2.4) Analyze the dataset provided in the book website using principal component
analysis (PCA). The dataset contains four time series x1, x2, x3 and x4.

(2.5) Using the data file provided in the book website, perform canonical cor-
relation analysis between the two groups of time series, x1, x2, x3 and
y1, y2, y3.

3

Basic time series analysis

In the previous chapter, we surveyed linear multivariate techniques for extracting
features from, or recognizing patterns in, a dataset or two datasets, without consid-
ering time as an explicit factor. In the real world, the variables may be governed
by dynamical equations, and the manifested patterns evolve with time. Classical
Fourier spectral analysis is a first step in analyzing the temporal behaviour in a
time series. Basic notions of windows and filters are introduced. More modern
linear techniques, singular spectrum analysis (SSA), principal oscillation patterns
(POP), and complex spectral PCA are also presented to analyze temporal–spatial
patterns in a dataset.

3.1 Spectrum

With time series data, an alternative way to view the data is via the frequency
representation first developed by J. B. Fourier in the early nineteenth century. Given
a function y(t) defined on the interval [0, T], the Fourier series representation for
y(t) is

ŷ(t) = a0

2
+

∞∑
m=1

[am cos(ωmt) + bm sin(ωmt)], (3.1)

with the (angular) frequency ωm given by

ωm = 2πm

T
, m = 1, 2, . . . (3.2)

and the Fourier coefficients am and bm given by

am = 2

T

∫ T

0
y(t) cos(ωmt) dt, m = 0, 1, 2, . . . (3.3)

bm = 2

T

∫ T

0
y(t) sin(ωmt) dt, m = 1, 2, . . . (3.4)

58

3.1 Spectrum 59

With

a0 = 2

T

∫ T

0
y(t) dt, (3.5)

we see that
a0/2 = y, (3.6)

the mean of y. If y(t) is a continuous function, then (3.1) has ŷ(t) → y(t). If y is
discontinuous at t , then ŷ(t) → [y(t+) + y(t−)]/2.

For a discrete time series, y(t) is replaced by y(tn) ≡ yn, n = 1, · · · , N . With
a sampling interval �t = T/N , the observations are made at time tn = n�t . The
discrete Fourier series representation is then given by

yn = a0

2
+

M∑
m=1

[am cos(ωmtn) + bm sin(ωmtn)], (3.7)

where M is the largest integer ≤ N/2, with the Fourier coefficients given by

am = 2

N

N∑
n=1

yn cos(ωmtn), m = 0, 1, 2, . . . , M, (3.8)

bm = 2

N

N∑
n=1

yn sin(ωmtn), m = 1, 2, . . . , M. (3.9)

For N even, bM = 0, so the number of non-trivial Fourier coefficients is N .
The cosine and sine functions have orthogonality properties:

N∑
n=1

cos(ωl tn) cos(ωmtn) = N

2
δlm,

∑
n

sin(ωl tn) sin(ωmtn) = N

2
δlm,

∑
n

cos(ωl tn) sin(ωmtn) = 0, (3.10)

where δlm is the Kronecker delta function. The original data yn can be recovered by
substituting (3.8) and (3.9) into the right side of (3.7), and invoking the orthogonal
relations (3.10).

3.1.1 Autospectrum

The variance of the time series y can be written in terms of its Fourier coefficients:

var(y) = 1

N

N∑
n=1

(yn − yn)
2 = 1

N

∑
n

(
yn − a0

2

)2

= 1

N

∑
n

[∑
m

(am cos(ωmtn) + bm sin(ωmtn))

]2

. (3.11)

60 Basic time series analysis

Using (3.10), var(y) can be expressed in terms of the Fourier coefficients,

var(y) = 1

2

∑
m

(a2
m + b2

m). (3.12)

The autospectrum, also called the spectrum, the power spectrum or the peri-
odogram, is defined as

Sm = N�t

4π
(a2

m + b2
m). (3.13)

Thus (3.12) can be expressed as

var(y) =
∑

m

Sm�ω, (3.14)

with

�ω = 2π

T
= 2π

N�t
. (3.15)

Hence, the spectrum Sm can be viewed as the variance or ‘energy’ in the ωm fre-
quency band (with bandwidth �ω), and the total variance var(y) can be computed
by integrating Sm over all frequency bands. When Sm is plotted as a function of the
frequency, peaks in Sm reveal the frequencies where the energy is relatively high.

The lowest frequency in the spectrum, known as the fundamental frequency, is

ω1 = 2π

T
, or f1 = 1

T
. (3.16)

Often a time series displays a trend, i.e. a positive or negative slope in the data
over the time record. For instance, the Canadian prairie wheat yield (Fig. 3.1)
shows a positive trend with time, largely due to the gradual improvement in
agricultural technology. The frequency associated with a trend is lower than the
fundamental frequency, thus energy from the trend will leak to other low frequency
spectral bands, thereby distorting the low frequency part of the spectrum. By sub-
tracting the linear regression line from the data time series, trends can easily be
removed prior to spectral analysis.

The highest resolvable frequency from (3.2) is ω = 2π M/T , but with M ≈
N/2, we have M/T ≈ 1/(2�t). Hence the highest resolvable frequency, called
the Nyquist frequency, is

ωN = π

�T
, or fN = 1

2�T
. (3.17)

To resolve a wave of period τ , we need at least two data points to cover the
period τ , i.e. τ = 2�t = 1/ fN . Aliasing arises when �t is too large to resolve the
highest frequency oscillations in the data. Figure 3.2 illustrates a signal measured
too infrequently, resulting in an incorrect inference aliased signal of much lower

3.1 Spectrum 61

1960 1965 1970 1975 1980 1985 1990 1995 2000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Year

C
an

ad
ia

n
w

he
at

 y
ie

ld
 (

to
nn

es
/h

a)

Fig. 3.1 Annual Canadian prairie hard red spring wheat yield from 1960 to 1997,
with the dashed line indicating the linear trend. The upward trend results from the
gradual advance in agricultural technology. (Reproduced from Hsieh et al. (1999)
with permission of Elsevier.)

y

Δt

t

Fig. 3.2 Illustrating the phenomenon of aliasing. The sampling time interval is
�t , but the signal (solid curve) is oscillating too quickly to be resolved by the sam-
pling. From the observations (dots), an incorrect signal (dashed curve) of much
lower frequency is inferred by the observer.

frequency. In a spectrum, signals with frequency above the Nyquist frequency are
reflected across the Nyquist frequency into the frequency bands below the Nyquist
frequency – resulting in a distortion of the high frequency part of the spectrum.
In movies, one often notices aliasing, where fast spinning wheels and propellors
appear to rotate backwards.

62 Basic time series analysis

From (3.2), the frequency �ω between adjacent frequency bands is

�ω = 2π

T
. (3.18)

The ability to resolve neighbouring spectral peaks is controlled by �ω, which is
proportional to 1/T . Hence a longer record T will yield sharper spectral peaks,
thereby allowing resolution of two signals with close-by frequencies as distinct
peaks in the spectrum. A shorter record will blur the two signals into a single
spectral peak.

The raw spectrum Sm calculated from (3.13) is often very noisy in appearance.
There are two common methods for smoothing the spectrum: (a) band-averaging
(the Daniell estimator) and (b) ensemble averaging. In (a), a moving average (or
running mean) is applied to the raw spectrum

S̃m = 1

(2K + 1)

K∑
k=−K

Sm+k, (3.19)

where S̃m is the smoothed spectrum resulting from averaging the raw spectrum over
2K + 1 frequency bands.

In method (b), the data record is divided into J blocks of equal length L = T/J .
We compute the periodogram for each block to get S(j)

m (j = 1, . . . , J). The
spectrum Sm is then the ensemble average over the J periodograms:

Sm = 1

J

J∑
j=1

S(j)
m . (3.20)

Method (b) has an advantage over (a) when there are data gaps – in (b), the data
gaps do not pose a serious problem since the data record is to be chopped into J
blocks anyway, whereas in (a), the data gaps may have to be filled with interpolated
values or zeros. The disadvantage of (b) is that the lowest resolvable frequency is
f1 = 1/L = J/T , hence there is a loss of low frequency information when the
record is chopped up.

There is a trade-off between the variance of the spectrum S and the band width.
Increasing the band width (by increasing K or J) leads to a less noisy S, but
spectral peaks are broadened, so that nearby spectral peaks may merge together,
resulting in a loss of resolution.

There is an important relation between the spectrum and the auto-covariance
function. In complex notation, the Fourier transform

ŷm = 2

N

N∑
n=1

yn e−iωmtn (3.21)

= am − ibm, (3.22)

3.1 Spectrum 63

where (3.8) and (3.9) have been invoked. Equation (3.13) can be written as

Sm = N�t

4π
|ŷm |2. (3.23)

Assume {yn} is stationary and the mean y has been subtracted from the data, then

Sm = �t

Nπ

[∑
n

yn e−iωmtn

]⎡⎣∑
j

y j eiωmt j

⎤
⎦ (3.24)

= �t

π

N−1∑
l=−(N−1)

⎡
⎣ 1

N

⎛
⎝∑

j−n=l

yn y j

⎞
⎠
⎤
⎦ eiωmtl . (3.25)

In general, the auto-covariance function with lag l is defined as

Cl = 1

N

N−l∑
n=1

(yn − y)(yn+l − y). (3.26)

Here (with y = 0), we have the important relation

Sm = �t

π

N−1∑
l=−(N−1)

C(l) eiωmtl , (3.27)

i.e. the spectrum is related to the auto-covariance function by a Fourier transform.

3.1.2 Cross-spectrum

Now let us consider two time series, x1, . . . , xN and y1, . . . , yN , with respective
Fourier transforms x̂m and ŷm , which are in general complex numbers. The cross-
spectrum

Cm = N�t

4π
x̂∗

m ŷm, (3.28)

where the asterisk denotes complex conjugation, so Cm is in general complex. If
ŷm = x̂m , Cm reduces to Sm , which is real.

Cm can be split into a real part and an imaginary part,

Cm = Rm + i Im, (3.29)

where Rm is the co-spectrum and Im is the quadrature spectrum. Note that Cm can
also be expressed in polar form,

Cm = Am eiθm , (3.30)

where Am is the amplitude spectrum and θm , the phase spectrum, with

Am = [R2
m + I 2

m] 1
2 and θm = tan−1(Im / Rm). (3.31)

64 Basic time series analysis

A useful quantity is the squared coherency spectrum (where the word ‘squared’
is often omitted for brevity):

r2
m = A2

m

S(x)
m S(y)

m

, (3.32)

where S(x)
m , S(y)

m are the autospectrum for the x and y time series, respectively. One
can interpret r2

m as the magnitude of the correlation between x and y in the mth
frequency band. However, if one does not perform band averaging or ensemble
averaging, then r2

m = 1, i.e. perfect correlation for all m! To see this, let

x̂m = am eiαm and ŷm = bm eiβm . (3.33)

Equation (3.28) becomes

Cm = N�t

4π
am bm ei(αm−βm). (3.34)

Thus

Am = N�t

4π
am bm and θm = αm − βm . (3.35)

Also,

S(x)
m = N�t

4π
a2

m, and S(y)
m = N�t

4π
b2

m . (3.36)

Substituting these into (3.32) yields r2
m = 1. The reason is that in a single frequency

band, the x and y signals are simply sinusoidals of the same frequency, which are
perfectly correlated (other than a possible phase shift between the two).

Suppose there is no real relation between x̂m and ŷm , then the phase αm − βm

tends to be random. Consider ensemble averaging, with

Cm = 1

J

J∑
j=1

C (j)
m . (3.37)

With random phase, the C (j)
m vectors are randomly oriented in the complex plane, so

summing of the C (j)
m vectors tends not to produce a Cm vector with large magnitude

Am . In general for large J , A2
m � S(x)

m S(y)
m , resulting in a small value for r2

m , as
desired. Thus some form of ensemble averaging or band averaging is essential for
computing the squared coherency spectrum – without the averaging, even random
noise has r2

m equal to unity.
It can also be shown that the cross-spectrum is the Fourier transform of the

cross-covariance γ , where

γ = 1

N

N−l∑
n=1

(xn − x)(yn+l − y). (3.38)

3.2 Windows 65

3.2 Windows

The data record for a variable y is always of finite duration T , commencing at
t = 0, and ending at t = T . When applying the Fourier transform to a finite record,
periodicity is assumed for y, which presents a potentially serious problem. Unless
y(0) and y(T) are of the same value, the periodicity assumption creates a step
discontinuity at y(T) (Fig. 3.3). The Fourier representation of a step discontinuity
requires use of many spectral components, i.e. spurious energy is leaked to many
frequency bands.

Another way to view the situation is to consider the true time series Y (t) as
extending from −∞ to +∞. It is multiplied by a window function

w(t) =
{

1 for − T/2 ≤ t ≤ T/2,

0 elsewhere
(3.39)

to yield the finite data record y(t) of duration T (for convenience, y is now defined
for −T/2 ≤ t ≤ T/2). Thus the data record can be regarded as the product between
the true time series and the window function. If ŵ and Ŷ are the Fourier transforms
of w(t) and Y (t) over (−∞,∞), then the Fourier transform of the product wY is
the convolution of ŵ and Ŷ . For the rectangular window, ŵ has many significant
side-lobes, thus the convolution of ŵ and Ŷ leads to spurious energy leakage into
other frequency bands (Jenkins and Watts, 1968, p.49).

If the ends of the window are tapered (e.g. by a cosine-shaped taper) to avoid
the abrupt ends, the size of the side-lobes can be greatly reduced, thereby reducing
the spurious energy leakage. In effect, a tapered window tapers the ends of the
data record, so that the two ends continuously approach y(−T/2) = y(T/2) =
0, avoiding the original step discontinuity. As there are many possible windows,
finding an optimal one can be quite involved (see e.g. Emery and Thomson, 1997).

t = Tt = 0

Fig. 3.3 A troublesome consequence of the periodicity assumption in Fourier
spectral analysis. Here the observed record is from t = 0 to t = T . For Fourier
spectral analysis, the data record is assumed to repeat itself periodically outside
the interval of [0, T]. As illustrated here, the periodicity assumption leads to a
sharp jump at t = T . Such a step discontinuity causes trouble for Fourier trans-
forms in that spurious energy is leaked to many other frequency bands. To avoid
this, the data record is often tapered, so the values at the two ends, t = 0 and
t = T , do not give a major step.

66 Basic time series analysis

3.3 Filters

One often would like to perform digital filtering on the raw data. For instance, one
may want a smoother data field, or want to concentrate on the low-frequency or
high-frequency signals in the time series. Let us express a time series x(t) in terms
of its complex Fourier components X (ω):

x(t) =
∑

ω

X (ω) eiωt , (3.40)

where it is understood that ω and t denote the discrete variables ωm and tn . A
filtered time series is given by

x̃(t) =
∑

ω

f (ω)X (ω) eiωt , (3.41)

where f (ω) is the filter ‘response’ function. Figure 3.4 illustrates several ideal
filters for low-pass, high-pass and band-pass filtering. In these ideal filters, the step
discontinuity at the cut-off frequency ωc produces ‘ringing’ (i.e. oscillations) in the
filtered time series (especially at the two ends) (Emery and Thomson, 1997, Fig.
5.10.19). This problem of a step discontinuity in the frequency domain leading
to ringing in the time domain mirrors the one mentioned in the previous section,
where a time series truncated by a rectangular window leads to energy leakage in
the frequency domain. Thus in practice, f (ω) needs to be tapered at ωc to suppress
ringing in the filtered time series.

To perform filtering in the frequency domain, the steps are: (i) Fourier transform
x(t) to X (ω), (ii) multiply X (ω) by f (ω), and (iii) inverse transform f (ω)X (ω)

to get x̃(t), the filtered time series.
Alternatively, filtering can be performed in the time domain as well. In fact, prior

to the invention of fast Fourier transform algorithms, filtering in the frequency
domain was prohibitively expensive, although nowadays, the tasks are trivial in

1

(a) (b) (c)

ω ω ω
ωC ω N ωC ωN ω N

f(ω) f(ω) f(ω)

1 1

Fig. 3.4 Ideal filters: (a) Low-pass, (b) High-pass, and (c) Band-pass, where f (ω)
is the filter ‘response function’, and ωN is the Nyquist frequency. In (a), the
low-frequency part of the signal is allowed to pass through the filter, while the
high-frequency part is removed. In (b), the situation is reversed, while in (c),
only frequencies within a selected band are allowed to pass through the filter.
In reality, one tends to use filters where f (ω) does not exhibit abrupt behaviour
(e.g. at the cut-off frequency ωc).

3.3 Filters 67

computing costs, and filtering can be performed in either the frequency or the time
domain.

A commonly used time domain filter is the 3-point moving average (or running
mean) filter

x̃n = 1

3
xn−1 + 1

3
xn + 1

3
xn+1, (3.42)

i.e. average over the immediate neighbours. More generally, a filtered time series
is given by

x̃n =
L∑

l=−L

wl xn+l, (3.43)

where wl are the weights of the filter.
Suppose the filtered time series has the Fourier decomposition

x̃n =
∑

ω

X̃(ω) eiωtn . (3.44)

Comparing with (3.41), one sees that

X̃(ω) = f (ω)X (ω). (3.45)

Thus

f (ω) = X̃(ω)/X (ω) =
∑

l wl eiωl�t X (ω)

X (ω)
, (3.46)

where we have used the fact that the Fourier transform is linear, so X̃(ω) is simply a
linear combination of wl times the Fourier transform of xn+l . Hence, with tl = l�t ,

f (ω) =
L∑

l=−L

wl eiωtl , (3.47)

which allows us to calculate the filter response function f (ω) from the given
weights of a time domain filter.

For example, moving average filters have the general form

x̃n =
L∑

l=−L

(
1

2L + 1

)
xn+l . (3.48)

Another commonly used filter is the 3-point triangular filter,

x̃n = 1

4
xn−1 + 1

2
xn + 1

4
xn+1, (3.49)

which is better than the 3-point moving average filter in removing grid-scale noise
(Emery and Thomson, 1997).

68 Basic time series analysis

One often encounters time series containing strong periodic signals, e.g. the sea-
sonal cycle or tidal cycles. While these periodic signals are important, it is often
the non-periodic signals which have the most impact on humans, as they pro-
duce the unexpected events. One would often remove the strong periodic signals
from the time series first.

Suppose one has monthly data for a variable x , and one would like to extract
the seasonal cycle. Average all x values in January to get x jan, and similarly for the
other months. The climatological seasonal cycle is then given by

x seasonal = [x jan, . . . , xdec]. (3.50)

The filtered time series is obtained by subtracting this climatological seasonal cycle
from the raw data – i.e. all January values of x will have x jan subtracted, and
similarly for the other months.

For tidal cycles, harmonic analysis is commonly used to extract the tidal cycles
from a record of duration T . The tidal frequencies ωn are known from astronomy,
and one assumes the tidal signals are sinusoidal functions of amplitude An and
phase θn . The best fit of the tidal cycle to the data is obtained by a least squares fit,
i.e. minimize ∫ T

0
[x(t) −

∑
n

An cos(ωnt + θn)]2 dt, (3.51)

by finding the optimal values of An and θn . If T is short, then tidal components
with closely related frequencies cannot be separately resolved. A time series with
the tides filtered is given by

x̃(t) = x(t) −
∑

n

An cos(ωnt + θn). (3.52)

3.4 Singular spectrum analysis

So far, our PCA involves finding eigenvectors containing spatial information. It is
possible to use the PCA approach to incorporate time information into the eigen-
vectors. This method is known as singular spectrum analysis (SSA), or time-PCA
(T-PCA) (Elsner and Tsonis, 1996; Ghil et al., 2002).

Given a time series y j = y(t j) (j = 1, . . . , n), lagged copies of the time series
are stacked to form the augmented data matrix Y,

Y =

⎡
⎢⎢⎢⎣

y1 y2 · · · yn−L+1

y2 y3 · · · yn−L+2
...

...
...

...

yL yL+1 · · · yn

⎤
⎥⎥⎥⎦ . (3.53)

3.4 Singular spectrum analysis 69

This matrix has the same form as the data matrix produced by L variables, each
being a time series of length n − L + 1. Y can also be viewed as composed of its
column vectors y(l), i.e.

Y ≡ [
y(1)|y(2)| · · · |y(n−L+1)

]
, (3.54)

where

y(l) =

⎡
⎢⎢⎢⎣

yl

yl+1
...

yl+L−1

⎤
⎥⎥⎥⎦ . (3.55)

The vector space spanned by y(l) is called the delay coordinate space. The number
of lags L is usually taken to be at most 1/4 of the total record length.

The standard PCA can be performed on Y, resulting in

y(l) = y(tl) =
∑

j

a j (tl) e j , (3.56)

where a j is the j th principal component (PC), a time series of length n − L + 1,
and e j is the j th eigenvector (or loading vector) of length L . Together, a j and e j ,
represent the j th SSA mode. This method is called singular spectrum analysis,
as it studies the ordered set (spectrum) of singular values (the square roots of the
eigenvalues).

SSA has become popular in the field of dynamical systems (including chaos
theory), where delay coordinates are commonly used. By lagging a time series,
one is providing information on the first-order differencing of the discrete time
series – with the first-order difference on discrete variables being the counterpart
of the derivative. In the delay coordinate approach, repeated lags are supplied, thus
information on the time series and its higher-order differences (hence derivatives)
are provided.

The first SSA reconstructed component (RC) is the approximation of the original
time series y(t) by the first SSA mode. As the eigenvector e1 contains the loading
over a range of lags, the first SSA mode, i.e. a1(tl) e1, provides an estimate for the
y values over a range of lags starting from the time tl . For instance, at time tL ,
estimates of y(tL) can be obtained from any one of the delay coordinate vectors
y(1), . . . , y(L). Hence, each value in the reconstructed RC time series ỹ at time ti
involves averaging over the contributions at ti from the L delay coordinate vectors
which provide estimates of y at time ti . Near the beginning or end of the record, the
averaging will involve fewer than L terms. The RCs for higher modes are similarly
defined.

70 Basic time series analysis

0 50 100 150 200 250 300
−2

−1

0

1

2
(a)

(b)

(c)

y

50 100 150 200 250 300
−10

−5

0

5

10

PC
1,

 P
C

2

50 100 150 200 250 300
−4

−2

0

2

4

PC
3,

 P
C

4

Time

Fig. 3.5 (a) Sawtooth wave signal used for the SSA analysis. (b) The SSA PC1
(solid) and PC2 (dashed). (c) The SSA PC3 (solid) and PC4 (dashed).

A comparison with the Fourier spectral analysis is in order: unlike Fourier spec-
tral analysis, SSA does not in general assume the time series to be periodic; hence,
there is no need to taper the ends of the time series as commonly done in Fourier
spectral analysis. As the wave forms extracted from the SSA eigenvectors are not
restricted to sinusoidal shapes, the SSA can in principle capture an anharmonic
wave more efficiently than the Fourier method. However, in many cases, the SSA
eigenvectors may turn out to be not very different from sinusoidal-shaped func-
tions. For instance, let us analyze the sawtooth wave in Fig. 3.5. The first four
SSA PCs are shown in Fig. 3.5, and the corresponding SSA eigenvectors in Fig.
3.6. The PCs and the eigenvectors are paired, where the paired members have
very similar amplitudes, but are phase shifted by about 90◦ (i.e. in quadrature).
That the modes naturally occur in quadratured pairs should not be too surprising,
since even in Fourier decomposition, each frequency band in general requires a sine

3.4 Singular spectrum analysis 71

−60 −50 −40 −30 −20 −10 0
−0.2

−0.1

0

0.1

0.2

(a)

(b)

E
ig

en
ve

ct
or

 1
,2

−60 −50 −40 −30 −20 −10 0
−0.2

−0.1

0

0.1

0.2

E
ig

en
ve

ct
or

 3
,4

Lag

Fig. 3.6 (a) The SSA eigenvector 1 (solid) and eigenvector 2 (dashed). (b)
Eigenvector 3 (solid) and 4 (dashed).

and a cosine function. One might have expected the eigenvectors to have approx-
imately sawtooth shape, but they are visually indistinguishable from sinuosidal
functions. The second pair of modes has double the frequency of the first pair, cor-
responding to the first harmonic above the fundamental frequency. The first pair
of SSA modes captured 61.3% of the variance, while the second pair captured
15.4%. When Fourier spectral analysis was used instead, the fundamental fre-
quency band captured 61.1%, while the first harmonic band captured 15.4% of the
variance. Hence in this example, the SSA modes are nearly identical to the Fourier
modes.

Next, Gaussian random noise is added to the sawtooth wave, with the standard
deviation of the noise set to be the same as the standard deviation of the saw-
tooth wave. The SSA modes extracted (not shown) are similar to those in Fig. 3.5
and 3.6, but the variance accounted for is obviously reduced. For the first pair of
SSA modes, the variance accounted for was 34.0%, versus 32.7% from the Fourier
approach.

Thus for a single time series, while SSA can in principle extract more variance
in its first pair of modes than the Fourier fundamental frequency band, as SSA
is not restricted to using sinusoidal shaped functions, the advantage of SSA over
the Fourier represention may turn out to be minor, and the SSA eigenvectors may
turn out to have shapes resembling sinusoidal functions, even when the signal is as
anharmonic as a sawtooth wave, or a square wave. For a highly anharmonic signal
such as the stretched square wave described by (10.44), the SSA approach is clearly

72 Basic time series analysis

better than the Fourier approach (Section 10.6). Furthermore, in the real world,
except for the seasonal cycle and tidal cycles, signals tend not to have a precise
frequency like the sawtooth wave. Let us take the El Niño-Southern Oscillation
(ENSO) as our next example.

The Southern Oscillation Index (SOI) is defined as the normalized air pressure
difference between Tahiti and Darwin. There are several slight variations in the
SOI values calculated at various centres; here we use the SOI calculated by the
Climate Research Unit at the University of East Anglia, based on the method of
Ropelewski and Jones (1987). The SOI measures the seesaw oscillations of the
sea level air pressure between the eastern and western equatorial Pacific. When the

−70 −60 −50 −40 −30 −20 −10 0

−70 −60 −50 −40 −30 −20 −10 0

−70 −60 −50 −40 −30 −20 −10 0

−70 −60 −50 −40 −30 −20 −10 0

−0.2

0

0.2

(a)

(b)

(c)

(d)

−0.2

0

0.2

−0.2

0

0.2

−0.2

0

0.2

E
ig

en
ve

ct
or

 1
,2

E
ig

en
ve

ct
or

 3
,4

E
ig

en
ve

ct
or

 5
,6

E
ig

en
ve

ct
or

 7
,8

Lag (month)

Fig. 3.7 The first eight SSA eigenvectors of the SOI as a function of time lag. (a)
Mode 1 (solid curve) and mode 2 (dashed curve). (b) Mode 3 (solid) and mode 4
(dashed). (c) Mode 5 (solid) and mode 6 (dashed). (d) Mode 7 (solid) and mode
8 (dashed).

3.4 Singular spectrum analysis 73

1880 1900 1920 1940 1960 1980 2000

1880 1900 1920 1940 1960 1980 2000

−10

−5

0

5

10
PC

1,
 P

C
2

−10

−5

0

5

10
(b)

(a)

PC
3,

 P
C

4

Year

Fig. 3.8 The PC time series of (a) SSA mode 1 (solid curve) and mode 2 (dashed
curve) for the SOI. (b) Mode 3 (solid) and mode 4 (dashed).

SOI is strongly negative, the eastern equatorial Pacific sea surface also becomes
warm (i.e. an El Niño episode occurs); when SOI is strongly positive, the central
equatorial Pacific becomes cool (i.e. a La Niña episode occurs). The SOI is known
to have the main spectral peak at a period of about 4–5 years (Troup, 1965). For
SSA, the window L needs to be long enough to accommodate this main spectral
period, hence L = 72 months was chosen for the SSA.

The monthly SOI time series, from January 1866 to December 2000, was ana-
lyzed by the SSA (Hsieh and Wu, 2002), with the first eight eigenvectors shown
in Fig. 3.7. These first eight modes account for 11.0, 10.5, 9.0, 8.1, 6.4, 5.6, 3.3
and 2.0%, respectively, of the variance of the SOI. In contrast, because the SO phe-
nomenon does not have a precise frequency, Fourier analysis led to energy being
spread between many frequency bands, with the strongest band accounting for only
4.0% of the variance, far less than the 11.0% of the first SSA mode. The first pair
of modes displays oscillations with a period slightly above 50 months, while the
next pair of modes manifests a period slightly above 30 months (Fig. 3.7). The
oscillations also display anharmonic features. The four leading PCs are plotted in
pairs in Fig. 3.8, revealing the longer oscillatory time scale in the first pair and the
shorter time scale in the second pair.

Another advantage of SSA over the Fourier approach lies in the multivariate
situation – the Fourier approach does not generalize naturally to large multivariate
datasets, whereas the SSA, based on the PCA method, does.

74 Basic time series analysis

3.5 Multichannel singular spectrum analysis

In the multivariate case, there are m variables yk(t j) ≡ yk j , (k = 1, . . . , m; j =
1, . . . , n). The data matrix time lagged by l (l = 0, 1, 2, . . . , L − 1) is defined by

Y(l) =
⎡
⎢⎣

y1,1+l · · · y1,n−L+l+1
...

. . .
...

ym,1+l · · · ym,n−L+l+1

⎤
⎥⎦ . (3.57)

Again, treat the time lagged data as extra variables, so the augmented data matrix is

Y =

⎡
⎢⎢⎢⎢⎢⎣

Y(0)

Y(1)

Y(2)

...

Y(L−1)

⎤
⎥⎥⎥⎥⎥⎦ , (3.58)

i.e.

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 · · · y1,n−L+1
...

...
...

...

ym1 ym2 · · · ym,n−L+1
...

...
...

...

y1L y1,L+1 · · · y1n
...

...
...

...

ymL ym,L+1 · · · ymn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.59)

Note that PCA can again be applied to the augmented data matrix Y to get the SSA
modes.

If there is more than one variable, the method is called the space–time PCA (ST–
PCA), or multichannel singular spectrum analysis (MSSA). In this book, we will,
for brevity, use the term SSA to denote both the univariate and the multivariate
cases. The term extended empirical orthogonal function (EEOF) analysis is also
used in the literature, especially when the number of lags (L) is small. So far, we
have assumed the time series was lagged one time step at a time. To save compu-
tational time, larger lag intervals can be used, i.e. lags can be taken over several
time steps at a time. Monahan et al. (1999) pointed out that the ST–PCA can have
degenerate modes for some choices of lag interval.

For an example of the application of SSA to a larger multivariate dataset, con-
sider the analysis of the tropical Pacific monthly sea surface temperature anomalies
(SSTA) data from 1950–2000 by Hsieh and Wu (2002), where the climatological
seasonal cycle and the linear trend have been removed from the SST data to give

3.6 Principal oscillation patterns 75

the SSTA. As we want to resolve the ENSO variability, a window of 73 months
was chosen. With a lag interval of 3 months, the original plus 24 lagged copies of
the SSTA data formed the augmented SSTA dataset. (Note that if a lag interval of
1 month were used instead, then to cover the window of 73 months, the original
plus 72 copies of the SSTA data would have produced a much bigger augmented
data matrix.) The first eight SSA modes respectively explain 12.4%, 11.7%, 7.1%,
6.7%, 5.4%, 4.4%, 3.5% and 2.8% of the total variance of the augmented dataset
(with the first six modes shown in Fig. 3.9). The first two modes have space–time
eigenvectors (i.e. loading patterns) showing an oscillatory time scale of about 48
months, comparable to the ENSO time scale, with the mode 1 anomaly pattern
occurring about 12 months before a very similar mode 2 pattern, i.e. the two pat-
terns are in quadrature. The PC time series also show similar time scales for modes
1 and 2. Modes 3 and 5 show longer time scale fluctuations, while modes 4 and 6
show shorter time scale fluctuations – around the 30 month time scale.

Similarly, the tropical Pacific monthly sea level pressure anomalies (SLPA) have
been analyzed. The first eight SSA modes of the SLPA accounted for 7.9%, 7.1%,
5.0%, 4.9%, 4.0%, 3.1%, 2.5% and 1.9% respectively, of the total variance of the
augmented data. The first two modes displayed the Southern Oscillation (SO), the
east–west seesaw of SLPA at around the 50-month period, while the higher modes
displayed fluctuations at around the average period of 28 months (Fig. 3.10).

3.6 Principal oscillation patterns

For some datasets containing multiple time series, one would like to find a low
order linear dynamical system to account for the behaviour of the data. The prin-
cipal oscillation pattern (POP) method, proposed by Hasselmann (1988), is one
such technique.

Consider a simple system with two variables y1 and y2, obeying the linear
dynamical equations

dy1

dt
= L1(y1, y2),

dy2

dt
= L2(y1, y2), (3.60)

where L1 and L2 are linear functions. The discretized version of the dynamical
equations is of the form

y1(t + 1) = a11y1(t) + a12y2(t), (3.61)

y2(t + 1) = a21y1(t) + a22y2(t), (3.62)

where the ai j are parameters. For an m-variable first order linear dynamical system,
the discretized governing equations can be expressed as

y(t + 1) = Ay(t), (3.63)

Fig. 3.9 The SSA modes 1–6 for the tropical Pacific SSTA are shown in (a)–(f),
respectively. The contour plots display the space–time eigenvectors (loading pat-
terns), showing the SSTA along the equator as a function of the lag. Solid contours
indicate positive anomalies and dashed contours, negative anomalies, with the
zero contour indicated by the thick solid curve. In a separate panel beneath each
contour plot, the principal component (PC) of each SSA mode is also plotted as a
time series. The time of the PC is synchronized to the lag time of 0 month in the
space–time eigenvector. (Reproduced from Hsieh and Wu (2002) with permission
of the American Geophysical Union.)

3.6 Principal oscillation patterns 77

Fig. 3.10 The SSA modes 1–6 for the tropical Pacific SLPA are shown in (a)–
(f), respectively. The contour plots display the space–time eigenvectors, showing
the SLPA along the equator as a function of the lag. The PC of each SSA mode
is plotted as a time series beneath each contour plot. (Reproduced from Hsieh
(2004) with permission of the American Meteorological Society.)

78 Basic time series analysis

where y is an m-element column vector, and A is an m ×m matrix. Note that A is a
real matrix, but generally not symmetric; hence, its eigenvalues λ and eigenvectors
p are in general complex. Taking the complex conjugate of the eigenvector equation

Ap = λp, (3.64)

yields Ap∗ = λ∗p∗, (as A is real), which means λ∗ and p∗ are also eigenvalues
and eigenvectors of A. Assuming that the eigenvalues are distinct and non-zero,
the eigenvectors form a linear basis.

We introduce a matrix P, where its j th column is simply the j th eigenvector p j ,
i.e.

P = [p1|p2| · · · |pm], (3.65)

then

P−1AP = � =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 0 · · ·
...

...
. . .

...

0 · · · 0 λm

⎤
⎥⎥⎥⎦ , (3.66)

where the matrix� has non-zero elements only along the diagonal, made up of the
eigenvalues λ1, . . . , λm .

Applying P−1 to (3.63) yields

P−1y(t + 1) = P−1Ay(t) = P−1AP P−1y(t), (3.67)

which can be expressed as

z(t + 1) = � z(t), (3.68)

where

z = P−1y, (3.69)

and (3.66) has been invoked.
By applying P to (3.69), the inverse transform is obtained:

y(t) = P z(t), i.e. (3.70)

y(t) =
m∑

j=1

p j z j (t). (3.71)

The eigenvector

p j = pr
j + ipi

j , (3.72)

is called a Principal Oscillation Pattern (POP) of y(t).

3.6 Principal oscillation patterns 79

The corresponding POP coefficient

z j (t) = zr
j (t) + izi

j (t), (3.73)

obeys (3.68), i.e.

z j (t + 1) = λ j z j (t), (3.74)

where

λ j = |λ j |eiθ j ≡ e−1/τ j ei2π/Tj , (3.75)

as |λ j | < 1 in the real world (von Storch and Zwiers, 1999, pp. 336–337). Hence

z j (t + 1) = e−1/τ j ei2π/Tj z j (t), (3.76)

where τ j is an e-folding decay time scale, and Tj is the oscillatory period, i.e.
z j will evolve in time displaying exponential decay and oscillatory behaviour,
governed by the parameters τ j and Tj , respectively. As y(t) is real, (3.70) gives

y(t) = Re[Pz(t)] =
∑

j

[pr
j z

r
j (t) − pi

j z
i
j (t)]. (3.77)

As t progresses, the signs of zr
j and zi

j oscillate, resulting in an evolving pr
j z

r
j −pi

j z
i
j

pattern:

zr
j : · · · → + → 0 → − → 0 → + → · · · , (3.78)

zi
j : · · · → 0 → + → 0 → − → 0 → · · · , (3.79)

pr
j z

r
j − pi

j z
i
j : · · · → pr

j → −pi
j → −pr

j → pi
j → pr

j → · · · . (3.80)

Unlike PCA, POP allows representation of propagating waves using only one
POP mode. For instance, Fig. 3.11(a) shows a POP pattern representing a wave
propagating from right to left, while Fig. 3.11(b) represents a pair of eddies rotat-
ing around the centre of the figure. An arbitrary phase α j exists in the POP
representation,

y =
∑

j

p j e
iα j e−iα j z j =

∑
j

p′
j z

′
j ; (3.81)

this phase can be adjusted to make the interpretation of the j th mode easier (as
shown in an example below).

For real data, noise ε must be added to the dynamical system,

y(t + 1) = Ay(t) + ε. (3.82)

From E[(3.82) yT(t)] and the fact that E[ε]= 0, one can estimate A from

A = E[y(t + 1) yT(t)] {E[y(t) yT(t)]}−1. (3.83)

80 Basic time series analysis

(a)

pr

(b)

j
pr

j

pi
j pi

j

Fig. 3.11 Illustrating how the POP mode evolves with time, manifesting the pat-
terns: · · · → pr

j → −pi
j → −pr

j → pi
j → pr

j → · · · . In (a), a wave will
propagate to the left, while in (b), the pair of anomalies will rotate counterclock-
wise around each other, where positive and negative anomalies are denoted by
solid and dashed contours.

From A, one can compute the eigenvectors p j , eigenvalues λ j , and z j from (3.69).
When the dataset is large, one often prefilters with the PCA, i.e. the y(t) are the

first few leading PCs. Then POP is performed on these PC time series.
The POP technique has been used to study the tropical atmospheric 30–60 day

oscillation, a.k.a. the Madden-Julian Oscillation (MJO) (von Storch et al., 1988),
the equatorial stratospheric Quasi-Biennial Oscillation (QBO) (Xu, 1992), the El
Niño-Southern Oscillation (ENSO) (Xu and von Storch, 1990; Tang, 1995), and
Arctic variability (Tang et al., 1994). Penland and Magorian (1993) combined
many POP modes to forecast the tropical Pacific sea surface temperatures, and
called the approach linear inverse modelling. Note that POP has been reviewed by
von Storch et al. (1995) and von Storch and Zwiers (1999).

The analysis of the tropical Pacific wind stress by Tang (1995) provided a good
illustration of the POP technique. From a combined PCA (Section 2.3) of the wind
stress, he took the first nine PC time series for his POP analysis, as using more or
fewer PCs reduced the forecast skill of the POP model. Choosing λ1 to be the λ j

with the largest |λ j |, which corresponded to the longest decay time, he obtained
τ1 = 12 months, and T1 = 41 months. These decay and oscillatory time scales
are consistent with the observed behaviour of the ENSO oscillation, where El Niño
warm episodes appear every few years, decaying away in about a year. The arbi-
trary phase α1 was chosen so that zr

1 was positive and zi
1 = 0 in December, 1982,

during the peak of a major El Niño (Fig. 3.12). As zr
1 is correlated at 0.76 with the

SST anomalies in the Niño 3 region (Fig. 2.3) in the equatorial eastern Pacific, it is

3.6 Principal oscillation patterns 81

Fig. 3.12 The real (solid) and imaginary (dashed) components of z1, the POP
coefficient for the tropical Pacific wind stress anomaly field from 1970 to 1993.
The real part of z1 is high during the warm episodes of the El Niño-Southern
Oscillation (ENSO). (Reproduced from Tang (1995, Fig. 1) with permission of
the American Meteorological Society.)

an ENSO POP. The real part of the first eigenvector shows the wind stress anoma-
lies during the peak of a warm episode, while the imaginary part, displaying the
anomalies two to three seasons before the peak of a warm episode, can be regarded
as the precursor pattern (Fig. 3.13). The evolution of the POP coefficient z1 with
time on the complex plane is shown for the years 1972, 1982, 1985 and 1988 in
Fig. 3.14. Major El Niño warming developed in 1972 and 1982, and a major La
Niña cooling in 1988, while 1985 is a neutral year. It is evident that the El Niño
episodes evolved into the lower-right corner of the complex plane, while the La
Niña episode, the upper-left corner. In a neutral year such as 1985, the amplitude
of z1 is small. Tang (1995) defined precursor areas for warm and cold episodes in
the complex plane – once the system enters one of the precursor regions, it evolves
to a warm or cold episode over the next few months. Hence, by monitoring whether
the POP coefficient enters the precursor regions, one can forecast a warm episode
or a cold episode.

From applying (3.74) k times, one can forecast the POP coefficient at time t0
into the future by k time steps:

z1(t0 + k) = (λ1)
k z1(t0) = e−k/τ1 ei2πk/T1 z1(t0), (3.84)

although Tang (1995) found somewhat better ENSO forecast skills with the
exponential decay term omitted from the right hand side of (3.84).

82 Basic time series analysis

120E
30S

20S

10S

0

10N

20N

30N

30S

20S

10S

0

10N

20N

30N

(a)

(b)

140E 160E 180 160W 140W 120W 100W 80W

120E 140E 160E 180 160W

ENSO POP Patterns of the wind stress anomalies

140W 120W 100W 80W

Fig. 3.13 The first eigenvector p1 from the POP analysis of the tropical Pacific
wind stress anomalies. (a) The real part of p1, which shows up during the peak
of a warm episode, thus giving the pattern of wind stress anomalies (as indicated
by the small vectors at the grid points) during the peak of a warm episode. (b)
The imaginary part of p1, which appears two to three seasons before the peak of
a warm episode. (Reproduced from Tang (1995, Fig. 4) with permission of the
American Meteorological Society.)

3.7 Spectral principal component analysis

The theory for generalizing the PCA technique to the frequency domain was devel-
oped by Wallace and Dickinson (1972). The technique has been used to analyze
tropical wave disturbances (Wallace, 1972) and tropical wind systems (Barnett,
1983), and has been reviewed by Horel (1984) and von Storch and Zwiers (1999).
A scalar field y(t) (with mean removed) has the Fourier representation

y(t) =
∑

l

[al cos(ωl t) + bl sin(ωl t)]. (3.85)

Let yh be the Hilbert transform of y, defined as

yh(t) =
∑

l

[
al cos

(
ωl t + π

2

)
+ bl sin

(
ωl t + π

2

)]
, (3.86)

3.7 Spectral principal component analysis 83

Fig. 3.14 The POP coefficient z1 shown in the complex plane for the months in
the years 1972, 1982, 1985 and 1988. The horizontal and vertical axes represent
the real and imaginary components of z1. Each o represents 1 month, and the two
+ in each plane are for the January and February of the following year. The dotted
circle is |z| = 3.42. (Reproduced from Tang (1995, Fig. 2) with permission of the
American Meteorological Society.)

which supplies the 90◦ out of phase information. This can be rewritten as

yh(t) =
∑

m

[bl cos(ωl t) − al sin(ωl t)]. (3.87)

As

d

dt
[al cos(ωl t) + bl sin(ωl t)] = ωl[bl cos(ωl t) − al sin(ωl t)], (3.88)

this means yh(t) supplies information on the time derivative of y. Let

yH(t) = y(t) + i yh(t). (3.89)

This complex yH supplies information on y and its time derivative, reminis-
cent of Hamiltonian mechanics, where the canonical variables are position and
momentum.

With m stations, we have y j (t), j = 1, . . . , m. Using (3.85) and (3.87) to
represent y j and yh

j (t) respectively, we have

yH
j (t) =

∑
l

[
(a jl + ib jl) cos(ωl t) + (b jl − ia jl) sin(ωl t)

]
. (3.90)

84 Basic time series analysis

To perform PCA in the frequency domain, the procedure is as follows: as with
spectral methods, it is advisable first to taper the ends of the time series before per-
forming Fourier transform, as discussed in Section 3.2 on windows. After Fourier
transforming yH

j (t), select a given frequency band, and integrate (or sum) the
spectral components ŷH

j (ωm) over the frequency band. Generate the cross-spectral
matrix C of the particular frequency band,

Ci j = N�t

4π
ŷH∗

i ŷH
j , (3.91)

where the cross-spectrum can be regarded as basically the (complex) covariance
matrix for this frequency band. This method is the spectral PCA. The method
has also been used with all frequencies retained – then the integration over all
frequency bands yields the covariance matrix.

Apply PCA to extract the (complex) eigenvectors e j of the cross-spectral matrix.
This method is called the Hilbert PCA, or sometimes complex PCA, though this
latter name is ambiguous as PCA is also applied to complex variables (e.g. the
horizontal wind w = u+iv in Section 2.3), whereas with Hilbert PCA, we are inter-
ested in analyzing real variables, though the real variables are first complexified by
the Hilbert transform (3.89), before being analyzed by PCA.

The complex time series yH
j (t) can be expanded in terms of the eigenvectors

yH(t) =
∑

j

e ja∗T
j , (3.92)

where the time coefficients a j for the j th mode are generally complex, and the
superscript ∗T denotes the complex conjugate transpose. Let us focus on the
contributions by the j th mode only. Taking the real part, we have

y(t) = eR
j a

R
j (t) − eI

j a
I
j (t), (3.93)

where the superscripts R and I denote the real and imaginary parts, respectively.
Since an arbitrary phase factor eiφ j can be multiplied to e j and e−iφ j to a j with-
out changing (3.92), one may choose the arbitrary phase to ensure zero correlation
between aR

j (t) and aI
j (t). Then as aR

j (t) and aI
j (t) take turns manifesting them-

selves, the spatial patterns eR
j and eI

j also take turns manifesting themselves.
Suppose, as t progresses, we have at t1, aR

j (t) > 0, aI
j (t) = 0; at t2, aR

j (t) = 0,
aI

j (t) < 0; at t3, aR
j (t) < 0, aI

j (t) = 0; and at t4, aR
j (t) = 0, aI

j (t) > 0, then the
evolution of the spatial patterns of y at these four times will be eR

j (t) → −eI
j (t)

→ −eR
j (t) → eI

j (t). This sequence of spatial patterns allows the representation of
propagating waves, somewhat analogous to the POP technique in Section 3.6.

For vector fields, e.g. [u j (t), v j (t)] at j = 1, . . . , m stations, let

uH
j (t) = u j (t) + i uh

j (t), vH
j (t) = v j (t) + i vh

j (t). (3.94)

Exercises 85

Treat uH
j and vH

j as separate variables, i.e. treat the dataset as though there are 2m
stations each contributing a scalar variable. This approach obviously generalizes to
higher dimensional vector fields.

Exercises

(3.1) Fourier spectral analysis is performed on hourly sea level height data. The
main tidal period is around 12 hours, but there are actually two components,
M2 from the moon at 12.42 hours, and S2 from the sun at 12.00 hours. What
is the minimum length of the data record required in order to see two dis-
tinct peaks around 12 hours in your spectrum due to the M2 and S2 tidal
components?

(3.2) If the data are dominated by grid-scale noise, i.e. the data in 1-dimension
have adjacent grid points simply flipping signs like −1,+1, −1,+1, −1,
+1, . . ., show that one application of the triangular filter (3.49) eliminates the
grid-scale noise completely, whereas one application of the 3-point moving-
average filter (3.42) does not.

(3.3) The POP (Principal Oscillation Pattern) method was used to analyze the evo-
lution of monthly sea surface temperature anomalies. If the time step in the
POP analysis is 1 month, and the two most important POP modes have eigen-
values λ1 = 0.9355 exp(i 0.1047) and λ2 = 0.8825 exp(i 1.571), what can
we learn from the eigenvalues?

(3.4) Analyze the data file provided in the book website using Fourier spectral
analysis. (a) Compute the autospectrum for the time series x1 (with the
time series t giving the time of the observation in days). (b) Compute the
autospectrum for time series x2, and compare with that in (a).

(3.5) Using the same time series x1 and x2 from Exercise 3.4, perform singular
spectrum analysis (SSA) on (a) x1 and (b) x2, with the time series lagged by
an extra 50 days in SSA (so that there is a total of 51 time series). Briefly
discuss the difference between the SSA result and the Fourier spectral result
in Exercise 3.4 – in particular, which method is more efficient in capturing
the variance?

4

Feed-forward neural network models

The human brain is an organ of marvel – with a massive network of about 1011

interconnecting neural cells called neurons, it performs highly parallel computing.
The brain is exceedingly robust and fault tolerant. After all, we still recognize a
friend whom we have not seen in a decade, though many of our brain cells have
since died. A neuron is only a very simple processor, and its ‘clockspeed’ is actu-
ally quite slow, of the order of a millisecond, about a million times slower than that
of a computer, yet the human brain beats the computer on many tasks involving
vision, motor control, common sense, etc. Hence, the power of the brain lies not in
its clockspeed, nor in the computing power of a neuron, but in its massive network
structure. What computational capability is offered by a massive network of inter-
connected neurons is a question which has greatly intrigued scientists, leading to
the development of the field of neural networks (NN) .

Of course there are medical researchers who are interested in how real neural net-
works function. However, there are far more scientists from all disciplines who are
interested in artificial neural networks, i.e. how to borrow ideas from neural net-
work structures to develop better techniques in computing, artificial intelligence,
data analysis, modelling and prediction. In fact, neural network methods have
spread beyond medicine and science into engineering, economics and commerce.

In NN literature, there are two main types of learning problem, supervised and
unsupervised learning (Section 1.7). In the supervised learning case, one is pro-
vided with the predictor data, x1, . . . , xn , and the response data, y1, . . . , yn . Given
the predictor data as input, the model produces outputs, y′

1, . . . , y′
n . The model

learning is ‘supervised’ in the sense that the model output (y′
1, . . . , y′

n) is guided
towards the given response data (y1, . . . , yn), usually by minimizing an objective
function (also called a cost function or error function). Regression and classifica-
tion problems involve supervised learning. In contrast, for unsupervised learning,
only input data are provided, and the model discovers the natural patterns or
structure in the input data. Clustering and principal component analysis involve
unsupervised learning.

86

4.2 Perceptrons 87

There are many types of neural network, some mainly of interest to the biomed-
ical researcher, others with broad applications. The most widely used type of NN
is the feed-forward neural network, where the signal in the model only proceeds
forward from the inputs through any intermediate layers to the outputs without
any feedback. The most common feed-forward NN is represented by the multi-
layer perceptron model. The next two sections present some of the historical
developments leading to the multi-layer perceptron model.

4.1 McCulloch and Pitts model

The earliest NN model of significance is the McCulloch and Pitts (1943) model.
From neurobiology, it is known that a neuron receives stimulus (signals) from its
neighbours, and if the total stimulus exceeds some threshold, the neuron becomes
activated and fires off (outputs) a signal. Their model neuron is a binary threshold
unit, i.e. it receives a weighed sum of its inputs from other units, and outputs either
1 or 0 depending on whether the sum exceeds a threshold. This simulates a neuron
receiving signals from its neighbouring neurons, and depending on whether the
strength of the overall stimulus exceeds the threshold, the neuron either becomes
activated (outputs the value 1) or remains at rest (value 0). For a neuron, if xi

denotes the input signal from the i th neighbour, which is weighed by a weight
parameter wi , the output of the neuron y is given by

y = H

(∑
i

wi xi + b

)
, (4.1)

where b is called an offset or bias parameter, and H is the Heaviside step function,

H(z) =
{

1 if z ≥ 0
0 if z < 0.

(4.2)

By adjusting b, the threshold level for the firing of the neuron can be changed.
McCulloch and Pitts proved that networks made up of such neurons are capable of
performing any computation a digital computer can, though there is no provision
that such a NN computer is necessarily faster or easier. In the McCulloch and Pitts
model, the neurons are very similar to conventional logical gates, and there is no
algorithm for finding the appropriate weight and offset parameters for a particular
problem.

4.2 Perceptrons

The next major advance is the perceptron model of Rosenblatt (1958, 1962) (and
similar work by Widrow and Hoff (1960)). The perceptron model consists of an

88 Feed-forward neural network models

Input layer

Output
layer

yj

xi

Fig. 4.1 The perceptron model consists of a layer of input neurons connected
directly to a layer of output neurons.

input layer of neurons connected to an output layer of neurons (Fig. 4.1). Neurons
are also referred to as nodes or units in the NN literature. The key advance is the
introduction of a learning algorithm, which finds the weight and offset parameters
of the network for a particular problem. An output neuron

y j = f

(∑
i

w j i xi + b j

)
, (4.3)

where xi denotes an input, f a specified transfer function known as an activation
function, w j i the weight parameter connecting the i th input neuron to the j th output
neuron, and b j the offset parameter of the j th output neuron. The offset or bias
parameter is completely unrelated to the statistical bias of a model, and −b j is also
called the threshold parameter by some authors.

A more compact notation eliminates the distinction between weight and offset
parameters by expressing

∑
i wi xi + b as

∑
i wi xi + w0 = ∑

i wi xi + w01, i.e. b
can be regarded as simply the weight w0 of an extra constant input x0 = 1, and
(4.3) can be written as

y j = f

(∑
i

w j i xi

)
, (4.4)

with the summation of i starting from i = 0. This convenient notation incor-
porating the offsets into the weights will often be used in this book to simplify
equations.

The step function was originally used as the activation function, but other con-
tinuous functions can also be used. Given data of the inputs and outputs, one can
train the network so that the model output values y j derived from the inputs using
(4.3) are as close as possible to the data yd j (also called the target), by finding

4.2 Perceptrons 89

the appropriate weight and offset parameters in (4.3) – i.e. try to fit the model to
the data by adjusting the parameters. With the parameters known, (4.3) gives the
output variable y j as a function of the input variables. Detailed explanation of the
training process will be given later.

In situations where the outputs are not binary variables, a commonly used acti-
vation function is the logistic sigmoidal function, or simply the logistic function,
where ‘sigmoidal’ means an S-shaped function:

f (x) = 1

1 + e−x
. (4.5)

This function has an asymptotic value of 0 when x → −∞, and rises smoothly
as x increases, approaching the asymptotic value of 1 as x → +∞. The logis-
tic function is used because it is nonlinear and differentiable. From a biological
perspective, the shape of the logistic function resembles the activity of a neuron.
Suppose the ‘activity’ of a neuron is 0 if it is at rest, or 1 if it is activated. A neuron
is subjected to stimulus from its neighbouring neurons, each with activity xi , trans-
mitting a stimulus of wi xi to this neuron. With the summed stimulus from all its
neighbours being

∑
i wi xi , whether this neuron is activated depends on whether the

summed stimulus exceeds a threshold c or not, i.e. the activity of this neuron is 1 if∑
i wi xi ≥ c, but is 0 otherwise. This behaviour is captured by the Heaviside step

function H
(∑

i wi xi − c
)
. To have a differentiable function with a smooth transi-

tion between 0 and 1 instead of an abrupt step, one can use the logistic function f
in (4.5), i.e. f

(∑
i wi xi + b

)
, where b = −c is the offset parameter. The role of the

weight and offset parameters can be readily seen in the univariate form f (wx +b),
where a large w gives a steeper transition from 0 to 1 (w → ∞ approaches the
Heaviside function), while increasing b slides the logistic curve to the left along
the x-axis.

We will next show that the logistic activation function also arises naturally from
Bayes decision (Section 1.6) with two classes C1 and C2. For such classification
problems, the perceptron network can have two output neurons y1 and y2 (Fig. 4.1).
If for a given input x, the network yields y j > yi , then class j is chosen. We will
show that the outputs yi (i = 1, 2) can be made to match the Bayes discriminant
function P(C j |x) of Section 1.6. Recall Bayes theorem:

P(C1|x) = p(x|C1)P(C1)

p(x|C1)P(C1) + p(x|C2)P(C2)
(4.6)

= 1

1 + p(x|C2)P(C2)

p(x|C1)P(C1)

(4.7)

= 1

1 + e−u
, (4.8)

90 Feed-forward neural network models

which has the form of a logistic sigmoidal function, with

u = ln

[
p(x|C1)P(C1)

p(x|C2)P(C2)

]
. (4.9)

If we further assume that the two classes both have Gaussian distributions, with
means m1 and m2, and equal covariance matrices C, then for i = 1, 2,

p(x|Ci) = 1

(2π)l/2|C|1/2
exp

{
−1

2
(x − mi)

TC−1(x − mi)

}
, (4.10)

with l the dimension of the x vector and |C| the determinant of C. Substituting this
into (4.9), we have

u = wTx + b, (4.11)

where

w = C−1(m1 − m2), (4.12)

b = −1

2
mT

1 C−1m1 + 1

2
mT

2 C−1m2 + ln
P(C1)

P(C2)
. (4.13)

Hence, with a logistic function as the activation function, (4.8) renders the output

y1 = 1

1 + exp{−(wTx + b)} (4.14)

= P(C1|x), (4.15)

and similarly y2 = P(C2|x). By using the logistic activation function, the outputs
of this perceptron network, serving as discriminant functions, can be regarded as
posterior probabilities. In fact, when there are only two classes, it is enough to use
only a single output neuron y1. Since we want P(C1|x) + P(C2|x) = 1, we can
obtain P(C2|x) from P(C2|x) = 1 − y1. The model (4.14) is also called logistic
regression. How to use NN models for classification, especially when there are
more than two classes, is discussed in detail in Chapter 8.

The advent of the perceptron model led to great excitement; however, the seri-
ous limitations of the perceptron model were soon recognized (Minsky and Papert,
1969). Simple examples are provided by the use of perceptrons to model the
Boolean logical operators AND and XOR (the exclusive OR). For z = x .AND.y,
z is TRUE only when both x and y are TRUE. For z = x .XOR.y, z is TRUE only
when exactly one of x or y is TRUE. Let 0 denote FALSE and 1 denote TRUE,
then Fig. 4.2 shows the simple perceptron model which represents z = x .AND.y,
mapping from (x, y) to z in the following manner:

4.2 Perceptrons 91

z

x y

b = –1.5

w2 = 1w1 = 1

Fig. 4.2 The perceptron model for computing z = x .AND.y. The activation
function used is the step function.

(0, 0) → 0

(0, 1) → 0

(1, 0) → 0

(1, 1) → 1.

However, a perceptron model for z = x .XOR.y does not exist! One cannot find
a perceptron model which will map:

(0, 0) → 0

(0, 1) → 1

(1, 0) → 1

(1, 1) → 0.

The difference between the two problems is shown in Fig. 4.3. The AND problem
is linearly separable, i.e. the input data can be classified correctly with a linear
(i.e. hyperplanar) decision boundary, whereas the XOR problem is not linearly
separable. It is easy to see why the perceptron model is limited to a linearly separa-
ble problem. If the activation function f (z) has a decision boundary at z = c,
(4.3) implies that the decision boundary for the j th output neuron is given by∑

i w j i xi + b j = c, which is the equation of a straight line in the input x-space.
For an input x-space with dimension n = 2, there are 16 possible Boolean func-

tions (among them AND and XOR), and 14 of the 16 are linearly separable. When
n = 3, 104 out of 256 Boolean functions are linearly separable. When n = 4,
the fraction of Boolean functions which are linearly separable drops further – only
1882 out of 65 536 are linearly separable (Rojas, 1996). As n gets large, the set of
linearly separable functions forms a very tiny subset of the total set (Bishop, 1995).

92 Feed-forward neural network models

(0,1)

(0,0) (1,0)

(1,1) (0,1)

(0,0) (1,0)

(1,1)

(a) (b)

y y

x x

Fig. 4.3 The classification of the input data (x, y) by the Boolean logical operator
(a) AND, and (b) XOR (exclusive OR). In (a), the decision boundary separating
the TRUE domain (black circle) from the FALSE domain (white circles) can be
represented by a straight (dashed) line, hence the problem is linearly separable;
whereas in (b), two lines are needed, rendering the problem not linearly separable.

Interest in NN research waned following the realization that the perceptron model
is restricted to linearly separable problems.

4.3 Multi-layer perceptrons (MLP)

When the limitations of the perceptron model were realized, it was felt that the
NN might have greater power if additional ‘hidden’ layers of neurons were placed
between the input layer and the output layer. Unfortunately, there was then no algo-
rithm which would solve for the parameters of the multi-layer perceptrons (MLP).
Revival of interest in NN did not occur until the mid 1980s – largely through the
highly influential paper, Rumelhart et al. (1986), which rediscovered the back-
propagation algorithm to solve the MLP problem, as the algorithm had actually
been derived earlier by Werbos (1974).

Figure 4.4 illustrates a MLP with one hidden layer. The input signals xi are
mapped to the hidden layer of neurons h j by

h j = f

(∑
i

w j i xi + b j

)
, (4.16)

and then on to the output yk ,

yk = g

⎛
⎝∑

j

w̃k j h j + b̃k

⎞
⎠ , (4.17)

where f and g are activation functions, w j i and w̃k j weight parameter matrices,
and b j and b̃k are offset parameters.

4.3 Multi-layer perceptrons (MLP) 93

xi

yk

hj

Input layer Hidden
layer

Output layer

Fig. 4.4 The multi-layer perceptron (MLP) model with one ‘hidden layer’ of
neurons sandwiched between the input layer and the output layer.

To train the NN to learn from a dataset (the target), we need to minimize the
objective function J (also referred to as the cost function, error function, or loss
function), defined here to be one half the mean squared error (MSE) between the
model output and the target,

J = 1

N

N∑
n=1

{
1

2

∑
k

[
y(n)

k − y(n)
dk

]2
}

, (4.18)

where ydk is the target data, and there are n = 1, . . . , N observations or measure-
ments. In back-propagation literature, a conventional scale factor of 1

2 is usually
included, though it and the factor 1

N can be replaced by any positive constant. (In
other parts of this book, the constant factors 1

2 and 1
N may be dropped from the

objective function.) An optimization algorithm is needed to find the weight and
offset parameter values which minimize the objective function, hence the MSE
between the model output and the target. The MSE is the most common form used
for the objective function in nonlinear regression problems, as minimizing the MSE
is equivalent to maximizing the likelihood function assuming Gaussian error dis-
tribution (see Section 6.1). Details on how to perform the nonlinear optimization
will be presented later in this chapter and in the next one, as there are many choices
of optimization scheme. In general, nonlinear optimization is difficult, and conver-
gence can be drastically slowed or numerically inaccurate if the input variables are
poorly scaled. For instance if an input variable has a mean exceeding its standard
deviation, it is strongly recommended that the mean be subtracted from the variable
to remove the systematic bias. Hence it is common to standardize the data before
applying the NN model, i.e. each variable has its mean value subtracted, and then is
divided by its standard deviation, so the standardized variable will have zero mean
and unit standard deviation.

94 Feed-forward neural network models

Besides the logistic function, another commonly used sigmoidal activation
function is the hyperbolic tangent function

f (x) = tanh x = ex − e−x

ex + e−x
. (4.19)

This function has an asymptotic value of −1 when x → −∞, and rises smoothly
as x increases, approaching the asymptotic value of 1 as x → +∞. The tanh
function can be viewed as a scaled version of the logistic function (4.5), as the two
are related by:

tanh(x) = 2 logistic(2x) − 1. (4.20)

While the range of the logistic function is (0, 1), the range of the tanh function is
(−1, 1). Hence the output of a tanh function does not have the positive systematic
bias found in the output of a logistic function, which if input to the next layer of
neurons, is somewhat difficult for the network to handle, resulting in slower con-
vergence during NN training. It has been found empirically (LeCun et al., 1991)
that a network using logistic activation functions in the hidden layer(s) tends to
converge slower during NN training than a corresponding network using tanh acti-
vation functions. Hence the tanh activation function is to be preferred over the
logistic activation function in the hidden layer(s).

Since the range of the tanh function is (−1, 1), the range of the network output
will be similarly bounded if one of these activation functions is used for g in (4.17).
This is useful if the NN tries to classify the output into one of two classes, but may
cause a problem if the output variables are unbounded. Even if the output range is
bounded within [−1, 1], values such as −1 and 1 can only be represented by the
tanh function at its asymptotic limit. One possible solution is to scale the output
variables, so they all lie within the range (−0.9, 0.9) – the range (−0.9, 0.9) is
preferred to (−1, 1) as it avoids using the asymptotic range of the tanh function,
resulting in faster convergence during NN training.

Another possibility when the output variables are within [−1, 1], is to use a
scaled tanh function, f (x) = 1.7159 tanh(2

3 x) as the activation function. Bounded
within (−1.7159, 1.7159), this f (x) has an almost linear slope for −1 < x < 1,
with f (1) = 1, and f (−1) = −1.

When the output is not restricted to a bounded interval, the identity activation
function is commonly used for g, i.e. the output is simply a linear combination of
the hidden neurons in the layer before,

yk =
∑

j

w̃k j h j + b̃k . (4.21)

For the 1-hidden-layer NN, this means the output is just a linear combination of
sigmoidal shaped functions.

4.3 Multi-layer perceptrons (MLP) 95

There is some confusion in the literature on how to count the number of layers.
The most common convention is to count the number of layers of mapping func-
tions, which is equivalent to the number of layers of neurons excluding the input
layer. The 1-hidden-layer NN in Fig. 4.4 will be referred to as a 2-layer NN. Some
researchers count the total number of layers of neurons (which is a little mislead-
ing since the complexity of the NN is determined by the layers of mappings), and
refer to the 1-hidden-layer NN as a 3-layer NN. In this book, we will refer to the
NN in Fig. 4.4 as either a 1-hidden-layer NN or a 2-layer NN. A useful shorthand
notation for describing the number of inputs, hidden and output neurons is the m1-
m2-m3 notation, where a 3-4-2 network denotes a 1-hidden-layer NN with 3 input,
4 hidden and 2 output neurons.

The total number of (weight and offset) parameters in an m1-m2-m3 network is
Np = (m1 + 1)m2 + (m2 + 1)m3, of which m1m2 + m2m3 = m2(m1 + m3) are
weight parameters, and m2 +m3 are offset parameters. In multiple linear regression
problems with m predictors and one response variable, i.e. y = a0 + a1x1 + . . . +
am xm , there are m + 1 parameters. For corresponding nonlinear regression with an
m-m2-1 MLP network, there will be Np = (m+1)m2+(m2+1) parameters, usually
greatly exceeding the number of parameters in the multiple linear regression model.
Furthermore, the parameters of an NN model are in general extremely difficult to
interpret, unlike the parameters in a multiple linear regression model, which have
straightfoward interpretations.

Incidentally, in a 1-hidden-layer MLP, if the activation functions at both the hid-
den and output layers are linear, then it is easily shown that the outputs are simply
linear combinations of the inputs. The hidden layer is therefore redundant and can
be deleted altogether. In this case, the MLP model simply reduces to multiple linear
regression. This demonstrates that the presence of a nonlinear activation function
at the hidden layer is essential for the MLP model to have nonlinear modelling
capability.

While there can be exceptions (Weigend and Gershenfeld, 1994), MLP are usu-
ally employed with Np < N , N being the number of observations in the dataset.
Ideally, one would like to have Np � N , but in many environmental problems,
this is unattainable. In most climate problems, decent climate data have been avail-
able only after World War II. Another problem is that the number of predictors can
be very large, although there can be strong correlations between predictors. In this
case, principal component analysis (PCA) (Section 2.1) is commonly applied to the
predictor variables, and the leading few principal components (PCs) are extracted,
and serve as inputs to the MLP network, to reduce greatly the number of input
neurons and therefore Np.

If there are multiple outputs, one has two choices: build a single NN with mul-
tiple outputs, or build multiple NN models each with a single output. If the output

96 Feed-forward neural network models

variables are correlated between themselves, then the single NN approach often
leads to higher skills, since training separate networks for individual outputs does
not take into account the relations between the output variables (see the exam-
ple in Section 12.1.3). On the other hand, if the output variables are uncorrelated
(e.g. the outputs are principal components), then training separate networks often
leads to slightly higher skills, as this approach focuses the single-output NN (with
fewer parameters than the multiple-output NN) on one output variable without the
distraction from the other uncorrelated output variables.

For modelling a nonlinear regression relation such as y = f (x), why can one
not use the familiar Taylor series expansion instead of MLP? The Taylor expansion
is of the form

y = a0 +
m∑

i1=1

ai1 xi1 +
m∑

i1=1

m∑
i2=1

ai1i2 xi1 xi2 +
m∑

i1=1

m∑
i2=1

m∑
i3=1

ai1i2i3 xi1 xi2 xi3 +· · · . (4.22)

In practice, the series is truncated, and only terms up to order k are kept, i.e. y is
approximated by a kth order polynomial, and can be written more compactly as

y =
L∑

i=1

ciφi + c0, (4.23)

where φi represent the terms xi1 , xi1 xi2, . . ., and ci the corresponding parameters.
There are L terms in the sum, with L ∼ mk (Bishop, 1995), hence there are about
mk parameters. In practice, mk means the number of model parameters rises at
an unacceptable rate as m increases. Barron (1993) showed that for the m-m2-1
MLP model, the summed squared error is of order O(1/m2) (independent of m),
while for the polynomial approximation, the summed squared error is at least
O(1/L2/m) = O(1/m2k/m), yielding an unacceptably slow rate of convergence
for large m.

Let us examine how the summed squared error reduces with increasing number
of parameters in the MLP and in the polynomial representation. For MLP, since
the error is O(1/m2), if 1/m2 is to be halved, we need a new m ′

2 = 2 m2, and the
total number of model parameters ∼ m m ′

2 = 2 m m2, i.e. a doubling of the original
number of parameters. In the polynomial approximation, for 1/m2k/m to be halved,
we need a new k ′, satisfying

m2k′/m = 2 m2k/m , i.e. k ′ = k + m

2

ln 2

ln m
. (4.24)

The number of parameters in the new model compared with that in the old model is

mk′

mk
= m(m ln 2)/(2 ln m). (4.25)

4.4 Back-propagation 97

For m = 10, this ratio is 32, and for m = 100, this ratio is 1015 – for compar-
ison, the ratio of parameters in the MLP model is 2, independent of m. This is
known as the curse of dimensionality, i.e. the polynomial approximation requires
an astronomical number of parameters even for a moderate input dimension m,
since the number of model parameters is ∼ mk , and the error converges very slowly
at O(1/m2k/m). The form (4.23) does have one advantage over MLP, namely that
y depends on the parameters linearly, and so only a linear optimization is needed
to solve for the parameters. In contrast, for the MLP model, because of the non-
linear activation function, y does not depend on the parameters linearly, hence a
nonlinear optimization process, which is much harder than linear optimization, is
needed to solve for the parameters. Nonetheless, this advantage of the polynomial
approximation is not enough to compensate for the dreaded curse of dimension-
ality. The advent of kernel methods (Section 7.5) in the mid 1990s revived many
methods previously discarded due to the curse of dimensionality.

4.4 Back-propagation

We now turn to the crucial problem of how to find the optimal weight and off-
set parameters which would minimize the objective function J . To minimize J ,
one needs to know the gradient of J with respect to the parameters. The back-
propagation algorithm gives the gradient of J through the backward propagation
of the model errors – the reader familiar with data assimilation will notice the
similarity with the backward error propagation in the adjoint data assimilation
method. In fact, the MLP problem could not be solved until the introduction of
the back-propagation algorithm by Rumelhart et al. (1986), though the algorithm
had actually been discovered in the Ph.D. thesis of Werbos (1974).

The back-propagation algorithm is composed of two parts: the first part com-
putes the gradient of J by backward propagation of the model errors, while the
second part descends along the gradient towards the minimum of J . This descent
method is called gradient descent or steepest descent, and is notoriously inefficient,
thus rendering the original back-propagation algorithm a very slow method. Nowa-
days, the term ‘back-propagation’ is used somewhat ambiguously – it could mean
the original back-propagation algorithm, or it could mean using only the first part
involving the backward error propagation to compute the gradient of J , to be fol-
lowed by a much more efficient descent algorithm, such as the conjugate gradient
algorithm, resulting in much faster convergence.

While the original back-propagation algorithm is not recommended for actual
computation because of its slowness, it is presented here because of its histor-
ical significance, and more importantly, because it is the easiest algorithm to
understand.

98 Feed-forward neural network models

In (4.18), the objective function J is evaluated over all observations. It is con-
venient to define the objective function J (n) associated with the nth observation or
training pattern, i.e.

J (n) = 1

2

∑
k

[y(n)
k − y(n)

dk]2. (4.26)

The objective function J in (4.18) is simply the mean of J (n) over all N observa-
tions. In the following derivation, we will be dealing with J (n), though for brevity,
we will simply use the symbol J . In the 2-layer network described by (4.16) and
(4.17), letting w j0 ≡ b j , w̃k0 ≡ b̃k , and x0 = 1 = h0 allows the equations to be
expressed more compactly as

h j = f

(∑
i

w j i xi

)
, (4.27)

yk = g

⎛
⎝∑

j

w̃k j h j

⎞
⎠ , (4.28)

where the summation indices start from 0 to include the offset terms. We can intro-
duce an even more compact notation by putting all the w j i and w̃k j parameters into
a single parameter vector or weight vector w. In back-propagation, the parameters
are first assigned random initial values, and then adjusted according to the gradient
of the objective function, i.e.

�w = −η
∂ J

∂w
. (4.29)

The parameters are adjusted by �w, proportional to the objective function gradient
vector by the scale factor η, which is called the learning rate. In component form,
we have

�w j i = −η
∂ J

∂w j i
, and �w̃k j = −η

∂ J

∂w̃k j
. (4.30)

Note that η determines the size of the step taken by the optimization algorithm as it
descends along the direction of the objective function gradient, with the parameters
adjusted for the next step n + 1 by

w(n + 1) = w(n) + �w(n). (4.31)

Let us introduce the symbols

s j =
∑

i

w j i xi , and s̃k =
∑

j

w̃k j h j , (4.32)

hence (4.27) and (4.28) become

h j = f (s j), and yk = g(s̃k). (4.33)

4.4 Back-propagation 99

The objective function gradients in (4.30) can be solved by applying the chain rule
in differentiation, e.g.

∂ J

∂w̃k j
= ∂ J

∂ s̃k

∂ s̃k

∂w̃k j
≡ −δ̃k

∂ s̃k

∂w̃k j
, (4.34)

where δ̃k is called the sensitivity of the kth output neuron. Further application of
the chain rule yields

δ̃k ≡ − ∂ J

∂ s̃k
= − ∂ J

∂yk

∂yk

∂ s̃k
= (ydk − yk)g

′(s̃k), (4.35)

where (4.26) has been differentiated, and g′ is the derivative of g from (4.33).
From (4.32), we have

∂ s̃k

∂w̃k j
= h j . (4.36)

Substituting this and (4.35) into (4.34) and (4.30), we obtain the weight update or
learning rule for the weights connecting the hidden and output layers:

�w̃k j = ηδ̃kh j = η(ydk − yk)g
′(s̃k)h j . (4.37)

If linear activation functions are used at the output neurons, i.e. g is the identity
map, then g′ = 1.

Similarly, to obtain the learning rule for the weights connecting the input layer
to the hidden layer, we use the chain rule repeatedly:

∂ J

∂w j i
=
∑

k

∂ J

∂yk

∂yk

∂ s̃k

∂ s̃k

∂h j

∂h j

∂s j

∂s j

∂w j i
= −

∑
k

δ̃kw̃k j f ′(s j)xi . (4.38)

Hence, the learning rule for the weights connecting the input layer to the hidden
layer is

�w j i = η
∑

k

δ̃kw̃k j f ′(s j)xi . (4.39)

This can be expressed in a similar form as (4.37), i.e.

