
COMPUTER-AIDED DESIGN,
ENGINEERING, AND MANUFACTURING

Systems Techniques And Applications

V O L U M E
V I I

ARTIFICIAL
INTELLIGENCE AND

ROBOTICS IN
MANUFACTURING

COMPUTER-AIDED DESIGN,
ENGINEERING, AND MANUFACTURING

Systems Techniques And Applications

V O L U M E
V I I

Editor

CORNELIUS LEONDES

ARTIFICIAL
INTELLIGENCE AND

ROBOTICS IN
MANUFACTURING

Boca Raton London New York Washington, D.C.
CRC Press

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval
system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such
copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

 Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0999-9

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress.

Preface

A strong trend today is toward the fullest feasible integration of all elements of manufacturing,
including maintenance, reliability, supportability, the competitive environment, and other areas. This
trend toward total integration is called concurrent engineering. Because of the central role information
processing technology plays in this, the computer has also been identified and treated as a central and
most essential issue. These are the issues that are at the core of the contents of this volume.

This set of volumes consists of seven distinctly titled and well-integrated volumes on the broadly
significant subject of computer-aided design, engineering, and manufacturing: systems techniqes and
applications. It is appropriate to mention that each of the seven volumes can be utilized individually. In
any event, the great breadth of the field certainly suggests the requirement for seven distinctly titled and
well-integrated volumes for an adequately comprehensive treatment. The seven volume titles are:

1. Systems Techniques and Computational Methods
2. Computer-Integrated Manufacturing
3. Operational Methods in Computer-Aided Design
4. Optimization Methods for Manufacturing
5. The Design of Manufacturing Systems
6. Manufacturing Systems Processes
7. Artificial Intelligence and Robotics in Manufacturing

The contributions to this volume clearly reveal the effectiveness and significance of the techniques
available and with further development, the essential role they will play in the future. I hope that practi-
tioners, research workers, students, computer scientists, and others on the international scene will find
this set of volumes to be a unique and significant referance source for years to come.

Cornelius T. Leondes
Editor

Editor

Cornelius T. Leondes, B.S., M.S., Ph.D. Emeritus Professor, School of Engineering and Applied Science,
University of California, Los Angeles has served as a member or consultant on numerous national technical
and scientific advisory boards. He has served as a consultant for numerous Fortune 500 companies and
international corporations. He has published over 200 technical journal articles and has edited and/or co-
authored over 120 books. Dr. Leondes is a Guggenheim Fellow, Fulbright Research Scholar, and Fellow of
IEEE as well as the recipient of the IEEE Baker Prize Award and the Barry Carlton Award of the IEEE.

Contributors

G.M. Acaccia
University of Genova
Genova, Italy

M. Callegari
University degli Studi di Ancona
Ancona, Italy

Rahul De’
Rider University
Lawrenceville, New Jersey

Feng Gao
Hebei University of Technology
Tianjin, China

G.S. Hong
National University of Singapore
Singapore

N.T. Hua
National Taiwan University of

Science and Technology
Taipei, Taiwan

G.J. Huang
National Taiwan University of

Science and Technology
Taipei, Taiwan

Sung Hoon Jung
Hansung University
Seoul, Korea

Tag Gon Kim
Korea Advanced Institute of

Science and Technology
Taejon, Korea

Heungsoon Felix Lee
Southern Illinois University
Edwardsville, Illinois

R.C. Michelini
University of Genova
Genova, Italy

R.M. Molfino
University of Genova
Genova, Italy

Grantham K.H. Pang
The University of Hong Kong
Hong Kong, China

Kyu Ho Park
Korea Advanced Institute of

Science and Technology
Taejon, Korea

Samuel Pierre
École Polytechnique Montréal
Montreal, Québec, Canada

Wilfried G. Probst
Université du Québec
Montreal, Québec, Canada

Monjy Rabemanantsoa
École Polytechnique Montréal
Montreal, Québec, Canada

M. Rahman
National University of Singapore
Singapore

R.P. Razzoli
University of Genova
Genova, Italy

Bijan Shirinzadeh
Monash University
Clayton, Victoria, Australia

Raymond Tang
Esso Petroleum Canada
Don Mills, Ontario, Canada

Y.S. Tarng
National Taiwan University of

Science and Technology
Taipei, Taiwan

Y.S. Wong
National University of Singapore
Singapore

Stephen S. Woo
Esso Petroleum Canada
Don Mills, Ontario, Canada

Contents

Chapter 1 Knowledge-Based System Techniques in the Design,
Implementation, and Validation of Resource Scheduling on the
Shop Floor of Manufacturing Systems
Rahul De’

Chapter 2 Neural Network Systems Techniques in the Intelligent
Control of Chemical Manufacturing Plants
Sung Hoon Jung, Tag Gon Kim, and Kyu Ho Park

Chapter 3 A Rule-Based Expert System for Designing Flexible
Manufacturing Systems
Heungsoon Felix Lee

Chapter 4 Tool Condition Monitoring in Manufacturing Systems Using Neural
Networks
G.S. Hong, M. Rahman, and Y.S. Wong

Chapter 5 Intelligent Real-Time Expert System Environment in Process Control
Grantham K.H. Pang, Raymond Tang, and Stephen S. Woo

Chapter 6 Adaptive Neuro-Fuzzy Control Methods for Milling Operations in
Manufacturing Systems
Y.S. Tarng, N.T. Hua, and G.J. Huang

Chapter 7 Instrumental Robots Design with Applications to Manufacturing
R.C. Michelini, G.M. Acaccia, M. Callegari, R.M. Molfino,
and R.P. Razzoli

Chapter 8 Object-Oriented Techniques and Automated Methods for Robotic Assembly
in Manufacturing Systems
Samuel Pierre, Monjy Rabemanantsoa, and Wilfried G. Probst

Chapter 9 CAD-Based Techniques in Task Planning and Programming of Robots in
Computer-Integrated Manufacturing
Bijan Shirinzadeh

Chapter 10 Physical Model Technique for Design of Robotic
Manipulators in Manufacturing Systems
Feng Gao

1
Knowledge-Based

System Techniques in
the Design,

Implementation, and
Validation of Resource

Scheduling on the Shop
Floor of Manufacturing

Systems

1.1 Introduction
1.2 Design of Knowledge-Based Scheduling Systems

Constraint Representation • Constructive Approach • Iterative
Repair • Predictive and Reactive Scheduling • Distributed
Scheduling Systems • Cooperative Problem Solving Systems •
Knowledge Elicitation for Scheduling Systems • OR Algorithms
in Systems • Generalized Scheduling Systems • Learning in
Scheduling Systems • Simulation-Based Scheduling Support

1.3 Implementation Issues
Transaction Databases • User Interfaces • Scheduling
Horizons • Cultural Issues

1.4 Validation Issues
Validation Against System Objectives or Goals • Validation
Against Manual Scheduler’s Criteria • Validation With
Simulations

1.5 Conclusions

1.1 Introduction

In this chapter we will consider the design, implementation, and validation issues of building knowledge-
based systems for scheduling resources on the shop floor. Such systems are typically defined as decision
support tools that support the human operators whose task it is to plan, schedule, execute, and control
shop floor operations. The issues of decision support are reflected in the design of these systems, either

Rahul De’
Rider University
© 2001 by CRC Press LLC

directly supporting the cognitive goals of the schedulers or indirectly providing task-specific information
germane to the decision situation. In either case, there appear to be a common set of data and processing
needs that can be delineated as essential requirements of such systems.

Knowledge-based systems are used in diverse scheduling applications that include scheduling space
shuttle repair, scheduling space telescope observations, scheduling shipbuilding, assigning personnel for
projects, scheduling operating theaters at hospitals, retail logistics scheduling, military operations plan-
ning, etc. A large number of applications deal with allocating resources on the shop floor. Much research
has focused on this latter problem given the tremendous complexity of the domain and the relative lack
of traditional OR techniques that can be effectively applied. This chapters explores the problems of shop
floor scheduling.

Software engineers choose to sharply distinguish between the design and implementation of systems.
The former implies the logical and physical specifications of data structures and process (or objects) for
the system, and the latter the realization of the design specifications in coded modules that are installed
at the facility. Most methodologies, proposing normative system building methods, insist on keeping the
two activities in distinct phases. The construction of knowledge-based systems, as is evident from the
literature, follows an approach of iterating the design-implementation phases, where each iteration
involves the construction of another layer of the system. In describing some of the systems in this paper,
the design rationale will be examined first, followed by the implementation choices considered.

Validation of a knowledge-based system entails measuring its performance within its working envi-
ronment. This is usually a difficult task in the domain of scheduling because it is difficult to obtain
standards against which to measure the performance. Given that it is virtually impossible to obtain
optimal solutions for most real scheduling situations, researchers have to rely on measuring changes
in certain process characteristics specific to the particular factory. For example, in steel making, the
parameter observed by a team of researchers to measure the performance of the scheduling system was
the amount of reduction in the wait time of the molten metal (before pouring into casts). Other
approaches to validation include measuring the quality of the schedules against those proposed by a
human scheduler or measuring the improvement in the manufacturing processes via simulations. This
chapter explores the different approaches.

1.2 Design of Knowledge-Based Scheduling Systems

The design of knowledge-based scheduling systems has been approached from many perspectives. The
complex nature of the scheduling problem, and that of the domain, have ensured that researchers have had
to continually seek newer and more innovative designs. A core theory for the representation of such designs
has emerged and is used as a basis for many systems. However, the fact remains that there is much diversity
in the final systems designed. This diversity includes variations in the manner of searching for solutions,
the manner in which the system modules are linked up the kind of support provided to the scheduler the
manner in which knowledge is extracted for the system, and the adaptability of the system to different tasks.

The knowledge in knowledge-based scheduling systems pertains to the rules, procedures, and heuristics
used by the schedulers or workers to enable smooth functioning of the factory. The knowledge is usually
obtained or extracted from the scheduler and is then included within the design of the system. It is worth
pointing out that knowledge-based systems in manufacturing do not strictly follow the approach of
expert systems where the expert’s rules are the sole basis of reasoning within the system. To construct
such systems, considerable effort is spent in extracting a set of rules that is as near complete as the expert’s
knowledge of the domain. Once available, it is encoded in a declarative form and used by the reasoning
mechanism (the pattern matcher) of the system. The declarative rules extracted from the expert are a
part of the total reasoning capabilities of the system. The knowledge base also contains knowledge about
the factory, the processes, and other details that may be represented in many ways, not only in the
declarative manner.

A number of reasons are provided by researchers as to why just the rules obtained from an expert
scheduler are inadequate for constructing effective scheduling systems. First, it is not always possible for
© 2001 by CRC Press LLC

schedulers to articulate, and for knowledge engineers to capture, all of the complexities of the work they
do (Kerr, 1992; May and Vargas, 1996). Their work involves assessing the state of materials and machines
on the shop floor, assigning or reassigning duties to work centers, locating the source of problems in
work flow, responding to the directives of higher management regarding manpower or work-in-process
levels, not all of which can be captured as rules. Secondly, the domain of the shop floor is complex and
consists of a number of interconnected parts for which the scheduler is not directly responsible and
consequently does not control. Third, owing to political and cultural reasons, schedulers were not always
willing to provide complete information to the system builders (McKay et al., 1995).

A core idea that many scheduling systems use is that of a constraint-based representation. Constraints
are the restrictions of process times, process routings, or machine availability that are imposed on the
resources of the plant along with the restrictions that originate from management directives, engineering
concerns, operator preferences, etc. (Fox and Smith, 1984). The scheduler has to respond to all these
constraints. Consequently, the task of scheduling revolves centrally around satisfying the constraints. All
the constraints that can exist in a shop floor situation have to be represented within the system in order
to complete the scheduling task. A constraint-based representation provides a formal method by which
constraints can be represented and manipulated to create schedules.

Constraint-based representation forms the basis of many scheduling systems; however, a number of
other important design issues that are relevant are:

• Constructive versus repair methods. In the constructive methods of schedule or plan construction,
schedules are constructed by incrementally extending partial schedules. In the repair methods,
schedules are completed by beginning with a complete, but possibly flawed, set of assignments
and then iteratively modifying or repairing them. Algorithms designed for either of these methods
rely on the underlying constraint representation to construct or modify the schedule.

• Predictive versus reactive scheduling. Predictive scheduling implies creating resource assignments
for future periods of time, whereas reactive scheduling refers to adjusting the schedules to respond
to current situations on the shop floor. Most systems have facilities to respond to both types of
scheduling situations.