�w j i = ηδ j xi , with δ j =
(∑

k

δ̃kw̃k j

)
f ′(s j). (4.40)

Equations (4.37) and (4.40) give the back-propagation algorithm. The model output
error (yk −ydk) is propagated backwards by (4.37) to update the weights connecting
the hidden to output layers, and then further back by (4.40) to update the weights
connecting the input to hidden layers.

In general, the weights are randomly initialized at the start of the optimization
process. The inputs are mapped forward by the network, and the output model error
is obtained. The error is then back-propagated to update the weights. This process

100 Feed-forward neural network models

of mapping the inputs forward and then back-propagating the error is iterated until
the objective function satisfies some convergence criterion. The derivation of the
back-propagation algorithm here is for a network with only one hidden layer. The
algorithm can be extended in a straightforward manner to a network with two (or
more) hidden layers.

There are two main training protocols, sequential training and batch training.
In sequential training, each pattern or observation is presented to the network
and the weights are updated. The next pattern is then presented, until all patterns
in the training dataset have been presented once to the network – called an epoch.
The same patterns are then presented repeatedly for many epochs until the objec-
tive function convergence criterion is satisfied. A variant of sequential training is
stochastic training, where a pattern is randomly selected from the training dataset,
presented to the network for weight updating, and the process is repeated. For very
large patterns presenting storage problems, on-line training can be used, where
a pattern is presented to the network, and the weights updated repeatedly, before
moving on to the next pattern. As each pattern is presented only once, there is no
need to store all the patterns on the computer.

In batch training, all patterns in the training dataset are presented to the net-
work before the weights are updated. This process is repeated for many epochs.
The objective function J is the mean of J (n) over all N observations, as defined
in (4.18). Some second-order optimization algorithms (see Chapter 5) are more
readily applied to batch training. However, if the training data are redundant, i.e. a
pattern may be presented several times in the dataset, then stochastic training can
be more efficient than batch training.

The objective function convergence criterion is a subtle issue. Many MLP appli-
cations do not train until convergence to the global minimum – this can be a great
shock to researchers trained in classical optimization. The reason is that data con-
tain both signal and noise. Given enough hidden neurons, an MLP can have enough
parameters to fit the training data to arbitrary accuracy, which means it is also fit-
ting to the noise in the data, an undesirable condition known as overfitting. When
one obtains an overfitted solution, it will not fit new data well (Fig. 4.5). In other
words, one is interested not in using NNs to fit a given dataset to arbitrary accuracy,
but in using NN to learn the underlying relationship in the given data, i.e. be able
to generalize from a given dataset, so that the extracted relationship even fits new
data not used in training the NN model.

To prevent overfitting, the dataset is often divided into two parts, one for training,
the other for validation. As the number of training epochs increases, the objective
function evaluated over the training data decreases. However, the objective func-
tion evaluated over the validation data will drop but eventually increase as training
epochs increase (Fig. 4.6), indicating that the training dataset is already overfitted.
When the objective function evaluated over the validation data reaches a minimum,

4.4 Back-propagation 101

y

x

Fig. 4.5 Illustrating the problem of overfitting: the dashed curve illustrates a good
fit to noisy data (indicated by the squares), while the solid curve illustrates over-
fitting – where the fit is perfect on the training data (squares), but is poor on the
validation data (circles). Often the NN model begins by fitting the training data as
the dashed curve, but with further iterations, ends up overfitting as the solid curve.
(Follows Hsieh and Tang (1998).)

Epochs

Training

Validation

J

Fig. 4.6 Illustrating the behaviour of the objective function J as the number of
training epochs increases. Evaluated over the training data, the objective function
(solid curve) decreases with increasing number of epochs; however, evaluated
over an independent set of validation data, the objective function (dashed curve)
initially drops but eventually rises with increasing number of epochs, indicating
that overfitting has occurred when a large number of training epochs is used. The
minimum in the objective function evaluated over the validation data indicates
when training should be stopped to avoid overfitting (as marked by the vertical
dotted line).

102 Feed-forward neural network models

1

2

3

4

5

Objective function

Fig. 4.7 Illustrating the objective function surface where, depending on the start-
ing condition, the search algorithm often gets trapped in one of the numerous deep
local minima. The local minima labelled 2, 4 and 5 are likely to be reasonable
local minima, while the minimum labelled 1 is likely to be a bad one (in that the
data were not at all well fitted). The minimum labelled 3 is the global minimum,
which could correspond to an overfitted solution (i.e. fitted closely to the noise in
the data), and may in fact be a poorer solution than the minima labelled 2, 4 and
5. (Reproduced from Hsieh and Tang (1998) with permission of the American
Meteorological Society.)

it gives a useful signal that this is the appropriate time to stop the training, as addi-
tional training epochs only contribute to overfitting. This very common approach
is called the early stopping (a.k.a. stopped training) method. What fraction of the
data one should reserve for validation is examined in Section 6.4.

Similarly, the objective function evaluated over the training data generally drops
as the number of hidden neurons increases. Again, the objective function evaluated
over a validation set will drop initially but eventually increase due to overfitting
from excessive number of hidden neurons. Hence the minimum of the objective
function over the validation data may give an indication on how many hidden
neurons to use.

A further complication is the common presence of multiple local minima in
the objective function (Fig. 4.7) – the algorithm may converge to a shallow local
minimum, yielding a poor fit to the training data. The local minima problem will
be discussed further in the next two chapters.

4.5 Hidden neurons

So far, we have described only an NN with one hidden layer. It is not uncommon to
use NN with more than one hidden layer, and the back-propagation algorithm can
be readily generalized to more than one hidden layer. Usually each hidden layer

4.5 Hidden neurons 103

uses a sigmoidal-shaped activation function and receives input from the preceding
layer of neurons, similar to (4.16). How many layers of hidden neurons does one
need? And how many neurons in each hidden layer?

Studies such as Cybenko (1989), Hornik et al. (1989) and Hornik (1991) have
shown that given enough hidden neurons in an MLP with one hidden layer, the
network can approximate arbitrarily well any continuous function y = f (x). Thus
even though the original perceptron is of limited power, by adding one hidden
layer, the MLP has become a successful universal function approximator. There is,
however, no guidance as to how many hidden neurons are needed. Experience tells
us that a complicated continuous function f with many bends needs many hidden
neurons, while an f with few bends needs fewer hidden neurons.

Intuitively, it is not hard to understand why a 1-hidden-layer MLP with enough
hidden neurons can approximate any continuous function. For instance, the func-
tion can be approximated by a sum of sinusoidal functions under Fourier decom-
position. One can in turn approximate a sinusoidal curve by a series of small steps,
i.e. a sum of Heaviside step functions (or sigmoidal shaped functions) (for details,
see Bishop (1995), or Duda et al. (2001)). Hence the function can be approxi-
mated by a linear combination of step functions or sigmoidal shaped functions,
which is exactly the architecture of the 1-hidden-layer MLP. Alternatively, one can
think of the continuous function as being composed of localized bumps, each of
which can be approximated by a sum of sigmoidal functions. Of course, the sinu-
soidal and bump constructions are only conceptual aids, the actual NN does not try
deliberately to sum sigmoidal functions to yield sinusoidals or bumps.

In real world applications, one may encounter some very complicated nonlinear
relations where a very large number of hidden neurons are needed if a single hid-
den layer is used, whereas if two hidden layers are used, a more modest number
of hidden neurons suffices, and gives greater accuracy. In Chapter 12, there are
several examples of 2-hidden-layer MLPs used in satellite remote sensing, e.g. for
synthetic aperture radar (SAR) data, MLPs with two and even three hidden layers
are used (Section 12.1.4). Later, 3-hidden-layer MLPs are encountered in nonlinear
principal component analysis (Chapter 10).

Hidden neurons have been somewhat of a mystery, especially to new users of
NN models. They are intermediate variables needed to carry out the computation
from the inputs to the outputs, and are generally not easy to interpret. If the hidden
neurons are few, then they might be viewed as a low-dimensional phase space
describing the state of the system. For example, Hsieh and Tang (1998) considered
a simple MLP network for forecasting the tropical Pacific wind stress field. The
input consists of the first 11 principal components (PCs) from a singular spectrum
analysis of the wind stress field, plus a sine and cosine function of annual period to

104 Feed-forward neural network models

Fig. 4.8 The values of the three hidden neurons plotted in 3-D space for the
years 1972, 1973, 1976, 1982, 1983 and 1988. Projections onto 2-D planes are
also shown. The small circles are for the months from January to December, and
the two ‘+’ signs for January and February of the following year. El Niño warm
episodes occurred during 1972, 1976 and 1982, while a cool episode occurred
in 1988. In 1973 and 1983, the tropics returned to cooler conditions from an El
Niño. Notice the similarity between the trajectories during 1972, 1976 and 1982,
and during 1973, 1983 and 1988. In years with neither warm nor cold episodes,
the trajectories oscillate randomly near the centre of the cube. From these trajec-
tories, one can identify the precursor phase regions for warm episodes and cold
episodes; and when the system enters one of these precursor phase regions, a fore-
cast for either a warm or a cool episode can be issued. (Reproduced from Hsieh
and Tang (1998) with permission of the American Meteorological Society.)

indicate the phase of the annual cycle, as the El Niño-Southern Oscillation (ENSO)
fluctuations are often phase locked to the annual cycle. The single hidden layer has
three neurons, and the output layer the same 11 PC time series one month later. As
the values of the three hidden neurons can be plotted in 3-D space, Fig. 4.8 shows
their trajectory for selected years. From Fig. 4.8 and the trajectories of other years
(not shown), we can identify regions in the 3-D phase space as the El Niño warm
episode phase and its precursor phase, and the cold episode and its precursor. One
can issue warm episode or cold episode forecasts whenever the system enters the
warm episode precursor region or the cold episode precursor region, respectively.
Thus the hidden layer spans a 3-D phase space for the ENSO system, and is thus
a higher dimension generalization of the 2-D phase space based on the principal
oscillation pattern (POP) method (Section 3.6).

Hence in this example, we can interpret the NN as a projection from the input
space onto a phase space, as spanned by the neurons in the hidden layer. The state

4.6 Radial basis functions (RBF) 105

of the system in the phase space then allows a projection onto the output space,
which can be the same input variables some time in the future, or other variables in
the future. This interpretation provides a guide for choosing the appropriate number
of neurons in the hidden layer, namely, the number of hidden neurons should be the
same as the embedding manifold for the system. Since the ENSO system is thought
to have only a few degrees of freedom (Grieger and Latif, 1994), the number of
hidden neurons needed should be about 3–7 in NN models for forecasting ENSO –
using more could easily lead to overfitting.

For most NN applications, it is not worth spending time to find interpretations
for the hidden neurons, especially when there are many hidden neurons in the
network. One is also tempted to interpret the weights in an NN as nonlinear regres-
sion coefficients; however, in general there are no easy ways to find meaningful
interpretations of the large number of weights in a typical NN.

4.6 Radial basis functions (RBF)

While sigmoidal-shaped activation functions (e.g. the hyperbolic tangent func-
tion) are widely used in feed-forward NN, radial basis functions (RBF) involving
Gaussian-shaped functions are also commonly used.

Radial basis function methods originated in the problem of exact interpolation,
where every input vector is required to be mapped exactly to the corresponding
target vector (Powell, 1987). First, consider a 1-D target space. The output of the
mapping f is a linear combination of basis functions g

f (x) =
k∑

j=1

w j g(‖x − c j‖, σ), (4.41)

where each basis function is specified by its centre c j and a width parameter σ . In
the case of exact interpolation, if there are n observations, then there are k = n
basis functions to allow for the exact interpolation, and each c j corresponds to one
of the input data vectors. There is a number of choices for the basis functions, the
most common being the Gaussian form

g(r, σ) = exp

(
− r2

2σ 2

)
. (4.42)

In NN applications, exact interpolation is undesirable, as it would mean an exact
fit to noisy data. The remedy is simply to choose k < n, i.e. use fewer (often
far fewer) basis functions than the number of observations. This prevents an exact
fit, but allows a smooth interpolation of the noisy data. By adjusting the number
of basis functions used, one can obtain the desired level of closeness of fit. The
mapping is now

106 Feed-forward neural network models

f (x) =
k∑

j=1

w j g(‖x − c j‖, σ j) + w0, (4.43)

where (i) the centres c j are no longer given by the input data vectors but are deter-
mined during training, (ii) instead of using a uniform σ for all the basis functions,
each basis function has its own width σ j , determined from training, and (iii) an
offset parameter w0 has been added.

If the output is multivariate, the mapping simply generalizes to

fi (x) =
k∑

j=1

w j i g(‖x − c j‖, σ j) + w0i , (4.44)

for the i th output variable.
It is also common to use renormalized (or simply normalized) radial basis func-

tions (Moody and Darken, 1989), where the RBF g(‖x − c j‖, σ j) in (4.43) is
replaced by the renormalized version

g(‖x − c j‖, σ j)∑k
m=1 g(‖x − cm‖, σm)

. (4.45)

Using RBF can lead to holes, i.e. regions where the basis functions all give little
support (Fig. 4.9). This problem is avoided by using renormalized basis functions.

While RBF neural networks can be trained like MLP networks by back-
propagation (termed adaptive RBFs), RBFs are most commonly used in a non-
adaptive manner, i.e. the training is performed in two separate stages, where the first
stage uses unsupervised learning to find the centres and widths of the RBFs, fol-
lowed by supervised learning via linear least squares to minimize the MSE between
the network output and the target data.

Let us describe the procedure of the non-adaptive RBF: first choose k, the num-
ber of RBFs to be used. To find the centres of the RBFs, one commonly uses
K-means clustering (Section 1.7), or self-organizing maps (SOMs) (Section 10.3).

Next, estimate the width parameters σ j . For the j th centre c j , find the distance
r j to the closest neighbouring centre, then set σ j = αr j , where the factor α is
typically chosen in the range 1 ≤ α ≤ 3.

With the basis functions g(‖x − c j‖, σ j) now determined, the only task left is to
find the weights w j i in the equation

fi (x) =
k∑

j=0

w j i g j (x), (4.46)

which is the same as (4.44), with g j (x) = g(‖x−c j‖, σ j) (j = 1, . . . , k), g0(x) =
1, and the summation starting from j = 0 to incorporate the offset parameter w0i .

4.6 Radial basis functions (RBF) 107

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(a)

Distance

R
B

F

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Distance

R
en

or
m

al
iz

ed
 R

B
F

Fig. 4.9 (a) Radial basis functions (RBFs) and (b) renormalized RBFs. Holes are
present in (a), where RBFs with fixed width σ are used. This problem is avoided
in (b) with the renormalized RBFs.

The network output fi (x) is to approximate the target data yi (x) by minimizing the
MSE, which is simply a linear least squares problem. In matrix notation, this can
be written as

Y = GW + E, (4.47)

where (Y)li = yi (x(l)), (with l = 1, . . . , n), (G)l j = g j (x(l)), (W) j i = w j i , and
E is the error or residual in the least squares fit. The linear least squares solution
(analogous to (1.46)) is given by

W = (GTG)−1GTY. (4.48)

In summary, the RBF NN is most commonly trained in two distinct stages.
The first stage involves finding the centres and widths of radial basis functions
by unsupervised learning of the input data (with no consideration of the output tar-
get data). The second stage involves finding the best linear least squares fit to the
output target data (supervised learning). In contrast, in the multi-layer perceptron
(MLP) NN approach, all weights are trained together under supervised learning.
The supervised learning in MLP involves nonlinear optimizations which usually
have multiple minima in the objective function, whereas the supervised learning in

108 Feed-forward neural network models

RBF involves only optimization of linear least squares, hence no multiple minima
in the objective function – a main advantage of the RBF over the MLP approach.
However, that the basis functions are computed in the RBF NN approach without
considering the output target data can be a major drawback, especially when the
input dimension is large. The reason is that many of the input variables may have
significant variance but have no influence on the output target, yet these irrelevant
inputs introduce a large number of basis functions. The second stage training may
then involve solving a very large, poorly conditioned matrix problem, which can be
computationally very expensive or even intractable. The advent of kernel methods
has alleviated this problem (see Section 8.4 for classification and Section 9.1 for
regression).

4.7 Conditional probability distributions

So far, the NN models have been used for nonlinear regression, i.e. the output y
is related to the inputs x by a nonlinear function, y = f (x). In many applications,
one is less interested in a single predicted value for y given by f (x) than in p(y|x),
a conditional probability distribution of y given x. With p(y|x), one can easily
obtain a single predicted value for y by taking the mean, the median or the mode
(i.e. the location of the peak) of the distribution p(y|x). In addition, the distribution
provides an estimate of the uncertainty in the predicted value for y. For managers
of utility companies, the forecast that tomorrow’s air temperature will be 25◦C is
far less useful than the same forecast accompanied by the additional information
that there is a 10% chance that the temperature will be higher than 30◦C and 10%
chance lower than 22◦C.

Many types of non-Gaussian distribution are encountered in the environment.
For instance, variables such as precipitation and wind speed have distributions
which are skewed to the right, since one cannot have negative values for precip-
itation and wind speed. The gamma distribution and the Weibull distributions have
been commonly used to model precipitation and wind speed respectively (Wilks,
1995). Variables such as relative humidity and cloud amount (measured as covering
a fraction of the sky) are limited to lie within the interval [0, 1], and are commonly
modelled by the beta distribution (Wilks, 1995). The Johnson system of distribu-
tions is a system of flexible functions used to fit a wide variety of empirical data
(Niermann, 2006).

Knowledge of the distribution of extreme values is also vital to the design of
safe buildings, dams, floodways, roads and bridges. For instance, levees need to be
built to handle say the strongest hurricane expected in a century to prevent a city
from drowning. Insurance companies also need to know the risks involved in order
to set insurance premiums at a profitable level. In global warming studies, one is

4.7 Conditional probability distributions 109

also interested in the change in the extremes – e.g. the extremes of the daily max-
imum temperature. Long term changes in the distribution of extreme events from
global climate change have also been investigated, e.g. for storms (Lambert and
Fyfe, 2006) and heavy precipitation events (Zhang et al., 2001). The Gumbel dis-
tribution, which is skewed to the right, is commonly used in extreme value analysis
(von Storch and Zwiers, 1999).

Suppose we have selected an appropriate distribution function, which is gov-
erned by some parameters θ . For instance, the gamma distribution is governed by
two parameters (θ = [c, s]T):

g(y|c, s) = 1

Z

(y

s

)c−1
exp

(
− y

s

)
, 0 ≤ y < ∞, (4.49)

where c > 0, s > 0 and Z =
(c)s, with
 denoting the gamma function, an exten-
sion of the factorial function to a real or complex variable. We allow the parameters
to be functions of the inputs x, i.e. θ = θ(x). The conditional distribution p(y|x)

is now replaced by p(y|θ(x)). The functions θ(x) can be approximated by an NN
(e.g. an MLP or an RBF) model, i.e. inputs of the NN model are x while the out-
puts are θ . Using NN to model the parameters of a conditional probability density
distribution is sometimes called a conditional density network (CDN) model. To
train the NN model, we need an objective function.

To obtain an objective function, we turn to the principle of maximum likelihood.
If we have a probability distribution p(y|θ), and we have observed values yd given
by the dataset D, then the parameters θ can be found by maximizing the likelihood
function p(D|θ), i.e. the parameters θ should be chosen so that the likelihood of
observing D is maximized. Note that p(D|θ) is a function of θ as D is known, and
the output y can be multivariate.

Since the observed data have n = 1, . . . , N observations, and if we assume inde-
pendent observations so we can multiply their probabilities together, the likelihood
function is then

L = p(D|θ) =
N∏

n=1

p(y(n)|θ (n)) =
N∏

n=1

p(y(n)|θ(x(n))), (4.50)

where the observed data y(n)

d are simply written as y(n), and θ(x(n)) are determined
by the weights w (including all weight and offset parameters) of the NN model.
Hence

L =
N∏

n=1

p(y(n)|w, x(n)). (4.51)

Mathematically, maximizing the likelihood function is equivalent to minimiz-
ing the negative logarithm of the likelihood function, since the logarithm is a

110 Feed-forward neural network models

monotonically increasing function. Hence we choose the objective function to be

J = − ln L = −
N∑

n=1

ln p(y(n)|w, x(n)), (4.52)

where we have converted the (natural) logarithm of a product of N terms to a sum
of N logarithmic terms. Since x(n) and y(n) are known from the given data, the
unknowns w are optimized to attain the minimum J . Once the weights of the NN
model are solved, then for any input x, the NN model outputs θ(x), which gives
the conditional distribution p(y|x) via p(y|θ(x)).

In our example, where p(y|θ) is the gamma distribution (4.49), we have to
ensure that the outputs of the NN model satisfy the restriction that both parameters
(c and s) of the gamma distribution have to be positive. This can be accommodated
easily by letting

c = exp(z1), s = exp(z2), (4.53)

where z1 and z2 are the NN model outputs.

4.7.1 Mixture models

The disadvantage of specifying a parametric form for the conditional distribution is
that even adjusting the parameters may not lead to a good fit to the observed data.
One way to produce an extremely flexible distribution function is to use a mixture
(i.e. a weighted sum) of simple distribution functions to produce a mixture model:

p(y|x) =
K∑

k=1

ak(x)φk(y|x), (4.54)

where K is the number of components (also called kernels) in the mixture, ak(x) is
the (non-negative) mixing coefficient and φk(y|x) the conditional distribution from
the kth kernel. There are many choices for the kernel distribution function φ, the
most popular choice being the Gaussian function

φk(y|x) = 1

(2π)M/2 σ M
k (x)

exp

(
−‖y − μk(x)‖2

2σ 2
k (x)

)
, (4.55)

where the Gaussian kernel function is centred at μk(x) with variance σ 2
k (x), and

M is the dimension of the output vector y. With large enough K , and with prop-
erly chosen μk(x) and σk(x), p(y|x) of any form can be approximated to arbitrary
accuracy by the Gaussian mixture model.

An NN model approximates the parameters of the Gaussian mixture model,
namelyμk(x), σk(x) and ak(x). There are a total of M×K parameters inμk(x), and

4.7 Conditional probability distributions 111

K parameters in each of σk(x) and ak(x), hence a total of (M + 2)K parameters.
Let z represent the (M + 2)K outputs of the NN model. Since there are constraints
on σk(x) and ak(x), they cannot simply be the direct outputs from the NN model.
As σk(x) > 0, we need to represent them as

σk = exp
(

z(σ)
k

)
, (4.56)

where z(σ)
k are the NN model outputs related to the σ parameters.

From the normalization condition∫
p(y|x)dy = 1, (4.57)

we obtain, via (4.54) and (4.55), the constraints

K∑
k=1

ak(x) = 1, 0 ≤ ak(x) ≤ 1. (4.58)

To satisfy these constraints, ak(x) is related to the NN output z(a)
k by a softmax

function, i.e.

ak =
exp

(
z(a)

k

)
∑K

k′=1 exp
(

z(a)

k′
) . (4.59)

As the softmax function is widely used in NN models involved in classification
problems, it is discussed in detail in Chapter 8. Since there are no constraints on
μk(x), they can simply be the NN model outputs directly, i.e.

μ jk = z(μ)

jk . (4.60)

The objective function for the NN model is again obtained via the likelihood as
in (4.52), with

J = −
∑

n

ln

(
K∑

k=1

ak(x(n))φk(y(n)|x(n))

)
. (4.61)

Once the NN model weights w are solved from minimizing J , we obtain the mix-
ture model parameters μk(x), σk(x) and ak(x) from the NN model outputs, hence
the conditional distribution p(y|x) via (4.54).

To get a specific y value given x, we calculate the mean of the conditional
distribution using (4.54) and (4.55), yielding

E[y|x] =
∫

y p(y|x)dy =
∑

k

ak(x)

∫
y φk(y|x)dy =

∑
k

ak(x)μk(x). (4.62)

112 Feed-forward neural network models

We can also calculate the variance of the conditional distribution about the
conditional mean using (4.54), (4.55) and (4.62):

s2(x) = E
[‖y − E[y|x] ‖2 | x]

=
∑

k

ak(x)

⎡
⎣σk(x)2 +

∥∥∥∥∥μk(x) −
K∑

k=1

ak(x)μk(x)

∥∥∥∥∥
2
⎤
⎦ . (4.63)

Hence the Gaussian mixture model not only gives the conditional distribution
p(y|x), but also conveniently provides, for a given x, a specific estimate for y and
a measure of its uncertainty via the conditional mean (4.62) and variance (4.63).

Exercises

(4.1) It is given that x , y and z are binary variables with the value of 0 or 1, and z =
f (x, y). We have encountered in Section 4.2 two special cases of f, namely
the AND logical function, and the XOR (i.e. the exclusive OR) function.
There are a total of 16 such possible f (x, y) logical functions. Which of
these 16 functions cannot be represented by a perceptron model with two
input neurons connected directly to an output neuron by a step function?

(4.2) Show that for a multi-layer perceptron (MLP) NN with one hidden layer, if
the activation function for the hidden layer is linear, then the NN reduces to
one without any hidden layer.

(4.3) Consider an MLP NN model containing m1 inputs, one hidden layer with m2

neurons and m3 outputs. (a) If the activation function in the hidden layer is the
tanh function, what happens if we flip the signs of all the weights (including
offset parameters) feeding into a particular hidden neuron, and also flip the
signs of the weights leading out of that neuron? For a given set of weights for
the NN, how many equivalent sets of weights are there due to the ‘sign-flip’
symmetries? (b) Furthermore, the weights associated with one hidden neuron
can be interchanged with those of another hidden neuron without affecting
the NN outputs. Hence show that there are a total of m2! 2m2 equivalent sets
of weights from the ‘sign-flip’ and the ‘interchange’ symmetries.

(4.4) For the logistic sigmoidal activation function f (x) in (4.5), show that its
derivative f ′(x) can be expressed in terms of f (x). Also show that for the
activation function tanh(x), its derivative can also be expressed in terms of
the tanh function.

5

Nonlinear optimization

As mentioned in the previous chapter, the polynomial fit, which suffers from the
curse of dimensionality, requires only linear optimization, while the MLP NN
model needs nonlinear optimization. To appreciate the vast difference between
linear optimization and nonlinear optimization, consider the relation

y = w0 +
L∑

l=1

wl fl, (5.1)

where fl = fl(x1, . . . , xm), and the polynomial fit is a special case. Although the
response variable y is nonlinearly related to the predictor variables x1, . . . , xm (as
fl is in general a nonlinear function), y is a linear function of the parameters {wl}.
It follows that the objective function

J =
∑

(y − yd)
2, (5.2)

(with yd the target data and the summation over all observations) is a quadratic
function of the {wl}, which means that the objective function J (w0, . . . , wL) is a
parabolic surface, which has a single minimum, the global minimum.

In contrast, when y is a nonlinear function of {wl}, the objective function sur-
face is in general filled with numerous hills and valleys, i.e. there are usually many
local minima besides the global minimum. (If there are symmetries among the
parameters, there can even be multiple global minima.) Thus nonlinear optimiza-
tion involves finding a global minimum among many local minima. The difficulty
faced by the optimization algorithm is similar to that encountered by a robot rover
sent to explore the rugged surface of a planet. The rover can easily fall into a hole
or a valley and be unable to escape from it, thereby never reaching its final objec-
tive, the global minimum. Thus nonlinear optimization is vastly more tricky than
linear optimization, with no guarantee that the algorithm actually finds the global
minimum, as it may become trapped by a local minimum.

113

114 Nonlinear optimization

In essence, with NN models, one needs to minimize the objective function J with
respect to w (which includes all the weight and offset/bias parameters), i.e. find the
optimal parameters which will minimize J . It is common to solve the minimization
problem using an iterative procedure. Suppose the current approximation of the
solution is w0. A Taylor series expansion of J (w) around w0 yields

J (w) = J (w0) + (w − w0)
T ∇ J (w0) + 1

2
(w − w0)

T H (w − w0) + . . . , (5.3)

where ∇ J has components ∂ J/∂wi , and H is the Hessian matrix, with elements

(H)i j ≡ ∂2 J

∂wi∂w j

∣∣∣∣
w0

. (5.4)

Applying the gradient operator to (5.3), we obtain

∇ J (w) = ∇ J (w0) + H (w − w0) + . . . (5.5)

If w0 is a minimum, then ∇ J (w0) = 0, and (5.3) (with the higher order terms
ignored) reduces to an equation describing a parabolic surface. Hence, near a min-
imum, assuming the Hessian matrix is non-zero, the objective function has an
approximately parabolic surface.

Next, let us derive an iterative scheme for finding the optimal w. At the optimal
w, ∇ J (w) = 0, and (5.5), with higher order terms ignored, yields

H (w − w0) = −∇ J (w0), i.e. w = w0 − H−1∇ J (w0). (5.6)

This suggests the following iterative scheme for proceding from step k to step k+1:

wk+1 = wk − H−1
k ∇ J (wk). (5.7)

This is known as Newton’s method. In the 1-dimensional case, (5.7) reduces to the
familiar form

wk+1 = wk − J ′(wk)

J ′′
(wk)

, (5.8)

for finding a root of J ′(w) = 0, where the prime and double prime denote
respectively the first and second derivatives.

In the multi-dimensional case, if w is of dimension L , then the Hessian matrix
Hk is of dimension L × L . Computing H−1

k , the inverse of an L × L matrix, may
be computationally too costly. Simplification is needed, resulting in quasi-Newton
methods. Unlike quasi-Newton and other deterministic optimization methods,
stochastic optimization methods (e.g. simulated annealing and genetic algorithms)
introduce some stochastic element into the search for the global minimum.

5.1 Gradient descent method 115

5.1 Gradient descent method

We have already encountered the gradient descent or steepest descent method
in the back-propagation algorithm, where the parameters are updated at the kth
step by

wk+1 = wk − η∇ J (wk), (5.9)

with η the learning rate. Clearly (5.9) is a major simplification of Newton’s method
(5.7), with the learning rate η replacing H−1, the inverse of the Hessian matrix.
One also tries to reach the optimal w by descending along the negative gradient
of J in (5.9), hence the name gradient descent or steepest descent, as the negative
gradient gives the direction of steepest descent. An analogy is a hiker trying to
descend in thick fog from a mountain to the bottom of a valley by taking the steep-
est descending path. One might be tempted to think that following the direction of
steepest descent should allow the hiker to reach the bottom most efficiently; alas,
this approach is surprisingly inefficient, as we shall see.

The learning rate η can be either a fixed constant, or calculated by a line mini-
mization algorithm. In the former case, one simply takes a step of fixed size along
the direction of the negative gradient of J . In the latter, one proceeds along the
negative gradient of J until one reaches the minimum of J along that direction
(Fig. 5.1). More precisely, suppose at step k, we have estimated parameters wk . We
then descend along the negative gradient of the objective function, i.e. travel along
the direction

dk = −∇ J (wk). (5.10)

We then travel along dk , with our path described by wk + ηdk , until we reach the
minimum of J along this direction. Going further along this direction would mean

– ∇ J(Wk+1)
Wk+1

dk

Wk

Fig. 5.1 The gradient descent approach starts from the parameters wk estimated at
step k of an iterative optimization process. The descent path dk is chosen along the
negative gradient of the objective function J , which is the steepest descent direc-
tion. Note that dk is perpendicular to the J contour where wk lies. The descent
along dk proceeds until it is tangential to a second contour at wk+1, where the
direction of steepest descent is given by −∇ J (wk+1). The process is iterated.

116 Nonlinear optimization

we would actually be ascending rather than descending, so we should stop at this
minimum of J along dk , which occurs at

∂

∂η
J (wk + ηdk) = 0, (5.11)

thereby yielding the optimal step size η. The differentiation by η gives

dT
k ∇ J (wk + ηdk) = 0. (5.12)

With

wk+1 = wk + ηdk, (5.13)

we can rewrite the above equation as

dT
k ∇ J (wk+1) = 0, i.e. dk ⊥ ∇ J (wk+1). (5.14)

But since dk+1 = −∇ J (wk+1), we have

dT
k dk+1 = 0, i.e. dk ⊥ dk+1. (5.15)

As the new direction dk+1 is orthogonal to the previous direction dk , this results in
an inefficient zigzag path of descent (Fig. 5.2(a)).

The other alternative of using fixed step size is also inefficient, as a small step
size results in taking too many steps (Fig. 5.2(b)), while a large step size results in
an even more severely zigzagged path of descent (Fig. 5.2(c)).

One way to reduce the zigzag in the gradient descent scheme is to add
‘momentum’ to the descent direction, so

dk = −∇ J (wk) + μdk−1, (5.16)

with μ the momentum parameter. Here the momentum or memory of dk−1 pre-
vents the new direction dk from being orthogonal to dk−1, thereby reducing the
zigzag (Fig. 5.2(d)). The next estimate for the parameters in the momentum method
is also given by (5.13). The following scheme, the conjugate gradient method,
automatically chooses the momentum parameter μ.

5.2 Conjugate gradient method

The linear conjugate gradient method was developed by Hestenes and Stiefel
(1952), and extended to nonlinear problems by Fletcher and Reeves (1964).
Assume that at step k, (5.12) is satisfied. Now we want to find the next direction
dk+1, which preserves what was achieved in (5.12) – in (5.12), the gradient of J in
the direction of dk has been made 0; now starting from wk+1, we want to find the

5.2 Conjugate gradient method 117

(a) (b)

(c) (d)

Fig. 5.2 The gradient descent method with (a) line minimization (i.e. optimal step
size η), (b) fixed step size which is too small, (c) fixed step size which is too large,
and (d) momentum, which reduces the zigzag behaviour during descent. (Adapted
from Masters (1995).)

new direction dk+1, such that the gradient of J in the direction of dk remains 0 (to
lowest order), as we travel along dk+1, i.e.

dT
k ∇ J (wk+1 + ηdk+1) = 0. (5.17)

Using (5.5), we can write

∇ J (wk+1 + η dk+1) ≈ ∇ J (wk+1) + H η dk+1. (5.18)

Hence (5.17) becomes

0 = dT
k ∇ J (wk+1 + η dk+1) ≈ dT

k ∇ J (wk+1) + η dT
k H dk+1. (5.19)

118 Nonlinear optimization

Invoking (5.14), we obtain (to lowest order) the conjugate direction property

dT
k H dk+1 = 0, (5.20)

where dk+1 is said to be conjugate to dk .
Next, we try to obtain an estimate for the momentum parameter μ. Let

gk ≡ ∇ J (wk). (5.21)

Substituting (5.16) for dk+1 in (5.20) yields

dT
k H (−gk+1 + μdk) = 0. (5.22)

Hence

μdT
k H dk = dT

k H gk+1 = gT
k+1 H dk, (5.23)

as HT = H. While μ can be calculated from this equation, it involves the Hessian
matrix, which is in general not known and is computationally costly to estimate.

Ignoring higher order terms and following (5.5), we have

gk+1 − gk = H(wk+1 − wk) = ηHdk, (5.24)

where (5.13) has been invoked. Substituting this equation into (5.23) gives an
estimate for the momentum parameter μ

μ = gT
k+1(gk+1 − gk)

dT
k (gk+1 − gk)

. (5.25)

This way to estimate μ is called the Hestenes–Stiefel method.
A far more commonly used conjugate gradient algorithm is the Polak–Ribiere

method: (5.12) can be written as

dT
k gk+1 = 0. (5.26)

In accordance with (5.16),

dT
k gk = −gT

k gk + μ dT
k−1 gk = −gT

k gk, (5.27)

where (5.26) has been invoked. Equation (5.25) becomes

μ = gT
k+1(gk+1 − gk)

gT
k gk

, (5.28)

which is the Polak–Ribiere method (Polak and Ribiere, 1969; Polak, 1971).
Another commonly used algorithm is the Fletcher–Reeves method (Fletcher and

Reeves, 1964), with

μ = gT
k+1gk+1

gT
k gk

, (5.29)

5.2 Conjugate gradient method 119

J

a

b

d

c

η

Fig. 5.3 Using line search to find the minimum of the function J (η). First, three
points a, b and c are found with J (a) > J (b) and J (b) < J (c), so that the
minimum is bracketed within the interval (a, c). Next a parabola is fitted to pass
through the three points (dashed curve). The minimum of the parabola is at η = d.
Next the three points among a, b, c and d with the three lowest values of J are
selected, and a new parabola is fitted to the three selected points, with the process
iterated till convergence to the minimum of J .

which follows from the Polak–Ribiere version, as it can be shown that gT
k+1gk = 0

to lowest order (Bishop, 1995). Since the objective function is not exactly a
quadratic, the higher order terms cause the two versions to differ from each other.
Which version is better depends on the particular problem, though the Polak–
Ribiere version is generally considered to have the better performance (Luenberger,
1984; Haykin, 1999).

We still have to find the optimal step size η along the search direction dk , i.e. the
minimum of the objective function J along dk has to be located by finding the η

which minimizes J (wk +ηdk). For notational simplicity, we will write J (wk +ηdk)

as J (η). To avoid dealing with costly Hessian matrices, a line search algorithm is
commonly used. The basic line search procedure is as follows:

(1) Find three points a, b and c along the search direction such that J (a) > J (b) and
J (b) < J (c). As the objective function is continuous, this then guarantees a minimum
has been bracketed within the interval (a, c).

(2) Fit a parabolic curve to pass through J (a), J (b) and J (c) (Fig. 5.3). The minimum of
the parabola is at η = d.

(3) Next choose the three points among a, b, c and d with the three lowest values of J .
Repeat (2) till convergence to the minimum. More sophisticated algorithms include
the widely used Brent’s method (Brent, 1973; Press et al., 1986).

120 Nonlinear optimization

5.3 Quasi-Newton methods

Earlier in this chapter, we have encountered Newton’s method as (5.7), which can
be expressed as

wk+1 = wk − Gkgk, (5.30)

with gk(≡ ∇ J (wk)), the gradient of the objective function, and Gk(≡ H−1
k), the

inverse of the Hessian matrix. As this form was derived by ignoring terms above the
quadratic in the objective function, this form is highly effective near a minimum,
where the objective function has generally a parabolic surface, but may not be
effective further away from the minimum because of the higher order terms in the
objective function. Hence, a simple modification of Newton’s method is to have

wk+1 = wk − ηkGkgk, (5.31)

for some scalar step size ηk .
Newton’s method is extremely expensive for higher dimension problems, since

at each iteration, the inverse of the Hessian matrix has to be computed. Quasi-
Newton methods try to reduce computational costs by making simpler estimates
of Gk . Quasi-Newton methods are also related to gradient and conjugate gradient
methods. In fact, the simplest approximation, i.e. replacing Gk by the iden-
tity matrix I in (5.31), yields the gradient descent method. The commonly used
quasi-Newton methods also preserve the conjugate direction property (5.20) as in
conjugate gradient methods.

The first successful quasi-Newton method is the Davidon–Fletcher–Powell
(DFP) method (Davidon, 1959; Fletcher and Powell, 1963). The procedure is to
start at step k = 0 , with any w0 and any symmetric positive definite matrix G0.
Then iterate the following steps.

(1) Set dk = −Gkgk .
(2) Minimize J (wk +ηkdk) with respect to ηk ≥ 0. One then computes wk+1, pk ≡ ηkdk ,

and gk+1.
(3) Set

qk = gk+1 − gk, and

Gk+1 = Gk + pkpT
k

pT
k qk

− GkqkqT
k Gk

qT
k Gkqk

. (5.32)

(4) Update k, then return to (1) if needed.

The conjugate direction property (5.20) is preserved in the DFP method (Luen-
berger, 1984). If one chooses the initial approximation G0 = I, the DFP method
becomes the conjugate gradient method.

5.4 Nonlinear least squares methods 121

The most popular quasi-Newton method is the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). Instead of (5.32), the update for the BFGS method (Luenberger, 1984) is

GBFGS
k+1 = GDFP

k+1 + vkvT
k , (5.33)

where GDFP
k+1 is given by (5.32), and

vk = (qT
k Gkqk)

1/2

(
pk

pT
k qk

− Gkqk

qT
k Gkqk

)
. (5.34)

The conjugate direction property (5.20) is also preserved in the BFGS method.
In summary, both conjugate gradient and quasi-Newton methods avoid using the

inverse of the Hessian matrix. However, quasi-Newton methods do try to approx-
imate the inverse Hessian, while preserving the conjugate direction property of
the conjugate gradient methods. Thus quasi-Newton methods can be regarded as a
further extension of the conjugate gradient methods by incorporating an approxi-
mation of the inverse Hessian to simulate Newton’s method, which leads to faster
convergence than the conjugate gradient methods. Another advantage is that the
line search, which is of critical importance in the conjugate gradient methods, need
not be performed to high accuracy in the quasi-Newton methods, as its role is not as
critical. The major disadvantage of the quasi-Newton methods is the large storage
associated with carrying the L × L matrix Gk (as w has L elements), i.e. the mem-
ory requirement for the quasi-Newton methods is of order O(L2) versus O(L) for
the conjugate gradient methods. For L of a thousand or more weights, the memory
requirement of O(L2) may become prohibitive, and the conjugate gradient method
has the advantage.

To reduce the large memory requirement, Shanno (1978) proposed limited mem-
ory quasi-Newton methods. In the limited memory version of the BFGS method,
the matrix Gk in (5.32) and (5.34) is replaced by the identity matrix I (Luenberger,
1984), reducing the memory requirement to O(L). It turns out that when an exact
line search is used, this new method is equivalent to the Polak–Ribiere form of the
conjugate gradient method – of course, the line search is not required to be highly
accurate in this limited memory quasi-Newton method.

5.4 Nonlinear least squares methods

So far, the optimization methods presented have not been limited to an objective
function of a specific form. In many situations, the objective function or error
function E involves a sum of squares, i.e.

E = 1

2

∑
n

(ε(n))2 = 1

2
‖ε‖2, (5.35)

122 Nonlinear optimization

where we have used E instead of J to avoid confusion with the Jacobian matrix J
later, ε(n) is the error associated with the nth observation or pattern, ε is a vector
with elements ε(n), (and the conventional scale factor 1

2 has been added to avoid the
appearance of a factor of 2 in the derivatives). We now derive optimization methods
specially designed to deal with such nonlinear least squares problems.

Suppose at the kth step, we are at the point wk in parameter space, and we take
the next step to wk+1. To first order, the Taylor expansion of ε is given by

ε(wk+1) = ε(wk) + Jk(wk+1 − wk), (5.36)

where Jk is the Jacobian matrix J at step k, with the elements of J given by

(J)ni = ∂ε(n)

∂wi
. (5.37)

Substituting (5.36) into (5.35), we have

1

2
‖ε(wk+1)‖2 = 1

2
‖ε(wk) + Jk(wk+1 − wk)‖2

= 1

2
‖ε(wk)‖2 + εT(wk)Jk(wk+1 − wk)

+ 1

2
(wk+1 − wk)

TJT
k Jk(wk+1 − wk). (5.38)

To find the optimal wk+1, differentiate the right hand side of the above equation by
wk+1 and set the result to zero, yielding

JT
k ε(wk) + JT

k Jk(wk+1 − wk) = 0. (5.39)

Solving this equation for wk+1, we get

wk+1 = wk − (JT
k Jk)

−1JT
k ε(wk), (5.40)

which is known as the Gauss–Newton method. Equation (5.40) resembles the
normal equations (1.46) encountered previously in the multiple linear regression
problem. In fact, one can regard the Gauss–Newton method as replacing a non-
linear least squares problem with a sequence of linear least squares problems
(5.40).

For the sum-of-squares error function (5.35), the gradient can be written as

∇E = JTε(w), (5.41)

while the Hessian matrix has elements

(H)i j = ∂2E
∂wi∂w j

=
∑

n

{
∂ε(n)

∂wi

∂ε(n)

∂w j
+ ε(n) ∂2ε(n)

∂wi∂w j

}
. (5.42)

5.4 Nonlinear least squares methods 123

If the error function depends on the weights linearly, then the second derivatives in
(5.42) vanish. Even when the error function is not a linear function of the weights,
we will ignore the second order terms in (5.42), and approximate the Hessian by

H = JTJ. (5.43)

By (5.41) and (5.43), we can regard (5.40) as an approximation of Newton’s
method (5.7), with the inverse of the Hessian matrix being approximated by
(JTJ)−1.

While (5.40) can be used repeatedly to reach the minimum of the error func-
tion, the pitfall is that the step size may become too large, so the first order Taylor
approximation (5.36) becomes inaccurate, and the Gauss–Newton method may not
converge at all. To correct this problem, the Levenberg–Marquardt method (Lev-
enberg, 1944; Marquardt, 1963) adds a penalty term to the error function (5.38),
i.e.

1

2
‖ε(wk+1)‖2 = 1

2
‖ε(wk) + Jk(wk+1 − wk)‖2 + λ‖wk+1 − wk‖2, (5.44)

where large step size is penalized by the last term, with a larger parameter λ tend-
ing to give smaller step size. Again minimizing this penalized error function with
respect to wk+1 yields

wk+1 = wk − (JT
k Jk + λI)−1JT

k ε(wk), (5.45)

where I is the identity matrix. For small λ, this Levenberg–Marquardt formula
reduces to the Gauss–Newton method, while for large λ, this reduces to the gradi-
ent descent method. While the Gauss–Newton method converges very quickly near
a minimum, the gradient descent method is robust even when far from a minimum.
A common practice is to change λ during the optimization procedure: start with
some arbitrary value of λ, say λ = 0.1. If the error function decreases after taking
a step by (5.45), reduce λ by a factor of 10, and the process is repeated. If the error
function increases after taking a step, discard the new wk+1, increase λ by a factor
of 10, and repeat the step (5.45). The whole process is repeated till convergence.
In essence, the Levenberg–Marquardt method improves on the robustness of the
Gauss–Newton method by switching to gradient descent when far from a mini-
mum, and then switching back to the Gauss–Newton method for fast convergence
when close to a minimum.

Note that if w is of dimension L , the Hessian H is of dimension L × L , while
the Jacobian J is of dimension N × L where N is the number of observations
or patterns. Since N is likely to be considerably larger than L , the Jacobian matrix
may require even more memory storage than the Hessian matrix. Hence the storage
of the Jacobian in Gauss–Newton and Levenberg–Marquardt methods renders them

124 Nonlinear optimization

most demanding on memory, surpassing even the quasi-Newton methods, which
require the storage of an approximate Hessian matrix.

5.5 Evolutionary computation and genetic algorithms

All the optimization methods presented so far belong to the class of methods known
as deterministic optimization, in that each step of the optimization process is deter-
mined by explicit formulas. While such methods tend to converge to a minimum
efficiently, they often converge to a nearby local minimum. To find a global min-
imum, one usually has to introduce some stochastic element into the search. A
simple way is to repeat the optimization process many times, each starting from dif-
ferent random initial weights. These multiple runs will find multiple minima, and
one hopes that the lowest minimum among them is the desired global minimum.
Of course, there is no guarantee that the global minimum has been found. Nev-
ertheless by using a large enough number of runs and broadly distributed random
initial weights, the global minimum can usually be found with such an approach.

Unlike deterministic optimization, stochastic optimization methods repeatedly
introduce randomness during the search process to avoid getting trapped in a
local minimum. Such methods include simulated annealing and evolutionary
computation.

Simulated annealing was inspired by the metallurgical process of annealing of
steel (iron–carbon alloy), which is used to produce less brittle metal by gradually
cooling very hot metal. When the metal is hot, rapid cooling locks atoms into what-
ever position they were in when the cooling was applied, thereby producing brittle
metal. When the metal is cooled slowly, the atoms tend to align properly, resulting
in less brittle metal. If convergence to a minimum is analogous to a metal cool-
ing down, simulated annealing slows the ‘cooling’ by allowing the search to make
random jumps in the parameter space during the convergence process. This slows
the convergence process but allows the search to jump out of local minima and to
(hopefully) settle down eventually in a global minimum (van Laarhoven and Aarts,
1987; Masters, 1995).

Intelligence has emerged in Nature via biological evolution, so it is not surpris-
ing that evolutionary computation (EC) (Fogel, 2005) has become a significant
branch of Computational Intelligence. Among EC methods, genetic algorithms
(GA) (Haupt and Haupt, 2004) were inspired by biological evolution where cross-
over of genes from parents and genetic mutations result in a stochastic process
which can lead to superior descendants after many generations. The weight vector
w of a model can be treated as a long strand of DNA, and an ensemble of solutions
is treated like a population of organisms. A part of the weight vector of one solu-
tion can be exchanged with a part from another solution to form a new solution,

5.5 Evolutionary computation and genetic algorithms 125

analogous to the cross-over of DNA material from two parents. For instance, two
parents have weight vectors w and w′. A random position is chosen (in this exam-
ple just before the third weight parameter) for an incision, and the second part of
w′ is connected to the first part of w and vice versa in the offspring, i.e.

[w1, w2, w3, w4, w5, w6] [w′
1, w

′
2, w3, w4, w5, w6]

− cross-over → (5.46)[
w′

1, w
′
2, w

′
3, w

′
4, w

′
5, w

′
6

] [w1, w2, w
′
3, w

′
4, w

′
5, w

′
6].

Genetic mutation can be simulated by randomly perturbing one of the weights
w j in the weight vector w, i.e. randomly choose a j and replace w j by w j + ε for
some random ε (usually a small random number). These two processes introduce
many new offspring, but only the relatively fit offspring have a high probability
of surviving to reproduce. With the ‘survival of the fittest’ principle pruning the
offspring, successive generations eventually converge towards the global optimum.

One must specify a fitness function f to evaluate the fitness of the individuals in
a population. If for the i th individual in the population, its fitness is f (i), then a
fitness probability P(i) can be defined as

P(i) = f (i)∑N
i=1 f (i)

, (5.47)

where N is the total number of individuals in a population. Individuals with high
P will be given greater chances to reproduce, while those with low P will be given
greater chances to die off.

Thus, the basic GA is structured as set out below.

(1) Choose the population size (N) and the number of generations (Ng). Initialize the
weight vectors of the population. Repeat the following steps Ng times.

(2) Calculate the fitness function f and the fitness probability P for each individual in the
population.

(3) Select a given number of individuals from the population, where the chance of an
individual getting selected is given by its fitness probability P .

(4) Duplicate the weight vectors of these individuals, then apply either the cross-over
or the mutation operation on the various duplicated weight vectors to produce new
offspring.

(5) To keep the population size constant, individuals with poor fitness are selected (based
on the probability 1 − P) to die off, and are replaced by the new offspring. (The fittest
individual is never chosen to die.)

Finally, after Ng generations, the individual with the greatest fitness is chosen
as the solution. To monitor the evolutionary progress over successive generations,
one can check the average fitness of the population, simply by averaging the fitness
f over all individuals in the population.

126 Nonlinear optimization

GA can be used to perform the nonlinear optimization in NN problems, where
the fitness function can for instance be the negative of the mean squared error.
In general, deterministic optimization using gradient descent methods would con-
verge much quicker than stochastic optimization methods such as GA. However,
there are three advantages with GA.

(1) In problems where the fitness function cannot be expressed in closed analytic form,
gradient descent methods cannot be used effectively, whereas GA works well.

(2) When there are many local optima in the fitness function, gradient descent methods
can be trapped too easily.

(3) GA can utilize parallel processors much more readily than gradient descent algo-
rithms, since in GA different individuals in a population can be computed simulta-
neously on different processors.

In some NN applications, the individuals in a population do not all have the
same network topology, e.g. they can have different numbers of hidden neurons. In
such cases, GA can be used to find not only the optimal weights but also the opti-
mal network topology. Examples include development of the NERO video games,
where the NERO agents (soldiers) evolve their NN topology and weights using GA
(Miikkulainen et al., 2006).

In GA applications, the weights w need not be restricted to continuous variables.
However, for w restricted to continuous variables, much faster EC optimization
algorithms are available, e.g. the differential evolution algorithm (Storn and Price,
1997; Price et al., 2005), which, like GA, also uses mutations and cross-overs.

Exercises

(5.1) Find the minimum of the function f (x, y) = x−x2+ 1
4 x4+5 sin(xy)−y+y2,

using (a) stochastic optimization (e.g. genetic algorithm or differential evo-
lution), and (b) deterministic optimization. Compare the cpu times required
by the various methods.

(5.2) Train an MLP NN model using either genetic algorithm or differential
evolution to perform the nonlinear optimization.

6

Learning and generalization

In Chapter 4, we have learned that NN models are capable of approximating any
nonlinear relation y = f(x) to arbitrary accuracy by using enough model parame-
ters. However, data generally contain both signal and noise. In the process of fitting
the highly flexible NN models to the data to find the underlying relation, one can
easily fit to the noise in the data. Like Ulysses who had to balance the twin evils of
Scylla and Charybdis, the NN modeller must also steer a careful course between
using a model with too little flexibility to model the underlying nonlinear relation
adequately (underfitting), and using a model with too much flexibility, which read-
ily fits to the noise (overfitting). Finding the closest fit to the data – an objective
adopted when using linear models – often leads to overfitting when using nonlinear
NN models. It needs to be replaced by a wiser objective, that of learning the under-
lying relation accurately with the NN model. When the NN has found an overfitted
solution, it will not fit new data well (Fig. 4.5), but if the NN has learned the
underlying relationship well, it will be able to generalize from the original dataset,
so that the extracted relationship even fits new data not used in training the NN
model. This chapter surveys the various approaches which lead to proper learning
and generalization. A comparison of different approaches to estimating the predic-
tive uncertainty of a model is discussed in Section 6.9. Finally, in Section 6.10,
we examine why nonlinear machine learning methods often have difficulty outper-
forming linear methods in climate applications. It turns out that computing climate
data by averaging over daily data effectively linearizes the relations in the dataset
due to the central limit theorem in statistics.

6.1 Mean squared error and maximum likelihood

In Section 4.3, we have discussed multi-layer perceptron NN models, where min-
imizing the objective function J involves minimizing the mean squared error
(MSE) between the model outputs y and the target data yd, i.e.

127

128 Learning and generalization

J = 1

N

N∑
n=1

{
1

2

∑
k

[y(n)
k − y(n)

dk]2

}
, (6.1)

where there are k = 1, . . . , M output variables yk , and there are n = 1, . . . , N
observations. While minimizing the MSE is quite intuitive and is used in many
types of model besides NN (e.g. linear regression), it can be derived from the
broader principle of maximum likelihood under the assumption of Gaussian noise
distribution.

If we assume that the multivariate target data ydk are independent random vari-
ables, then the conditional probability distribution of yd given predictors x can be
written as

p(yd|x) =
M∏

k=1

p(ydk |x). (6.2)

The target data are made up of noise εk plus an underlying signal (which we are
trying to simulate by a model with parameters w and outputs yk), i.e.

ydk = yk(x; w) + εk . (6.3)

We assume that the noise εk obeys a Gaussian distribution with zero mean and
standard deviation σ , with σ independent of k and x, i.e.

p(ε) =
M∏

k=1

p(εk) = 1

(2π)M/2σ M
exp

(
−
∑

k ε2
k

2σ 2

)
. (6.4)

From (6.3) and (6.4), the conditional probability distribution

p(yd|x; w) = 1

(2π)M/2σ M
exp

[
−
∑

k(yk(x; w) − ydk)
2

2σ 2

]
. (6.5)

The principle of maximum likelihood says: if we have a conditional probability
distribution p(yd|x; w), and we have observed values yd given by the dataset D
and x by the dataset X , then the parameters w can be found by maximizing the
likelihood function p(D|X; w), i.e. the parameters w should be chosen so that
the likelihood of observing D given X is maximized. Note that p(D|X; w) is a
function of w only as D and X are known.

The datasets X and D contain the observations x(n) and y(n)

d , with n = 1, . . . , N .
The likelihood function L is then

L = p(D|X; w) =
N∏

n=1

p
(
yd

(n)|x(n); w
)
. (6.6)

Instead of maximizing the likelihood function, it is more convenient to mini-
mize the negative log of the likelihood, as the logarithm function is a monotonic

6.2 Objective functions and robustness 129

function. From (6.5) and (6.6), we end up minimizing the following objective
function with respect to w:

J̃ = − ln L = 1

2σ 2

N∑
n=1

M∑
k=1

[
yk(x(n); w) − y(n)

dk

]2

+ N M ln σ + N M

2
ln(2π). (6.7)

Since the last two terms are independent of w, they are irrelevant to the minimiza-
tion process and can be omitted. Other than a constant multiplicative factor, the
remaining term in J̃ is the same as the MSE objective function J in (6.1). Hence
minimizing MSE is equivalent to maximizing likelihood assuming Gaussian noise
distribution.

6.2 Objective functions and robustness

In this section, we examine where the model outputs converge to, under the MSE
objective function (6.1) in the limit of infinite sample size N with a flexible enough
model (Bishop, 1995). However, the MSE is not the only way to incorporate infor-
mation about the error between the model output yk and the target data ydk into J .
We could minimize the mean absolute error (MAE) instead of the MSE, i.e. define

J = 1

N

N∑
n=1

∑
k

∣∣∣y(n)
k − y(n)

dk

∣∣∣ . (6.8)

Any data point ydk lying far from the mean of the distribution of ydk would exert
far more influence in determining the solution under the MSE objective function
than in the MAE objective function. We will show that unlike the MAE, the MSE
objective function is not robust to outliers (i.e. data points lying far away from the
mean, which might have resulted from defective measurements or from exceptional
events).

Let us first study the MSE objective function (6.1). With infinite N , the sum over
the N observations in the objective function can be replaced by integrals, i.e.

J = 1

2

∑
k

∫ ∫
[yk(x; w) − ydk]2 p(ydk, x) dydk dx, (6.9)

where x and w are the model inputs and model parameters respectively, and
p(ydk, x), a joint probability distribution. Since

p(ydk, x) = p(ydk |x) p(x), (6.10)

where p(x) is the probability density of the input data, and p(ydk |x) is the
probability density of the target data conditional on the inputs, we have

130 Learning and generalization

J = 1

2

∑
k

∫ ∫
[yk(x; w) − ydk]2 p(ydk |x) p(x) dydk dx. (6.11)

Next we introduce the following conditional averages of the target data:

〈ydk |x〉 =
∫

ydk p(ydk |x) dydk, (6.12)

〈y2
dk |x〉 =

∫
y2

dk p(ydk |x) dydk, (6.13)

so we can write

[yk − ydk]2 = [yk − 〈ydk |x〉 + 〈ydk |x〉 − ydk]2 (6.14)

= [yk − 〈ydk |x〉]2 + 2[yk − 〈ydk |x〉][〈ydk |x〉 − ydk]
+ [〈ydk |x〉 − ydk]2. (6.15)

Upon substituting (6.15) into (6.11), we note that the second term of (6.15) van-
ishes from the integration over ydk and from (6.12). Invoking (6.13), the objective
function can be written as

J = 1

2

∑
k

{∫
[yk(x; w) − 〈ydk |x〉]2 p(x)dx + [〈y2

dk |x〉 − 〈ydk |x〉2] p(x)dx
}

.

(6.16)
The second term does not depend on the model output yk , hence it is independent of
the model weights w. Thus during the search for the optimal weights to minimize
J , the second term in (6.16) can be ignored. In the first term of (6.16), the integrand
cannot be negative, so the minimum of J occurs when this first term vanishes, i.e.

yk(x; wopt) = 〈ydk |x〉, (6.17)

where wopt denotes the weights at the minimum of J . This is a very important
result as it shows that the model output is simply the conditional mean of the target
data. Thus in the limit of an infinite number of observations in the dataset, and
with the use of a flexible enough model, the model output yk for a given input
x is the conditional mean of the target data at x, as illustrated in Fig. 6.1. Also
the derivation of this result is quite general, as it does not actually require the
model mapping yk(x; w) to be restricted to NN models. This result also shows that
in nonlinear regression problems, in the limit of infinite sample size, overfitting
cannot occur, as the model output converges to the conditional mean of the target
data. In practice, in the absence of outliers, overfitting ceases to be a problem when
the number of independent observations is much larger than the number of model
parameters.

6.2 Objective functions and robustness 131

x1 xx2

y(x)

P(yd ⎢x1)

yd

P(yd ⎢x2)

Fig. 6.1 Showing the model output y as the conditional mean of the target data
yd, with the conditional probability distribution p(yd|x) displayed at x1 and at x2.

Next, we turn to the MAE objective function (6.8). Under infinite N , (6.8)
becomes

J =
∑

k

∫ ∫
|yk(x; w) − ydk | p(ydk |x) p(x) dydk dx. (6.18)

This can be rewritten as

J =
∑

k

∫
J̃k(x) p(x) dx, (6.19)

where

J̃k(x) ≡
∫

|yk(x; w) − ydk | p(ydk |x) dydk . (6.20)

J̃k(x) ≥ 0 since the integrand of (6.20) is non-negative. Also J in (6.19) is min-
imized when J̃k(x) is minimized. To minimize J̃k(x) with respect to the model
output yk , we set

∂ J̃k

∂yk
=
∫

sgn(yk(x; w) − ydk) p(ydk |x) dydk = 0, (6.21)

where the function sgn(z) gives +1 or −1 depending on the sign of z. For this
integral to vanish, the equivalent condition is∫ yk

−∞
p(ydk |x) dydk −

∫ ∞

yk

p(ydk |x) dydk = 0, (6.22)

which means that yk(x; w) has to be the conditional median, so that the conditional
probability density integrated to the left of yk equals that integrated to the right of
yk . In statistics, it is well known that the median is robust to outliers whereas the
mean is not. For instance, the mean price of a house in a small city can be raised
considerably by the sale of a single palatial home in a given month, whereas the

132 Learning and generalization

median, which is the price where there are equal numbers of sales above and below
this price, is not affected. Thus in the presence of outliers, the MSE objective func-
tion can produce solutions which are strongly influenced by outliers, whereas the
MAE objective function can largely eliminate this undesirable property (in practice
an infinite N is not attainable, therefore using MAE does not completely eliminate
this problem). However, a disadvantage of the MAE objective function is that it is
less sensitive than the MSE objective function, so it may not fit the data as closely.

The error function of Huber (1964) combines the desirable properties of the
MSE and the MAE functions. Let z = yk − ydk , then the Huber function is

h(z) =
{ 1

2 z2 for |z| ≤ 2γ

2γ (|z| − γ) otherwise,
(6.23)

where γ is a positive constant. When the error z is not larger than 2γ , h behaves
similarly to the MSE, whereas for larger errors, h behaves similarly to the MAE,
thereby avoiding heavily weighting the target data lying at the distant tails of
p(ydk |x) (Fig. 6.2).

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

z

E
rr

or
 f

un
ct

io
n

Fig. 6.2 The Huber error function (with parameter γ = 1) (solid curve) plotted
versus z, the difference between the model output and the target data. The MSE
(dot-dash) and MAE (dashed) error functions are also shown for comparison. The
dashed vertical lines (at ±2γ) indicate where the Huber function changes from
behaving like the MSE to behaving like the MAE.

6.3 Variance and bias errors 133

6.3 Variance and bias errors

It is important to distinguish between two types of error when fitting a model to
a dataset – namely variance error and bias error. To simplify the discussion, we
will assume that the model output is a single variable y = f (x). The true rela-
tion is yT = fT(x). The model was trained over a dataset D. Let E[·] denote the
expectation or ensemble average over all datasets D. Note that E[·] is not the expec-
tation E[·] over x (see Section 1.1), so E[y] ≡ ȳ is still a function of x. Thus the
error of y is

E[(y − yT)2] = E[(y − ȳ + ȳ − yT)2]
= E[(y − ȳ)2] + E[(ȳ − yT)2] + 2E[(y − ȳ)(ȳ − yT)]
= E[(y − ȳ)2] + (ȳ − yT)2 + 2(ȳ − yT) E[y − ȳ]
= E[(y − ȳ)2] + (ȳ − yT)2, (6.24)

since E[y− ȳ] = 0. The first term, E[(y− ȳ)2], is the variance error, as it measures
the departure of y from its expectation ȳ. The second term, (ȳ − yT)2, is the bias
error, as it measures the departure of ȳ from the true value yT. The variance error
tells us how much the y estimated from a given dataset D can be expected to
fluctuate about ȳ, the expectation over all datasets D. Even with this fluctuation
caused by sampling for a particular dataset D removed, one has the bias error
indicating the departure of the model expectation from the true value.

If one uses a model with few adjustable parameters, then the model may have
trouble fitting to the true underlying relation accurately, resulting in a large bias
error, as illustrated by the linear model fit in Fig. 6.3a. The variance error in this
case is small, since the model is not flexible enough to fit to the noise in the data.
In contrast, if one uses a model with many adjustable parameters, the model will fit
to the noise closely, resulting in a large variance error (Fig. 6.3b), but the bias error

y

x

y
T

(a)

y

x

y
T

(b)

Fig. 6.3 Illustrating the results from using a model with (a) few adjustable param-
eters and (b) many adjustable parameters to fit the data. The model fit y is shown
by a solid line and the true relation yT by the dashed line. In (a), the bias error
is large as y from a linear model is a poor approximation of yT, but the variance
error is small. In (b), the bias error is small but the variance error is large, since
the model is fitting to the noise in the data.

134 Learning and generalization

will be small. The art of machine learning hinges on a balanced trade-off between
variance error and bias error.

6.4 Reserving data for validation

In Chapter 4, we have mentioned the early stopping method, where a portion of
the dataset is set aside for validation, and the remainder for training. As the num-
ber of training epochs increases, the objective function evaluated over the training
data decreases, but the objective function evaluated over the validation data often
decreases to a minimum and then increases due to overfitting (Fig. 4.6). The min-
imum gives an indication as to when to stop the training, as additional training
epochs only contribute to overfitting.

What fraction of the data should one reserve for validation? Since more data for
validation means fewer data for training the NN model, there is clearly an optimal
fraction for validation. Using more than the optimal fraction for validation results
in the training process generalizing less reliably from the smaller training dataset,
while using a smaller fraction than the optimal could lead to overfitting.

A theory to estimate this optimal fraction was provided by Amari et al. (1996),
assuming a large number of observations N . Of the N observations, f N are used
for validation, and (1 − f)N for training. If the number of weight and offset (i.e.
bias) parameters in the NN model is Np, then in the case of N < 30 Np, the optimal
value for f is

fopt =
√

2Np − 1 − 1

2(Np − 1)
, (6.25)

hence fopt ≈ 1√
2Np

, for large Np. (6.26)

For example, if Np = 100, (6.26) gives fopt ≈ 0.0707, i.e. only 7% of the data
should be set aside for validation, with the remaining 93% used for training.

For the case N > 30 Np, Amari et al. (1996) showed that there is negligible
difference between using the optimal fraction for validation, and not using early
stopping at all (i.e. using the whole dataset for training till convergence). The rea-
son is that in this case there are so many data relative to the number of model
parameters that overfitting is not a problem. In fact, using early stopping with
f > fopt, leads to poorer results than not using early stopping, as found in numer-
ical experiments by Amari et al. (1996). Thus when N > 30 Np, overfitting is not
a problem, and reserving considerable validation data for early stopping is a poor
approach.

6.5 Regularization 135

6.5 Regularization

To prevent overfitting, the most common approach is via regularization of the
objective function, i.e. by adding weight penalty (also known as weight decay)
terms to the objective function. The objective function (4.18) now becomes

J = 1

N

N∑
n=1

{
1

2

∑
k

[
y(n)

k − y(n)

dk

]2
}

+ P
1

2

∑
j

w2
j , (6.27)

where w j represents all the (weight and offset) parameters in the model, and P ,
a positive constant, is the weight penalty parameter or regularization parame-
ter. Note that P is also referred to as a hyperparameter as it exerts control over
the weight and offset parameters – during nonlinear optimization of the objective
function, P is held constant while the optimal values of the other parameters are
being computed. With a positive P , the selection of larger |w j | during optimization
would increase the value of J , so larger |w j | values are penalized. Thus choosing a
larger P will more strongly suppress the selection of larger |w j | by the optimization
algorithm.

For sigmoidal activation functions such as tanh, the effect of weight penalty can
be illustrated as follows: For |wx | 	 1, the leading term of the Taylor expansion
gives

y = tanh(wx) ≈ wx, (6.28)

i.e. the nonlinear activation function tanh is approximated by a linear activation
function when the weight |w| is penalized to be small and x is reasonably scaled.
Hence, using a relatively large P to penalize weights would diminish the nonlinear
modelling capability of the model, thereby avoiding overfitting.

With the weight penalty term in (6.27), it is essential that the input variables have
been scaled to similar magnitudes. The reason is that if for example the first input
variable is much larger in magnitude than the second, then the weights multiplied
to the second input variable will have to be much larger in magnitude than those
multiplied to the first variable, in order for the second input to exert comparable
influence on the output. However, the same weight penalty parameter P acts on
both sets of weights, thereby greatly reducing the influence of the second input
variable since the associated weights are not allowed to take on large values. Sim-
ilarly, if there are multiple output variables, the target data for different variables
should be scaled to similar magnitudes. Hence, when dealing with real unbounded
variables, it is common to standardize the data first, i.e. each variable has its mean
value subtracted, and then is divided by its standard deviation. After the NN model
has been applied to the standardized variables, each output variable is rescaled to
the original dimension, i.e. multiply by the original standard deviation and add back

136 Learning and generalization

Error

0 P

Validation

Training

Fig. 6.4 Illustrating the model error (e.g. the MSE) for the training data (solid
curve) and for the validation data (dashed curve) as a function of the weight
penalty parameter P . The minimum in the dashed curve gives the optimal P value
(as marked by the vertical dotted line).

the original mean value. As a cautionary tale, a graduate student of mine was once
trying to compare NN with linear regression (LR). No matter how hard he tried, he
was able to show only that LR was outperforming NN on test data. Only when he
standardized the variables, was he finally able to show that NN was better than LR.

What value should one choose for the weight penalty parameter? A common way
to select P is by validation. The dataset is divided into training data and validation
data. Models are trained using the training data for a variety of P values, e.g. P =
3, 1, 0.3, 0.1, 0.03, 0.01, . . . , or P = 2−p (p = −1, 0, 1, 2, . . .). Model perfor-
mance over the validation data is then used to select the optimal P value. The model
error (e.g. the MSE) over the training data generally drops as P drops (Fig. 6.4);
however, the model error over the validation data eventually rises for small enough
P , as the excessively nonlinear model has begun overfitting the training data.

For an MLP NN model with a single hidden layer, where there are m1 inputs, m2

hidden neurons and m3 output neurons, we have assumed that m2 is large enough so
that the model has enough flexibility accurately to capture the underlying relation
in the dataset. In practice, we may not know what m2 value to use. Hence, instead of
a single loop of model runs using a variety of P values, we may also need a second
loop with m2 = 1, 2, 3, The run with the smallest validation error gives the
best P and m2 values.

6.6 Cross-validation

When there are plentiful data, reserving some data for validation poses no prob-
lem. Unfortunately, data are often not plentiful, and one can ill-afford setting aside
a fair amount of data for validation, since this means fewer observations for model
training. On the other hand, if one reserves few observations for validation so that

6.6 Cross-validation 137

one can use as many observations for training as possible, the validation error
estimate may be very unreliable. Cross-validation is a technique which allows the
entire dataset to be used for validation.

Given a data record, K -fold cross-validation involves dividing the record into K
(approximately equal) segments. One segment is reserved as validation data, while
the other K − 1 segments are used for model training. This process is repeated K
times, so that each segment of the data record has been used as validation data.
Thus a validation error can be computed for the whole data record. A variety of
models is run, with different numbers of model parameters and different weight
penalties. Based on the lowest validation error over the whole data record, one can
select the best model among the many runs.

For example, suppose the data record is 50 years long. In 5-fold cross-validation,
the record is divided into 5 segments, i.e. years 1-10, 11-20, 21-30, 31-40, 41-50.
First, we reserve years 1-10 for validation, and train the model using data from
years 11-50. Next we reserve years 11-20 for validation, and train using data from
years 1-10 and 21-50. This is repeated until the final segment of 41-50 is reserved
for validation, with training done using the data from years 1-40. If one has more
computing resources, one can try 10-fold cross-validation, where the 50 year record
is divided into ten 5 year segments. If one has even more computing resources, one
can try 50-fold cross-validation, with the record divided into fifty 1 year segments.
At the extreme, one arrives at the leave-one-out cross-validation, where the vali-
dation segment consists of a single observation. For instance, if the 50 year record
contains monthly values, then there are a total of 600 monthly observations, and a
600-fold cross-validation is the same as the leave-one-out approach.

With time series data, the neighbouring observations in the data record are often
not independent of each other due to autocorrelation. If the dataset has a decor-
relation time scale of 9 months, then leaving a single monthly observation out
for independent validation would make little sense since it is well correlated with
neighbouring observations already used for training. When there is autocorrelation
in the time series data, the validation segments should be longer than the decor-
relation time scale, i.e. in this example, the validation segments should exceed 9
months. Even then, at the boundary of a validation segment, there is still correlation
between the data immediately to one side which are used for training and those to
the other side used for validation. Thus under cross-validation, autocorrelation can
lead to an underestimation of the model error over the validation data, especially
when using small validation segments.

Because validation data are used for model selection, i.e. for choosing the best
number of model parameters, weight penalty value, etc., the model error over the
validation data cannot be considered an accurate model forecast error, since the val-
idation data have already been involved in deriving the model. To assess the model

138 Learning and generalization

forecast error accurately, the model error needs to be calculated over independent
data not used in model training or model selection. Thus the data record needs to be
divided into training data, validation data and ‘testing’ or verification data for mea-
suring the true model forecast error. One then has to do a double cross-validation,
which can be quite expensive computationally. Again consider the example of a 50-
year data record, where we want to do a 10-fold cross-testing. We first reserve years
1-5 for testing data, and use years 6-50 for training and validation. We then imple-
ment 9-fold cross-validation over the data from years 6-50 to select the best model,
which we use to forecast over the testing data. Next, we reserve years 6-10 for test-
ing, and perform a 9-fold cross-validation over the data from years 1-5 and 11-50
to select the best model (which may have a different number of model parameters
and different weight penalty value from the model selected in the previous cross-
validation). The process is repeated until the model error is computed over test data
covering the entire data record.

Generalized cross-validation (GCV) is an extension of the cross-validation
method (Golub et al., 1979), and has been applied to MLP NN models (Yuval,
2000) to determine the weight penalty parameter automatically. We will not pursue
it further here, since the next section covers the widely used Bayesian approach to
determining the weight penalty parameter(s).

6.7 Bayesian neural networks (BNN)

While cross-validation as presented in Section 6.6 allows one to find the weight
penalty parameters which would give the model good generalization capability,
separation of the data record into training and validation segments is cumbersome,
and prevents the full data record from being used to train the model. Based on
Bayes theorem (Section 1.5), MacKay (1992b,a) introduced a Bayesian neural
network (BNN) approach which gives an estimate of the optimal weight penalty
parameter(s) without the need of validation data. Foresee and Hagan (1997) applied
this approach to the MLP NN model using the Levenberg–Marquardt optimization
algorithm (Section 5.4), with their code implemented in the Matlab neural net-
work toolbox as trainbr.m. BNN codes written in Matlab are also available in the
package Netlab written by Nabney (2002).

The main objective of the training process is to minimize the sum of squared
errors of the model output y (for simplicity, a single output is used here), over N
observations. Let

Ed = 1

2

N∑
i=1

(yi − ydi)
2, (6.29)

6.7 Bayesian neural networks (BNN) 139

where yd is the target data from a dataset D. At the same time, regularization pushes
for minimizing the magnitude of the weight parameters. Let

Ew = 1

2

Nw∑
j=1

w2
j , (6.30)

where w contains all the weight (and offset) parameters of the MLP NN model,
with a total of Nw parameters. The objective function is then

J (w) = βEd + αEw, (6.31)

where α is the weight penalty hyperparameter. Previously, β was simply 1, but here
in the Bayesian approach, the hyperparameter β is used to describe the strength of
the Gaussian noise in the target data. The Bayesian approach will automatically
determine the values for the two hyperparameters α and β. If α 	 β, then the
model will fit the data closely; but if α
 β, then the model will strive for small
weights instead of close fit, resulting in a smooth fit to the data.

If we assume that the noise in the dataset D is Gaussian, then the likelihood
function

p(D|w, β, M) = 1

Zd(β)
exp(−βEd), (6.32)

where the normalization factor Zd(β) = (2π/β)N/2, and M is the particular model
used (e.g. different models may have different numbers of hidden neurons). The
likelihood function is the probability of the dataset D occurring, given the model
M with weight parameters w and noise level specified by β.

If we assume that the prior probability density distribution for w is also a
Gaussian centred on the origin, then

p(w|α, M) = 1

Zw(α)
exp(−αEw), (6.33)

with Zw(α) = (2π/α)Nw/2.
From Bayes theorem (1.54), the posterior probability density

p(w|D, α, β, M) = p(D|w, β, M)p(w|α, M)

p(D|α, β, M)
, (6.34)

where p(D|α, β, M) is the normalization factor which ensures that the posterior
probability density function integrates to 1.

Substituting (6.32) and (6.33) into (6.34) yields

p(w|D, α, β, M) =
1

Zw(α)
1

Zd(β)
exp(−(βEd + αEw))

normalization factor

= 1

Z(α, β)
exp(−J), (6.35)

140 Learning and generalization

where J is the objective function in (6.31), and Z(α, β) the normalization factor.
Thus to find the optimal w, we need to maximize the posterior probability density
p(w|D, α, β, M), which is equivalent to minimizing the objective function J . Note
that here we are assuming α and β are given or somehow known.

6.7.1 Estimating the hyperparameters

Our next step is to find the optimal values for the hyperparameters α and β. Note
that the Bayesian approach is hierarchical. After deriving the model parameters
assuming that the controlling hyperparameters are given, one then derives the
hyperparameters (which could themselves be controlled by an even higher level
of hyperparameters, and so forth). We again turn to Bayes theorem:

p(α, β|D, M) = p(D|α, β, M)p(α, β|M)

p(D|M)
. (6.36)

If the prior density p(α, β|M) is assumed to be uniformly distributed, then the
posterior probability density p(α, β|D, M) is maximized by simply maximizing
the likelihood function p(D|α, β, M) (also called the evidence for α and β). From
(6.34), we get

p(D|α, β, M) = p(D|w, β, M)p(w|α, M)

p(w|D, α, β, M)
. (6.37)

Substituting in (6.32), (6.33) and (6.35), we obtain

p(D|α, β, M) = Z(α, β)

Zd(β)Zw(α)

exp(−βEd − αEw)

exp(−J)
= Z(α, β)

Zd(β)Zw(α)
. (6.38)

Since the normalization constants Zd(β) and Zw(α) from (6.32) and (6.33) are
known, we need only to derive Z(α, β), which is simply the integral of exp(−J)

over w-space.
We approximate J (w) by a Taylor expansion about its minimum point wMP,

J(w) ≈ J(wMP) + 1

2
	wTHMP	w, (6.39)

where 	w = w − wMP, the linear term vanishes since it is evaluated at a minimum
point, and terms of higher order than the quadratic have been omitted. Here H is
the Hessian matrix , i.e.

H ≡ ∇∇ J = β∇∇Ed + α∇∇Ew = β∇∇Ed + αI, (6.40)

with I the identity matrix.
Substituting the approximation (6.39) for J into

Z =
∫

exp(−J (w))dw, (6.41)

6.7 Bayesian neural networks (BNN) 141

and evaluating the integral (Bishop, 1995, Appendix B) yields

Z = (2π)Nw/2[det(HMP)]−1/2 exp(−J (wMP)). (6.42)

Approximating J by the 2nd order Taylor expansion (6.39) is equivalent to approx-
imating the posterior probability density function (6.35) by a Gaussian function,
which is called the Laplace approximation. This approximation allows the inte-
gral for Z to be evaluated analytically. If the Laplace approximation is avoided,
then integrals have to be evaluated numerically using Markov chain Monte Carlo
methods (Neal, 1996).

Taking the natural logarithm of (6.38) yields

ln p(D|α, β, M) = ln Z(α, β) − ln Zd(β) − ln Zw(α). (6.43)

To locate the maximum point of ln p(D|α, β, M), substitute in the expressions for
Z(α, β), Zd(β) and Zw(α), differentiate with respect to α and β separately, set
the derivatives to zero, and after some algebra obtain (Foresee and Hagan, 1997;
Bishop, 1995, Sect. 10.4)

αMP = γ

2Ew(wMP)
and βMP = N − γ

2Ed(wMP)
, (6.44)

where

γ = Nw − αMP tr((HMP)
−1), (6.45)

with tr denoting the trace of the matrix (i.e. sum of the diagonal elements). A
very useful interpretation of γ (Gull, 1989; Bishop, 1995) is that it represents the
effective number of parameters, with γ ≤ Nw, the total number of parameters in w.

In Section 5.4, we have looked at using the Gauss–Newton approximation of the
Hessian matrix in the Levenberg–Marquardt optimization algorithm, which is the
algorithm used by Foresee and Hagan (1997) to find the minimum point wMP. After
scaling the inputs and outputs to the range [−1, 1], the steps in their procedure are
as set out below.

(1) Choose initial values for α, β and w, e.g. set α = 0, β = 2, and w according to the
initialization scheme of Nguyen and Widrow (1990).

(2) Advance one step of the Levenberg–Marquardt algorithm towards minimizing the
objective function J(w).

(3) Compute the effective number of parameters γ from (6.45), where the Gauss–Newton
approximation has been used in the Hessian matrix available in the Levenberg–
Marquardt algorithm (see Section 5.4), i.e.

H ≈ βJTJ + αI, (6.46)

with J the Jacobian matrix of the training set errors.

142 Learning and generalization

0 10 20 30 40 50
0

5

10

15

20

25

Nw

γ

Fig. 6.5 Plot of γ , the effective number of parameters, as a function of Nw,
the number of model parameters, for sample problem 1 (circles) and problem 3
(asterisks) from Foresee and Hagan (1997). The dashed line is the γ = Nw line.

(4) Compute α and β from (6.44).
(5) Iterate steps (2)–(4) till convergence.
(6) With the optimal α and β now known, the objective function J (w) in (6.31) can be

minimized, yielding the optimal weights wMP for the NN model.

Figure 6.5 shows the values of γ in the sample problems tested by Foresee and
Hagan (1997) as Nw is varied by changing the number of neurons in the single
hidden layer. In all cases, when Nw is relatively small, increasing Nw leads to an
increase in γ . This indicates a need for more parameters to model the true function
closely. However, γ eventually levels off, meaning that the addition of extra hidden
neurons brings no advantage. Thus the optimal network size is when Nw is just
large enough to cause γ to level off.

The Bayesian NN (BNN) model presented here has only one hyperparameter
α controlling all the weights w. One can conceive of situations where different
weights would benefit from having different hyperparameters. Neal (1996) gener-
alized the BNN model to have individual hyperparameters controlling groups of
weights. For instance, a separate hyperparameter can be used to control all the
weights originating from each individual input neuron. If a hyperparameter turned
out to be huge, thereby causing all weights originating from a particular input

6.7 Bayesian neural networks (BNN) 143

neuron to be negligible in magnitude, then that input is irrelevant for predicting
the output. This is known as automatic relevance determination (ARD).

The BNN model of MacKay (1992b,a) has only a single output variable. For
multiple outputs, one has to assume the output variables to be independent of each
other and apply the BNN approach to each output individually. For multiple outputs
which are not independent, MacKay (1995) suggested the use of full covariance
matrices to describe the output uncertainties, but did not elaborate on this idea.
Noting the importance of uncertainty estimates for multi-dimensional mappings in
atmospheric inverse problems, Aires (2004) and Aires et al. (2004a,b) extended the
BNN model to multiple outputs using full covariance matrices.

6.7.2 Estimate of predictive uncertainty

A bonus of the Bayesian approach is that it naturally allows us to estimate the
uncertainty in the model output. Suppose a new predictor x̃ is available, we would
like to know the uncertainty of the predictand ỹ through the conditional distribution
p(ỹ| x̃, D). (For notational brevity, we have not bothered to write p(ỹ| x̃, D) as
p(ỹ| x̃, D, X), with X being the training dataset of predictors.) From basic rules of
probability,

p(ỹ| x̃, D) =
∫

p(ỹ| x̃, w) p(w|D)dw, (6.47)

where p(ỹ| x̃, w) is the distribution of the noisy target data for a given x̃ and a given
w, and p(w|D) is the posterior distribution of the weights. Unlike traditional meth-
ods like maximum likelihood, which simply provides a single optimal estimate of
the weights of a model, the Bayesian approach provides a posterior distribution of
the weights. This means that when deriving p(ỹ| x̃, D) in (6.47) we accept contri-
butions from all possible NN models with various weights, with their contributions
weighted by p(w|D).

As this integral cannot be evaluated analytically, we again approximate p(w|D)

by a Gaussian distribution centred at wMP (see (6.35) and (6.39)), so

p(ỹ| x̃, D) ∝
∫

exp

(
−β

2
[ỹ − y(x̃; w)]2

)
exp

(
−1

2
	wTHMP	w

)
dw, (6.48)

with constant factors ignored. We further assume that the width of the posterior
distribution as governed by HMP is narrow enough to justify approximating the NN
model by a first order Taylor expansion about wMP, i.e.

y(x̃; w) ≈ y(x̃; wMP) + gT	w, (6.49)

where the gradient

g(x̃) = ∇wy(x̃; w)|w=wMP . (6.50)

144 Learning and generalization

The integral can now be evaluated analytically (Bishop, 1995, p.399), yielding

p(ỹ| x̃, D) = 1

(2πσ 2)
1
2

exp

(
−[ỹ − y(x̃; wMP)]2

2σ 2

)
, (6.51)

which is a Gaussian distribution with mean y(x̃; wMP) and variance

σ 2 = 1

β
+ gTH−1

MP g. (6.52)

There are two terms contributing to the variance of the predictand. The first term
involving 1/β arises from the noise in the training target data, while the sec-
ond term arises from the posterior distribution of the model weights w. Note that
through g(x̃), σ also varies with x̃ – in regions where training data are sparse, the
second term becomes large, i.e. increased uncertainty from the model weights w.

Figure 6.6 illustrates a BNN fit to 16 training data points which consist of the
signal y = x sin(πx) plus Gaussian noise. While the NN has a single input and
single output, and six neurons in a single hidden layer (i.e. a total of 19 parameters),
γ , the effective number of parameters, is found to be only about six. With Gaussian

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Fig. 6.6 Nonlinear regression fit by a Bayesian NN. The training data are
indicated by circles, the BNN solution by the solid curve, and the signal
y = x sin(πx) by the dashed curve. The shaded interval denotes ±2 standard
deviations.

6.8 Ensemble of models 145

noise, ±2 standard deviations about the mean give the 95% prediction interval,
which is seen to widen in regions with sparse or no data, e.g. for x < 0.2 and x
around 1.6 in the figure.

For nonlinear regression problems, BNN codes written in the Matlab language
are available in the Matlab Neural Network toolbox (based on Foresee and Hagan,
1997) and in the Netlab package (Nabney, 2002). Both are easy to use, and σ is
provided by Netlab. However, the two codes, which differ somewhat in the way
the hyperparameters are estimated, tend to give different values of γ for the same
training dataset, with Netlab tending to yield a larger γ . In simple test problems
run by the author, for some problems there are higher odds of underfitting from
using the Matlab Neural Network toolbox, while for others there are higher odds
of slight overfitting from the Netlab code. Of course, in most cases both codes yield
comparable, good results. Since the final solution can be trapped in a local mini-
mum, multiple runs using different random initial weights are recommended. These
codes suffer from the disadvantage of making the Laplace approximation when
estimating the hyperparameters, which can be avoided if Markov chain Monte
Carlo methods are used (Neal, 1996). In Schlink et al. (2003), Bayesian MLP NN
using the Laplace approximation underperformed MLP using early stopping (Fig.
4.6) in ground-level ozone predictions.

6.8 Ensemble of models

In weather forecasting, it is now standard practice to run a numerical weather pre-
diction model multiple times from slightly perturbed initial conditions, giving an
ensemble of model runs. The rationale is that the atmospheric models are very
unstable to small perturbations in the initial conditions, i.e. a tiny error in the ini-
tial conditions would lead to a vastly different forecast a couple of weeks later.
This behaviour was first noted by Lorenz (1963), which led to the discovery of
the ‘chaos’ phenomenon. From this ensemble of model runs, the averaged forecast
over the individual ensemble members is usually issued as the forecast, while the
spread of the ensemble members provides information on the uncertainty of the
forecast.

In NN applications, one usually trains a number of models for a variety of rea-
sons, e.g. to deal with the multiple minima in the objective function, to experiment
varying the number of model parameters, etc. One can test the models’ skill over
some validation data and simply select the best performer. However, model skill is
dependent on the noise in the validation data, i.e. if a different validation dataset
is used, a different model may be selected as the best performer. For this reason,
it is common to retain a number of good models to form an ensemble of models,

146 Learning and generalization

and use the ensemble average of their outputs as the desired output. In machine
learning jargon, an ensemble of models is called a committee.

One way to generate multiple models is through bagging (abbreviated from
Bootstrap AGGregatING) (Breiman, 1996), developed from the idea of boot-
strapping (Efron, 1979; Efron and Tibshirani, 1993) in statistics. Under bootstrap
resampling, data are drawn randomly from a dataset to form a new training dataset,
which is to have the same number of data points as the original dataset. A data point
in the original dataset can be drawn more than once into a training dataset. On aver-
age, 63.2% of the original data is drawn, while 36.8% is not drawn into a training
dataset. This is repeated until a large number of training datasets are generated by
this bootstrap procedure. During the random draws, predictor and predictand data
pairs are of course drawn together. In the case of autocorrelated data, data segments
about the length of the autocorrelation time scale are drawn instead of individual
data points – i.e. if monthly data are found to be autocorrelated over the whole
season, then one would draw an entire season of monthly data altogether. In the
bagging approach, one model can be built from each training set, so from the large
number of training sets, an ensemble of models is derived. By averaging the model
output from all individual members of the ensemble, a final output is obtained. (If
the problem is nonlinear classification instead of regression, the final output is cho-
sen by voting, i.e. the class most widely selected by the individual members of the
ensemble is chosen as the final output.)

Incidentally, the data not selected during the bootstrap resampling are not
wasted, as they can be used as validation data. For instance, to avoid overfitting,
these validation data can be used in the early stopping approach, i.e. NN model
training is stopped when the model’s error variance calculated using validation data
starts to increase. Finally, from the distribution of the ensemble member solutions,
statistical significance can be estimated easily – e.g. from the ensemble distribu-
tion, one can simply examine if at least 95% of the ensemble members give a value
greater than zero, or less than zero, etc.

We next compare the error of the ensemble average to the average error of the
individual models in the ensemble. Let yT(x) denote the true relation, ym(x) the mth
model relation in an ensemble of M models, and y(M)(x) the ensemble average. The
expected mean squared error of the ensemble average is

E[(y(M) − yT)2] = E

⎡
⎣(1

M

M∑
m=1

ym − yT

)2
⎤
⎦

= E

⎡
⎣(1

M

∑
m

(ym − yT)

)2
⎤
⎦ = 1

M2
E

⎡
⎣(∑

m

εm

)2
⎤
⎦ , (6.53)

6.8 Ensemble of models 147

where εm ≡ ym − yT is the error of the mth model. From Cauchy inequality, we
have (

M∑
m=1

εm

)2

≤ M
M∑

m=1

ε2
m, (6.54)

hence

E[(y(M) − yT)2] ≤ 1

M

M∑
m=1

E[ε2
m]. (6.55)

This proves that the expected error of the ensemble average is less than or equal
to the average expected error of the individual models in the ensemble, thereby
providing the rationale for using ensemble averages instead of individual models.
Note this is a general result, as it applies to an ensemble of dynamical models
(e.g. general circulation models) as well as an ensemble of empirical models (e.g.
NN models), or even to a mixture of completely different dynamical and empirical
models. Perhaps this result is not so surprising, since in social systems we do find
that, on average, democracy is better than the average dictatorship!

Next we restrict consideration to a single model for generating the ensemble
members, e.g. by training the model with various bootstrapped resampled datasets,
or performing nonlinear optimization with random initial parameters. We now
repeat the variance and bias error calculation of Section 6.3 for an ensemble of
models. Again, let E[·] denote the expectation or ensemble average over all datasets
D or over all random initial weights (as distinct from E[·], the expectation over x).
Since all members of the ensemble were generated from a single model, we have
for all the m = 1, . . . , M members,

E[ym] = E[y] ≡ ȳ. (6.56)

The expected square error of the ensemble average y(M) is

E[(y(M) − yT)2] = E[(y(M) − ȳ + ȳ − yT)2]
= E[(y(M) − ȳ)2] + E[(ȳ − yT)2] + 2E[(y(M) − ȳ)(ȳ − yT)]
= E[(y(M) − ȳ)2] + (ȳ − yT)2 + 2(ȳ − yT) E[y(M) − ȳ]
= E[(y(M) − ȳ)2] + (ȳ − yT)2, (6.57)

as E[y(M) − ȳ] = 0. The first term, E[(y(M) − ȳ)2], is the variance error, while the
second term, (ȳ − yT)2, is the bias error. Note that the variance error depends on
M , the ensemble size, whereas the bias error does not.

148 Learning and generalization

Let us examine the variance error:

E[(y(M) − ȳ)2] = E
⎡
⎣
(

1

M

M∑
m=1

ym − ȳ

)2
⎤
⎦ = E

⎡
⎣
(

1

M

M∑
m=1

(ym − ȳ)

)2
⎤
⎦

= 1

M2
E
⎡
⎣(∑

m

δm

)2
⎤
⎦ , (6.58)

where δm = ym − ȳ. If the errors of the members are uncorrelated, i.e. E[δmδn] = 0
if m = n, then

1

M2
E
⎡
⎣(∑

m

δm

)2
⎤
⎦ = 1

M2
E
[∑

m

δ2
m

]
= 1

M
E[δ2], (6.59)

as E[δ2
m] = E[δ2], for all m. Thus if the member errors are uncorrelated, the

variance error of the ensemble average is

E[(y(M) − ȳ)2] = 1

M
E[(y − ȳ)2], (6.60)

where the right hand side is simply the variance error of a single member divided
by M . Hence, the variance error of the ensemble average → 0 as M → ∞. Of
course, the decrease in the variance error of the ensemble average will not be as
rapid as M−1 if the errors of the members are correlated.

In summary, for the ensemble average, the variance error can be decreased by
increasing the ensemble size M , but the bias error is unchanged. This suggests
that one should use models with small bias errors, and then rely on the ensemble
averaging to reduce the variance error. In other words, one would prefer using
models which overfit slightly to models which underfit, as ensemble averaging can
alleviate the overfitting. Cannon and Whitfield (2002, Fig. 2 and 3) compared the
performance of a single MLP NN model using the early stopping method and that
of an ensemble of MLP models by bagging (without early stopping) using real
hydrological data. They showed the ensemble approach to perform better than the
single model, hence the ensemble method is an effective way to control overfitting.

So far, all the members are equally weighted in forming the ensemble average.
As some members may be more skilful than others, one would like to weight them
according to their skill, i.e.

y(M) =
∑

m

am ym, (6.61)

where the weights am are obtained from an optimization procedure. The procedure,
described in Bishop (1995, Section 9.6), involves working with the error covariance
matrix C. Unfortunately, in most climate problems, the data records are probably

6.8 Ensemble of models 149

too short to allow an accurate estimate of C. For problems where the data records
are long enough to estimate C with accuracy, then this approach could improve on
the equally-weighted ensemble averaging method.

An even more sophisticated way to form the ensemble average is to use an MLP
NN model to perform nonlinear ensemble averaging. Here the MLP NN has M
inputs and one output. The M inputs simply receive the outputs from the M trained
ensemble members, while the output is trained towards the same target data used in
training the individual ensemble members. Krasnopolsky (2007) used an ensemble
of ten MLP NN models to emulate sea level height anomalies using state variables
from an ocean model as input. The outputs of the ten ensemble members were then
nonlinearly averaged by another MLP NN and compared with simple averaging
(Fig. 6.7). The simple ensemble average has smaller error standard deviation than
all ten individuals, but its bias is just the average of the bias of the individuals.
In contrast, the nonlinear ensemble average by NN results in even smaller error
standard deviation plus a considerable reduction in bias.

1.02

1.00

0.98

0.96

0.94

0.92

0.90

0.88

–1.00 –0.95 –0.90 –0.85
Bias

E
rr

or
 S

D

–0.80 –0.75

*

*
* *

*

*

*

**

*

Fig. 6.7 Scatter plot of model bias versus error standard deviation (SD) for
the ten individual ensemble members (asterisks), the simple ensemble average
(cross) and the nonlinear ensemble average by NN (diamond). (Reproduced from
Krasnopolsky (2007) with permission of the American Geophysical Union.)

150 Learning and generalization

Another ensemble/committee approach called boosting differs from other
ensemble methods such as bagging in that the models in the ensemble are trained
in sequence, with ‘improvement’ from one model to the next, and the final output
of the ensemble being a weighted sum of the output from all its members. The most
popular boosting algorithm is AdaBoost (Freund and Schapire, 1997), developed
originally for classification problems, but also extended to regression problems.
The key idea is that in the mth model there are some data points which are not well
predicted, so when we train the next model, we increase the weighting of these dif-
ficult data points in our objective function. This type of learning approach is used
by students, e.g. if a student does poorly in some courses, he will put more effort
into the difficult courses in order to improve his overall grade. Since boosting tries
to improve on predicting the difficult data points, we must ensure that the difficult
data points are of sound quality, i.e. the data are not simply wrong!

The outline of the boosting approach is as follows: let w(m)
n denote the weight

placed on the nth data point (n = 1, . . . , N) in the objective function of the mth
model (m = 1, . . . , M). For the first model, we use uniform weight, i.e. w(1)

n =
1/N . We next generate a sequence of models. For model m, the weights w(m)

n are
increased relative to w(m−1)

n for a data point n if this point was poorly predicted by
model m −1. The final output of the M models is a weighted sum of the individual
model outputs, with the weights am being larger for the better models.

6.9 Approaches to predictive uncertainty

The ability to provide an estimate of the predictive uncertainty to accompany the
prediction of a single value is of great practical value (Cawley et al., 2007). For
instance, we dress very differently if on a particular day the temperature forecast
has a large forecasted variance than if the same temperature forecast has a small
variance. We have so far studied a variety of methods which would provide some
measure of the predictive uncertainty, e.g. the NN modelling of conditional proba-
bility distribution p(y|x) in Section 4.7, the Bayesian neural network (BNN) model
in Section 6.7, and the use of bootstrapping in Section 6.8. It is appropriate at this
stage to compare how these methods differ in the way their predictive uncertainties
are estimated.

From (6.47) (with the tilde now dropped for brevity), we have seen that the
conditional probability distribution

p(y| x, D) =
∫

p(y| x, w) p(w|D)dw, (6.62)

where p(y| x, w) is the distribution of the noisy target data for given x and w, and
p(w|D) is the posterior distribution of the weights given training data D. These

6.10 Linearization from time-averaging 151

two terms indicate that there are two separate contributions to predictive uncer-
tainty, namely noise in the target data, and uncertainty in the weights w as these are
estimated from a sample of finite size. Since the Bayesian approach derives an esti-
mate of the posterior distribution p(w|D), it allows the uncertainty in the weights
to be taken into account in the estimate of the predictive uncertainty as given by
p(y| x, D).

In the NN modelling of the conditional probability distribution in Section 4.7,
the principle of maximum likelihood was used to estimate the model weights. This
more classical approach provides a single optimal estimate of w, not a distribution
p(w|D) as in the more modern Bayesian approach. Hence its predictive uncertainty
estimate can only include the contribution from the noise in the target data, thereby
omitting the contribution from the uncertainty of the weights estimated from a
sample of limited size.

In the bootstrap approach of Section 6.8, we resampled the data record repeat-
edly to generate a large number of samples. Training the model on these samples
led to an ensemble of models, each with different values of w. The scatter in the
predicted values y by the ensemble members provides an estimate of the predictive
uncertainty, which has taken into account the uncertainty in the model weights, but
not the noise in the target data.

Thus the maximum likelihood modelling of conditional distribution and the
bootstrap modelling approach both provide incomplete estimates of the predic-
tive uncertainty, as they can take into account only one of the two components.
The former approach takes into account the noise in the target data while the latter
takes into account the uncertainty in estimating w from a sample of limited size.
The Bayesian approach incorporates both components in its predictive uncertainty
estimate.

6.10 Linearization from time-averaging

Time-averaging is widely used to reduce noise in the data; however, it also lin-
earizes the relations in the dataset. In a study of the nonlinear relation between
the precipitation rate (the predictand) and ten other atmospheric variables (the pre-
dictors x) in the NCEP/NCAR reanalysis data (Kalnay et al., 1996), Yuval and
Hsieh (2002) examined the daily, weekly and monthly averaged data by nonlinear
multiple regression using the MLP NN model over three regions (Middle East,
northeastern China and off the west coast of Canada), and discovered that the
strongly nonlinear relations found in the daily data became dramatically reduced by
time-averaging to the almost linear relations found in the monthly data. To measure
the degree of nonlinearity in the NN relation, the ratio R was used, where

152 Learning and generalization

R = f (x) + ∇ f (x) · δx
f (x + δx)

, (6.63)

with f the NN modelled predictand. If f is a linear function, then R = 1, hence
the departure of R from 1 is a measure of nonlinearity. Figure 6.8 shows the precip-
itation at (50◦N, 130◦W), just offshore from British Columbia, Canada. The spread
in R is seen to diminish dramatically as we move from daily data to monthly data,
indicating a strong linearizing tendency. For the daily, weekly and monthly data,
the ratio of the correlation skill of the NN model to that of LR (linear regression)
was 1.10, 1.02 and 1.00, respectively, while the ratio of the RMSE (root mean
squared error) of NN to that of LR was 0.88, 0.92 and 0.96 respectively. Hence the
advantage of the nonlinear NN model over LR has almost vanished in the monthly
data. Similar conclusions were found for data in the Middle East (33◦N, 35◦E) and
northeastern China (50◦N, 123◦E).

To explain this surprising phenomenon, Yuval and Hsieh (2002) invoked the
well-known central limit theorem from statistics. For simplicity, consider the rela-
tion between two variables x and y. If y = f (x) is a nonlinear function, then
even if x is a normally distributed random variable, y will in general not have a
normal distribution. Now consider the effects of time-averaging on the (x, y) data.
The bivariate central limit theorem (Bickel and Doksum, 1977, Theorem 1.4.3)
says that if (x1, y1), . . . , (xn, yn) are independent and identically distributed ran-
dom vectors with finite second moments, then (X, Y), obtained from averaging
(x1, y1), . . . , (xn, yn), will, as n → ∞, approach a bivariate normal distribution
N (μ1, μ2, σ

2
1 , σ 2

2 , ρ), where μ1 and μ2 are the mean of X and Y , respectively, σ 2
1

and σ 2
2 are the corresponding variance, and ρ the correlation between X and Y .

From the bivariate normal distribution, the conditional probability distribution
of Y (given X) is also a normal distribution (Bickel and Doksum, 1977, Theorem
1.4.2), with mean

E[Y |X] = μ2 + (X − μ1)ρσ2/σ1. (6.64)

This linear relation in X explains why time-averaging tends to linearize the rela-
tionship between the two variables. With more variables, the bivariate normal
distribution readily generalizes to the multivariate normal distribution.

To visualize this effect, consider the synthetic dataset

y = x + x2 + ε, (6.65)

where x is a Gaussian variable with unit standard deviation and ε is Gaussian noise
with a standard deviation of 0.5. Averaging these ‘daily’ data over 7 days and over
30 days reveals a dramatic weakening of the nonlinear relation (Fig. 6.9), and the
shifting of the y density distribution towards Gaussian with the time-averaging.
With real data, there is autocorrelation in the time series, so the monthly data will

6.10 Linearization from time-averaging 153

0 20 40 60
0

10

20

30

40

50

60

Observation (mm/day)

Si
m

ul
at

io
n

(m
m

/d
ay

)
Daily(a)

(b)

(c)

0 10 20 30 40
0

500

1000

1500

2000

2500

3000

Precipitation (mm/day)

−2 −0.5 1 2.5 4
0

500

1000

1500

2000

2500

R

0 10 20
0

5

10

15

20

25

Observation (mm/day)

Weekly

0 5 10 15
0

50

100

150

Precipitation (mm/day)

−2 −0.5 1 2.5 4
0

200

400

600

R

2 4 6 8 10 12

2

4

6

8

10

12

Observation (mm/day)

Monthly

0 5 10
0

5

10

15

20

25

30

Precipitation (mm/day)

−2 −0.5 1 2.5 4
0

50

100

150

200

R

Fig. 6.8 Neural network simulated precipitation rate off the west coast of British
Columbia, Canada. (a) Scatter plots of NN simulation of the daily, weekly and
monthly precipitation rate versus the observed values, with the diagonal line
indicating the ideal one-to-one relation. The weekly and monthly precipitation
amounts were converted to mm/day units. (b) Histograms of the precipitation rate
distribution. (c) The distributions of the ratio R defined in the text. The histograms
are counts of the number of occurrences of precipitation rate and R values which
fall within the limits of equally spaced bins covering the range of values. (Repro-
duced from Yuval and Hsieh (2002) with permission of the Royal Meteorological
Society.)

154 Learning and generalization

x

y

x

y

x

y

y

Daily data 7-day averaged data

30-day averaged data
2.5

2

1.5

0.5

0
–1 –0.5 0 0.5 1 –2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c

b

a

–1 0 1 2 3 4

1

y distribution

Pr
ob

ab
ili

ty
 d

en
si

ty

12

10

8

6

4

2

0

–2
–3 –2 –1 0 1 2 3

4

3

2

1

0

–1
–1.5 –1 –0.5 0 0.5 1 1.5

(a)

(c) (d)

(b)

Fig. 6.9 Effects of time-averaging on a nonlinear relation. (a) Synthetic ‘daily’
data from a quadratic relation between x and y. (b) and (c) The data time-averaged
over (b) 7 observations and (c) 30 observations. (d) The probability density distri-
bution of y for cases (a), (b) and (c). (Reproduced from Hsieh and Cannon (2008)
with permission of Springer.)

be effectively averaging over far fewer than 30 independent observations as done
in this synthetic dataset.

If the data have strong autocorrelation, so that the integral time scale from the
autocorrelation function is not small compared to the time-averaging window, then
there are actually few independent observations used during the time-averaging,
and the central limit theorem does not apply. For instance, the eastern equatorial
Pacific sea surface temperatures have an integral time scale of about a year, hence
nonlinear relations can be detected from monthly or seasonal data, as found by non-
linear principal component analysis (Monahan, 2001; Hsieh, 2001b) and nonlinear
canonical correlation analysis (Hsieh, 2001a). In contrast, the mid-latitude weather
variables have integral time scales of about 3–5 days, so monthly averaged data

Exercises 155

would have effectively averaged over about 6–10 independent observations, and
seasonal data over 20–30 independent observations, so the influence of the central
limit theorem cannot be ignored.

While time-averaging tends to reduce the nonlinear signal, it also smooths out
the noise. Depending on the type of noise (and perhaps on the type of nonlinear
signal), it is possible that time-averaging may nevertheless enhance detection of
a nonlinear signal above the noise for some datasets. In short, researchers should
be aware that time-averaging could have a major impact on their modelling or
detection of nonlinear empirical relations, and that a nonlinear machine learning
method often outperforms a linear method in weather applications, but fails to do
so in climate applications.

Exercises

(6.1) Let y = sin(2πx) (0 ≤ x < 1) be the signal. The y data are gener-
ated by adding Gaussian noise to the y signal. Fit a multi-layer perceptron
(MLP) NN model with one hidden layer and no regularization to the (x, y)

data. Use the early stopping approach of Section 6.4, i.e. monitor the mean
squared error (MSE) over training data and over validation data to deter-
mine when to stop the training, and the optimal number of hidden neurons
to use.

(6.2) Let y = sin(2πx) (0 ≤ x < 1) be the signal. The y data are generated by
adding Gaussian noise to the y signal. Fit an ensemble of MLP NN mod-
els with one hidden layer and no regularization to the (x, y) data. From
independent data not used in the training, determine the average MSE of
an individual model’s prediction of y and the MSE of the ensemble aver-
aged prediction of y. Vary the level of the Gaussian noise, the number of
hidden neurons and the ensemble size to determine when the ensemble aver-
aged prediction has the greatest advantage over a single individual model’s
prediction.

(6.3) For bootstrap resampling applied to a dataset with N observations (Section
6.8), derive an expression for the fraction of data in the original dataset drawn
in an average bootstrap sample. What is this fraction as N → ∞?

(6.4) In testing ensemble model forecasts, one compiles the following statistic:

N 1 2 5 10 20
E[(y(N) − yT)2] 0.40 0.27 0.19 0.17 0.15

where y(N) is the ensemble average prediction with N models used in the
ensemble averaging, and yT the true values from data. Assuming that the

156 Learning and generalization

individual models in the ensemble are independent (i.e. errors are uncor-
related between models), estimate the bias error and E[(y − ȳ)2] (i.e. the
variance error of a single model prediction y) from a simple graph. Is
the assumption that individual models in the ensemble can be considered
independent justified?

7

Kernel methods

Neural network methods became popular in the mid to late 1980s, but by the mid
to late 1990s, kernel methods also became popular in the field of machine learning.
The first kernel methods were nonlinear classifiers called support vector machines
(SVM), which were then generalized to nonlinear regression (support vector
regression, SVR). Soon kernel methods were further developed to nonlinearly gen-
eralize principal component analysis (PCA), canonical correlation analysis (CCA),
etc. In this chapter, a basic introduction to the kernel approach is given, while fur-
ther applications of the kernel method to nonlinear classification, regression, PCA,
etc. are given in the following chapters. The kernel method has also been extended
to probabilisitic models, e.g. Gaussian processes (GP).

Section 7.1 tries to bridge from NN to kernel methods. Sections 7.2–7.4 present
the mathematical foundation of the kernel method. Since the mathematics behind
kernel methods is more sophisticated than that for NN methods, Section 7.5 tries
to summarize the main ideas behind kernel methods, as well as their advantages
and disadvantages. The pre-image problem, a disadvantage of kernel methods, is
discussed in Section 7.6.

7.1 From neural networks to kernel methods

First we recall linear regression, where

yk =
∑

j

wk j x j + bk , (7.1)

with x the predictors and y the predictands or response variables. When a multi-
layer perceptron (MLP) NN is used for nonlinear regression, the mapping does not
proceed directly from x to y, but passes through an intermediate layer of variables
h, i.e. the hidden neurons,

157

158 Kernel methods

x h1

h2

y
y

φ

Fig. 7.1 Illustrating the effect of the nonlinear mapping φ from the input space to
the hidden space, where a nonlinear relation between the input x and the output y
becomes a linear relation (dashed line) between the hidden variables h and y.

h j = tanh
(∑

i

w j i xi + b j

)
, (7.2)

where the mapping from x to h is nonlinear through an activation function like the
hyperbolic tangent. The next stage is to map from h to y, and is most commonly
done via a linear mapping

yk =
∑

j

w̃k j h j + b̃k . (7.3)

Since (7.3) is formally identical to (7.1), one can think of the NN model as first
mapping nonlinearly from the input space to a ‘hidden’ space (containing the hid-
den neurons), i.e. φ : x → h, then performing linear regression between the hidden
space variables and the output variables (Fig. 7.1). If the relation between x and y is
highly nonlinear, then one must use more hidden neurons, i.e. increase the dimen-
sion of the hidden space, before one can find a good linear regression fit between
the hidden space variables and the output variables. Of course, since the parameters
w j i , w̃k j , b j and b̃k are solved together, nonlinear optimization is involved, leading
to local minima, which is the main disadvantage of the MLP NN.

The kernel methods follow a somewhat similar procedure: in the first stage, a
nonlinear function φ maps from the input space to a hidden space, called the ‘fea-
ture’ space. In the second stage, one performs linear regression from the feature
space to the output space. Instead of linear regression, one can also perform linear
classification, PCA, CCA, etc. during the second stage. Like the radial basis func-
tion NN with non-adaptive basis functions (Section 4.6) (and unlike the MLP NN
with adaptive basis functions), the optimization in stage two of a kernel method is
independent of stage 1, so only linear optimization is involved, and there are no
local minima – a main advantage over the MLP. (Some kernel methods, e.g. Gaus-
sian processes, use nonlinear optimization to find the hyperparameters, and thus
have the local minima problem.) However, the feature space can be of very high

7.2 Primal and dual solutions for linear regression 159

(or even infinite) dimension. This disadvantage is eliminated by the use of a kernel
trick, which manages to avoid direct evaluation of the high dimensional function
φ altogether. Hence many methods which were previously buried due to the ‘curse
of dimensionality’ (Section 4.3) have been revived in a kernel renaissance.

7.2 Primal and dual solutions for linear regression

To illustrate the kernel method, we will start with linear regression. We need to find
a way of solving the regression problem which will compute efficiently under the
kernel method. From Section 1.4.4, the multiple linear regression problem is

yi = w0 +
m∑

l=1

xilwl + ei , i = 1, . . . , n, (7.4)

where there are n observations and m predictors xl for the predictand y, with ei

the errors or residuals, and w0 and wl the regression coefficients. By introducing
xi0 ≡ 1, we can place w0 as the first element of the vector w, which also contains
wl, (l = 1, . . . , m), so the regression problem can be expressed as

y = Xw + e. (7.5)

where X is an n × m matrix. The solution (see Section 1.4.4) is

w = (XTX)−1XTy, (7.6)

where (XTX) is an m × m matrix, so (XTX)−1 takes O(m3) operations to compute.
Let us rewrite the equation as

w = (XTX)(XTX)−1(XTX)−1XTy. (7.7)

If we introduce dual variables α, with

α = X(XTX)−1(XTX)−1XTy, (7.8)

then

w = XTα. (7.9)

Linear regression when performed with a weight penalty term is called ridge
regression, where the objective function to be minimized becomes

J =
n∑

i=1

(
yi −

∑
l

xilwl

)2 + p‖w‖2, (7.10)

with p the weight penalty parameter. This can be rewritten as

J = (y − Xw)T(y − Xw) + pwTw. (7.11)

160 Kernel methods

Setting the gradient of J with respect to w to zero, we have

− XT(y − Xw) + pw = 0, (7.12)

i.e.

(XTX + pI)w = XTy, (7.13)

where I is the identity matrix. This yields

w = (XTX + pI)−1 XTy, (7.14)

which requires O(m3) operations to solve.
From (7.12),

w = p−1XT(y − Xw). (7.15)

Invoking (7.9), we have

α = p−1(y − Xw) = p−1(y − XXTα). (7.16)

Rewriting as

(XXT + pI)α = y, (7.17)

we obtain

α = (G + pI)−1y, (7.18)

with the n × n matrix G ≡ XXT called the Gram matrix. Using this equation to
solve for α takes O(n3) operations. If n � m, solving w from (7.9) via (7.18),
called the dual solution, will be much faster than solving from (7.14), the primal
solution.

If a new datum x̃ becomes available, and if one wants to map from x̃ to ỹ, then
using

ỹ = x̃Tw (7.19)

requires O(m) operations if w from the primal solution (7.14) is used.
If the dual solution is used, we have

ỹ = wTx̃ = αTXx̃ =
n∑

i=1

αi xT
i x̃, (7.20)

where xT
i is the i th row of X. With the dimensions of αT, X and x̃ being 1 × n,

n × m and m × 1, respectively, computing ỹ via the dual solution requires O(nm)
operations, more expensive than via the primal solution. Writing k = Xx̃ (with
ki = xT

i x̃) and invoking (7.18), we have

ỹ = αTk = ((G + pI)−1y)Tk = yT(G + pI)−1k, (7.21)

where we have used the fact that G + pI is symmetric.

7.3 Kernels 161

7.3 Kernels

In the kernel method, a feature map φ(x) maps from the input space X to the
feature space F . For instance, if x ∈ X = R

m , then φ(x) ∈ F ⊆ R
M , where F is

the feature space, and

φT(x) = [φ1(x), . . . , φM(x)]. (7.22)

In problems where it is convenient to incorporate a constant element xi0 ≡ 1 into
the vector xi (e.g. to deal with the constant weight w0 in (7.4)), one also tends to add
a constant element φ0(x) (≡ 1) to φ(x). With appropriate choice of the nonlinear
mapping functions φ, the relation in the high dimensional space F becomes linear.

In Section 7.2, we had G = XXT and ki = xT
i x̃. Now, as we will be performing

regression in the feature space, we need to work with

Gi j = φT(xi)φ(x j), (7.23)

ki = φT(xi)φ(x̃). (7.24)

If we assume φ(x) requires O(M) operations, then φT(xi)φ(x j) is still of O(M),
but (7.23) has to be done n2 times as G is an n × n matrix, thus requiring a total
of O(n2 M) operations. To get α from (7.18), computing the inverse of the n × n
matrix (G + pI) takes O(n3) operations, thus a total of O(n2 M + n3) operations is
needed.

With new datum x̃, (7.20) now becomes

ỹ =
n∑

i=1

αi φ
T(xi)φ(x̃), (7.25)

which requires O(nM) operations.
To save computation costs, instead of evaluating φ explicitly, we introduce a

kernel function K to evaluate the inner product (i.e. dot product) in the feature
space,

K (x, z) ≡ φT(x)φ(z) =
∑

l

φl(x)φl(z), (7.26)

for all x, z in the input space. Since K (x, z) = K (z, x), K is a symmetric function.
The key to the kernel trick is that if an algorithm in the input space can be formu-
lated involving only inner products, then the algorithm can be solved in the feature
space with the kernel function evaluating the inner products. Although the algo-
rithm may only be solving for a linear problem in the feature space, it is equivalent
to solving a nonlinear problem in the input space.

As an example, for x = (x1, x2) ∈ R
2, consider the feature map

φ(x) = (x2
1 , x2

2 ,
√

2 x1x2) ∈ R
3. (7.27)

162 Kernel methods

Linear regression performed in F is then of the form

y = a0 + a1x2
1 + a2x2

2 + a3

√
2 x1x2, (7.28)

so quadratic relations with the inputs become linear relations in the feature space.
For this φ,

φT(x)φ(z) = x2
1 z2

1 + x2
2 z2

2 + 2x1x2z1z2 = (x1z1 + x2z2)
2 = (xTz)2. (7.29)

Hence

K (x, z) = (xTz)2. (7.30)

Although K is defined via φ in (7.26), we can obtain K in (7.30) without explicitly
involving φ. Note that for

φ(x) = (x2
1 , x2

2 , x1x2, x2x1) ∈ R
4, (7.31)

we would get the same K , i.e. a kernel function K is not uniquely associated with
one feature map φ.

Next generalize to x ∈ R
m . Function K in (7.30) now corresponds to the feature

map φ(x) with elements xk xl , where k = 1, . . . , m, l = 1, . . . , m. Hence φ(x) ∈
R

m2
, i.e. the dimension of the feature space is M = m2. Computing φT(x)φ(z)

directly takes O(m2) operations, but computing this inner product through K (x, z)
using (7.30) requires only O(m) operations. This example clearly illustrates the
advantage of using the kernel function to avoid direct computations with the high-
dimensional feature map φ.

Given observations xi , (i = 1, . . . , n) in the input space, and a feature map φ,
the n × n kernel matrix K is defined with elements

Ki j = K (xi , x j) = φT(xi)φ(x j) ≡ Gi j , (7.32)

where (Gi j) is simply the Gram matrix.
A matrix M is positive semi-definite if for any vector v ∈ R

n , vTMv ≥ 0.
A symmetric function f : X × X −→ R is said to be a positive semi-definite
function if any matrix M [with elements Mi j = f (xi , x j)], formed by restricting f
to a finite subset of the input space X , is a positive semi-definite matrix.

A special case of Mercer theorem from functional analysis guarantees that a
function K : X × X −→ R is a kernel associated with a feature map φ via

K (x, z) = φT(x)φ(z), (7.33)

if and only if K is a positive semi-definite function. To show that a kernel function
K is positive semi-definite, consider any kernel matrix K derived from K , and any
vector v:

7.3 Kernels 163

vTKv =
∑

i

∑
j

viv j Ki j =
∑

i

∑
j

viv jφ(xi)
Tφ(x j)

=
(∑

i

viφ(xi)
)T(∑

j

v jφ(x j)
)

=
∥∥∥∑

i

viφ(xi)

∥∥∥2 ≥ 0, (7.34)

so K is indeed positive semi-definite. The proof for the converse is more compli-
cated, and the reader is referred to Schölkopf and Smola (2002) or Shawe-Taylor
and Cristianini (2004).

Let us now consider what operations can be performed on kernel functions which
will yield new kernel functions. For instance, if we multiply a kernel function K1

by a positive constant c, then K = cK1 is a kernel function, since for any kernel
matrix K1 derived from K1 and any vector v,

vT(cK1)v = c vTK1v ≥ 0. (7.35)

Next consider adding two kernel functions K1 and K2, which also yields a kernel
since

vT(K1 + K2)v = vTK1v + vTK2v ≥ 0. (7.36)

Below is a list of operations on kernel functions (K1 and K2) which will yield
new kernel functions K .

(1) K (x, z) = cK1(x, z), with c ≥ 0. (7.37)
(2) K (x, z) = K1(x, z) + K2(x, z). (7.38)
(3) K (x, z) = K1(x, z)K2(x, z). (7.39)

(4) K (x, z) = K1(x, z)√
K1(x, x)K1(z, z)

= φ1(x)T

‖φ1(x)‖
φ1(z)

‖φ1(z)‖
. (7.40)

(5) K (x, z) = K1(ψ(x),ψ(z)), with ψ a real function. (7.41)

If f is a real function, M a symmetric positive semi-definite m × m matrix, and
p a positive integer, we also obtain kernel functions from the following operations.

(6) K (x, z) = f (x) f (z). (7.42)
(7) K (x, z) = xTMz. (7.43)
(8) K (x, z) = (

K1(x, z)
)p

, (7.44)
where a special case is the popular polynomial kernel

K (x, z) = (
1 + xTz

)p
. (7.45)

For example, suppose the true relation is

y(x1, x2) = b1x2 + b2x2
1 + b3x1x2. (7.46)

With a p = 2 polynomial kernel, φ(x) in the feature space contains the elements
x1, x2, x2

1(≡ x3), x1x2(≡ x4), x2
2(≡ x5). Linear regression in F is

y = a0 + a1x1 + a2x2 + a3x3 + a1x4 + a1x4 + a5x5, (7.47)

164 Kernel methods

so the true nonlinear relation (7.46) can be extracted by a linear regression in F .
Kernels can also be obtained through exponentiation.

(9) K (x, z) = exp
(
K1(x, z)

)
. (7.48)

(10) K (x, z) = exp
(
− ‖x−z)‖2

2σ 2

)
. (7.49)

The Gaussian kernel or radial basis function (RBF) kernel (7.49) is the most com-
monly used kernel. As the exponential function can be approximated arbitrarily
accurately by a high-degree polynomial with positive coefficients, the exponential
kernel is therefore a limit of kernels. To extend further from the exponential ker-
nel (7.48) to the Gaussian kernel (7.49), we first note that exp(xTz/σ 2) is a kernel
according to (7.48). Normalizing this kernel by (7.40) gives the new kernel

exp(xTz/σ 2)√
exp(xTx/σ 2) exp(zTz/σ 2)

= exp

(
xTz
σ 2

− xTx
2σ 2

− zTz
2σ 2

)

= exp

(−xTx + zTx + xTz − zTz
2σ 2

)

= exp

(−(x − z)T(x − z)
2σ 2

)

= exp

(−‖x − z‖2

2σ 2

)
. (7.50)

Hence the Gaussian kernel is a normalized exponential kernel. For more details on
operations on kernels, see Shawe-Taylor and Cristianini (2004).

7.4 Kernel ridge regression

For the first application of the kernel method, let us describe kernel ridge regression
as a technique for performing nonlinear regression. We will use the Gaussian kernel
K and ridge regression. The Gaussian kernel (7.49) has the parameter σ governing
the width of the Gaussian function, while ridge regression (7.10) has a weight
penalty parameter p. These two parameters are usually called hyperparameters, as
we need to perform a search for their optimal values above a search for the basic
model parameters like the regression coefficients.

The procedure for kernel regression is set out below.

(1) Set aside some data for validation later; use the remaining observations xi , yi , (i =
1, . . . , n) for training.

(2) Choose values for σ and p.
(3) Calculate the kernel matrix K with Ki j = K (xi , x j).
(4) Solve the dual problem for ridge regression in (7.18) with K replacing G, i.e. α =

(K + pI)−1y.

7.5 Advantages and disadvantages 165

(5) For validation data x̃, compute ỹ using (7.21), i.e. ỹ = αTk, with ki = K (xi , x̃).
(6) Calculate the mean squared error (MSE) of ỹ over the validation data.
(7) Go to (2) and repeat the calculations with different values of σ and p.
(8) Choose the σ and p values with the smallest MSE over the validation data as the

optimal solution.

7.5 Advantages and disadvantages

Since the mathematical formulation of the last three sections may be difficult for
some readers, a summary of the main ideas of kernel methods and their advantages
and disadvantages is presented in this section.

First consider the simple linear regression problem with a single predictand
variable y,

y =
∑

i

ai xi + a0, (7.51)

with xi the predictor variables, and ai and a0 the regression parameters. In the
MLP NN approach to nonlinear regression (Section 4.3), nonlinear adaptive basis
functions h j (also called hidden neurons) are introduced, so the linear regression is
between y and h j ,

y =
∑

j

a j h j (x; w) + a0, (7.52)

with typically

h j (x; w) = tanh(
∑

i

w j i xi + b j). (7.53)

Since y depends on w nonlinearly (due to the nonlinear function tanh), the resulting
optimization is nonlinear, with multiple minima in general.

What happens if instead of adaptive basis functions h j (x; w), we use non-
adaptive basis functions φ j (x), i.e. the basis functions do not have adjustable
parameters w? In this situation,

y =
∑

j

a j φ j (x) + a0. (7.54)

For instance, Taylor series expansion with two predictors (x1, x2) would have
{φ j } = x1, x2, x2

1 , x1x2, x2
2 , . . . The advantage of using non-adaptive basis func-

tions is that y does not depend on any parameter nonlinearly, so only linear
optimization is involved with no multiple minima problem. The disadvantage is
the curse of dimensionality (Section 4.3), i.e. one generally needs a huge number
of non-adaptive basis functions compared to relatively few adaptive basis functions

166 Kernel methods

to model a nonlinear relation, hence the dominance of MLP NN models despite the
local minima problem.

The curse of dimensionality is finally solved with the kernel trick, i.e. although φ
is a very high (or even infinite) dimensional vector function, as long as the solution
of the problem can be formulated to involve only inner products like φT(x′)φ(x),
then a kernel function K can be introduced

K (x′, x) = φT(x′)φ(x). (7.55)

The solution of the problem now involves working only with a very manageable
kernel function K (x′, x) instead of the unmanageable φ. From Section 7.4, the
kernel ridge regression solution is

y =
n∑

k=1

αk K (xk, x), (7.56)

where there are k = 1, . . . , n data points xk in the training dataset. If a Gaussian
kernel function is used, then y is simply a linear combination of Gaussian func-
tions. If a polynomial kernel function is used, then y is a linear combination of
polynomial functions.

The kernel approach has an elegant architecture with simple modularity, which
allows easy interchange of parts. The modularity, as illustrated in Fig. 7.2, is as
follows: after the input data have been gathered in stage 1, stage 2 consists of
choosing a kernel function K and calculating the kernel matrix K, stage 3 consists
of using a pattern analysis algorithm to perform regression, classification, principal
component analysis (PCA), canonical correlation analysis (CCA), or other tasks in
the feature space, whereby the extracted information is given as output in stage 4.
For example, if at stage 3, one decides to switch from ridge regression to a different
regression algorithm such as support vector regression, or even to CCA, the other
stages require no major adjustments to accommodate this switch. Similarly, we
can switch kernels in stage 2 from say the Gaussian kernel to a polynomial kernel
without having to make significant modifications to the other stages. The pattern
analysis algorithms in stage 3 may be limited to working with vectorial data, yet

Input
data

Algorithm for:

Regression

Classification

PCA

CCA, etc.

OutputKernel function K

Kernel matrix K

Fig. 7.2 The modular achitecture of the kernel method. (After Shawe-Taylor and
Cristianini (2004).)

7.6 The pre-image problem 167

with cleverly designed kernels in stage 2, kernel methods have been used to analyze
data with very different structures, e.g. strings (used in text and DNA analyses) and
trees (Shawe-Taylor and Cristianini, 2004).

In summary, with the kernel method, one can analyze the structure in a high-
dimensional feature space with only moderate computational costs thanks to the
kernel function which gives the inner product in the feature space without having
to evaluate the feature map φ directly. The kernel method is applicable to all pattern
analysis algorithms expressed only in terms of inner products of the inputs. In the
feature space, linear pattern analysis algorithms are applied, with no local minima
problems since only linear optimization is involved. Although only linear pattern
analysis algorithms are used, the fully nonlinear patterns in the input space can be
extracted due to the nonlinear feature map φ.

The main disadvantage of the kernel method is the lack of an easy way to map
inversely from the feature space back to the input data space – a difficulty com-
monly referred to as the pre-image problem. This problem arises e.g. in kernel
principal component analysis (kernel PCA, see Section 10.4), where one wants to
find the pattern in the input space corresponding to a principal component in the
feature space. In kernel PCA, where PCA is performed in the feature space, the
eigenvectors are expressed as a linear combination of the data points in the feature
space, i.e.

v =
n∑

i=1

αiφ(xi). (7.57)

As the feature space F is generally a much higher dimensional space than the input
space X and the mapping function φ is nonlinear, one may not be able to find an
x (i.e. the ‘pre-image’) in the input space, such that φ(x) = v, as illustrated in
Fig. 7.3. We will look at methods for finding an approximate pre-image in the next
section.

This chapter has provided a basic introduction to the kernel approach, and fur-
ther applications of the kernel method to nonlinear regression, classification, PCA,
CCA, etc. are given in the following chapters. The kernel method has also been
extended to probabilisitic models, e.g. Gaussian processes.

7.6 The pre-image problem

Since in general an exact pre-image may not exist (Fig. 7.3), various methods have
been developed to find an approximate pre-image. In Fig. 7.4, we illustrate the
situation where we want to find a pre-image for a point p(φ(x)). Here p can rep-
resent for instance the projection of φ(x) onto the first PCA eigenvector in the
feature space. Mika et al. (1999) proposed finding a pre-image x′ by minimizing

168 Kernel methods

X

X1

X2

v

F
f

f (X1)

f (X2)

Fig. 7.3 Illustrating the pre-image problem in kernel methods. The input space
X is mapped by φ to the grey area in the much larger feature space F . Two data
points x1 and x2 are mapped to φ(x1) and φ(x2), respectively, in F . Although v is
a linear combination of φ(x1) and φ(x2), it lies outside the grey area in F , hence
there is no ‘pre-image’ x in X , such that φ(x) = v.

X

X

X′

F

φ (X)

φ (X′) p(φ (X))

Fig. 7.4 Illustrating the approach used by Mika et al. (1999) to extract an approx-
imate pre-image in the input space X for a point p(φ(x)) in the feature space F .
Here, for example, p(φ(x)) is shown as the projection of φ(x) onto the direction
of the first PCA eigenvector (solid line). The optimization algorithm looks for x′
in X which minimizes the squared distance between φ(x′) and p(φ(x)).

the squared distance between φ(x′) and p(φ(x)), i.e.

x′ = arg min
x′ ‖φ(x′) − p(φ(x))‖2. (7.58)

This is a nonlinear optimization problem, hence susceptible to finding local min-
ima. It turns out the method is indeed quite unstable, and alternatives have been
proposed.

In the approach of Kwok and Tsang (2004), the distances between p(φ(x)) and
its k nearest neighbours, φ(x1) . . . ,φ(xk) in F are used. Noting that there is usu-
ally a simple relation between feature-space distance and input-space distance for

Exercises 169

X

X

φ (X)

φ (X3)

φ (X2)

φ (X1) p(φ (X))
X1

X2

X3

X′

F

Fig. 7.5 Illustrating the approach used by Kwok and Tsang (2004) to extract
an approximate pre-image in the input space X for a point p(φ(x)) in the fea-
ture space F . The distance information in F between p(φ(x)) and its several
nearest neighbours (e.g. φ(x1),φ(x2), . . .), and the relationship between distance
in X and distance in F are exploited to allow x1, x2, . . . to pinpoint the desired
approximate pre-image x′ in X .

many commonly used kernels, and borrowing an idea from multi-dimensional scal-
ing (MDS), they were able to use the corresponding distances among x1, . . . , xk to
pinpoint the approximate pre-image x′ for p(φ(x)) (Fig. 7.5), analogous to the use
of global positioning system (GPS) satellites to pinpoint the location of an object.
Since the solution required only linear algebra and is non-iterative, there are no
numerical instability and local minima problems. Note that the method can be used
to find the pre-image for any point p̃ in F . Other applications beside kernel PCA
include kernel clustering, e.g. p̃ can be the mean position of a cluster in F obtained
from a K -means clustering algorithm (Section 1.7). Alternative approaches to find-
ing an approximate pre-image include Bakir et al. (2004) and Tang and Mazzoni
(2006).

Exercises

(7.1) Prove (7.39), i.e. the product of two kernels is also a kernel.
(7.2) In the kernel method, a function φ maps from the input x to a point φ(x) in

the feature space, with a kernel function K (xi , x j) = φ(xi)
Tφ(x j). For some

applications, we need to remove the mean φ̄ from φ, i.e. we need to work
with the centred kernel K̃ (xi , x j) = (φ(xi) − φ̄)T(φ(x j) − φ̄). Express this
centred kernel K̃ in terms of the original kernel K .

8

Nonlinear classification

So far, we have used NN and kernel methods for nonlinear regression. However,
when the output variables are discrete rather than continuous, the regression prob-
lem turns into a classification problem. For instance, instead of a prediction of the
wind speed, the public may be more interested in a forecast of either ‘storm’ or ‘no
storm’. There can be more than two classes for the outcome – for seasonal tem-
perature, forecasts are often issued as one of three classes, ‘warm’, ‘normal’ and
‘cool’ conditions. Issuing just a forecast for one of the three conditions (e.g. ‘cool
conditions for next season’) is often not as informative to the public as issuing pos-
terior probability forecasts. For instance, a ‘25% chance of warm, 30% normal and
45% cool’ condition forecast, is quite different from a ‘5% warm, 10% normal and
85% cool’ condition forecast, even though both are forecasting cool conditions. We
will examine methods which choose one out of k classes, and methods which issue
posterior probability over k classes. In cases where a class is not precisely defined,
clustering methods are used to group the data points into clusters.

In Section 1.6, we introduced the two main approaches to classification – the
first by discriminant functions, the second by posterior probability. A discriminant
function is simply a function which tells us which class we should assign to a given
predictor data point x (also called a feature vector). For instance, x can be the
reading from several weather instruments at a given moment, and the discriminant
function then tells us whether it is going to be ‘storm’ or ‘no storm’. Discrimi-
nant functions provide decision boundaries in the x-space, where data points on
one side of a decision boundary are estimated to belong to one class, while those
on the opposite side, to a different class. Figure 1.3 illustrates linear and nonlin-
ear decision boundaries. Since linear discriminant analysis methods provide only
hyperplane decision boundaries, neural network and kernel methods are used to
model nonlinear decision boundaries.

In the posterior probability approach to classification, Bayes theorem (Sec-
tion 1.5) is used to estimate the posterior probability P(Ci |x) of belonging to class
Ci given the observation x, i.e.

170

8.1 Multi-layer perceptron classifier 171

P(Ci |x) = p(x|Ci)P(Ci)∑
i p(x|Ci)P(Ci)

, i = 1, . . . , k, (8.1)

where p(x|Ci) is the likelihood and P(Ci) the prior probability. The posterior prob-
abilities can then be used to perform classification. For a given x, suppose C j is
found to have the highest posterior probability, i.e.

P(C j |x) > P(Ci |x), for all i �= j, (8.2)

then C j is chosen as the appropriate class.
There are pros and cons for the two different approaches. Under the framework

of statistical learning theory (Vapnik, 1995), posterior probabilities are avoided
in classification problems. The argument is that in terms of complexity, the three
main types of problem can be ranked in the following order: classification (sim-
plest), regression (harder) and estimating posterior probabilities (hardest). Hence
the classical approach of estimating posterior probabilities before proceeding to
classification amounts to solving a much harder problem first in order to solve
a relatively simple classification problem (Cherkassky and Mulier, 1998). In this
chapter, we will look at classification methods from both approaches – neural
network (NN) and support vector machines (SVM). The NN outputs posterior
probabilities, then uses them to perform classification (Section 8.1), whereas SVM
performs classification without use of posterior probabilities (Section 8.4).

How to score the forecast performance of a classifier is examined in Section 8.5.
How unsupervised learning (i.e. learning without target data) can classify input
data into categories or clusters is presented in Section 8.6. Applications of machine
learning methods for classification in the environmental sciences are reviewed in
Chapter 12.

8.1 Multi-layer perceptron classifier

The multi-layer perceptron (MLP) NN model for nonlinear regression can easily
be modified for classification problems. If there are only two classes C1 and C2,
we can take the target data yd to be a binary variable, with yd = 1 denoting C1

and yd = 0 denoting C2. Since the output is bounded in classification problems,
instead of using a linear activation function in the output layer as in the case of MLP
regression, we now use the logistic sigmoidal function (4.5). With s denoting the
logistic sigmoidal activation function, the MLP network with one layer of hidden
neurons h j has the output y given by

y = s

⎛
⎝∑

j

w̃ j h j + b̃

⎞
⎠ , with h j = s(w j · x + b j), (8.3)

172 Nonlinear classification

where w̃ j and w j are weights and b̃ and b j are offset or bias parameters.
In MLP regression problems, the objective function J minimizes the mean

squared error (MSE), i.e.

J = 1

2N

N∑
n=1

(yn − ydn)
2 . (8.4)

This objective function can still be used in classification problems, though there is
an alternative objective function (the cross entropy function) to be presented later.
Regularization (i.e. weight penalty or decay terms) (Section 6.5) can also be added
to J to control overfitting.

To classify the MLP output y as either 0 or 1, we invoke the indicator function
I , where

I (x) =
{

1 if x > 0,

0 if x ≤ 0.
(8.5)

The classification is then given by

f (x) = I [y(x) − 0.5]. (8.6)

The classification error can be defined by

E = 1

2N

N∑
n=1

(f (xn) − ydn)
2 . (8.7)

While posterior probabilities have not been invoked in this MLP classifier, y,
the output from a logistic sigmoidal function, can be interpreted as a posterior
probability. This was shown in Section 4.2 for the single-layer perceptron model.
With the extra hidden layer in MLP, complicated, nonlinear decision boundaries
can be modelled.

Figure 8.1 illustrates classification of noiseless data in the x1-x2 plane by an
MLP with different values of mh (the number of neurons in the hidden layer).
The theoretical decision boundaries for the data are shown by the dashed curves
(i.e. an ellipse and a rectangle). With mh = 2 and 3, the model does not have
enough complexity to model the correct decision boundaries. Classification of
noisy data is shown in Fig. 8.2, where overfitting occurs when mh becomes large,
as regularization (weight penalty) is not used.

When one is interested only in classification and not in posterior probabilities,
there is an alternative coding of target data which speeds up the computation.
Instead of the target data being coded as 0 or 1, the data are coded as 0.1 or 0.9.
The reason is that 0 and 1 are the asymptotic values of the logistic sigmoidal func-
tion, and would require weights of very large magnitude to represent them, hence a
computational disadvantage (Cherkassky and Mulier, 1998). However, with good
optimization algorithms, the difference in computational speed between the two
coding schemes is actually quite modest.

8.1 Multi-layer perceptron classifier 173

1

0.8

0.6

0.4

0.2

0
0 0.5 1

x1

0 0.5 1

x1

0 0.5 1

x1

0 0.5 1
x1

x 2

1
4 Hidden neurons

2 Hidden neurons

10 Hidden neurons

3 Hidden neurons

0.8

0.6

0.4

0.2

0

x 2

1

0.8

0.6

0.4

0.2

0

x 2

1

0.8

0.6

0.4

0.2

0

x 2

(a)

(c) (d)

(b)

Fig. 8.1 Classification of noiseless data by an MLP model with the number of
hidden neurons being (a) 2, (b) 3, (c) 4 and (d) 10. The two classes of data point
are indicated by plus signs and circles, with the decision boundaries found by
the MLP shown as solid curves, and the theoretical decision boundaries shown as
dashed curves.

8.1.1 Cross entropy error function

An alternative to minimizing the mean squared error in the objective function is
to minimize the cross entropy instead. In Section 6.1, the MSE objective func-
tion was found from the maximum likelihood principle assuming the target data
to be continuous variables with Gaussian noise. For classification problems (with
two classes), the targets are binary variables, and their noise, if present, is not
well-described by Gaussian distributions. We therefore proceed to consider an
alternative objective function designed specially for classification problems.

174 Nonlinear classification

1(a)

0.8

0.6

0.4

0.2

0
0 0.5 1

x1

0 0.5 1

x1

0 0.5 1

x1

0 0.5 1

x1

x 2

1
(c)

0.8

0.6

0.4

0.2

0

x 2

1
(d)

0.8

0.6

0.4

0.2

0

x 2

1(b)

0.8

0.6

0.4

0.2

0

x 2
4 Hidden neurons

2 Hidden neurons

10 Hidden neurons

3 Hidden neurons

Fig. 8.2 Classification of noisy data by an MLP model with the number of hidden
neurons being (a) 2, (b) 3, (c) 4 and (d) 10. Since regularization (weight penalty)
is not used, overfitting occurred in (d).

For a two-class problem, we consider a network with a single output y modelling
the posterior probability P(C1|x). The target data yd equals 1 if the input x belongs
to C1, and equals 0 if C2. We can combine the two expressions P(C1|x) = y and
P(C2|x) = 1 − y into a single convenient expression

P(yd|x) = yyd(1 − y)1−yd, (8.8)

since changing from yd = 1 to yd = 0 switches from the first expression to the
second.

8.2 Multi-class classification 175

For a dataset with n = 1, . . . , N independent observations, the likelihood
function is then

L =
∏

n

y ydn
n (1 − yn)

1−ydn . (8.9)

As in Section 6.1, the objective function J is taken to be the negative logarithm of
the likelihood function, i.e.

J = − ln L = −
∑

n

ydn ln yn + (1 − ydn) ln(1 − yn), (8.10)

which is called the cross entropy error function. This error function also applies to
the case where the target yd is not a binary variable, but is a real variable in the
interval [0, 1] representing the probability of the input x belonging to C1 (Bishop,
1995).

8.2 Multi-class classification

We next turn to classification problems where there are now c classes (c being
an integer > 2). For instance, the temperature is to be classified as warm, nor-
mal or cold. The target data typically use a 1-of-c coding scheme, e.g. warm is
(1, 0, 0), normal is (0, 1, 0) and cold is (0, 0, 1). This suggests that there should
be three model outputs, one for each class. If we are interested in the outputs giv-
ing the posterior probability of each class, we will need a generalization of the
logistic sigmoidal function. Since posterior probabilities are non-negative, one can
model non-negative outputs by exponential functions like exp(ak) for the kth model
output. Next we require the posterior probabilites to sum to 1, so the kth model
output yk is

yk = exp(ak)∑
k′ exp(ak′)

, (8.11)

which satistifes
∑

k yk = 1. This normalized exponential activation function is
commonly referred to as the softmax activation function. The name softmax comes
about because the function is a smooth form of a ‘maximum’ function – e.g. if
a j � ak , for all k �= j , then y j ≈ 1 and all other yk ≈ 0.

That the softmax activation function is a generalization of the logistic sigmoidal
function can be shown readily. Let us try to express yk in the logistic sigmoidal
form

yk = 1

1 + exp(−αk)
. (8.12)

Equating the right hand side of (8.11) and (8.12), we then cross multiply to get∑
k′

exp(ak′) = [1 + exp(−αk)] exp(ak). (8.13)

176 Nonlinear classification

Solving for αk yields

αk = ak − ln

⎡
⎣∑

k′ �=k

exp(ak′)

⎤
⎦ . (8.14)

Next, we derive the cross entropy error function for multi-class classification.
Assume that the model has one output yk for each class Ck , and the target data ydk

are coded using the 1-of-c binary coding, i.e. ydk = 1 if the input x belongs to Ck ,
and 0 otherwise. The output yk is to represent the posterior probability P(Ck |x). We
can combine all k = 1, . . . , c expressions of yk = P(Ck |x) into a single expression

P(y|x) =
c∏

k=1

y ydk
k . (8.15)

With n = 1, . . . , N independent observations, the likelihood function is then

L =
N∏

n=1

c∏
k=1

y ydkn
kn . (8.16)

Again, the objective function J is taken to be the negative logarithm of the
likelihood function, i.e.

J = − ln L = −
∑

n

∑
k

ydkn ln(ykn), (8.17)

giving the cross entropy error function. This error function also applies to the case
where the target ydk is not a binary variable, but is a real variable in the interval
[0, 1] representing the probability of the input x belonging to Ck (Bishop, 1995).

8.3 Bayesian neural network (BNN) classifier

So far, the objective functions for classication problems do not contain weight
penalty or regularization terms to suppress overfitting. We have studied the use
of Bayesian neural networks (BNN) for nonlinear regression in Section 6.7, where
the regularization (or weight penalty) hyperparameter is automatically determined
via a Bayesian approach to avoid overfitting. Here we will see that BNN can be
applied in a similar way to perform nonlinear classification. Consider the two-class
problem, where the objective function is the cross entropy error function (8.10), i.e.
the negative log likelihood. A regularization or weight penalty term is now added
to the objective function, i.e.

J = −
∑

n

ydn ln yn + (1 − ydn) ln(1 − yn) + α

2
wTw, (8.18)

8.4 Support vector machine (SVM) classifier 177

where α is the hyperparameter controlling the size of the weight penalty, with w
containing all the model weights (including offset parameters). Note that unlike the
case of BNN regression (Section 6.7), here for classification there is only a single
hyperparameter α. There is not a second hyperparameter β controlling the amount
of noise in the target data, since the target data yd are assumed to be correctly
labelled as either 0 or 1.

As in BNN regression, an isotropic Gaussian form (6.33) is assumed for the prior
distribution over w. To find α iteratively, an initial guess value is used for α, and
(8.18) is minimized using nonlinear optimization, yielding w = wMP.

Next, we need to improve the estimate for α by iterations. Without β (and not
mentioning the model M dependence explicitly), the marginal log likelihood for
BNN regression in (6.43) simplifies here to

ln p(D|α) = ln Z(α) − ln Zw(α), (8.19)

with Z given by (6.42) and Zw from (6.33). After a little algebra, it follows that

ln p(D|α) ≈ −J (wMP) − 1

2
ln[det(HMP)] + 1

2
Nw ln α + constant, (8.20)

where Nw is the number of model parameters, HMP the Hessian matrix at wMP, and

J (wMP) = −
∑

n

ydn ln yn + (1 − ydn) ln(1 − yn) + α

2
wT

MPwMP, (8.21)

with yn = y(xn, wMP). Maximizing ln p(D|α) with respect to α again leads to

αMP = γ

wT
MPwMP

and γ = Nw − αMP tr((HMP)
−1), (8.22)

which provides a new estimate for α to continue the iterative process till conver-
gence.

8.4 Support vector machine (SVM) classifier

Since the mid 1990s, support vector machines (SVM) have become popular in
nonlinear classification and regression problems. A kernel-based method, SVM
for classification provides the decision boundaries but not posterior probabilities.
While various individual features of SVM have been discovered earlier, Boser
et al. (1992) and Cortes and Vapnik (1995) were the first papers to assemble
the various ideas into an elegant new method for classification. Vapnik (1995)
then extended the method to the nonlinear regression problem. Books cover-
ing SVM include Vapnik (1998), Cherkassky and Mulier (1998), Cristianini and
Shawe-Taylor (2000), Schölkopf and Smola (2002), Shawe-Taylor and Cristianini
(2004), and Bishop (2006).

178 Nonlinear classification

The development of the SVM classifier for the two-class problem proceeds nat-
urally in three stages. The basic maximum margin classifier is first introduced
to problems where the two classes can be separated by a linear decision bound-
ary (a hyperplane). Next, the classifier is modified to tolerate misclassification
in problems not separable by a linear decision boundary. Finally, the classifier is
nonlinearly generalized by using the kernel method.

8.4.1 Linearly separable case

First we consider the two-class problem and assume the data from the two classes
can be separated by a hyperplane decision boundary. The separating hyperplane
(Fig. 8.3) is given by the equation

y(x) = wTx + w0 = 0. (8.23)

Any two points x1 and x2 lying on the hyperplane y = 0 satisfy

wT(x1 − x2) = 0, (8.24)

hence the unit vector

ŵ = w
‖w‖ , (8.25)

is normal to the y = 0 hyperplane surface.
Any point x0 on the y = 0 surface satisfies wTx0 = −w0. In Fig. 8.3, the

component of the vector x − x0 projected onto the ŵ direction is given by

ŵT(x − x0) = wT(x − x0)

‖w‖ = wTx + w0

‖w‖ = y(x)

‖w‖ . (8.26)

Thus y(x) is proportional to the normal distance between x and the hyperplane
y = 0, and the sign of y(x) indicates on which side of the hyperplane x lies.

Let the training dataset be composed of predictors xn and target data ydn (n =
1, . . . , N). Since there are two classes, ydn takes on the value of −1 or +1. When

y > 0

y < 0

x0

x

x1

x2

w
0

w
y(x)

y = 0

Fig. 8.3 The hyperplane y = 0, with the vector w normal to this hyperplane. The
component of the vector x − x0 projected onto the w direction is shown.

8.4 Support vector machine (SVM) classifier 179

a new predictor vector x becomes available, it is classified according to the sign of
the function

y(x) = wTx + w0. (8.27)

The normal distance from a point xn to the decision boundary y = 0 is, according
to (8.26), given by

ydn y(xn)

‖w‖ = ydn (wTxn + w0)

‖w‖ , (8.28)

where ydn contributes the correct sign to ensure that the distance given by (8.28) is
non-negative.

The margin (Fig. 8.4(a)) is given by the distance of the closest point(s) xn in
the dataset. A maximum margin classifier determines the decision boundary by
maximizing the margin l, through searching for the optimal values of w and w0.
The optimization problem is then

max
w,w0

l subject to
ydn (wTxn + w0)

‖w‖ ≥ l, (n = 1, . . . , N), (8.29)

where the constraint simply ensures that no data points lie inside the margins. Obvi-
ously the margin is determined by relatively few points in the dataset, and these
points circled in Fig. 8.4(a) are called support vectors.

Since the distance (8.28) is unchanged if we multiply w and w0 by an arbi-
trary scale factor s, we are free to choose ‖w‖. If we choose ‖w‖ = l−1, then the
constraint in (8.29) becomes

ydn (wTxn + w0) ≥ 1, (n = 1, . . . , N), (8.30)

Margin

(a) (b)
y = 1

y = 0

y = –1

y = 1

y = 0

y = –1
ξ < 1 ξ = 0 ξ = 0

ξ = 0

ξ > 1

Fig. 8.4 (a) A dataset containing two classes (shown by round dots and plus signs)
separable by a hyperplane decision boundary y = 0. The margin is maximized.
Support vectors, i.e. data points used in determining the margins y = ±1, are
circled. (b) A dataset not separable by a hyperplane boundary. Slack variables
ξn ≥ 0 are introduced, with ξn = 0 for data points lying on or within the cor-
rect margin, ξn > 1 for points lying to the wrong side of the decision boundary.
Support vectors are circled.