• Distributed scheduling systems versus “monolithic” scheduling systems. In the former, scheduling
solutions are provided by a number of relatively independent modules that cooperate in different
ways to arrive at a solution. In the latter, the system is designed as a large, comprehensive system
consisting of a number of integrated modules. The level of aggregation in the system determines
both its implementation strategy as well as the problem solving process that it uses.

• Cooperative problem solving versus independent machine-generated solutions. Cooperative prob-
lem solving systems are designed to work actively with the scheduler in supporting his or her goals
and tasks. These are distinguished from systems that generate independent solutions with con-
straint or data input from the scheduler. In the former case, the solution generation proceeds with
active input from the scheduler, but not in the latter.

• System knowledge based on one (or two) schedulers versus that based on input from many
supervisors/workers on the shop floor. There are many implemented systems based on knowl-
edge obtained from a senior scheduler in a factory. These systems tend to be smaller and focus
on scheduling important (bottleneck) resources. Input from a large number of potential users
is collected to build a comprehensive scheduling system that includes all activities on the shop
floor.

• Inclusion of established operations research algorithms versus creating special implementations
of general search algorithms. Many designers have tried to build their systems algorithms from
operations research that can be applied at a very fine level of detail. For the situations in which
they can be applied, these algorithms ensure that an optimal or near-optimal solution is obtained.
However, in most cases, it is difficult to reduce the problem to the level in which such algorithms
will work so designers usually end up modifying search algorithms to suit the problem situation.
© 2001 by CRC Press LLC

• Generalized knowledge-based scheduling systems versus those specialized for a domain. Some design-
ers have chosen to create designs that are general in scope and can provide scheduling solutions for
a number of different domains. These systems provide knowledge representation and reasoning
mechanisms, as in expert system “shells,” which can be specialized for a domain. Special systems are
designed for a particular domain, to solve the scheduling problems in that domain alone.

• Learning of scheduling heuristics versus static implementations. Some systems have been designed
to learn scheduling heuristics and improve on their scheduling behavior. These systems are able to
use their experience of arriving at schedules as a basis on which to build further heuristics. Most
systems, however, tend to be static in that they use the problem solving methods already built in.

• Use of simulations for providing support. Some systems rely on intelligently simulating the
processes on the shop floor to support the scheduler’s decision making. The system enables the
scheduler to ‘visualize’ the effect of the decisions over a given time horizon.

The following sections examine the issues highlighted above in greater detail. Examples of various
systems reported in the literature are used to discuss the issues.

Constraint Representation

Constraints as a means of representing scheduling knowledge was first explored by Fox and Smith (1983,
1984). Their goal was to create a system to schedule a job shop. Analysis of the scheduling tasks revealed
that “…the crux of the scheduling problem is the determination and satisfaction of a large variety of
constraints.” They found that the scheduler spent 10–20% of his time scheduling or determining assign-
ments, while the balance of his time was spent communicating with other employees to determine
additional ‘constraints’ that would affect the schedule. Thus, they concluded that the constraint-based
representation would be most appropriate for building the scheduling system.

Constraints are built into the basic modeling units (schemas), as meta-information for any slot, slot-
value or the schema itself. Schemas are frame-based (Minsky, 1975) knowledge representation units
consisting of slots and their values, which may relate different schemas in a hierarchical inheritance
network. Schemas are used to model the factory details from physical machine descriptions to organi-
zational structures and relations (Fox and Smith, 1984). Schemas are created and updated for order
definitions, lot definitions, work area definitions, plant organization, etc. Within the hierarchical orga-
nization of schemas, the lowest level consists of primitive concepts of states, objects, and actions, on
top of which domain specific concepts are defined and related. Constraints in this hierarchy of schemas
may define the duration of some activity, the due dates for some job, the precondition for some state, etc.

Constraints themselves are represented as schemas with certain properties. One property that is defined
for all constraints is the relaxation that is possible for that constraint in a case of conflict with another.
Constraint boundaries are relaxed, by a specified mechanism, to resolve conflicts. Relaxations are specified
by discrete or continuous choice sets that have utility functions associated with them to assign preference
amongst the alternatives. Constraints are also characterized by their relative importance or priority order.
This measure is used to determine which of conflicting constraints may be relaxed. Another property is
the relevance of the constraint which specifies the conditions under which the constraint should be
applied. Interactions is another property that specifies the effects of variations of one constraint’s values
on others that are related to it, and the direction and extent of these variations. The generation of
constraints may be dynamic, created during schedule construction, or they may be created along with
the instantiation of schemas.

Constructive Approach

The constraint-based representation was used to build a scheduling system called ISIS. ISIS used the
constraints in a sophisticated search procedure to construct schedules. The system conducts a hierarchical,
constraint-directed search in the space of all possible schedules (Fox and Smith, 1984). Control is passed
from the top to the lower levels and communication between the levels occurs via constraints. At each
© 2001 by CRC Press LLC

level, the system does three kinds of processing: pre-analysis (where bounds of the current level’s search
space are determined); search (where the actual assignment solution is sought); and post-analysis (where
the results of the search are assessed). If the post-analysis finds the results acceptable, these are coded as
constraints to be passed on to the next lower level. In case the post-analysis rejects the results, the search
space is altered at the current or previous level and the control is transferred there. The search itself is
conducted at four levels where level one selects an order to be scheduled based on its priority and due
date, level two does a capacity analysis to determine availability of machines for this order, level three
schedules the resources to satisfy the order, and level four finalizes the schedule by reserving the machines
for the order. The control is returned to the top and another order is picked for assignment.

Using the same representation scheme, several researchers have tried different search procedures and
architectures with which to solve the scheduling problem. Some of these have resulted in fielded systems
while others have helped find faster and more efficient ways of solving the scheduling problem.

Iterative Repair

Iterative repair methods of scheduling are based on modifying a complete but possibly flawed set of
assignments that are iteratively adjusted to improve the overall schedule. Zweben et al. (1994) describe
a system, called GERRY, that is used to schedule operations for space shuttle flights. The system uses
iterative repair with a stochastic approach that enables the construction of very good schedules. GERRY
uses a general purpose scheduling algorithm that could be deployed in any situation. Its architecture is
domain independent.

GERRY uses two important constraints known as the milestone and temporal constraints. Milestones
are fixed metric times beyond which a task cannot be moved, whereas temporal constraints show the
start-end times of tasks and their relationship to each other. The system never violates temporal constants.
Resource constraints are classified as classes or pools, where a class represents a type and a pool represents
the entire collection of a type. Capacity constraints restrict overuse or over allocation of resources.

State constraints depict certain attribute values that have to hold for a task to be accomplished. These
are domain specific attributes related to the tasks. A data structure called a history is used to track the
changes in attribute values, what caused the changes, and for what are they required. As the system runs,
this data structure is constantly updated or read to maintain control over the changes to the task schedules.
Reading and maintaining the data structure constitutes a major activity for the system.

The system also uses preemptive schedules where each task is associated with a calendar of legal work
periods when it can be performed. If a task cannot be completed in one period, then this requires breaking
it up into a set of subtasks to be allocated to different periods.

The iterative repair method proceeds with a complete but flawed schedule, which is iteratively modified
until its quality is found to be satisfactory or until it reaches a time bound (for computation). The quality
is measured by a cost function which is a weighted sum of penalties for constraint violations. The weights
and penalties are non-zero values identified independently. In each iteration, constraints are repaired. Each
repair causes local and global perturbations in the network which are resolved in later iterations. After each
iteration, the system recomputes the evaluation (cost) function to compare the new schedule with the old.
If the new schedule is better, it is accepted for the next iteration. If the new schedule is more costly than the
old, then it is accepted with a certain probability. This technique is called simulated annealing and is used to
avoid local minima. If the new schedule is rejected, then the old one is used to continue the iterations.

The results from tests performed with the system showed that in most cases the system converged and
a solution was found. Even in the cases where the system timed out before finding a solution, the cost
of the solution at the end was much lower than the initial cost.

Predictive and Reactive Scheduling

Predictive scheduling was the norm in planning and scheduling systems when computation was slower
and more expensive. With some given input conditions, a plan or schedule was generated and shop floor
managers had to rely on this output alone. Godin (1978) expressed the need for interactive scheduling
© 2001 by CRC Press LLC

systems: “Scheduling problems change so rapidly that the systems are not flexible or sophisticated enough
to keep up with them.” Systems worked more in the batch than in the interaction mode of operation.

The situation changed rapidly when interactivity was made central to scheduling systems, known as
reactive scheduling systems. Design of reactive scheduling systems was centered around recognizing con-
flicts in the schedules arising from changes in the environment and modifying the schedules to resolve
the conflicts (Ow et al., 1987). Conflict resolution in this fashion tended to affect the entire schedule, as
the changes introduced in one part would spread to other parts. Research on reactive systems focused
on devising algorithms that would handle such “ripple effects” efficiently (Szelke and Kerr, 1994).

One idea that remains constant throughout the work on reactive scheduling systems is that the
predictive and reactive parts of scheduling cannot really be viewed separately. They are viewed as com-
plementary functions for generating and revising schedules. An example of an implemented scheduling
system, where the predictive and reactive parts are fully integrated, is that of the system for scheduling
semiconductor wafer fabrication at Intel Corporation (Kempf, 1994).

The semiconductor manufacturing process at Intel is considered to be a linear flow with loops for
rework. The process consists of hundreds of steps that take many weeks to complete. The factory consists
of hundreds of processing resources, including machines and tools, and the machines exhibit a wide
variety of characteristics, including cycle times from minutes to tens of hours, load sizes varying from
one wafer to many, and multiple setup switches. In this situation, scheduling consists of assigning lots
of wafers to active resources. The predictive part of scheduling produces a set of assignments of lots to
specific resources in future times and the reactive part of scheduling attempts to realize this set of
assignments in the light of unforeseen events on the shop floor.

Kempf argues that the idea of the predictive-reactive system was unavoidable because the predictive
scheduler by itself would have been useless (given the complexity of the scheduling task and the number
of unexpected events that occurred) and a reactive scheduler by itself would only find grossly sub optimal
solutions. Thus, the predictive scheduler was designed to produce a ‘stake in the ground’ schedule that
would be used until a change occurred and then the reactor would be used to recompute the schedule,
as ‘tethered to the stake.’ Jobs were ordered according to priority and the higher priority ones were
assigned by the predictor as fully as possible, leaving the lower priority ones for later assignment. The
reactor focused on the changes made to the scheduled jobs.

Distributed Scheduling Systems

Distributed scheduling system architectures are constituted of a number of autonomous or independent
modules (also referred to as agents) that act upon different parts of the scheduling problem to provide
a comprehensive solution. A central coordinating mechanism controls the behavior of the modules to a
certain extent; however, within the overall problem solving process, the modules act autonomously and
opportunistically. These architectures are distinguished from monolithic, mostly hierarchic structures
whose modules are integrated and act in a defined, structured manner. A number of possible types of
distributed architectures have been proposed, some of which are described below.

Ow and Smith (1987) describe the use of multiple knowledge sources in the OPIS 0 scheduling system.
In this first version of the OPIS family of systems, the emphasis was on opportunistic problem solving
where a set of knowledge sources seek out solution opportunities in a problem situation. Knowledge
sources are collections of heuristics that can bear on a particular aspect of the problem. These sources
continuously monitor the solution process and wherever an opportunity arises for any one of them to
act, they do so and provide their part of the solution to the global solution. The activities of the knowledge
sources are controlled through a “blackboard architecture” (Hayes-Roth, 1985).

In OPIS 0, the scheduling problem was broken into two types of sub-problems: order-based and
resource-based. In the order-based approach, a schedule would be created for a particular order and then
refined, whereas in the resource-based approach, each resource or machine would be assigned according
to availability after which the complete schedule would be built up. To manage the application of the
knowledge sources, a hierarchical control structure was devised that consisted of manager knowledge
© 2001 by CRC Press LLC

sources. These would be responsible for decomposing the problem into two types of sub-problems:
applying knowledge sources to them and collecting the partial schedules thus obtained. Depending on
the nature of the problem, an order-based, or a resource-based solution, would be tried first.

Later implementations (Ow et al., 1987; Smith, 1987; Ow and Smith, 1987; Smith, 1994) of the OPIS
architecture relaxed the rigid control of OPIS 0 and allowed for greater flexibility of applying the knowledge
sources. The OPIS systems were tested for various problems and returned reasonable schedules.