180 Nonlinear classification

and maximizing the margin l becomes equivalent to minimizing ‖w‖, which is
equivalent to solving

min
w,w0

1

2
‖w‖2, (8.31)

subject to the constraint (8.30). This optimization of a quadratic function subject to
constraints is referred to as a quadratic programming problem (Gill et al., 1981).

Karush (1939) and Kuhn and Tucker (1951) (KKT) have solved this type of
optimization with inequality constraint by a generalization of the Lagrange mul-
tiplier method. With a Lagrange multiplier λn ≥ 0 introduced for each of the N
constraints in (8.30) (see Appendix B), the Lagrange function L takes the form

L(w, w0,λ) = 1

2
‖w‖2 −

N∑
n=1

λn

[
ydn(wTxn + w0) − 1

]
, (8.32)

with λ = (λ1, . . . , λN)T. Setting the derivatives of L with respect to w and w0 to
zero yields, respectively,

w =
N∑

n=1

λn ydnxn, (8.33)

0 =
N∑

n=1

λn ydn. (8.34)

Substituting these into (8.32) allows us to express L solely in terms of the Lagrange
multipliers, i.e.

LD(λ) =
N∑

n=1

λn − 1

2

N∑
n=1

N∑
j=1

λnλ j ydn yd j xT
n x j , (8.35)

subject to λn ≥ 0 and (8.34), with LD referred to as the dual Lagrangian. If m is
the dimension of x and w, then the original primal optimization problem of (8.31)
is a quadratic programming problem with about m variables. In contrast, the dual
problem (8.35) is also a quadratic programming problem with N variables from
λ. The main reason we want to work with the dual problem instead of the primal
problem is that, in the next stage, to generalize the linear classifier to a nonlinear
classifier, SVM will invoke kernels (see Chapter 7), i.e. x will be replaced by φ(x)

in a feature space of dimension M , hence m will be replaced by M , which is usually
much larger or even infinite.

8.4 Support vector machine (SVM) classifier 181

Our constrained optimization problem satisfies the KKT conditions
(Appendix B):

λn ≥ 0, (8.36)

ydn(wTxn + w0) − 1 ≥ 0, (8.37)

λn [ydn(wTxn + w0) − 1] = 0. (8.38)

Combining (8.27) and (8.33), we have the following formula for classifying a new
data point x:

y(x) =
N∑

n=1

λn ydn xT
n x + w0, (8.39)

where the class (+1 or −1) is decided by the sign of y(x). The KKT condition
(8.38) implies that for every data point xn , either λn = 0 or ydn y(xn) = 1. But
the data points with λn = 0 will be omitted in the summation in (8.39), hence will
not contribute in the classification of a new data point x. Data points with λn > 0
are the support vectors and they satisfy ydn y(xn) = 1, i.e. they lie exactly on the
maximum margins (Fig. 8.4a). Although only support vectors determine the mar-
gins and the decision boundary, the entire training dataset was used to locate the
support vectors. However, once the model has been trained, classification of new
data by (8.39) requires only the support vectors, and the remaining data (usually
the majority of data points) can be ignored. The desirable property of being able
to ignore the majority of data points is called sparseness, which greatly reduces
computational costs.

To obtain the value for w0, we use the fact that for any support vector x j ,
yd j y(x j) = 1, i.e.

yd j

(
N∑

n=1

λn ydn xT
n x j + w0

)
= 1. (8.40)

As yd j = ±1, y−1
d j = yd j , so

w0 = yd j −
N∑

n=1

λn ydn xT
n x j , (8.41)

(where the summation need only be over n for which λn is non-zero). Since each
support vector x j gives an estimate of w0, all the estimates are usually averaged
together to provide the most accurate estimate of w0.

8.4.2 Linearly non-separable case

So far, the maximum margin classifier has only been applied to the case where the
two classes are separable by a linear decision boundary (a hyperplane). Next, we

182 Nonlinear classification

move to the case where the two classes are not separable by a hyperplane, i.e. no
matter how hard we try, one or more data points will end up on the wrong side
of the hyperplane and end up being misclassified. Hence our classifier needs to be
generalized to tolerate misclassification.

We introduce slack variables, ξn ≥ 0, n = 1, . . . , N , i.e. each training data point
xn is assigned a slack variable ξn . The slack variables are defined by ξn = 0 for all
xn lying on or within the correct margin boundary, and ξn = |ydn − y(xn)| for all
other points. Hence the slack variable measures the distance a data point protrudes
beyond the correct margin (Fig. 8.4b). A data point which lies right on the decision
boundary y(xn) = 1 will have ξn = 1, while ξn > 1 corresponds to points lying to
the wrong side of the decision boundary, i.e. misclassified. Points with 0 < ξn ≤ 1
protrude beyond the correct margin but not enough to cross the decision boundary
to be misclassified.

The constraint (8.30) is modified to allow for data points extending beyond the
correct margin, i.e.

ydn(wTxn + w0) ≥ 1 − ξn, (n = 1, . . . , N). (8.42)

The minimization problem (8.31) is modified to

min
w,w0

(
1

2
‖w‖2 + C

N∑
n=1

ξn

)
. (8.43)

If we divide this expression by C , the second term can be viewed as an error term,
while the first term can be viewed as a weight penalty term, with C−1 as the weight
penalty parameter – analogous to the regularization of NN models in Section 6.5
where we have a mean squared error (MSE) term plus a weight penalty term in
the objective function. The effect of misclassification on the objective function is
only linearly related to ξn in (8.43), in contrast to the MSE term which is quadratic.
Since any misclassified point has ξn > 1,

∑
n ξn can be viewed as providing an

upper bound on the number of misclassified points.
To optimize (8.43) subject to constraint (8.42), we again turn to the method of

Lagrange multipliers (Appendix B), where the Lagrange function is now

L = 1

2
‖w‖2 + C

N∑
n=1

ξn −
N∑

n=1

λn
[
ydn(wTxn + w0) − 1 + ξn

]− N∑
n=1

μn ξn, (8.44)

with λn ≥ 0 and μn ≥ 0 (n = 1, . . . , N) the Lagrange multipliers.

8.4 Support vector machine (SVM) classifier 183

Setting the derivatives of L with respect to w, w0 and ξn to 0 yields, respectively,

w =
N∑

n=1

λn ydnxn, (8.45)

0 =
N∑

n=1

λn ydn, (8.46)

λn = C − μn. (8.47)

Substituting these into (8.44) again allows L to be expressed solely in terms of the
Lagrange multipliers λ, i.e.

LD(λ) =
N∑

n=1

λn − 1

2

N∑
n=1

N∑
j=1

λnλ j ydn yd j xT
n x j , (8.48)

with LD the dual Lagrangian. Note that LD has the same form as that in the separa-
ble case, but the constraints are somewhat changed. As λn ≥ 0 and μn ≥ 0, (8.47)
implies

0 ≤ λn ≤ C. (8.49)

Furthermore, there are the constraints from the KKT conditions (Appendix B):

ydn(wTxn + w0) − 1 + ξn ≥ 0, (8.50)

λn [ydn(wTxn + w0) − 1 + ξn] = 0, (8.51)

μn ξn = 0, (8.52)

for n = 1, . . . , N .
In the computation for w in (8.45), only data points with λn �= 0 contributed in

the summation, so these points (with λn > 0) are the support vectors. Some support
vectors lie exactly on the margin (i.e. ξn = 0), while others may protrude beyond
the margin (ξn > 0) (Fig. 8.4b). The value for w0 can be obtained from (8.51) using
any of the support vectors lying on the margin (ξn = 0), i.e. (8.41) again follows,
and usually the values obtained from the individual vectors are averaged together
to give the best estimate.

Optimizing the dual problem (8.48) is a simpler quadratic programming problem
than the primal (8.44), and can be readily solved using standard methods (see e.g.
Gill et al., 1981). The parameter C is not solved by the optimization. Instead, one
usually reserves some validation data to test the performance of various models
trained with different values of C to determine the best value to use for C . With
new data x, the classification is, as before, based on the sign of y(x) from (8.39).

184 Nonlinear classification

8.4.3 Nonlinear classification by SVM

As our classifier is still restricted to linearly non-separable problems, the final step
is to extend the classifier from being linear to nonlinear. This is achieved by per-
forming linear classification not with the input x data but with the φ(x) data in a
feature space, where φ is the nonlinear function mapping from the original input
space to the feature space (Section 7.3), i.e.

y(x) = wTφ(x) + w0. (8.53)

The dual Lagrangian LD for this new problem is obtained from (8.48) simply
through replacing x by φ(x), giving

LD(λ) =
N∑

n=1

λn − 1

2

N∑
n=1

N∑
j=1

λnλ j ydn yd jφ
T(xn)φ(x j). (8.54)

Classification is based on the sign of y(x), with y(x) modified from (8.39) to

y(x) =
N∑

n=1

λn ydn φ
T(xn)φ(x) + w0. (8.55)

Since the dimension of the feature space can be very high or even infinite, com-
putations involving the inner product φT(x)φ(x′) are only practicable because of
the kernel trick (see Section 7.3), where a kernel function K

K (x, x′) ≡ φT(x)φ(x′), (8.56)

is introduced to obviate direct computation of the inner product. Commonly used
kernel functions include the polynomial kernel of degree p,

K (x, x′) = (
1 + xTx′)p

, (8.57)

and the Gaussian or radial basis function (RBF) kernel

K (x, x′) = exp

(
− ‖x − x′)‖2

2σ 2

)
. (8.58)

Under the kernel approach, (8.55) becomes

y(x) =
N∑

n=1

λn ydn K (xn, x) + w0, (8.59)

and (8.54) becomes

LD(λ) =
N∑

n=1

λn − 1

2

N∑
n=1

N∑
j=1

λnλ j ydn yd j K (xn, x j). (8.60)

8.4 Support vector machine (SVM) classifier 185

1
Noiseless data

0.8

0.6

0.4

0.2

0
0 0.5 1

x1

x 2
1

Noisy data

0.8

0.6

0.4

0.2

0
0 0.5 1

x1

x 2

(a) (b)

Fig. 8.5 The SVM classifier applied to (a) the noiseless dataset of Fig. 8.1 and
(b) the moderately noisy dataset of Fig. 8.2. The two classes of data point are
indicated by the plus signs and the circles, with the decision boundaries found by
SVM shown as solid curves, and the theoretical decision boundaries for noiseless
data shown as dashed curves.

Optimizing the dual problem (8.60) is again a quadratic programming problem.
Since the objective function is only quadratic, and with the constraints being lin-
ear, there is no local minima problem, i.e. unlike NN models, the minimum found
by SVM is the global minimum. The parameter C and the parameter σ (assuming
the RBF kernel (8.58) is used) are not obtained from the optimization. To deter-
mine the values of these two hyperparameters, one usually trains multiple models
with various values of C and σ , and from their classification performance over
validation data, determines the best values for C and σ . Figure 8.5 illustrates clas-
sification of noiseless data and moderately noisy data by SVM, with the SVM code
from LIBSVM (Chang and Lin, 2001). Note that SVM with the Gaussian kernel
is similar in structure to the RBF NN (Section 4.6), but SVM appears to perform
better (Schölkopf et al., 1997).

This formulation of the SVM is sometimes called the C-SVM, as there is an
alternative formulation, the ν-SVM, by Schölkopf et al. (2000). In ν-SVM, LD in
(8.60) is simplified to

LD(λ) = −1

2

N∑
n=1

N∑
j=1

λnλ j ydn yd j K (xn, x j). (8.61)

186 Nonlinear classification

The constraints are

0 ≤ λn ≤ 1/N , (8.62)
N∑

n=1

λn ydn = 0, (8.63)

N∑
n=1

λn ≥ ν, (8.64)

where the parameter ν has replaced the inverse penalty parameter C . Relative to C ,
ν has more useful interpretations: (i) ν is an upper bound on the fraction of margin
errors, i.e. fraction of points which lie on the wrong side of the margin (ξn > 0)
(and may or may not be misclassified); (ii) ν is a lower bound on the fraction of
support vectors (ξn ≥ 0) (Schölkopf and Smola, 2002). While C ranges from 0 to
∞, ν ranges between νmin and νmax, with 0 ≤ νmin ≤ νmax ≤ 1 (Chang and Lin,
2001).

8.4.4 Multi-class classification by SVM

Support vector machine was originally developed for two-class (binary) prob-
lems. The simplest extension to multi-class problems is via the one-versus-the-rest
approach: i.e. given c classes, we train c SVM binary classifiers y(k)(x) (k =
1, . . . , c) where the target data for class k are set to +1 and for all other classes
to −1. New input data x are then classified as belonging to class j if y(j)(x) attains
the highest value among y(k)(x) (k = 1, . . . , c).

There are two criticisms of this heuristic approach: (a) as the c binary classifiers
were trained on different problems, there is no guarantee that the outputs y(k) are
on the same scale for fair comparison between the c binary classifiers; (b) if there
are many classes, then the +1 target data can be greatly outnumbered by the −1
target data.

An alternative approach is pairwise classification or one-versus-one. A binary
classifier is trained for each possible pair of classes, so there is a total of c(c −1)/2
binary classifiers, with each classifier using training data from only class k and
class l (k �= l). With new data x, all the binary classifiers are applied, and if class
j gets the most ‘yes votes’ from the classifiers, then x is classified as belonging to
class j .

Recently, based on graph theory, Liu and Jin (2008) proposed the LAT-
TICESVM method, which can significantly reduce storage and computational
complexity for multi-class SVM problems, especially when c is large.

8.5 Forecast verification 187

8.5 Forecast verification

In environmental sciences, forecasting has great socio-economic benefits for soci-
ety. Forecasts for hurricanes, tornados, Arctic blizzards, floods, tsunami and
earthquakes save lives and properties, while forecasts for climate variability such
as the El Niño-Southern Oscillation bring economic benefits to farming and fish-
ing. Hence, once a forecast model has been built, it is important that we evaluate
the quality of its forecasts, a process known as forecast verification or forecast
evaluation. A considerable number of statistical measures have been developed
to evaluate how accurate forecasts are compared with observations (Jolliffe and
Stephenson, 2003).

Let us start with forecasts for two classes or categories, where class 1 is for an
event (e.g. tornado) and class 2 for a non-event (e.g. non-tornado). Model forecasts
and observed data can be compared and arranged in a 2 × 2 contingency table
(Fig. 8.6). The number of events forecast and indeed observed are called ‘hits’ and
are placed in entry a of the table. In our tornado example, this would correspond to
forecasts for tornados which turned out to be correct. Entry b is the number of false
alarms, i.e. tornados forecast but which never materialized. Entry c is the number
of misses, i.e. tornados appeared in spite of non-tornado forecasts, while entry d is
the number of correct negatives, i.e. non-tornado forecasts which turned out to be
correct. Marginal totals are also listed in the table, e.g. the top row sums to a + b,
the total number of tornados forecast, whereas the first column sums to a + c, the
total number of tornados observed. Finally, the total number of cases N is given by
N = a + b + c + d.

The simplest measure of accuracy of binary forecasts is the fraction correct
(FC) or hit rate, i.e. the number of correct forecasts divided by the total number
of forecasts,

FC = a + d

N
= a + d

a + b + c + d
, (8.65)

Observed

Yes

a = hits

c = misses

a + c = observed yes b + d = observed no

d = correct negatives

b = false alarms a + b = forecast yes

c + d = forecast no

a + b + c + d = total

Yes

NoFo
re

ca
st

Total

No Total

Fig. 8.6 Illustrating a 2 × 2 contingency table used in the forecast verification
of a two-class problem. The number of forecast ‘yes’ and ‘no’, and the number
of observed ‘yes’ and ‘no’ are the entries in the table. The marginal totals are
obtained by summing over the rows or the columns.

188 Nonlinear classification

where FC ranges between 0 and 1, with 1 being the perfect score. Unfortunately,
this measure becomes very misleading if the number of non-events vastly outnum-
bers the number of events. For instance if d � a, b, c, then (8.65) yields FC ≈ 1.
For instance, in Marzban and Stumpf (1996), one NN tornado forecast model has
a = 41, b = 31, c = 39 and d = 1002, since the vast majority of days has no tor-
nado forecast and none observed. While a, b and c are comparable in magnitude,
the overwhelming size of d lifts FC to a lofty value of 0.937.

In such situations, where the non-events vastly outnumber the events, including
d in the score is rather misleading. Dropping d in both the numerator and the
denominator in (8.65) gives the threat score (TS) or critical success index (CSI),

TS = CSI = a

a + b + c
, (8.66)

which is a much better measure of forecast accuracy than FC in such situations.
The worst TS is 0 and the best TS is 1.

To see what fraction of the observed events (‘yes’) were correctly forecast, we
compute the probability of detection (POD)

POD = hits

hits + misses
= a

a + c
, (8.67)

with the worst POD score being 0 and the best score being 1.
Besides measures of forecast accuracy, we also want to know if there is forecast

bias or frequency bias:

B = total ‘yes’ forecast

total ‘yes’ observed
= a + b

a + c
. (8.68)

For instance, it is easy to increase the POD if we simply issue many more forecasts
of events (‘yes’), despite most of them being false alarms. Increasing B would raise
concern that the model is forecasting far too many events compared to the number
of observed events.

To see what fraction of the forecast events (‘yes’) never materialized, we
compute the false alarm ratio (FAR)

FAR = false alarms

hits + false alarms
= b

a + b
, (8.69)

with the worst FAR score being 0 and the best score being 1.
Be careful not to confuse the false alarm ratio (FAR) with the false alarm rate

(F), also known as the probability of false detection (POFD). The value of F mea-
sures the fraction of the observed ‘no’ events which were incorrectly forecast as
‘yes’, i.e.

F = POFD = false alarms

false alarms + correct negatives
= b

b + d
, (8.70)

8.5 Forecast verification 189

with the worst F score being 0 and the best score being 1. While F is not as
commonly given as FAR and POD, it is one of the axes in the relative operating
characteristic (ROC) diagram, used widely in probabilistic forecasts (Marzban,
2004; Kharin and Zwiers, 2003).

In an ROC diagram (Fig. 8.7), F is the abscissa and POD, the ordinate. Although
our model may be issuing probabilistic forecasts in a two-class problem, we are
actually free to choose the decision threshold used in the classification, i.e. instead
of using a posterior probability of 0.5 as the threshold for deciding whether to
issue a ‘yes’ forecast, we may want to use 0.7 as the threshold if we want fewer
false alarms (i.e. lower F) (at the expense of a lower POD), or 0.3 if we want to
increase our POD (at the expense of increasing F as well). The result of varying
the threshold generates a curve in the ROC diagram. The choice of the threshold
hinges on the cost associated with missing an event and that with issuing a false
alarm. For instance, if we miss forecasting a powerful hurricane hitting a vulner-
able coastal city, the cost may be far higher than that from issuing a false alarm,
so we would want a low threshold value to increase the POD. If we have a second
model, where for a given F , it has a higher POD than the first model, then its ROC
curve (dashed curve in Fig. 8.7) lies above that from the first model. A model with
zero skill (POD = F) is shown by the diagonal line in the ROC diagram. A real
ROC diagram is shown later in Chapter 12 (Fig. 12.7).

Low
threshold

Medium
threshold

High
threshold

False alarm rate (F) 1

1

0

Pr
ob

ab
ili

ty
 o

f
de

te
ct

io
n

(P
O

D
)

Fig. 8.7 A schematic relative operating characteristic (ROC) diagram illustrating
the trade-off between the false alarm rate (F) and the probability of detection
(POD) as the classification decision threshold is varied for a given model (solid
curve). The dashed curve shows the ROC of a better model while the diagonal
line (POD = F) indicates a model with zero skill.

190 Nonlinear classification

8.5.1 Skill scores

Various skill scores have been designed to measure the relative accuracy of a set of
forecasts, with respect to a set of reference or control forecasts. Choices for the ref-
erence forecasts include persistence, climatology, random forecasts and forecasts
from a standard model. Persistence forecasts simply carry forward the anomalies
to the future (e.g. tomorrow’s weather is forecast to be the same as today’s). Cli-
matological forecasts simply issue the climatological mean value in the forecast. In
random forecasts, events are forecast randomly but in accordance with the observed
frequency of such events. For instance, if tornados are observed only 2% of the
time, then random forecasts also only forecast tornados 2% of the time. Finally the
reference model can be a standard model, as the researcher is trying to show that
the new model is better.

For a particular measure of accuracy A, the skill score (SS) is defined generi-
cally by

SS = A − Aref

Aperfect − Aref
, (8.71)

where Aperfect is the value of A for a set of perfect forecasts, and Aref is the value of
A computed over the set of reference forecasts. Note that if we define A′ = −A,
then SS is unchanged if computed using A′ instead of A. This shows that SS is
unaffected by whether A is positively or negatively oriented (i.e. whether better
accuracy is indicated by a higher or lower value of A).

The Heidke skill score (HSS) (Heidke, 1926) is the skill score (8.71) using the
fraction correct (FC) for A and random forecasts as the reference, i.e.

HSS = FC − FCrandom

FCperfect − FCrandom
. (8.72)

Hence, if the forecasts are perfect, HSS = 1; if they are only as good as random
forecasts, HSS = 0; and if they are worse than random forecasts, HSS is negative.
From (8.65), FC can be interpreted as the fraction of hits (a/N) plus the frac-
tion of correct negatives (d/N). For FCrandom obtained from random forecasts, the
fraction of hits is the product of two probabilities, P(‘yes’ forecast) and P(‘yes’
observed), i.e. (a + b)/N and (a + c)/N , respectively. Similarly, the fraction of
correct negatives from random forecasts is the product of P(‘no’ forecast) and

8.5 Forecast verification 191

P(‘no’ observed), i.e. (c + d)/N and (b + d)/N . With FCrandom being the fraction
of hits plus the fraction of correct negatives, we have

FCrandom =
(

a + b

N

)(
a + c

N

)
+
(

c + d

N

)(
b + d

N

)
. (8.73)

Substituting this into (8.72) and invoking (8.65) and FCperfect = 1, HSS is then
given by

HSS = (a + d)/N − [(a + b)(a + c) + (b + d)(c + d)]/N 2

1 − [(a + b)(a + c) + (b + d)(c + d)]/N 2
, (8.74)

which can be simplified to

HSS = 2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
. (8.75)

The Peirce skill score (PSS) (Peirce, 1884), also called the Hansen and Kuipers’
score, or the true skill statistics (TSS) is similar to the HSS, except that the refer-
ence used in the denominator of (8.72) is unbiased, i.e. P(‘yes’ forecast) is set to
equal P(‘yes’ observed), and P(‘no’ forecast) to P(‘no’ observed) for FCrandom in
the denominator of (8.72), whence

FCrandom =
(

a + c

N

)2

+
(

b + d

N

)2

. (8.76)

The PSS is computed from

PSS = (a + d)/N − [(a + b)(a + c) + (b + d)(c + d)]/N 2

1 − [(a + c)2 + (b + d)2]/N 2
, (8.77)

which simplifies to

PSS = ad − bc

(a + c)(b + d)
. (8.78)

PSS can also be expressed as

PSS = a

a + c
− b

b + d
= POD − F, (8.79)

upon invoking (8.67) and (8.70). Again, if the forecasts are perfect, PSS = 1; if they
are only as good as random forecasts, PSS = 0; and if they are worse than random
forecasts, PSS is negative.

8.5.2 Multiple classes

Next consider the forecast verification problem with c classes, where c is an integer
> 2. The contingency table is then a c × c matrix, with the i th diagonal element
giving the number of correct forecasts for class Ci . Fraction correct (FC) in (8.65)

192 Nonlinear classification

generalizes easily, as FC is simply the sum of all the diagonal elements divided by
the sum of all elements of the matrix.

Other measures such as POD, FAR, etc. do not generalize naturally to higher
dimensions. Instead the way to use them is to collapse the c × c matrix to a 2 × 2
matrix. For instance, if the forecast classes are ‘cold’, ‘normal’ and ‘warm’, we
can put ‘normal’ and ‘warm’ together to form the class of ‘non-cold’ events. Then
we are back to two classes, namely ‘cold’ and ‘non-cold’, and measures such as
POD, FAR, etc. can be easily applied. Similarly, we can collapse to only ‘warm’
and ‘non-warm’ events, or to ‘normal’ and ‘non-normal’ events.

For multi-classes, HSS in (8.72) and (8.74) generalizes to

HSS =
∑c

i=1 P(fi , oi) −∑c
i=1 P(fi)P(oi)

1 −∑c
i=1 P(fi)P(oi)

, (8.80)

where fi denotes class Ci forecast, oi denotes Ci observed, P(fi , oi) the joint prob-
ability distribution of forecasts and observations, P(fi) the marginal distribution
of forecasts and P(oi) the marginal distribution of observations. It is easy to see
that (8.80) reduces to (8.74) when there are only two classes.

Note that PSS in (8.77) also generalizes to

PSS =
∑c

i=1 P(fi , oi) −∑c
i=1 P(fi)P(oi)

1 −∑c
i=1[P(oi)]2

. (8.81)

8.5.3 Probabilistic forecasts

In probabilistic forecasts, one can issue forecasts for binary events based on the
posterior probability, then compute skill scores for the classification forecasts.
Alternatively, one can apply skill scores directly to the probabilistic forecasts. The
most widely used score for the probabilistic forecasts of an event is the Brier score
(BS) (Brier, 1950). Formally, this score resembles the MSE, i.e.

BS = 1

N

N∑
n=1

(fn − on)
2, (8.82)

where there is a total of N pairs of forecasts fn and observations on . While fn

is a continuous variable within [0, 1], on is a binary variable, being 1 if the event
occurred and 0 if it did not occur. BS is negatively oriented, i.e. the lower the better.
Since | fn −on| is bounded between 0 and 1 for each n, BS is also bounded between
0 and 1, with 0 being the perfect score.

From (8.71), the Brier skill score (BSS) is then

BSS = BS − BSref

0 − BSref
= 1 − BS

BSref
, (8.83)

8.6 Unsupervised competitive learning 193

where the reference forecasts are often taken to be random forecasts based on cli-
matological probabilities. Unlike BS, BSS is positively oriented, with 1 being the
perfect score and 0 meaning no skill relative to the reference forecasts.

8.6 Unsupervised competitive learning

In Section 1.7 we mentioned that in machine learning there are two general
approaches, supervised learning and unsupervised learning. An analogy for the
former is students in a French class where the teacher demonstrates the correct
French pronunciation. An analogy for the latter is students working on a team
project without supervision. When we use an MLP NN model to perform non-
linear regression or classification, the model output is fitted to the given target
data, similar to students trying to imitate the French accent of their teacher, hence
the learning is supervised. In unsupervised learning (e.g. clustering), the students
are provided with learning rules, but must rely on self-organization to arrive at a
solution, without the benefit of being able to learn from a teacher’s demonstration.

In this section, we show how an NN model under unsupervised learning can
classify input data into categories or clusters. The network consists only of an input
layer and an output layer with no hidden layers between them. There are m units
(i.e. neurons) in the input layer and k units in the output layer. Excitation at the i th
output neuron is

ei =
m∑

j=1

wi j x j = wi · x, (8.84)

where wi are the weight vectors to be determined.
Unsupervised learning is further divided into reinforced and competitive learn-

ing. In reinforced learning, all students are rewarded, whereas in competitive
learning, only the best student is rewarded. In our network, under unsupervised
competitive learning, the output neuron receiving the largest excitation is selected
as the winner and is activated, while the others remain inactive. The output units
are binary, i.e. assigned the value 0 if inactive, and 1 if active.

The input data and the weights are normalized, i.e. ‖x‖ = 1 and ‖wi‖ = 1 for
all i . The winner among the output units is the one with the largest excitation, i.e.
the i ′ unit where

wi ′ · x ≥ wi · x, for all i. (8.85)

From a geometric point of view, this means that the unit vector wi ′ is oriented most
closely in the direction of the current input unit vector x(t) (where t is either the
time or some other label for the input data vectors), i.e.

‖wi ′ − x‖ ≤ ‖wi − x‖, for all i. (8.86)

194 Nonlinear classification

Set the output yi ′ = 1, and all other yi = 0. Only weights of the winner are
updated by

	wi ′ j = η (x j (t) − wi ′ j), (8.87)

where η, the learning rate parameter, is a (small) positive constant. Iterate the
weights by feeding the network with the inputs {x(t)} repeatedly until the weights
converge. This network will classify the inputs into k categories or clusters as
determined by the weight vectors wi (i = 1, . . . , k). Figure 8.8 illustrates the clas-
sification of 80 data points in a 2-dimensional input data space using either three
or four output neurons.

The disadvantage of an unsupervised method is that the categories which emerge
from the self-organization process may be rather unexpected. For instance, if pic-
tures of human faces are separated into two categories by this method, depending
on the inputs, the categories may turn out to be men and women, or persons with
and without beards.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x 2

Fig. 8.8 An unsupervised competitive learning neural network clustering data.
Small circles denote the data points, while the weight vectors wi solved using
three output neurons are marked by the asterisks, and four output neurons by the
crosses, which mark the cluster centres.

Exercises 195

Another disadvantage is that units with wi far from any input vector x(t) will
never have their weights updated, i.e. they never learn and are simpy dead units.
One possibility is to update the weights of the losers with a much smaller η than
the winner, so the losers will still learn slowly and avoid being dead. This approach
is known as leaky learning.

Another popular unsupervised learning tool is the self-organizing map (SOM),
which will be presented in Section 10.3, since it is a form of discrete nonlinear prin-
cipal component analysis. The SOM tool has been applied to many environmental
sciences problems.

Exercises

(8.1) Apply nonlinear classifiers (e.g. MLP, SVM) to solve the XOR problem (see
Fig. 4.3(b)). To generate training data of about 50 data points, add Gaussian
noise so that there is scatter around the four centres (0, 0), (1, 0), (0, 1) and
(1, 1) in the (x, y) space. Vary the amount of Gaussian noise. For SVM, try
both the linear kernel and nonlinear kernels.

(8.2) Derive expression (8.75) for the Heidke skill score (HSS).
(8.3) Derive expression (8.79) for the Peirce skill score (PSS).
(8.4) Denote the reference Brier score using climatological forecasts by Bref. If

we define s as the climatological probability for the occurrence of the event
(i.e. using observed data, count the number of occurrences of the event, then
divide by the total number of observations), show that Bref = s(1 − s).

(8.5) Using the data file provided in the book website, which contains two predic-
tors x1 and x2 and predictand y data (400 observations), develop a nonlinear
classification model of y as a function of x1 and x2. Briefly describe the
approach taken (e.g. MLP, SVM, etc.). Forecast ytest using the new test
predictor data x1test and x2test provided.

9

Nonlinear regression

The study of nonlinear regression started with neural network models in Chapter 4.
The advent of kernel methods and tree methods has expanded the range of tools for
nonlinear regression. In this chapter, we will examine two kernel methods, support
vector regression (SVR) and Gaussian process (GP), as well as a tree method,
classification and regression tree (CART).

9.1 Support vector regression (SVR)

In Chapter 8, we have studied support vector machines (SVM) for classification
problems. We now extend SVM to regression problems. The reader should read
Section 8.4 on SVM classification before proceeding to support vector regression.

In SVR, the objective function to be minimized is

J = C
N∑

n=1

E[y(xn) − ydn] + 1

2
‖w‖2, (9.1)

where C is the inverse weight penalty parameter, E is an error function and the
second term is the weight penalty term. To retain the sparseness property of the
SVM classifier, E is usually taken to be of the form

Eε(z) =
{|z| − ε, if |z| > ε,

0, otherwise.
(9.2)

This is an ε-insensitive error function, as it ignores errors of size smaller than ε

(Fig. 9.1).
Slack variables are introduced as in SVM classification, except that for each data

point xn , there are two slack variables ξn ≥ 0 and ξ ′
n ≥ 0. We assign ξn > 0 only

to data points lying above the ε-tube in Fig. 9.2, i.e. ydn > y(xn) + ε, and ξ ′
n > 0

to data points lying below the ε-tube, i.e. ydn < y(xn) − ε.

196

9.1 Support vector regression (SVR) 197

0
z

E(z)

ε–ε

Fig. 9.1 The ε-insensitive error function Eε(z). Dashed line shows the mean
absolute error (MAE) function.

y + ε
ξ

ξ ′

y – ε

y

Fig. 9.2 Support vector regression (SVR). Data points lying within the ‘ε tube’
(i.e. between y − ε and y + ε) are ignored by the ε-insensitive error function.
Actually the commonly used term ‘ε tube’ is a misnomer since when the predictor
is multi-dimensional, the ‘tube’ is actually a slab of thickness 2ε. For data points
lying above and below the tube, their distances from the tube are given by the
slack variables ξ and ξ ′, respectively. Data points lying inside (or right on) the
tube have ξ = 0 = ξ ′. Those lying above the tube have ξ > 0 and ξ ′ = 0, while
those lying below have ξ = 0 and ξ ′ > 0.

The conditions for a data point to lie within the ε-tube, i.e. y(xn) − ε ≤ ydn ≤
y(xn)+ε, can now be extended via the slack variables to allow for data points lying
outside the tube, yielding the conditions

ydn ≤ y(xn) + ε + ξn, (9.3)

ydn ≥ y(xn) − ε − ξ ′
n. (9.4)

The objective function is then

J = C
N∑

n=1

(ξn + ξ ′
n) + 1

2
‖w‖2, (9.5)

to be minimized subject to the constraints ξn ≥ 0, ξ ′
n ≥ 0, (9.3) and (9.4). To handle

the constraints, Lagrange multipliers, λn ≥ 0, λ′
n ≥ 0, μn ≥ 0 and μ′

n ≥ 0, are
introduced, and the Lagrangian function is

198 Nonlinear regression

L = C
N∑

n=1

(ξn + ξ ′
n) + 1

2
‖w‖2 −

N∑
n=1

(μnξn + μ′
nξ

′
n)

−
N∑

n=1

λn[y(xn) + ε + ξn − ydn] −
N∑

n=1

λ′
n[ydn − y(xn) + ε + ξ ′

n]. (9.6)

Similarly to SVM classification (Section 8.4), the regression is performed in the
feature space, i.e.

y(x) = wTφ(x) + w0, (9.7)

where φ is the feature map. Substituting this for y(xn) in (9.6), then setting the
derivatives of L with respect to w, w0, ξn and ξ ′

n to zero, yields, respectively,

w =
N∑

n=1

(λn − λ′
n)φ(xn), (9.8)

N∑
n=1

(λn − λ′
n) = 0, (9.9)

λn + μn = C, (9.10)

λ′
n + μ′

n = C. (9.11)

Substituting these into (9.6), we obtain the dual Lagrangian

LD(λ,λ′) = − 1

2

N∑
n=1

N∑
j=1

(λn − λ′
n)(λ j − λ′

j)K (xn, x j)

− ε

N∑
n=1

(λn + λ′
n) +

N∑
n=1

(λn − λ′
n)ydn, (9.12)

where the kernel function K (x, x′) = φT(x)φ(x′). The optimization problem is
now to maximize LD subject to constraints. The Lagrange multipliers λn , λ′

n , μn

and μ′
n are all ≥ 0 (Appendix B). Together with (9.10) and (9.11), we have the

following constraints on λn and λ′
n

0 ≤ λn ≤ C

0 ≤ λ′
n ≤ C, (9.13)

and (9.9).
The Karush–Kuhn–Tucker (KKT) conditions (Appendix B) require the product

of each Lagrange multiplier and its associated constraint condition to vanish,
yielding

9.1 Support vector regression (SVR) 199

λn [y(xn) + ε + ξn − ydn] = 0, (9.14)

λ′
n [ydn − y(xn) + ε + ξ ′

n] = 0, (9.15)

μnξn = (C − λn)ξn = 0, (9.16)

μ′
nξ

′
n = (C − λ′

n)ξ
′
n = 0. (9.17)

For λn to be non-zero, y(xn) + ε + ξn − ydn = 0 must be satisfied, meaning that
the data point ydn must lie either above the ε-tube (ξn > 0) or exactly at the top
boundary of the tube (ξn = 0). Similarly, for λ′

n to be non-zero, ydn − y(xn) + ε +
ξ ′

n = 0 must be satisfied, hence ydn lies either below the ε-tube (ξ ′
n > 0) or exactly

at the bottom boundary of the tube (ξ ′
n = 0).

Substituting (9.8) into (9.7) gives

y(x) =
N∑

n=1

(λn − λ′
n)K (x, xn) + w0. (9.18)

Support vectors are the data points which contribute in the above summation, i.e.
either λn �= 0 or λ′

n �= 0, meaning that the data point must lie either outside the
ε-tube or exactly at the boundary of the tube. All data points within the tube have
λn = λ′

n = 0 and fail to contribute to the summation in (9.18), thus leading to a
sparse solution. If K is the Gaussian or radial basis function (RBF) kernel (8.58),
then (9.18) is simply a linear combination of radial basis functions centred at the
training data points xn .

To solve for w0, we look for a data point with 0 < λn < C . From (9.16), ξn = 0,
and from (9.14), y(xn) + ε − ydn = 0. Invoking (9.18), we get

w0 = −ε + ydn −
N∑

j=1

(λ j − λ′
j)K (xn, x j). (9.19)

Similarly, for a data point with 0 < λ′
n < C , we have ξ ′

n = 0, ydn − y(xn) + ε = 0,
and

w0 = ε + ydn −
N∑

j=1

(λ j − λ′
j)K (xn, x j). (9.20)

These two equations for estimating w0 can be applied to various data points satis-
fying 0 < λn < C or 0 < λ′

n < C , then the various values of w0 can be averaged
together for better numerical accuracy.

If the Gaussian or radial basis function (RBF) kernel (8.58) is used, then there
are three hyperparameters in SVR, namely C , ε and σ (controlling the width of

200 Nonlinear regression

0 1 2

−2

−1

0

1

2
(a)

x

y

0 1 2

−2

−1

0

1

2
(b)

x

y

0 1 2

−2

−1

0

1

2
(c)

x
0 1 2

x

y

−2

−1

0

1

2
(d)

y

Fig. 9.3 SVR applied to a test problem. (a) Optimal values of the hyperparameters
C , ε and σ obtained from validation are used. (b) A larger C (i.e. less weight
penalty) and a smaller σ (i.e. narrower Gaussian functions) result in overfitting.
Underfitting occurs when (c) a larger ε (wider ε-tube) or (d) a smaller C (larger
weight penalty) is used. The training data are the circles, the SVR solution is the
solid curve and the true relation is the dashed curve.

the Gaussian function in the kernel), in contrast to only two hyperparameters (C
and σ) in the SVM classifier in the previous chapter. Multiple models are trained
for various values of the three hyperparameters, and upon evaluating their perfor-
mance over validation data, the best estimates of the hyperparameters are obtained.
Figure 9.3 illustrates the SVR result, with the SVM code from LIBSVM (Chang
and Lin, 2001). Note that SVR with the Gaussian kernel can be viewed as an
extension of the RBF NN method of Section 4.6.

As in SVM classification, there is another popular alternative formulation of
SVR (Schölkopf et al., 2000) called ν-SVR. The new hyperparameter 0 ≤ ν ≤ 1
replaces ε (instead of C in SVM classification). As ν is an upper bound on the
fraction of data points lying outside the ε-tube, it plays a similar role as ε (which
by controlling the thickness of the ε-insensitive region, also affects the fraction of

9.1 Support vector regression (SVR) 201

points lying outside the ε-tube). We now maximize

LD(λ,λ′) = −1

2

N∑
n=1

N∑
j=1

(λn − λ′
n)(λ j − λ′

j)K (xn, x j)

+
N∑

n=1

(λn − λ′
n)ydn, (9.21)

subject to constraints

0 ≤ λn ≤ C/N , (9.22)

0 ≤ λ′
n ≤ C/N , (9.23)

N∑
n=1

(λn − λ′
n) = 0, (9.24)

N∑
n=1

(λn + λ′
n) ≤ νC. (9.25)

It turns out that ν provides not only an upper bound on the fraction of data points
lying outside the ε-insensitive tube, but also a lower bound on the fraction of sup-
port vectors, i.e. there are at most νN data points lying outside the tube, while there
are at least νN support vectors (i.e. data points lying either exactly on or outside
the tube).

The advantages of SVR over MLP NN are: (a) SVR trains significantly faster
since it only solves sets of linear equations, hence is better suited for high-
dimensional datasets, (b) SVR avoids the local minima problem from nonlinear
optimization, and (c) the ε-insensitive error norm used by SVR is more robust to
outliers in the training data.

There have been further extensions of SVM methods. Rojo-Alvarez et al. (2003)
developed SVR using an ε-insensitive Huber error function

hε(z) =

⎧⎪⎨
⎪⎩

0, for |z| ≤ ε,

1
2(|z| − ε)2, for ε < |z| ≤ ε + 2γ,

2γ [(|z| − ε) − γ], for ε + 2γ < |z|, (9.26)

where γ and ε are parameters. When ε = 0, this function is simply the Huber
function (6.23). As γ → 0, hε(z) becomes the standard ε-insensitive error func-
tion (9.2) multiplied by 2γ . In general, the error function hε(z) has the following
form: it is zero for |z| ≤ ε, then it grows quadratically for |z| in the intermediate
range, and finally grows only linearly for large |z| to stay robust in the presence
of outliers. A comparison of the performance of different error functions has been

202 Nonlinear regression

made by Camps-Valls et al. (2006) using satellite data for estimating ocean surface
chorophyll concentration (see Fig. 12.1 in Section 12.1.1). Other applications of
SVR in environmental sciences are described in Chapter 12.

Relevance Vector Machine (RVM) (Tipping, 2001) is a Bayesian generalization
of SVM for regression and classification problems. Chu et al. (2004) developed a
Bayesian SVR method using the ε-insensitive Huber error function.

9.2 Classification and regression trees (CART)

Tree-based methods partition the predictor x-space into rectangular regions and
fit a simple function f (x) in each region. The most common tree-based method is
CART (classification and regression tree) (Breiman et al., 1984), which fits f (x) =
constant in each region, so there is a step at the boundary between two regions. The
CART method may seem crude but is useful for two main reasons: (i) it gives an
intuitive display of how the predictand or response variable broadly depends on
the predictors; (ii) when there are many predictors, it provides a computationally
inexpensive way to select a smaller number of relevant predictors. These selected
predictors can then be used in more accurate but computationally more expensive
models like NN, SVR, etc., i.e. CART can be used to pre-screen predictors for
more sophisticated models (Burrows, 1999).

While CART can be used for both nonlinear classification and regression prob-
lems, we will first focus on the regression problem, with yd the predictand data.
For simplicity, suppose there are only two predictor variables x1 and x2. We look
for the partition point x (1)

1 where the step function f (x) = c1 for x1 < x (1)

1 , and
f (x) = c2 for x1 ≥ x (1)

1 gives the best fit to the predictand data. If the fit is deter-
mined by the mean squared error (MSE), then the constants c1 and c2 are simply
given by the mean value of yd over the two separate regions partitioned by x (1)

1 . A
similar search for a partition point x (1)

2 is performed in the x2 direction. We decide
on whether our first partition should be at x (1)

1 or x (1)
2 based on whichever partition

yields the smaller MSE. In Fig. 9.4(a), the partition is made along x (1)

1 , and there
are now two regions. The process is repeated, i.e. the next partition is made to one
or both of the two regions. The partition process is repeated until some stopping
criterion is met. In Fig. 9.4(b), the second partition is along x1 = x (2)

1 , and the
third partition along x2 = x (3)

2 , resulting in the predictor space being partitioned
into four regions, and the predictand described by the four constants over the four
regions.

Let us illustrate CART with a dataset containing the daily maximum of the
hourly-averaged ozone reading (in ppm) at Los Angeles, with high ozone level
indicating poor air quality. The downloaded dataset was prepared by Leo Breiman,
Department of Statistics, UC Berkeley, and was similar to that used in Breiman

9.2 Classification and regression trees (CART) 203

(a)

x2 x2

x1

(b)

x1
(1) x1

x2
(3)

x1
(1) x1

(2)

Fig. 9.4 Illustrating partitioning of the predictor x-space by CART. (a) First parti-
tion at x1 = x (1)

1 yields two regions, each with a constant value for the predictand

y. (b) Second partition at x1 = x (2)
1 is followed by a third partition at x2 = x (3)

2 ,
yielding four regions.

and Friedman (1985). The dataset also contained nine predictor variables for the
ozone. Among the nine predictors, there are temperature measurements T1 and T2

(in ◦F) at two stations, visibility (in miles) measured at Los Angeles airport, and
the pressure gradient (in mm Hg) between the airport and another station. In the
9-dimensional predictor space, CART made the first partition at T1 = 63.05 ◦F, the
second partition at T1 = 70.97 ◦F and the third partition at T2 = 58.50 ◦F. This
sequence of partitions can be illustrated by the tree in Fig. 9.5(a). The partitioned
regions are also shown schematically in Fig. 9.4(b), with x1 and x2 representing T1

and T2, respectively.
If one continues partitioning, the tree grows further. In Fig. 9.5(b), there is now a

fourth partition at pressure gradient = −13 mm Hg, and a fifth partition at visibility
= 75 miles. Hence CART tells us that the most important predictors, in decreas-
ing order of importance, are T1, T2, pressure gradient and visibility. The tree now
has six terminal or leaf nodes, denoting the six regions formed by the partitions.
Each region is associated with a constant ozone value, the highest being 27.8 ppm
(attained by the second leaf from the right). From this leaf node, one can then
retrace the path towards the root, which tells us that this highest ozone leaf node
was reached after satisfying first 63.05 ◦F ≤ T1, then 70.97 ◦F ≤ T1 and finally
visibility < 75 miles, i.e. the highest ozone conditions tend to occur at high tem-
perature and low visibility. The lowest ozone value of 5.61 ppm was attained by the
leftmost leaf node, which satisfies T1 < 63.05 ◦F and T2 < 58.5 ◦F, indicating that
the lowest ozone values tend to occur when both stations record low temperatures.
The CART method also gives the number of data points in each partitioned region,
e.g. 15 points belong to the highest ozone leaf node versus 88 to the lowest ozone
node, out of a total of 203 data points. After training is done, when a new value
of the predictor x becomes available, one proceeds along the tree till a leaf node

204 Nonlinear regression

T1 < 63.05

T1 < 63.05

T2 < 58.50

T2 < 58.50

(a)

(b)

y = 5.61
n = 88

y = 5.61
n = 88

y = 9.96
n = 54

y = 9.96
n = 54

y = 10.0
n = 5

y = 19.3
n = 33

p grad < –13 visibility < 75

y = 27.8
n = 15

y = 21.5
n = 8

y = 18.1
n = 38

y = 25.6
n = 23

T1 < 70.97

T1 < 70.97

Fig. 9.5 Regression tree from CART where the predictand y is the Los Angeles
ozone level (in ppm), and there are nine predictor variables. The ‘tree’ is plotted
upside down, with the ‘leaves’ (i.e. terminal nodes) drawn as rectangular boxes
at the bottom and the non-terminal nodes as ellipses. (a) The tree after three par-
titions has four leaf nodes. (b) The tree after five partitions has six leaf nodes. In
each ellipse, a condition is given. Starting from the top ellipse, if the condition
is satisfied, proceed along the left branch down to the next node; if not, proceed
along the right branch; continue until a leaf node is reached. In each rectangular
box, the constant value of y (computed from the mean of the data yd) in the par-
titioned region associated with the particular leaf node is given, as well as n, the
number of data points in that region. Among the nine predictor variables, the most
relevant are the temperatures T1 and T2 (in ◦F) at two stations, p grad (pressure
gradient in mm Hg) and visibility (in miles). CART was calculated here using the
function treefit.m from the Matlab statistical toolbox.

is reached, and the forecast for y is then simply the constant value associated with
that leaf node.

The intuitive interpretation of the tree structure contributes to CART’s popularity
in the medical field. Browsing over my copy of the American Medical Associa-
tion’s Encyclopedia of Medicine, I can see many tree-structured flow charts for
patient diagnosis. For instance, the questions asked are: Is the body temperature
above normal? Is the patient feeling pain? Is the pain in the chest area? The terminal
nodes are of course the likely diseases, e.g. influenza, heart attack, food poisoning,
etc. Hence the tree-structured logic in CART is indeed the type of reasoning used
by doctors.

9.2 Classification and regression trees (CART) 205

How big a tree should one grow? It is not a good idea to stop the growing process
after encountering a partition which gave little improvement in the MSE, because
a further partition may lead to a large drop in the MSE. Instead, one lets the tree
grow to a large size, and uses regularization (i.e. weight penalty) to prune the tree
down to the optimal size. Suppose L is the number of leaf nodes. A regularized
objective function is

J (L) = E(L) + P L , (9.27)

where E(L) is the MSE for the tree with L leaf nodes, and P is the weight penalty
parameter, penalizing trees with excessive leaf nodes. The process to generate a
sequence of trees with varying L is as follows: (a) start with the full tree, remove
the internal node the demise of which leads to the smallest increase in MSE, and
continue until the tree has only one internal node; (b) from this sequence of trees
with a wide range of L values, one chooses the tree with the smallest J (L), thus
selecting the tree with the optimal size for a given P . The best value for P is
determined from cross-validation, where multiple runs with different P values are
made, and the run with the smallest cross-validated MSE is chosen as the best.

CART can also be used for classification. The constant value for y over a region
is now given by the class k to which the largest number of yd belong. With plk

denoting the proportion of data in region l belonging to class k, the error E is no
longer the MSE, but is usually either the cross entropy

E(L) =
L∑

l=1

K∑
k=1

plk ln plk, (9.28)

or the Gini index

E(L) =
L∑

l=1

K∑
k=1

plk(1 − plk). (9.29)

Applications of CART in the environmental sciences include use of CART clas-
sification models to predict lake-effect snow (Burrows, 1991), CART regression to
predict ground level ozone concentration (Burrows et al., 1995), CART regression
to predict ultraviolet radiation at the ground in the presence of cloud and other
environmental factors (Burrows, 1997), CART to select large-scale atmospheric
predictors for surface marine wind prediction by a neuro-fuzzy system (Faucher
et al., 1999), and CART regression to predict lightning probability over Canada
and northern USA (Burrows et al., 2005). In general, the predictand variables are
not forecast by the numerical weather prediction models. Instead, the numerical
weather prediction models provide the predictors for the CART models.

So far, the partitions are of the form xi < s, thus restricting the partition bound-
aries to lie parallel to the axes in x-space. If a decision boundary in the x1-x2 plane

206 Nonlinear regression

is oriented at 45◦ to the x1 axis, then it would take many parallel-axes partitions to
approximate such a decision boundary. Some versions of CART allow partitions of
the form

∑
i ai xi < s, which are not restricted to be parallel to the axes, but the

easy interpretability of CART is lost.
The CART method uses piecewise constant functions to represent the nonlinear

relation y = f (x). To extend beyond a zero-order model like CART, first-order
models, like the M5 tree model (or its earlier versions, e.g. M4.5) (Quinlan, 1993),
use piecewise linear functions to represent the nonlinear relation. The M5 model
has been used to predict runoff from precipitation (Solomatine and Dulal, 2003).

A boostrap ensemble of CART models is called a random forest (Breiman,
2001). If N is the number of training data points and M the number of predictor
variables, one generates many bootstrap samples (by selecting N data points with
replacement from the training dataset), then trains CART on each bootstrap sample
using m randomly chosen predictors out of the original M predictors (m 	 M if
M is large). The trees are fully grown without pruning. With new predictor data, y
is taken to be the mean of the ensemble output in regression problems, or the class
k chosen by the largest number of ensemble members in classification problems.

9.3 Gaussian processes (GP)

The kernel trick (Chapter 7) can also be applied to probabilistic models, leading
to a new class of kernel methods known as Gaussian processes (GP) in the late
1990s. Historically, regression using Gaussian processes has actually been known
for a long time in geostatistics as kriging (after D. G. Krige, the South African
mining engineer), which evolved from the need to perform spatial interpolation
of mining exploration data. The new GP method is on a Bayesian framework and
has gained considerable popularity in recent years. Among Bayesian methods (e.g.
Bayesian NN), the Bayesian inference generally requires either approximations
or extensive numerical computations using Markov chain Monte Carlo methods;
however, GP regression has the advantage that by assuming Gaussian distributions,
the Bayesian inference at the first level (i.e. obtaining the posterior distribution
of the model parameters) is analytically tractable and hence exact. The Gaussian
process method is covered in texts such as Rasmussen and Williams (2006), Bishop
(2006), MacKay (2003) and Nabney (2002).

In GP regression, the predictand or response variable y is a linear combination
of M fixed basis functions φl(x), (analogous to the radial basis function NN in
Section 4.6)

y(x) =
M∑

l=1

wlφl(x) = φT(x) w, (9.30)

where x is the input vector and w the weight vector.

9.3 Gaussian processes (GP) 207

The Gaussian distribution over the M-dimensional space of w vectors is

N (w|μ, C) ≡ 1

(2π)M/2|C|1/2
exp

[
−1

2
(w − μ)TC−1(w − μ)

]
, (9.31)

where μ is the mean, C the M × M covariance matrix, and |C| the determinant of
C. In GP, we assume the prior distribution of w to be an isotropic Gaussian with
zero mean and covariance C = α−1I (I being the identity matrix), i.e.

p(w) = N (w|0, α−1I), (9.32)

where α is a hyperparameter, with α−1 governing the variance of the distribution.
This distribution in w leads to a probability distribution for the functions y(x)

through (9.30), with

E[y(x)] = φT(x) E[w] = 0, (9.33)

cov[y(xi), y(x j)] = E
[
φT(xi) w wTφ(x j)

]
= φT(xi) E

[
w wT

]
φ(x j)

= α−1φ(xi)
Tφ(x j) ≡ Ki j ≡ K (xi , x j), (9.34)

where K (x, x′) is the kernel function, and (given n training input data points
x1, . . . , xn), Ki j are the elements of the n × n covariance or kernel matrix K.

To be a Gaussian process, the function y(x) evaluated at x1, . . . , xn must have the
probability distribution p(y(x1), . . . , y(xn)) obeying a joint Gaussian distribution.
Thus the joint distribution over y(x1), . . . , y(xn) is completely specified by second-
order statistics (i.e. the mean and covariance). Since the mean is zero, the GP is
completely specified by the covariance, i.e. the kernel function K . There are many
choices for kernel functions (see Section 7.3). A simple and commonly used one is
the (isotropic) Gaussian kernel function

K (x, x′) = a exp

(
− ‖x − x′‖2

2σ 2
K

)
, (9.35)

with two hyperparameters, a and σK .
When GP is used for regression, the target data yd are the underlying relation

y(x) plus Gaussian noise with variance σ 2
d , i.e. the distribution of yd conditional on

y is a normal distribution N ,

p(yd|y) = N (yd| y, σ 2
d). (9.36)

With n data points xi (i = 1, . . . , n), we write yi = y(xi), y = (y1, . . . , yn)
T

and yd = (yd1, . . . , ydn)
T. Assuming that the noise is independent for each data

208 Nonlinear regression

point, the joint distribution of yd conditional on y is given by an isotropic Gaussian
distribution:

p(yd|y) = N (yd| y, β−1I), (9.37)

where the hyperparameter β = σ−2
d .

From (9.30), we note that y is a linear combination of the wl variables, i.e. a
linear combination of Gaussian distributed variables which again gives a Gaussian
distributed variable, so upon invoking (9.33) and (9.34),

p(y) = N (y| 0, K). (9.38)

Since p(yd|y) and p(y) are both Gaussians, p(yd) can be evaluated analytically
(Bishop, 2006) to give another Gaussian distribution

p(yd) =
∫

p(yd|y) p(y)dy = N (yd| 0, C), (9.39)

where the covariance matrix C has elements

Ci j = K (xi , x j) + β−1δi j , (9.40)

with δi j the Kronecker delta function. These two terms indicate two sources of
randomness, with the first term coming from p(y), and the second from p(yd|y)

(i.e. from the noise in the target data).
Suppose we have built a GP regression model from the training dataset con-

taining {x1, . . . , xn} and {yd1, . . . , ydn}; now we want to make predictions with
this model, i.e. given a new predictor point xn+1, what can we deduce about the
distribution of the predictand or target variable yd(n+1)?

To answer this, we need to find the conditional distribution p(yd(n+1)|yd), (where
for notational brevity, the conditional dependence on the predictor data has been
omitted). First we start with the joint distribution p(yd(n+1)), where yd(n+1) =
(yT

d , yd(n+1))
T = (yd1, . . . , ydn, yd(n+1))

T. From (9.39), it follows that

p(yd(n+1)) = N (yd(n+1)| 0, Cn+1). (9.41)

The (n + 1) × (n + 1) covariance matrix Cn+1 given by (9.40) can be partitioned
into

Cn+1 =
[

Cn k
kT c

]
, (9.42)

where Cn is the n × n covariance matrix, the column vector k has its i th element
(i = 1, . . . , n) given by K (xi , xn+1), and the scalar c = K (x(n+1), x(n+1)) + β−1.
Since the joint distribution p(yd(n+1)) is a Gaussian, it follows that the conditional
distribution p(yd(n+1)|yd) is also a Gaussian (Bishop, 2006), with its mean and
variance given by

9.3 Gaussian processes (GP) 209

μ(xn+1) = kTC−1
n yd, (9.43)

σ 2(xn+1) = c − kTC−1
n k. (9.44)

The main computational burden in GP regression is the inversion of the n × n
matrix Cn , requiring O(n3) operations. The method becomes prohibitively costly
for large sample size n. One can simply use a random subset of the original dataset
to train the model, though this is wasteful of the data. A number of other approx-
imations are given in Rasmussen and Williams (2006). An alternative is to solve
the regression problem (9.30) with M basis functions directly without using the
kernel trick. This would require O(M3) operations instead of O(n3) operations.
The advantage of the kernel approach in GP regression is that it allows us to use
kernel functions representing an infinite number of basis functions.

9.3.1 Learning the hyperparameters

Before we can compute the solutions in (9.43) and (9.44), we need to know the
values of the hyperparameters, i.e. β, and a and σK if the Gaussian kernel (9.35)
is used. Let θ denote the vector of hyperparameters. Since parameters like β, and
a and σK are all positive and we do not want to impose a bound on θ during
optimization, we can e.g. let θ = [ln β, ln a, ln σK].

A common way to find the optimal θ is to maximize the likelihood function
p(yd|θ). In practice, the log of the likelihood function is maximized using a
nonlinear optimization algorithm (Chapter 5), where

ln p(yd|θ) = −1

2
ln |Cn| − 1

2
yT

d C−1
n yd − n

2
ln(2π). (9.45)

More efficient nonlinear optimization algorithms can be used if we supply the
gradient information

∂

∂θi
ln p(yd|θ) = −1

2
Tr

(
C−1

n

∂Cn

∂θi

)
+ 1

2
yT

d C−1
n

∂Cn

∂θi
C−1

n yd, (9.46)

where Tr denotes the trace (i.e. the sum of the diagonal elements of a matrix).
The nonlinear optimization problem will in general have multiple minima, hence
it is best to run the optimization procedure multiple times from different initial
conditions and choose the run with the lowest minimum. In contrast to MLP NN
models where multiple minima tend to occur from the nonlinear optimization with
respect to the model weight and offset parameters, multiple minima may occur in
GP during nonlinear optimization of the hyperparameters, there being usually far
fewer hyperparameters than the MLP weight and offset parameters.

The θ values obtained from the above optimization can be used in (9.43) and
(9.44) to give the GP regression solution. A full Bayesian treatment is also possible,

210 Nonlinear regression

where instead of using a single optimal θ value, integration over all θ values is
performed. The integration cannot be done analytically, but can be computed using
Markov chain Monte Carlo methods.

So far, the GP regression has been limited to a single predictand or output vari-
able. If one has multiple predictands, one can apply the single predictand GP
regression to each predictand separately, but this ignores any correlation between
the predictands. Generalization to multiple predictands while incorporating corre-
lation between the predictands is known as co-kriging in geostatistics (Cressie,
1993). Boyle and Frean (2005) have generalized GP to multiple dependent
predictands.

In Fig. 9.6, we show examples of GP regression, for a univariate predictor x . The
signal, as shown by the dashed curve, is

y = x sin(πx), 0 ≤ x < 2. (9.47)

0 0.5 1 1.5 2

−2

−1

0

1

(a) 2 data points

x
0 0.5 1 1.5 2

x

y

−2

−1

0

1

(b) 4 data points
y

0 0.5 1 1.5 2

−2

−1

0

1

(c) 8 data points

x
0 0.5 1 1.5 2

x

y

−2

−1

0

1

(d) 16 data points

y

Fig. 9.6 GP regression using the isotropic Gaussian kernel, with the number of
data points (small circles) being (a) 2, (b) 4, (c) 8 and (d) 16. The solid curve
shows the predicted mean, with the two thin curves showing the 95% prediction
interval (i.e. ±2 standard deviations). The true underlying signal is indicated by
the dashed curve for comparison.

9.4 Probabilistic forecast scores 211

Gaussian noise with 1/3 the standard deviation of the signal is added to give
the target data yd. Using the isotropic Gaussian kernel (9.35), GP regression was
performed with the number of data points varying from 2 to 16. The mean and vari-
ance from (9.43) and (9.44) are used to draw the solid curve and the two thin curves
showing ±2 standard deviations (i.e. the 95% prediction interval). In regions where
data are lacking, the prediction interval widens.

For ground-level ozone concentration, Cai et al. (2008) found Bayesian mod-
els such as GP and BNN outperfoming non-Bayesian models when forecasting
extreme events (i.e. high ozone events) (see Section 12.3.6).

9.3.2 Other common kernels

Besides the isotropic Gaussian kernel (9.35), there are a few other common ker-
nels used in GP regression. A Gaussian kernel which allows automatic relevance
determination (ARD) is

K (x, x′) = a exp

(
− 1

2

m∑
l=1

ηl(xl − x ′
l)

2

)
, (9.48)

where the hyperparameters ηl govern the importance or relevance of each particular
input xl . Thus if a particular hyperparameter ηl turns out to be close to zero, then
the corresponding input variable xl is not a relevant predictor for y.

Another common class of kernels is the Matérn kernels (Rasmussen and
Williams, 2006). With r = ‖x − x′‖, and r0 a hyperparameter, the two commonly
used Matérn kernels are

Kν=3/2(x, x′) = a

(
1 +

√
3 r

r0

)
exp

(
−

√
3 r

r0

)
, (9.49)

Kν=5/2(x, x′) = a

(
1 +

√
5 r

r0
+ 5r2

3r2
o

)
exp

(
−

√
5 r

r0

)
, (9.50)

which are the product of a polynomial kernel with an exponential kernel.

9.4 Probabilistic forecast scores

In Section 8.5.3, we encountered the Brier score for probabilistic forecast veri-
fication when the observed predictand is a binary variable. When the observed
predictand yd is a continuous variable, two well-designed scores for evaluat-
ing probabilistic forecasts are the continuous ranked probability score and the
ignorance score (Gneiting et al., 2005).

The continuous ranked probability score (CRPS) is the integral of the Brier
scores at all possible threshold values y for the continuous predictand, and is
defined as

212 Nonlinear regression

CRPS = 1

N

N∑
n=1

crps (Fn, ydn)

= 1

N

N∑
n=1

(∫ ∞

−∞

[
Fn (y) − H (y − ydn)

]2
dy

)
, (9.51)

where for the nth prediction, the cumulative probability Fn (y) = p (Y ≤ y), and
H (y − ydn) is the Heaviside step function which takes the value 0 when y − ydn <

0, and 1 otherwise. For Gaussian distributions, an analytic form of the integral
in (9.51) can be found (Gneiting et al., 2005); for other distributions, numerical
integration is needed.

The ignorance score (IGN) is the negative log predictive density, i.e.

IGN = 1

N

N∑
n=1

ign (pn, ydn) = 1

N

N∑
n=1

[− ln (pn (ydn))
]
, (9.52)

where pn is the predictive density.
Both scores are negatively oriented. If the predictive distribution is Gaussian

(with mean μ and standard deviation σ), the analytical forms of the scores can
be derived (Gneiting et al., 2005). For a Gaussian distribution, the key difference
between these two scores is that CRPS grows linearly with the normalized pre-
diction error (ydn − μ) /σ , but IGN grows quadratically. Note that CRPS can be
interpreted as a generalized version of the MAE (Gneiting et al., 2005). As the
ignorance score assigns harsh penalties to particularly poor probabilistic forecasts,
it can be exceedingly sensitive to outliers and extreme events. Hence Gneiting et al.
(2005) preferred CRPS over IGN.

Exercises

(9.1) Let y = sin(2πx) (0 ≤ x < 1) be the signal. The y data are generated by
adding Gaussian noise to the y signal. With these data, train a support vector
regression (SVR) model, using both linear and nonlinear kernels. Vary the
amount of Gaussian noise.

(9.2) Repeat Exercise 9.1 but use a Gaussian process model (GP) instead.
(9.3) Repeat Exercises 9.1 and 9.2, but turn some data points into outliers to check

the robustness of the SVR and GP methods.
(9.4) Compare the prediction performance of CART and random forest (the

ensemble version of CART as described in Section 9.2) with a real dataset.
(9.5) Using the data file provided in the book website, which contains two predic-

tors x1 and x2 and predictand y data (80 observations), develop a nonlinear
regression model of y as a function of x1 and x2. Briefly describe the
approach taken (e.g. MLP, SVR, ensemble, etc.). Forecast ytest using the new
test predictor data x1test and x2test provided.

10

Nonlinear principal component analysis

In Chapter 9, we have seen machine learning methods nonlinearly generalizing
the linear regression method. In this chapter, we will examine ways to nonlinearly
generalize principal component analysis (PCA) and related methods. Figure 10.1
illustrates the difference between linear regression, PCA, nonlinear regression, and
nonlinear PCA.

Principal component analysis can be performed using neural network (NN)
methods (Oja, 1982; Sanger, 1989). However, far more interesting is the non-
linear generalization of PCA, where the straight line in PCA is replaced by
a curve which minimizes the mean squared error (MSE) (Fig. 10.1). Nonlin-
ear PCA can be performed by a variety of methods, e.g. the auto-associative
NN model using multi-layer perceptrons (MLP) (Kramer, 1991; Hsieh, 2001b),
and the kernel PCA model (Schölkopf et al., 1998). Nonlinear PCA belongs to
the class of nonlinear dimensionality reduction techniques, which also includes
principal curves (Hastie and Stuetzle, 1989), locally linear embedding (LLE)
(Roweis and Saul, 2000) and isomap (Tenenbaum et al., 2000). Self-organizing
map (SOM) (Kohonen, 1982) can also be regarded as a discrete version of
NLPCA. Dong and McAvoy (1996) combined the principal curve and MLP
approaches, while Newbigging et al. (2003) used the principal curve projec-
tion concept to improve on the MLP approach. Another way to generalize
PCA is via independent component analysis (ICA) (Comon, 1994; Hyvärinen
et al., 2001), which was developed from information theory, and has been
applied to study the tropical Pacific sea surface temperature (SST) variabil-
ity by Aires et al. (2000). Nonlinear complex PCA (Rattan and Hsieh, 2005)
and nonlinear singular spectrum analysis (Hsieh and Wu, 2002) have also been
developed.

213

214 Nonlinear principal component analysis

(a) (b)

(d)(c)

Fig. 10.1 Comparison of analysis methods. (a) The linear regression line mini-
mizes the mean squared error (MSE) in the response variable (i.e. the predictand).
The dashed line illustrates the dramatically different result when the role of the
predictor variable and the response variable are reversed. (b) Principal compo-
nent analysis (PCA) minimizes the MSE in all variables. (c) Nonlinear regression
methods produce a curve minimizing the MSE in the response variable. (d) Non-
linear PCA methods use a curve which minimizes the MSE of all variables.
In both (c) and (d), the smoothness of the curve can be varied by the method.
(Reprinted from Hastie and Stuetzle (1989) with permission from the Journal of
the American Statistical Association. Copyright 1989 by the American Statistical
Association. All rights reserved.)

10.1 Auto-associative NN for nonlinear PCA

10.1.1 Open curves

Kramer (1991) proposed a neural-network-based nonlinear PCA (NLPCA) model
where the straight line solution in PCA is replaced by a continuous open curve for
approximating the data. The fundamental difference between NLPCA and PCA is
that PCA allows only a linear mapping (u = e · x) between x and the PC u, while
NLPCA allows a nonlinear mapping. To perform NLPCA, the multi-layer percep-
tron (MLP) NN in Fig. 10.2(a) contains three hidden layers of neurons between
the input and output layers of variables. The NLPCA is basically a standard MLP
NN with four layers of activation functions mapping from the inputs to the outputs.
One can view the NLPCA network as composed of two standard two layer MLP

10.1 Auto-associative NN for nonlinear PCA 215

q

q

p
x´x

x x´
h(x) h(u)

u

p

θ

Fig. 10.2 (a) The NN model for calculating the NLPCA. There are three layers
of hidden neurons sandwiched between the input layer x on the left and the out-
put layer x′ on the right. Next to the input layer is the encoding layer, followed
by the ‘bottleneck’ layer (with a single neuron u), which is then followed by the
decoding layer. A nonlinear function maps from the higher dimension input space
to the 1-dimension bottleneck space, followed by an inverse transform mapping
from the bottleneck space back to the original space represented by the outputs,
which are to be as close to the inputs as possible by minimizing the objective
function J = 〈‖x − x′‖2〉. Data compression is achieved by the bottleneck, with
the bottleneck neuron giving u, the nonlinear principal component (NLPC). (b)
The NN model for calculating the NLPCA with a circular node at the bottleneck
(NLPCA(cir)). Instead of having one bottleneck neuron u, there are now two neu-
rons p and q constrained to lie on a unit circle in the p-q plane, so there is only
one free angular variable θ , the NLPC. This network is suited for extracting a
closed curve solution. (Reproduced from Hsieh (2001b), with permission from
Blackwell.)

NNs placed one after the other. The first two layer network maps from the inputs x
through a hidden layer to the bottleneck layer with only one neuron u, i.e. a non-
linear mapping u = f (x). The next two layer MLP NN inversely maps from the
nonlinear PC (NLPC) u back to the original higher dimensional x-space, with the
objective that the outputs x′ = g(u) be as close as possible to the inputs x, where
g(u) nonlinearly generates a curve in the x-space, hence a 1-dimensional approx-
imation of the original data. Because the target data for the output neurons x′ are
simply the input data x, such networks are called auto-associative NNs. To mini-
mize the MSE (mean squared error) of this approximation, the objective function
J = 〈‖x − x′‖2〉 (where 〈. . .〉 denotes taking the average over all the data points) is
minimized to solve for the weight and offset parameters of the NN. Squeezing the
input information through a bottleneck layer with only one neuron accomplishes
the dimensional reduction.

216 Nonlinear principal component analysis

In Fig. 10.2(a), the activation function f1 maps from x, the input vector of
length l, to the first hidden layer (the encoding layer), represented by h(x), a vector
of length m, with elements

h(x)
k = f1((W(x)x + b(x))k), (10.1)

where W(x) is an m × l weight matrix, b(x), a vector of length m containing the
offset parameters, and k = 1, . . . , m. Similarly, a second activation function f2

maps from the encoding layer to the bottleneck layer containing a single neuron,
which represents the nonlinear principal component u,

u = f2(w(x) · h(x) + b
(x)

). (10.2)

The activation function f1 is generally nonlinear (usually the hyperbolic tangent or
the sigmoidal function, though the exact form is not critical), while f2 is usually
taken to be the identity function.

Next, an activation function f3 maps from u to the final hidden layer (the
decoding layer) h(u),

h(u)
k = f3((w(u)u + b(u))k), (10.3)

(k = 1, . . . , m); followed by f4 mapping from h(u) to x′, the output vector of
length l, with

x ′
i = f4((W(u)h(u) + b

(u)
)i). (10.4)

The objective function J = 〈‖x − x′‖2〉 is minimized by finding the optimal

values of W(x), b(x), w(x), b
(x)

, w(u), b(u), W(u) and b
(u)

. The MSE between the NN
output x′ and the original data x is thus minimized. The NLPCA was implemented
using the hyperbolic tangent function for f1 and f3, and the identity function for
f2 and f4, so that

u = w(x) · h(x) + b
(x)

, (10.5)

x ′
i = (W(u)h(u) + b

(u)
)i . (10.6)

Furthermore, we adopt the normalization conditions that 〈u〉 = 0 and 〈u2〉 = 1.
These conditions are approximately satisfied by modifying the objective function to

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2. (10.7)

The total number of (weight and offset) parameters used by the NLPCA is 2lm +
4m + l + 1, though the number of effectively free parameters is two less due to the
constraints on 〈u〉 and 〈u2〉.

The choice of m, the number of hidden neurons in both the encoding and decod-
ing layers, follows a general principle of parsimony. A larger m increases the

10.1 Auto-associative NN for nonlinear PCA 217

nonlinear modelling capability of the network, but could also lead to overfitted
solutions (i.e. wiggly solutions which fit to the noise in the data). If f4 is the iden-
tity function, and m = 1, then (10.6) implies that all x ′

i are linearly related to
a single hidden neuron, hence there can only be a linear relation between the x ′

i

variables. Thus, for nonlinear solutions, we need to look at m ≥ 2. Actually, one
can use different numbers of neurons in the encoding layer and in the decoding
layer; however, keeping them both at m neurons gives roughly the same number of
parameters in the forward mapping from x to u and in the inverse mapping from u
to x′. It is also possible to have more than one neuron at the bottleneck layer. For
instance, with two bottleneck neurons, the mode extracted will span a 2-D surface
instead of a 1-D curve.

Because of local minima in the objective function, there is no guarantee that the
optimization algorithm reaches the global minimum. Hence a number of runs with
random initial weights and offset parameters are needed. Also, a portion (e.g. 15%)
of the data is randomly selected as validation data and withheld from training of the
NNs. Runs where the MSE is larger for the validation dataset than for the training
dataset are rejected to avoid overfitted solutions. Then the run with the smallest
MSE is selected as the solution.

In general, the presence of local minima in the objective function is a major
problem for NLPCA. Optimizations started from different initial parameters often
converge to different minima, rendering the solution unstable or non-unique.
Regularization of the objective function by adding weight penalty terms is an
answer.

The purpose of the weight penalty terms is to limit the nonlinear power of the
NLPCA, which came from the nonlinear activation functions in the network. The
activation function tanh has the property that given x in the interval [−L , L], one
can find a small enough weight w, so that tanh(wx) ≈ wx , i.e. the activation
function is almost linear. Similarly, one can choose a large enough w, so that tanh
approaches a step function, thus yielding Z-shaped solutions. If we can penalize
the use of excessive weights, we can limit the degree of nonlinearity in the NLPCA
solution. This is achieved with a modified objective function

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2 + P
∑

ki

(W (x)
ki)2, (10.8)

where P is the weight penalty parameter. A large P increases the concavity of
the objective function, and forces the weights in W(x) to be small in magnitude,
thereby yielding smoother and less nonlinear solutions than when P is small or
zero. Hence, increasing P also reduces the number of effectively free parameters
of the model. We have not penalized other weights in the network. In principle,
w(u) also controls the nonlinearity in the inverse mapping from u to x′. However,

218 Nonlinear principal component analysis

if the nonlinearity in the forward mapping from x to u is already being limited by
penalizing W(x), then there is no need to limit further the weights in the inverse
mapping.

The percentage of the variance explained by the NLPCA mode is given by

100% ×
(

1 − 〈‖x − x′‖2〉
〈‖x − x‖2〉

)
, (10.9)

with x being the mean of x.
In effect, the linear relation (u = e · x) in PCA is now generalized to u =

f (x), where f can be any nonlinear continuous function representable by an MLP
NN mapping from the input layer to the bottleneck layer; and 〈‖x − g(u)‖2〉 is
minimized. Limitations in the mapping properties of the NLPCA are discussed
by Newbigging et al. (2003). The residual, x − g(u), can be input into the same
network to extract the second NLPCA mode, and so on for the higher modes.

That the classical PCA is indeed a linear version of this NLPCA can be
readily seen by replacing all the activation functions with the identity function,
thereby removing the nonlinear modelling capability of the NLPCA. Then the for-
ward map to u involves only a linear combination of the original variables as in
the PCA.

In the classical linear approach, there is a well-known dichotomy between PCA
and rotated PCA (RPCA) (Section 2.2). In PCA, the linear mode which accounts
for the most variance of the dataset is sought. However, as illustrated in Preisendor-
fer (1988, Fig. 7.3), the resulting eigenvectors may not align close to local data
clusters, so the eigenvectors may not represent actual physical states well. One
application of RPCA methods is to rotate the PCA eigenvectors, so they point
closer to the local clusters of data points (Preisendorfer, 1988). Thus the rotated
eigenvectors may bear greater resemblance to actual physical states (though they
account for less variance) than the unrotated eigenvectors, hence RPCA is also
widely used (Richman, 1986; von Storch and Zwiers, 1999). As there are many
possible criteria for rotation, there are many RPCA schemes, among which the
varimax (Kaiser, 1958) scheme is perhaps the most popular.

10.1.2 Application

The NLPCA has been applied to the Lorenz (1963) three component chaotic sys-
tem (Monahan, 2000; Hsieh, 2001b). For the tropical Pacific climate variability, the
NLPCA has been used to study the sea surface temperature (SST) field (Monahan,
2001; Hsieh, 2001b) and the sea level pressure (SLP) field (Monahan, 2001). In
remote sensing, Del Frate and Schiavon (1999) applied NLPCA to the inversion of

10.1 Auto-associative NN for nonlinear PCA 219

radiometric data to retrieve atmospheric profiles of temperature and water vapour.
More examples of NLPCA applications are given in Chapter 12.

The tropical Pacific climate system contains the famous interannual variability
known as the El Niño–Southern Oscillation (ENSO), a coupled atmosphere–ocean
interaction involving the oceanic phenomenon El Niño and the associated atmo-
spheric phenomenon, the Southern Oscillation. The coupled interaction results in
anomalously warm SST in the eastern equatorial Pacific during El Niño episodes,
and cool SST in the central equatorial Pacific during La Niña episodes (Philander,
1990; Diaz and Markgraf, 2000). The ENSO is an irregular oscillation, but spectral
analysis does reveal a broad spectral peak at the 4-5 year period. Hsieh (2001b)
used the tropical Pacific SST data (1950-1999) to make a three-way comparison
between NLPCA, RPCA and PCA. The tropical Pacific SST anomaly (SSTA) data
(i.e. the SST data with the climatological seasonal cycle removed) were pre-filtered
by PCA, with only the three leading modes retained. The PCA modes 1, 2 and 3
accounted for 51.4%, 10.1% and 7.2%, respectively, of the variance in the SSTA
data. Due to the large number of spatially gridded variables, NLPCA could not be
applied directly to the SSTA time series, as this would lead to a huge NN with the
number of model parameters vastly exceeding the number of observations. Instead,
the first three PCs (PC1, PC2 and PC3) were used as the input x for the NLPCA
network.

The data are shown as dots in a scatter plot in the PC1-PC2 plane in Fig. 10.3,
where the cool La Niña states lie in the upper left corner, and the warm El Niño
states in the upper right corner. The NLPCA solution is a U-shaped curve linking
the La Niña states at one end (low u) to the El Niño states at the other end (high
u), similar to that found originally by Monahan (2001). In contrast, the first PCA
eigenvector lies along the horizontal line, and the second PCA, along the vertical
line (Fig. 10.3). It is easy to see that the first PCA eigenvector describes a some-
what unphysical oscillation, as there are no dots (data) close to either end of the
horizontal line. For the second PCA eigenvector, there are dots close to the bottom
of the vertical line, but no dots near the top end of the line, i.e. one phase of the
mode 2 oscillation is realistic, but the opposite phase is not. Thus if the underly-
ing data have a nonlinear structure but we are restricted to finding linear solutions
using PCA, the energy of the nonlinear oscillation is scattered into multiple PCA
modes, many of which represent unphysical linear oscillations.

For comparison, a varimax rotation (Kaiser, 1958; Preisendorfer, 1988), was
applied to the first three PCA eigenvectors, as mentioned in Section 2.2. The vari-
max criterion can be applied to either the loadings or the PCs depending on one’s
objectives; here it is applied to the PCs. The resulting first RPCA eigenvector,
shown as a dashed line in Fig. 10.3, spears through the cluster of El Niño states
in the upper right corner, thereby yielding a more accurate description of the El

220 Nonlinear principal component analysis

–60 –40 –20 0 20 40 60 80
–20

–15

–10

–5

0

5

10

15

20

25

PC1

PC
2

Fig. 10.3 Scatter plot of the SST anomaly (SSTA) data (shown as dots) in the
PC1-PC2 plane, with the El Niño states lying in the upper right corner, and the La
Niña states in the upper left corner. The PC2 axis is stretched relative to the PC1
axis for better visualization. The first mode NLPCA approximation to the data is
shown by the (overlapping) small circles, which trace out a U-shaped curve. The
first PCA eigenvector is oriented along the horizontal line, and the second PCA
along the vertical line. The varimax method rotates the two PCA eigenvectors in a
counterclockwise direction, as the rotated PCA (RPCA) eigenvectors are oriented
along the dashed lines. (As the varimax method generates an orthogonal rota-
tion, the angle between the two RPCA eigenvectors is 90◦ in the 3-dimensional
PC1-PC2-PC3 space). (Reproduced from Hsieh (2001b), with permission from
Blackwell.)

Niño anomalies (Fig. 10.4(c)) than the first PCA mode (Fig. 10.4(a)), which did
not fully represent the intense warming of Peruvian waters – for better legibility,
compare Fig. 2.13(a) with Fig. 2.5(a) instead. The second RPCA eigenvector, also
shown as a dashed line in Fig. 10.3, did not improve much on the second PCA
mode, with the PCA spatial pattern shown in Fig. 10.4(b), and the RPCA pattern
in Fig. 10.4(d). In terms of variance explained, the first NLPCA mode explained
56.6% of the variance, versus 51.4% by the first PCA mode, and 47.2% by the first
RPCA mode.

With the NLPCA, for a given value of the NLPC u, one can map from u to the
three PCs. This is done by assigning the value u to the bottleneck neuron and map-
ping forward using the second half of the network in Fig. 10.2(a). Each of the three
PCs can be multiplied by its associated PCA (spatial) eigenvector, and the three
added together to yield the spatial pattern for that particular value of u. Unlike

10.1 Auto-associative NN for nonlinear PCA 221

PCA mode 1

0.5

0.5

1

1

1

1.5

1. 5

1.5

2

2

2

2.5

2. 5

3
3 3.5

–0.5 –0.5

–0.5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

PCA mode 2

0.5
1
1.5 2−1

−1 −
0.5

−0.5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

RPCA mode 1

0.5

0.5

0. 5

0
.5

1

1

1

1. 5

1.5

2

22

2

2.5

2.5

33.5 44.55

−0. 5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

RPCA mode 2

0. 5 1

−1

−0.5

−0.5

−0.5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

Max(u) NLPCA

0.5

0.5

1

1

1

1.5

1.5

2

2

2.5
3

3.
5

4

−0.5

−
0.

5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

Min(u) NLPCA

0.5
0.5

−1.5−1.5

−1

−1

−1

−1

−0.5

−
0.5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

(a) (b)

(d)(c)

(e) (f)

Fig. 10.4 The SSTA patterns (in ◦C) of the PCA, RPCA and the NLPCA. The first
and second PCA spatial modes are shown in (a) and (b) respectively, (both with
their corresponding PCs at maximum value). The first and second varimax RPCA
spatial modes are shown in (c) and (d) respectively, (both with their corresponding
RPCs at maximum value). The anomaly pattern as the NLPC u of the first NLPCA
mode varies from (e) maximum (strong El Niño) to (f) its minimum (strong La
Niña). With a contour interval of 0.5 ◦C , the positive contours are shown as solid
curves, negative contours as dashed curves, and the zero contour as a thick curve.
(Reproduced from Hsieh (2004) with permission from the American Geophysical
Union.)

PCA which gives the same spatial anomaly pattern except for changes in the ampli-
tude as the PC varies, the NLPCA spatial pattern generally varies continuously as
the NLPC changes. Figure 10.4(e) and (f) show respectively the spatial anomaly
patterns when u has its maximum value (corresponding to the strongest El Niño)

222 Nonlinear principal component analysis

and when u has its minimum value (strongest La Niña). Clearly the asymmetry
between El Niño and La Niña, i.e. the cool anomalies during La Niña episodes
(Fig. 10.4(f)) are observed to centre much further west of the warm anomalies
during El Niño (Fig. 10.4(e)) (Hoerling et al., 1997), is well captured by the first
NLPCA mode – in contrast, the PCA mode 1 gives a La Niña which is simply
the mirror image of the El Niño (Fig. 10.4(a)). While El Niño has been known by
Peruvian fishermen for many centuries due to its strong SSTA off the coast of Peru
and its devastation of the Peruvian fishery, the La Niña, with its weak manifestation
in the Peruvian waters, was not appreciated until the last two decades of the 20th
century.

In summary, PCA is used for two main purposes: (i) to reduce the dimensionality
of the dataset, and (ii) to extract features or recognize patterns from the dataset.
It is purpose (ii) where PCA can be improved upon. Both RPCA and NLPCA
take the PCs from PCA as input. However, instead of multiplying the PCs by a
fixed orthonormal rotational matrix, as performed in the varimax RPCA approach,
NLPCA performs a nonlinear mapping of the PCs. RPCA sacrifices on the amount
of variance explained, but by rotating the PCA eigenvectors, RPCA eigenvectors
tend to point more towards local data clusters and are therefore more representative
of physical states than the PCA eigenvectors.

With a linear approach, it is generally impossible to have a solution simultane-
ously (a) explaining maximum global variance of the dataset and (b) approaching
local data clusters, hence the dichotomy between PCA and RPCA, with PCA
aiming for (a) and RPCA for (b). With the more flexible NLPCA method, both
objectives (a) and (b) may be attained together, thus the nonlinearity in NLPCA
unifies the PCA and RPCA approaches (Hsieh, 2001b). It is easy to see why the
dichotomy between PCA and RPCA in the linear approach automatically vanishes
in the nonlinear approach. By increasing m, the number of hidden neurons in the
encoding layer (and the decoding layer), the solution is capable of going through
all local data clusters while maximizing the global variance explained. (In fact,
for large enough m, NLPCA can pass through all data points, though this will in
general give an undesirable, overfitted solution.)

The tropical Pacific SST example illustrates that with a complicated oscillation
like the El Niño-La Niña phenomenon, using a linear method such as PCA results
in the nonlinear mode being scattered into several linear modes (in fact, all three
leading PCA modes are related to this phenomenon). In the study of climate vari-
ability, the wide use of PCA methods has created perhaps a slightly misleading
view that our climate is dominated by a number of spatially fixed oscillatory pat-
terns, which is in fact due to the limitations of the linear method. Applying NLPCA
to the tropical Pacific SSTA, we found no spatially fixed oscillatory patterns, but
an oscillation evolving in space as well as in time.

10.1 Auto-associative NN for nonlinear PCA 223

10.1.3 Overfitting

When using nonlinear machine learning methods, the presence of noise in the data
can lead to overfitting. When plentiful data are available (i.e. far more observations
than model parameters), overfitting is not a problem when performing nonlinear
regression on noisy data (Section 6.2). Unfortunately, even with plentiful data,
overfitting is a problem when applying NLPCA to noisy data (Hsieh, 2001b; Chris-
tiansen, 2005; Hsieh, 2007). As illustrated in Fig. 10.5, overfitting in NLPCA can
arise from the geometry of the problem, rather than from the scarcity of data. Here
for a Gaussian-distributed data cloud, a nonlinear model with enough flexibility
will find the zigzag solution of Fig. 10.5(b) as having a smaller MSE than the
linear solution in Fig. 10.5(a). Since the distance between the point A and a, its

(a)

(b)

A B

A B

a

a

b

b

Fig. 10.5 Illustrating how overfitting can occur in NLPCA of noisy data (even
in the limit of infinite sample size). (a) PCA solution for a Gaussian data cloud
(shaded in grey), with two neighbouring points A and B shown projecting to the
points a and b on the PCA straight line solution. (b) A zigzag NLPCA solution
found by a flexible enough nonlinear model. Dashed lines illustrate ‘ambiguity’
lines where neighbouring points (e.g. A and B) on opposite sides of these lines
are projected to a and b, far apart on the NLPCA curve. (Reproduced from Hsieh
(2007) with permission of Elsevier.)

224 Nonlinear principal component analysis

projection on the NLPCA curve, is smaller in Fig. 10.5(b) than the correspond-
ing distance in Fig. 10.5(a), it is easy to see that the more zigzags there are in the
curve, the smaller is the MSE. However, the two neighbouring points A and B, on
opposite sides of an ambiguity line, are projected far apart on the NLPCA curve in
Fig. 10.5(b). Thus simply searching for the solution which gives the smallest MSE
does not guarantee that NLPCA will find a good solution in a highly noisy dataset.

Hsieh (2001b) added weight penalty to the Kramer (1991) NLPCA model to
smooth out excessively wiggly solutions, but did not provide an objective way
to select the optimal weight penalty parameter P . With NLPCA, if the overfit-
ting arises from the data geometry (as in Fig. 10.5(b)) and not from data scarcity,
using independent data to validate the MSE from the various models is not a viable
method for choosing the appropriate P . Instead, Hsieh (2007) proposed an ‘incon-
sistency’ index for detecting the projection of neighbouring points to distant parts
of the NLPCA curve, and used the index to choose the appropriate P .

The index is calculated as follows: for each data point x, find its nearest neigh-
bour x̃. The NLPC for x and x̃ are u and ũ, respectively. With C(u, ũ) denoting
the (Pearson) correlation between all the pairs (u, ũ), the inconsistency index I is
defined as

I = 1 − C(u, ũ). (10.10)

If for some nearest neighbour pairs, u and ũ are assigned very different values,
C(u, ũ) would have a lower value, leading to a larger I , indicating greater incon-
sistency in the NLPC mapping. With u and ũ standardized to having zero mean and
unit standard deviation, (10.10) is equivalent to

I = 1

2
〈(u − ũ)2〉. (10.11)

The I index plays a similar role as the topographic error in self-organizing maps
(SOM) (see Section 10.3).

In statistics, various criteria, often in the context of linear models, have been
developed to select the right amount of model complexity so neither overfitting nor
underfitting occurs. These criteria are often called ‘information criteria’ (IC) (von
Storch and Zwiers, 1999). An IC is typically of the form

IC = MSE + complexity term, (10.12)

where MSE is evaluated over the training data and the complexity term is larger
when a model has more free parameters. The IC is evaluated over a number of
models with different numbers of free parameters, and the model with the mini-
mum IC is selected as the best. As the presence of the complexity term in the IC
penalizes models which use an excessive number of free parameters to attain low

10.1 Auto-associative NN for nonlinear PCA 225

MSE, choosing the model with the minimum IC would rule out complex models
with overfitted solutions.

In Hsieh (2007), the data were randomly divided into a training data set and a
validation set (containing 85% and 15% of the original data, respectively), and for
every given value of P and m (the number of neurons in the first hidden layer in
Fig. 10.2(a)), the model was trained a number of times from random initial weights,
and model runs where the MSE evaluated over the validation data was larger than
the MSE over the training data were discarded. To choose among the model runs
which had passed the validation test, a new holistic IC to deal with the type of
overfitting arising from the broad data geometry (Fig. 10.5(b)) was introduced as

H = MSE + inconsistency term, (10.13)

= MSE − C(u, ũ) × MSE = MSE × I, (10.14)

where MSE and C were evaluated over all (training and validation) data, inconsis-
tency was penalized, and the model run with the smallest H value was selected as
the best. As the inconsistency term only prevents overfitting arising from the broad
data geometry, validation data are still needed to prevent ‘local’ overfitting from
excessive number of model parameters, since H , unlike (10.12), does not contain
a complexity term.

Consider the test problem in Hsieh (2007): For a random number t uniformly
distributed in the interval (−1, 1), the signal x(s) was generated by using a quadratic
relation

x (s)
1 = t, x (s)

2 = 1

2
t2. (10.15)

Isotropic Gaussian noise was added to the signal x(s) to generate a noisy dataset
of x containing 500 ‘observations’. NLPCA was performed on the data using the
network in Fig. 10.2(a) with m = 4 and with the weight penalty P at various values
(10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 0). For each value of P , the model training
was done 30 times starting from random initial weights, and model runs where the
MSE evaluated over the validation data was larger than the MSE over the training
data were deemed ineligible. In the traditional approach, among the eligible runs
over the range of P values, the one with the lowest MSE over all (training and val-
idation) data was selected as the best. Figure 10.6(a) shows this solution where the
zigzag curve retrieved by NLPCA is very different from the theoretical parabolic
signal (10.15), demonstrating the pitfall of selecting the lowest MSE run.

In contrast, in Fig. 10.6(b), among the eligible runs over the range of P values,
the one with the lowest information criterion H was selected. This solution, which
has a much larger weight penalty (P = 0.1) than that in Fig. 10.6(a) (P = 10−4),

226 Nonlinear principal component analysis

−3 −2 −1 0 1 2 3
−2

−1

0

1

2
Min. IC with MAE norm (P = 0)

x1

x 2

(c)

−3 −2 −1 0 1 2 3
−2

−1

0

1

2
Min. IC solution (P = 0.1)

x1

x 2

(b)

−3 −2 −1 0 1 2 3
−2

−1

0

1

2
Min. MSE solution (P = 0.0001)

x1
x 2

(a)

Fig. 10.6 The NLPCA solution (shown as densely overlapping black circles)
for the synthetic dataset (dots), with the parabolic signal curve indicated by
‘+’ and the linear PCA solution by the dashed line. The solution was selected
from the multiple runs over a range of P values based on (a) minimum MSE,
(P = 0.0001) (b) minimum information criterion (IC) H(P = 0.1), and (c) mini-
mum IC together with the MAE norm (P = 0). (Adapted from Hsieh (2007) with
permission of Elsevier.)

shows less wiggly behaviour and better agreement with the theoretical parabolic
signal.

Even less wiggly solutions can be obtained by changing the error norm used
in the objective function from the mean squared error to the mean absolute error
(MAE), i.e. replacing 〈‖x − x′‖2〉 by 〈∑ j |x j − x ′

j |〉 in (10.8). The MAE norm

10.1 Auto-associative NN for nonlinear PCA 227

is known to be robust to outliers in the data (Section 6.2). Figure 10.6(c) is the
solution selected based on minimum H with the MAE norm used. While wiggles
are eliminated, the solution underestimates the curvature in the parabolic signal.
The rest of this section uses the MSE norm.

In summary, with noisy data, not having plentiful observations could cause a
flexible nonlinear model to overfit. In the limit of infinite number of observations,
overfitting cannot occur in nonlinear regression, but can still occur in NLPCA
due to the geometric shape of the data distribution. The inconsistency index I for
detecting the projection of neighbouring points to distant parts of the NLPCA curve
has been introduced, and incorporated into a holistic IC H to select the model with
the appropriate weight penalty parameter and the appropriate number of hidden
neurons (Hsieh, 2007). An alternative approach for model selection was proposed
by Webb (1999), who applied a constraint on the Jacobian in the objective function.

10.1.4 Closed curves

While the NLPCA is capable of finding a continuous open curve solution, there
are many phenomena involving waves or quasi-periodic fluctuations, which call
for a continuous closed curve solution. Kirby and Miranda (1996) introduced an
NLPCA with a circular node at the network bottleneck (henceforth referred to as
the NLPCA(cir)), so that the nonlinear principal component (NLPC) as represented
by the circular node is an angular variable θ , and the NLPCA(cir) is capable of
approximating the data by a closed continuous curve. Figure 10.2(b) shows the
NLPCA(cir) network, which is almost identical to the NLPCA of Fig. 10.2(a),
except at the bottleneck, where there are now two neurons p and q constrained to
lie on a unit circle in the p-q plane, so there is only one free angular variable θ ,
the NLPC.

At the bottleneck in Fig. 10.2(b), analogous to u in (10.5), we calculate the
pre-states po and qo by

po = w(x) · h(x) + b
(x)

, and qo = w̃(x) · h(x) + b̃(x), (10.16)

where w(x), w̃(x) are weight parameter vectors, and b
(x)

and b̃(x) are offset
parameters. Let

r = (p2
o + q2

o)
1/2, (10.17)

then the circular node is defined with

p = po/r, and q = qo/r, (10.18)

satisfying the unit circle equation p2 + q2 = 1. Thus, even though there are two
variables p and q at the bottleneck, there is only one angular degree of freedom

228 Nonlinear principal component analysis

from θ (Fig. 10.2(b)), due to the circle constraint. The mapping from the bottleneck
to the output proceeds as before, with (10.3) replaced by

h(u)
k = tanh((w(u) p + w̃(u)q + b(u))k). (10.19)

When implementing NLPCA(cir), Hsieh (2001b) found that there are actually
two possible configurations: (i) a restricted configuration where the constraints
〈p〉 = 0 = 〈q〉 are applied; and (ii) a general configuration without the constraints.
With (i), the constraints can be satisfied approximately by adding the extra terms
〈p〉2 and 〈q〉2 to the objective function. If a closed curve solution is sought, then
(i) is better than (ii) as it has effectively two fewer parameters. However, (ii), being
more general than (i), can more readily model open curve solutions like a regular
NLPCA. The reason is that if the input data mapped onto the p-q plane cover only
a segment of the unit circle instead of the whole circle, then the inverse mapping
from the p-q space to the output space will yield a solution resembling an open
curve. Hence, given a dataset, (ii) may yield either a closed curve or an open curve
solution. It uses 2lm + 6m + l + 2 parameters.

Hsieh (2007) found that the information criterion (IC) H (Section 10.1.3) not
only alleviates overfitting in open curve solution, but also chooses between open
and closed curve solutions when using NLPCA(cir) in configuration (ii). The
inconsistency index I and the IC are now obtained from

I = 1 − 1

2

[
C(p, p̃) + C(q, q̃)

]
, and H = MSE × I, (10.20)

where p and q are from the bottleneck (Fig. 10.2(b)), and p̃ and q̃ are the
corresponding nearest neighbour values.

For a test problem, consider a Gaussian data cloud (with 500 observations) in
2-dimensional space, where the standard deviation along the x1 axis was double
that along the x2 axis. The dataset was analyzed by the NLPCA(cir) model with
m = 2, . . . , 5 and P = 10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 0. From all the runs,
the solution selected based on the minimum MSE has m = 5 (and P = 10−5)
(Fig. 10.7(a)), while that selected based on minimum H has m = 3 (and P =
10−5) (Fig. 10.7(b)). The minimum MSE solution has (normalized) MSE = 0.370,
I = 9.50 and H = 3.52, whereas the minimum H solution has the corresponding
values of 0.994, 0.839 and 0.833, respectively, where for easy comparison with the
linear mode, these values for the nonlinear solutions have been normalized upon
division by the corresponding values from the linear PCA mode 1. Thus the IC
correctly selected a nonlinear solution (Fig. 10.7(b)) which is similar to the linear
solution. It also rejected the closed curve solution of Fig. 10.7(a) in favour of the
open curve solution of Fig. 10.7(b), despite its much larger MSE.

10.1 Auto-associative NN for nonlinear PCA 229

–6 –4 –2 0 2 4 6
–3

–2

–1

0

1

2

3
Min. MSE solution (m = 5, P = 10–5)

x1

x 2

–6 −4 −2 0 2 4 6
–3

–2

–1

0

1

2

3
Min. IC solution (m = 3, P = 10–5)

x1

x 2

(a)

(b)

Fig. 10.7 The NLPCA(cir) mode 1 for a Gaussian dataset, with the solution
selected based on (a) minimum MSE (m = 5, P = 10−5), and (b) minimum
IC (m = 3, P = 10−5). The PCA mode 1 solution is shown as a dashed line.
(Reproduced from Hsieh (2007) with permission from Elsevier.)

For an application of NLPCA(cir) on real data, consider the Quasi-Biennial
Oscillation (QBO), which dominates over the annual cycle or other variations in
the equatorial stratosphere, with the period of oscillation varying roughly between
22 and 32 months. Average zonal (i.e. the westerly component) winds at 70, 50, 40,
30, 20, 15 and 10 hPa (i.e. from about 20 to 30 km altitude) during 1956–2006 were
studied. After the 51 year means were removed, the zonal wind anomalies U at
seven vertical levels in the stratosphere became the seven inputs to the NLPCA(cir)
network (Hamilton and Hsieh, 2002; Hsieh, 2007). Since the data were not very
noisy (Fig. 10.8), a rather complex model was used, with m ranging from 5 to 9,
and P = 10−1, 10−2, 10−3, 10−4, 10−5, 0. The smallest H occurred when m = 8
and P = 10−5, with the closed curve solution shown in Fig. 10.8. Thus in this
example, by choosing a rather large m and a small P , the H IC justified hav-
ing considerable model complexity, including the wiggly behaviour seen in the 70
hPa wind (Fig. 10.8(c)). The wiggly behaviour can be understood by viewing the

230 Nonlinear principal component analysis

−20
0

20
−20

0
20

−10

0

10

U(10 hPa)

(a)

U(30 hPa)

U
(7

0
hP

a)

−40 −20 0 20 40
−40

−20

0

20

40
(b)

U(10 hPa)

U
(3

0
hP

a)

−40 −20 0 20 40
−20

−10

0

10

20
(c)

U(10 hPa)

U
(7

0
hP

a)

−40 −20 0 20 40
−20

−10

0

10

20
(d)

U(30 hPa)

U
(7

0
hP

a)

Fig. 10.8 The NLPCA(cir) mode 1 solution for the equatorial stratospheric zonal
wind anomalies. For comparison, the PCA mode 1 solution is shown by the
dashed line. Only three out of seven dimensions are shown, namely the zonal
velocity anomaly U at the top, middle and bottom levels (10, 30 and 70 hPa). (a)
A 3-D view. (b)–(d) 2-D views. (Reproduced from Hsieh (2007), with permission
from Elsevier.)

phase–pressure contour plot of the zonal wind anomalies (Fig. 10.9): As the east-
erly wind anomaly descends with time (i.e. as phase increases), wavy behaviour
is seen in the 40, 50 and 70 hPa levels at θweighted around 0.4–0.5. This example
demonstrates the benefit of having an IC to decide objectively on how smooth or
wiggly the fitted curve should be.

The observed strong asymmetries between the easterly and westerly phases of
the QBO (Hamilton, 1998; Baldwin et al., 2001) are captured by this NLPCA(cir)
mode – e.g. the much more rapid transition from easterlies to westerlies than
the reverse transition, and the much deeper descent of the easterlies than the
westerlies (Fig. 10.9). For comparison, Hamilton and Hsieh (2002) constructed
a linear model of θ , which was unable to capture the observed strong asymme-
try between easterlies and westerlies. See Section 12.3.2 for more discussion of
the QBO.

10.2 Principal curves 231

−1 −0.5 0 0.5 1
70

50

40

30

20

15

10

Pr
es

su
re

 (
hP

a)

θweighted (in π radians)

Fig. 10.9 Contour plot of the NLPCA(cir) mode 1 zonal wind anomalies as a
function of pressure and phase θweighted, where θweighted is θ weighted by the
histogram distribution of θ (see Hamilton and Hsieh, 2002). Thus θweighted is more
representative of actual time during a cycle than θ . Contour interval is 5 ms−1,
with westerly winds indicated by solid lines, easterlies by dashed lines, and zero
contours by thick lines. (Reproduced from Hsieh (2007), with permission from
Elsevier.)

The NLPCA(cir) approach has also been used to study the tropical Pacific
climate variability (Hsieh, 2001b; An et al., 2005, 2006), the non-sinusoidal propa-
gation of underwater sandbars off beaches in the Netherlands and Japan (Ruessink
et al., 2004), and the tidal cycle off the German North Sea coast (Herman, 2007).
A nonlinear singular spectrum analysis method has also been developed based on
the NLPCA(cir) model (Hsieh and Wu, 2002) (see Section 10.6).

10.2 Principal curves

Having originated from the statistics community, the principal curve method
(Hastie and Stuetzle, 1989; Hastie et al., 2001) offers another approach to non-
linearly generalize the PCA method. Figure 10.10 illustrates how to proceed from
the PCA first mode to the principal curve. The mean of the data points within a bin
(as confined between the two dashed lines) is computed (as indicated by the cross
in Fig. 10.10). By moving the bin along the PCA line, the means for the various
bins can be connected to form a curve C1, a first approximation for the principal
curve. For the next iteration, instead of projecting data to the PCA straight line, the
data points are projected normally to the curve C1. Those falling within a bin are
used to obtain a mean value, and again by moving the bin along C1, a new curve C2

232 Nonlinear principal component analysis

Fig. 10.10 Illustrating how to proceed towards finding the principal curve starting
from the linear PCA solution of a dataset. First, the data points are projected
normally to the PCA line, then all points falling within a bin (bounded by the
two dashed lines) are used to compute a mean (indicated by the cross). The bin is
shifted along the PCA line, and the means of the bins are connected to give a curve
C1, a first approximation to the principal curve solution. For the next step, data
points are projected normally to the curve C1, again the means within the bins are
calculated to give the curve C2. This procedure is iterated until convergence to the
principal curve solution.

is given by the mean values. The process is repeated until the curves C j converge to
the principal curve. Thus, the procedure involves two basic steps: (i) given a curve
C j , data are projected normally to the curve; (ii) for all the data points projected
to within a bin (i.e. interval) along the curve, the mean is calculated, which gives a
new estimate for the curve C j+1. After sufficient iterations of the two basic steps,
a curve is found which passes through the middle of the data. It is not essential
to start with the PCA straight line solution, though this is widely used as the first
guess.

Next, we proceed to define the principal curve for random variables x̂ in R
l . Let

g(u) be a parameterized smooth curve in R
l . It is convenient (but not essential) to

choose the parameter u to be the arc-length along the curve from some fixed origin.
Finding the normal projection of a data point x to the curve is equivalent to finding
the value of u which minimizes the distance between the curve g(ũ) and the data
point x, i.e.

u = arg minũ ‖g(ũ) − x‖2 = f (x), (10.21)

where we consider u = f (x) to be the forward or encoding mapping, and u is
referred to as the projection index. Note that if there are two or more points on the
curve with the shortest distance to the point x, then we choose u to be the largest
value among the possible candidates. The curve g(u) is called a principal curve if

g(u) = E(x̂| f (x̂) = u). (10.22)

10.3 Self-organizing maps (SOM) 233

This means the principal curve g(u) is the average of all the data points projected
to u, a property known as self-consistency. With a finite dataset, the projection is
to a bin or interval containing u. The 1-D principal curve can be generalized to a
principal surface of two or higher dimensions (Hastie et al., 2001).

A major disadvantage of the principal curve method is that when a new data
point xnew arrives, unlike the case of NLPCA by auto-associative NN, there are
no mapping functions to provide the NLPC unew and the projection x′

new on the
principal curve.

10.3 Self-organizing maps (SOM)

The goal of clustering or cluster analysis is to group the data into a number of
subsets or ‘clusters’, such that the data within a cluster are more closely related
to each other than data from other clusters. By projecting all data belonging to
a cluster to the cluster centre, data compression can be achieved. In Section 1.7,
the simple and widely used K-means clustering method was introduced, whereas
in Section 8.6, we have seen how an NN model under unsupervised learning can
perform clustering.

The self-organizing map (SOM) method, introduced by Kohonen (1982, 2001),
approximates a dataset in multi-dimensional space by a flexible grid (typically of
one or two dimensions) of cluster centres. Widely used for clustering, SOM can
also be regarded as a discrete version of a principal curve/surface or an NLPCA
(Cherkassky and Mulier, 1998).

As with many neural network models, self-organizing maps have a biological
background. In neurobiology, it is known that many structures in the cortex of
the brain are 2-D or 1-D. In contrast, even the perception of colour involves three
types of light receptor. Besides colour, human vision also processes information
about the shape, size, texture, position and movement of an object. So the question
naturally arises as to how 2-D networks of neurons can process higher dimensional
signals in the brain.

Among various possible grids, rectangular and hexagonal grids are most com-
monly used by SOM. For a 2-dimensional rectangular grid, the grid points or
units i j = (l, m), where l and m take on integer values, i.e. l = 1, . . . , L ,

m = 1, . . . , M , and j = 1, . . . , L M . (If a 1-dimensional grid is desired, simply
set M = 1.)

To initialize the training process, PCA is usually performed on the dataset, and
the grid i j is mapped to z j (0) lying on the plane spanned by the two leading PCA
eigenvectors. As training proceeds, the initial flat 2D surface of z j (0) is bent to fit
the data. The original SOM was trained in a flow-through manner (i.e. observations
are presented one at a time during training), though algorithms for batch training

234 Nonlinear principal component analysis

are now also available. In flow-through training, there are two steps to be iterated,
starting with n = 1:

Step (i): At the nth iteration, select an observation x(n) from the data space, and
find among the points z j (n − 1), the one with the shortest (Euclidean) distance to
x(n). Call this closest neighbour zk , with the corresponding unit ik called the best
matching unit (BMU).

Step (ii): Let

z j (n) = z j (n − 1) + η h(‖i j − ik‖2) [x(n) − z j (n − 1)], (10.23)

where η is the learning rate parameter and h is a neighbourhood or kernel function.
The neighbourhood function gives more weight to the grid points i j near ik , than
those far away, an example being a Gaussian drop-off with distance. Note that the
distances between neighbours are computed for the fixed grid points (i j = (l, m)),
not for their corresponding positions z j in the data space. Typically, as n increases,
the learning rate η is decreased gradually from the initial value of 1 towards 0, while
the width of the neighbourhood function is also gradually narrowed (Cherkassky
and Mulier, 1998).

While SOM has been commonly used as a clustering tool, it should be
pointed out that it may underform simpler techniques such as K -means clustering.
Balakrishnan et al. (1994) found that K -means clustering had fewer points misclas-
sified compared with SOM, and the classification accuracy of SOM worsened as
the number of clusters in the data increased. Mingoti and Lima (2006) tested SOM
against K -means and other clustering methods over a large number of datasets, and
found that SOM did not perform well in almost all cases. Hence the value of SOM
lies in its role as discrete nonlinear PCA, rather than as a clustering algorithm.

As an example, consider the famous Lorenz ‘butterfly’-shaped attractor from
chaos theory (Lorenz, 1963). Describing idealized atmospheric convection, the
Lorenz system is governed by three (non-dimensionalized) differential equations:

ẋ = −ax + ay, ẏ = −xz + bx − y, ż = xy − cz, (10.24)

where the overhead dot denotes a time derivative, and a, b and c are three param-
eters. A chaotic system is generated by choosing a = 10, b = 28, and c = 8/3.
The Lorenz data are fitted by a 2-dimensional SOM (from the Matlab neural net-
work toolbox) in Fig. 10.11, and by a 1-dimensional SOM in Fig. 10.12. The
1-dimensional fit resembles a discrete version of the NLPCA solution found using
auto-associative neural networks (Monahan, 2000).

A propagating wave can also be represented in a 2-dimensional SOM. Liu
et al. (2006) illustrated a sinusoidal wave travelling to the right by a 3 × 4 SOM
(Fig. 10.13). As time progresses, the best matching unit (BMU) rotates counter-
clockwise around the SOM (i.e. the patterns of the 3 × 4 SOM are manifested

10.3 Self-organizing maps (SOM) 235

−10
0

10 −20

−10

0

10

20
10

15

20

25

30

35

40

y

x

z

Fig. 10.11 A 2-dimensional self-organizing map (SOM) where a 6 × 6 mesh is
fitted to the Lorenz (1963) attractor data.

sequentially as time progresses), producing a travelling wave pattern. The counter-
clockwise movement around the SOM means that the two nodes at the centre of
the SOM are not excited, hence their associated patterns (patterns (5) and (8) in the
figure) are spurious.

How many grid points or units should one use in the SOM? Again the problem of
underfitting with too few units and overfitting with too many units presents itself.
Two quantitative measures of mapping quality are commonly used: average quan-
tization error (QE) and topographic error (TE) (Kohonen, 2001). The measure QE
is the average distance between each data point x and zk of its BMU. The TE value
gives the fraction of data points for which the first BMU and the second BMU are
not neighbouring units. Smaller QE and TE values indicate better mapping quality.
By increasing the number of units, QE can be further decreased; however, TE will
eventually rise, indicating that one is using an excessive number of units. Thus QE
and TE allow one to choose the appropriate number of units in the SOM. The TE
plays a similar role as the inconsistency index (10.10) in NLPCA by MLP NN.

The SOM method has been widely used to classify satellite data, including ocean
colour (Yacoub et al., 2001), sea surface temperature (Richardson et al., 2003), sea

236 Nonlinear principal component analysis

−10
0

10 −20

−10

0

10

20
10

15

20

25

30

35

40

y

x

z

Fig. 10.12 A 1-dimensional self-organizing map (SOM) where a curve with six
units is fitted to the Lorenz (1963) attractor data.

level height (Hardman-Mountford et al., 2003), scatterometer winds (Richardson
et al., 2003), aerosol type and optical thickness (Niang et al., 2006) and ocean cur-
rents (Liu and Weisberg, 2005; Liu et al., 2007). Villmann et al. (2003) applied
SOM not only to clustering low-dimensional spectral data from the LANDSAT
thematic mapper, but also to high-dimensional hyperspectral AVIRIS (Airborne
Visible-Near Infrared Imaging Spectrometer) data where there are about 200 fre-
quency bands. A 2-D SOM with a mesh of 40 × 40 was applied to AVIRIS data to
classify the geology of the land surface.

Cavazos (1999) applied a 2×2 SOM to cluster the winter daily precipitation over
20 grid points in northeastern Mexico and southeastern Texas. From the wettest and
driest clusters, composites of the 500 hPa geopotential heights and sea level pres-
sure were generated, yielding the large scale meteorological conditions associated
with the wettest and driest clusters. Hewitson and Crane (2002) applied SOM to
identify the January SLP anomaly patterns in northeastern USA. For seismic data,
SOM has been used to identify and classify multiple events (Essenreiter et al.,
2001), and in well log calibration (Taner et al., 2001). More applications of SOM
are given in Chapter 12.

10.4 Kernel principal component analysis 237

4020

B
M

U

1
2
3
4
5
6
7
8
9

10
11
12

60 80 100

Time

120 140 160 180 200

(1) 10.0% (4) 10.0% (7) 10.0% (10) 10.0%

(2) 10.0% (5) 0.0% (8) 0.0% (11) 10.0%

(3) 10.0% (6) 10.0% (9) 10.0% (12) 10.0%

1

0y

–1

1

0y

–1

1

0

0 50
x

100

y

–1
0 50

x
100 0 50

x
100 0 50

x
100

Fig. 10.13 A wave propagating to the right is analyzed by a 3 × 4 SOM. The
frequency of occurrence of each SOM pattern is given on top of each panel. As
time progresses, the best matching unit (BMU) rotates counterclockwise around
the 3 × 4 SOM patterns, where the SOM patterns (5) and (8) are bypassed (as
indicated by their frequency of occurrence of 0.0%). (Reproduced from Liu et al.
(2006) with permission of the American Geophysical Union.)

10.4 Kernel principal component analysis

The kernel method of Chapter 7 allows another approach for nonlinear PCA. We
recall that in the kernel method, points in the input space of dimension m are
mapped to a ‘feature’ space by a nonlinear mapping function φ. The feature space
is of dimension M , which is usually much larger than m and can be infinite. Essen-
tially, (linear) PCA is performed in the high-dimensional feature space, which
corresponds to finding nonlinear modes in the original data space (i.e. the input
space).

Note that PCA is meaningful only when applied to centred data, i.e. data with
zero mean. How to centre data in the feature space is an issue which we will deal

238 Nonlinear principal component analysis

with later, but for now assume that data in the feature space have been centred, i.e.

1

n

n∑
i=1

φ(xi) = 0, (10.25)

where xi (i = 1, . . . , n) is the i th observation in the input space. The covariance
matrix is

C = 1

n

n∑
i=1

φ(xi)φ
T(xi). (10.26)

The PCA method involves finding the eigenvalues λ and eigenvectors v
satisfying

Cv = λv. (10.27)

The eigenvectors can be expressed as a linear combination of the data points in the
feature space, i.e.

v =
n∑

j=1

α jφ(x j). (10.28)

Substituting (10.26) and (10.28) into (10.27), we get

n∑
i=1

n∑
j=1

α jφ(xi)K (xi , x j) = nλ

n∑
j=1

α jφ(x j), (10.29)

where K (xi , x j) is an inner-product kernel defined by

K (xi , x j) = φT(xi)φ(x j). (10.30)

As with other kernel methods, we aim to eliminate φ (which can be prohibitively
costly to compute) by clever use of the kernel trick. Upon multiplying both sides
of the equation by φT(xk), we obtain

n∑
i=1

n∑
j=1

α j K (xk, xi)K (xi , x j) = nλ

n∑
j=1

α j K (xk, x j), k = 1, . . . , n. (10.31)

In matrix notation, this is simply

K2α = nλKα, (10.32)

where K is the n × n kernel matrix, with K (xi , x j) as its i j th element, and α
is an n × 1 vector, with α j as its j th element. All the solutions of interest for
this eigenvalue problem are also found by solving the simpler eigenvalue problem
(Schölkopf and Smola, 2002)

Kα = nλα. (10.33)

10.4 Kernel principal component analysis 239

This eigenvalue equation can be rewritten in the more familiar form

Kα = λ′α, (10.34)

where λ′ = nλ. Let λ1 ≥ λ2 ≥ . . . ≥ λn denote the solution for λ′ in this eigen-
value problem. Suppose λp is the smallest non-zero eigenvalue. The eigenvectors
v(1), . . . , v(p) are all normalized to unit length, i.e.

v(k)Tv(k) = 1, k = 1, . . . , p. (10.35)

This normalization of the eigenvectors translates into a normalization condition for
α(k) (k = 1, . . . , p) upon invoking (10.28), (10.30) and (10.34):

1 =
n∑

i=1

n∑
j=1

α
(k)
i α

(k)
j φ(xi)

Tφ(xi) =
n∑

i=1

n∑
j=1

α
(k)
i α

(k)
j Ki j

= α(k)T Kα(k) = λk α
(k)Tα(k). (10.36)

Let us return to the problem of centering data in the feature space. In the kernel
evaluations, we actually need to work with

K̃ (xi , x j) = (φ(xi) − φ̄)T(φ(x j) − φ̄), (10.37)

where the mean

φ̄ = 1

n

n∑
l=1

φ(xl). (10.38)

Hence

K̃ (xi , x j) =
(
φ(xi) − 1

n

n∑
l=1

φ(xl)

)T (
φ(x j) − 1

n

n∑
l=1

φ(xl)

)

=φ(xi)
Tφ(x j) − φ(xi)

T 1

n

n∑
l=1

φ(xl) − φ(x j)
T 1

n

n∑
l=1

φ(xl)

+ 1

n2

n∑
l=1

n∑
l ′=1

φ(xl)
Tφ(xl ′), (10.39)

yielding

K̃ (xi , x j) = K (xi , x j) − 1

n

n∑
l=1

K (xi , xl) − 1

n

n∑
l=1

K (x j , xl)

+ 1

n2

n∑
l=1

n∑
l ′=1

K (xl, xl ′). (10.40)

The eigenvalue problem is now solved with K̃ replacing K in (10.34).

240 Nonlinear principal component analysis

For any test point x, with a corresponding point φ(x) in the feature space, we
project φ(x)− φ̄ onto the eigenvector v(k) to obtain the kth principal component or
feature:

v(k)T(φ(x) − φ̄) =
n∑

j=1

α
(k)
j (φ(x j) − φ̄)T(φ(x) − φ̄)

=
n∑

j=1

α
(k)
j K̃ (x j , x), k = 1, . . . , p. (10.41)

In summary, the basic steps of kernel PCA are as follows: first, having chosen
a kernel function, we compute the kernel matrix K̃ (xi , x j) where xi and x j are
among the data points in the input space. Next, the eigenvalue problem is solved
with K̃ in (10.34). The eigenvector expansion coefficients α(k) are then normal-
ized by (10.36). Finally, the PCs are calculated from (10.41). As the kernel has
an adjustable parameter (e.g. the standard deviation σ controlling the shape of the
Gaussian in the case of the Gaussian kernel), one searches over various values of
the kernel parameter for the optimal one – the one explaining the most variance in
the feature space, as determined by the magnitude of the leading PC(s) in (10.41).

Suppose n, the number of observations, exceeds m, the dimension of the input
space. With PCA, no more than m PCs can be extracted. In contrast, with kernel
PCA, where PCA is performed in the feature space of dimension M (usually much
larger than m and n), up to n PCs or features can be extracted, i.e. the number
of features that can be extracted by kernel PCA is determined by the number of
observations. The NLPCA method by auto-associative neural networks involves
nonlinear optimization, hence local minima problems, whereas kernel PCA, which
only performs linear PCA in the feature space, does not involve nonlinear opti-
mization, hence no local minima problem. On the other hand, with NLPCA, the
inverse mapping from the nonlinear PCs to the original data space (input space) is
entirely straightforward, while for kernel PCA, there is no obvious inverse mapping
from the feature space to the input space. This is the pre-image problem common
to kernel methods, and only an approximate solution can be found, as discussed in
Section 7.6.

10.5 Nonlinear complex PCA

Complex principal component analysis (CPCA) is PCA applied to complex vari-
ables. In the first type of application, a 2-dimensional vector field such as the wind
(u, v) can be analyzed by applying CPCA to w = u + iv (Section 2.3). In the
second type of application, a real time-varying field can be complexified by the

10.5 Nonlinear complex PCA 241

Hilbert transform and analyzed by CPCA, often called Hilbert PCA (Section 3.7)
to distinguish from the first type of application.

Earlier in this chapter, we have examined the auto-associative multi-layer per-
ceptron NN approach of Kramer (1991) for performing nonlinear PCA. Here we
will discuss how the same approach can be applied to complex variables, giving
rise to nonlinear complex PCA (NLCPCA).

In the real domain, a common nonlinear activation function is the hyperbolic
tangent function tanh(x), bounded between −1 and +1 and analytic everywhere.
For a complex activation function to be bounded and analytic everywhere, it has
to be a constant function (Clarke, 1990), as Liouville’s theorem states that entire
functions (i.e. functions that are analytic on the whole complex plane) which are
bounded are always constants. The function tanh(z) in the complex domain has an
infinite number of singularities located at (1

2 + l)π i, l ∈ N and i2 = −1. Using
functions like tanh(z) (without any constraint) leads to non-convergent solutions
(Nitta, 1997).

Traditionally, the complex activation functions used focused mainly on over-
coming the unbounded nature of the analytic functions in the complex domain.
Some complex activation functions basically scaled the magnitude (amplitude) of
the complex signals but preserved their arguments (phases) (Georgiou and Kout-
sougeras, 1992; Hirose, 1992), hence they are less effective in learning nonlinear
variations in the argument. A more traditional approach has been to use a ‘split’
complex nonlinear activation function (Nitta, 1997), where the real and imag-
inary components are used as separate real inputs for the activation function.
This approach avoids the unbounded nature of the nonlinear complex function but
results in a nowhere analytic complex function, as the Cauchy-Riemann equations
are not satisfied (Saff and Snider, 2003).

Recently, a set of elementary activation functions has been proposed by Kim and
Adali (2002) with the property of being almost everywhere (a.e.) bounded and ana-
lytic in the complex domain. The complex hyperbolic tangent, tanh(z), is among
them, provided that the complex optimization is performed with certain constraints
on z. If the magnitude of z is within a circle of radius π/2, then the singularities
do not pose any problem, and the boundedness property is also satisfied. In reality,
the dot product of the input and weight vectors may be ≥ π/2. Thus a restriction
on the magnitudes of the input and weights is needed.

The NLCPCA model proposed by Rattan and Hsieh (2004, 2005) uses basically
the same architecture (Fig. 10.2(a)) as the NLPCA model by auto-associative NN
(with three layers of hidden neurons where the middle layer is the bottleneck layer),
except that all the input variables, and the weight and offset parameters are now
complex-valued. The magnitudes of input data are scaled by dividing each element
in the r th row of the m × n data matrix Z (with m the number of variables and

242 Nonlinear principal component analysis

n the number of observations) by the maximum magnitude of an element in that
row, so each element of Z has magnitude ≤ 1. The weights at the first hidden
layer are randomly initialized with small magnitude, thus limiting the magnitude
of the dot product between the input vector and weight vector to be about 0.1, and
a weight penalty term is added to the objective function J to restrict the weights
to small magnitude during optimization. The weights at subsequent layers are also
randomly initialized with small magnitude and penalized during optimization by
the objective function

J = 〈‖z − z′‖2〉 + P
∑

j

|w j |2, (10.42)

where z is the model output, z′, the target data, w j , the individual weights (includ-
ing the offset parameters) from hidden layers 1, 2 and 3, and P , the weight penalty
parameter.

Since the objective function J is a real function with complex weights, optimiza-
tion of J is equivalent to finding the vanishing gradient of J with respect to the real
and the imaginary parts of the weights (Rattan and Hsieh, 2005). All the weights
(and offsets) in the model are combined into a single weight vector w. Hence the
gradient of the objective function with respect to the complex weights can be split
into (Georgiou and Koutsougeras, 1992):

∂ J

∂w
= ∂ J

∂wR
+ i

∂ J

∂wI
, (10.43)

where wR and wI are the real and the imaginary components of the weight vector.
The two components can be put into a single real parameter vector during nonlinear
optimization using an algorithm for real variables.

The tropical Pacific wind anomalies (expressed as w = u + iv) have been ana-
lyzed by NLCPCA in Rattan and Hsieh (2004), where a comparison between the
first mode of CPCA and that of NLCPCA revealed a large difference in the spatial
anomaly patterns during strong El Niño episodes but a much smaller difference dur-
ing strong La Niña episodes, indicating that stronger nonlinearity was manifested
in the El Niño side than the La Niña side of the oscillation.

The second type of NLCPCA application is for nonlinear Hilbert PCA. In Rat-
tan et al. (2005), evolution of the offshore bottom topography at three sandy
beaches was studied. All three sites were characterized by sandbars with inter-
annual quasi-periodic offshore propagation. A bar cycle comprises bar birth in
the inner nearshore, followed by up to several years of net offshore migra-
tion and final disappearance in the outer nearshore zone. The CPCA method
was applied to the complexified topographic anomaly data, and the five lead-
ing complex PCs were retained as inputs for the NLCPCA NN model. The

10.5 Nonlinear complex PCA 243

0 250 500 750

0

3

6

9

12

15

18

21

−π

−0.75π

−0.5π

−0.25π

0

0.25π

0.5π

0.75π

NLCPCA
To

po
gr

ap
hi

c
an

om
al

ie
s

(m
)

Offshore distance (m)

0 250 500 750

0

3

6

9

12

15

18

21

−π

−0.75π

−0.5π

−0.25π

0

0.25π

0.5π

0.75π

CPCA

Offshore distance (m)

(a) (b)

Fig. 10.14 Sequence of topographic anomalies as a function of the offshore dis-
tance at Egmond in π/4-wide θ classes centered around θ = −π to θ = 0.75π
based on (a) NLCPCA mode 1 and (b) CPCA mode 1. The results for each phase
class have been vertically shifted for better visualization. The phase generally
decreases with time, so the anomalies gradually propagate offshore. (Modified
from Rattan et al. (2005) with permission of the European Geosciences Union.)

first NLCPCA mode and the first CPCA mode of the topographic anomalies at
Egmond aan Zee (The Netherlands) were compared. The topographic anoma-
lies reconstructed from the nonlinear and linear mode were divided in eight θ

classes, each π/4 in width, where θ is the phase of the (nonlinear or linear)
complex PC. Figure 10.14 shows how the shape of the topographic anomalies
changes with phase. The CPCA shows sinusoidal-shaped topographic anoma-
lies propagating offshore, while the NLCPCA shows non-sinusoidal anomalies –
relatively steep sandbars and shallow, broad troughs. The percentage variance
explained by the first NLCPCA mode was 81.4% versus 66.4% by the first
CPCA mode. Thus, using the NLCPCA as nonlinear Hilbert PCA successfully
captures the non-sinusoidal wave properties which were missed by the linear
method.

244 Nonlinear principal component analysis

10.6 Nonlinear singular spectrum analysis

In Sections 3.4 and 3.5, we have learned that by incorporating time lagged versions
of the dataset, the PCA method can be extended to the singular spectrum analysis
(SSA) method. We have also learned earlier in this chapter, that the leading PCs
of a dataset can be nonlinearly combined by an auto-associative NN to produce
nonlinear PCA. We will see in this section that the leading PCs from an SSA can
also be nonlinearly combined to produce nonlinear SSA (NLSSA).

The NLSSA procedure proposed in Hsieh and Wu (2002) is as follows: first
SSA is applied to the dataset as a prefilter, and after discarding the higher
modes, we retain the leading SSA PCs, x(t) = [x1, . . . , xl], where each variable
xi , (i = 1, . . . , l), is a time series of length n. The variables x are the inputs to
the NLPCA(cir) model, i.e. the auto-associative NN model for nonlinear principal
component analysis with a circular node at the bottleneck (Section 10.1.4). The
NLPCA(cir), with its ability to extract closed curve solutions due to its circular
bottleneck node, is ideal for extracting periodic or wave modes in the data. In SSA,
it is common to encounter periodic modes, each of which has to be split into a
pair of SSA modes (Sections 3.4 and 3.5), as the underlying PCA technique is not
capable of modelling a periodic mode (a closed curve) by a single mode (a straight
line). Thus, two (or more) SSA modes can easily be combined by NLPCA(cir)
into one NLSSA mode, taking the shape of a closed curve. When implementing
NLPCA(cir), Hsieh (2001b) found that there were two possible configurations, a
restricted configuration and a general configuration (see Section 10.1.4). Here we
will use the general configuration (which if needed is also able to model an open
curve). After the first NLSSA mode has been extracted, it can be subtracted from x
to get the residual, which can be input again into the same NN to extract the second
NLSSA mode, and so forth for the higher modes.

To illustrate the difference between the NLSSA and the SSA, Hsieh (2004)
considered a test problem with a non-sinusoidal wave of the form

f (t) =
⎧⎨
⎩

3 for t = 1, ..., 7
−1 for t = 8, ..., 28

periodic thereafter.
(10.44)

This is a square wave with the peak stretched to be 3 times as tall but only 1/3 as
broad as the trough, and has a period of 28. Gaussian noise with twice the stan-
dard deviation as this signal was added, and the time series was normalized to unit
standard deviation (Fig. 10.15). This time series y has 600 data points.

The SSA method with window L = 50 was applied to this y time series. The
first eight SSA modes individually accounted for 6.3, 5.6, 4.6, 4.3, 3.3, 3.3, 3.2, and
3.1 % of the variance of the augmented data. The leading pair of modes displays

10.6 Nonlinear singular spectrum analysis 245

0 100 200 300 400 500 600

−2

0

2

4

6

8

10

12

Time

y

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10.15 The difference between NLSSA and SSA. (a) The noisy time series y
containing a stretched square wave signal. (b) The stretched square wave signal,
which we will try to extract from the noisy time series. Curves (c), (d) and (e) are
the reconstructed components (RC) from SSA leading modes, using 1, 3 and 8
modes, respectively. Curve (f) is the NLSSA mode 1 RC (NLRC1). The dashed
lines show the means of the various curves, which have been vertically shifted for
better visualization. (Reproduced from Hsieh (2004) with permission from the
American Geophyscial Union.)

oscillations of period 28, while the next pair manifests oscillations at a period of
14, i.e. the first harmonic (Hsieh, 2004). The first eight SSA PC time series xi

(i = 1, . . . , 8) were served as inputs to the NLPCA(cir) network (Fig. 10.2(b)),
where the network with m = 5 was selected (m being the number of neurons in the
first hidden layer).

246 Nonlinear principal component analysis

The NLSSA reconstructed component 1 (NLRC1) is the approximation of the
original time series y by the NLSSA mode 1. The neural network output x′ are
the NLSSA mode 1 approximation for the eight leading PCs. Multiplying these
approximated PCs by their corresponding SSA eigenvectors, and summing over
the eight modes allows reconstruction of the time series from the NLSSA mode
1. As each eigenvector contains the loading over a range of lags, each value in the
reconstructed time series at time t j also involves averaging over the contributions at
t j from the various lags (similarly to computing the RC in Section 3.4). Thus, with a
window L = 50, the NLRC1 at any time involves averaging over 50 values, (except
towards the end of the record where one has fewer than 50 values to average).

In Fig. 10.15, NLRC1 (curve (f)) from NLSSA is to be compared with the recon-
structed component (RC) from SSA mode 1 (RC1) (curve (c)). The non-sinusoidal
nature of the oscillations is not revealed by the RC1, but is clearly manifested in
the NLRC1, where each strong narrow peak is followed by a weak broad trough,
similar to the original stretched square wave. Also, the wave amplitude is more
steady in the NLRC1 than in the RC1. Using contributions from the first two SSA
modes, RC1-2 (not shown) is rather similar to RC1 in appearance, except for a
larger amplitude.

In Fig. 10.15, curves (d) and (e) show the RC from SSA using the first
three modes, and the first eight modes, respectively. These curves, referred to as
RC1-3 and RC1-8, respectively, show increasing noise as more modes are used.
Among the RCs, with respect to the stretched square wave time series (curve (b)),
RC1-3 attains the most favourable correlation (0.849) and root mean squared error
(RMSE) (0.245), but remains behind the NLRC1, with correlation (0.875) and
RMSE (0.225).

The stretched square wave signal accounted for only 22.6% of the variance in the
noisy data. For comparison, NLRC1 accounted for 17.9%, RC1, 9.4%, and RC1-2,
14.1% of the variance. With more modes, the RCs account for increasingly more
variance, but beyond RC1-3, the increased variance is only from fitting to the noise
in the data.

When classical Fourier spectral analysis was performed, the most energetic
bands were the sine and cosine at a period of 14, the two together accounting for
7.0% of the variance. In this case, the strong scattering of energy to higher har-
monics by the Fourier technique has actually assigned 38% more energy to the first
harmonic (at period 14) than to the fundamental period of 28. Next, the data record
was slightly shortened from 600 to 588 points, so that the data record is exactly 21
times the fundamental period of our known signal – this is to avoid violating the
periodicity assumption of Fourier analysis and the resulting spurious energy scat-
ter into higher spectral bands. The most energetic Fourier bands were the sine and
cosine at the fundamental period of 28, the two together accounting for 9.8% of the

10.6 Nonlinear singular spectrum analysis 247

variance, compared with 14.1% of the variance accounted for by the first two SSA
modes. Thus even with great care, the Fourier method scatters the spectral energy
considerably more than the SSA method.

Let us illustrate the use of NLSSA on a multivariate dataset by applying the
method to study the tropical Pacific climate variability (Hsieh and Wu, 2002).
We need to choose a lag window wide enough to resolve the ENSO (El Niño-
Southern Oscillation) variability. With a lag interval of 3 months, the original plus
24 lagged copies of the sea surface temperature anomaly (SSTA) data in the tropi-
cal Pacific were chosen to form the augmented SSTA dataset – with a lag window
of (1 + 24 × 3 =) 73 months. The first eight SSA modes respectively explain
12.4%, 11.7%, 7.1%, 6.7%, 5.4%, 4.4%, 3.5% and 2.8% of the total variance of
the augmented dataset. In Fig. 3.9, we have seen that the first two modes have
space–time eigenvectors (i.e. loading patterns) displaying an oscillatory time scale
of about 48 months, comparable to the ENSO time scale, with the mode 1 anomaly
pattern occurring about 12 months before a very similar mode 2 pattern, i.e. the
two patterns are in quadrature. The PC time series also show similar time scales
for modes 1 and 2. Modes 3 and 5 show longer time scale fluctuations, while
modes 4 and 6 show shorter time scale fluctuations – around the 30 month time
scale.

With the eight PCs as input x1, . . . , x8 to the NLPCA(cir) network, the resulting
NLSSA mode 1 is a closed curve in the 8-D PC space, and is plotted in the x1-x2-x3

space in Fig. 10.16. The NLSSA mode 1 is basically a large loop aligned parallel
to the x1-x2 plane, thereby combining the first two SSA modes. The solution also
shows some modest variations in the x3 direction. This NLSSA mode 1 explains
24.0% of the total variance of the augmented dataset, essentially that explained by
the first two SSA modes together. The linear PCA solution is shown as a straight
line in the figure, which is of course simply the SSA mode 1. Of interest is r , the
ratio of the mean squared error (MSE) of the nonlinear solution to the MSE of
the linear solution. Here r = 0.71, reflecting the strong departure of the nonlinear
solution from the linear solution.

In the linear case of PCA or SSA, as the PC varies, the loading pattern is
unchanged except for scaling by the PC. In the nonlinear case, as the NLPC θ

varies, the loading pattern changes as it does not generally lie along a fixed eigen-
vector. The NLSSA mode 1 space-time loading pattern for a given value of θ , can
be obtained by mapping from θ to the outputs x′, which are the eight PC values
corresponding to the given θ . Multiplying each PC value by its corresponding SSA
eigenvector and summing over the eight modes, we obtain the NLSSA mode 1
pattern corresponding to the given θ .

The NLSSA mode 1 loading pattens for various θ values are shown in Fig. 10.17.
As the NLPC θ was found generally to increase with time, the patterns in Fig. 10.17

248 Nonlinear principal component analysis

−100

−50

0

50

100

−100

−50

0

50

100
−100

−50

0

50

100

x1

x2

x 3

Fig. 10.16 The NLSSA mode 1 for the tropical Pacific SSTA. The PCs of SSA
modes 1 to 8 were used as inputs x1, . . . , x8 to the NLPCA(cir) network, with the
resulting NLSSA mode 1 shown as (densely overlapping) crosses in the x1-x2-x3
3-D space. The projections of this mode onto the x1-x2, x1-x3 and x2-x3 planes
are denoted by the (densely overlapping) circles, and the projected data by dots.
For comparison, the linear SSA mode 1 is shown by the dashed line in the 3-D
space, and by the projected solid lines on the 2-D planes. (Reproduced from Hsieh
and Wu (2002) with permission of the American Geophysical Union.)

generally evolve from (a) to (f) with time. Comparing the patterns in this figure
with the patterns from the first two SSA modes in Fig. 3.9, we find three notable
differences.

(1) The presence of warm anomalies for 24 months followed by cool anomalies for 24
months in the first two SSA modes, is replaced by warm anomalies for 18 months
followed by cool anomalies for about 33 months in the NLSSA mode 1. Although the
cool anomalies can be quite mild for long periods, they can develop into full La Niña
cool episodes (Fig. 10.17(c)).

(2) The El Niño warm episodes are strongest near the eastern boundary, while the La
Niña episodes are strongest near the central equatorial Pacific in the NLSSA mode 1,
an asymmetry not found in the individual SSA modes.

(3) The magnitude of the peak positive anomalies is significantly larger than that of the
peak negative anomalies in the NLSSA mode 1 (Fig. 10.17(c)), again an asymmetry
not found in the individual SSA modes.

10.6 Nonlinear singular spectrum analysis 249

0 0.2
0.4

0.6 0.8
1.0 1.2

0.00.0 0.2

0.0
0.2

0.2

0.4

0.4
0.6

0.4

0.0

0.0

0.2

0.2

0.2

0.6 0.8
1.0

0.4

0.4

0.0

0.0

0.0

0.0

0.0

0.2

0.2

0.2

0.6
0.4

0.0

0.0

0.2

0.2

0.2

0.2

0.2

0.6

0.4

0.0

0.0

0.0

0.2

–0.6

–0.4

–0.4

0.4

0.4

0.4

1.21.00.8

0.8

0.6

0.6

–0.2
0.2

0.2
0.2

0.4

0.4

0.4

0.0
–0.2

0.0

0.0

–0.2

0.2

0.2

–0.4

–0.4

0.4
0.6

0.8
1.0

0.6
0.4

–0.4

–0.4

–0.6

–6

–12

–18

–24

–30

–36

–42

–48

–54

–60

–66

–72
150E 180 150W

(a)

120W 90W

0

–6

–12

–18

–24

–30

–36

–42

–48

–54

–60

–66

–72
150E 180 150W

(b)

120W 90W

0

–6

–12

–18

–24

–30

–36

–42

–48

–54

–60

–66

–72
150E 180 150W

(c)

120W 90W

L
ag

 ti
m

e
(m

on
th

)

0

–6

–12

–18

–24

–30

–36

–42

–48

–54

–60

–66

–72
150E 180 150W

(d)

120W 90W

0

–6

–12

–18

–24

–30

–36

–42

–48

–54

–60

–66

–72
150E 180 150W

(e)

120W 90W

0

–6

–12

–18

–24

–30

–36

–42

–48

–54

–60

–66

–72
150E 180 150W

Longitude Longitude Longitude

(f)

120W 90W

L
ag

 ti
m

e
(m

on
th

)

Fig. 10.17 The SSTA NLSSA mode 1 space-time loading patterns for (a) θ = 0◦,
(b) θ = 60◦, (c) θ = 120◦, (d) θ = 180◦, (e) θ = 240◦ and (f) θ = 300◦. The
contour plots display the SSTA anomalies along the equator as a function of the
lag time. Contour interval is 0.2 ◦C. (Reproduced from Hsieh and Wu (2002) with
permission of the American Geophysical Union.)

All three differences indicate that the NLSSA mode 1 is much closer to the
observed ENSO properties than the first two SSA modes are.

Next, we try to reconstruct the SSTA field from the NLSSA mode 1 for the
whole record. The PC at a given time gives not only the SSTA field at that time,
but a total of 25 SSTA fields (spread 3 months apart) covering the 73 months in
the lag window. Thus (except for the final 72 months of the record, where one
has fewer points to perform averaging), the SSTA field at any time is taken to be

250 Nonlinear principal component analysis

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

–0.4

–0.4

0.4

0.6

0.6

–0.2

–0.2

–0.4

–0.4

0.4

0.8

–0.2

0.2

0.2

0.2

0.2

0.2
0.2

0.2

0.2

0.2

0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.6
0.8

–0.4

–0.4

–0.4

–0.4

–0.6

0.2

0.2
0.0

0.0

0.0

0.00.0

0.0

0.0 0.0

0.6
0.8

–0.2

–0.2

–0.2

–0.2

–0.2

0.20.0

0.6 0.8
1.0

0.4

0.2

0.2

0.2

0.6
0.4

–0.4

–0.4

0.4

0.4

150E 180 150W 120W 90W
Longitude

T
im

e
(y

ea
r)

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

150E 180 150W 120W 90W
Longitude

Fig. 10.18 The reconstructed SSTA of the NLSSA mode 1, from January 1971
to December 2000. The contour plots display the SSTA along the equator as a
function of time, with a contour interval of 0.2 ◦C. (Reproduced from Hsieh and
Wu (2002) with permission of the American Geophysical Union.)

the average of the 25 SSTA fields produced by the PC of the current month and
the preceding 72 months. The NLRC1 during 1971–2000 is shown in Fig. 10.18,
which compares well with the observations, except for its weaker amplitude.

To extract the NLSSA mode 2, the NLSSA mode 1 x′ was removed from the data
x, and the residual (x−x′) was input into the same NLPCA(cir) network (Hsieh and

Exercises 251

Wu, 2002). Similarly, NLSSA was applied to study the tropical Pacific monthly
sea level pressure anomaly (SLPA) data during 1950–2000, with the first mode
revealing the Southern Oscillation (Hsieh, 2004). The NLSSA technique has also
been used to study the stratospheric equatorial winds for the QBO phenomenon
(Hsieh and Hamilton, 2003).

In summary, the NLSSA mode has been developed by nonlinearly combining
the leading SSA modes. In general, NLSSA has several advantages over SSA.

(1) The PCs from different SSA modes are linearly uncorrelated; however, they may have
relationships that can be detected by the NLSSA.

(2) Although the SSA modes are not restricted to sinusoidal oscillations in time like
the Fourier spectral components, in practice they are inefficient in modelling non-
sinusoidal periodic signals, scattering the signal energy into many SSA modes, similar
to the way Fourier spectral analysis scatters the energy of a non-sinusoidal wave
to its higher harmonics. The NLSSA recombines the SSA modes to extract the
non-sinusoidal signal, alleviating spurious transfer of energy to higher frequencies.

(3) As different SSA modes are associated with different time scales (e.g. time scales of
the ENSO, QBO and decadal oscillations), the relations found by the NLSSA reveal
the time scales between which there are interactions, thereby disclosing potential
relations between seemingly separate phenomena.

Exercises

(10.1) Let x1 be 60 random numbers uniformly distributed in (−1.5π, 1.5π), and
let x2 = cos(x1). Add Gaussian noise with standard deviation of 0.1 to both
x1 and x2. Compute nonlinear principal component analysis (NLPCA) on
this dataset. If you are using an auto-associate MLP neural network, vary
the number of hidden neurons.

(10.2) Consider a rectangle with one side twice as long as the other in the (x1, x2)

plane. Select 60 points on the boundary of this rectangle and add Gaussian
noise to these points. Use the closed curve NLPCA (Section 10.1.4) to
retrieve the signal (i.e. the rectangle) from this dataset. Vary the number of
hidden neurons and use the information criterion to select the best solution.
Vary the amount of Gaussian noise.

(10.3) Fit a 1-dimensional self-organizing map (SOM) to y = sin(x) (0 ≤ x ≤
2π). Use 50 data points for x and add Gaussian noise with standard devia-
tion of 0.3 to both x and y. Vary the number of nodes from 5 to 40. From
the quantization error and the topographic error, determine the best choice
for the number of nodes.

11

Nonlinear canonical correlation analysis

In Section 2.4 the canonical correlation analysis (CCA) was presented as the gener-
alization of correlation to the multivariate case. CCA is widely used but is limited
by being a linear model. A number of different approaches has been proposed
to generalize CCA nonlinearly (Lai and Fyfe, 1999, 2000; Hsieh, 2000; Suykens
et al., 2002; Hardoon et al., 2004; Shawe-Taylor and Cristianini, 2004).

To perform nonlinear CCA (NLCCA), the simplest way is to use three multi-
layer perceptron (MLP) NNs, where the linear mappings in the CCA are replaced
by nonlinear mapping functions via 1-hidden-layer NNs. Alternatively, with the
kernel approach, CCA can be performed in the feature space to yield a nonlinear
CCA method. Nonlinear principal predictor analysis, a somewhat related method
for nonlinearly linking predictors to predictands, has also been developed using
MLP NNs (Cannon, 2006).

In Section 11.1, the MLP approach to NLCCA is formulated, then illustrated
using the tropical Pacific climate variability and its connection to the mid-latitude
climate variability. In Section 11.2, NLCCA is made more robust to outliers.

11.1 MLP-based NLCCA model

Consider two vector variables x and y, each with n observations. CCA looks for
linear combinations

u = fTx, and v = gTy, (11.1)

where the canonical variates u and v have maximum correlation, i.e. the weight
vectors f and g are chosen such that cor(u, v), the Pearson correlation coefficient
between u and v, is maximized (see Section 2.4.1). For NLCCA, the linear maps f
and g, and their inverse maps, are replaced below by nonlinear mapping functions
using MLP NNs (Hsieh, 2000, 2001a).

252

11.1 MLP-based NLCCA model 253

x(a) (b)

(c)

x′

y′y
h(y)

h(x) h(u)

h(v)

u u

v v

Fig. 11.1 The three MLP NNs used to perform NLCCA. (a) The double-barrelled
NN maps from the inputs x and y to the canonical variates u and v. The objec-
tive function J forces the correlation between u and v to be maximized. (b)
The NN maps from u to the output layer x′. The objective function J1 basi-
cally minimizes the MSE of x′ relative to x. (c) The NN maps from v to the
output layer y′. The objective function J2 basically minimizes the MSE of y′ rel-
ative to y. (Reproduced from Hsieh (2001a) with permission of the American
Meteorological Society.)

The mappings from x to u and y to v are represented by the double-barrelled NN
in Fig. 11.1(a). By minimizing the objective function J = −cor(u, v), one finds the
parameters which maximize the correlation cor(u, v). After the forward mapping
with the double-barrelled NN has been solved, inverse mappings from the canon-
ical variates u and v to the original variables, as represented by the two standard
MLP NNs in Fig. 11.1(b) and (c), are to be solved, where the mean squared error
(MSE) of their outputs x′ and y′ are minimized with respect to x and y, respectively.

In Fig. 11.1, the inputs x and y are mapped to the neurons in the hidden layer:

h(x)
k = tanh((W(x)x + b(x))k), h(y)

n = tanh((W(y)y + b(y))n), (11.2)

where W(x) and W(y) are weight matrices, and b(x) and b(y), the offset or bias
parameter vectors. The dimensions of x, y, h(x) and h(y) are l1, m1, l2 and m2

respectively.
The canonical variate neurons u and v are calculated from a linear combination

of the hidden neurons h(x) and h(y), respectively, with

u = w(x) · h(x) + b
(x)

, v = w(y) · h(y) + b
(y)

. (11.3)

These mappings are standard MLP NNs, and are capable of representing any con-
tinuous functions mapping from x to u and from y to v to any given accuracy,
provided large enough l2 and m2 are used.

To maximize cor(u, v), the objective function J = −cor(u, v) is minimized by

finding the optimal values of W(x), W(y), b(x), b(y), w(x), w(y), b
(x)

and b
(y)

. The
constraints 〈u〉 = 0 = 〈v〉, and 〈u2〉 = 1 = 〈v2〉 are also used, where 〈. . .〉 denotes

254 Nonlinear canonical correlation analysis

calculating the average over all the data points. The constraints are approximately
satisfied by modifying the objective function to

J = −cor(u, v) + 〈u〉2 + 〈v〉2 + (〈u2〉1/2 − 1)2 + (〈v2〉1/2 − 1)2. (11.4)

A number of runs minimizing J starting from different random initial parameters
is needed to deal with the presence of local minima in the objective function. The
correlation is calculated over independent validation data and over training data.
Runs where the correlation over validation data is worse than over training data
are rejected to avoid overfitting, and among those remaining, the run attaining the
highest cor(u, v) is selected as the solution.

We need to be able to map inversely from the canonical variates u and v back to
the original data space. In Fig. 11.1(b), the NN (a standard MLP) maps from u to
x′ in two steps:

h(u)
k = tanh((w(u)u + b(u))k), and x′ = W(u)h(u) + b

(u)
. (11.5)

The objective function J1 = 〈‖x′ −x‖2〉 is minimized by finding the optimal values

of w(u), b(u), W(u) and b
(u)

. Again multiple runs are needed due to local minima,
and validation data are used to reject overfitted runs. The MSE between the NN
output x′ and the original data x is thus minimized.

Similarly, the NN in Fig. 11.1(c) maps from v to y′:

h(v)
n = tanh((w(v)v + b(v))n), and y′ = W(v)h(v) + b

(v)
, (11.6)

with the objective function J2 = 〈‖y′ − y‖2〉 minimized.
The total number of parameters used by the NLCCA is 2(l1l2 + m1m2) + 4(l2 +

m2) + l1 + m1 + 2, though the number of effectively free parameters is four fewer
due to the constraints on 〈u〉, 〈v〉, 〈u2〉 and 〈v2〉. After the first NLCCA mode has
been retrieved from the data, the method can be applied again to the residual (i.e.
x − x′ and y − y′) to extract the second mode, and so forth.