The ReDS architecture (Hadavi et al., 1992; Hadavi, 1994) consists of small, independent modules
(agents) based on a generic design that are recursively deployed for different purposes. Each module,
called a planning agent, consists of a “scheduling gene” that has a predictive and a reactive component.
The scheduling gene changes its state over time and beginning as a reactive agent, it evolves its predictive
abilities. The agents are cooperative and perform tasks given to them by other agents and other inputs
to the agents are feedback about their actions, responses from “higher” agents in the hierarchy, and
information about the environment. The asynchronous inputs are used by the agents to decide on a
course of action: their outputs. Two forms of feedback are provided to the agents: information about
their model of the state of the world and about their reasoning. Within the architecture, agents respond
to broadcast messages and provide their own inputs for a specific time horizon. There is no central
controlling mechanism.

Each planning agent in ReDS consists of various modules which are as follows: 1. the SEQ module
decides on sequencing and dispatching of jobs and deals with the details of lot combining, setups, machine
loading, etc. 2. The DS or detailed scheduling module first considers the feasibility of scheduling the jobs
before making specific assignments. It makes periodic checks on the progress of the orders, and if any
are lagging, it reschedules them (makes inputs to the SEQ module). 3. The FA or feasibility analysis
module makes “quick and dirty” analysis of the orders to determine release times. Release times are
carefully considered so that when orders are released, they do not spend much time in queues. This is
particularly important for semiconductor manufacturing for which ReDS is designed (Hadavi, 1994).

O-Plan2 is also an agent-based, distributed architecture that uses three agents to accomplish the
planning, scheduling, and execution tasks (Currie and Tate, 1991; Tate et al., 1994). The first agent
provides an interface to the user for accepting requests for scheduling tasks. The second agent is a planner
that generates a plan to perform the specified task. The third agent is an execution system that monitors
the execution of the planned activities. The planner responds to problems or failures in the execution of
the plan, as reported by the execution system, by either replacing activities or re-planning from the start.

The main components of each agent O-Plan2 are: domain information describing the application and the
tasks in the domain to the agent; plan state—the emerging plan of activities; knowledge sources—or plan
modification operators that are the processing capabilities of the agent; support modules that assist the agent
in its functioning; and, controller — the module that decides the order in which decisions are made. The
planning proceeds in a least commitment manner with successive refinement or repair of the plan or schedule.

Burke and Prosser (1994) make a strong case for distributed scheduling arguing that a distributed
problem solving architecture most closely resembles the structure of the enterprise to be scheduled. Most
enterprises are distributed in nature, whether physically in terms of the location of productive resources
or logically reflecting the organization structure. They propose a distributed asynchronous scheduler
(DAS) that decomposes the scheduling problem and distributes it across a hierarchy of intelligent
autonomous agents. Each agent has a defined role and communication path depending on its position
in the hierarchy. Three types of agents are defined: the strategic agents are responsible for assigning tasks
to lower agents and resolving conflicts; the tactical agents are responsible for delegation of tasks to
individual resources; and the operational agents are responsible for the execution of tasks on individual
resources. The agents are loosely coupled, in terms of communication between each other, but since they
operate in a tightly coupled environment where a small change in a situation at one resource is rippled
to other areas, they work in a reactive mode.

The system functions in a hierarchical manner by the strategic agents accepting inputs for new orders
and assigning them to tactical agents and on to operational agents. The latter then try to include the
tasks in their local schedule. On failure, this is communicated upward to the tactical agents that tries to
© 2001 by CRC Press LLC

rearrange the load balance. Upon failure of this, it goes up to the strategic agents to re-assign the resources.
Agents keep track of their backtracking and use this knowledge to further guide the solution process.

Agent-based scheduling is an active area of research in scheduling systems. Sikora and Shaw (1997)
describe an agent-based system for coordinating scheduling where each agent, though acting autono-
mously, depends on others to solve parts of the problem it cannot handle. Agents coordinate their activities
by communicating their partial results to each other by using a “tradeoff function” to arrive at a common
objective function.

Integration of design, process planning and scheduling within the same agent-based system is also an
active area of investigation. Gu et al. (1997) describe a system that uses a bidding-based approach to
coordinate the functions of process planning and scheduling. Each product is an agent that carries its
production and due-date information and upon arriving at the manufacturing facility, its requirements
are broadcast to other agents bound to resources. The agents bid for different tasks and if there is a conflict,
a negotiation process is initiated. A resolution defines the process routing and resource assignment for the
product. In Interrante and Rochowiak, 1994, a multi-agent system is used for assisting in dynamic sched-
uling and rescheduling where the focus is on concurrent engineering. Each agent represents a sub-system
of the factory and mechanisms are designed for collaboration between them. The AARIA project (Parunak
et al., 1997; Baker et al., 1997) uses agents to manage the entire process from ascertaining customer demand
to final production. In an implemented prototype, customers can directly state their demands to the system
which responds by providing a set of cost and due date schedules. Customers may choose the best cost
alternative after which agents, through negotiation, create a production schedule for the product.

Cooperative Problem Solving Systems

The MacMerl system was designed to “understand and support scheduling from the perspective of the
human scheduler” as opposed to implementing the expert’s methods which is the approach taken by
traditional expert systems (Prietula et al., 1991; Hsu et al., 1993; Prietula et al., 1994). The rationale for
MacMerl’s design was based on the fact that problem solving, by any intelligent agent, can be characterized
as search conducted in a problem space of alternatives. The space is a representation of aspects of the
task. The interactive scheduler was seen as one permitting the human and machine to be operating in
coincident problem spaces. The idea was to find those decisions in which the human could be supported
by the machine. To achieve this, a “backbone” system was designed based on the human scheduler’s
methods and supporting the achievement of goals with strong computational support. The design also
had a cooperative approach for generating and reviewing schedules because the entire set of parameters
to generate acceptable solutions could not be specified.

MacMerl was designed and implemented to solve the scheduling problems at a particular factory–one
making windshields for automobiles. The basic production activities here were those of cutting the glass
to the right size and then bending or shaping it. After this, further processes were done to attach the
glass to different parts. Bending was the most critical activity where the glass had to be heated in an
oven, called a lehr, and then pressed or simply shaped by gravity. Scheduling jobs for the lehr was the
bottleneck activity at the plant. The scheduling task had hard constraints defining the quantity and type
of glass to bend and the time in the lehr. It also had softer constraints, called preferences, that were used
for determining preferences over schedules.

Given MacMerl’s design philosophy of having mechanistic support states that assist task-specific
human expertise, complemented by the flexible and judgmental scheduling knowledge of the human,
the system was realized in three steps: first, identifying the expert’s view of the scheduling problem, the
expert’s scheduling behavior, and the reasoning behind the expert’s actions; second, defining a funda-
mental data structure to implement the scheduling knowledge and defining the processes (preprocessing
and schedule generation); and third, interactions with the expert to review and revise the operators. After
the third step, a set of operators were available that corresponded to specific goals of the scheduler.

Numao (1994) proposes an architecture where the user, procedures, and rules are used cooperatively
to solve the scheduling problem. The objective of the architecture is to collaborate with the user in finding
a solution. The problem is studied in a steel producing OIC plant.
© 2001 by CRC Press LLC

The steel-making process consists of three major steps: first is that the converter refines the pig iron
into steel of the desired composition by blowing oxygen through the hot molten metal; second is that
the ladle-refining adds alloy ingredients or removes impurities; and third is that a continuous caster casts
the molten steel into slabs, blooms or billets. The objective of scheduling is to determine the sequence
of operations from the converter to the caster for a charge. This requires determining the number of
charges per day (based on the demand and due date information), the waiting time limitation given that
the molten steel cannot wait for certain processes for a specified amount of time, and the order of the
refinement processes for different qualities of steel. The scheduling tries to minimize the waiting time
and maximize the number of charges per day.

Traditional combinatorial optimization techniques are shown to be NP-complete for this kind of
problem so the authors explore cooperative scheduling. The emphasis here is on decision making and
decision support rather than on constraint-satisfaction. The authors rely on the fact that it is easier for
an expert to suggest what is wrong with a schedule and to suggest improvements than to “extract” his
knowledge into a complete set of rules. Thus, the system criteria are that: it should produce a feasible
solution, it should be interactive, it should provide on-line re-scheduling, and it should be modular and
compatible with existing systems. The system essentially provides a feasible solution to the user who
improves it interactively.

The architecture consists of three major components: a scheduling engine, a rule-base and an interface.
The scheduling engine works as a general constraint satisfier to solve general primitive constraints. The
rule-base then solves the domain dependent constraints. The user refines the solution via the interface.
This process is iterated until a feasible solution is available.

The scheduling process has two steps: sub-scheduling and merging followed by interactive refinement.
In the first step, a schedule is generated. Human experts determine the starting of each charge set, keeping
in mind the final processes have to be completed together. They disregard machine conflicts. Using the
constraints of waiting time limitations and continuous casting, the system resolves the conflicts of
machine scheduling. Scheduling tasks are broken into subtasks and these are backward scheduled from
the casting process. Overlaps are removed, loads are balanced, and the subschedules are merged. In the
second step, the user interactively modifies the schedule. The user may create conflicts in the process
which are then removed by the system.

The system described by Esquirol and others (Esquirol et al., 1997) uses a constraint-based approach
to provide a set of solutions for scheduling problems, combining these with a cooperative human-machine
problem solving framework. The domain is that of a flanged-element manufacturing workshop that
includes: cutting-out metal sheet pieces, heat treatments; flanging on a hydraulic press, and manual
finishing. Routings can differ for each job, or part cut out of the sheet, so the shop operates as a job shop.

Using a cognitive modeling approach, the authors wanted to integrate the humans in the decision
process rather than simulate them. Cooperation in this case implies the sharing of goals by cooperative
entities which provide complementary knowledge and skills. The system, called Scoop, enabled users to
entirely construct the scheduling solution while it checked the consistency of the constraints used.

Constraint-based analysis is used to depict processing constraints and temporal constraints. This
analysis shows infeasibilities to the users in the current set of decisions and a priority order of possible
solutions is presented to them in different modes.

The architecture consists of two major modules: the Selection aid and the Placement aid. The Selection
aid creates the subset of orders that have to be prioritized and presented to the user, while the Placement
aid indicates where certain orders can be placed successfully. The users also see a graphical representation
of the sheet that is being cut and flanged.

Knowledge Elicitation for Scheduling Systems

The manner in which knowledge was extracted from expert schedulers to implement in the different
systems varied according to the design envisaged for the system. In some cases, it was sufficient to extract
knowledge about the domain without finding out how the scheduler actually did the scheduling, while
in other cases the latter was important also. For constructing the ISIS system, Fox (1994) interviewed
© 2001 by CRC Press LLC

experts to identify the scheduling knowledge required for building the system. They found that the most
interesting and important knowledge related to constraints that bind the scheduling the problem. Fox
identified five broad categories of constraints which included; organizational, physical, causal, availability,
and preference constraints. Organizational constraints included: due date constraints restricting the
lateness of orders, work-in-process limits, and physical constraints specifying characteristics of resources
that limit functionality (such as the length of the milling machine’s workbed). Causal constraints specified
the preconditions for use of resources such as the precedence requirements (job has to be cleaned before
it can be annealed) or resource requirements (requirements of tools, or trained operators for a job), while
availability of resources constraint restricted the simultaneous use of any resource by multiple jobs.
Preference constraints were “soft” constraints that indicated priorities or preferences for certain resources.

For extracting knowledge from the expert to construct MacMerl, Prietula and others went through
several phases of analysis and study of the expert’s problem solving behavior. Their objective was to not
only understand the characteristics of the factory but also to have a trace of the expert’s cognitive activities.
To begin, they used protocol analysis as the expert developed schedules, direct questioning, post-task
analysis, and extended apprenticeship to understand the problem solving methods, representation, and
causal reasoning used by the scheduler. Detailed interviews were used to understand the scheduler’s goals
and heuristics. Combinations of parts, determined from the part characteristics that the scheduler used,
were recorded to limit the search space. They also identified a general algorithm that the scheduler
followed based on specific goals. These goals attempted to reduce setups, minimize stock-outs, and
prioritized high-volume sales parts. A causal model of the expressed constraints and preferences was
identified by continuously asking the expert to explain and justify all decisions.