That the CCA is indeed a linear version of this NLCCA can be readily seen by
replacing the hyperbolic tangent activation functions in (11.2), (11.5) and (11.6)
with the identity function, thereby removing the nonlinear modelling capability of
the NLCCA. Then the forward maps to u and v involve only a linear combination
of the original variables x and y, as in the CCA.

With three NNs in NLCCA, overfitting can occur in any of the three networks.
With noisy data, the three objective functions are modified to:

11.1 MLP-based NLCCA model 255

J = −cor(u, v) + 〈u〉2 + 〈v〉2 + (〈u2〉1/2 − 1)2 + (〈v2〉1/2 − 1)2

+ P

⎡
⎣∑

ki

(W (x)
ki)2 +

∑
nj

(W (y)

nj)2

⎤
⎦ , (11.7)

J1 = 〈‖x′ − x‖2〉 + P1

∑
k

(w
(u)
k)2, (11.8)

J2 = 〈‖y′ − y‖2〉 + P2

∑
n

(w(v)
n)2, (11.9)

where P , P1 and P2 are non-negative weight penalty parameters. Since the nonlin-
earity of a network is controlled by the weights in the hyperbolic tangent activation
function, only those weights are penalized.

In prediction problems where one wants to obtain the values of a multivariate
predictand from a multivariate predictor, i.e. ỹ = f (x), values of the canonical
variate ṽ must be predicted from values of the canonical variate u. The proce-
dure is as follows: first the NLCCA model is trained from some training data and
cor(u, v) is obtained, then from the predictor data x (which can either be from
the training dataset or new data), corresponding u values are computed by the
model. For canonical variates normalized to unit variance and zero mean, the linear
least-squares regression solution for estimating ṽ from u is given by

ṽ = u cor(u, v), (11.10)

(von Storch and Zwiers, 1999, p. 325). From ṽ, one obtains a value for ỹ via the
inverse mapping NN.

To illustrate NLCCA, consider the following test problem (Hsieh, 2000): let

X1 = t − 0.3t2, X2 = t + 0.3t3, X3 = t2, (11.11)

Y1 = t̃3, Y2 = −t̃ + 0.3t̃3, Y3 = t̃ + 0.3t̃2, (11.12)

where t and t̃ are uniformly distributed random numbers in [−1, 1]. Also let

X ′
1 = −s − 0.3s2, X ′

2 = s − 0.3s3, X ′
3 = −s4, (11.13)

Y ′
1 = sech(4s), Y ′

2 = s + 0.3s3, Y ′
3 = s − 0.3s2, (11.14)

where s is a uniformly distributed random number in [−1, 1]. The shapes described
by the X and X′ vector functions are displayed in Fig. 11.2, and those by Y and Y′

in Fig. 11.3. To lowest order, (11.11) for X describes a quadratic curve, and (11.13)
for X′, a quartic. Similarly, to lowest order, Y is a cubic, and Y′ a hyperbolic secant.
The signal in the test data was produced by adding the second mode (X′, Y′) to the
first mode (X, Y), with the variance of the second mode being 1/3 that of the first
mode. A small amount of Gaussian random noise, with standard deviation equal to

256 Nonlinear canonical correlation analysis

–3
–3

–2

–1

0

1

2

3

–2 –2

2
0

–2

0

2
–2

0

2

4

(d)(c)

(b)(a)

–1 0 1 2 3
x2

–3 –2 –1 0 1 2
x1

–3 –2 –1 0 1 2
x1

x2

x 3

x1

x 3

–3

–2

–1

0

1

2

3

x 2

–3

–2

–1

0

1

2

3

x 3

Fig. 11.2 The curve made up of small circles shows the first theoretical mode X
generated from (11.11), and the solid curve, the second mode X′, from (11.13).
(a) A projection in the x1-x2 plane. (b) A projection in the x1-x3 plane. (c) A
projection in the x2-x3 plane. (d) A 3-dimensional plot. The actual data set of 500
points (shown by dots) was generated by adding mode 2 to mode 1 (with mode 2
having 1/3 the variance of mode 1) and adding a small amount of Gaussian noise.
(Follows Hsieh (2000) with permission from Elsevier.)

10% of the signal standard deviation, was also added to the dataset. The dataset of
n = 500 points was then standardized (i.e. each variable with mean removed was
normalized by the standard deviation). Note that different sequences of random
numbers ti and t̃i (i = 1, . . . , n) were used to generate the first modes X and Y,
respectively. Hence these two dominant modes in the x-space and the y-space are
unrelated. In contrast, as X′ and Y′ were generated from the same sequence of
random numbers si , they are strongly related. The NLCCA was applied to the data,
and the first NLCCA mode retrieved (Fig. 11.4 and 11.5) resembles the expected
theoretical mode (X′, Y′). This is quite remarkable considering that X′ and Y′ have
only 1/3 the variance of X and Y, i.e. the NLCCA ignores the large variance of
X and Y, and succeeded in detecting the nonlinear correlated mode (X′, Y′). In

11.1 MLP-based NLCCA model 257

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

y1

y2

y1

y 2

−3

−2

−1

0

1

2

3

y 3

y 3
y 3

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

(c) (d)

(a) (b)

−5
0

5

−2

0

2
−2

−1

0

1

2

y1
y2

Fig. 11.3 The curve made up of small circles shows the first theoretical mode Y
generated from (11.12), and the solid curve, the second mode Y′, from (11.14).
(a) A projection in the y1-y2 plane. (b) A projection in the y1-y3 plane. (c) A
projection in the y2-y3 plane. (d) A 3-dimensional plot. The data set of 500 points
was generated by adding mode 2 to mode 1 (with mode 2 having 1/3 the variance
of mode 1) and adding a small amount of Gaussian noise. (Follows Hsieh (2000)
with permission from Elsevier.)

contrast, if nonlinear principal component analysis (NLPCA) is applied to x and
y separately, then the first NLPCA mode retrieved from x will be X, and the first
mode from y will be Y. This illustrates the essential difference between NLPCA
and NLCCA. In the next two subsections, NLCCA is illustrated using real world
problems.

11.1.1 Tropical Pacific climate variability

The NLCCA has been applied to analyze the tropical Pacific sea level pres-
sure anomaly (SLPA) and sea surface temperature anomaly (SSTA) fields (where
‘anomaly’ means the deviation from the climatological monthly mean value). The
six leading principal components (PC) of the SLPA and the six PCs of the SSTA
during 1950–2000 were inputs to an NLCCA model (Hsieh, 2001a). The first

258 Nonlinear canonical correlation analysis

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
(a)

x1

x2

x2 x1

x1

x 2
x 3 x 3

x 3

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
(b)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
(c)

−2
0

2

−2

0

2
−2

−1

0

1

(d)

Fig. 11.4 The NLCCA mode 1 in x-space shown as a string of (densely overlap-
ping) small circles. The theoretical mode X′ is shown as a thin solid curve and
the linear (CCA) mode is shown as a thin dashed line. The dots display the 500
data points. The number of hidden neurons used is l2 = m2 = 3. (Follows Hsieh
(2000) with permission from Elsevier.)

NLCCA mode is plotted in the PC-spaces of the SLPA and the SSTA (Fig. 11.6),
where only the three leading PCs are shown. For the SLPA (Fig. 11.6(a)), in the
PC1-PC2 plane, the cool La Niña states are on the far left side (corresponding
to low u values), while the warm El Niño states are in the upper right cor-
ner (high u values). The CCA solutions are shown as thin straight lines. For
the SSTA (Fig. 11.6(b)), in the PC1-PC2 plane, the first NLCCA mode is a
U-shaped curve linking the La Niña states in the upper left corner (low v val-
ues) to the El Niño states in the upper right corner (high v values). In general,
the nonlinearity is greater in the SSTA than in the SLPA, as the difference
between the CCA mode and the NLCCA mode is greater in Fig. 11.6(b) than in
Fig. 11.6(a).

The MSE of the NLCCA divided by the MSE of the CCA is a useful measure
of how different the nonlinear solution is relative to the linear solution – a smaller
ratio means greater nonlinearity, while a ratio of 1 means that the NLCCA can find
only a linear solution. This ratio is 0.951 for the SLPA and 0.935 for the SSTA,

11.1 MLP-based NLCCA model 259

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
(a)

y1

y1

y1

y 2
y 2 y 3

y2
y1

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
(b)

y 3

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
(c)

−2
0

2

−2

0

2
−2

−1

0

1

(d)

Fig. 11.5 The NLCCA mode 1 in y-space shown as a string of overlapping small
circles. The thin solid curve is the theoretical mode Y′, and the thin dashed line,
the CCA mode. (Follows Hsieh (2000) with permission from Elsevier.)

confirming that the mapping for the SSTA was more nonlinear than that for the
SLPA. When the data record was divided into two halves (1950–1975, and 1976–
1999) to be separatedly analyzed by the NLCCA, Hsieh (2001a) found that this
ratio decreased for the second half, implying an increase in the nonlinearity of
ENSO during the more recent period.

For the NLCCA mode 1, as u varies from its minimum value to its maximum
value, the SLPA field varies from the strong La Niña phase to the strong El Niño
phase (Fig. 11.7). The zero contour is further west during La Niña (Fig. 11.7(a))
than during strong El Niño (Fig. 11.7(c)). Meanwhile, as v varies from its minimum
to its maximum, the SSTA field varies from strong La Niña to strong El Niño,
where the SST anomalies during La Niña (Fig. 11.7(b)) are centred further west of
the anomalies during El Niño (Fig. 11.7(d)).

Relation between the tropical Pacific wind stress anomaly (WSA) and SSTA
fields have also been studied using the NLCCA (Wu and Hsieh, 2002, 2003),
where interdecadal changes of ENSO behaviour before and after the mid 1970s
climate regime shift were found, with greater nonlinearity found during 1981–99
than during 1961–75.

260 Nonlinear canonical correlation analysis

−20
0

20
40

−20

0

20

−5

0

5

PC1

(a)

PC2

PC
3

−50
0

50
100

−20

0

20

40
−20

−10

0

10

20

30

PC1

(b)

PC2

PC
3

SLPA SSTA

Fig. 11.6 The NLCCA mode 1 between the tropical Pacific (a) SLPA and (b)
SSTA, plotted as (overlapping) squares in the PC1-PC2-PC3 3-D space. The lin-
ear (CCA) mode is shown as a dashed line. The NLCCA mode and the CCA mode
are also projected onto the PC1-PC2 plane, the PC1-PC3 plane, and the PC2-PC3
plane, where the projected NLCCA is indicated by (overlapping) circles, and the
CCA by thin solid lines, and the projected data points (during 1950–2000) by
the scattered dots. There is no time lag between the SLPA and the correspond-
ing SSTA data. The NLCCA solution was obtained with the number of hidden
neurons l2 = m2 = 2 (if l2 = m2 = 1, only a linear solution can be found).
(Reproduced from Hsieh (2004) with permission from the American Geophysical
Union.)

11.1.2 Atmospheric teleconnection

Relations between the tropical Pacific sea surface temperature anomalies (SSTA)
and the Northern Hemisphere mid latitude winter atmospheric variability simu-
lated in an atmospheric general circulation model (GCM) have also been explored
using the NLCCA, which shows the value of NLCCA as a nonlinear diagnostic
tool for GCMs (Wu et al., 2003). Monthly 500 hPa geopotential height (Z500) and
surface air temperature (SAT) data were produced by the CCCMA (Canadian Cen-
tre for Climate Modelling and Analysis) GCM2. An ensemble of six 47-year runs
of GCM2 were carried out, in which each integration started from minor different
initial conditions and was forced by the observed SST.

The five leading SST principal components (PC), and the five leading Z500 (or
SAT) PCs (from January 1950 to November 1994) were the inputs to the NLCCA
model. Here, minimum u and maximum u are chosen to represent the La Niña
states and the El Niño states, respectively. For the Z500 field, instead of showing the
spatial anomaly patterns during minimum v and maximum v, patterns are shown
for the values of v when minimum u and maximum u occurred. As u takes its
minimum value, the SSTA field presents a La Niña with negative anomalies (about

11.1 MLP-based NLCCA model 261

(a)

0.
5

0.5

1

1

1

1

1.5

−1

−1
−

0.5

150E 180 150W 120W 90W

15S

10S

5S

0

5N

10N

15N

(c)

0.
5

11.
5

2
2

2.5

2.
5

−2

−1
.5

−1

−0
.5

150E 180 150W 120W 90W

15S

10S

5S

0

5N

10N

15N

(b)

0.50.5 1

−2
−1.5

−1.5

−1

−1

−1 −1

−0.5

−0
.5

−0.5

150E 180 150W 120W 90W

20S

10S

0

10N

20N

(d)

0.5

0.5

0.5

1

1

1

1.5

1.5

2

2

2

2

2.5

2.5

33.544.5 5

−0.5

−0.5

−0.5

150E 180 150W 120W 90W

20S

10S

 0

10N

20N

Min(u) Min(v)

Max(u) Max(v)

Fig. 11.7 The SLPA field when the canonical variate u of the NLCCA mode 1
is at (a) its minimum (strong La Niña), and (c) its maximum (strong El Niño);
and the SSTA field when the canonical variate v is at (b) its minimum (strong La
Niña), and (d) its maximum (strong El Niño). Contour interval is 0.5 hPa for the
SLPA and 0.5 ◦C for the SSTA. Negative contours are shown as dashed lines, and
the zero contour as a thick line. (Reproduced from Hsieh (2001a), with permission
of the American Meteorological Society.)

−2.0 ◦C) over the central-western equatorial Pacific (Fig. 11.8(a)). Atmospheric
teleconnection patterns are preferred states of large-scale flow in the atmosphere.
The response field of Z500 is a negative Pacific-North American (PNA) telecon-
nection pattern (Horel and Wallace, 1981) with a positive anomaly centred over
the North Pacific, a negative anomaly centred over western Canada and a positive
anomaly centred over eastern USA.

As u takes its maximum value, the SSTA field presents a fairly strong El
Niño with positive anomalies (about 2.5-3.0 ◦C) over the central-eastern Pacific
(Fig. 11.8(b)). The SSTA warming centre shifts eastward by 30–40◦ longitude rel-
ative to the cooling centre in Fig. 11.8(a). The warming in Fig. 11.8(b) does not
display peak warming off Peru, in contrast to the NLPCA mode 1 of the SSTA
(Fig. 10.4(e)), where the El Niño peak warming occurred just off Peru. This differ-
ence between the NLPCA and the NLCCA mode implies that warming confined
solely to the eastern equatorial Pacific waters does not have a corresponding strong
mid-latitude atmospheric response, in agreement with Hamilton (1988).

262 Nonlinear canonical correlation analysis

70N

(a) (c)

(d)(b)

60N

50N

40N

30N

20N

10N

EQ

10S

20S

70N

60N

50N

40N

30N

20N

10N

EQ

10S

20S

70N

60N

50N

40N

30N

20N

10N

EQ

10S

20S

70N

60N

50N

40N

30N

20N

10N

EQ

10S

20S
150E 150E 180 150W 120W 90W 60W180 150W 120W 90W 60W

150E 180 150W 120W 90W 60W 150E 180 150W 120W 90W 60W

Min(u) NL Min(u) L

Max(u) NL Max(u) L

Fig. 11.8 The spatial patterns for the first NLCCA mode between the winter Z500
anomalies and the tropical Pacific SST anomalies as the canonical variate u takes
its (a) minimum value and (b) maximum value. The Z500 anomalies with contour
intervals of 10 m are shown north of 20◦N. SST anomalies with contour intervals
of 0.5 ◦C are displayed south of 20◦N. The SST anomalies greater than +1 ◦C
or less than –1 ◦C are shaded, and heavily shaded if greater than +2 ◦C or less
than –2 ◦C. The linear CCA mode 1 is shown in panels (c) and (d) for com-
parison. (Reproduced from Wu et al. (2003), with permission of the American
Meteorological Society).

The response field of Z500 is a PNA pattern (Fig. 11.8(b)), roughly opposite to
that shown in Fig. 11.8(a), but with a notable eastward shift. The zero contour of
the North Pacific anomaly is close to the western coastline of North America during
the El Niño period (Fig. 11.8(b)), while it is about 10–15◦ further west during the
La Niña period (Fig. 11.8(a)). The positive anomaly over eastern Canada and USA
in Fig. 11.8(a) becomes a negative anomaly shifted southeastward in Fig. 11.8(b).
The amplitude of the Z500 anomaly over the North Pacific is stronger during El
Niño than La Niña, but the anomaly over western Canada and USA is weaker
during El Niño than La Niña (Fig. 11.8(a) and (b)).

11.1 MLP-based NLCCA model 263

70N

(a)

(b)

(c)

(d)

60N

50N

40N

30N

20N

10N

EQ

10S

20S

70N

60N

50N

40N

30N

20N

10N

EQ

10S

20S

70N

60N

50N

40N

30N

20N

10N

EQ

10S

20S

70N

60N

50N

40N

30N

20N

10N

EQ

10S

20S
150E 180 150W 120W 90W 60W

150E 180 150W 120W 90W 60W 150E 180 150W 120W 90W 60W

150E 180 150W 120W 90W 60W

Max(u) NL Max(u) L

Min(u) LMin(u) NL

Fig. 11.9 Similar to Fig. 11.8, but for the NLCCA mode 1 between the surface air
temperature (SAT) anomalies over North America and the tropical SST anoma-
lies. The contour interval for the SAT anomalies is 1 ◦C. (Reproduced from Wu
et al. (2003) with permission of the American Meteorological Society.)

For comparison, the spatial patterns extracted by the CCA mode 1 are shown
in Fig. 11.8(c) and 11.8(d), where the atmospheric response to La Niña is exactly
opposite to that for El Niño, though the El Niño pattens have somewhat stronger
amplitudes. The SSTA patterns are also completely anti-symmetrical between the
two extremes.

The NLCCA method was then applied to the SAT anomalies over North Amer-
ica and the tropical Pacific SSTA, with Fig. 11.9(a) and (b) showing the spatial
anomaly patterns for both the SST and SAT associated with La Niña and El Niño,
respectively. As u takes its minimum value, positive SAT anomalies (about 1 ◦C)
appear over the southeastern USA, while much of Canada and northwestern USA
are dominated by negative SAT anomalies. The maximum cooling centre (−4 ◦C)
is located around northwestern Canada and Alaska (Fig. 11.9(a)). As u takes its

264 Nonlinear canonical correlation analysis

maximum value (Fig. 11.9(b)), the warming centre (3 ◦C) is shifted to the south-
east of the cooling centre in Fig. 11.9(a), with warming over almost the whole of
North America except southeastern USA. The CCA mode 1 between the SAT and
SST anomalies is also shown for reference (Fig. 11.9(c) and (d)).

11.2 Robust NLCCA

The Pearson correlation is not a robust measure of association between two vari-
ables, as its estimates can be affected by the presence of a single outlier (Section
1.3). To make the NLCCA model more robust to outliers, the Pearson correlation
in the objective function J needs to be replaced by a more robust measure of cor-
relation. The Spearman rank correlation (Section 1.3.1) is an obvious candidate,
but since it is not a continuous function, it suffers from poor convergence when
used in NLCCA (Cannon and Hsieh, 2008). Instead we turn to a different robust
correlation function.

11.2.1 Biweight midcorrelation

The biweight midcorrelation (Mosteller and Tukey, 1977, pp. 203–209) is cal-
culated in the same manner as the Pearson correlation coefficient, except that
non-robust measures are replaced by robust measures (Wilcox, 2004). For instance,
the mean and the deviation from the mean are replaced by the median and the
deviation from the median, respectively.

To calculate the biweight midcorrelation function bicor(x, y), first rescale
x and y by

p = x − Mx

9 MADx
, q = y − My

9 MADy
, (11.15)

where Mx and My are the median values of x and y respectively and MADx and
MADy (the median absolute deviations) are the median values of |x − Mx | and∣∣y − My

∣∣ respectively. Next, the sample biweight midcovariance is given by

bicov(x, y) = N
∑

i ai bi c2
i d2

i (xi − Mx)(yi − My)

[∑i ai ci (1 − 5p2
i)][

∑
i bi di (1 − 5q2

i)] , (11.16)

where there are i = 1, . . . , n observations, ai = 1 if −1 ≤ pi ≤ 1, otherwise ai =
0; bi = 1 if −1 ≤ qi ≤ 1, otherwise bi = 0; ci = (1− p2

i); and di = (1−q2
i). Note

that the outliers (with |x − Mx | > 9 MADx or |y − My| > 9 MADy) are excluded
from (11.16) by having either ai = 0 or bi = 0. The biweight midcorrelation is
then given by

bicor(x, y) = bicov(x, y)√
bicov(x, x) bicov(y, y)

. (11.17)

11.2 Robust NLCCA 265

0 20 40 60 80 100

−
5

0
5

10
15

20

(a)

t

x′
 a

nd
 y

 (
sh

if
te

d
do

w
n

5
un

its
)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
–0

.5
0.

5
1.

0

(b)

cor(x, y)

bi
co

r(
x,

 y
)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
–0

.5
0.

5
1.

0

(c)

cor(x, y)

co
r(

x′
, y

)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
–0

.5
0.

5
1.

0

(d)

bicor(x, y)

bi
co

r(
x′

, y
)

x′ and y cor(x, y) vs. bicor(x, y)

cor(x, y) vs. cor(x′, y) bicor(x, y) vs. bicor(x′, y)

Fig. 11.10 Empirical comparison between the Pearson correlation (cor) and the
biweight midcorrelation (bicor) on random variables x and y, each with sam-
ples drawn from a standard Gaussian distribution, and x ′ and y, where x ′ is the
same as x but with one case replaced with an outlier. (a) Sample time series of x ′
(solid) and y (dashed). (b) Compares cor(x, y) and bicor(x, y), with the diago-
nal line indicating perfect agreement between the two. (c) Compares cor(x, y) and
cor(x ′, y). (d) Compares bicor(x, y) and bicor(x ′, y). Plots are for 1000 randomly
generated datasets. (Reproduced from Cannon and Hsieh (2008) with permission
of the European Geosciences Union.)

The biweight midcorrelation, like the Pearson correlation, ranges from −1 (nega-
tive association) to +1 (positive association).

Figure 11.10 shows estimates of the Pearson correlation and the biweight
midcorrelation between Gaussian random variables x and y (with unit standard
deviation and zero mean) and between x ′ and y, where x ′ is the same as x but with
one data point replaced by an outlier (Fig. 11.10(a)). On the outlier-free dataset,
both cor(x, y) and bicor(x, y) give approximately equal estimates of the strength
of association between the variables (Fig. 11.10(b)). Estimates of cor(x ′, y) are
strongly affected by the outlier, showing almost no association between values cal-
culated with and without the outlying data point (Fig. 11.10(c)), whereas estimates
of bicor(x ′, y) are essentially unaffected by the outlier (Fig. 11.10(d)).

266 Nonlinear canonical correlation analysis

Note that NLCCA with the Pearson correlation objective function may fail when
there are common outliers, i.e. outliers occurring simultaneously in both x and y.
Consider two identical sinusoidal series, each with a common outlier

xi = yi = sin(0.5i) + δ(i), (11.18)

where

δ(i) =
{

6 at i = 150,

0 elsewhere,
(11.19)

with i = 1, 2, ..., 300. Next, create new series x ′ and y′ by adding Gaussian noise
(with standard deviation of 0.5) to x and y. The expected values of cor(x ′, y′) and
bicor(x ′, y′) are found to be 0.71 and 0.68 respectively. Now, consider the effects of
very nonlinear functions u(x ′) and v(y′) on the values of cor(u, v) and bicor(u, v).
Let us take u = x ′p, v = y′p, where p is a positive odd integer. Increasing the value
of p effectively increases the nonlinearity of u and v, as well as the separation
between the outlier and the non-outliers (compare u when p = 1 in Fig. 11.11(a)
with u when p = 9 in Fig. 11.11(b)). Values of cor(u, v) and bicor(u, v) for val-
ues of p from 1 to 9 are shown in Fig. 11.11(c). The Pearson correlation can be
increased simply by increasing p, whereas the biweight midcorrelation decreases
as p increases. This case illustrates how increasing the nonlinearity of the mapping
functions u and v (by increasing p) can lead to very high Pearson correlation.

In the context of NLCCA, spuriously high values of cor(u, v) can be found
by the double-barrelled network (Fig. 11.1(a)) when the nonlinear NN mapping
greatly magnifies a common outlier in both x and y. This artefact can be particu-
larly dangerous when NLCCA is applied to datasets affected by strong, concurrent
climate signals, for example those with large El Niño or La Niña anomalies (Hsieh,
2001a). The NLCCA method performed worse than CCA when weight penalty
terms were not used to reduce the nonlinearity of the double-barrelled network.
Based on results shown in Fig. 11.11, adopting bicor in the objective function
should prevent this artefact.

11.2.2 Inverse mapping

To complete the robust NLCCA model, we need to consider the inverse mapping
from u and v back to x′ and y′ (i.e. the two networks in Fig. 11.1(b) and (c)). For
the objective functions of these two networks, we have used the MSE in (11.8)
and (11.9). In Section 6.2, we showed that in the limit of an infinite number of
observations and with a flexible enough model (e.g. an MLP NN with enough hid-
den neurons), the model converges to the conditional mean if the MSE is used and
the conditional median if the mean absolute error (MAE) is used. As the median

11.2 Robust NLCCA 267

0 50 100 150 200 250 300

−
2

0
2

4

(a)

t

u

0 50 100 150 200 250 300

0
5

00
 0

00
15

 0
0

00
0

25
 0

0
00

0

(b)

t

u

(c)

p

co
r(

u,
 v

)
an

d
bi

co
r(

u,
 v

)

1 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u with p = 1 u with p = 9

cor(u, v) and bicor(u, v)

Fig. 11.11 Time series of u when (a) p = 1 and (b) p = 9. Outliers in v (not
shown) occur at the same time as those in u. (c) The effect on cor(u, v) (solid line)
and bicor(u, v) (dashed line) from increasing the separation between common
outlier and non-outlier points by increasing p. (Reproduced from Cannon and
Hsieh (2008) with permission of the European Geosciences Union.)

is robust to outliers whereas the mean is not, replacing the MSE by the MAE in
(11.8) and (11.9) will make the inverse mappings more robust.

In summary, for the robust NLCCA, bicor(u, v) replaces cor(u, v) in the objec-
tive function J in (11.7), while the MAE replaces the MSE in J1 and in J2, in
(11.8) and (11.9). There are two other variants of NLCCA: instead of using bicor
and MAE, one variant uses bicor and MSE, while a second variant uses cor and
MAE in the objective functions. Together with the original standard NLCCA (with
cor and MSE), there is thus a total of four variants of NLCCA.

To test the performance of the four variants of the NLCCA models, 50 training
and test datasets, each with 500 observations, were generated as follows in Cannon
and Hsieh (2008). The first synthetic mode, consisting of X and Y, was generated

268 Nonlinear canonical correlation analysis

as before from (11.11) and (11.12), except that the random number t̃ in (11.12)
was replaced by t , i.e. X and Y were generated from the same sequence of ran-
dom numbers t . Mode 2, consisting of X′ and Y′, was generated from (11.13) and
(11.14). The signal in each dataset was produced by adding the second mode to
the first mode, with the variance of the second equal to one third that of the first.
Gaussian random noise with standard deviation equal to 50% of the signal standard
deviation was added to the data. The variables were then standardized to zero mean
and unit standard deviation.

The four variants of the NLCCA model were developed separately on the train-
ing datasets and applied to the test datasets. All MLP mappings used three hidden
neurons in a single hidden layer and the NNs were trained without weight penalty
terms. To avoid local minima, each network in Fig. 11.1 was trained 30 times, each
time starting from different random initial weight and offset parameters, and the
network with the lowest objective function value was then selected and applied to
the test data.

Root MSE (RMSE) values between the first synthetic mode and the first mode
extracted from the test data by the NLCCA variants are shown in Fig. 11.12 for
the 50 test datasets. On average, all models performed approximately the same,
although, for the leading NLCCA mode of the x dataset (Fig. 11.12(a)), NLCCA
with bicor/MSE objective functions yielded the lowest median RMSE (0.44), fol-
lowed by NLCCA with bicor/MAE (0.45) and NLCCA with cor/MSE (0.45). The
NLCCA with cor/MAE performed worst with a median RMSE of 0.47. Median
RMSE values and relative rankings of the models were the same for the leading
NLCCA mode of the y dataset (Fig. 11.12(b)).

Of the four variants, NLCCA with the robust objective functions (bicor/MAE)
was the most stable. No trial yielded an RMSE in excess of the series standard
deviation of one (as indicated by the horizontal dashed line in Fig. 11.12). The
other models had at least one trial with an RMSE value greater than one, indicating
severe overfitting.

Overall, results for the synthetic dataset suggest that replacing the cor/MSE
objective functions in NLCCA with bicor/MAE objective functions leads to a more
stable model that is less susceptible to overfitting and poor test performance. All
models were run without weight penalty terms in this comparison. In practice, the
non-robust models will need weight penalty terms to reduce overfitting, as is done
in the next example, where NLCCA models are applied to a real-world climate
prediction problem.

11.2.3 Prediction

To use NLCCA for multivariate prediction, a regression model is needed to esti-
mate v from u (or vice versa). For the standard NLCCA model, the linear least

11.2 Robust NLCCA 269

bicor/MAE bicor/MSE cor/MAE cor/MSE bicor/MAE bicor/MSE cor/MAE cor/MSE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

(a)
R

M
SE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

R
M

SE

(b)Mode 1 for x Mode 1 for y

Fig. 11.12 Boxplots showing the distribution of RMSE between the first syn-
thetic mode and the first mode extracted by NLCCA models for (a) x and (b)
y, with different combinations of non-robust and robust objective functions over
50 trials. Boxes extend from the 25th to 75th percentiles, with the line indicat-
ing the median. Whiskers represent the most extreme data within ±1.5 times the
interquartile range (i.e. the box height); values outside this range are plotted as
dots. The dashed line indicates an RMSE equal to one. The ordinate is log-scaled
to accommodate the large range in RMSE. (Reproduced from Cannon and Hsieh
(2008) with permission of the European Geosciences Union.)

squares estimate for the regression coefficient is given by (11.10). Similarly, the
biweight midcorrelation is associated with a robust regression model which can
be used to predict values of one canonical variate from the other. Following Lax
(1985) and Hou and Koh (2004), the regression solution for estimating ṽ from u
is given by

ṽ = u bicor(u, v), (11.20)

for canonical variates normalized to unit variance and zero mean. From ṽ, one can
then obtain a value for y via the inverse mapping NN.

Next test the prediction of tropical Pacific SST anomalies using tropical Pacific
SLP anomalies as predictors. With data from 1948 to 2003, the climatological sea-
sonal cycle was removed, data were linearly detrended, and a 3 month running
mean filter was applied. The six leading SLP principal components (PC) and the
six leading SST PCs are the x and y inputs to the NLCCA model. Only three vari-
ants are tested here, as the model with cor/MAE objective functions was dropped
from consideration. The SLP state was used to forecast SST at lead times of 0, 3,

270 Nonlinear canonical correlation analysis

00 03 06 09 12

cor/MSE
cor/MSE(p)
bicor/MSE
bicor/MAE

Lead time (months)

C
ro

ss
−

va
lid

at
ed

 c
or

re
la

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

− − −

−
−

−
−

−

−

−

−

−

−
−

−

−

−

−
−

−

−

−

−
−

−

−

−

−
−

−

−

−

−
−

−

−

−

Fig. 11.13 Predictions of SST based on mode 1: cross-validated correlation skill
for NLCCA models trained with cor/MSE, bicor/MSE, and bicor/MAE objective
functions. Weight penalty was applied to the model denoted cor/MSE(p). Bars
show the mean correlation over the spatial domain, averaged over ten trials. Verti-
cal lines extend from the minimum to the maximum spatial mean correlation from
the ten trials. Horizontal lines show correlation skill from the CCA model. The
ordinate is limited to showing positive cross-validated skill. (Reproduced from
Cannon and Hsieh (2008) with permission of the European Geosciences Union.)

6, 9, and 12 months. Lead times are defined as the number of months from the
predictor observation to the predictand, e.g. a forecast at 3 month lead time from
January would use the January SLP to forecast the April SST.

Forecast results from the NLCCA mode 1 are shown in Fig. 11.13. For reference,
results from linear CCA models are also shown. Cross-validated Pearson correla-
tion skill is averaged over the entire domain following reconstruction of the SST
anomaly field from the six predicted SST PCs. Similar performance was found for
the RMSE (not shown). Results with weight penalty are only given for the NLCCA
model with cor/MSE objective functions as the addition of penalty terms to models
with the bicor objective function did not generally lead to significant changes in
skill in this example.

Without weight penalty, the NLCCA model with cor/MSE objective functions
performed poorly, exhibiting mean skills worse than CCA at all lead times. The
NLCCA method with bicor/MSE objective functions and bicor/MAE objective
functions performed much better. In general, NLCCA models with bicor exhibited
the least variability in skill between repeated trials. For NLCCA with cor/MSE

11.2 Robust NLCCA 271

objective functions, the large range in skill for the various trials indicates a very
unstable model.

Little difference in skill was evident between bicor/MSE and bicor/MAE mod-
els, which suggests that the switch from cor to bicor in the double-barrelled
network objective function was responsible for most of the increase in skill rel-
ative to the standard NLCCA model. Inspection of the canonical variates shows
that this was due to the insensitivity of the bicor objective function to the common
outlier artefact described in Section 11.2.1 and illustrated in Fig. 11.11.

Plots of the canonical variates u and v for the first mode of NLCCA models with
cor/MSE and bicor/MSE objective functions at the 0 month lead time are shown
in Fig. 11.14 along with the leading SST and SLP PCs. For these series, values
of cor(u, v) and bicor(u, v) were 1.00 and 0.96 respectively. The high correlation
between u and v for the NLCCA model with the cor objective function was driven
almost exclusively by the common outliers present during the extremely strong El
Niño of 1997–1998. With the 1997–1998 outliers removed, cor(u, v) dropped to
0.28. On the other hand, the high correlation between u and v for the NLCCA
model with the bicor objective function was indicative of the strong relationship
between SLP and SST, as evidenced by the Pearson correlation of 0.91 between
the leading SST and SLP PCs (Fig. 11.14(a)).

Results discussed to this point have been for NLCCA models without weight
penalty. Hsieh (2001a) found that the addition of weight penalty to the standard
NLCCA model led to improvements in performance, due in part to the avoidance
of the common outlier artefact. Addition of weight penalty to the standard NLCCA
model resulted in improvements in mean correlation skill, although performance
still lagged behind NLCCA with the bicor objective function at 9 and 12 month
lead times (Fig. 11.13). At 0, 3, and 6 month lead times, maximum skill over the ten
trials did, however, exceed the mean level of skill of the bicor-based models, which
suggests that an appropriate amount of weight penalty can result in a well perform-
ing model. Inspection of the time series of u and v for the best performing runs
suggests that improved performance was due to avoidance of the common outlier
artefact. However, the wide range in performance over the ten trials (e.g. at 0 and
6 month lead times) reflects the instability of the training and the cross-validation
procedure used to choose the weight penalty parameters. In practice, it may be dif-
ficult to reach the performance level of the robust model consistently by relying
solely on weight penalty to control overfitting of the standard NLCCA model.

NLCCA models with the bicor/MSE and bicor/MAE objective functions tended
to perform slightly better than CCA. For the bicor/MAE model, the small improve-
ment in performance was significant (i.e. minimum skill over the ten trials
exceeded the CCA skill) at 0, 3, 6, and 12 month lead times, while the same was
true of the bicor/MSE model at 0 and 3 month lead times.

272 Nonlinear canonical correlation analysis

1950 1960 1970 1980 1990 2000

−2

0

2

4

(a)

Year

sd

1950 1960 1970 1980 1990 2000

−15

−10

−5

0

(b)

Year

u

1950 1960 1970 1980 1990 2000

−15

−10

−5

0

(c)

Year

v

SST and SLP PC1 scores

Canonical variate u

Canonical variate v

Fig. 11.14 (a) The first SST PC (solid line) and the first SLP PC (dashed line) in
units of standard deviation. (b) The canonical variate u for the leading NLCCA
mode using cor/MSE objective functions (dashed line) and using bicor/MSE
objective functions (solid line). (c) Canonical variate v for the leading NLCCA
mode using cor/MSE objective functions (dashed line) and bicor/MSE objec-
tive functions (solid line). (Reproduced from Cannon and Hsieh (2008) with
permission of the European Geosciences Union.)

Concluding remarks

In this chapter, we have presented NLCCA via MLP NN models: NLCCA by ker-
nel methods have also been developed (Lai and Fyfe, 2000; Suykens et al., 2002;
Hardoon et al., 2004; Shawe-Taylor and Cristianini, 2004), though there do not
seem to be any applications of kernel NLCCA methods to environmental problems.

Exercises 273

These kernel approaches all used the Pearson correlation, which we have shown to
be non-robust to outliers. In particular, common outliers occurring simultaneously
in both x and y can lead to spuriously high Pearson correlation values. Use of
biweight midcorrelation in NLCCA greatly improves the robustness of the NLCCA
method. However, for climate variability outside the tropics, even robust NLCCA
may not succeed in extracting a nonlinear signal, because time-averaging daily data
to form seasonal (or longer) climate data strongly linearizes the data via the central
limit theorem effect, as pointed out in Section 6.10. Nevertheless, it is encourag-
ing that extra-tropical climate signals have been successfully extracted from GCM
model data by NLCCA (Wu et al., 2003). The advantage of using GCM results
is that there were six runs in the ensemble, which provide far more data than the
observed records, thereby allowing successful extraction of nonlinear atmospheric
teleconnection patterns by NLCCA.

Exercises

(11.1) In NLCCA, the objective function J in (11.4) includes terms like (〈u2〉1/2−
1)2 so that the canonical variate u approximately satisfies the normalization
condition 〈u2〉 = 1. If instead the simpler term (〈u2〉 − 1)2 is used in J ,
then sometimes the converged solution unexpectedly has 〈u2〉 ≈ 0. With
〈u2〉 = (

∑n
i=1 u2

i)/n, where n is the number of observations, use ∂ f/∂ui to
explain the different convergence properties at 〈u2〉 = 0 for f = (〈u2〉−1)2

and f = (〈u2〉1/2 − 1)2.
(11.2) Choose two time series x and y and compare the Pearson correlation with

the biweight midcorrelation for the two time series. Repeat the comparison
when a data point in x is replaced by an outlier (i.e. replace the data point
by a very large number). Repeat the comparison when one particular pair
of (x, y) values is replaced by a pair of outliers.

12

Applications in environmental sciences

In this final chapter, we survey the applications of machine learning methods in
the various areas of environmental sciences – e.g. remote sensing, oceanography,
atmospheric science, hydrology and ecology. More examples of applications are
given in Haupt et al. (2009).

In the early applications of methods like NN to environmental problems,
researchers often did not fully understand the problem of overfitting, and the
need to validate using as much independent data as possible, by e.g. using cross-
validation. For historical reasons, some of these early papers are still cited here,
although the control of overfitting and/or the validation process may seem primitive
by latter day standards.

In some of the papers, the authors used more than one type of machine learning
method and compared the performance of the various methods. A word of caution
is needed here. In our present peer-reviewed publication system, a new method can
be published only if it is shown to be better in some way than established methods.
Authors therefore tend to present their new methods in the best possible light to
enhance their chance of passing the peer review. For instance, an author might test
his new method A against the traditional method B on two different datasets and
find method A and B each outperformed the other on one dataset. The author would
then write up a journal paper describing his new method A and its application to the
dataset which showed method A outperforming method B. Publications biased in
favour of new methods can arise even without the authors doing ‘cherry-picking’.
Suppose author X applied method A to a dataset and found A performing better
than the traditional method B, while author Y applied the same method A to a dif-
ferent dataset and unfortunately found method A worse than method B. The paper
by author X was published but the paper by the unlucky author Y was rejected
by the journal. Actually, a simple recommendation like ‘method A is better than
method B’ is not meaningful for many reasons. For example: (i) method A outper-
forms B when the dataset has high signal-to-noise ratio, but B beats A when the

274

12.1 Remote sensing 275

ratio is low; (ii) A beats B when there are many independent observations but vice
versa when there are few observations; (iii) A beats B when the noise is Gaussian
but vice versa when the noise is non-Gaussian; (iv) A beats B when there are few
predictor variables, but vice versa when there are many predictors, etc. In short,
caveat emptor!

12.1 Remote sensing

Satellite remote sensing has greatly facilitated mankind’s ability to monitor the
environment. By deploying a radiometer (i.e. an instrument measuring radiation
at certain frequency bands) on the satellite, remote sensing allows us to measure
indirectly an astonishing number of variables in the air, land and water (Elachi and
van Zyl, 2006), e.g. surface temperatures, winds, clouds, sea ice, sea level displace-
ments, vegetation on land and chlorophyll concentration in the ocean, etc. There
are two types of remote sensing – passive sensing where only a receiver is used,
and active sensing where both a transmitter and a receiver are used. Active sensing,
which operates similarly to radar, requires far more power to operate than passive
sensing, as the transmitter has to emit a powerful enough signal beam to Earth
below so that the return signal can be detected on the satellite. However, active
sensing has good control of the signal to be detected since the signal is generated
originally from the transmitter. One requirement of active remote sensing is that the
transmitted radiation must be able to reflect strongly from the Earth’s surface back
to the receiver, hence only microwaves have been used in active sensing, as other
radiation (e.g. visible and infrared) are too strongly absorbed at the Earth’s surface.
In contrast to active sensing, passive sensing simply receives whatever radiation
is coming from the Earth. As the radiation passes through the atmosphere, it is
scattered, absorbed and re-emitted by the clouds, aerosols and molecules in the
atmosphere. Trying to use this radiation to infer variables at the Earth’s surface
is obviously a very difficult task, so it is amazing how scientists/engineers have
managed to produce the great variety of good quality satellite data products.

Let v denote some variables of interest on Earth and s, measurements made by
the satellite. For instance, s can be the measurements made at several frequency
bands by the radiometer, while v can be the chlorophyll and sediment concentra-
tions in the surface water. The goal is to find a function f (a retrieval algorithm),
where

v = f(s) (12.1)

allows the retrieval of v from the satellite measurements. This retrieval process is
not always straightforward, since two different v can yield the same s (e.g. snow
on the ground and clouds may both appear white as seen by the satellite), so the

276 Applications in environmental sciences

problem can be ill-posed. In fact, this is an inverse problem to a forward problem
(which is well-posed):

s = F(v), (12.2)

where the variables on earth cause a certain s to be measured by the satellite’s
radiometer. One common way to resolve the ill-posedness is to use more frequency
bands (e.g. snow and clouds are both white in the visible band, but in the thermal
infrared (IR) band, they can be separated by their different temperatures). In recent
years, NN methods for nonlinear regression and classification have been widely
applied to solve the retrieval problem (12.1) for many types of satellite data (see
e.g. the review by Krasnopolsky (2007)).

12.1.1 Visible light sensing

Ocean colour

Oceanographers have long known that tropical waters are blue due to conditions
unfavourable to phytoplankton (i.e. photosynthetic plankton) growth, while in bio-
logically productive regions, the waters are more greenish due to the presence of
phytoplankton. By viewing the ocean from space in the visible light range, it is
possible to extract the chlorophyll concentrations in the surface water, from which
one can estimate the phytoplankton concentration, key to the ocean’s biological
productivity. There is atmospheric interference for the radiation travelling from the
ocean’s surface to the satellite, e.g. aerosol concentration could affect the ocean
colour viewed from the satellite. Further complications arise when there are also
suspended particulate materials (mainly sediments), and/or dissolved organic mat-
ter from decayed vegetation (known as ‘gelbstoff’ or simply ‘yellow substance’)
in the water. As coastal water quality gradually degrades from increased pollution
and human activities in many parts of the world, satellite data also offer a relatively
inexpensive way to monitor water quality over wide areas of coastal waters.

Waters are divided into two classes: Case 1 waters have their optical properties
dominated by phytoplankton and their degradation products only, whereas Case
2 waters have, in addition to phytoplankton, non-chlorophyll related sediments
and/or yellow substance. Fortunately open ocean waters tend to be Case 1 waters,
which are much simpler for retrieving the chlorophyll concentration than Case 2
waters, which tend to be found in coastal regions. Case 1 waters cover over 90% of
the world’s oceans.

In Keiner and Yan (1998), an MLP NN model was used to model the func-
tion f for retrieving the chlorophyll and suspended sediment concentrations from
the satellite-measured radiances. The algorithm was developed for estuarine water
(Case 2 water) using data from Delaware Bay. The MLP has three inputs (namely
measurements from the three visible frequency channels of the Landsat Thematic

12.1 Remote sensing 277

Mapper), a hidden layer with two hidden neurons, and one output (either the
chlorophyll or the sediment concentration, i.e. two separate networks were trained
for the two variables). In situ measurements of chlorophyll-a and sediment con-
centration in Delaware Bay were used as training data. The NN approach was
compared with the more standard approach using multiple (linear and log-linear)
regression analysis. The root mean squared (RMS) errors for the NN approach
were <10%, while the errors for regression analysis were >25%.

In Schiller and Doerffer (1999), an MLP NN model was developed to derive the
concentrations of phytoplankton pigment, suspended sediments and gelbstoff, and
aerosol (expressed as the horizontal ground visibility) over turbid coastal waters
from satellite data. The procedure was designed for the Medium Resolution Imag-
ing Spectrometer (MERIS) flown onboard the satellite Envisat of the European
Space Agency (ESA). This instrument has 15 frequency channels in the 390 nm
to 1040 nm spectral range (from visible to near-infrared). Synthetic data from a
radiative transfer model were used to train the NN model. The inputs of the NN
model are from the multiple channels, and the four outputs are the three water
constituent concentrations and the visibility. The NN has two hidden layers with
45 and 12 neurons respectively. The two hidden layer network performed better
than a network with a single hidden layer of some hundreds of neurons, as well as
the more traditional functional approximation using Chebychev polynomials. The
NN model works well for both Case 1 and Case 2 waters. Although the training
of the NN is time consuming, once trained, the NN model runs very fast, being
eight times faster than the forward model (i.e. the radiative transfer model). Since
the model inversion by a minimization method typically needs 10-20 calls of the
forward model, the speedup by using the NN model instead is at least two orders
of magnitude. Further improvements are given in Schiller and Doerffer (2005) and
Schiller (2007).

In Gross et al. (2000), an MLP NN model was used to model the transfer
function f mapping from the satellite-measured radiances to the phytoplank-
ton pigment concentration (chlorophyll-a plus phaeophytin) for Case 1 water.
The five inputs of the NN model are the five visible frequency channels from the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the single output is the
pigment concentration. There are two hidden layers with six and four hidden neu-
rons respectively. The NN model was trained with synthetic data generated by the
Morel (1988) model with Gaussian noise added. When applied to in situ California
Cooperative Oceanic Fisheries Investigations data, the NN algorithm performed
better than two standard reflectance ratio algorithms – relative RMS errors on pig-
ment concentration were reduced from 61 and 62 to 38%, while absolute RMS
errors were reduced from 4.43 and 3.52 to 0.83 mg m−3. When applied to SeaWiFS
derived imagery, there was statistical evidence showing the NN algorithm to filter
residual atmospheric correction errors more efficiently than the standard SeaWiFS

278 Applications in environmental sciences

bio-optical algorithm. Note that NN methods have also been used to extract infor-
mation about absorbing aerosols from SeaWiFS data (Jamet et al., 2005; Brajard
et al., 2006).

Ocean colour data are available from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) aboard the Terra satellite and from SeaWiFS. Data from these
two sensors show apparent discrepancies originating from differences in sensor
design, calibration, processing algorithms, and from the rate of change in the atmo-
sphere and ocean between sensor imaging of the same regions on the ground. To
eliminate incompatibilities between sensor data from different missions and pro-
duce merged daily global ocean colour coverage, Kwiatkowska and Fargion (2003)
used support vector regression (SVR) to bring MODIS data to the SeaWiFS rep-
resentation, with SeaWiFS data considered to exemplify a consistent ocean colour
baseline. Clustering was first applied to the data, and an SVR trained for each of
the 256 clusters. The method worked accurately in low chlorophyll waters and
showed a potential to eliminate sensor problems, such as scan angle dependencies
and seasonal and spatial trends in data.

Rojo-Alvarez et al. (2003) developed an SVR model using the ε-insensitive
Huber error function (9.26). Using satellite data to retrieve ocean surface
chorophyll concentration, Camps-Valls et al. (2006) found that SVR using
the ε-insensitive Huber error function outperformed the standard SVR using an
ε-insensitive error function, an SVR using an L2 (i.e. MSE) error function, and
MLP NN (Fig. 12.1), especially when there were not many data points in the
training dataset.

Chen et al. (2004) used data from four visible light channels of the Landsat
Thematic Mapper to classify coastal surface waters off Hong Kong into five types,
which are characterized by different amounts of turbidity, suspended sediments,
total volatile solid, chlorophyll-a and phaeo-pigment. Three classifiers, maximum
likelihood, NN and support vector machine (SVM), were built. Over test data, the
accuracies of the methods of maximum likelihood, NN and SVM were 78.3%,
82.6%, and 91.3%, respectively.

Land cover

In vegetative land cover applications, Benediktsson et al. (1990) used NN to
classify Landsat satellite images into nine forest classes and water, using four chan-
nels from Landsat and three pieces of topographic information (elevation, slope
and aspect) as predictors. Performance comparison between SVM, MLP NN and
other classifiers in vegetation classification using satellite data were undertaken by
Huang et al. (2002) and Foody and Mathur (2004). Dash et al. (2007) used SVM
to classify the vegetative land cover from Envisat’s Medium Resolution Imaging
Spectrometer (MERIS) data.

12.1 Remote sensing 279

0.3

0.25

0.2

0.15

101 102

Number of training samples

R
M

SE

ε–SVR

L2–Loss SVR

ε–Huber–SVR

NN–BP

Fig. 12.1 Performance (RMSE) of four models on retrieving chlorophyll con-
centration from satellite data as the number of observations in the training set
varied, with ε-SVR, L2-loss-SVR and ε-Huber-SVR denoting, respectively, the
SVR using the standard ε-insensitive error function, the L2 function and the ε-
Huber function, and NN-BP, the back-propagating MLP NN. (Reproduced from
Camps-Valls et al. (2006) with permission from IEEE.)

Gopal and Woodcock (1996) used MLP NN to estimate the fraction of dead
coniferous trees in an area. Forests are also burnt in forest fires, then regenerated.
Trees in a regenerated area tend all to have the same age, so much of the boreal for-
est zone appears as a patchwork of areas with trees of the same vintage. Using data
from four channels (two visible, one short-wave infrared and one near-infrared) of
the SPOT satellite’s vegetation sensor, Fraser and Li (2002) used MLP NN to esti-
mate the postfire regeneration age of a forest area up to 30 years old, with an RMS
error of 7 years.

In urban land cover applications, Del Frate et al. (2007) and Pacifici et al. (2007)
applied MLP NN classifiers to very high-resolution (about 1m resolution) satellite
images to monitor changes in urban land cover.

12.1.2 Infrared sensing

Clouds

The role of clouds is critical to our understanding of anthropogenic global warm-
ing. Since clouds reflect incoming solar radiation back to space and trap outgoing
infrared radiation emitted by the Earth’s surface, they exert both a cooling influence

280 Applications in environmental sciences

and a warming influence on the climate. Some cloud types exert a net cooling influ-
ence, others a net warming influence. Overall in the current climate, clouds exert a
net cooling influence. Under increasing greenhouse gases in the atmosphere, the net
cooling effect of clouds may be enhanced or reduced. The response of the global
climate system to a given forcing is called climate sensitivity. Among the current
global climate models, the primary source of inter-model differences in climate
sensitivity is due to the large uncertainty in cloud radiative feedback (IPCC, 2007,
Sect. 8.6).

Lee et al. (1990) used MLP NN models to classify cloud types (cumulus, stra-
tocumulus and cirrus) from a single visible channel of Landsat satellite image.
However, most studies of remote sensing of clouds tend to rely more on the infrared
channels from instruments such as the Advanced Very High Resolution Radiometer
(AVHRR).

Bankert (1994) used probabilistic NN to classify cloud types (cirrus, cir-
rocumulus, cirrostratus, altostratus, nimbostratus, stratocumulus, stratus, cumulus,
cumulonimbus, and clear) in satellite images over maritime regions observed by
the AVHRR instrument. The method has been extended to work over a much larger
database of clouds over both land and ocean (Tag et al., 2000). Lee et al. (2004)
used SVM to classify cloud types.

In other remote sensing applications, undetected clouds are a source of con-
tamination. For instance, when measuring sea surface temperature from satellite
radiometers like the AVHRR, the presence of clouds can introduce large errors in
the temperature. Using the thermal infrared and visible channels in the AVHRR,
Yhann and Simpson (1995) successfully detected clouds (including subpixel
clouds and cirrus clouds) with MLP NN classifiers. Miller and Emery (1997) also
used an MLP NN classifier model to detect clouds in AVHRR images, where clouds
were classified into eight types in addition to the cloudless condition. Simpson et al.
(2005) used MLP NN to classify pixels into clouds, glint and clear, for the Along
Track Scanning Radiometer-2 (ATSR-2) instrument. Their new method was able to
avoid a pitfall of an existing cloud detection scheme, which was found consistently
to misclassify cloud-free regions of cold ocean containing surface thermal gradient
as clouds, with this overdetection of clouds leading to a warm bias in the sea sur-
face temperature distributions. Srivastava et al. (2005) used MLP NN and SVM to
improve the ability of the AVHRR/2 sensor to detect clouds over snow and ice.

Precipitation

From satellite images of clouds, one can estimate the precipitation rate. The
PERSIANN (Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks) system is an automated system for retrieving rainfall
from the Geostationary Operational Environmental Satellites (GOES) longwave

12.1 Remote sensing 281

infrared images (GOES-IR) at a resolution of 0.25◦ × 0.25◦ every half-hour (Hsu
et al., 1997; Sorooshian et al., 2000). The PERSIANN algorithm uses the pixel
brightness temperature (Tb, obtained from the infrared measurement) of cloud and
its neighbouring temperature textures (in terms of means and standard deviations
computed over a small region surrounding the pixel) as inputs to a self-organizing
map (SOM). The SOM clusters the inputs into several cloud groups. For each cloud
group, a multivariate linear function maps from the inputs to the rain rate (using
gauge-corrected radar rain-rate data).

In Hong et al. (2004), the PERSIANN Cloud Classification System (CCS) was
developed. Instead of direct pixel-to-pixel fitting of infrared cloud images to the
rain rate, the PERSIANN CCS used segmentation and classification methods to
process cloud images into a set of disjointed cloud-patch regions. Informative fea-
tures were extracted from cloud-patches and input into a SOM. The SOM took in
23 inputs, and clustered them to a 20×20 grid of 400 cloud groups. For each cloud
group, an exponential function was fitted between Tb and the rain rate R (Fig. 12.2).
The spatial resolution was refined to 0.04◦ × 0.04◦.

180
0

20R
ai

n
ra

te
 (m

m
/h

r)

40

60

80

100

0

20R
ai

n
ra

te
 (m

m
/h

r)

40

60

80

100

200 220 240

200

IR T(k)

IR T(k)

220 240

Scatter plots of training
data (IR and radar)

400 Tb-R curves from
PERSIANN-CCS

(a)

(b)

Fig. 12.2 The nonlinear relation between infrared-derived brightness temperature
Tb (in degrees Kelvin) and rain rate. (a) The training data. (b) The 400 fitted expo-
nential curves for the 400 cloud groups in PERSIANN-CCS. (Reproduced from
Hong et al. (2004) with permission from the American Meteorological Society.)

282 Applications in environmental sciences

Using Doppler weather radar data as input, MLP NN models were developed to
estimate precipitation (Teschl et al., 2007) and runoff (Teschl and Randeu, 2006).

Sea ice

Sea ice plays a major role in the global climate system: (a) it directly affects the
planetary albedo (the fraction of incoming solar energy reflected by the Earth’s
surface), hence the net solar energy absorbed by the Earth; (b) its presence affects
the exchange of heat and momentum between the atmosphere and the ocean; (c)
it is crucial for deep water formation at high latitudes – when sea water freezes to
form ice, salt is ejected into the surrounding water, thereby increasing the water’s
salinity and density, hence the sinking of surface waters to great depths. A major
worry in the global warming scenario is the positive feedback associated with sea
ice, i.e. when some sea ice melts, the albedo drops since water is not as reflective as
ice, hence more solar radiation will be absorbed by the water leading to increased
warming and more melting. Even more alarming is that the current observed melt-
ing rate of the Arctic sea ice is considerably greater than that predicted by the
global climate models (Stroeve et al., 2007). Hence, monitoring of the Arctic sea
ice cover is of paramount importance for our understanding of global warming.
McIntire and Simpson (2002) used MLP NN to classify satellite image pixels into
ice, clouds and water, thereby allowing monitoring of the Arctic sea ice extent.

Snow

The areal extent of snow in mountainous regions is an important piece of climate
information. Furthermore, snow melt is a major source of water supply for many
arid regions. Two approaches to identify clear land, cloud, and areal extent of snow
in a satellite image of mid-latitude regions have been developed by Simpson and
McIntire (2001). A feed-forward MLP NN is used to classify individual images,
and a recurrent NN is used to classify sequences of images. Validation with inde-
pendent in situ data found a classification accuracy of 94% for the feed-forward
NN and 97% for the recurrent NN. Thus when there is rapid temporal sampling,
e.g. images from the Geostationary Operational Environmental Satellites (GOES),
the recurrent NN approach is preferred over the feed-forward NN. For other satel-
lite images, e.g. AVHRR images from polar-orbiting satellites, which do not cover
the same spatial area in rapid temporal sequences, the feed-forward NN classifier
is to be used.

12.1.3 Passive microwave sensing

In satellite remote sensing, the shorter is the wavelength of the radiation, the finer
the spatial resolution of the image. Thus microwaves, with their relatively long

12.1 Remote sensing 283

wavelengths are at a disadvantage compared to visible light and infrared sens-
ing in terms of spatial resolution. However, microwaves from the Earth’s surface
generally can reach the satellite even with moderately cloudy skies, whereas vis-
ible light and infrared radiation cannot. Although microwaves can pass through a
cloudy atmosphere, they interact with the water vapour and the liquid water in the
atmosphere, thus making the inversion problem more complicated.

The Special Sensor Microwave Imager (SSM/I) is flown aboard the Defense
Meteorological Satellite Program (DMSP) satellites. Stogryn et al. (1994) applied
an MLP NN to retrieve surface wind speed from several channels of the SSM/I,
where the NN has one hidden layer and a single output. Two NN models were
developed, one for clear sky and one for cloudy sky conditions. Under cloudy skies,
there was a factor of two improvement in the RMSE over standard retrieval meth-
ods. Krasnopolsky et al. (1995) showed that a single NN with the same architecture
can generate the same accuracy as the two NNs for clear and cloudy skies.

Since the microwaves coming from the ocean surface were influenced by the sur-
face wind speed, the columnar water vapour, the columnar liquid water and the
SST, Krasnopolsky et al. (1999) retrieved these four parameters altogether, i.e. the
NN had four outputs. The inputs were five SSM/I channels at the 19, 22 and 37 GHz
frequency bands, where the 22 GHz band used only vertically polarized radiation,
while the other two bands each separated into vertically and horizontally polarized
channels. Since the four-output model retrieves wind speed better than the single
output model, it is important to incorporate the influence of the columnar water
vapour and liquid water, and the SST. Although the retrieved SST is not very accu-
rate, having SST as an output improves the accuracy of the wind speed retrieval.
This NN retrieval algorithm has been used as the operational algorithm since 1998
by NCEP/NOAA (National Center for Environmental Prediction/National Oceanic
and Atmospheric Administration) in its global data assimilation system. Neural
network models have also been developed to monitor snow characteristics on a
global scale using SSM/I data (Cordisco et al., 2006).

The SSM/I is a passive microwave sensor; we next discuss active microwave
sensors, which are basically spaceborne radars. While SSM/I can measure wind
speed, wind direction cannot be retrieved from the SSM/I data.

12.1.4 Active microwave sensing

Altimeter

The simplest active microwave sensor is the satellite altimeter. It emits a pulsed
radar beam vertically downward from the satellite. The beam is strongly reflected
by the sea surface, and the reflected pulse is measured by a receiver in the altimeter.

284 Applications in environmental sciences

The travel time of the pulse (i.e. the difference between the time when the reflected
pulse arrived and the time when the original pulse was emitted) gives the distance
between the satellite and the sea level, since the pulse travelled at the speed of light.
If the satellite orbital position is known, then this distance measured by the altime-
ter gives the sea level displacements. If the sea surface is smooth as a mirror, the
relected pulse will be sharp, whereas if the surface is wavy, the reflected pulse will
be stretched out in time, since the part of the pulse hitting the wave crest will reflect
before the part hitting the wave trough. Hence, from the sharpness of the reflected
pulse, the surface wave condition can be estimated. Furthermore, the surface wave
condition is strongly related to the local wind condition, hence retrieval of surface
wind speed is possible from the altimetry data. Gourrion et al. (2002) used MLP
NN to retrieve surface wind speed from altimeter data, with the RMS wind error
10–15% lower than those in previous methods.

Scatterometer

Compared to surface wind speed retrieval, it is vastly more difficult to retrieve
surface wind direction from satellite data. The scatterometer is designed to retrieve
both wind speed and direction through the use of multiple radar beams. For instance
in the European Remote-Sensing Satellites (ERS-1 and ERS-2), the scatterometer
has three antennae, sending off three radar beams. The first beam (fore beam) is
aimed at 45◦ from the forward direction, the second (mid beam) at 90◦, and the
third (aft beam) at 135◦ (i.e. 45◦ from the backward direction). As the satellite
flies, the ocean surface to one side of the satellite path is illuminated by first the
fore beam, then the mid beam, and finally the aft beam. From the power of the
backscattered signal relative to that of the incident signal, the normalized radar
cross section σ 0 is obtained. As the three antennae each pick up a backscattered
signal, there are three cross sections (σ 0

1 , σ 0
2 , σ 0

3) for each small illuminated area
(cell) on the Earth’s surface. To first order, σ 0 depends on the sea surface roughness,
which is related to the wind speed, the incidence angle θ (i.e. the angle between
the incident radar beam and the vertical at the illuminated cell, Fig. 12.3), and the
azimuth angle χ (measured on the horizontal plane between the wind vector and
the incident radar beam).

The inversion problem of retrieving the wind speed and wind azimuth from σ 0

has been extensively studied (Thiria et al., 1993; Mejia et al., 1998; Chen et al.,
1999; Cornford et al., 1999; Richaume et al., 2000). In Richaume et al. (2000), two
MLP NN models were used, the first to retrieve the wind speed, and the second
to retrieve the wind azimuth. For inputs, a cell and 12 nearby cells are consid-
ered, each cell having three σ 0 values measured by the three antennae, hence a
total of 13 × 3 = 39 input variables for the first NN model. This NN has two
hidden layers, each with 26 neurons, and a single output (the wind speed). The

12.1 Remote sensing 285

Fore beam

Middle beam

Aft beam

Trajectories

Swath

Satellite Antenna 3

Wind

direction

Sa
te

lli
te

 tr
ac

k

Wind

Antenna 2

Antenna 1

i n
1

θ2, i

χ

Fig. 12.3 A satellite scatterometer emitting three radar beams to retrieve sur-
face wind, with θ the beam incidence angle, and χ the azimuth angle of the
wind. (Reproduced from Mejia et al. (1998) with permission of the American
Geophysical Union.)

second NN for the wind azimuth has the same 39 inputs plus the retrieved wind
speed from the first NN for a total of 40 input variables. This NN has two hid-
den layers, each with 25 neurons. The output layer has 36 neurons, with the j th
neuron representing the posterior probability of the wind azimuth being in the inter-
val [10(j − 1)◦, 10 j◦), (j = 1, . . . , 36), i.e. this second NN is a classifier, with
the solution selected by the highest posterior probability among the 36 azimuth
intervals. Unfortunately, the azimuth inversion problem is a very difficult problem
with multiple solutions. In practice, additional information, usually output from
a numerical weather prediction model, is used to resolve ambiguities in the wind
azimuth. Richaume et al. (2000) found that the NN wind retrieval method for the
ERS scatterometer performed well relative to existing methods.

Synthetic aperture radar

For active remote sensing, one is limited to microwaves since other radiation (e.g.
visible, infrared, etc.) cannot generate a strongly reflected signal from the Earth’s
surface to travel back to the satellite. However, as the wavelengths of microwaves
are much longer than the wavelengths of visible or infrared radiation, the spatial
resolution of microwave images is far coarser than that of images generated using
shorter wavelengths. To obtain high-resolution microwave images (with resolution
down to about 10m), the synthetic aperture radar (SAR) has been invented.

For a radar operating at a given frequency, the larger the size of the receiver
antenna, the finer is the observed spatial resolution. Since the satellite is flying, if
an object on the ground is illuminated by the radar beam at time t1 and continues
to be illuminated till time t2, then all the reflected data collected by the satellite

286 Applications in environmental sciences

between t1 and t2 can be combined as though the data have been collected by a very
large antenna. A high resolution image can be constructed accurately provided that
the object is stationary. If the object is moving, it is misplaced in the image, hence
one finds moving trains displaced off their tracks in SAR images.

Horstmann et al. (2003) used MLP NN models with three hidden layers to
retrieve wind speeds globally at about 30 m resolution from SAR data. An MLP
NN classifier has been developed to detect oil spill on the ocean surface from SAR
images (Del Frate et al., 2000).

To retrieve forest biomass from SAR data, Del Frate and Solimini (2004) used
an MLP NN with six inputs (the backscattering cross-sections for three different
polarizations (σ 0

hh, σ 0
vv, σ 0

hv) at two frequency bands), two hidden layers with 24
neurons each, and one output. A pruning procedure removed hidden neurons with
connecting weights of small magnitude, resulting in an NN with only seven and
four hidden neurons in the first and second hidden layers, respectively. The pruned
network has a training RMSE almost 10% lower than the original. In agricultural
applications of SAR data, Del Frate et al. (2004) used MLP NN to monitor the soil
moisture and the growth cycle of wheat fields.

12.2 Oceanography

12.2.1 Sea level

Machine learning methods have been applied to forecast coastal sea level fluctu-
ations. Arising from astronomical forcing, the tidal component of the sea level
fluctuations is accurately forecast by harmonic analysis (Emery and Thomson,
1997). However, the non-tidal component, mainly forced by local meteorologi-
cal conditions, is not easy to forecast, and without information on the non-tidal
component, ships can be accidentally grounded in coastal waters. Cox et al. (2002)
used MLP NN to forecast the non-tidal component at Galveston Bay, Texas, using
the two wind components, barometric pressure, and the previously observed water
level anomaly as predictors.

Coastal sea level is measured by tide gauges; however, long-term maintenance
of tide gauges is costly. For instance, there are only about ten permanent tide gauge
stations along the Canadian Atlantic coastline stretching 52000 km. Han and Shi
(2008) proposed the training of MLP NN models to forecast hourly sea level fluctu-
ations h(t) at sites with only temporary tide gauges, using as predictors, the hourly
sea level at neighbouring permanent tide gauge stations from time t − 12 h to t .
Once the NN models have been trained, the temporary tide gauges can be removed,
and their sea levels forecast using data from the neighbouring permanent stations.
Requiring only one month of training data from a temporary gauge (plus data from

12.2 Oceanography 287

the permanent stations), their model was capable of accurate and robust long-term
predictions of both the tidal and non-tidal components of the sea level fluctuations.
An offshore drilling platform can monitor the sea level fluctuations for a month and
then use this method to predict the sea level at the platform from the permanent tide
gauge stations in the future.

Nonlinear principal component analysis (NLPCA) (with a circular bottleneck
node) has been used to analyze the tidal cycle off the German North Sea coast
(Herman, 2007).

12.2.2 Equation of state of sea water

For sea water, the equation of state describes the density ρ as a function of the
temperature T , salinity S and pressure p. The equation is nonlinear and can
only be described empirically. The standard used by oceanographers has been the
UNESCO International Equation of State for Seawater (UES) (UNESCO, 1981),
where

ρ(T, S, p) = ρ(T, S, 0)/[1 − p/K (T, S, p)], (12.3)

with ρ in kg m−3, T in ◦C, S in practical salinity units (psu), p in bar, and
K (T, S, p) is a bulk modulus. The formula is defined over the range −2 < T <

40 ◦C, 0 < S < 40 (psu), and 0 < p < 1000 bar, encompassing the whole range
of conditions encountered in the global oceans. Unfortunately, both ρ(T, S, 0) and
K (T, S, p) are given by complicated empirical expressions (involving polynomi-
als) (see e.g. Gill, 1982, Appendix 3), so the density in (12.3) is actually given by
a cumbersome formula with over 40 parameters.

There are two disadvantages with the UES formula. First, in ocean general cir-
culation models, the density at every grid point needs to be updated regularly as the
model is integrated forward in time. Evaluating the UES formula at every grid point
in the model could consume up to 40% of the total computing time (Krasnopolsky
et al., 2002; Krasnopolsky and Chevallier, 2003). Second, in data assimilation
applications, observed data are assimilated into the ocean model to guide its evolu-
tion. As temperature data are far more plentiful than salinity data, one generally has
temperature data, but not salinity data, available for assimilation into the model.
If temperature data are assimilated into an ocean model using the full equation
of state, and if the corresponding salinity values are not adjusted, then in some
circumstances the vertical density structure in the water column can become grav-
itationally unstable. To adjust the salinity, one needs to calculate S from the UES
formula as a function of T, ρ and p (or depth z). This involves an iterative proce-
dure, which can be several orders of magnitude more costly computationally than
solving the UES itself.

288 Applications in environmental sciences

In numerical models using the depth z as the vertical coordinate, one can easily
convert from p to z by assuming hydrostatic balance, i.e.

∂p

∂z
= −ρg, (12.4)

with g the gravitational constant. Hence the UES can be regarded as defining the
relation

ρ = ρ(T, S, z), (12.5)

and through its inversion, the salinity equation

S = S(T, ρ, z). (12.6)

The MLP NN models were developed (Krasnopolsky et al., 2002; Krasnopolsky
and Chevallier, 2003) as low-cost clones of these ρ and S equations. To develop
the ρ clone, 4000 points of T, S and z were selected over a 3-dimensional grid,
encompassing the full range of oceanographic conditions encountered in the global
oceans. The NN has three inputs (T, S, z), a single hidden layer with three hidden
neurons (using the tanh activation function), and a single output ρ (using the linear
activation function). After training using the 4000 observations, the NN gives the
relation

ρ = ρNN(T, S, z). (12.7)

Similarly, one can obtain an NN relation

S = SNN(T, ρ, z). (12.8)

These NN equations were able to simulate the original UES relations to high accu-
racy at low costs – the density calculation by NN is about two times faster than the
UES formula, while the salinity calculation by NN is several hundred times faster
than an iterative numerical inversion of the UES.

For further computational cost reduction, the small density changes from one
time step to the next can be approximated by the simple differential relation

�ρ = ∂ρ

∂T
�T + ∂ρ

∂S
�S, (12.9)

where �T and �S are increments of T and S. Differentiating the analytic expres-
sions for ρNN and SNN handily provides analytic expressions for ∂ρ/∂T and ∂ρ/∂S,
which allow inexpensive computation of (12.9). Thus (12.9) is used to estimate the
small changes in ρ over a number of time steps (usually several tens of steps),
before the UES or NN approximation of the UES are used for a more accurate
update.

12.2 Oceanography 289

Overall, use of NN (and its derivatives) as a low-cost substitute for the UES in
the high resolution Multiscale Ocean Forecast system has accelerated density cal-
culations by a factor of 10, with the errors in the density calculations not exceeding
the natural uncertainty of 0.1 kg m−3. Hence the computational cost of the density
calculations has dropped from 40% to 4–5% of the total cost (Krasnopolsky and
Chevallier, 2003).

12.2.3 Wind wave modelling

Incoming water waves with periods of several seconds observed by sunbathers
on a beach are called wind waves, as they are surface gravity waves (LeBlond
and Mysak, 1978; Gill, 1982) generated by the wind. As the ocean surface allows
efficient propagation of wind waves, they are usually generated by distant storms,
often thousands of kilometres away from the calm sunny beach.

The wave energy spectrum F on the ocean surface is a function of the 2-
dimensional horizontal wave vector k. We recall that the wavelength is 2π‖k‖−1,
while the wave’s phase propagation is along the direction of k. The evolution of
F(k) is described by

dF

dt
= Sin + Snl + Sds + Ssw, (12.10)

where Sin is the input source term, Snl the nonlinear wave–wave interaction term,
Sds the dissipation term, and Ssw is the term incorporating shallow-water effects,
with Snl being the most complicated one. For surface gravity waves, resonant
nonlinear wave–wave interactions involve four waves satisfying the resonance
conditions

k1 + k2 = k3 + k4, and ω1 + ω2 = ω3 + ω4, (12.11)

where ki and ωi (i = 1, . . . , 4) are, respectively, the wave vector and angular
frequency of the i th wave. Letting k = k4 and ω = ω4, Snl in its full form can be
written as (Hasselmann and Hasselmann, 1985)

Snl(k) = ω

∫
σ(k1, k2, k3, k) δ(k1 + k2 − k3 − k) δ(ω1 + ω2 − ω3 − ω)

× [n1n2(n3 + n) + n3n(n1 + n2)] dk1dk2dk3, (12.12)

with ni = F(ki)/ωi , σ a complicated net scattering coefficient and δ the Dirac
delta function which ensures that the resonance conditions (12.11) are satisfied dur-
ing the 6-dimensional integration in (12.12). As this numerical integration requires
103–104 more computation than all other terms in the model, an approximation,
e.g. the Discrete Interaction Approximation (DIA) (Hasselmann et al., 1985), has

290 Applications in environmental sciences

to be made to reduce the amount of computation for operational wind wave forecast
models.

Since (12.12) is in effect a map from F(k) to Snl(k), Krasnopolsky et al. (2002)
and Tolman et al. (2005) proposed the use of MLP NN to map from F(k) to Snl(k)

using training data generated from (12.12). Since k is 2-dimensional, both F and
Snl are 2-dimensional fields, containing of the order of 103 grid points in the k-
space. The computational burden is reduced by using PCA on F(k) and Snl(k)

and retaining only the leading PCs (about 20-50 for F and 100-150 for Snl) before
training the NN model. Once the NN model has been trained, computation of Snl

from F can be obtained from the NN model instead of from the original (12.12).
The NN model is nearly ten times more accurate than the DIA. It is about 105

times faster than the original approach using (12.12) and only seven times slower
than DIA (Krasnopolsky, 2007).

12.2.4 Ocean temperature and heat content

Due to the ocean’s vast heat storage capacity, upper ocean temperature and heat
content anomalies have a major influence on global climate variability. The best
known large-scale interannual variability in sea surface temperature (SST) is the
El Niño-Southern Oscillation (ENSO), a coupled ocean–atmosphere interaction
involving the oceanic phenomenon El Niño in the tropical Pacific, and the asso-
ciated atmospheric phenomenon, the Southern Oscillation (Philander, 1990; Diaz
and Markgraf, 2000). The coupled interaction results in anomalously warm SST in
the eastern equatorial Pacific during El Niño episodes, and cool SST in the central
equatorial Pacific during La Niña episodes. The ENSO is an irregular oscillation,
but spectral analysis does reveal a broad spectral peak around the 4–5 year period.
Because El Niño is associated with the collapse in the Peruvian anchovy fishery,
and ENSO has a significant impact on extra-tropical climate variability, forecasting
tropical Pacific SST anomalies at the seasonal to interannual time scale (Goddard
et al., 2001) is of great scientific and economic interest.

Tangang et al. (1997) used MLP NN to forecast the SST anomalies at the
Niño3.4 region (see Fig. 2.3 for location). For predictors, the NN model used
the seven leading principal components (PCs) of the tropical Pacific wind stress
anomalies (up to four seasons prior) and the Niño3.4 SST anomaly itself, hence a
total of 7 × 4 + 1 predictors. Tangang et al. (1998a) found that NN using the lead-
ing PCs of the tropical sea level pressure (SLP) anomalies forecast better than that
using the PCs of the wind stress anomalies. Tangang et al. (1998b) found that using
PCs from extended empirical orthogonal function analysis (also called space–time
PCA or singular spectrum analysis) led to far fewer predictor variables, hence a
much smaller NN model. Tang et al. (2000) compared the SST forecasts by MLP

12.2 Oceanography 291

NN (actually the ensemble average forecast of 20 NN models trained with different
initial weights), linear regression (LR) and canonical correlation analysis (CCA),
but using a cross-validated t-test, they were unable to find a statistically significant
difference at the 5% level between the NN and LR models and between the NN
and CCA models.

Yuval (2000) introduced generalized cross-validation (GCV) (Golub et al., 1979;
Haber and Oldenburg, 2000) to control overfitting/underfitting automatically in
MLP NN and applied the method to forecasting tropical Pacific SST anomalies.
Yuval (2001) used bootstrap resampling of the data to generate an ensemble of
MLP NN models and used the ensemble spread to estimate the forecast uncertainty.

Thus far, the SST forecasts have been restricted to specific regions in the tropical
Pacific, e.g. the Niño3.4 region. Wu et al. (2006b) developed an MLP NN model
to forecast the SST anomalies of the whole tropical Pacific. This was achieved by
forecasting the five leading PCs of the SST anomalies separately, then combining
the contributions from the individual modes. For each PC, an ensemble of 30 NN
models combined to give an ensemble-averaged forecast. For the first SST PC, NN
failed to beat LR at lead times of 6 months or less in cross-validated correlation
scores, and NN was only slightly ahead of LR at longer lead times. For PCs 2, 3
and 4, NN was ahead of LR at all lead times from 3–15 months. However, since PC
1 contains far more variance than the higher modes, the inability of NN to do well
for PC 1, especially at shorter lead times, explains why overall NN is not vastly
better than LR. Aguilar-Martinez (2008) tested support vector regression (SVR)
and MLP NN in forecasting the tropical Pacific SST anomalies. The western warm
water volume anomaly calculated by Meinen and McPhaden (2000) was also found
to be helpful as an extra predictor.

Garcia-Gorriz and Garcia-Sanchez (2007) used MLP NN models to predict
SST in the western Mediterranean Sea. The NNs were trained with monthly
meteorological variables (SLP, 10 m zonal and meridional wind components, 2 m
air temperature, 2 m dewpoint temperature, and total cloud cover) as input and
satellite-derived SST as target output. The trained NNs predicted both the seasonal
and the inter-annual variability of SST well in that region. The NNs were also used
to reconstruct SST fields from satellite SST images with missing pixels.

Tropical Pacific SST anomalies have also been analyzed by nonlinear principal
component analysis (NLPCA) (Monahan, 2001; Hsieh, 2001b, 2007) (see Sec-
tion 10.1.2), with the first NLPCA mode extracting the ENSO signal in the SST
anomalies. The NLPCA(cir) method, i.e. NLPCA with a circular bottleneck node
(see Section 10.1.4), has also been applied to the tropical Pacific SST anomalies
(Hsieh, 2001b), and to thermocline depth anomalies (An et al., 2005). The closed
curve solution of NLPCA(cir) for the thermocline depth anomalies is consistent
with the recharge–discharge oscillator theory (Jin, 1997a,b) which has the recharge

292 Applications in environmental sciences

and discharge of equatorial heat content in the upper ocean causing the coupled
ocean–atmosphere system to oscillate as ENSO. In An et al. (2006), combined
PCA was first performed on the anomalies of sea level height, SST and the upper
50 m zonal current (i.e. the eastward component of the current), then the six lead-
ing PCs were input to an NLPCA(cir) model to extract the first combined nonlinear
mode. The NLPCA and NLPCA(cir) models have also been used to analyze the
observed tropical Pacific upper ocean heat content anomalies for nonlinear modes
of decadal and inter-annual variability (Tang and Hsieh, 2003b).

Singular spectrum analysis (SSA) is an extension of PCA to include time lags
(see Sections 3.4 and 3.5), hence it is also called space–time PCA or extended
empirical orthogonal function analysis. Nonlinear SSA (NLSSA) has been applied
to analyze the tropical Pacific SST anomalies and the SLP anomalies (Wu and
Hsieh, 2002) (see Section 10.6).

Nonlinear canonical correlation analysis (NLCCA) has been applied to the trop-
ical Pacific (see Section 11.1.1) to extract the correlated modes between sea level
pressure (SLP) anomalies and SST anomalies (Hsieh, 2001a), and between wind
stress and SST anomalies (Wu and Hsieh, 2002, 2003), with more nonlinear rela-
tions found during 1981–1999 than during 1961–1975. Collins et al. (2004) studied
the predictability of the Indian Ocean SST anomalies by performing CCA and
NLCCA on SST and SLP anomalies.

12.3 Atmospheric science

12.3.1 Hybrid coupled modelling of the tropical Pacific

In Section 12.2.4, we have reviewed use of machine learning methods for forecast-
ing tropical Pacific SST anomalies, as the El Niño-Southern Oscillation (ENSO)
generates warm El Niño states and cool La Niña states aperiodically. Forecast-
ing of the ENSO has been done using three main types of model: dynamical
models, statistical or empirical models, and hybrid models which use a combined
dynamical–statistical approach (Barnston et al., 1994).

In the dynamical approach, as there are fast waves in the atmosphere, small
time steps (hence large computational efforts) are needed to keep the dynamical
model stable. The hybrid approach replaces the dynamical atmosphere in the cou-
pled ocean–atmosphere system with a statistical/empirical model, i.e. a dynamical
ocean model is coupled to an inexpensive statistical/empirical atmospheric model.
Originally only linear statistical models were used to predict wind stress from
upper ocean variables.

Tang et al. (2001) used MLP NN to build a nonlinear regression model for the
tropical wind stress anomalies. A six-layer dynamical ocean model of the tropical

12.3 Atmospheric science 293

Pacific was driven by observed wind stress. Leading principal components (PC) of
the model upper ocean heat content anomalies and PCs of the observed wind stress
anomalies were computed, and NN models were built using the heat content PCs as
inputs and the wind stress PCs as outputs, so that given a heat content anomaly field
in the ocean model, a simultaneous wind stress anomaly field can be predicted.

Next, the empirical atmospheric model using NN was coupled to the dynamical
ocean model, with the upper ocean heat content giving an estimate of the wind
stress via the NN model, and the wind stress in turn driving the dynamical ocean
model (Tang, 2002). When used for ENSO forecasting, the ocean model was first
driven by the observed wind stress to time t1, then to start forecasting at t1, the
NN atmospheric model was coupled to the ocean model, and the coupled model
was run for 15 months (Tang and Hsieh, 2002). Adding data assimilation further
improved the forecasting capability of this hybrid coupled model (Tang and Hsieh,
2003a).

In the hybrid coupled model of Li et al. (2005), the dynamical ocean model
from Zebiak and Cane (1987) was coupled to an NN model of the wind stress.
The original ocean model had a rather simple parameterization of Tsub (the ocean
temperature anomaly below the mixed layer) in terms of the thermocline depth
anomaly h. In Li et al. (2005), the parameterization was improved by using an NN
model to estimate Tsub from h. A similar hybrid coupled model was used to study
how ENSO properties changed when the background climate state changed (Ye
and Hsieh, 2006).

12.3.2 Climate variability and climate change

There are many known modes of climate variability, the most famous of which
is the El Niño-Southern Oscillation (ENSO), which has been presented in Sec-
tions 12.2.4 and 12.3.1. Here we will review the application of machine learning
methods to several other modes of climate variability – the Arctic Oscillation, the
Pacific–North American teleconnection, the stratospheric Quasi-Biennial Oscilla-
tion, the Madden–Julian Oscillation and the Indian summer monsoon – as well as
to anthropogenic climate change.

Arctic Oscillation (AO)

In the atmosphere, the most prominent mode in the Northern Hemisphere is the
Arctic Oscillation (AO), also commonly referred to as the North Atlantic Oscilla-
tion (NAO), due to the stronger impact of the AO in the North Atlantic sector. The
AO was defined by Thompson and Wallace (1998) as the first empirical orthogo-
nal function (EOF) mode (i.e. the spatial pattern of the first mode from principal
component analysis) of wintertime sea level pressure (SLP) anomalies over the

294 Applications in environmental sciences

extra-tropical Northern Hemisphere. The AO is a seesaw pattern in atmospheric
pressure between the Arctic basin and middle latitudes, exhibiting lower than nor-
mal pressure over the polar region and higher than normal pressure at mid latitudes
(about 37◦N– 45◦N) in its positive phase, and the reverse in its negative phase.
Due to its strong zonal symmetry, the AO is also often referred to as the northern
annular mode (NAM) (Thompson and Wallace, 2000). During the positive phase of
AO, below normal Arctic SLP, enhanced surface westerlies in the North Atlantic,
and warmer and wetter than normal conditions in northern Europe tend to prevail,
together with a warmer winter in much of the USA east of the Rocky Mountains
and central Canada, but colder in Greenland and Newfoundland.

The standardized leading principal component (PC) of the winter SLP anomalies
is commonly taken to be an AO index, which is a time series indicating when the
AO mode is excited. The usual assumption is that the atmospheric climate anoma-
lies associated with positive and negative phases of the AO are opposite to each
other, i.e. the impact of the AO on the climate is linear. There is, however, some
evidence indicating a nonlinear relationship between the AO and northern winter
climate (Pozo-Vazquez et al., 2001).

The nonlinear association between the AO and North American winter climate
variation has been examined by nonlinear projection (NLP) (Hsieh et al., 2006).
The NLP is easily performed by an MLP NN with a single input x and multiple
outputs y, i.e. y = f(x). When f is linear, one simply has linear projection (LP),
which is commonly used (Deser and Blackmon, 1995). The NLP can be separated
into a linear component, which is simply LP, and a nonlinear component, which
is NLP – LP. With x being the AO index, NLP were performed separately with
y being the leading PCs of SLP, surface air temperature (SAT), precipitation and
Z500 (500 hPa geopotential height) anomalies (Hsieh et al., 2006) over the winter
extra-tropical Northern Hemisphere. While with LP, the AO effects were much
weaker in the Pacific sector than the Atlantic sector, such is not the case for the
nonlinear component of NLP, e.g. the nonlinear component for SLP is stronger in
the Pacific sector than the Atlantic sector.

The robustness of the nonlinear association between AO and North America
winter climate found in the observed data was further investigated using output
from a coupled general circulation model (Wu et al., 2006a). As the nonlinear
patterns of North American Z500 and SAT anomalies associated with the AO gen-
erated in the model basically agreed with the observational results, this provides
support that the nonlinear behaviour of the North American winter climate with
respect to the AO is real as this phenomenon was found in the observed data and in
a climate simulation which was completely independent of the observations.

The application of NLPCA to the Northern Hemisphere winter climate data
by Monahan et al. (2000), Monahan et al. (2001), Monahan et al. (2003) and

12.3 Atmospheric science 295

Teng et al. (2004) has led to some controversy regarding the robustness of the
results (Christiansen, 2005; Monahan and Fyfe, 2007; Christiansen, 2007). Recall
in Section 10.1.3, it was explained why NLPCA is fundamentally more prone to
overfitting than nonlinear regression (which has NLP as a special case), and that
using an additional information criterion helps.

Pacific–North American (PNA) teleconnection

The term ‘teleconnection’ refers to a recurring and persistent, large-scale pattern of
atmospheric anomalies spanning vast geographical areas. The Pacific–North Amer-
ican teleconnection (PNA) is one of the most prominent modes of low-frequency
variability in the extra-tropical Northern Hemisphere (Wallace and Gutzler, 1981).
It stretches from the Pacific to North America in a wavy pattern of four alternat-
ing positive and negative anomaly cells as seen in the geopotential height anomaly
fields. The positive phase of the PNA pattern shows positive geopotential height
anomalies around Hawaii, negative anomalies south of the Aleutian Islands, pos-
itive anomalies over the inter-mountain region of North America, and negative
anomalies over southeastern USA. The PNA is also associated with precipitation
and surface temperature anomalies – e.g. the positive phase of the PNA pat-
tern is associated with positive temperature anomalies over western Canada and
the extreme western USA, and negative temperature anomalies across the south-
central and southeastern USA. The PNA effects are mainly manifested in the winter
months.

Although PNA is a natural internal mode of climate variability in the mid-
latitude atmosphere, it is also strongly influenced by the El Niño-Southern Oscil-
lation (ENSO), the coupled ocean–atmosphere oscillation centred in the equatorial
Pacific. During ENSO warm episodes (El Niño), the positive phase of the PNA
tends to be excited, while during ENSO cold episodes (La Niña), the negative
phase of the PNA tends to be excited. Hence the extra-tropical effects of ENSO
tend to be manifested by the PNA teleconnection.

The ENSO sea surface temperature (SST) index was defined as the standardized
first principal component (PC) of the winter (November–March) SST anomalies
over the tropical Pacific. A nonlinear projection (NLP) of this SST index onto
the Northern Hemisphere winter sea level pressure (SLP) anomalies by MLP NN
was performed by Wu and Hsieh (2004a) to investigate the nonlinear association
between ENSO and the Euro–Atlantic winter climate. While the linear impact of
ENSO on the Euro–Atlantic winter SLP is weak, the NLP revealed statistically sig-
nificant SLP anomalies over the Euro–Atlantic sector during both extreme cold and
warm ENSO episodes, suggesting that the Euro–Atlantic climate mainly responds
to ENSO nonlinearly. The nonlinear response, mainly a quadratic response to the
SST index, reveals that regardless of the sign of the SST index, positive SLP

296 Applications in environmental sciences

anomalies are found over the North Atlantic, stretching from eastern Canada to
Europe (with the anomaly centre located just northwestward of Portugal), and neg-
ative anomalies centred over Scandinavia and the Norwegian Sea, consistent with
the excitation of the positive North Atlantic Oscillation (NAO) pattern. A similar
effect was found in the 500 hPa geopotential height anomalies (Wu and Hsieh,
2004b).

The NLP approach was also used to study ENSO effects on the winter surface
air temperature and precipitation over North America (Wu et al., 2005) and over
the whole extra-tropical Northern Hemisphere (Hsieh et al., 2006).

Relations between the tropical Pacific SST anomalies and the Northern Hemi-
sphere mid-latitude winter atmospheric variability simulated in an atmospheric
general circulation model (GCM) have also been explored using nonlinear canoni-
cal correlation analysis (NLCCA) by Wu et al. (2003) (see Section 11.1.2).

Quasi-Biennial Oscillation (QBO)

In the equatorial stratosphere, the zonal wind (i.e. the east-west component of the
wind) manifests a quasi-biennial oscillation (QBO) (Naujokat, 1986; Hamilton,
1998; Baldwin et al., 2001). The QBO dominates over the annual cycle or other
variations in the equatorial stratosphere, with the period of oscillation varying
roughly between 22 and 32 months, the mean period being about 28 months.
In Section 10.1.4, we have seen the application of the NLPCA(cir) model (i.e.
NLPCA with one circular bottleneck node) to the equatorial stratospheric zonal
wind to identify the structure of the QBO. After the 45 year means were removed,
the zonal wind u at seven vertical levels in the stratosphere became the seven
inputs to the NLPCA(cir) network (Hamilton and Hsieh, 2002; Hsieh, 2007), and
the NLPCA(cir) mode 1 solution was a closed curve in a 7-dimensional space
(Fig. 10.8). The system goes around the closed curve once during one cycle of
the QBO. The observed strong asymmetries between the easterly and westerly
phases of the QBO (Hamilton, 1998; Baldwin et al., 2001) are well captured by
the nonlinear mode (Fig. 10.9).

The actual time series of the wind measured at a particular height level is some-
what noisy and it is often desirable to have a smoother representation of the QBO
time series which captures the essential features at all vertical levels. Also, rever-
sal of the wind from westerly to easterly and vice versa occurs at different times
for different height levels, rendering it difficult to define the phase of the QBO.
Hamilton and Hsieh (2002) found that the phase of the QBO as defined by the
NLPC θ is more accurate than previous attempts to characterize the phase, leading
to a stronger link between the QBO and the Northern Hemisphere polar strato-
spheric temperatures in winter (the Holton-Tan effect) (Holton and Tan, 1980) than
previously found.

12.3 Atmospheric science 297

Nonlinear singular spectrum analysis (NLSSA) has also been applied to study
the QBO (Hsieh and Hamilton, 2003).

Madden–Julian Oscillation (MJO)

The Madden–Julian Oscillation (MJO) is the dominant component of the intra-
seasonal (30–90 day time scale) variability in the tropical atmosphere. It consists
of large-scale coupled patterns in atmospheric circulation and deep convection,
all propagating slowly eastward over the Indian and Pacific Oceans where the
sea surface is warm (Zhang, 2005). Association between this tropical oscillation
and the mid-latitude winter atmospheric conditions has been found (Vecchi and
Bond, 2004). Using MLP NN, nonlinear projection (NLP) of an MJO index on
to the precipitation and 200 hPa wind anomalies in the northeast Pacific during
January–March by Jamet and Hsieh (2005) shows asymmetric atmospheric pat-
terns associated with different phases of the MJO, with strong nonlinearity found
for precipitation anomalies and moderate nonlinearity for wind anomalies.

Indian summer monsoon

The Great Indian Desert and adjoining areas of the northern and central Indian
subcontinent heat up during summer, producing a low pressure area over the north-
ern and central Indian subcontinent. As a result, moisture-laden winds from the
Indian Ocean rush in to the subcontinent. As the air flows towards the Himalayas,
it is forced to rise and precipitation occurs. The southwest monsoon is generally
expected to begin around the start of June and dies down by the end of September.
Failure of the Indian summer monsoon to deliver the normal rainfall would bring
drought and hardship for the Indian economy. Since the late 1800s, several stud-
ies have attempted long-range prediction of the Indian summer monsoon rainfall.
Cannon and McKendry (1999, 2002) applied MLP NN to forecast the rainfall using
regional circulation PCs as predictors.

Climate change

There is even longer time scale variability or change in the climate system – e.g. the
Pacific Decadal Oscillation (PDO) has main time scales around 15–25 years and
50–70 years (Mantua and Hare, 2002). The increase of anthropogenic greenhouse
gases in the atmosphere may also cause long-term climate change. There have not
been many applications of machine learning methods to climate change since the
observed records are relatively short for nonlinear signal analysis. Nevertheless,
NN methods have been applied to anthropogenic climate change problems (Walter
et al., 1998; Walter and Schonwiese, 2002; Pasini et al., 2006).

298 Applications in environmental sciences

In Walter et al. (1998), NN methods were used to simulate the observed global
(and hemispheric) annual mean surface air temperature variations during 1874–
1993 using anthropogenic and natural forcing mechanisms as predictors. The two
anthropogenic forcings were equivalent CO2 concentrations and tropospheric sul-
fate aerosol concentrations, while the three natural forcings were volcanism, solar
activity and ENSO. The NN explained up to 83% of the observed temperature vari-
ance, significantly more than by multiple regression analysis. On a global average,
the greenhouse gas signal was assessed to be 0.9–1.3 K (warming), the sulfate
signal 0.2–0.4 K (cooling), which were similar to the findings from GCM exper-
iments. The related signals of the three natural forcing mechanisms each covered
an amplitude of around 0.1–0.3 K.

12.3.3 Radiation in atmospheric models

The earth radiates primarily in the infrared frequency band. This outgoing radia-
tion is called the longwave radiation (LWR), as the wavelengths are long relative
to those of the incoming solar radiation. Greenhouse gases, (e.g. carbon dioxide,
water vapour, methane and nitrous oxide) absorb certain wavelengths of the LWR,
adding heat to the atmosphere and in turn causing the atmosphere to emit more
radiation. Some of this radiation is directed back towards the Earth, hence warm-
ing the Earth’s surface. The Earth’s radiation balance is very closely achieved since
the outgoing LWR very nearly equals the absorbed incoming shortwave radiation
(SWR) from the sun (primarily as visible, near-ultraviolet and near-infrared radia-
tion). Atmospheric general circulation models (GCM) typically spend a major part
of their computational resources on calculating the LWR and SWR fluxes through
the atmosphere.

A GCM computes the net LWR heat flux F(p), where the pressure p serves as
a vertical coordinate. The cooling rate Cr(p) is simply proportional to ∂ F/∂p.
Besides being a function of p, F is also a function of S, variables at the
Earth’s surface, T, the vertical temperature profile, V, vertical profiles of chemical
concentrations (e.g. CO2 concentration), and C, cloud variables.

Chevallier et al. (1998, 2000) developed MLP NN models to replace LWR fluxes
in GCMs. For the flux F at the discretized pressure level p j , the original GCM
computed

F =
∑

i

ai (C)Fi (S, T, V), (12.13)

where the summation over i is from the Earth’s surface to the level p j , Fi is the
flux at level pi without the cloud correction factor ai . Neural network models
Ni (S, T, V) were developed to replace Fi (S, T, V). This ‘NeuroFlux’ model was

12.3 Atmospheric science 299

highly accurate, and has been implemented in the European Centre for Medium-
Range Weather Forecasts (ECMWF) global atmospheric model, as it ran eight
times faster than the original LWR code (Chevallier et al., 2000).

In an alternative approach by Krasnopolsky et al. (2005b), MLP NN models of
the form N (S, T, V, C) were developed to replace the cooling rates Cr at levels p j

and several radiation fluxes in the GCM. Discussions on the relative merits of the
two approaches were given in Chevallier (2005) and Krasnopolsky et al. (2005a).
This alternative NN approach is also highly accurate and has been implemented
in the National Center for Atmospheric Research (NCAR) Community Atmo-
spheric Model (CAM), and in the National Aeronautics and Space Administration
(NASA) Natural Seasonal-to-Interannual Predictability Program (NSIPP) GCM
(Krasnopolsky et al., 2005b; Krasnopolsky and Fox-Rabinovitz, 2006; Krasnopol-
sky, 2007). For the NCAR CAM model, the NN model has 220 inputs and 33
outputs, and a single hidden layer with 50 neurons was found to be enough, giving
an NN LWR code capable of running 150 times faster than the original LWR code
(Krasnopolsky, 2007).

Similarly, this NN approach has been applied to replace the SWR codes in
the NCAR CAM GCM (Krasnopolsky and Fox-Rabinovitz, 2006; Krasnopolsky,
2007). For the CAM3 model, the NN SWR model has 451 inputs and 33 outputs,
and a single hidden layer with 55 neurons was found to be enough, yielding an
NN SWR code capable of running about 20 times faster than the original SWR
code (Krasnopolsky, 2007). Hence MLP NN models have been able to emulate
the LWR and SWR codes in GCMs accurately, leading to substantial savings in
computational resources.

12.3.4 Post-processing and downscaling of numerical model output

Sophisticated numerical models known as general circulation models (GCMs) are
used both in weather forecasting and in climate research. When used in climate
research, GCM also stands for ‘global climate models’. Post-processing of GCM
output by multiple linear regression has been discussed in Section 1.4.5. The rea-
son post-processing is needed is because GCMs do not have fine enough resolution
to model smaller scale processes (e.g. individual clouds, or hills and valleys). Also,
some local variables (e.g. atmospheric pollutant concentrations) may not be vari-
ables computed by the GCM. In model output statistics (MOS) (see Section 1.4.5),
GCM output variables are the predictors for a multiple regression model, trained
using predictands from observed data. Hence MOS allows for correction of GCM
model output bias and extension of GCM forecasts to variables not computed by
the GCM. Machine learning methods such as NN allow the development of non-
linear MOS. One disadvantage of MOS is that long records of GCM output need to

300 Applications in environmental sciences

be saved as training data. In most weather prediction centres, the GCM is upgraded
frequently. After each upgrade, the GCM needs to be rerun for years to generate
the long records needed for training the new MOS regression relations. As this
is very costly, updateable MOS (UMOS) systems have been developed to allevi-
ate the need for complete retraining after a model upgrade (Wilson and Vallée,
2002). Yuval and Hsieh (2003) developed an MLP NN model to perform nonlinear
updateable MOS.

Global climate models are the main tools for estimating future climate conditions
under increasing concentrations of atmospheric greenhouse gases. Unfortunately,
the spatial resolution of GCMs used in climate research is coarse, typically around
two or more degrees of latitude or longitude – far too coarse to resolve climate
changes at the local scale (e.g. in a valley). Downscaling the GCM model output is
therefore crucial for application of GCM to local scale and local variables.

There are two approaches to downscaling GCMs: (i) process-based techniques;
and (ii) empirical techniques (Hewitson and Crane, 1996). In the process-based
approach, commonly called dynamical downscaling, regional climate models
(RCMs), i.e. higher resolution numerical models of a local region, are run using
boundary conditions provided by the GCMs. In the empirical approach, com-
monly called statistical downscaling, statistical or machine learning methods are
used to relate the GCM model output to the local variables. The GCMs are capa-
ble of resolving, e.g. mid-latitude weather systems (typically about 1000 km in
diameter), a scale known as the synoptic scale. In empirical downscaling, it is
implictly assumed that the GCM is accurate in forecasting the synoptic-scale atmo-
spheric circulation, and that the local variables are strongly influenced by the
synoptic-scale circulation.

Hewitson and Crane (1996) used MLP NN for precipitation forecasts with pre-
dictors from the GCM atmospheric data over southern Africa and the surrounding
ocean. The six leading PCs (principal components) of the sea level pressure field
and the seven leading PCs of the 500 hPa geopotential height field from the GCM
were used as inputs to the NN, and the predictands were 1◦ × 1◦ gridded daily pre-
cipitation data over southern Africa. The GCM was also run at double the present
amount of CO2 in the atmosphere (called the 2×CO2 experiment), and the model
output fed into the previously derived NN to predict precipitation in the 2×CO2

atmosphere. The assumption is that the empirical relation derived between the local
precipitation and the synoptic-scale atmospheric circulation for the 1×CO2 atmo-
sphere remains valid for the 2×CO2 atmosphere. The danger of such an assumption
will be discussed later in this subsection. Cavazos (1997) also used MLP NN to
downscale GCM synoptic-scale atmospheric circulation to local 1◦ × 1◦ gridded
winter daily precipitation over northeastern Mexico. Instead of PCs, rotated PCs of
the GCM data were used as inputs to the NN.

12.3 Atmospheric science 301

For precipitation downscaling, Olsson et al. (2004) found it advantageous to
use two MLP NN models in sequence – the first performs classification into rain
or no-rain, and if there is rain, the second NN predicts the intensity. McGinnis
(1997) used MLP NN to downscale 5-day averaged snowfall, and Schoof and
Pryor (2001) used them similarly to downscale daily minimum temperature (Tmin)
and maximum temperature (Tmax), daily precipitation and monthly precipitation.
Also, the radial basis function (RBF) NN was compared against a linear statistical
model by Weichert and Bürger (1998) in downscaling daily temperature, precipi-
tation and vapour pressure. Comparing several ways to fill in missing precipitation
data, Coulibaly and Evora (2007) found that MLP did well. When downscaling
daily Tmin and Tmax in Portugal with MLP NN, Trigo and Palutikof (1999) found
that using no hidden layer did better than using one hidden layer. When down-
scaling monthly precipitation over Portugal, Trigo and Palutikof (2001) found
the NN to be essentially linear, which is not surprising since averaging daily
precipitation to monthly precipitation linearizes the predictor-predictand relation
(Yuval and Hsieh, 2002), as discussed in Section 6.10. Cannon (2007) intro-
duced a hybrid MLP–analogue method for downscaling, i.e. the outputs of an
MLP are inputs to an analogue model which issues the prediction. For probabilis-
tic multi-site precipitation downscaling, Cannon (2008) developed a conditional
density network (CDN) model, where the MLP NN model outputs are the param-
eters of the Bernoulli-gamma distribution, and the objective function has con-
straint terms forcing the predicted between-site covariances to match the observed
covariances.

For the seasonal climate in a particular year, the mean is the most commonly
used statistic. However, there are statistics for severe weather in the season. For
instance, for precipitation, possible statistics for the season are: (i) the average
precipitation on days with >1 mm precipitation; (ii) the 90th percentile of daily
precipitation; (iii) the maximum precipitation recorded in any 5 consecutive days;
(iv) the fraction of total precipitation from events greater than the climatological
90th percentile; and (v) the number of events greater than the climatological 90th
percentile.

Haylock et al. (2006) compared six statistical and two dynamical downscal-
ing models with regard to their ability to downscale several seasonal indices of
heavy precipitation for two station networks in northwest and southeast Eng-
land. The skill among the eight downscaling models was high for those indices
and seasons that had greater spatial coherence, i.e. winter generally showed the
highest downscaling skill and summer the lowest. The six statistical models used
included a canonical correlation analysis (CCA) model, three MLP NN models
in different setups, a radial basis function (RBF) NN model, and SDSM (a sta-
tistical downscaling method using a 2-step conditional resampling) (Wilby et al.,

302 Applications in environmental sciences

2002). The ranking of the models based on their correlation skills (with Spear-
man rank correlation used) revealed the NN models performing well. However, as
the NN models were designed to reproduce the conditional mean precipitation for
each day, there was a tendency to underestimate extremes. The rainfall indices
indicative of rainfall occurrence were better modelled than those indicative of
intensity.

Six of the models were then applied to the Hadley Centre global circulation
model HadAM3P forced by emissions according to two different scenarios for the
projected period of 2071–2100. The inter-model differences between the future
changes in the downscaled precipitation indices were at least as large as the
differences between the emission scenarios for a single model. Haylock et al.
(2006) cautioned against interpreting the output from a single model or a single
type of model (e.g. regional climate models) and emphasized the advantage of
including as many different types of downscaling model, global model and emis-
sion scenario as possible when developing climate-change projections at the local
scale.

In Dibike and Coulibaly (2006), MLP NN was compared with the popular mul-
tiple regression-based model SDSM (Wilby et al., 2002) in downscaling daily
precipitation and temperatures (Tmin and Tmax) over a region in northern Quebec,
Canada. For predictors, 25 large-scale meteorological variables, plus the predic-
tors itself at earlier times, were used. In the NN downscaling of precipitation, a
time lag of 6 days for the predictors and 20 neurons in the single hidden layer gave
the best performing network, whereas for temperature downscaling, a time lag of
3 days and 12 hidden neurons did best, indicating that the predictand–predictors
relationship is more complex for precipitation than for temperature. For temper-
ature downscaling, NN and SDSM were comparable in performance, while NN
was generally better than SDSM for precipitation. For the 90th percentile of daily
precipitation calculated over a season, NN did better than SDSM for all seasons
except summer (Fig. 12.4).

The SVR approach has been applied to precipitation downscaling over India by
Tripathi et al. (2006), although the error function used was the MSE instead of the
more robust ε-insensitive error function. The SVR outperformed the MLP NN in
this study.

Variance

A common problem with a statistically downscaled variable is that its variance is
generally smaller than the observed variance (Zorita and von Storch, 1999). This
is because the influence of the large-scale variables can only account for a portion
of the variance of the local variable. Various methods have been used to boost the
variance of the downscaled variable to match the observed variance. The simplest

12.3 Atmospheric science 303

Winter

0

3

6

9

12

0 12

Observed

D
ow

ns
ca

le
d

0

3

6

9

12

D
ow

ns
ca

le
d

Spring

Summer

0

5

10

15

20

0 5 10 15 20

Observed

0 5 10 15 20

Observed

D
ow

ns
ca

le
d

0

5

10

15

20

D
ow

ns
ca

le
d

Autumn

SDSM
TLFN

SDSM
TLFN

SDSM
TLFN

SDSM
TLFN

3 6 9 0 12

Observed

3 6 9

(a)

(c) (d)

(b)

Fig. 12.4 Observed versus downscaled values of the 90th percentile precipitation
(mm day−1) for (a) winter, (b) spring, (c) summer and (d) autumn. Solid circles
correspond to the downscaled output from the NN model (TLFN), while the open
circles correspond to the downscaled output from SDSM. The diagonal line indi-
cates perfect agreement between downscaled and observed values. (Reproduced
from Dibike and Coulibaly (2006) with permission from Elsevier.)

method is inflation which linearly rescales the downscaled variable to match the
observed variance (Karl et al., 1990; von Storch, 1999). The second method is
randomization, which adds some random noise to the downscaled variable (von
Storch, 1999). The third method is expansion, which adds a constraint term to the
objective function, forcing the predicted variance towards the observed variance
during optimization (Bürger, 1996, 2002). If downscaling is for variables at mul-
tiple sites, then the constraint term is for the covariance matrix of the predicted
variables to match that of the observations.

Extrapolation

Properly trained NN models (i.e. neither overfitting nor underfitting) perform
nonlinear interpolation well. However when presented with new data where the

304 Applications in environmental sciences

predictor lies beyond the range of (predictor) values used in model training, the
NN model is then extrapolating instead of interpolating. Let us illustrate the
extrapolation behaviour with a simple test problem.

Let the signal be

y = x + 1

5
x2. (12.14)

We choose 300 observations, with x having unit standard deviation and Gaus-
sian distribution, and y given by (12.14) plus Gaussian noise (with the noise
standard deviation the same as the signal standard deviation). With six hidden
neurons, the Bayesian NN model (BNN) from the Matlab Neural Network Tool-
box was used to solve this nonlinear regression problem. In Fig. 12.5(a), upon
comparing with the true signal (dashed curve), it is clear that the BNN model
interpolated better than the linear regression (LR) model (solid line), but for
large x values, BNN extrapolated worse than LR. Figure 12.5(b) shows the same
data fitted by a fourth order polynomial, where for large positive and negative
x values, the polynomial extrapolated worse than LR. Hence nonlinear models
which interpolate better than LR provide no guarantee that they extrapolate better
than LR.

How the nonlinear model extrapolates is dependent on the type of nonlinear
model used. With a polynomial fit, as |x | → ∞, |y| → ∞. However, for NN
models (with one hidden layer h), where the kth hidden neuron

hk = tanh((Wx + b)k), and y = w̃ · h + b̃, (12.15)

once the model has been trained, then as ‖x‖ → ∞, the tanh function remains
bounded within ±1, hence y remains bounded – in sharp contrast to the unbounded
behaviour with polynomial extrapolation (Fig. 12.6). Extrapolations using SVR
and Gaussian process (GP) models are also shown in Fig. 12.5 and 12.6, with the
Gaussian or RBF kernel used in both models. With Gaussian kernels, it is straight-
forward to show that as ‖x‖ → ∞, y → constant for SVR, and y → 0 for GP
(see Exercises 12.1 and 12.2), but polynomial kernels would lead to unbounded
asymptotic behaviour.

In statistical downscaling for climate change studies, the distribution of the pre-
dictors in the increased greenhouse gas climate system is usually shifted from
the present day distribution. Applying the statistical downscaling model developed
under the present climate to the changed climate system usually requires extrapo-
lation of the nonlinear empirical relations. This is dangerous since we now know
that nonlinear empirical models can extrapolate very differently from one another
and often extrapolate worse than LR.

12.3 Atmospheric science 305

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

x
y

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

(a) (b)

(c) (d)

BNN Polynomial

SVR GP

Fig. 12.5 Extrapolation behaviour. (a) Nonlinear regression fit by Bayesian NN.
The data are indicated by crosses and the Bayesian NN solution by circles. Dashed
curve indicates the theoretical signal and solid line the LR solution. Fit to the same
dataset but by: (b) A fourth order polynomial. (c) Support vector regression (with
Gaussian kernel). (d) Gaussian process (with Gaussian kernel).

12.3.5 Severe weather forecasting

Tornado

A tornado is a rapidly rotating column of air, with the bottom touching the surface
of the earth. The air flow is around an intense low pressure centre, with the diameter
of the tornado typically between 100–600 m, much smaller than its height. Torna-
does occur in many parts of the world, but no country experiences more tornadoes
than the USA. Almost 20 000 deaths have been reported from more than 3600

306 Applications in environmental sciences

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

x

y

(a) (b)

(c) (d)

BNN

SVR GP

Polynomial

Fig. 12.6 Same as Fig. 12.5, but with the extrapolation proceeding further in both
the +x and −x directions to show the asymptotic behaviour.

tornadoes in the USA since 1680 (Brooks and Doswell, 2002), hence the need to
develop forecast capability for tornadoes in the USA. With 23 input variables char-
acterizing the atmospheric circulation extracted from Doppler weather radar data,
Marzban and Stumpf (1996) used an MLP NN classifier to forecast ‘tornado’ or ‘no
tornado’ at a lead time of 20 minutes. Their NN method was found to outperform
the rule-based algorithm used by the US National Severe Storms Laboratory, as
well as other statistical techniques (discriminant analysis and logistic regression).
Their work has been extended to prediction of damaging wind (defined as the exis-
tence of either or both of the following conditions: tornado, wind gust ≥ 25 m s−1)
(Marzban and Stumpf, 1998).

12.3 Atmospheric science 307

Tropical cyclone

Much larger on the horizontal scale and far more damaging than tornadoes are
tropical cyclones, commonly called hurricanes in the Atlantic and typhoons in the
Pacific. Seen from space, tropical cyclones have typical diameters of about 500
km, with spiralling bands of cloud swirling into the centre of the storm, where
the air pressure is very low. Tropical cyclones are generated over warm tropical
oceans where the sea surface temperature is above 26.5 ◦C, the winds are weak and
the humidity is high. Tropical depressions are weaker low pressure systems than
tropical cyclones, but some of them can strengthen into tropical cyclones. Hennon
et al. (2005) evaluated a binary NN classifier against linear discriminant analy-
sis in forecasting tropical cyclogenesis. With eight large-scale predictors from the
National Center for Environmental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) reanalysis dataset, a dataset of cloud clusters during the
1998–2001 Atlantic hurricane seasons was classified into ‘developing’ and ‘non-
developing’ cloud clusters, where ‘developing’ means a tropical depression forms
within 48 hours. The model yielded 6–48 hr probability forecasts for genesis at 6 hr
intervals, with the NN classifier performing comparably to or better than linear dis-
criminant analysis on all performance measures examined, including probability of
detection, Heidke skill score, etc.

Hail

Hail is precipitation in the form of ice particles (called hailstones) ranging in size
from that of small peas to that of baseballs or bigger. Large hailstones can cause
not only extensive property damage (breaking windows, denting cars and wrecking
roofs), but also destruction of crops and livestocks, as well as human injuries and
deaths. Marzban and Witt (2001) used an NN classifier to predict the size of severe
hail, given that severe hail has occurred or is expected to occur. For predictors,
they used four variables from Doppler weather radar and five other environmental
variables. A 1-of-c coding is used for the three classes of severe hail, i.e. hailstones
of coin size (class 1), golf-ball size (class 2) and baseball size (class 3). The NN
model outperformed the existing method for predicting severe-hail size. The rela-
tive operating characteristic (ROC) diagrams (see Section 8.5) for the three classes
(Fig. 12.7) indicate class 3 forecasts to be the best, and class 2 forecasts to be the
worst, i.e. the model is least accurate in predicting mid-sized severe hailstones.

12.3.6 Air quality

Many substances in the air impair the health of humans, plants and animals, or
reduce visibility. These arise both from natural processes (e.g. volcanic eruptions)
and human activities (e.g. automobile and powerplant emissions). Atmospheric

308 Applications in environmental sciences

0 0.2 0.4 0.6 0.8 1

False alarm rate

0 0.2 0.4 0.6 0.8 1

False alarm rate

0

0.2

0.4

0.6

0.8

1(a)

(b)

Pr
ob

ab
ili

ty
 o

f
de

te
ct

io
n

1

3

2

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f
de

te
ct

io
n

3

2

1

Fig. 12.7 ROC diagrams for hailstone class 1, 2, and 3 forecasts, for (a) the train-
ing data, and (b) the validation data. The error bars in the horizontal and vertical
directions are the one standard deviation intervals based on bootstrapping. The
diagonal line (i.e. probability of detection = false alarm rate) indicates a model
with zero skill. (Reproduced from Marzban and Witt (2001) with permission from
the American Meteorological Society.)

12.3 Atmospheric science 309

pollutants can be classified as either primary or secondary. Primary pollutants are
substances directly emitted from a process, such as ash from a volcanic eruption or
the carbon monoxide gas from an automobile exhaust. Secondary pollutants are not
emitted directly, but are formed in the atmosphere when primary pollutants react
or interact. A notorious secondary pollutant is ground-level ozone (O3), which irri-
tates the mucous membranes of the respiratory system. Some pollutants may be
both primary and secondary, i.e. they are both emitted directly and produced by
other primary pollutants.

The pollutants most commonly investigated in air quality studies include: ozone,
nitrogen oxides (denoted by the symbol NOx to include nitric oxide (NO) and
nitrogen dioxide (NO2)), sulfur oxides (SOx , especially sulfur dioxide SO2), and
particulate matter (PM), measured as smoke and dust. The quantity PM10 is the
fraction of suspended particles with diameter 10 micrometers (μm) or less, while
PM2.5 relates to a maximum diameter of 2.5 μm.

Ground-level ozone, the main component of photochemical smog, is formed
from the interaction of NOx and volatile organic compounds (VOC) (e.g. hydro-
carbon fuel vapours and solvents) in the presence of sunlight (hence the term
‘photochemical’). It is ironic that ground-level ozone is a dreaded pollutant,
while ozone high up in the stratosphere forms a protective shield against harmful
ultraviolet radiation from the sun.

Yi and Prybutok (1996) applied MLP NN to forecast the daily maximum ozone
concentration in an industrialized urban area in Texas. The nine predictors used
were: an indicator for holiday versus working day (as traffic emissions are lighter
on holidays), ozone level at 9:00 a.m., maximum daily temperature, CO2 concen-
tration, NO concentration, NO2 concentration, oxides of nitrogen concentration,
surface wind speed and wind direction (all measured on the same day as the pre-
dictand). The NN had four hidden neurons and one output. The NN model was
found to outperform linear regression (LR) and the Box–Jenkins ARIMA model
(Box and Jenkins, 1976).

Comrie (1997) also applied MLP NN to forecast the daily maximum 1 hour
ozone concentrations from May–September for eight cities in the USA. The four
predictors used were: daily maximum temperature, average daily dewpoint temper-
ature, average daily wind speed and daily total sunshine. The NN had six hidden
neurons and one output. A second NN model had a fifth predictor (the maxi-
mum 1 hour ozone concentration from the previous day) and six hidden neurons.
Generally, the NN models slightly outperformed LR.

Using MLP NN to forecast the hourly ozone concentration at five cities in
the UK, Gardner and Dorling (2000) found that NN outperformed both CART
(classification and regression tree) (see Section 9.2) and LR. The eight predictors
used included the amount of low cloud, base of lowest cloud, visibility, dry bulb

310 Applications in environmental sciences

temperature, vapour pressure, wind speed and direction. Their MLP model 1 archi-
tecture was 8:20:20:1, i.e. eight inputs, two hidden layers each with 20 neurons
and one output. To account for seasonal effects, model 2 had two extra predic-
tors, sin(2πd/365) and cos(2πd/365), with d the Julian day of the year, thereby
informing the model where in the annual cycle the forecast was to be made. In
model 3, two more predictors, sin(2πh/24) and cos(2πh/24), with h the hour of
the day, were added to indicate the time of day. Thus the NN architecture was
10:20:20:1 for model 2 and 12:20:20:1 for model 3.

A useful measure of model performance used by Gardner and Dorling (2000) is
the ‘index of agreement’ (Willmott, 1982), defined as

dα = 1 − [∑i | fi − oi |α]
[∑i (| fi − ō| + |oi − ō|)α] , (12.16)

where fi and oi are the forecast and observed values, respectively, ō the observed
mean, and α can be 1 or 2. A larger dα indicates better forecast performance. Evalu-
ating forecasts over independent test data, Fig. 12.8 shows d2 attained by MLP NN
models, CART and LR at five cities (Gardner and Dorling, 2000). The CART and
LR approaches were comparable in performance since LR has the disadvantage of
being linear, while CART models nonlinear relations crudely by steps, and MLP
outperformed both. Similar results were found using other measures of forecast
performance (e.g. MAE, RMSE, correlation squared, etc.).

Neural network ozone forecast models have been built in many parts of the
world, e.g. over western Canada (Cannon and Lord, 2000), Kuwait (Abdul-Wahab
and Al-Alawi, 2002), Hong Kong (Wang et al., 2003), Spain (Agirre-Basurko et al.,
2006) and France (Dutot et al., 2007). Dorling et al. (2003) evaluated different
objective functions for MLP ozone forecast models. Schlink et al. (2003) tested
15 different statistical methods for ozone forecasting over ten cities in Europe,
and found that MLP NN models and generalized additive models performed best.
Among MLP models, Bayesian NN models (using the Laplace approximation)
underformed MLP models using early stopping to control overfitting.

When forecasting high ozone events, it is desirable to have a reliable predictive
probability distribution for these extreme events. Cai et al. (2008) compared five
probabilistic models forecasting predictive distributions of daily maximum ozone
concentrations at two sites in British Columbia, Canada, with local meteorological
variables used as predictors. The models were of two types, conditional density net-
work (CDN) models (see Section 4.7) and Bayesian models. The Bayesian models,
especially the Gaussian process (GP) model (Section 9.3), gave better forecasts for
extreme events, namely poor air quality events defined as having ozone concen-
tration ≥82 ppb (parts per billion). The main difference between the two types is

12.3 Atmospheric science 311

1

0.8

0.6

0.4

0.2

0

d 2
1

0.8

0.6

0.4

0.2

0
d 2

1

0.8

0.6

0.4

0.2

0 01 02
Model number

0301 02
Model number

0301 02
Model number

03

1

0.8

0.6

0.4

0.2

0

d 2

01 02
Model number

03

1

0.8

0.6

0.4

0.2

0

d 2

01 02
Model number

EskdalemuirEdinburghBristol

Leeds Southampton

Multilayer perceptron
Regression tree
Linear model

03

d 2

Fig. 12.8 Index of agreement (d2) for ground-level ozone concentration forecasts
by MLP NN model (white bar), regression tree (CART) (grey) and linear regres-
sion (black) at five cities in the UK. Models 1, 2 and 3 differ in the predictors
used (with extra predictors in model 2 indicating the Julian day of the year, and
in model 3 indicating both the day of the year and the hour of the day). The 95%
confidence intervals from bootstrapping are plotted. (Reproduced from Gardner
and Dorling (2000) with permission from Elsevier.)

that a CDN model uses a single optimal function (based on maximum likelihood) to
forecast while a Bayesian model gives all probable functions a non-zero probability
and integrates over all of them to obtain the forecast (see Section 6.9).

Cai et al. (2008) argued that by including low probability functions, the Bayesian
approach forecasts extreme events better. In theory, Bayesian models can give an
accurate measure of the predictive uncertainty arising from (a) the uncertainty of
the noise process, and (b) the uncertainty of the model weights (i.e. parameters)
due to finite sample size. In contrast, the CDN models only estimate the predic-
tive uncertainty arising from the noise process, without taking into account the
uncertainty of the model weights. In the observed data, most of the test data points
have good similarities with the training data, so for these points, the uncertainty
of the model weights (or uncertainty of the underlying function) is low. Using

312 Applications in environmental sciences

the weights found by maximizing likelihood, CDN models tend to find a function
which is quite close to the true underlying function, thereby giving good predic-
tion for these test points. For the relatively few points (usually the extreme events)
which have little similarity with the training data, the uncertainty of the underlying
function (hence the model weights) is high. The CDN models simply decide on one
function and rule out other functions, while Bayesian models give all possible func-
tions a non-zero probability, and integrate over all of them to obtain the forecast.
Thus, in general, the Bayesian models have better performance over highly uncer-
tain events. This explains why Bayesian models may have similar overall scores
compared to CDN models, but outperform them over the extreme events.

For other pollutants, SO2 forecasts by MLP models were developed by Boznar
et al. (1993) and Nunnari et al. (2004), NOx by Gardner and Dorling (1999), NO2

by Kolehmainen et al. (2001) and Agirre-Basurko et al. (2006), NO2 and PM10
by Kukkonen et al. (2003). Comparing SVR and RBF NN in forecasting various
atmospheric pollutants, Lu and Wang (2005) concluded that SVR outperformed
RBF NN.

12.4 Hydrology

When precipitation falls on the land surface, a portion of the water soaks into the
ground. This portion, known as infiltration, is determined by the permeability of
the soils/rocks and the surface vegetation. If the land is unable to absorb all the
water, water flows on the surface as runoff , eventually reaching streams and lakes.
The land area which contributes surface runoff to a stream or lake is called the
watershed, which can be a few hectares in size to thousands of square kilometres.
Streamflow is fed by surface runoff, interflow (the flow below the surface but above
groundwater) and groundwater.

To visualize the streamflow at a location changing with time, a hydrograph plots
the discharge (in volume per second) as a function of time. Hydrographs can be
plotted for an individual storm event or for a longer period, e.g. one year (annual
hydrograph).

The relation between streamflow and precipitation is very complicated, since
the water from the precipitation is affected by the type of soil and vegetation in the
watershed, before it eventually feeds into the streamflow. Because of this complex-
ity, ‘conceptual’ or physical models, which try to model the physical mechanisms
of the hydrological processes, are not very skillful in forecasting streamflow from
precipitation data. In the last decade, machine learning methods such as MLP NN
models have become popular in hydrology, as they are much simpler to develop
than the physical models, yet offer better skills in modelling the precipitation-
streamflow relation. Maier and Dandy (2000) reviewed 43 papers applying NN
methods to hydrological problems.

12.4 Hydrology 313

Hsu et al. (1995) modelled the daily rainfall–runoff relation in the Leaf River
Basin in Mississippi. With x(t) the rainfall over the basin at day t and y(t) the
runoff, the MLP NN model with the single output y(t) had inputs y(t − 1),

. . . , y(t − na), and x(t − 1), . . . , x(t − nb), where the integers na and nb are
the number of lags used, i.e. the runoff on day t depends on the runoff on pre-
vious days up to t − na and on the rainfall up to t − nb. Comparisons with linear
auto-regressive moving average models with exogenous inputs (ARMAX) (Box
and Jenkins, 1976) and with a physical-based model showed that in 1 day leadtime
runoff forecasting the NN models generally performed the best. Other studies of the
rainfall–runoff relation using MLP NN include Minns and Hall (1996), Sajikumar
and Thandaveswara (1999) and Dibike and Solomatine (2001). A review of over
50 publications on using NN models for hydrological modelling was provided by
Dawson and Wilby (2001).

Cannon and Whitfield (2002) applied MLP NN to downscale GCM output to
5 day (pentad) averaged river discharge in 21 watersheds in British Columbia,
Canada. For the 21 watersheds, there are three types of annual hydrograph: (a)
glacial systems exhibiting a broad snow and ice melt peak in the hydrograph which
persists through summer; (b) nival systems displaying a narrower melt peak in
summer from the snowmelt; and (c) pluvial systems along the west coast showing
strong streamflow in winter from heavy rainfall and low flow during the dry sum-
mer. The GCM data were from the NCEP/NCAR reanalysis project (Kalnay et al.,
1996) – reanalysis data are outputs from a high resolution atmospheric model run
with extensive assimilation of observed data, hence results from the reanalysis data
can be regarded as coming from an ideal GCM. The reanalysis data were smoothed
to 10×10 degree grids, and four meteorological fields (sea level pressure, 500 hPa
geopotential height, 850 hPa specific humidity and 1000−500 hPa thickness fields)
over 7×7 grids were the predictor fields used in the downscaling. Time-lagged ver-
sions of the predictors and the predictand (the discharge) and sine and cosine of the
day-of-year (to indicate the time of the year) were also used as predictors. The NN
models generally outperformed stepwise multiple linear regression.

Direct measurements of river discharge are difficult, so hydrologists often infer
the discharge from the measured water level (called the stage) by using a function
(called the rating curve) relating the stage to the discharge. A plot of the stage as
a function of time is called a stage hydrograph. By using the rating curve, one can
then obtain the discharge hydrograph.

The most common form used for the stage–discharge relation is

Q = a(h − h0)
b, (12.17)

where Q is the discharge, h is the stage, h0 is the minimum stage below which there
is no discharge, and a and b are constant parameters. Bhattacharya and Solomatine

314 Applications in environmental sciences

(2005) modelled the stage–discharge relation by the MLP NN model and by the M5
tree (Quinlan, 1993) model, which uses piecewise linear functions to represent the
nonlinear relation. The model inputs were ht , ht−1 and ht−2, (i.e. h at time t , t − 1
and t − 2 hours, respectively) and Qt−1, and the output was Qt . The performances
of MLP and M5 over independent test data were similar, though the M5 model was
easier to interpret than MLP. Both MLP and M5 easily outperformed the traditional
rating curve model (12.17), with the RMSE over test data being 69.7, 70.5 and
111.2 for the M5 model, the MLP and the conventional rating curve, respectively.

The MLP and M5 models were also compared in discharge prediction 1 to 6
hours ahead using effective rainfall and discharge as predictors in Solomatine and
Dulal (2003), where MLP performed slightly better than M5, but M5 gave easily
interpreted relations. Solomatine and Xue (2004) built models for predicting the
flood discharge of Huai River in China 1 day ahead using discharge, rainfall, and
evaporation as predictors. An interesting hybrid M5-MLP approach was proposed,
i.e. since the M5 performed a classification of the inputs and then assigned a linear
function for each class, the hybrid approach instead assigned an MLP model for
each class. This hybrid approach was found to outperform both the M5 approach
and the MLP approach. Application of M5 and MLP to model sediment transport
in rivers has also been made (Bhattacharya et al., 2007). Adding data assimilation
capability to NN models in hydrology has been proposed by van den Boogaard and
Mynett (2004).

Kernel methods have been used in hydrological research in recent years. Dibike
et al. (2001) compared SVR with MLP in rainfall–runoff modelling for three rivers
(in China, Vietnam and Nepal), and found SVR to outperform MLP, similar to the
conclusion reached by Khan and Coulibaly (2006) in long-term prediction of lake
water level in Lake Erie. Yu et al. (2006) used SVR for flood stage forecasting,
while Yu and Liong (2007) applied kernel ridge regression to runoff forecast-
ing. Bürger et al. (2007) modelled the rainfall–runoff relation in Spain using SVR
and the relevance vector machine (RVM), and found RVM to slightly outperform
SVR, similarly to the conclusion reached by Ghosh and Mujumdar (2008) in their
statistical downscaling of GCM output to streamflow in India.

12.5 Ecology

Ecology studies the interrelationship between organisms and their environments.
As such relations are highly complex, machine learning methods offer an effective
way to model them.

A central problem in ecology is how species richness (i.e. the number of species
in an area) is affected by enviromental variables. Guégan et al. (1998) built an MLP
NN model for predicting species richness in 183 rivers over the world. The three

12.5 Ecology 315

predictors were: the total surface area of the drainage area, the mean annual flow
regime (in m3s−1) at the river mouth, and the net terrestrial primary productivity
(i.e. the rate of energy flow through the plants of the region where the river is
located). Their sensitivity studies found that variations in species richness were
most strongly influenced by the net terrestrial primary production, then by the flow
regime and least by the area of the drainage area. They concluded that: (i) the
greater the available energy, the more fish species the aquatic environment can
support; (ii) as rivers with high flow regime generally contain a greater array of
habitat configurations, for regions with the same energy input, the habitat with the
greater heterogeneity may support more fish species.

A surprisingly large portion of the world’s photosynthesis is carried out by algae.
Algal blooms can cause a variety of problems: (i) water discolouration, with the
water colour turning to red, brown or green; (ii) release of toxins harmful to humans
by some algal species; (iii) killing of fish and invertebrates by oxygen depletion or
clogging of fish gills, etc.; and (iv) impairment of water treatment by taste, odour
or biomass. Recknagel et al. (1997) studied use of MLP NN for modelling and
predicting algal blooms in three lakes (two in Japan and one in Finland) and one
river (in Australia). The predictors numbered about ten, being various nutrient and
dissolved oxygen concentrations, water properties (e.g. pH, water temperature) and
meteorological variables. The predictands were ten or so biological species (algal
and non-algal). Since the predictions over independent data seemed to be consid-
erably worse than the performance over training data, it seemed that overfitting
might not have been fully addressed in this early application of NN to algal bloom
forecasting.

Olden and Jackson (2002) examined four methods for predicting the presence
or absence of 27 fish species in 286 temperate lakes located in south-central
Ontario, Canada. The 13 predictors were environmental variables (lake area,
lake volume, total shoreline perimeter, maximum depth, altitude, pH, total dis-
solved solids, growing degree days, occurrence of summer stratification, etc.),
with 27 classification models built for the 27 fish species. The four methods
used to perform the classification were logistic regression analysis, linear dis-
criminant analysis, classification trees (CART) and MLP NN, with the results
from leave-one-out cross-validation shown in Fig. 12.9. On average, MLP out-
performed the other methods in predicting the presence/absence of fish species
from environmental variables, though all methods had moderate to excellent
results.

De’ath and Fabricius (2000) advocated the application of CART to ecological
problems. They illustrated the CART method by relating physical and spatial envi-
ronmental variables to the abundances of soft coral in the Australian Great Barrier
Reef.

316 Applications in environmental sciences

100

80

60

40

20

0

Pe
rc

en
ta

ge
 o

f
co

rr
ec

t c
la

ss
if

ic
at

io
n

Overall correct
classification Specificity Sensitivity

LR
A

LD
A

CFT
A

N
N

LR
A

LD
A

CFT
A

N
N

LR
A

LD
A

CFT
A

N
N

Modeling approach

Fig. 12.9 Mean (and one standard deviation) for overall correct classification,
specificity and sensitivity based on 27 fish-habitat models using logistic regres-
sion analysis (LRA), linear discriminant analysis (LDA), classification trees
(CFT) and MLP NN (ANN). Overall classification performance of a model is the
percentage of lakes where the model correctly predicted the presence or absence
of the particular fish species. Model sensitivity is the ability correctly to pre-
dict species’ presence, while model specificity is the ability correctly to predict
species’ absence. (Reproduced from Olden and Jackson (2002) with permission
from Blackwell.)

Park et al. (2003) applied self-organizing map (SOM) and MLP for patterning
and predicting aquatic insect species richness in a stream system in France. With
155 samples taken from the stream system, a 2-dimensional SOM was fitted to
the species richness of four aquatic insect orders. For prediction of the species
richness, four environmental variables (elevation, stream order, distance from the
source, and maximum water temperature) were used as predictors in an MLP NN.

The otolith is a bone-like structure found in the inner ear of many species of fish.
Fish otoliths accrete layers of calcium carbonate and gelatinous matrix throughout
their lives. The accretion rate varies with the growth rate of the fish, often less in
winter and more in summer, resulting in the appearance of rings similar to tree
rings. By counting the rings in a 2-D cross-sectional image of an otolith, it is pos-
sible to determine the age of the fish in years. As this is a tedious task for humans,
automation by machine learning methods is needed. Fablet and Le Josse (2005)
compared two classifiers (MLP NN and SVM) for estimating the age of the fish

Exercises 317

from otolith images and other fish information (mainly the length, sex and catch
date), and found that MLP significantly underperformed SVM.

Exercises

(12.1) With the Gaussian or RBF kernel (7.49) used, show that for support vector
regression (9.18), as the predictor ‖x‖ → ∞, the predictand y → constant.

(12.2) With the Gaussian kernel (9.35) used, show that for the Gaussian process
model (9.43), as the predictor ‖x‖ → ∞, the mean μ(x) → 0.

(12.3) Suppose the predictand y is modelled by the linear regression relation y =
ax , where x is the predictor, the variables have been scaled to have zero
mean and var(x) = var(y) = 1, and 0 < a < 1. Suppose the observed
predictand yd is given by yd = ax + ε, where ε is Gaussian noise with
standard deviation σ . To inflate the variance of y to match the observed
variance, we introduce an inflated predictand

ỹ =
√

var(yd)

var(y)
y.

Show that var(ỹ − yd) > var(y − yd) (i.e. the MSE has increased from
inflating the predictand).

Appendices

A Sources for data and codes

The book website is www.cambridge.org/hsieh .

Data:
Machine Learning Repository, Center for Machine Learning and Intelligent Systems,

University of California, Irvine
http://archive.ics.uci.edu/ml/

Oceanic and atmospheric climate data. Climate Prediction Center, National Weather
Service, NOAA.
http://www.cpc.ncep.noaa.gov/products/monitoring_and_
data/oadata.shtml
In particular, monthly atmospheric and sea surface temperature indices (for the
tropics),
http://www.cpc.ncep.noaa.gov/data/indices/

Gridded climate datasets. Earth System Research Laboratory, NOAA.
http://www.cdc.noaa.gov/PublicData/
In particular, the NCEP/NCAR Reanalysis data,
http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html

Sea surface temperatures. National Climate Data Center, NOAA.
http://lwf.ncdc.noaa.gov/oa/climate/research/sst/sst.php

Climate data. Climate Research Unit, University of East Anglia.
http://www.cru.uea.ac.uk/cru/data/

Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre.
http://www.ipcc-data.org/

Computer codes:
Matlab neural network toolbox

http://www.mathworks.com/products/neuralnet/

318

Lagrange multipliers 319

Also Matlab statistical toolbox (contains classification and regression trees, etc.)
http://www.mathworks.com/products/statistics/

Netlab neural network software (by I. T. Nabney, written in Matlab)
http://www.ncrg.aston.ac.uk/netlab/index.php

Library for Support Vector Machines (LIBSVM) (by C.-C. Chang and C.-J. Lin)
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Gaussian Processes for Machine Learning (GPML) (by C. E. Rasmussen and
C. K. I. Williams, written in Matlab)
http://www.gaussianprocess.org/gpml/code/matlab/doc/

Nonlinear principal component analysis and nonlinear canonical correlation analysis (by
W. W. Hsieh, written in Matlab)
http://www.ocgy.ubc.ca/projects/clim.pred/download.html

B Lagrange multipliers

Let us consider the problem of finding the maximum of a function f (x) subject to
constraints on x. (If we need to find the minimum of f (x), the problem is equivalent
to finding the maximum of − f (x), so we need only to consider the case of finding
the maximum.) We will consider two types of constraint: (a) equality constraints
like g(x) = 0; and (b) inequality constraints like g(x) ≥ 0.

First consider type (a), with the constraint g(x) = 0 describing a surface in the
x-space (Fig. B.1). The gradient vector ∇g(x) is normal to this surface. Suppose
at the point x0 lying on this surface, the maximum value of f occurs. The gradient
vector ∇ f (x) must also be normal to the surface at x0; otherwise f can be increased
if we move on the surface to a point x1 slightly to the side of x0, which contradicts

∇f (x)

∇g(x)

g(x) = 0

g(x) > 0

x0

Fig. B.1 Illustrating the situation where the maximum of f (x) occurs at a point
x0 on the surface described by g(x) = 0. Both gradient vectors ∇ f (x) and ∇g(x)
are normal to the surface at x0. Here the interior is assumed to have g(x) > 0, so
the gradient vector ∇g points to the interior.

320 Appendices

the assumption that f at x0 is the maximum on the surface. This means ∇ f and
∇g are parallel to each other at x0 (but may point in opposite directions), hence

∇ f + λ∇g = 0, (B.1)

for some λ �= 0. This λ parameter is called a Lagrange multiplier and can have
either positive or negative sign.

The Lagrangian function is defined by

L(x, λ) = f (x) + λ g(x). (B.2)

From ∇xL = 0, we obtain (B.1), while ∂L/∂λ = 0 gives the original constraint
g(x) = 0. If x is of dimension m, the original constrained maximization problem
is solved by finding the stationary point of L with respect to x and to λ, i.e. use
∇xL = 0 and ∂L/∂λ = 0 to provide m + 1 equations for solving the values of the
stationary point x0 and λ.

Next consider a type (b) constraint, i.e. g(x) ≥ 0. There are actually two situa-
tions to consider. The first situation is when the constrained stationary point lies on
the boundary g(x) = 0, while in the second situation, the point lies in the region
g(x) > 0. In the first situation, we are back to the previous case of a type (a) con-
straint. However, this time λ is not free to take on either sign. If f (x) is a maximum
at a point x0 on the surface g(x) = 0, its gradient ∇ f must point opposite to ∇g
(Fig. B.1) (otherwise f increases in the region g(x) > 0 contradicting that f is
maximum on the boundary surface). Hence ∇ f (x) = −λ∇g(x) for some λ > 0.
In the second situation, g(x) does not affect the maximization of f (x), so λ = 0
and ∇xL = 0 gives back ∇ f (x) = 0.

In either situation, λ g(x) = 0. Hence the problem of maximizing f (x) = 0
subject to g(x) ≥ 0 is solved by finding the stationary point of the Lagrangian (B.2)
with respect to x and λ, subject to the Karush–Kuhn–Tucker (KKT) conditions
(Karush, 1939; Kuhn and Tucker, 1951)

λ ≥ 0, (B.3)

g(x) ≥ 0, (B.4)

λ g(x) = 0. (B.5)

Next, instead of maximization, minimization of f (x) subject to g(x) ≥ 0 is
sought. In the situation where the stationary point is on the boundary surface
g(x) = 0, ∇ f must point in the same direction as ∇g, i.e. ∇ f = λ∇g, with λ

positive. Hence the Lagrangian function to be used for the minimization problem
with inequality constraint is

L(x, λ) = f (x) − λ g(x), (B.6)

with λ ≥ 0.

Lagrange multipliers 321

Finally, if f (x) is to be maximized subject to multiple constraints, gi (x) = 0
(i = 1, . . . , I) and h j (x) ≥ 0 (j = 1, . . . , J), then the Lagrangian function
becomes

L(x,λ,μ) = f (x) +
∑

i

λi gi (x) +
∑

j

μ j h j (x). (B.7)

The KKT conditions also give μ j ≥ 0 and μ j h j (x) = 0 for j = 1, . . . , J .

References

Abdul-Wahab, S. A. and Al-Alawi, S. M. (2002). Assessment and prediction of
tropospheric ozone concentration levels using artificial neural networks.
Environmental Modelling & Software, 17(3):219–28.

Agirre-Basurko, E., Ibarra-Berastegi, G. and Madariaga, I. (2006). Regression and
multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the
Bilbao area. Environmental Modelling & Software, 21(4):430–46.

Aguilar-Martinez, S. (2008). Forecasts of Tropical Pacific Sea Surface Temperatures by
Neural Networks and Support Vector Regression. M.Sc. thesis, University of British
Columbia.

Aires, F. (2004). Neural network uncertainty assessment using Bayesian statistics with
application to remote sensing: 1. Network weights. Journal of Geophysical
Research, 109. D10303, doi:10.1029/2003JD004173.

Aires, F., Chedin, A. and Nadal, J. P. (2000). Independent component analysis of
multivariate time series: Application to the tropical SST variability. Journal of
Geophysical Research, 105(D13):17437–55.

Aires, F., Prigent, C. and Rossow, W. B. (2004a). Neural network uncertainty assessment
using Bayesian statistics with application to remote sensing: 2. Output errors.
Journal of Geophysical Research, 109. D10304, doi:10.1029/2003JD004174.

Aires, F., Prigent, C. and Rossow, W. B. (2004b). Neural network uncertainty assessment
using Bayesian statistics with application to remote sensing: 3. Network Jacobians.
Journal of Geophysical Research, 109. D10305, doi:10.1029/2003JD004175.

Amari, S., Murata, N., Müller, K.-R., Finke, M. and Yang, H. (1996). Statistical theory of
overtraining – is cross validation asymptotically effective? Advances in Neural
Information Processing Systems, 8:176–182.

An, S. I., Hsieh, W. W. and Jin, F. F. (2005). A nonlinear analysis of the ENSO cycle and
its interdecadal changes. Journal of Climate, 18(16):3229–39.

An, S. I., Ye, Z. Q. and Hsieh, W. W. (2006). Changes in the leading ENSO modes
associated with the late 1970s climate shift: Role of surface zonal current.
Geophysical Research Letters, 33(14). L14609, doi:10.1029/2006GL026604.

Bakir, G. H., Weston, J. and Schölkopf, B. (2004). Learning to find pre-images. Advances
in Neural Information Processing Systems, 16:449–56.

Balakrishnan, P. V., Cooper, M. C., Jacob, V. S. and Lewis, P. A. (1994). A study of the
classification capabilities of neural networks using unsupervised learning – a
comparison with k-means clustering. Psychometrika, 59(4):509–25.

322

References 323

Baldwin, M., Gray, L., Dunkerton, T. et al. (2001). The Quasi-Biennial Oscillation.
Reviews of Geophysics, 39:179–229.

Bankert, R. L. (1994). Cloud classification of AVHRR imagery in maritime regions using
a probabilistic neural network. Journal of Applied Meteorology, 33(8):909–18.

Barnett, T. P. (1983). Interaction of the monsoon and Pacific trade wind system at
interannual time scales Part I: The equatorial zone. Monthly Weather Review,
111(4):756–73.

Barnett, T. P. and Preisendorfer, R. (1987). Origins and levels of monthly and seasonal
forecast skill for United States surface air temperatures determined by canonical
correlation analysis. Monthly Weather Review, 115(9):1825–50.

Barnston, A. G. and Ropelewski, C. F. (1992). Prediction of ENSO episodes using
canonical correlation analysis. Journal of Climate, 5:1316–45.

Barnston, A. G., van den Dool, H. M., Zebiak, S. E. et al. (1994). Long-lead seasonal
forecasts – where do we stand? Bulletin of the American Meteorological Society,
75:2097–114.

Barron, A. R. (1993). Universal approximation bounds for superposition of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–45.

Benediktsson, J. A., Swain, P. H. and Ersoy, O. K. (1990). Neural network approaches
versus statistical-methods in classification of multisource remote-sensing data. IEEE
Transactions on Geoscience and Remote Sensing, 28(4):540–52.

Bhattacharya, B., Price, R. K. and Solomatine, D. P. (2007). Machine learning approach
to modeling sediment transport. Journal of Hydraulic Engineering, 133(4):440–50.

Bhattacharya, B. and Solomatine, D. P. (2005). Neural networks and M5 model trees in
modelling water level – discharge relationship. Neurocomputing, 63:381–96.

Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and
Selected Topics. Oakland, CA: Holden-Day.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon
Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.
Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. In Haussler, D., ed., Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pp. 144–52. New York: ACM Press.

Box, G. P. E. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control.
Oakland, CA: Holden-Day.

Boyle, P. and Frean, M. (2005). Dependent Gaussian processes. In Saul, L., Weiss, Y. and
Bottou, L., eds., Advances in Neural Information Processing Systems, volume 17,
pp. 217–24. Cambridge, MA: MIT Press.

Boznar, M., Lesjak, M. and Mlakar, P. (1993). A neural-network-based method for
short-term predictions of ambient SO2 concentrations in highly polluted
industrial-areas of complex terrain. Atmospheric Environment Part B-Urban
Atmosphere, 27(2):221–30.

Brajard, J., Jamet, C., Moulin, C. and Thiria, S. (2006). Use of a neuro-variational
inversion for retrieving oceanic and atmospheric constituents from satellite ocean
colour sensor: Application to absorbing aerosols. Neural Networks, 19:178–85.

Breiman, L. (1996). Bagging predictions. Machine Learning, 24:123–40.
Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.
Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple

regression and correlation. Journal of the American Statistical Association,
80:580–98.

324 References

Breiman, L., Friedman, J., Olshen, R. A. and Stone, C. (1984). Classification and
Regression Trees. New York: Chapman and Hall.

Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs,
New Jersey: Prentice-Hall.

Bretherton, C. S., Smith, C. and Wallace, J. M. (1992). An intercomparison of methods
for finding coupled patterns in climate data. Journal of Climate, 5:541–60.

Brier, W. G. (1950). Verification of forecasts expressed in terms of probabilities. Monthly
Weather Review, 78:1–3.

Brooks, H. E. and Doswell, C. A. (2002). Deaths in the 3 May 1999 Oklahoma City
tornado from a historical perspective. Weather and Forecasting, 17(3):354–61.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms. Journal of the Institute of Mathematics and Its Applications, 6:76–90.

Bürger, C. M., Kolditz, O., Fowler, H. J. and Blenkinsop, S. (2007). Future climate
scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain).
Environmental Pollution, 148(3):842–54.

Bürger, G. (1996). Expanded downscaling for generating local weather scenarios.
Climate Research, 7(2):111–28.

Bürger, G. (2002). Selected precipitation scenarios across Europe. Journal of Hydrology,
262(1-4):99–110.

Burrows, W. R. (1991). Objective guidance for 0–24 hour and 24–48 hour mesoscale
forecasts of lake-effect snow using CART. Weather and Forecasting, 6:357–78.

Burrows, W. R. (1997). CART regression models for predicting UV radiation at the
ground in the presence of cloud and other environmental factors. Journal of Applied
Meteorology, 36:531–44.

Burrows, W. R. (1999). Combining classification and regression trees and the neuro-fuzzy
inference system for environmental data modeling. In 18th International Conference
of the North American Fuzzy Information Processing Society - NAFIPS, pp. 695–99.
New York, NY: NAFIPS.

Burrows, W. R., Benjamin, M., Beauchamp, S. et al. CART decision-tree statistical
analysis and prediction of summer season maximum surface ozone for the
Vancouver, Montreal, and Atlantic regions of Canada. Journal of Applied
Meteorology, 34:1848–62.

Burrows, W. R., Price, C. and Wilson, L. J. (2005). Warm season lightning probability
prediction for Canada and the northern United States. Weather and Forecasting,
20:971–88.

Cai, S., Hsieh, W. W. and Cannon, A. J. (2008). A comparison of Bayesian and
conditional density models in probabilistic ozone forecasting. In Proceedings of the
2008 IEEE World Congress in Computational Intelligence, Hong Kong. (See:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4634117)

Camps-Valls, G., Bruzzone, L., Rojo-Alvarez, J. L. and Melgani, F. (2006). Robust
support vector regression for biophysical variable estimation from remotely sensed
images. IEEE Geoscience and Remote Sensing Letters, 3(3):339–43.

Cannon, A. J. (2006). Nonlinear principal predictor analysis: Application to the Lorenz
system. Journal of Climate, 19:579–89.

Cannon, A. J. (2007). Nonlinear analog predictor analysis: A coupled neural
network/analog model for climate downscaling. Neural Networks, 20:444–53.
doi:10.1016/j.neunet.2007.04.002.

Cannon, A. J. (2008). Probabilistic multi-site precipitation downscaling by an expanded
Bernoulli-gamma density network. Journal of Hydrometeorology, 9:1284–300.

References 325

Cannon, A. J. and Hsieh, W. W. (2008). Robust nonlinear canonical correlation analysis:
application to seasonal climate forecasting. Nonlinear Processes in Geophysics,
12:221–32.

Cannon, A. J. and Lord, E. R. (2000). Forecasting summertime surface-level ozone
concentrations in the Lower Fraser Valley of British Columbia: An ensemble neural
network approach. Journal of the Air and Waste Management Association,
50:322–39.

Cannon, A. J. and McKendry, I. G. (1999). Forecasting all-India summer monsoon
rainfall using regional circulation principal components: A comparison between
neural network and multiple regression models. International Journal of
Climatology, 19(14):1561–78.

Cannon, A. J. and McKendry, I. G. (2002). A graphical sensitivity analysis for statistical
climate models: application to Indian monsoon rainfall prediction by artificial neural
networks and multiple linear regression models. International Journal of
Climatology, 22:1687–708.