A similar technique was used by May and Vargas (1996) and De’ (to appear) to identify characteristics
of the factory and also to elicit the process by which the scheduler constructed a mental simulation of
the factory. This process was studied by extensive in situ protocol analysis, wherein the researchers
observed and recorded the expert as he went about his daily tasks and talked about what he was doing.
After spending several months acting as trainees, they were in a position to codify the problem solving
behavior of the expert. May and Vargas also noted that the eventual model of behavior that emerged
from their apprenticeship was different from the set of scheduling rules that the expert had mentioned
to them at the beginning of the exercise (in the presence of management).

In Esquirol et al. (1997), the knowledge acquisition was done by using a modification of the personal
construct theory where users were asked to identify their most important constraints on a grid. All current
and potential users of the system were asked to participate and give their most important concerns. The
analysis of the grid led to a design of the cooperative strategy including flexibility, support, and interactivity.

OR Algorithms in Systems

Shah et al. (1992) outline a system that provides meta-knowledge about the kinds of scheduling algorithms
to use. They argue that researchers and practitioners waste effort searching the literature to seek out
algorithms that will fit their particular scheduling situation. So they present a knowledge-based system,
where the expert is a scheduling researcher. The expert takes input about the type of setup configuration
of a particular shop floor situation, the type of constraints binding on the situation (such as due dates,
delay costs, etc.), and the type of objective function to be used (such as minimize tardiness, or average
completion time, etc.). The expert then gives, as output, a sequence of OR algorithms by which the
problem can be solved. The system does not solve the problem itself.

Kempf (1994) and others designed their system to use published OR algorithms as part of their system.
This was to be in the predictive component of their system which was designed to have an “importance-
ordering” mechanism at a higher level to order tasks according to priority, not according to the time-
order of tasks where priority is not regarded. Importance-ordering would enable a global view of the
situation and not rely entirely on the local details. At a lower level, this component used a “multi-
algorithm” approach where a number of algorithms from the published literature were used for given
situations on the factory floor. (The reactive component was tied to the predictive part in that it made
© 2001 by CRC Press LLC

decisions that had been specified by the predictive component. In situations where the system could not
react, the predictive component was restarted.)

Generalized Scheduling Systems

The constraint-based scheduling system designs discussed above are all attempts to realize a general
representational framework within which any type of scheduling problem can be tackled. There are,
however, attempts to take this idea one step further by designing entire architectures that can, with little
modification, be adapted for various scheduling applications.

The ARPA-Rome knowledge-based planning and scheduling initiative (Fowler et al., 1995) was created
based on the observation that although constraint-based frameworks have been successful in solving
scheduling problems, they do not scale to larger problems very well. There are few that fully integrate the
planning, scheduling and database components within a single architecture. At the system’s (ARPI) core is
a distributed network of graphics-based planning cells sharing a common reasoning infrastructure that
enables continuous concurrent planning. Human users collaborate with the automated decision aids to
rapidly generate large scale plans and schedules, with full use of all the background and relevant data. This
initiative led to the creation of the common prototype environment (Burstein et al., 1995) consisting of a
repository of software tools and a testbed for evaluation of planning and scheduling systems.

Another generic framework for building practical scheduling systems is described by Sauer and Bruns
(1997). The system would enhance the problem solving capabilities of human domain experts. The
generic framework is based on two design principles–the combination of standard components (such as
user interfaces), databases with knowledge-based concepts, (such as heuristic scheduling algorithms),
and declarative knowledge representation and the explicit representation of scheduling knowledge for
flexible reuse and adaptation.

The first principle provides support for predictive, reactive, and interactive scheduling. The user
interface provides a graphical depiction of the scheduling situation, allowing the user to change priorities,
resources, etc., while simultaneously checking for consistency. The knowledge-base contains the produc-
tion management knowledge of the application domain—knowledge about products, resources, and
solution schedules—in a relational form. It also contains rules that represent hard or soft constraints.

Algorithms for scheduling are used to create predictive schedules from given input conditions. Problem
specific knowledge is used to guide the search, including heuristics from an expert scheduler. Reactive
scheduling algorithms enable appropriate reactions to unexpected events by adjusting the schedules. The
reactions can range from simple manipulations to complete rescheduling.

The second principle enables the reusability of algorithms that have been designed for highly specific
scheduling situations. The framework separates predictive and reactive scheduling algorithms in underlying
scheduling strategies (order-based or resource-based) and the selection rules to be used in these strategies.
Predictive and reactive “skeletons” are used to separate the two approaches, leading to separate deployment
and adaptability. The rules and strategies were determined from experts or from existing systems.

The framework was tested by building schedulers for three different applications–two in manufacturing
and one in medicine. All three knowledge-based systems greatly reduced the time to create and maintain
production schedules. (All were implemented in Prolog on Sun SparcStations.)

Learning in Scheduling Systems

The learning of scheduling heuristics has concerned researchers for many reasons (Aytug et al. 1994). It
enables the learning of scheduling heuristics automatically, overcoming the problem of knowledge acqui-
sition from experts. Learning methods also enable the systems to learn about the environment and
improve on their performance through experience.

Piramuthu and others (Piramuthu et al., 1994; Piramuthu et al., 1993) describe a system that learns
to apply scheduling heuristics in response to certain patterns in the environment. The system consists
of two major components–a simulation module that generates training examples of various shop floor
© 2001 by CRC Press LLC

conditions, and an inductive learning module that learns the best scheduling rule (such as SPT or EDD)
to apply to the given conditions. Over time, the system learns more decision rules. The system has a bi-
level model, where the first level deals with part-release and the second level deals with dispatching at
individual machines.

The system is designed to simulate a surface mount technology process consisting of various stages
through which fourteen different part types are processed. The objective of the inductive learner is to
learn rules of the form: “If And … Then �,” where represents
the ith level of the jth attribute and define the range for . � denotes the class (Piramuthu et al.,
1994). The aij’s could represent parameters such as buffer content, machine utilization, or coefficient of
variation of processing times. � would be a part-release or dispatching rule.

A training example generator creates examples of shop floor patterns for the learning module of the
system. The learning module passes the examples through a feature extraction preprocess and then
through an inductive learning algorithm, which is a refinement of the ID3 algorithm (Quinlan, 1986).
The decision rules obtained are used by a pattern-directed scheduling module. This module uses a
smoothing function to remove the “chattering” that results from too many changes in the scheduling
heuristic with changes in the input patterns. The authors use two options for smoothing–one has a
constant threshold value and another that weighs current patterns more heavily. A critic module is used
to evaluate the performance of the scheduler, in cases where performance tends to deteriorate (due to
over-generalization, for instance). Results of running multiple simulations for many sets of patterns over
the system showed its performance to be better by using the pattern-directed learning approach rather
than by using the part-release or dispatch heuristics alone.

Simulations are also used to create training examples for a multi-dimensional classification algorithm
in Chaturvedi and Nazareth’s system (1994). The authors state the theory underlying conditional classi-
fication as an extension of simple classification where, in the former, the classification is performed once
along one dimension and the output from this is used as priors in the second classification. This method
is able to include more complexity of the shop floor scheduling phenomena than the simple classification.

In their experiments, the authors generate decision rules for a FMS shop floor using two output
classification dimensions of production rate and utilization for machines. The shop floor is simulated
and training and testing examples are obtained. The decision rules are able to accurately classify all the
test examples. The training and test sets used are small, and the authors caution against over generalizing
the results of their research.

Chen and Yih (1996) trained a neural net to identify the attributes required for developing a knowledge
base. Their neural net could identify a set of relevant attributes, for a given problem situation, from a
general pool of attributes. Their test case showed that the system could successfully select important
attributes from a pool.

The CABINS system (Miyashita and Sycara, 1994; Miyashita et al., 1996) implements a methodology
for learning a control level model for selection of heuristic repair actions based on experience. The
scheduling of resources is based on constraint-directed scheduling methods. Case-based reasoning is used
for the acquisition and flexible reuse of scheduling preferences and selection of repair actions. The case-
base includes examples that collectively capture performance trade-offs under diverse repair situations.
The case description captures the dependencies among the scheduling features, the repair context, and
a suitable repair action. The dependencies in the case-base are used to dynamically adjust the search
procedure. Users provide evaluations of the outcome of using cases to select search heuristics and these
are later reused to select heuristics in similar situations. User preferences are reflected in the case-base
in two ways: as preferences for selecting a repair tactic depending on the features of the repair context
and as evaluation preferences for the repair outcome.

Experimental results with the system showed that the approach outperformed dispatch heuristics for
similar problems and constraint-based scheduling using only static search procedures. It was useful in
capturing user preferences not present in the scheduling model.

Zweben et al. (1992) describe a system that learns search control knowledge for a constraint-based
scheduling system. The authors maintain that the efficiency of scheduling systems, based on constraints,

bi1
ai1

ci1
� �() bim aim cim� �() aij

bij,cij aij
© 2001 by CRC Press LLC

is affected by resource contention. Their system learns the conditions under which chronic resource
contention occurs and modifies its search control to avoid repeating those conditions. They modify the
existing method of explanation-based learning to learn from multiple plausible explanations. Zhang and
Dietterich (1995) use a neural net to learn a heuristic evaluation function (to control search), for the
same problem of scheduling studied by Zweben. Their system uses the evaluation function for a one-
step look-a head procedure. The results indicate that the performance of the system improves on the
performance of the iterative repair method used by Zweben.

Simulation-Based Scheduling Support

Simulations allow users to see the effects of their decisions on the conditions on the shop floor. Systems
that use heuristics to guide the simulation allow the users’ expert heuristics to be encoded within
simulation. The system by Jain et al. (1990) used deterministic, backward simulation to provide real-
time support to shop floor personnel. Backward simulation enabled the system to simulate backward,
from a given event (say the completion of a job), to the starting point. Heuristics obtained from an
experienced scheduler were used to make decisions at crucial choice points which included part dispatch-
ing, machine selection, interval selection, and secondary resource constraints.

The SIMPSON system (May and Vargas 1996), also simulated the factory floor based on heuristics
obtained from an experienced scheduler. The focus was on bottleneck resources where heuristics were
used to ‘feed the bottleneck’ that would also ensure the desired utilization of other resources. In the same
domain, the PLANOPTICON system, (De’ 1996), also used a knowledge-based simulation approach to
suggest setup changes for bottleneck machines. In both cases, the user could input hypothetical data to
arrive at what-if scenarios.

1.3 Implementation Issues

In this section, we consider the issues related to the implementation and fielding of shop floor scheduling
systems. Although the specific factory and organization determines in a large part the eventual imple-
mentation, there are a number of issues that are common to the implementation process. These issues
include the access to transaction databases, the implementation of user interfaces, the use of scheduling
horizons, and cultural issues.

The implementation issues are studied in reported instances of fielded systems. There are a fairly large
number of fielded scheduling systems that have been reported in the literature. For this study, we focus on
a few of these that have been implemented specifically in manufacturing settings and have been used for a
significant portion of time for regular production scheduling. The systems studied are: LMS (Fordyce and
Sullivan, 1994), ReDS (Hadavi, 1994; Hadavi et al., 1992), the systems at Intel (Kempf, 1994), the systems
developed at Texas Instruments (Fargher and Smith, 1994), the DAS system (Lee et al., 1995), the MicroBOSS
scheduler (Fowler et al., 1995), the high-grade steel-making scheduler (Dorn and Shams, 1996; Dorn and
Slany, 1994), the cooperative scheduler for steel-making (Numao, 1994), the MacMerl scheduler (Prietula
et al., 1994; Prietula et al., 1991; Hsu et al., 1993), the SIMPSON scheduler (May and Vargas, 1996), and
the system at General Motors (Jain et al., 1990). Two other fielded systems that were not used to schedule
the entire factory, but only specific resources, are those by Burke and Prosser (1994 and De’, 1996).

Transaction Databases

Transaction databases are crucial for the implementation of any realistic scheduling system. These data-
bases log the transactions occurring on the shop floor related to starting of processing of jobs, status of
machines, completion of jobs, operator assignment, setup changes, etc. Scheduling systems rely on these
to obtain current status reports from the shop floor.

In all the reported instances of scheduling system implementations, the developers have first had to
create or deploy interface software to retrieve the transaction data from the management information
systems. Depending on the currency of the data, or the frequency at which shop floor status reports were
© 2001 by CRC Press LLC

available, the scheduling system could update its records and respond to the situation. All the developers
note that culturally this data access was the first and possibly the most important hurdle to overcome to
have a viable implemented system.

The common issues related to transaction databases are:

• Building interfaces with the MIS databases to obtain the relevant data. This involves building a
working relationship with the MIS department to identify the nature of the data, its manner of
capture, and its representation.

• Ensuring that the data is entered correctly and in a timely manner. In most cases, this requires
re-setting the data entry patterns and re-training employees to do this.

• Collecting distributed data stored in diverse forms (i.e., on different types of application software),
and translating it into a form understandable to the scheduling system.

• Building additional data collection mechanisms if the existing system is not collecting data on all
the steps in the manufacturing process.

User Interfaces

Constructing attractive and user-friendly interfaces was a deliberate implementation tactic employed by
some developers. The motive was to get the user, in some cases, the expert involved in the development
process as a provider of scheduling heuristics and system requirements. Some important issues with
regard to user interfaces are:

• The interfaces have to show timely and useful information to the users. To build the LMS system,
Fordyce and Sullivan built interfaces that showed the shop floor in a graphical manner and also
had signals to indicate problem situations or warnings. These interfaces helped to build support
for their scheduling system.

• The interfaces should be as close as possible to the current forms or screens used by the users.
May and Vargas designed input screens and output reports for the user of SIMPSON that were
identical to what he was used to on paper and preferred. For the MacMerl system, the developers
made the interface used by the scheduler as user-friendly as possible.

• The schedule items depicted on the screen should be easily manipulable (such as being mouse-
sensitive) or modifiable by the user. Numao used such an approach to allow the user to make on-
fly-changes to input conditions and see the resulting effects.

Scheduling Horizons

Implementations of scheduling systems, particularly with hierarchical architectures, necessitate the
explicit use of horizons. The horizons are time boundaries within which decisions are located. They are
usually pre-determined and the system is designed to limit the schedules assignments up till those points.

In the LMS system, the lowest level of the hierarchy, called the dispatch scheduling tier, has a horizon
of a few hours to a few weeks. Here are where the pertainings to decisions running test lots, prioritizing
late lots, determining maintenance downtime, determining downstream needs, etc., are made. A short
horizon was needed for most decisions at this level because of the dynamic nature of the shop floor
where the validity of decisions degenerated quickly.

Kempf distinguishes the predictive and reactive modules of the system (Kempf 1994) on the basis of
the scheduling horizons they address. The predictive part would work on a horizon of a few shifts to
allocate capacity between production, maintenance, etc., whereas the reactive part would work on a
horizon of a few minutes to respond to occurrences on the shop floor.

In the ReDS system (Hadavi), the authors had to build a system corresponding to a particular sched-
uling horizon, primarily because it was so desired by the management. This was a predictive system
which would refresh the schedule after every time horizon with new data from the shop floor. The horizon
was set by the frequency by which the new data was available.
© 2001 by CRC Press LLC

For setting explicit scheduling horizons, De’ (1993) argues that horizon parameters have to be estab-
lished whose values are determined from shop floor parameters. Long or short horizon values are
determined from parameters such as the number of products. For different and persisting shop-floor
conditions, different horizon lengths may be required.

Cultural Issues

Cultural and political issues play as much of an important role in the deployment and eventual success
of a scheduling system as do the technological issues. These issues arise from the community of people
who are concerned with the manufacturing process and whose cooperation and support is needed for
any system implementation. The incidents below show the cultural reasons why systems may be supported
or opposed, regardless of the merit of the systems themselves.

For the LMS project, Fordyce and Sullivan (Fordyce and Sullivan, 1994) recalled two incidents that
facilitated the system’s implementation. The first was a call by a supervisor to be provided a real-time
monitoring system that would warn of any impending deviations from the plan and the second was a
problem observed in the simulation systems. A review of the manufacturing systems revealed several
shortcomings, chief among them was insufficient integration between real-time data, knowledge bases,
and tactical guidelines. To build support for their eventual scheduling systems, the authors first built a
real-time monitoring system that would enable shop supervisors and engineers to observe events on the
shop floor through desktop terminals. Users were weaned on the systems, after which they demanded
more features such as alerts and rule bases, that further propelled the development of the system.

In the second phase, the system design shifted from a reactive mode to a more proactive mode. This
was achieved in a time of booming business, when greater throughput and planning was required from
the existing systems. Using a mix of knowledge engineering and operational analysis, the authors were
able to implement a set of dispatch heuristics that improved throughput and profitability. Following this
success, the value of knowledge-based systems was firmly established and, along with a renewed interest
by IBM in participating in the manufacturing marketplace, further development and implementation of
such systems was assured.

At Intel, (Kempf, 1994), the scheduling research group had to market their ideas to two different sets
of people–the managers and the users on the shop floor. The first group had to be persuaded to support
the project, given that the further any senior executive was from the shop floor, the less concerned he or
she was with scheduling problems. This group was persuaded through promises and assurances of greater
responsiveness, better resource utilization, and integration with automated tools. The second group was
cognizant of the scope of the problems but remained skeptical of any systemic solution for various
reasons–the dynamic and changing nature of the shop floor, the complexity of the problem, the adherence
to manual procedures, and the history of failed attempts to solve the problems. This latter group was
persuaded to support the development effort by involving them with the development process. Resistance
to change remained, however, because changing work processes for even one person meant changing the
grading, reporting, and training of possibly an entire group working with the individual.

The first modules of the system implemented on the shop floor were the user interface and the data
interface. Users were asked to comment on the design of the interface, and in a situation where personnel
had a very wide degree of familiarity with graphical interfaces, the suggestions were diverse and many.
The system builders could not cope with them. The database interface suffered from inconsistencies and
inaccuracies in data being logged in on the shop floor. The scheduling system could not proceed without
an accurate snapshot of the shop floor; thus, the developers had to persuade those in charge of collecting
data to improve their system and practices.

In the ReDS system (Hadavi, 1994), the developers first implemented a research prototype that they
used to show management the possibilities of such a system and gain support for it. Users were aware of
such a prototype but when they saw it, they were disappointed with its limited capabilities. The developers
tried to deploy the prototype itself, which led to further annoyance and friction. The biggest drawback
was that there were no means of collecting shop floor data for input to the system. The developers had
© 2001 by CRC Press LLC

to start another implementation from scratch. This time, they collaborated with the MIS personnel to
obtain useful and timely data from the shop floor system. Eventually there were no objections to the
introduction of the system; however, some users expressed doubts as to its usefulness over the older
simulation-based system.

The eventual introduction of the system brought many changes in the practices on the shop floor.
Management now had a means by which to directly track the progress of jobs on the shop floor. Any
delays would be immediately visible and liable to questioning. This introduced a form of panopticism
(Zuboff, 1988) that forced shop floor personnel to be alert at all times.

1.4 Validation Issues

Testing implemented systems involves the twin tasks of verification and validation. Simply stated “veri-
fication is building the system right, validation is building the right system” (O’Keefe et al., 1987).
Validation evaluates the system in the context for which it is designed. Knowledge-based systems are
often validated by seeking acceptable performance levels for specified criteria (O’Keefe and Preece, 1996).

Validation of implemented scheduling systems is very difficult and few developers do so in any detailed
manner. The reasons for this difficulty are the lack of standards by which to measure the performance of
the system (Gary et al., 1995). Real-life shop floors are so complex that generating a theoretical model and
solving one to arrive at an optimal standard is impossible. Scheduling researchers try to validate the system
by various means. Measuring its performance on specific goal parameters is the one most widely used.
There are, however, many ways by which knowledge-based systems in general can be validated (O’Keefe
and O’Leary, 1993). Internal functioning of the systems are verified by unit and system testing.

Validation Against System Objectives or Goals

In most cases, support for the development and implementation of large-scale and expensive factory
scheduling systems is sought from management on conditions of meeting specified goals. These goals
usually pertain to improvements in productivity, throughput, tardiness, utilization, cost savings, etc.
Subsequent validation of the system then relies on showing that the goals have been met.

• Sadeh’s MicroBoss scheduler (Fowler et al., 1995) showed a 55 to 60% improvement in lead times,
for actual load conditions, for scheduling over 1000 part types at a Raytheon manufacturing
facility. The system reduced average tardiness by 14 to 16% and inventories by 20 to 30%.

• IBM’s LMS was able to improve productivity by about 35% and avoided a capital outlay of $10
million.

• The ReDS system improved productivity and cycle times by a “considerable amount.” The devel-
opers contend that, due to the many changes on the shop floor, it is hard to assign any particular
amount of productivity increase to the system alone.

• Numao (Numao, 1994) shows that their scheduling system, used for scheduling steel-making,
enabled a reduction in scheduling time from 3 hours to 30 minutes. This made real-time scheduling
and re-scheduling possible. It also improved the quality of the schedule by reducing the average
waiting time for the charge, molten iron, from 16 minutes to 8 minutes. This resulted in a saving
in energy costs totalling about $1 million a year.

• Dorn and Shams (1996) report no direct impact on the production process of their expert system
implemented for supporting steel-making; however, they do mention a number of qualitative
benefits. The system eliminated a lot of paperwork and reduced weekly planning times. It enabled
the schedulers to seek better sequencing through what-if analysis. It supported a deterministic
decision framework that improved overall production quality.

• For the DAS scheduler, Lee et al., (1995) estimate an annual benefit of about $4 million to Daewoo
Shipbuilding Company. This estimate is arrived at by adding a production productivity improve-
ment of 30% and a planning productivity improvement of 50%.
© 2001 by CRC Press LLC

System developers warn against ascribing the improvements in certain criteria to the systems perfor-
mance alone. Many changes take place on the shop floor, as well as the tasks performed by personnel,
when a large factory-wide scheduling system is installed. Simply the access to control information by
management affects the performance of shop floor personnel. The requirement for entering the data
accurately and punctually, the ability to see the status of upstream and downstream machines, and the
facility of having tasks prepared by an automation device, adds to the changes in the shop floor practices.
Thus, when changes in productivity occur, whether positive or negative, these cannot be simply credited
or blamed on the new system.

Validation Against Manual Scheduler’s Criteria

Often the scheduling expert, on whose knowledge the expert system has been based, becomes the judge for
the performance of the system. The scheduler verifies that the schedules produced for particular situations
are appropriate and in accordance with what he would have done. Though this approach has certain merits,
it is often criticized on grounds that there is no assurance that the scheduler’s solution is near the optimal
one. Schedulers simply do not rely on the shop-floor situation information available to the system to make
their schedules but actively influence the various parameters (such as demand and machine capacity)
(McKay et al., 1995). Schedulers may not be able to critique large scale schedules produced by the system,
and the problems identified by the schedulers may not be entirely significant (Kempf et al., 1991a).

For situations where only a few resources are being scheduled by the system, the method of using the
scheduler’s judgement is adequate. De’, (1996) used a historical record to compare the system’s output
against what was actually scheduled on the shop floor. The historical record reflected a combination of
the schedulers decisions and contingency moves made by shift supervisors and workers. The system
performed reasonably well by this measure. While implementing the MacMerl system, Prietula et al.
(1994) constantly asked the scheduler about the quality of the schedules and the user interface. The
system was fine tuned until the schedules it produced resembled those of the scheduler, only they were
more consistent and exhaustive.

Validation With Simulations

A simulation model of the factory processes makes available a fairly large set of test cases that can be
used to validate the scheduling system. Such a method is deployed by Fargher and Smith, (1994) where
plan validation was performed by comparing the output from the system with simulation results, both
using data from a type of factory modeled by the system. Close agreement between the system and the
simulation suggested that the performance of the system was adequate.

1.5 Conclusions

In 1991, Kempf and others (Kempf et al., 1991b), while reviewing the state of knowledge-based scheduling
systems, stated that despite there being a large amount of research targeted at this problem, there were
few fielded systems being used in daily manufacturing practice. Ten years later, the current situation is
different since there are a fair number of fielded systems that have survived the uncertainties of the shop
floor and are being used daily.

The research in designs of scheduling systems continues unabated. Of the design issues discussed in
this chapter, the two that are receiving the most attention, and are likely to continue to do so, are those
of distributed scheduling and learning in scheduling systems. With the widespread integration of infor-
mation technology within all aspects of the manufacturing processes and the organization as a whole
(through enterprise-wide integration systems), distributed agent-based systems have emerged as the most
appropriate technology with which scheduling can be performed. Agent programs are designed to be
autonomous, relatively independent of the users and other modules for their functioning, and can re-
side on various machines from which data can be directly obtained for scheduling purposes. Agents can
© 2001 by CRC Press LLC

also act as monitors, informing about the performance of certain resources and as negotiators, using
utility-based or game-theoretic models to resolve assignment conflicts.