Cannon, A. J. and Whitfield, P. H. (2002). Downscaling recent streamflow conditions in
British Columbia, Canada using ensemble neural network models. Journal of
Hydrology, 259(1-4):136–51.

Cavazos, T. (1997). Downscaling large-scale circulation to local winter rainfall in
northeastern Mexico. International Journal of Climatology, 17(10):1069–82.

Cavazos, T. (1999). Large-scale circulation anomalies conducive to extreme precipitation
events and derivation of daily rainfall in northeastern Mexico and southeastern
Texas. Journal of Climate, 12:1506–23.

Cawley, G. C., Janacek, G. J., Haylock, M. R. and Dorling, S. R. (2007). Predictive
uncertainty in environmental modelling. Neural Networks, 20:537–49.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: A library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chen, K. S., Tzeng, Y. C. and Chen, P. C. (1999). Retrieval of ocean winds from satellite
scatterometer by a neural network. IEEE Transactions on Geoscience and Remote
Sensing, 37(1):247–56.

Chen, X. L., Li, Y. S., Liu, Z. G. et al. (2004). Integration of multi-source data for water
quality classification in the Pearl River estuary and its adjacent coastal waters of
Hong Kong. Continental Shelf Research, 24(16):1827–43.

Cherkassky, V. and Mulier, F. (1998). Learning from Data. New York: Wiley.
Chevallier, F. (2005). Comments on ‘New approach to calculation of atmospheric model

physics: Accurate and fast neural network emulation of longwave radiation in a
climate model’. Monthly Weather Review, 133(12):3721–3.

Chevallier, F., Cheruy, F., Scott, N. A. and Chedin, A. (1998). A neural network approach
for a fast and accurate computation of a longwave radiative budget. Journal of
Applied Meteorology, 37(11):1385–97.

Chevallier, F., Morcrette, J. J., Cheruy, F. and Scott, N. A. (2000). Use of a
neural-network-based long-wave radiative-transfer scheme in the ECMWF
atmospheric model. Quarterly Journal of the Royal Meteorological Society, 126(563
Part B):761–76.

Christiansen, B. (2005). The shortcomings of nonlinear principal component analysis in
identifying circulation regimes. Journal of Climate, 18(22):4814–23.

Christiansen, B. (2007). Reply. Journal of Climate, 20:378–9.
Chu, W., Keerthi, S. S. and Ong, C. J. (2004). Bayesian support vector regression using a

unified loss function. IEEE Transactions on Neural Networks, 15(1):29–44.

326 References

Clarke, T. (1990). Generalization of neural network to the complex plane. Proceedings of
International Joint Conference on Neural Networks, 2:435–40.

Collins, D. C., Reason, C. J. C. and Tangang, F. (2004). Predictability of Indian Ocean sea
surface temperature using canonical correlation analysis. Climate Dynamics,
22(5):481–97.

Comon, P. (1994). Independent component analysis – a new concept? Signal Processing,
36:287–314.

Comrie, A. C. (1997). Comparing neural networks and regression models for ozone
forecasting. Journal of the Air and Waste Management Association, 47(6):
653–63.

Cordisco, E., Prigent, C. and Aires, F. (2006). Snow characterization at a global scale
with passive microwave satellite observations. Journal of Geophysical Research,
111(D19). D19102, doi:10.1029/2005JD006773.

Cornford, D., Nabney, I. T. and Bishop, C. M. (1999). Neural network-based wind vector
retrieval from satellite scatterometer data. Neural Computing and Applications,
8:206–17. doi:10.1007/s005210050023.

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning,
20:273–97.

Coulibaly, P. and Evora, N. D. (2007). Comparison of neural network methods for
infilling missing daily weather records. Journal of Hydrology, 341(1-2):27–41.

Cox, D. T., Tissot, P. and Michaud, P. (2002). Water level observations and short-term
predictions including meteorological events for entrance of Galveston Bay, Texas.
Journal of Waterway, Port, Coastal and Ocean Engineering, 128(1):21–9.

Cressie, N. (1993). Statistics for Spatial Data. New York: Wiley.
Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines

and Other Kernel-based Methods. Cambridge, UK: Cambridge University Press.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems, 2:303–14.
Dash, J., Mathur, A., Foody, G. M. et al. (2007). Land cover classification using

multi-temporal MERIS vegetation indices. International Journal of Remote Sensing,
28(6):1137–59.

Davidon, W. C. (1959). Variable metric methods for minimization. A.E.C.Res. and
Develop. Report ANL-5990, Argonne National Lab.

Dawson, C. W. and Wilby, R. L. (2001). Hydrological modelling using artificial neural
networks. Progress in Physical Geography, 25(1):80–108.

De’ath, G. and Fabricius, K. E. (2000). Classification and regression trees: A powerful yet
simple technique for ecological data analysis. Ecology, 81(11):3178–92.

Del Frate, F., Ferrazzoli, P., Guerriero, L. et al. (2004). Wheat cycle monitoring using
radar data and a neural network trained by a model. IEEE Transactions on
Geoscience and Remote Sensing, 42(1):35–44.

Del Frate, F., Pacifici, F., Schiavon, G. and Solimini, C. (2007). Use of neural networks
for automatic classification from high-resolution images. IEEE Transactions on
Geoscience and Remote Sensing, 45(4):800–9.

Del Frate, F., Petrocchi, A., Lichtenegger, J. and Calabresi, G. (2000). Neural networks
for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and
Remote Sensing, 38(5):2282–7.

Del Frate, F. and Schiavon, G. (1999). Nonlinear principal component analysis for the
radiometric inversion of atmospheric profiles by using neural networks. IEEE
Transactions on Geoscience and Remote Sensing, 37(5):2335–42.

References 327

Del Frate, F. and Solimini, D. (2004). On neural network algorithms for retrieving forest
biomass from SAR data. IEEE Transactions on Geoscience and Remote Sensing,
42(1):24–34.

Deser, C. and Blackmon, M. L. (1995). On the relationship between tropical and North
Pacific sea surface temperature variations. Journal of Climate, 8(6):1677–80.

Diaz, H. F. and Markgraf, V., eds. (2000). El Niño and the Southern Oscillation:
Multiscale Variability and Global and Regional Impacts. Cambridge, UK:
Cambridge University Press.

Dibike, Y. B. and Coulibaly, P. (2006). Temporal neural networks for downscaling climate
variability and extremes. Neural Networks, 19(2):135–44.

Dibike, Y. B. and Solomatine, D. P. (2001). River flow forecasting using artificial neural
networks. Physics and Chemistry of the Earth, Part B - Hydrology, Oceans and
Atmosphere, 26(1):1–7.

Dibike, Y. B., Velickov, S., Solomatine, D. and Abbott, M. B. (2001). Model induction
with support vector machines: Introduction and applications. Journal of Computing
In Civil Engineering, 15(3):208–16.

Dong, D. and McAvoy, T. J. (1996). Nonlinear principal component analysis based on
principal curves and neural networks. Computers and Chemical Engineering,
20:65–78.

Dorling, S. R., Foxall, R. J., Mandic, D. P. and Cawley, G. C. (2003). Maximum
likelihood cost functions for neural network models of air quality data. Atmospheric
Environment, 37:3435–43. doi:10.1016/S1352-2310(03)00323-6.

Draper, N. R. and Smith, H. (1981). Applied Regression Analysis, 2nd edn. New York:
Wiley.

Duda, R. O., Hart, P. E. and Stork, D. G. (2001). Pattern Classification, 2nd edn.
New York: Wiley.

Dutot, A. L., Rynkiewicz, J., Steiner, F. E. and Rude, J. (2007). A 24 hr forecast of ozone
peaks and exceedance levels using neural classifiers and weather predictions.
Environmental Modelling & Software, 22(9):1261–9.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics,
7:1–26.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton,
Florida: CRC Press.

Elachi, C. and van Zyl, J. (2006). Introduction To The Physics and Techniques of Remote
Sensing, 2nd edn. Hoboken, NJ: Wiley-Interscience.

Elsner, J. B. and Tsonis, A. A. (1996). Singular Spectrum Analysis. New York: Plenum.
Emery, W. J. and Thomson, R. E. (1997). Data Analysis Methods in Physical

Oceanography. Oxford: Pergamon.
Essenreiter, R., Karrenbach, M. and Treitel, S. (2001). Identification and classification of

multiple reflections with self-organizing maps. Geophysical Prospecting,
49(3):341–52.

Fablet, R. and Le Josse, N. (2005). Automated fish age estimation from otolith images
using statistical learning. Fisheries Research, 72(2-3):279–90.

Fang, W. and Hsieh, W. W. (1993). Summer sea surface temperature variability off
Vancouver Island from satellite data. Journal of Geophysical Research,
98(C8):14391–400.

Faucher, M., Burrows, W. R. and Pandolfo, L. (1999). Empirical-statistical reconstruction
of surface marine winds along the western coast of Canada. Climate Research,
11(3):173–90.

328 References

Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal,
13:317–22.

Fletcher, R. and Powell, M. J. D. (1963). A rapidly convergent descent method for
minization. Computer Journal, 6:163–8.

Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gradients.
Computer Journal, 7:149–54.

Fogel, D. (2005). Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, 3rd edn. Hoboken, NJ: Wiley-IEEE.

Foody, G. M. and Mathur, A. (2004). A relative evaluation of multiclass image
classification by support vector machines. IEEE Transactions on Geoscience and
Remote Sensing, 42(6):1335–43.

Foresee, F. D. and Hagan, M. T. (1997). Gauss–Newton approximation to Bayesian
regularization. In Proceedings of the 1997 International Joint Conference on Neural
Networks. (See: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=614194)

Fraser, R. H. and Li, Z. (2002). Estimating fire-related parameters in boreal forest using
spot vegetation. Remote Sensing of Environment, 82(1):95–110.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretical generalization of on-line
learning and an application to boosting. Journal of Computer System Sciences,
55:119–39.

Galton, F. J. (1885). Regression towards mediocrity in hereditary stature. Journal of the
Anthropological Institute, 15:246–63.

Garcia-Gorriz, E. and Garcia-Sanchez, J. (2007). Prediction of sea surface temperatures
in the western Mediterranean Sea by neural networks using satellite observations.
Geophysical Research Letters, 34. L11603, doi:10.1029/2007GL029888.

Gardner, M. W. and Dorling, S. R. (1999). Neural network modelling and prediction of
hourly NOx and NO2 concentrations in urban air in London. Atmospheric
Environment, 33:709–19.

Gardner, M. W. and Dorling, S. R. (2000). Statistical surface ozone models: an improved
methodology to account for non-linear behaviour. Atmospheric Environment,
34:21–34.

Georgiou, G. and Koutsougeras, C. (1992). Complex domain backpropagation. IEEE
Trans. Circuits and Systems II, 39:330–4.

Ghil, M., Allen, M. R., Dettinger, M. D. et al. (2002). Advanced spectral methods for
climatic time series. Reviews of Geophysics, 40. 1003, DOI: 10.1029/
2000RG000092.

Ghosh, S. and Mujumdar, P. P. (2008). Statistical downscaling of GCM simulations to
streamflow using relevance vector machine. Advances in Water Resources,
31(1):132–46.

Gill, A. E. (1982). Atmosphere-Ocean Dynamics. Orlando Florida: Academic Press.
Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization. London:

Academic Press.
Gneiting, T., Raftery, A. E., Westveld, A. H. I. and Goldman, T. (2005). Calibrated

probabilistic forecasting using ensemble model output statistics and minimum CRPS
estimation. Monthly Weather Review, 133:1098–118.

Goddard, L., Mason, S. J., Zebiak, S. E. et al. (2001). Current approaches to
seasonal-to-interannual climate predictions. International Journal of Climatology,
21(9):1111–52.

Goldfarb, F. (1970). A family of variable metric methods derived by variational means.
Mathematics of Computation, 24:23–6.

References 329

Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21:215–23.

Gopal, S. and Woodcock, C. (1996). Remote sensing of forest change using artificial
neural networks. IEEE Transactions on Geoscience and Remote Sensing,
34:398–404.

Gourrion, J., Vandemark, D., Bailey, S. et al. (2002). A two-parameter wind speed
algorithm for Ku-band altimeters. Journal of Atmospheric and Oceanic Technology,
19(12):2030–48.

Grieger, B. and Latif, M. (1994). Reconstruction of the El Niño attractor with neural
networks. Climate Dynamics, 10(6):267–76.

Gross, L., Thiria, S., Frouin, R. and Greg, M. B. (2000). Artificial neural networks for
modeling the transfer function between marine reflectance and phytoplankton
pigment concentration. Journal of Geophysical Research, 105(C2):3483–3496. doi:
10.1029/1999JC900278.

Guégan, J. F., Lek, S. and Oberdorff, T. (1998). Energy availability and habitat
heterogeneity predict global riverine fish diversity. Nature, 391:382–4.

Gull, S. F. (1989). Developments in maximum entropy data analysis. In Skilling, J., ed.
Maximum Entropy and Bayesian Methods, pp. 53–71. Dordrecht: Kluwer.

Haber, E. and Oldenburg, D. (2000). A GCV based method for nonlinear ill-posed
problems. Computational Geoscience, 4:41–63.

Hamilton, K. (1988). A detailed examination of the extratropical response to tropical El
Niño/Southern Oscillation events. Journal of Climatology, 8:67–86.

Hamilton, K. (1998). Dynamics of the tropical middle atmosphere: A tutorial review.
Atmosphere-Ocean, 36(4):319–54.

Hamilton, K. and Hsieh, W. W. (2002). Representation of the QBO in the tropical
stratospheric wind by nonlinear principal component analysis. Journal of
Geophysical Research, 107(D15). 4232, doi: 10.1029/2001JD001250.

Han, G. and Shi, Y. (2008). Development of an Atlantic Canadian coastal water level
neural network model (ACCSLENNT). Journal of Atmospheric and Oceanic
Technology, 25:2117–32.

Hardman-Mountford, N. J., Richardson, A. J., Boyer, D. C., Kreiner, A. and Boyer, H. J.
(2003). Relating sardine recruitment in the Northern Benguela to satellite-derived
sea surface height using a neural network pattern recognition approach. Progress in
Oceanography, 59:241–55.

Hardoon, D. R., Szedmak, S. and Shawe-Taylor, J. (2004). Canonical correlation
analysis: An overview with application to learning methods. Neural Computation,
16:2639–64.

Hardy, D. M. (1977). Empirical eigenvector analysis of vector wind measurements.
Geophysical Research Letters, 4:319–20.

Hardy, D. M. and Walton, J. J. (1978). Principal component analysis of vector wind
measurements. Journal of Applied Meteorology, 17:1153–62.

Hasselmann, K. (1988). PIPs and POPs – a general formalism for the reduction of
dynamical systems in terms of Principal Interaction Patterns and Principal
Oscillation Patterns. Journal of Geophysical Research, 93:11015–20.

Hasselmann, S. and Hasselmann, K. (1985). Computations and parameterizations of the
nonlinear energy-transfer in a gravity-wave spectrum. Part I: A new method for
efficient computations of the exact nonlinear transfer integral. Journal of Physical
Oceanography, 15(11):1369–77.

Hasselmann, S., Hasselmann, K., Allender, J. H. and Barnett, T. P. (1985). Computations
and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum.

330 References

Part II: Parameterizations of the nonlinear energy-transfer for application in wave
models. Journal of Physical Oceanography, 15(11):1378–91.

Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the American Statistical
Association, 84:502–16.

Hastie, T., Tibshirani, R. and Friedman, J. (2001). Elements of Statistical Learning: Data
Mining, Inference and Prediction. New York: Springer-Verlag.

Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms. New York: Wiley.
Haupt, S. E., Pasini, A. and Marzban, C., eds. (2009). Artificial Intelligence Methods in

the Environmental Sciences. Springer.
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. New York:

Prentice Hall.
Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L. and Goodess, C. M. (2006).

Downscaling heavy precipitation over the United Kingdom: A comparison of
dynamical and statistical methods and their future scenarios. International Journal
of Climatology, 26(10):1397–415. doi: 10.1002/joc.1318.

Heidke, P. (1926). Berechnung des Erfolges und der Güte der Windstärkevorhersagen in
Sturmwarnungsdienst. Geografiska Annaler, 8:310–49.

Hennon, C. C., Marzban, C. and Hobgood, J. S. (2005). Improving tropical cyclogenesis
statistical model forecasts through the application of a neural network classifier.
Weather and Forecasting, 20:1073–1083. doi: 10.1175/WAF890.1.

Herman, A. (2007). Nonlinear principal component analysis of the tidal dynamics in a
shallow sea. Geophysical Research Letters, 34(2).

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49(6):409–36.

Hewitson, B. C. and Crane, R. G. (1996). Climate downscaling: Techniques and
application. Climate Research, 7(2):85–95.

Hewitson, B. C. and Crane, R. G. (2002). Self-organizing maps: applications to synoptic
climatology. Climate Research, 22(1):13–26.

Hirose, A. (1992). Continuous complex-valued backpropagation learning. Electronic
Letters, 28:1854–5.

Hoerling, M. P., Kumar, A. and Zhong, M. (1997). El Niño, La Niña and the nonlinearity
of their teleconnections. Journal of Climate, 10:1769–86.

Holton, J. R. and Tan, H.-C. (1980). The influence of the equatorial quasi-biennial
oscillation on the global circulation at 50 mb. Journal of the Atmospheric Sciences,
37:2200–8.

Hong, Y., Hsu, K. L., Sorooshian, S. and Gao, X. G. (2004). Precipitation estimation from
remotely sensed imagery using an artificial neural network cloud classification
system. Journal of Applied Meteorology, 43(12):1834–52.

Horel, J. D. (1981). A rotated principal component analysis of the interannual variability
of the Northern Hemisphere 500 mb height field. Monthly Weather Review,
109:2080–92.

Horel, J. D. (1984). Complex principal component analysis: Theory and examples.
Journal of Climate and Applied Meteorology, 23:1660–73.

Horel, J. D. and Wallace, J. M. (1981). Planetary-scale atmospheric phenomena
associated with the Southern Oscillation. Monthly Weather Review, 109:813–29.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4:252–7.

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359–66.

References 331

Horstmann, J., Schiller, H., Schulz-Stellenfleth, J. and Lehner, S. (2003). Global wind
speed retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing,
41(10):2277–86.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24:417–41.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28:321–77.
Hou, Z. and Koh, T. S. (2004). Image denoising using robust regression. IEEE Signal

Processing Letters, 11:234–46.
Hsieh, W. W. (2000). Nonlinear canonical correlation analysis by neural networks.

Neural Networks, 13:1095–105.
Hsieh, W. W. (2001a). Nonlinear canonical correlation analysis of the tropical Pacific

climate variability using a neural network approach. Journal of Climate,
14:2528–39.

Hsieh, W. W. (2001b). Nonlinear principal component analysis by neural networks.
Tellus, 53A:599–615.

Hsieh, W. W. (2004). Nonlinear multivariate and time series analysis by neural network
methods. Reviews of Geophysics, 42. RG1003, doi:10.1029/2002RG000112.

Hsieh, W. W. (2007). Nonlinear principal component analysis of noisy data. Neural
Networks, 20:434–43.

Hsieh, W. W. and Cannon, A. J. (2008). Towards robust nonlinear multivariate analysis by
neural network methods. In Donner, R. and Barbosa, S., eds., Nonlinear Time Series
Analysis in the Geosciences – Applications in Climatology, Geodynamics, and
Solar-Terrestrial Physics, pp. 97–124. Berlin: Springer.

Hsieh, W. W. and Hamilton, K. (2003). Nonlinear singular spectrum analysis of the
tropical stratospheric wind. Quarterly Journal of the Royal Meteorological Society,
129:2367–82.

Hsieh, W. W. and Tang, B. (1998). Applying neural network models to prediction and
data analysis in meteorology and oceanography. Bulletin of the American
Meteorological Society, 79:1855–70.

Hsieh, W. W., Tang, B. and Garnett, E. R. (1999). Teleconnections between Pacific sea
surface temperatures and Canadian prairie wheat yield. Agricultural and Forest
Meteorology, 96:209–17.

Hsieh, W. W. and Wu, A. (2002). Nonlinear multichannel singular spectrum analysis of
the tropical Pacific climate variability using a neural network approach. Journal of
Geophysical Research, 107(C7). doi: 10.1029/2001JC000957.

Hsieh, W. W., Wu, A. and Shabbar, A. (2006). Nonlinear atmospheric teleconnections.
Geophysical Research Letters, 33. L07714, doi:10.1029/2005GL025471.

Hsu, K. L., Gao, X. G., Sorooshian, S. and Gupta, H. V. (1997). Precipitation estimation
from remotely sensed information using artificial neural networks. Journal of
Applied Meteorology, 36(9):1176–90.

Hsu, K. L., Gupta, H. V. and Sorooshian, S. (1995). Artificial neural-network modeling of
the rainfall-runoff process. Water Resources Research, 31(10):2517–30.

Huang, C., Davis, L. S. and Townshend, J. R. G. (2002). An assessment of support vector
machines for land cover classification. International Journal of Remote Sensing,
23(4):725–49.

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35:73–101.

Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis.
New York: Wiley.

332 References

IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge, UK: Cambridge University Press.

Jamet, C. and Hsieh, W. W. (2005). The nonlinear atmospheric variability in the winter
northeast Pacific associated with the Madden–Julian Oscillation. Geophysical
Research Letters, 32(13). L13820, doi: 10.1029/2005GL023533.

Jamet, C., Thiria, S., Moulin, C. and Crepon, M. (2005). Use of a neurovariational
inversion for retrieving oceanic and atmospheric constituents from ocean color
imagery: A feasibility study. Journal of Atmospheric and Oceanic Technology,
22(4):460–75.

Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge, UK: Cambridge
University Press.

Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and Its Applications. San
Francisco: Holden-Day.

Jin, F. F. (1997a). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual
model. Journal of the Atmospheric Sciences, 54(7):811–29.

Jin, F. F. (1997b). An equatorial ocean recharge paradigm for ENSO. Part II: A
stripped-down coupled model. Journal of the Atmospheric Sciences, 54(7):830–47.

Jolliffe, I. T. (2002). Principal Component Analysis. New York: Springer.
Jolliffe, I. T. and Stephenson, D. B., eds., (2003). Forecast Verification: A Practitioner’s

Guide in Atmospheric Science. Chichester: Wiley.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.

Psychometrika, 23:187–200.
Kalnay, E., Kanamitsu, M., Kistler, R. et al. (1996). The NCEP/NCAR 40 year reanalysis

project. Bulletin of the American Meteorological Society, 77(3):437–71.
Kaplan, A., Kushnir, Y. and Cane, M. A. (2000). Reduced space optimal interpolation of

historical marine sea level pressure: 1854-1992. Journal of Climate,
13(16):2987–3002.

Karl, T. R., Wang, W. C., Schlesinger, M. E., Knight, R. W. and Portman, D. (1990). A
method of relating general-circulation model simulated climate to the observed local
climate. 1. Seasonal statistics. Journal of Climate, 3(10):1053–79.

Karush, W. (1939). Minima of functions of several variables with inequalities as side
constraints. M.Sc. thesis, University of Chicago.

Keiner, L. E. and Yan, X.-H. (1998). A neural network model for estimating sea surface
chlorophyll and sediments from Thematic Mapper imagery. Remote Sensing of
Environment, 66:153–65.

Kelly, K. (1988). Comment on ‘Empirical orthogonal function analysis of advanced very
high resolution radiometer surface temperature patterns in Santa Barbara Channel’
by G.S.E. Lagerloef and R.L. Bernstein. Journal of Geophysical Research,
93(C12):15743–54.

Khan, M. S. and Coulibaly, P. (2006). Application of support vector machine in lake
water level prediction. Journal of Hydrologic Engineering, 11(3):199–205.

Kharin, V. V. and Zwiers, F. W. (2003). On the ROC score of probability forecasts.
Journal of Climate, 16(24):4145–50.

Kim, T. and Adali, T. (2002). Fully complex multi-layer perceptron network for nonlinear
signal processing. Journal of VLSI Signal Processing, 32:29–43.

Kirby, M. J. and Miranda, R. (1996). Circular nodes in neural networks. Neural
Computation, 8:390–402.

Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps.
Biological Cybernetics, 43:59–69.

References 333

Kohonen, T. (2001). Self-Organizing Maps, 3rd edn. Berlin: Springer.
Kolehmainen, M., Martikainen, H. and Ruuskanen, J. (2001). Neural networks and

periodic components used in air quality forecasting. Atmospheric Environment,
35(5):815–25.

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, 37:233–43.

Krasnopolsky, V. M. (2007). Neural network emulations for complex multidimensional
geophysical mappings: Applications of neural network techniques to atmospheric
and oceanic satellite retrievals and numerical modeling. Reviews of Geophysics,
45(3). RG3009, doi:10.1029/2006RG000200.

Krasnopolsky, V. M., Breaker, L. C. and Gemmill, W. H. (1995). A neural network as a
nonlinear transfer function model for retrieving surface wind speeds from the special
sensor microwave imager. Journal of Geophysical Research, 100(C6):11033–45.

Krasnopolsky, V. M., Chalikov, D. V. and Tolman, H. L. (2002). A neural network
technique to improve computational efficiency of numerical oceanic models. Ocean
Modelling, 4:363–83.

Krasnopolsky, V. M. and Chevallier, F. (2003). Some neural network applications in
environmental sciences. Part II: advancing computational efficiency in
environmental numerical models. Neural Networks, 16(3-4):335–48.

Krasnopolsky, V. M. and Fox-Rabinovitz, M. S. (2006). Complex hybrid models
combining deterministic and machine learning components for numerical climate
modeling and weather prediction. Neural Networks, 19:122–34.

Krasnopolsky, V. M., Fox-Rabinovitz, M. S. and Chalikov, D. V. (2005a). Comments on
‘New approach to calculation of atmospheric model physics: Accurate and fast
neural network emulation of longwave radiation in a climate model’ - Reply.
Monthly Weather Review, 133(12):3724–8.

Krasnopolsky, V. M., Fox-Rabinovitz, M. S. and Chalikov, D. V. (2005b). New approach
to calculation of atmospheric model physics: Accurate and fast neural network
emulation of longwave radiation in a climate model. Monthly Weather Review,
133(5):1370–83.

Krasnopolsky, V. M., Gemmill, W. H. and Breaker, L. C. (1999). A multiparameter
empirical ocean algorithm for SSM/I retrievals. Canadian Journal of Remote
Sensing, 25:486–503.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the
2nd Berkeley Symposium on Mathematical Statistics and Probabilities, pp. 481–92.
University of California Press.

Kukkonen, J., Partanen, L., Karppinen, A. et al. (2003). Extensive evaluation of neural
network models for the prediction of NO2 and PM10 concentrations, compared with
a deterministic modelling system and measurements in central Helsinki.
Atmospheric Environment, 37(32):4539–50.

Kwiatkowska, E. J. and Fargion, G. S. (2003). Application of machine-learning
techniques toward the creation of a consistent and calibrated global chlorophyll
concentration baseline dataset using remotely sensed ocean color data. IEEE
Transactions on Geoscience and Remote Sensing, 41(12):2844–60.

Kwok, J. T.-Y. and Tsang, I. W.-H. (2004). The pre-image problem in kernel methods.
IEEE Transactions on Neural Networks, 15:1517–25.

Lai, P. L. and Fyfe, C. (1999). A neural implementation of canonical correlation analysis.
Neural Networks, 12:1391–7.

Lai, P. L. and Fyfe, F. (2000). Kernel and non-linear canonical correlation analysis.
International Journal of Neural Systems, 10:365–77.

334 References

Lambert, S. J. and Fyfe, J. C. (2006). Changes in winter cyclone frequencies and strengths
simulated in enhanced greenhouse warming experiments: results from the models
participating in the IPCC diagnostic exercise. Climate Dynamics, 26(7-8):713–28.

Lax, D. A. (1985). Robust estimators of scale: Finite-sample performance in long-tailed
symmetric distributions. Journal of the American Statistical Association, 80:736–41.

Le, N. D. and Zidek, J. V. (2006). Statistical Analysis of Environmental Space-Time
Processes. New York: Springer.

LeBlond, P. H. and Mysak, L. A. (1978). Waves in the Ocean. Amsterdam: Elsevier.
LeCun, Y., Kanter, I. and Solla, S. A. (1991). Second order properties of error surfaces:

Learning time and generalization. In Advances in Neural Information Processing
Systems, volume 3, pp. 918–24. Cambridge, MA: MIT Press.

Lee, J., Weger, R. C., Sengupta, S. K. and Welch, R. M. (1990). A neural network
approach to cloud classification. IEEE Transactions on Geoscience and Remote
Sensing, 28(5):846–55.

Lee, Y., Wahba, G. and Ackerman, S. A. (2004). Cloud classification of satellite radiance
data by multicategory support vector machines. Journal of Atmospheric and Oceanic
Technology, 21(2):159–69.

Legler, D. M. (1983). Empirical orthogonal function analysis of wind vectors over the
tropical Pacific region. Bulletin of the American Meteorological Society,
64(3):234–41.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least
squares. Quarterly Journal of Applied Mathematics, 2:164–8.

Li, S., Hsieh, W. W. and Wu, A. (2005). Hybrid coupled modeling of the tropical Pacific
using neural networks. Journal of Geophysical Research, 110(C09024). doi:
10.1029/2004JC002595.

Liu, Y. G. and Weisberg, R. H. (2005). Patterns of ocean current variability on the West
Florida Shelf using the self-organizing map. Journal Of Geophysical Research –
Oceans, 110(C6). C06003, doi:10.1029/2004JC002786.

Liu, Y., Weisberg, R. H. and Mooers, C. N. K. (2006). Performance evaluation of the
self-organizing map for feature extraction. Journal of Geophysical Research, 111
(C05018). doi:10.1029/2005JC003117.

Liu, Y. G., Weisberg, R. H. and Shay, L. K. (2007). Current patterns on the West Florida
Shelf from joint self-organizing map analyses of HF radar and ADCP data. Journal
of Atmospheric and Oceanic Technology, 24(4):702–12.

Liu, Z. and Jin, L. (2008). LATTICESVM – A new method for multi-class support vector
machines. In Proceedings of the 2008 IEEE World Congress in Computational
Intelligence, Hong Kong. (See http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=463387)

Lorenz, E. N. (1956). Empirical orthogonal functions and statistical weather prediction.
Sci. rep. no. 1, Statistical Forecasting Project, Dept. of Meteorology, MIT.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20:130–41.

Lu, W. Z. and Wang, W. J. (2005). Potential assessment of the ‘support vector machine’
method in forecasting ambient air pollutant trends. Chemosphere, 59(5):693–701.

Luenberger, D. G. (1984). Linear and Nonlinear Programming, 2nd edn. Reading, MA:
Addison-Wesley.

MacKay, D. J. C. (1992a). A practical Bayesian framework for backpropagation
networks. Neural Computation, 4(3):448–72.

MacKay, D. J. C. (1992b). Bayesian interpolation. Neural Computation, 4(3):415–47.

References 335

MacKay, D. J. C. (1995). Probable networks and plausible predictions – a review of
practical Bayesian methods for supervised neural networks. Network: Computation
in Neural Systems, 6:469–505.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms.
Cambridge, UK: Cambridge University Press.

Maier, H. R. and Dandy, G. C. (2000). Neural networks for the prediction and forecasting
of water resources variables: a review of modelling issues and applications.
Environmental Modelling and Software, 15:101–24.

Mantua, N. J. and Hare, S. R. (2002). The Pacific decadal oscillation. Journal of
Oceanography, 58(1):35–44.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London:
Academic Press.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics, 11:431–41.

Marzban, C. (2004). The ROC curve and the area under it as performance measures.
Weather and Forecasting, 19(6):1106–14.

Marzban, C. and Stumpf, G. J. (1996). A neural network for tornado prediction based on
doppler radar-derived attributes. Journal of Applied Meteorology, 35(5):617–26.

Marzban, C. and Stumpf, G. J. (1998). A neural network for damaging wind prediction.
Weather and Forecasting, 13:151–63.

Marzban, C. and Witt, A. (2001). A Bayesian neural network for severe-hail size
prediction. Weather and Forecasting, 16(5):600–10.

Masters, T. (1995). Advanced Algorithms for Neural Networks – A C++ Sourcebook.
New York: Wiley.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in neural
nets. Bulletin of Mathematical Biophysics, 5:115–37.

McGinnis, D. L. (1997). Estimating climate-change impacts on Colorado Plateau
snowpack using downscaling methods. Professional Geographer, 49(1):117–25.

McIntire, T. J. and Simpson, J. J. (2002). Arctic sea ice, cloud, water, and lead
classification using neural networks and 1.61µm data. IEEE Transactions on
Geoscience and Remote Sensing, 40(9):1956–72.

Meinen, C. S. and McPhaden, M. J. (2000). Observations of warm water volume changes
in the equatorial Pacific and their relationship to El Niño and La Niña. Journal of
Climate, 13:3551–9.

Mejia, C., Thiria, S., Tran, N., Crepon, M. and Badran, F. (1998). Determination of the
geophysical model function of the ERS-1 scatterometer by the use of neural
networks. Journal of Geophysical Research, 103(C6):12853–68.

Miikkulainen, R., Bryant, B. D., Cornelius, R. et al. (2006). Computational intelligence
in games. In Yen, G. and Fogel, D., eds., Computational Intelligence: Principles and
Practice, pp. 155–191. IEEE Computational Intelligence Soc.

Mika, S., Schölkopf, B., Smola, A. J. et al. (1999). Kernel PCA and de-noising in feature
spaces. In Kearns, M., Solla, S., and Cohn, D., eds., Advances in Neural Information
Processing Systems, volume 11, pp. 536–42. Cambridge, MA: MIT Press.

Miller, S. W. and Emery, W. J. (1997). An automated neural network cloud classifier for
use over land and ocean surfaces. Journal of Applied Meteorology, 36(10):
1346–62.

Mingoti, S. A. and Lima, J. O. (2006). Comparing SOM neural network with Fuzzy
c-means, K-means and traditional hierarchical clustering algorithms. European
Journal of Operational Research, 174(3):1742–59.

336 References

Minns, A. W. and Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models.
Hydrological Sciences Journal – Journal Des Sciences Hydrologiques,
41(3):399–417.

Minsky, M. and Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.
Monahan, A. H. (2000). Nonlinear principal component analysis by neural networks:

theory and application to the Lorenz system. Journal of Climate, 13:821–35.
Monahan, A. H. (2001). Nonlinear principal component analysis: Tropical Indo-Pacific

sea surface temperature and sea level pressure. Journal of Climate, 14:219–33.
Monahan, A. H. and Fyfe, J. C. (2007). Comment on ‘The shortcomings of nonlinear

principal component analysis in identifying circulation regimes’. Journal of Climate,
20:375–77.

Monahan, A. H., Fyfe, J. C. and Flato, G. M. (2000). A regime view of northern
hemisphere atmospheric variability and change under global warming. Geophysical
Research Letters, 27:1139–42.

Monahan, A. H., Fyfe, J. C. and Pandolfo, L. (2003). The vertical structure of wintertime
climate regimes of the northern hemisphere extratropical atmosphere. Journal of
Climate, 16:2005–21.

Monahan, A. H., Pandolfo, L. and Fyfe, J. C. (2001). The preferred structure of
variability of the northern hemisphere atmospheric circulation. Geophysical
Research Letters, 28:1019–22.

Monahan, A. H., Tangang, F. T. and Hsieh, W. W. (1999). A potential problem with
extended EOF analysis of standing wave fields. Atmosphere-Ocean, 37:241–54.

Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:281–94.

Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter
content (case 1 waters). Journal of Geophysical Research, 93:10749–68.

Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression: A Second Course in
Statistics. Addison-Wesley.

Nabney, I. T. (2002). Netlab: Algorithms for Pattern Recognition. London: Springer.
Naujokat, B. (1986). An update of the observed quasi-biennial oscillation of the

stratospheric winds over the tropics. Journal of the Atmospheric Sciences,
43:1873–7.

Neal, R. M. (1996). Bayesian Learning for Neural Networks, volume 118 of Lecture
Notes in Statistics. New York: Springer.

Newbigging, S. C., Mysak, L. A. and Hsieh, W. W. (2003). Improvements to the
non-linear principal component analysis method, with applications to ENSO and
QBO. Atmosphere-Ocean, 41(4):290–98.

Nguyen, D. and Widrow, B. (1990). Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. In International
Joint Conference on Neural Networks, volume 3, pp. 21–6. (See
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
137819)

Niang, A., Badran, A., Moulin, C., Crepon, M., and Thiria, S. (2006). Retrieval of aerosol
type and optical thickness over the Mediterranean from SeaWiFS images using an
automatic neural classification method. Remote Sensing of Environment, 100:82–94.

Niermann, S. (2006). Evolutionary estimation of parameters of Johnson distributions.
Journal of Statistical Computation and Simulation, 76:185–93.

Nitta, T. (1997). An extension of the back-propagation algorithm to complex numbers.
Neural Networks, 10:1391–415.

References 337

North, G. R., Bell, T. L., Cahalan, R. F. and Moeng, F. J. (1982). Sampling errors in the
estimation of empirical orthogonal functions. Monthly Weather Review,
110:699–706.

Nunnari, G., Dorling, S., Schlink, U. et al. (2004). Modelling SO2 concentration at a point
with statistical approaches. Environmental Modelling & Software, 19(10):887–905.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15:267–73.

Olden, J. D. and Jackson, D. A. (2002). A comparison of statistical approaches for
modelling fish species distributions. Freshwater Biology, 47(10):1976–95.

Olsson, J., Uvo, C. B., Jinno, K. et al. (2004). Neural networks for rainfall forecasting by
atmospheric downscaling. Journal of Hydrologic Engineering, 9(1):1–12.

Pacifici, F., Del Frate, F., Solimini, C. and Emery, W. J. (2007). An innovative neural-net
method to detect temporal changes in high-resolution optical satellite imagery. IEEE
Transactions on Geoscience and Remote Sensing, 45(9):2940–52.

Park, Y. S., Cereghino, R., Compin, A. and Lek, S. (2003). Applications of artificial
neural networks for patterning and predicting aquatic insect species richness in
running waters. Ecological Modelling, 160(3):265–80.

Pasini, A., Lore, M. and Ameli, F. (2006). Neural network modelling for the analysis of
forcings/temperatures relationships at different scales in the climate system.
Ecological Modelling, 191(1):58–67.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, Ser. 6, 2:559–72.

Peirce, C. S. (1884). The numerical measure of the success of predictions. Science,
4:453–4.

Penland, C. and Magorian, T. (1993). Prediction of Nino-3 sea surface temperatures using
linear inverse modeling. Journal of Climate, 6(6):1067–76.

Philander, S. G. (1990). El Niño, La Niña, and the Southern Oscillation. San Diego:
Academic Press.

Polak, E. (1971). Computational Methods in Optimization: A Unified Approach.
New York: Academic Press.

Polak, E. and Ribiere, G. (1969). Note sur la convergence de methods de directions
conjures. Revue Francaise d’Informat. et de Recherche Operationnelle, 16:35–43.

Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: a review. In
Mason, J. and Cox, M., eds., Algorithms for Approximation, pp. 143–67. Oxford:
Clarendon Press.

Pozo-Vazquez, D., Esteban-Parra, M. J., Rodrigo, F. S. and Castro-Diez, Y. (2001).
A study of NAO variability and its possible nonlinear influences on European surface
temperature. Climate Dynamics, 17:701–15.

Preisendorfer, R. W. (1988). Principal Component Analysis in Meteorology and
Oceanography. New York: Elsevier.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986). Numerical
Recipes. Cambridge, UK: Cambridge University Press.

Price, K. V., Storn, R. M. and Lampinen, J. A. (2005). Differential Evolution: A Practical
Approach to Global Optimization. Berlin: Springer.

Pyper, B. J. and Peterman, R. M. (1998). Comparison of methods to account for
autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries
and Aquatic Sciences, 55:2127–40.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan
Kaufmann.

338 References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press.

Rattan, S. S. P. and Hsieh, W. W. (2004). Nonlinear complex principal component
analysis of the tropical Pacific interannual wind variability. Geophysical Research
Letters, 31(21). L21201, doi:10.1029/2004GL020446.

Rattan, S. S. P. and Hsieh, W. W. (2005). Complex-valued neural networks for nonlinear
complex principal component analysis. Neural Networks, 18(1):61–9.

Rattan, S. S. P., Ruessink, B. G. and Hsieh, W. W. (2005). Non-linear complex principal
component analysis of nearshore bathymetry. Nonlinear Processes in Geophysics,
12(5):661–70.

Recknagel, F., French, M., Harkonen, P. and Yabunaka, K. (1997). Artificial neural
network approach for modelling and prediction of algal blooms. Ecological
Modelling, 96(1-3):11–28.

Reynolds, R. W. and Smith, T. M. (1994). Improved global sea surface temperature
analyses using optimum interpolation. Journal of Climate, 7(6):929–48.

Richardson, A. J., Risien, C. and Shillington, F. A. (2003). Using self-organizing maps to
identify patterns in satellite imagery. Progress in Oceanography, 59(2-3):223–39.

Richaume, P., Badran, F., Crepon, M. et al. (2000). Neural network wind retrieval from
ERS-1 scatterometer data. Journal of Geophysical Research, 105(C4):8737–51.

Richman, M. B. (1986). Rotation of principal components. Journal of Climatology,
6:293–335.

Rojas, R. (1996). Neural Networks– A Systematic Introduction. New York: Springer.
Rojo-Alvarez, J. L., Martinez-Ramon, M., Figueiras-Vidal, A. R., Garcia-Armada, A. and

Artes-Rodriguez, A. (2003). A robust support vector algorithm for nonparametric
spectral analysis. IEEE Signal Processing Letters, 10(11):320–23.

Ropelewski, C. F. and Jones, P. D. (1987). An extension of the Tahiti-Darwin Southern
Oscillation Index. Monthly Weather Review, 115:2161–5.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–408.

Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan.
Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear

embedding. Science, 290:2323–6.
Ruessink, B. G., van Enckevort, I. M. J. and Kuriyama, Y. (2004). Non-linear principal

component analysis of nearshore bathymetry. Marine Geology, 203:185–97.
Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning internal

representations by error propagation. In Rumelhart, D., McClelland, J. and Group,
P. R., eds., Parallel Distributed Processing, volume 1, pp. 318–62. Cambridge, MA:
MIT Press.

Saff, E. B. and Snider, A. D. (2003). Fundamentals of Complex Analysis with
Applications to Engineering and Science. Englewood Cliffs, NJ: Prentice-Hall.

Sajikumar, N. and Thandaveswara, B. S. (1999). A non-linear rainfall-runoff model using
an artificial neural network. Journal of Hydrology, 216(1-2):32–55.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks, 2:459–73.

Schiller, H. (2007). Model inversion by parameter fit using NN emulating the forward
model - Evaluation of indirect measurements. Neural Networks, 20(4):
479–83.

Schiller, H. and Doerffer, R. (1999). Neural network for emulation of an inverse model –
operational derivation of Case II water properties from MERIS data. International
Journal of Remote Sensing, 20:1735–46.

References 339

Schiller, H. and Doerffer, R. (2005). Improved determination of coastal water constituent
concentrations from MERIS data. IEEE Transactions on Geoscience and Remote
Sensing, 43(7):1585–91.

Schlink, U., Dorling, S., Pelikan, E. et al. (2003). A rigorous inter-comparison of
ground-level ozone predictions. Atmospheric Environment, 37(23):3237–53.

Schölkopf, B., Smola, A. and Muller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–319.

Schölkopf, B., Smola, A., Williamson, R. and Bartlett, P. L. (2000). New support vector
algorithms. Neural Computation, 12:1207–45.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond (Adaptive Computation and Machine
Learning). Cambridge, MA: MIT Press.

Schölkopf, B., Sung, K. K., Burges, C. J. C. et al. (1997). Comparing support vector
machines with Gaussian kernels to radial basis function classifiers. IEEE
Transactions on Signal Processing, 45(11):2758–65.

Schoof, J. T. and Pryor, S. C. (2001). Downscaling temperature and precipitation:
A comparison of regression-based methods and artificial neural networks.
International Journal of Climatology, 21(7):773–90.

Shabbar, A. and Barnston, A. G. (1996). Skill of seasonal climate forecasts in Canada
using canonical correlation analysis. Monthly Weather Review, 124:2370–85.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computation, 24:647–57.

Shanno, D. F. (1978). Conjugate-gradient methods with inexact searches. Mathematics of
Operations Research, 3:244–56.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
Cambridge, UK: Cambridge University Press.

Simpson, J. J. and McIntire, T. J. (2001). A recurrent neural network classifier for
improved retrievals of areal extent of snow cover. IEEE Transactions on Geoscience
and Remote Sensing, 39(10):2135–47.

Simpson, J. J., Tsou, Y. L., Schmidt, A. and Harris, A. (2005). Analysis of along track
scanning radiometer-2 (ATSR-2) data for clouds, glint and sea surface temperature
using neural networks. Remote Sensing of Environment, 98:152–81.

Smith, T. M., Reynolds, R. W., Livezey, R. E. and Stokes, D. C. (1996). Reconstruction of
historical sea surface temperatures using empirical orthogonal functions. Journal of
Climate, 9(6):1403–20.

Solomatine, D. P. and Dulal, K. N. (2003). Model trees as an alternative to neural
networks in rainfall-runoff modelling. Hydrological Sciences Journal, 48:
399–411.

Solomatine, D. P. and Xue, Y. P. (2004). M5 model trees and neural networks:
Application to flood forecasting in the upper reach of the Huai River in China.
Journal of Hydrologic Engineering, 9(6):491–501.

Sorooshian, S., Hsu, K. L., Gao, X. et al. (2000). Evaluation of PERSIANN system
satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological
Society, 81(9):2035–46.

Srivastava, A. N., Oza, N. C. and Stroeve, J. (2005). Virtual sensors: Using data mining
techniques to efficiently estimate remote sensing spectra. IEEE Transactions on
Geoscience and Remote Sensing, 43(3):590–600.

Stacey, M. W., Pond, S. and LeBlond, P. H. (1986). A wind-forced Ekman spiral as a
good statistical fit to low-frequency currents in a coastal strait. Science, 233:470–2.

340 References

Stogryn, A. P., Butler, C. T. and Bartolac, T. J. (1994). Ocean surface wind retrievals from
Special Sensor Microwave Imager data with neural networks. Journal of
Geophysical Research, 99(C1):981–4.

Storn, R. and Price, K. (1997). Differential evolution – A simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization,
11:341–59. doi 10.1023/A:1008202821328.

Strang, G. (2005). Linear Algebra and Its Applications. Pacific Grove, CA: Brooks Cole.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T. and Serreze, M. (2007). Arctic sea

ice decline: Faster than forecast. Geophysical Research Letters, 34. L09501,
doi:10.1029/2007GL029703.

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J.
(2002). Least Squares Support Vector Machines. New Jersey: World Scientific.

Tag, P. M., Bankert, R. L. and Brody, L. R. (2000). An AVHRR multiple cloud-type
classification package. Journal of Applied Meteorology, 39(2):125–34.

Taner, M. T., Berge, T., Walls, J. A. et al. (2001). Well log calibration of Kohonen-
classified seismic attributes using Bayesian logic. Journal of Petroleum Geology,
24(4):405–16.

Tang, B. (1995). Periods of linear development of the ENSO cycle and POP forecast
experiments. Journal of Climate, 8:682–91.

Tang, B., Flato, G. M. and Holloway, G. (1994). A study of Arctic sea ice and sea-level
pressure using POP and neural network methods. Atmosphere-Ocean, 32:507–29.

Tang, B. and Mazzoni, D. (2006). Multiclass reduced-set support vector machines. In
Proceedings of the 23rd International Conference on Machine Learning (ICML
2006), Pittsburgh, PA. New York: ACM.

Tang, B. Y., Hsieh, W. W., Monahan, A. H. and Tangang, F. T. (2000). Skill comparisons
between neural networks and canonical correlation analysis in predicting the
equatorial Pacific sea surface temperatures. Journal of Climate, 13(1):287–93.

Tang, Y. (2002). Hybrid coupled models of the tropical Pacific: I. Interannual variability.
Climate Dynamics, 19:331–42.

Tang, Y. and Hsieh, W. W. (2002). Hybrid coupled models of the tropical Pacific: II.
ENSO prediction. Climate Dynamics, 19:343–53.

Tang, Y. and Hsieh, W. W. (2003a). ENSO simulation and prediction in a hybrid coupled
model with data assimilation. Journal of the Meteorological Society of Japan,
81:1–19.

Tang, Y. and Hsieh, W. W. (2003b). Nonlinear modes of decadal and interannual
variability of the subsurface thermal structure in the Pacific Ocean. Journal of
Geophysical Research, 108(C3). 3084, doi: 10.1029/2001JC001236.

Tang, Y., Hsieh, W. W., Tang, B. and Haines, K. (2001). A neural network atmospheric
model for hybrid coupled modelling. Climate Dynamics, 17:445–55.

Tangang, F. T., Hsieh, W. W. and Tang, B. (1997). Forecasting the equatorial Pacific sea
surface temperatures by neural network models. Climate Dynamics, 13:135–47.

Tangang, F. T., Hsieh, W. W. and Tang, B. (1998a). Forecasting the regional sea surface
temperatures of the tropical Pacific by neural network models, with wind stress and
sea level pressure as predictors. Journal of Geophysical Research, 103(C4):
7511–22.

Tangang, F. T., Tang, B., Monahan, A. H. and Hsieh, W. W. (1998b). Forecasting ENSO
events – a neural network-extended EOF approach. Journal of Climate, 11:29–41.

Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319–23.

References 341

Teng, Q. B., Monahan, A. H., and Fyfe, J. C. (2004). Effects of time averaging on climate
regimes. Geophysical Research Letters, 31(22). L22203, doi:10.1029/
2004GL020840.

Teschl, R. and Randeu, W. L. (2006). A neural network model for short term river flow
prediction. Natural Hazards and Earth System Sciences, 6:629–35.

Teschl, R., Randeu, W. L. and Teschl, F. (2007). Improving weather radar estimates of
rainfall using feed-forward neural networks. Neural Networks, 20:519–27.

Thiria, S., Mejia, C., Badran, F. and Crepon, M. (1993). A neural network approach for
modeling nonlinear transfer functions – application for wind retrieval from
spaceborne scatterometer data. Journal of Geophysical Research,
98(C12):22827–41.

Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signature in the
wintertime geopotential height and temperature fields. Geophysical Research
Letters, 25:1297–300.

Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical
circulation. Part I: Month-to-month variability. Journal of Climate,
13(5):1000–16.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1:211–44.

Tolman, H. L., Krasnopolsky, V. M. and Chalikov, D. V. (2005). Neural network
approximations for nonlinear interactions in wind wave spectra: direct mapping for
wind seas in deep water. Ocean Modelling, 8:252–78.

Trigo, R. M. and Palutikof, J. P. (1999). Simulation of daily temperatures for climate
change scenarios over Portugal: a neural network model approach. Climate
Research, 13(1):45–59.

Trigo, R. M. and Palutikof, J. P. (2001). Precipitation scenarios over Iberia: A comparison
between direct GCM output and different downscaling techniques. Journal of
Climate, 14(23):4422–46.

Tripathi, S., Srinivas, V. V. and Nanjundiah, R. S. (2006). Downscaling of precipitation
for climate change scenarios: A support vector machine approach. Journal of
Hydrology, 330(3-4):621–40.

Troup, A. J. (1965). The ‘southern oscillation’. Quarterly Journal of the Royal
Meteorological Society, 91:490–506.

UNESCO (1981). The Practical Salinity Scale 1978 and the International Equation of
State for Seawater 1980. Tenth Report of the Joint Panel on Oceanographic Tables
and Standards. Technical Report 36, UNESCO.

van den Boogaard, H. and Mynett, A. (2004). Dynamic neural networks with data
assimilation. Hydrological Processes, 18:1959–66.

van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated Annealing: Theory and
Applications. Dordrecht: Reidel.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Berlin: Springer Verlag.
Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley.
Vecchi, G. A. and Bond, N. A. (2004). The Madden–Julian Oscillation (MJO) and

northern high latitude wintertime surface air temperatures. Geophysical Research
Letters, 31. L04104, doi: 10.1029/2003GL018645.

Villmann, T., Merenyi, E. and Hammer, B. (2003). Neural maps in remote sensing image
analysis. Neural Networks, 16(3-4):389–403.

von Storch, H. (1999). On the use of ‘inflation’ in statistical downscaling. Journal of
Climate, 12(12):3505–6.

342 References

von Storch, H., Bruns, T., Fischer-Bruns, I. and Hasselman, K. (1988). Principal
Oscillation Pattern Analysis of the 30 to 60 day oscillation in general circulation
model equatorial troposphere. Journal of Geophysical Research, 93(D9):
11021–36.

von Storch, H., Burger, G., Schnur, R. and von Storch, J.-S. (1995). Principal oscillation
patterns: A review. Journal of Climate, 8(3):377–400.

von Storch, H. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research.
Cambridge, UK: Cambridge University Press.

Wallace, J. M. (1972). Empirical orthogonal representation of time series in the frequency
domain. Part II: Application to the study of tropical wave disturbances. Journal of
Applied Meteorology, 11:893–990.

Wallace, J. M. and Dickinson, R. E. (1972). Empirical orthogonal representation of time
series in the frequency domain. Part I: Theoretical considerations. Journal of
Applied Meteorology, 11(6):887–92.

Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height fields
during the northern hemisphere winter. Monthly Weather Review, 109:784–812.

Wallace, J. M., Smith, C. and Bretherton, C. S. (1992). Singular value decomposition of
wintertime sea surface temperature and 500 mb height anomalies. Journal of
Climate, 5(6):561–76.

Walter, A., Denhard, M. and Schonwiese, C.-D. (1998). Simulation of global and
hemispheric temperature variations and signal detection studies using neural
networks. Meteorologische Zeitschrift, N.F.7:171–80.

Walter, A. and Schonwiese, C. D. (2002). Attribution and detection of anthropogenic
climate change using a backpropagation neural network. Meteorologische
Zeitschrift, 11(5):335–43.

Wang, W. J., Lu, W. Z., Wang, X. K. and Leung, A. Y. T. (2003). Prediction of maximum
daily ozone level using combined neural network and statistical characteristics.
Environment International, 29(5):555–62.

Webb, A. R. (1999). A loss function approach to model selection in nonlinear principal
components. Neural Networks, 12:339–45.

Weichert, A. and Bürger, G. (1998). Linear versus nonlinear techniques in downscaling.
Climate Research, 10(2):83–93.

Weigend, A. S. and Gershenfeld, N. A., eds., (1994). Time Series Prediction: Forecasting
the Future and Understanding the Past. Santa Fe Institute Studies in the Sciences of
Complexity, Proceedings vol. XV. Addison-Wesley.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the
behavioural sciences. Ph.D. thesis, Harvard University.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON
Convention Record, volume 4, pp. 96–104, New York.

Wilby, R. L., Dawson, C. W. and Barrow, E. M. (2002). SDSM – a decision support tool
for the assessment of regional climate change impacts. Environmental Modelling &
Software, 17(2):147–59.

Wilcox, R. R. (2004). Robust Estimation and Hypothesis Testing. Amsterdam: Elsevier.
Wilks, D. S. (1995). Statistical Methods in the Atmospheric Sciences. San Diego:

Academic Press.
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin

of the American Meteorological Society, 63(11):1309–13.
Wilson, L. J. and Vallée, M. (2002). The Canadian Updateable Model Output Statistics

(UMOS) system: Design and development tests. Weather and Forecasting, 17(2):
206–22.

References 343

Woodruff, S. D., Slutz, R. J., Jenne, R. L. and Steurer, P. M. (1987). A comprehensive
ocean-atmosphere data set. Bulletin of the American Meteorological Society, 68:
1239–50.

Wu, A. and Hsieh, W. W. (2002). Nonlinear canonical correlation analysis of the tropical
Pacific wind stress and sea surface temperature. Climate Dynamics, 19:713–22. doi
10.1007/s00382-002-0262-8.

Wu, A. and Hsieh, W. W. (2003). Nonlinear interdecadal changes of the El Nino-Southern
Oscillation. Climate Dynamics, 21:719–30.

Wu, A. and Hsieh, W. W. (2004a). The nonlinear association between ENSO and the
Euro-Atlantic winter sea level pressure. Climate Dynamics, 23:859–68. doi:
10.1007/s00382-004-0470-5.

Wu, A. and Hsieh, W. W. (2004b). The nonlinear Northern Hemisphere atmospheric
response to ENSO. Geophysical Research Letters, 31. L02203,
doi:10.1029/2003GL018885.

Wu, A., Hsieh, W. W. and Shabbar, A. (2005). The nonlinear patterns of North American
winter temperature and precipitation associated with ENSO. Journal of Climate,
18:1736–52.

Wu, A., Hsieh, W. W., Shabbar, A., Boer, G. J. and Zwiers, F. W. (2006a). The nonlinear
association between the Arctic Oscillation and North American winter climate.
Climate Dynamics, 26:865–79.

Wu, A., Hsieh, W. W. and Tang, B. (2006b). Neural network forecasts of the tropical
Pacific sea surface temperatures. Neural Networks, 19:145–54.

Wu, A., Hsieh, W. W. and Zwiers, F. W. (2003). Nonlinear modes of North American
winter climate variability detected from a general circulation model. Journal of
Climate, 16:2325–39.

Xu, J. S. (1992). On the relationship between the stratospheric Quasi-Biennial Oscillation
and the tropospheric Southern Oscillation. Journal of the Atmospheric Sciences,
49(9):725–34.

Xu, J.-S. and von Storch, H. (1990). Predicting the state of the Southern Oscillation using
principal oscillation pattern analysis. Journal of Climate, 3:1316–29.

Yacoub, M., Badran, F. and Thiria, S. (2001). A topological hierarchical clustering:
Application to ocean color classification. In Artificial Neural Networks-ICANN
2001, Proceedings. Lecture Notes in Computer Science., volume 2130, pp. 492–499.
Berlin: Springer.

Ye, Z. and Hsieh, W. W. (2006). The influence of climate regime shift on ENSO. Climate
Dynamics, 26:823–33.

Yhann, S. R. and Simpson, J. J. (1995). Application of neural networks to AVHRR cloud
segmentation. IEEE Transactions on Geoscience and Remote Sensing,
33(3):590–604.

Yi, J. S. and Prybutok, V. R. (1996). A neural network model forecasting for prediction of
daily maximum ozone concentration in an industrialized urban area. Environmental
Pollution, 92(3):349–57.

Yu, P. S., Chen, S. T. and Chang, I. F. (2006). Support vector regression for real-time
flood stage forecasting. Journal of Hydrology, 328(3-4):704–16.

Yu, X. Y. and Liong, S. Y. (2007). Forecasting of hydrologic time series with ridge
regression in feature space. Journal of Hydrology, 332(3-4):290–302.

Yuval (2000). Neural network training for prediction of climatological time series;
regularized by minimization of the Generalized Cross Validation function. Monthly
Weather Review, 128:1456–73.

344 References

Yuval (2001). Enhancement and error estimation of neural network prediction of Niño 3.4
SST anomalies. Journal of Climate, 14:2150–63.

Yuval and Hsieh, W. W. (2002). The impact of time-averaging on the detectability of
nonlinear empirical relations. Quarterly Journal of the Royal Meteorological
Society, 128:1609–22.

Yuval and Hsieh, W. W. (2003). An adaptive nonlinear MOS scheme for precipitation
forecasts using neural networks. Weather and Forecasting, 18(2):303–10.

Zebiak, S. E. and Cane, M. A. (1987). A model El Niño – Southern Oscillation. Monthly
Weather Review, 115(10):2262–78.

Zhang, C. (2005). Madden–Julian Oscillation. Reviews of Geophysics, 43. RG2003,
doi:10.1029/2004RG000158.

Zhang, X., Hogg, W. D. and Mekis, E. (2001). Spatial and temporal characteristics of
heavy precipitation events over Canada. Journal of Climate, 14:1923–36.

Zorita, E. and von Storch, H. (1999). The analog method as a simple statistical
downscaling technique: Comparison with more complicated methods. Journal of
Climate, 12(8):2474–89.

Index

1-of-c coding, 175, 176, 307

activation function, 88
active sensing, 275
AdaBoost, 150
adjoint data assimilation, 97
Advanced Very High Resolution Radiometer

(AVHRR), 280, 282
aerosols, 278
air quality, 307–312
albedo, 282
algae, 315
aliasing, 60
Along Track Scanning Radiometer-2 (ATSR-2), 280
altimeter, 283–284
anomaly, 3
Arctic Oscillation (AO), 293–295

index, 294
atmospheric radiation, 298–299
atmospheric teleconnection, 260–264
augmented data matrix, 68
auto-associative NN, 215
auto-covariance, 63
autocorrelation, 4, 137, 154

first zero crossing, 6
automatic relevance determination (ARD), 143, 211
autospectrum, 59–63
averaging in time, 151–155

back-propagation, 92, 97–102, 115
bagging, 146, 148
batch training, 100
Bayes theorem, 12–15, 139, 140
Bayesian method, 202
Bayesian neural network (BNN), 138–145, 176–177
beta distribution, 108
bias

frequency bias, 188
bias error, 133–134, 147–148
bias parameter, 87
biweight midcorrelation, 264–266
biweight midcovariance, 264
boosting, 150

bootstrap, 146, 150–151, 206, 291
bottleneck layer, 215
bottleneck neuron, 215
Brent’s method, 119
Brier score, 192, 211
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,

121

canonical correlation analysis (CCA), 49–56
kernel, 252, 272

canonical correlation coordinates, 50
canonical variate, 50, 252–254
CART, see classification and regression tree
central limit theorem, 127, 152
chlorophyll, 276, 278
classification, 12–16, 205

multi-class, 175–176, 186
classification and regression tree (CART), 202–206,

309
classification error, 172
climate change, 297–298
climate sensitivity, 280
climate variability, 293–297
climatological seasonal cycle, 68
cloud, 279–280
clustering, 16–18, 169, 233
co-kriging, 210
committee, 146
conditional density network (CDN), 109, 150–151,

301, 310
conditional probability, 13
conditional probability distribution, 108–112
conjugate gradient method, 97, 116–120
contingency table, 187
continuous ranked probability score (CRPS), 211
coral, 315
correlation, 3

biweight midcorrelation, 264–266
Pearson, 3
rank correlation, 5, 264
sample correlation, 3
significance, 4
Spearman, 5

345

346 Index

cost function, 86, 93
covariance, 3

auto-covariance, 63
cross-covariance, 64

covariance matrix, 22, 35
critical success index (CSI), 188
cross entropy, 173–176, 205
cross-spectrum, 63–65
cross-validation, 136–138, 205
curse of dimensionality, 97, 165

Daniell estimator, 62
data assimilation, 97, 314
Davidon–Fletcher–Powell (DFP) method, 120
decision boundary, 14, 91, 170
decision regions, 14
decision surface, 14
decoding layer, 216
decorrelation time scale, 6, 137
delay coordinate space, 69
delta function (δi j), 25
deterministic optimization, 124
differential evolution, 126
discharge, 312
discriminant function, 15–16, 170
downscaling, 299–304

dynamical, 300
expansion, 303
inflation, 303
randomization, 303
statistical, 300

dual Lagrangian, 180
dual solution, 160
dual variable, 159

early stopping, 102, 134, 145, 146, 148, 310
ecology, 314–317
effective sample size, 4, 6
El Niño, 26
El Niño-Southern Oscillation (ENSO), 72–73, 75, 80,

104, 187, 219–222, 247–251, 257–259, 290–293,
295

empirical orthogonal function (EOF), 20, 25
extended (EEOF), 74

encoding layer, 216
ensemble, 145–150, 206
Envisat, 277
EOF, see empirical orthogonal function
epoch, 100
ε-insensitive Huber function, 201, 278
equation of state of sea water, 287–289
error function, 86, 93

ε-insensitive, 196
European Remote-Sensing Satellites (ERS), 284
evidence, 140
evolutionary computation (EC), 124–126
expectation, 1
extended empirical orthogonal function (EEOF), 74
extrapolation, 303–304
extreme value distribution, 108

factor analysis, 41
false alarm rate (F), 188
false alarm ratio (FAR), 188
feature, 240
feature space, 158, 184
feature vector, 14, 170
feed-forward, 87
filter, 66–68
fish, 315, 316
Fisher’s z transformation, 4
Fletcher–Reeves method, 118
forecast verification, 187–193, 211–212
forest, 278–279, 286
Fourier spectral analysis, 246
fraction correct, 187
frequentist, 12
fundamental frequency, 60

gamma distribution, 108, 110
Gauss–Newton method, 122, 141
Gaussian mixture model, 110
Gaussian process (GP), 157, 158, 206–211, 310
gelbstoff, 276, 277
general circulation model (GCM), 299
generalized cross-validation (GCV), 291
genetic algorithm (GA), 124–126
Geostationary Operational Environmental Satellites

(GOES), 280, 282
Gini index, 205
global climate model (GCM), 299
global minimum, 185
global warming, 279, 282
gradient descent method, 97, 115–116, 120, 123
Gram matrix, 160
Gumbel distribution, 109

hail, 307
harmonic analysis, 68
Heaviside step function, 87, 89
Heidke skill score (HSS), 190, 192
Hessian matrix, 114, 140, 141, 177
hidden layer, 92, 102–103
hierarchical, 140
hit rate, 187
Huber function, 132, 201

ε-insensitive, 201, 278
hurricane, 307
hybrid coupled model, 292–293
hydrograph, 312
hydrology, 312–314
hyperbolic tangent function, 94
hyperparameter, 135, 139–143, 164
hyperplane, 178

ignorance score (IGN), 212
inconsistency index, 224, 228, 235
index of agreement, 310
Indian summer monsoon, 297
indicator function, 172
infiltration, 312
information criterion, 224–225, 228

Index 347

infrared, 279–282
insect, 316
integral time scale, 6
isomap, 213

Jacobian matrix, 141
Johnson distributions, 108

K -means clustering, 17, 106, 169, 233, 234
Karush–Kuhn–Tucker (KKT) conditions, 180, 181,

183, 198, 320
kernel, 110, 161–164, 238

automatic relevance determination, 211
Gaussian, 164, 184, 199, 304, 317
Matérn, 211
polynomial, 163, 184
radial basis function (RBF), 164, 184, 199, 304, 317
ridge regression, 164–165

kernel function, 161, 184
kernel matrix, 162, 238
kernel method, 158, 177–186, 196–202, 206–211
kernel principal component analysis, 167, 237–240
kernel trick, 161, 166, 184
kriging, 206

co-kriging, 210
Kronecker delta function, 25, 59, 208

La Niña, 27
Lagrange function (Lagrangian), 180, 320
Lagrange multiplier, 22, 51, 180, 319–321
Landsat, 276, 278
Laplace approximation, 141, 145, 310
leaky learning, 195
learning rate, 98, 194
least squares, 8, 107
leave-one-out cross-validation, 137, 315
Levenberg–Marquardt method, 123, 138, 141
likelihood, 13, 109, 128
line search, 119
linear discriminant analysis, 16
linear inverse modelling, 80
linear projection (LP), 294
linear regression

dual solution, 159–160
linearly separable, 91
loading, 25
locally linear embedding (LLE), 213
logistic regression, 90, 315
logistic sigmoidal function, 89, 171
longwave radiation (LWR), 298
loss function, 93

M5 tree, 206, 314
Madden–Julian Oscillation (MJO), 80, 297
margin error, 186
Markov chain Monte Carlo method, 141, 145, 206,

210
matrix

Hermitian, 25
orthonormal, 37
positive semi-definite, 24

maximum covariance analysis (MCA), 49, 56
maximum likelihood, 109, 127–129, 151
maximum margin classifier, 178–186
McCulloch and Pitts model, 87
mean, 1

conditional, 130
population mean, 1
sample mean, 2

mean absolute error (MAE), 129, 266
mean squared error (MSE), 93, 127–129
median, 264

conditional, 131
Medium Resolution Imaging Spectrometer (MERIS),

277, 278
Mercer’s theorem, 162
mixing coefficient, 110
mixture model, 110–112
MLP (see multi-layer perceptron), 92
model output statistics (MOS), 12, 299
Moderate Resolution Imaging Spectroradiometer

(MODIS), 278
momentum, 116
moving average, 62, 67
multi-class classification, 175–176, 186
multi-layer perceptron (MLP), 92–97, 107, 214, 252

classification, 171–176
multichannel singular spectrum analysis (MSSA),

74–75
multiple correlation coefficient, 10

neural network (NN), 86–112
Bayesian (BNN), 138–145
recurrent, 282

neuron, 86–88
hidden, 92, 102–105

Newton’s method, 114, 120
Niño 1+2 region, 27
Niño 3 region, 27
Niño 3.4 region, 27
Niño 4 region, 27
node, 88
nonlinear canonical correlation analysis (NLCCA),

252–273
robust, 264–273

nonlinear complex principal component analysis
(NLCPCA), 240–243

nonlinear least squares, 121–124
nonlinear principal component analysis, 257, 287,

291
kernel PCA, 237–240
closed curve (NLPCA(cir)), 227–231
complex variables (NLCPCA), 240–243
open curve (NLPCA), 214–227
overfitting, 223–227

nonlinear principal predictor analysis, 252
nonlinear projection (NLP), 294, 295
nonlinear singular spectrum analysis (NLSSA),

244–251
normal equations, 8, 10, 122
normalized variable, 3
North Atlantic Oscillation (NAO), 293, 296

348 Index

northern annular mode (NAM), 294
Nyquist frequency, 60

objective function, 86, 93
ocean colour, 276–278
ocean heat content, 290, 292
offset, 87
oil spill, 286
on-line training, 100
one-versus-one classification, 186
one-versus-the-rest classification, 186
orthonormal matrix, 37
otolith, 316
outlier, 4, 129, 264–273
overfit, 11, 100, 127, 130, 223
ozone, 211

Pacific–North American (PNA) teleconnection, 261,
295–296

pairwise classification, 186
passive sensing, 275
Peirce skill score (PSS), 191, 192
perceptron, 87–92
Perfect Prog, 12
periodogram, 60
persistence, 4
phytoplankton, 276, 277
Polak–Ribiere method, 118
pollution

ocean, 276
positive semi-definite, 162
post-processing, 299–304
pre-image, 167–169
precipitation, 280–282
predictand, 7
predictive uncertainty, 143–145, 150–151
predictor, 7
primal solution, 160
principal curve, 231–233
principal component (PC), 23, 25
principal component analysis (PCA), 20–40

combined PCA, 24, 48, 80
complex, 48, 82–85
rotated, 40–48
Hilbert, 82–85
Kaiser test, 39
missing data, 38–39
Monte Carlo test, 39
significance tests, 39–40
space–time PCA, 74–75
spectral, 82–85
time-PCA, 68–73

principal oscillation pattern (POP), 75–81, 104
principal surface, 233
principal vector, 25
probabilistic forecast, 211–212
probability

a posteriori, 13
a priori, 13
conditional, 13
density, 2

posterior, 13
prior, 13

probability distribution
beta, 108
conditional, 108–112
extreme value, 108
gamma, 108, 110
Gumbel, 109
Johnson, 108
Weibull, 108

probability of detection (POD), 188
probability of false detection (POFD), 188

quadratic programming, 180
quadrature, 70
quantization error (QE), 235
Quasi-Biennial Oscillation (QBO), 80, 229–230,

296–297
quasi-Newton methods, 120–121, 124

limited memory, 121

radar, 275, 283, 306
radial basis functions (RBF), 105–108, 185, 200

renormalized, 106
radiative transfer, 277
radiometer, 275
random forest, 206
rating curve, 313
reanalysis, 313
recharge–discharge oscillator, 291
reconstructed component, 246
recurrent neural network, 282
regional climate model (RCM), 300
regression, 7

multiple linear regression (MLR), 10
ridge, 11, 159, 164
stepwise multiple, 11

regularization, 135–136, 176
relative operating characteristic (ROC), 189, 307
relevance vector machine (RVM), 202, 314
remote sensing, 275–286

infrared, 279–282
microwave, 282–286
visible light, 276–279

resistant, 4
ridge regression, 159
robust, 4, 264
rotated principal component analysis (RPCA), 40–48

procrustes rotation, 43
varimax rotation, 42

rotation
oblique, 41
orthonormal, 41

running mean, 62, 67
runoff, 312

sample size
effective, 4

scatterometer, 284–285
score, 25
sea ice, 282

Index 349

sea level, 286–287
sea surface temperature (SST), 27, 218–222, 283,

290–292
Sea-viewing Wide Field-of-view Sensor (SeaWiFS),

277
self-consistency, 233
self-organizing map (SOM), 195, 224, 233–236, 281
sensitivity, 99
sequential training, 100
shortwave radiation (SWR), 298
sigmoidal function, 89
simulated annealing, 124
singular spectrum analysis (SSA), 68–75
singular value, 37
singular value decomposition (SVD), 36–38, 49, 56
singular vector, 37, 56
skill score, 190–192

Hansen and Kupers, 191
Heidke, 190, 192
Peirce, 191, 192

slack variable, 182
snow, 282–283
softmax function, 111, 175
soil moisture, 286
Southern Oscillation, 31
Southern Oscillation Index (SOI), 31, 72
sparseness, 181
Special Sensor Microwave Imager (SSM/I), 283
species richness, 314
spectrum, 58–65

amplitude spectrum, 63
autospectrum, 59–63
band-averaging, 62
co-spectrum, 63
coherency spectrum, 64
cross-spectrum, 63–65
ensemble averaging, 62
phase spectrum, 63
quadrature spectrum, 63

SSE (sum of squared errors), 8–9
SSR (sum of squares, regression), 9
SST (see sea surface temperature), 27
SST (sum of squares), 9
stage, 313
standard deviation, 2
standardize, 93, 135
standardized anomaly, 3
standardized variable, 2
statisical learning theory, 171
steepest descent method, 97, 115
stepwise multiple regression, 11
stochastic optimization, 124–126
stochastic training, 100
stopped training, see early stopping
Student’s t distribution, 4
supervised learning, 16, 86, 193
support vector, 179, 181, 183, 199

support vector machine (SVM), 157, 177–186
support vector regression (SVR), 157, 196–202
surface gravity wave, 289
surface wind speed, 283
suspended sediment, 276–278
symmetric function, 161
synoptic scale, 300
synthetic aperture radar (SAR), 103, 285–286

target, 16, 88
Terra, 278
testing, 138
Thematic Mapper, 277, 278
threat score (TS), 188
time-averaging, 151–155
topographic error (TE), 235
tornado, 305–306
trace, 141
tree

CART, 202–206
M5, 206

trend, 60
tropical cyclone, 307
true skill statistics, 191
turbidity, 278

underfit, 127
unit, 88
unsupervised competitive learning, 193–195
unsupervised learning, 16, 86, 106, 171, 193
urban land cover, 279

validation, 100, 134, 136
variance

population variance, 2
sample variance, 2

variance error, 133–134, 147–148
varimax rotation, 42
verification, 138
voting, 146

water wave, 289
watershed, 312
wave–wave interactions, 289–290
Weibull distribution, 108
weight, 87, 98
weight decay, 135–136
weight penalty, 135–136, 176, 182, 196, 205, 217,

224–227
wheat, 286
wind direction, 284
wind speed, 283, 284, 286
wind wave, 289–290
window, 65

zonal, 229, 291, 292

	Cover
	Abstract
	Title
	Copyright
	Contents
	Preface
	Abbreviations
	1 Basic notions in classical data analysis
	2 Linear multivariate statistical analysis
	3 Basic time series analysis
	4 Feed-forward neural network models
	5 Nonlinear optimization
	6 Learning and generalization
	7 Kernel methods
	8 Nonlinear classification
	9 Nonlinear regression
	10 Nonlinear principal component analysis
	11 Nonlinear canonical correlation analysis
	12 Applications in environmental sciences
	Appendices
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