Learning in scheduling systems addresses the single bottleneck issue facing developing knowledge-
based systems–that of extracting knowledge. Learning systems try to obtain, from a set of training
examples, a set of generalized rules for scheduling. This task is especially difficult because of the tremen-
dous complexity of any shop floor system for which generalizations are being sought. A few systems have
obtained promising results but it is clear that much more research needs to be done in this area.

Another design area that is gaining importance is that of generalized scheduling systems. These systems
will, in some measure, obviate the need for extensive knowledge elicitation from schedulers and users.
They are being designed with the aim of having entire production systems built around them in order
to simplify the product design, production planning, and scheduling tasks. In such situations, users would
learn to use the scheduling system while they are learning to use the production system. Also, the
scheduling system will be composed of distributed, autonomous agents that have adaptive capabilities,
which will further reduce the need for knowledge gathering from shop floor personnel.

It was evident from the review of the implemented systems that the cultural and political issues were
very important for the final acceptance of the scheduling system. Once the users were actively involved
with the activities of providing specifications and testing the software, a certain measure of commitment
and acceptance was obtained from them. The lesson to be learned here has been described in detail
before, in the discipline of software engineering, where developers are urged to include the users and the
sponsors of the system within the development life cycle.

References

Baker, A., Parunak, H., and Erol, K. (1997). Manufacturing over the internet and into your living room:
Perspectives from the aaria project. Technical report, Dept. of Electrical and Computer Engineering
and Computer Science, University of Cincinnati.

Burke, P. and Prosser, P. (1994). The distributed asynchronous scheduler. In Zweben, M. and Fox, M. S.,
editors, Intelligent Scheduling, chapter 11, pages 309–340. Morgan Kaufman Publishers.

Burstein, M., Schantz, R., Bienkowski, M., desJardins, M. E., and Smith, S. (1995). The common proto-
typing environment: A framework for software technology integration, evaluation, and transition.
IEEE Expert, 10(1):17–26.

Chaturvedi, A. and Nazareth, D. (1994). Investigating the effectiveness of conditional classification: An
application to manufacturing scheduling. IEEE Transactions on Engineering Management, 41(2):
183–193.

Chen, C. and Yih, Y. (1996). Identifying attributes for knowledge-based development in dynamic sched-
uling environment. International Journal of Production Research, 34(6):1739–1755.

Currie, K. and Tate, A. (1991). o-plan: the open planning architecture. Artificial Intelligence, 52:49–86.
De’, R. (1993). Empirical Estimation of Operational Planning Horizons: A Study in a Manufacturing

Domain. Ph.D. thesis, University of Pittsburgh.
De’, R. (1996). A knowledge-based system for scheduling setup changes: An implementation and valida-

tion. Expert Systems With Applications, 10(1):63–74.
De’, R. (To appear). An implementation of a system using heuristics to support decisions about shop

floor setup changes. In Yu, G., editor, Industrial Applications of Combinatorial Optimization. Kluwer
Academic Publishers.

Dorn, J. and Shams, R. (1996). Scheduling high-grade steelmaking. IEEE Expert, 11(1):28–35.
Dorn, J. and Slany, W. (1994). A flow shop with compatibility constraints in a steelmaking plant. In

Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, chapter 22, pages 629–654. Morgan
Kaufman Publishers.

Esquirol, P., Lopez, P., Haudot, L., and Sicard, M. (1997). Constraint-oriented cooperative scheduling
for aircraft manufacturing. IEEE Expert, 12(1):32–39.
© 2001 by CRC Press LLC

Fargher, H. E. and Smith, R. A. (1994). Planning in a flexible semiconductor manufacturing environment.
In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, chapter 19, pages 545–580. Morgan
Kaufman Publishers.

Fordyce, K. and Sullivan, G. (1994). Logistics management system (Ims): Integrating decision technol-
ogies for dispatch, scheduling in semiconductor manufacturing. In Zweben, M. and Fox, M. S.,
editors, Intelligent Scheduling, chapter 17, pages 473–516. Morgan Kaufmann Publishers.

Fowler, N., Cross, S., and Owens, C. (1995). Guest editor’s introduction: The arpa-rome knowledge-
based planning and scheduling initiative. IEEE Expert, 10(1):4–9.

Fox, M. and Smith, S. F. (1984). ISIS — a knowledge-based system for factory scheduling. Expert Systems,
1(1):25–49.

Fox, M. S. (1983). Constraint-Directed Search: A Case Study of Job Shop Scheduling. Ph.D. thesis, Carnegie-
Mellon University.

Gary, K., Uzsoy, R., Smith, S., and Kempf, K. (1995). Measuring the quality of manufacturing schedules.
In Brown, D. and Scherer, W., editors, Intelligent Scheduling Systems. Kluwer, Boston.

Godin, V. (1978). Interactive scheduling: Historical survey and state of the art. AIIE Transactions,
10(3):331–337.

Gu, P., Balasubramanian, S., and Norrie, D. (1997). Bidding-based process planning and scheduling in
a multi-agent system. Computers and Industrial Engineering, 32(2):477–496.

Hadavi, K., Hsu, W., Chen, T., and Lee, C. (1992). An architecture for real-time distributed scheduling.
AI Magazine, 13(3):46–56.

Hadavi, K. C. (1994). A real time production scheduling system from conception to practice. In Zweben,
M. and Fox, M. S., editors, Intelligent Scheduling, chapter 20, pages 581–604. Morgan Kaufman
Publishers.

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, 26:251–321.
Hsu, W. L., Prietula, M. J., and Ow, P. S. (1993). A mixed-initiative scheduling workbench: Integrating

ai, or, and hci. Decision Support Systems, 9(3):245–257.
Interrante, L. D. and Rochowiak, D. M. (1994). Active rescheduling and collaboration in dynamic

manufacturing systems. Concurrent Engineering: Research and Applications, 2(2):97–105.
Jain, S., Barber, K., and Osterfeld, D. (1990). Expert simulation for on-line scheduling. Communications

of the ACM, 33(10):55–60.
Kempf, K., Pape, C. L., Smith, S., and Fox, B. (1991a). Issues in the design of ai-based schedulers: A

workshop report. AI Magazine, 11(5):37–46.
Kempf, K., Russell, B., Sidhu, S., and Barrett, S. (1991b). Ai-based schedulers in manufacturing practice.

AI Magazine, 11(5):46–55.
Kempf, K. G. (1994). Intelligently scheduling semiconductor wafer fabrication. In Zweben, M. and Fox,

M. S., editors, Intelligent Scheduling, chapter 18, pages 517–544. Morgan Kaufmann Publishers.
Kerr, R. (1992). Expert systems in production scheduling: Lessons from a failed implementation. Journal

of Systems Software, 19:123–130.
Lee, J., Lee, K., Hong, J., Kim, W., Kim, E., Choi, S., Kim, H., Yang, O., and Choi, H. (1995). Das: Intelligent

scheduling systems for shipbuilding. AI Magazine, 16(4):94.
May, J. H. and Vargas, L. G. (1996). Simpson: An intelligent assistant for short-term manufacturing

scheduling. European Journal of Operational Research, 88:269–286.
McKay, K., Buzacott, J., and Safayeni, F. (1995). ‘Common sense’ realities of planning and scheduling in

printed circuit board production. International Journal of Production Research, 33:1587–1603.
Minsky, M. (1975). A framework for representing knowledge. In Winston, P., editor, The Psychology of

Computer Vision, pages 211–277. McGraw-Hill, New York.
Miyashita, K. and Sycara, K. (1994). Adaptive case-based control of schedule revision. In Zweben, M. and

Fox, M. S., editors, Intelligent Scheduling, chapter 10, pages 291–308. Morgan Kaufman Publishers.
Miyashita, K., Sycara, K., and Mizoguchi, R. (1996). Modeling ill-structured optimization tasks through

cases. Decision Support Systems, 17:345–364.
© 2001 by CRC Press LLC

Numao, M. (1994). Development of a cooperative scheduling system for the steel-making process. In
Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, chapter 21, pages 607–628. Morgan
Kaufman Publishers.

O’Keefe, R., Balci, O., and Smith, E. (1987). Validating expert system performace. IEEE Expert, 2(4):81–90.
O’Keefe, R. and O’Leary, D. (1993). A review and survey of expert system verification and validation.

Artificial Intelligence Review, 7(1):3–42.
O’Keefe, R. and Preece, A. (1996). The development, validation, and implementation of knowledge-based

systems. European Journal of Operations Research, 92:458–473.
Ow, P., Smith, S. F., and Thiriez, A. (1987). Reactive plan revision. In Proceedings of the Seventh National

Conference on Artificial Intelligence, pages 77–82, San Mateo, CA. Morgan Kaufmann.
Ow, P. S. and Smith, S. F. (1987). Two design principles for knowledge-based systems. Decision Sciences,

18(3):430–447.
Parunak, H., Baker, A., and Clark, S. (1997). The aaria agent architecture: An example of requirements

driven agent-based system design. In Proceedings of the First International Conference on Autono-
mous Agents (ICAA ’97), Marina del Rey, CA.

Piramuthu, S., Raman, N., and Shaw, M. (1994). Learning-based scheduling in a flexible manufacturing
flow line. IEEE Transactions on Engineering Management, 41(2):172–182.

Piramuthu, S., Raman, N., Shaw, M., and Park, S. (1993). Integration of simulation modeling and
inductive learning in an adaptive decision support system. Decision Support Systems, 9:127–142.

Prietula, M., Hsu, W.-L., Ow, P., and Thompson, G. (1994). Macmerl: Mixed-initiative scheduling with
coincident problem spaces. In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, chapter
23, pages 655–682. Morgan Kaufman Publishers.

Prietula, M. J., Hsu, W. L., and Ow, P. S. (1991). A coincident problem space perspective to scheduling
support. In Proceedings of the Fourth International Symposium on Artificial Intelligence, Cancun, Mexico.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1:81–106.
Sauer, J. and Bruns, R. (1997). Knowledge-based scheduling systems in industry and medicine. IEEE

Expert, 12(1):24–31.
Shah, V., Madey, G., and Mehrez, A. (1992). A methodology for knowledge based scheduling decision

support. Omega, International Journal of Management Science, 20(5/6):679–703.
Sikora, R. and Shaw, M. J. (1997). Coordination mechanisms for multi-agent manufacturing systems:

Applications to integrated manufacturing scheduling. IEEE Transactions on Engineering Manage-
ment, 44(2):175–187.

Smith, S. (1987). A constraint-based framework for reactive management of factory schedules. In Pro-
ceedings of the International Congress on Expert Systems and Leading Edge in Production Planning
and Control, Charleston, SC.

Smith, S. F. (1994). Opis: A methodology and architecture for reactive scheduling. In Zweben, M. and
Fox, M. S., editors, Intelligent Scheduling, chapter 2, pages 29–66. Morgan Kaufmann Publishers.

Szelke, E. and Kerr, R. M. (1994). Knowledge-based reactive scheduling. Production Planning & Control,
5(2):124–145.

Tate, A., Drabble, B., and Kirby, R. (1994). O-plan2: An open architecture for command, planning, and
control. In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, chapter 7, pages 213–239.
Morgan Kaufmann Publishers.

Zhang, W. and Dietterich, T. (1995). A reinforcement learning approach to job-shop scheduling. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence.

Zuboff, S. (1988). In the Age of the Smart Machine: The Future of Work and Power. Basic Books, Inc.
Zweben, M., Daunn, B., Davis, E., and Deale, M. (1994). Scheduling and rescheduling with iterative

repair. In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, chapter 8, pages 241–255.
Morgan Kaufmann Publishers.

Zweben, M., Davis, E., Daun, B., Drascher, E., Deale, M., and Eskey, M. (1992). Learning to improve
constraint-based scheduling. Artificial Intelligence, 58:271–296.
© 2001 by CRC Press LLC

2
Neural Network

Systems Techniques
in the Intelligent

Control of Chemical
Manufacturing Plants

2.1 Introduction
2.2 Neural Network Construction for Event-Based

Intelligent Control
Brief Review of Event-Based Intelligent Control
Paradigm • Neural Network Construction Method

2.3 Simulation Environment
Continuously Stirred Tank Reactor (CSTR) • Neural Network
Learning Strategy

2.4 Simulation Results
2.5 Conclusions

2.1 Introduction

Neural networks have been widely used in many control areas [1, 2, 3, 4, 5]. However, as controlled
systems have been more and more complex, no one control paradigm is enough to control especially
where the controlled systems are complex hybrid ones composed of discrete event systems and continuous
systems. In order to control such hybrid systems, intelligent control methodologies must be embedded
into an integrated intelligent control system [6, 7, 8, 9, 10, 11]. This integration provides an intelligent
system with some capabilities such as self-learning, self-planning, and self-decision making [7, 9, 10].
The structure of the integrated system must be well defined and constructed for getting synergy effect
from all modules. Thus, the basic framework for constructing an integrated system is very important.

Recently, Zeigler [12, 13] introduced an event-based intelligent control paradigm based on the simula-
tion theory for discrete event systems [14, 15]. This control paradigm is devised using a simulation
formalism called DEVS (discrete event system specification). The DEVS provides mathematically-sound
semantics to specify operations of discrete event systems in a hierarchical, modular manner [14, 15].
Therefore, this control paradigm can be a good framework especially where the controlled processes are
highly complex, such as chemical plants. With this framework, high-level modules, such as planners and
schedulers, can be easily constructed and other modules, such as neural networks and fuzzy logic control,
can be easily incorporated with hierarchy and modularity [16].

Sung Hoon Jung
Hansung University

Tag Gon Kim
Korea Advanced Institute of Science
and Technology

Kyu Ho Park
Korea Advanced Institute of Science
and Technology
© 2001 by CRC Press LLC

In event-based control, a internal controller has an event-based model of a controlled plant that
characterizes the operational properties of the plant [12, 13]. Using this model, the event-based controller
can simulate the state of transitions in the plant and can diagnose the operations of the plant using time
constraints. We used a neural network model as the event-based model. This neural network model has
the dynamics of the controlled plant with discrete levels for simulating operations of the controlled plant,
as well as for decision outputs to control. This event-based control system, with neural network models,
can control any type of plant such as continuous plants, discrete event plants, and hybrid plants composed
of continuous and discrete event systems.

The neural network model maps the dynamics of a controlled plant so that it can automatically generate
dynamics for control and diagnosis. However, the mapped dynamics of a neural network model can not
be exactly the same as those of the original plant, owing to incomplete learning. When a plant has a
saturation property, this incomplete learning results in serious problems. This is because of the output of
a nonlinear dynamic plant, with saturation property, is very sensitive to small changes of its input values.

In [17], the authors proposed a neural model predictive control strategy combining a neural network
and a nonlinear programming algorithm. The control performance may be considerably degraded when
the predicted value differs greatly from the actual value. This is because the control input depends greatly
on the predictive value and there are no methods to compensate the predictive error. The application of
the method to highly nonlinear plants may be very difficult or even impossible.

To cope with this problem, our method partitions a block, between a current state and a target one,
into several intermediate blocks. Then control inputs are repeatedly applied to the plant until the target
state is reached. This provides the event-based controller with a state feedback mechanism of the con-
ventional control. The plant output may be slightly erroneous owing to incomplete learning. For this
problem, a state window is employed that provides a state tolerance about a steady state error. These two
windows, namely the time window and the state window, make a cross-check area to check the state and
time constraints. This scheme may be viewed as a combination of a time-based diagnosis mechanism in
an event-based control system [12] and a state-based control mechanism in a neural network control
system [18].

We experimented with a continuously stirred tank reactor (CSTR) plant using our event-based control
system with a neural network mapping model. The CSTR plant is a chemical process that has strong
non-linearity and complicated dynamics. Experimental results show relatively good control performance
in spite of the strong nonlinearity and complicated dynamics.

2.2 Neural Network Construction for Event-Based
Intelligent Control

This section describes the neural network construction method of a continuous system for event-based
intelligent control. First, we briefly review the event-based control paradigm and state the neural network
construction method next.

Brief Review of Event-Based Intelligent Control Paradigm

In an event-based control, the event-based model of a plant is specified by an event-based control DEVS
[19]. This event-based control DEVS is a modified version of the discrete event system specification
(DEVS) formalism [14, 15, 13]. An event-based control DEVS is defined as a 7-tuples [19]:

 (2.1)

where

• X is the external input events set; and

• S � B � X, where B is the finite set of elements, each called a boundary; and

M X S Y �int�ext � ta, ,, , ,〈 〉�
© 2001 by CRC Press LLC

• Y is the finite output events set; and

• �int is the internal transition function; and

• �ext is the external transition function; and

• �: S → Y is the output function; and

• ta: S → � , i. e., ta(s) � [r, r�], where r, r� � and r � r�.

In an event-based control, an event-based model specified by the event-based-control DEVS is com-
posed of an input set, a state set, and an output set. These three sets correspond to control inputs, control
points, and threshold outputs of the plant in event-based control, respectively. The internal and external
transition functions for the event-based model provide the behavioral characteristics of the plant. Each
function in the tuple represents constraints on the system dynamics. The output function maps the
discrete event states to threshold-like outputs. The time advanced function differs slightly from the original
DEVS formalism [15] owing to its need for a time interval. The minimum and maximum times of this
time interval, called a time window, provide time tolerance that acts as the conventional controller’s
counterpart to state tolerance. That is, the event-based controller regards the control operation as correct
if the target state arrives within the time window.

After the event-based controller has output the control input to the real plant, the controller waits for
a sensor signal from the threshold sensors. If the signal arrives prior to the minimum time of a time
window, then the event-based controller issues a “too-early” error. If the signal arrives after the maximum
time of the time window, the controller issues a “too-late” error. Even if the signal arrives within the time
window, the controller issues an “unexpected-state” error if the signal is different from the target state.
In summary, the event-based controller regards the operation of the plant as correct only if the signal
arrives within the time window and is the same as the expected planned target state. The event-based
controller sends diagnostic information—too-early, too-late, and unexpected-state—to diagnostic personnel
to diagnose errors. This event-based paradigm has two advantages over the traditional ones; the error
informations produced by the event-based controller could be used for diagnostic purpose and the use
of a time window provides the controller with robustness against expected values from sensors.

Figure 2.1 shows the architecture of an event-based controller. An event-based controller is composed
of a control part and a diagnosis part. The control part is composed of a goal-driven-planner (GDP) and
a control-output-generator (COG). The diagnosis part is made up of a simulator and an event-based model.
These two parts are managed by the central controller which provides a main control algorithm.

The logic of the control is as follows:

• The event-based controller receives an external input Xc from threshold sensors, and sends control
signals Yc to a plant if no error is detected.

• If errors are detected, the event-based controller sends diagnostic information Yd to the diagnoser.

• The central controller internally sends a current state signal to the GDP to get the next target state,
then sends the received target state with the current state to COG to get control output.

• The controller then sends the received control output to the plant. At the same time, it sends this
output to the simulator to simulate the plant behavior.

• The simulator simulates the plant using an event-based model and generates two outputs, i.e.,
expected outputs Ys of the plant and time windows TW.

• With the reference of the outputs and time windows, the controller diagnoses the state of the plant.

• If the expected state of a plant is sensed within the time window, then the event-based controller
regards the current state of this plant as being correct.

• Otherwise, an error is assumed to have occurred, and the controller invokes diagnoser functions
to find where it has occurred.

• The event-based controller repeatedly performs the described control logic in accordance with the
sensor readings.

R0, �
	 R0, �

	 R0, �
	

© 2001 by CRC Press LLC

Neural Network Construction Method

With mapping capability of neural networks, nonlinear plants could be easily modeled and these models
have applied control in nonlinear plants in many different ways [1, 2, 4, 20]. Also, the on-line learning
capability of neural networks makes it possible for control systems to have dynamic modelling capability.
We use the mapping and on-line capability of neural networks.

In order to use a neural network model as an event-based model of an event-based intelligent controller,
the controlled continuous system must be first abstracted into an event-based model and then the
abstracted event-based model is mapped to a neural network. By doing this, the neural network model
can be isomorphic to the continuous plant at the discrete input-output level [19].

Abstraction Process

Figure 2.2 shows the abstraction processes. The abstraction processes are as follows:

• When a continuous system is given, a system designer must first decide the operational objectives
of the continuous system.

• The operational objectives can be derived from functional requirements and constraints of the
system.

• To get the discrete inputs and outputs of the continuous system, the designer must do output
partitioning first and input sampling second.

• The output partitioning is to divide the outputs of the continuous system into several mutually
exclusive blocks to quantize the output levels considering operational objectives of the system.

• The input sampling is to select some inputs for state transitions specified by the operational
objectives.

FIGURE 2.1 Event-Based Intelligent Control Environment.
© 2001 by CRC Press LLC

• Third delay times for the state transitions under given inputs must be measured using a real
continuous system or a model such as a set of differential equations.

• With this information, we can construct an event-based model for the continuous system.

With a simple water-tank example, we illustrate the abstraction process. Figure 2.3 shows a water-tank
continuous system. Let the constraints of the water tank system and operational objectives of this example

FIGURE 2.2 Abstraction Process and Neural Network Mapping.

FIGURE 2.3 Water Tank Continuous System.
© 2001 by CRC Press LLC

be given as follows:

• Constraints

– The water tank must be able to supply the water to another device with two rates (not zeros).
– The water can be supplied from another device with two rates (not zeros).

• Operational Objectives

– The water level must be kept in the vicinity of the middle of the water-tank not to go over
the top of the water-tank and not to go under the bottom of the water-tank.

– Time to rise the water level from the bottom level to the middle level must not be over 2 minutes.
– Time to fall the water level from the top level to the middle level must not be over 3 minutes.

From the first operational objective, we can do output partitioning with three levels: High – Mark,
Midd – Mark, and Low – Mark. Of course, three threshold sensors for detecting the three levels must be
equipped on the water-tank for real control. Using the second and third operational objectives and two
constraints, we can next do input sampling. For simplicity, four values are selected for the input valve
and output valve: High – Input, Low – Input, High – Output, and Low – Output. Of course, the symbolic
elements for each set is assigned for real value: High – Mark � 3 m, High – Input � 10 lb/min and so
on. Finally, delay times for state transitions, under given inputs, should be measured using a real continuous
system or a differential equations model.

The water-tank operation is simply modeled using a first-order differential equation as follows.

(2.2)

where C is the capacity of water-tank, h is the height of water-tank, qi is the input flow rate of water, and
qo is the output flow rate of water. The height of water-tank is obtained by solving the equation:

(2.3)

From this differential equation, the delay time can be calculated by the following equation

(2.4)

where dt is delay time, hc is a target state, and h0 is a current state. Of course, the elements of hc, h0, qi,
qo must be in the predefined set.

The dynamics of a real water tank will not be exactly the same as those of the differential equation
model. This is caused not only by modeling errors but also by parameter changes of the real water tank
and its environment. Let the minimum and maximum parameter variation be Pmin, Pmax respectively, and
the minimum and maximum times to reach a specific height hc are as follows.

(2.5)

C
dh
dt
------ qi qo
�

h t() h0

qi qo

C
----------------t	�

dt
hc h0

qi qo

C

-----------------�

tmin

hc h0

qi qo

C

 pmax

-----------------------------�

tmax

hc h0

qi qo

C

 pmin

----------------------------�
© 2001 by CRC Press LLC

Consequently, we can get a time window by taking these minimum and maximum times:

Let the C, Pmin, and Pmax be 12.2, 0.9037, and 1.12963 respectively, then the time window is given as:

(2.6)

These gathered data is mapped to the neural network with a back-propagation algorithm.
Let the output states (level of the water) and inputs (flow rates of input and output valves) be

partitioned and sampled as shown in Table 2.1. To satisfy the first operational objective and two con-
straints, the high input rate of water to fill the water tank must be greater than the high output rate not
to be emptied the water in the tank. Also, the low input rate of water to sink the water must be lower than
the low output rate not to be overflowed the water. We can measure the minimum and maximum times
for each state transition under given inputs. Table 2.2 shows the gathered data from Eq. 2.6. In this table,
the minus time means that the delay time is infinity. That is, the target state will never be reached under
given inputs.

TABLE 2.1 Real Values of States and Inputs of Water Tank

Water Mark Two Input

HIGH_TANK MID_TANK LOW_TANK HIGH_IN LOW_ IN HIGH_ OUT LOW_OUT

22.5 15.0 3.5 12.5 2.5 8.5 4.5

TABLE 2.2 Gathered Data from Differential Equation Model of Water Tank

 Water Mark Two Input Time Window

Current State Target State Input Rate Output Rate Minimum Time Maximum Time

LOW_TANK MID_TANK HIGH_IN HIGH_OUT 31.1 38.8
LOW_TANK MID_TANK HIGH_IN LOW_OUT 15.5 19.4
LOW_TANK MID_TANK LOW_IN HIGH_OUT
20.7
25.9
LOW_TANK MID_TANK LOW_IN LOW_OUT
62.1
77.6
LOW_TANK HIGH_TANK HIGH_IN HIGH_OUT 51.3 64.1
LOW_TANK HIGH_TANK HIGH_IN LOW_OUT 25.7 32.1
LOW_TANK HIGH_TANK LOW_IN HIGH_OUT
34.2
42.8
LOW_TANK HIGH_TANK LOW_IN LOW_OUT
102.6
128.2
MID_TANK LOW_TANK HIGH_IN HIGH_OUT
31.1
38.8
MID_TANK LOW_TANK HIGH_IN LOW_OUT
15.5
19.4
MID_TANK LOW_TANK LOW_IN HIGH_OUT 20.7 25.9
MID_TANK LOW_TANK LOW_IN LOW_OUT 62.1 77.6
MID_TANK HIGH_TANK HIGH_IN HIGH_OUT 20.2 25.3
MID_TANK HIGH_TANK HIGH_IN LOW_OUT 10.1 12.7
MID_TANK HIGH_TANK LOW_IN HIGH_OUT
13.5
16.9
MID_TANK HIGH_TANK LOW_IN LOW_OUT
40.5
50.6
HIGH_TANK LOW_TANK HIGH_IN HIGH_OUT
51.3
64.1
HIGH_TANK LOW_TANK HIGH_IN LOW_OUT
25.7
32.1
HIGH_TANK LOW_TANK LOW_IN HIGH_OUT 34.2 42.8
HIGH_TANK LOW_TANK LOW_IN LOW_OUT 102.6 128.2
HIGH_TANK MID_TANK HIGH_IN HIGH_OUT
20.2
25.3
HIGH_TANK MID_TANK HIGH_IN LOW_OUT
10.1
12.7
HIGH_TANK MID_TANK LOW_IN HIGH_OUT 13.5 16.9
HIGH_TANK MID_TANK LOW_IN LOW_OUT 40.5 50.6

tmin twin tmax� �
C hc h0
()
qi qo
()Pmax

-------------------------------- twin

C hc h0
()
qi qo
()Pmin

-------------------------------� ��

10.8 hc h0
()
qi qo
()

-------------------------------- twin

13.5 hc h0
()
qi qo
()

--------------------------------��
© 2001 by CRC Press LLC

Neural Network Mapping

Figure 2.2 shows how the event-based plant model is mapped into a neural network. For mapping an
event-based model to a neural network, the inputs and outputs of the neural network should be defined.
The input and output events sets cannot be assigned for outputs of the neural network. This is because the
neural network will generate outputs different from those of the training data owing to incomplete
training. This makes it impossible to decide which event of the input and output events set are matched
to the outputs of the neural networks. However, time windows of state transitions can be assigned for the
output of the neural network because the time windows are able to have any real values in as shown
in Eq. 2.1. Also control inputs can be assigned for the output of the neural network because the control
inputs are not exactly the same as the sampled inputs. From this observation, we can decide the inputs
and outputs of neural network. The inputs of neural network are composed of a current state value and
a target state value. With these two inputs, the neural network generates the time window for the state
transition and control inputs. Of course, all values of states must be in predefined state sets as elements.
Note that the values of the elements for the event-based model are approximately mapped into a neural
network model. Data not learned is generated by the neural network model in an approximate form.
The structure of an event-based controller with an neural network model is shown in Fig. 2.4.

Model-Plant Mismatch Caused by Incomplete Learning

A back propagation algorithm, which is a typical supervised learning algorithm, is used for learning in
our neural network model. The dynamics of an neural network model may not be exactly the same as
those of the original continuous system owing to incomplete learning. This mismatch may cause the
neural network model to generate inaccurate values. In the case of monotonically increasing or decreasing
systems, the time window offers a tolerance against inaccurate time of state changes in the plant and
uncertainty in the environmental changes. Initial state and plant parameter variations are examples of
such inaccuracies and uncertainties [19].

However, this incomplete learning causes serious problems in the case of a saturated plant. This is
because the output of a nonlinear saturated plant is very sensitive to changes of input values. Thus, the
saturated value of the controlled plant may be greatly different from that of the target state. That is,
the output of a saturated plant may not reach the target state under given inputs. This is because the

FIGURE 2.4 Event-Based Intelligent Control Environment with a neural network Model.

R0, �
	

© 2001 by CRC Press LLC

control inputs generated by the neural network model no longer make the output of the plant to be
saturated with the exact target state. This problem can happen, not only because of the model-plant
mismatch, but also because of some other factors (such as external disturbances and environment
changes). We call these three elements perturbation factors. These error factors will not result in a fatal
problem in monotonically increasing/decreasing systems because the output of the controlled plant will
eventually reach the target state.

Recently, Song and Park [17, 21] proposed a predictive control scheme based on a neural network
model for control of highly nonlinear chemical plants. The proposed scheme combines a neural network
for plant identification with a nonlinear programming algorithm for solving nonlinear control problems.
The method first generates a one-step-ahead predictive value of a controlled plant using the predictive
neural model and then calculates a control input using an optimization algorithm, SQP (Successive
Quadratic Programming) module, with a predictive value and a desired output value. The method shows
good performance when the predictive value is approximately equal to the actual value. However, the
performance may be considerably degraded when the predicted value differs greatly from the actual value.
This is because the control input depends greatly on the predictive value and there are no methods to
compensate for error between the two. Finally, the plant may have a large steady state error due to the
predictive error.

To cope with this problem, we partition the block between a current state and a target one into several
intermediate blocks. Afterwards, we apply control inputs repeatedly to the plant until set points are reached.
This provides the event-based controller with a state feedback mechanism used in conventional control.
In fact, a control system that controls a nonlinear continuous plant does not work well without a state
feedback mechanism. Thus, direct application of an event-based control system to control a nonlinear
continuous plant may cause problems, such as those that occur in saturated plants. In this scheme, time
windows are used to evaluate the saturated state of the plant, not to diagnose its state. That is, even
though the state of the plant does not reach a target state within a time window, the controller does not
generate the “LATE” error signal. Instead, it applies new inputs to the neural network model with a new
current state.

This operation is applied to the plant repeatedly until the state of the plant reaches its target state. In
spite of this operation, the plant output may be slightly erroneous, due to incomplete learning. That is,
the neural network model may always generate the same control output Yc for a specific current and
target state.

This error can be seen as a steady state error which can be tapered by the continuous learning of the
dynamics of a plant during control. To solve this problem, we adopt a state window—an interval of values
of a state—which provides a state tolerance.

The width of the state tolerance accounts for the plant dynamics and the plant environment. These
two windows—the time window and a state window—create a cross-check area that checks the state and
time constraints with a tolerance. The event-based controller issues an error message only when the plant
state is not within the cross-check area although n control operations are applied. The two dimensional
error constraints of time and states are to provide the event-based controller with a 2-D maximum error
tolerance in each direction. Consider the two situations shown in Fig. 2.5. In case 1, the output of a plant
is saturated with a value within the error constraints although only one input u1 is applied to the plant.
This situation occurs when the current state and target state of the GDP are the same or slightly different
from those of collected data. Even if the current state and target state are exactly the same as those of
collected data, the output of a plant may not be exactly the same as the target state because the pertur-
bation factors make the neural network model different from the collected data.

In case 2, the output of a plant is saturated with a value within the error constraints after receiving
three inputs. This situation occurs when the planned current and target pair are not in the collected
data, but in the transitive closure for the state transition such as A → B → C → D for A → D as shown
in Fig. 2.5. This situation is also regarded as correct. Thus, the saturation of a plant output provides
the event-based controller with the state feedback mechanism to avoid the saturation. In the two
situations, the time constraints can be used to check the time requirements. However, if the target
© 2001 by CRC Press LLC

state is not reached after n trials, then the event-based controller regards the state of plant itself or of
environment as an error. The number n should be decided carefully in considering plant characteristics
and operational constraints. This scheme may be viewed as a combined method of a time-based
diagnosis mechanism of an event-based control system [12] and a state-based control mechanism of

FIGURE 2.5 Two cases of Control (a) state space (b) a data table (c) another data table.

FIGURE 2.6 Two Control Situations of a Saturated Plant: (a) success case (b) error case.
© 2001 by CRC Press LLC

a neural network control system [18]. Figure 2.6 shows the success case and the error case of the
control operation.

Neural Network Model for Supervisory Control

Recently, supervisory control methods have been extensively researched [22, 23, 24, 25, 26]. A neural
network model, represented by the above mentioned neural network modelling strategy, can also be used
for supervisory control with small modification. In this application, the input/output flow rates of the
water tank are assigned to inputs of a neural network model. This is because the supervisory control just
allows some events in controllable events to occur for a state transition. The control scheme does not
calculate the control inputs directly. Thus, the allowable control inputs (in other words, enabled con-
trollable events) should be exactly defined and in a predefined set.

This is the reason why the control inputs of an event-based model cannot be assigned to outputs of a
neural network model. With the simple water-tank example, we illustrate the application of a neural network
model to the supervisory control. In supervisory control, the water tank model abstracted can be defined
as a 5-tuple

(2.7)

where

• Q is the state set, Q � {Empty, LOW-TANK, MID-TANK, HIGH-TANK, Over flow}

• � is the events set, � � {HIGH-IN, LOW-IN, HIGH-OUT, LOW-OUT, LOW-TANK-IND, MID-
TANK-IND, HIGH-TANK-IND}

• �: Q � � → Q is the transition functions, for examples,

– {LOW-TANK, (HIGH-IN, HIGH-OUT)} → MID-TANK
– {LOW-TANK, (LOW-IN, HIGH-OUT)} → Empty
– {HIGH-TANK, (LOW-IN, HIGH-OUT)} → MID-TANK
– {HIGH-TANK, (HIGH-IN, HIGH-OUT)} → Over flow
– {HIGH-TANK, (HIGH-IN, LOW-OUT)} → Over flow

• q0 � Q is the initial state, q0: � LOW-TANK

• Qm � Q is the maker states, QM: � MID-TANK

The events, LOW-TANK-IND, MID-TANK-IND, and HIGH-TANK-IND, are indicative events of the
three states, respectively. In this model, let the controllable events and uncontrollable events be given as:

(1.8)

where �c and �uc are controllable and uncontrollable events, respectively. Then, a supervisor can drive
from any states to the maker state because we select that any composition of flow rates of inputs and
outputs can fill or sink the water.

In timed supervisory control, the abstracted neural network model can also be used for diagnosis of
controlled systems. For example, when a supervisory controller enables two events, LOW-IN, HIGH-
OUT and disables two events, HIGH-OUT, LOW-OUT, for state transition from HIGH-TANK to MID-
TANK, the event MID-TANK-IND should occur within a time window generated from the neural network
model. In all applications of abstracted neural network model, learning capability of neural network
makes it possible for dynamic modelling of controlled system by on-line learning. This scheme is very

M Q, �, �, q0, Qm()�

� �c �uc��

 HIGH-IN, LOW-IN, HIGH-OUT, LOW-OUT{ } ��

 LOW-TANK-IND, MID-TANK-IND, HIGH-TANK-IND{ }
© 2001 by CRC Press LLC

similar to human control strategy in that human can learn more and more information about the
controlled system as the control actions proceed.

2.3 Simulation Environment

This section describes the controlled plant and the neural network learning strategy.

Continuously Stirred Tank Reactor (CSTR)

A CSTR is a chemical process that produces chemical products. The CSTR model is a part of a larger
test system introduced by Williams and Otto [27] and McFarlane et al. [28]. The CSTR system, shown
in Fig. 2.7, supports the following multiple reactions:

(2.9)

The desired product is P, while G, C, and E are byproducts subject to quality and environmental
constraints. Reactants A and B enter as pure components in separate streams with flow rates Fai and Fbi,
respectively.

The flow rate Fai and cooling water temperature T are variables in this chemical process. The input
stream Fbi is considered to be a disturbance variable. The equations describing the kinetic behavior of
the above reactions and the dynamic mass balance for the CSTR are a coupled set of nonlinear algebraic

FIGURE 2.7 CSTR Plant.

A B	 Ck1→

C B	 P Ek2
	→

P C	 Gk3→
© 2001 by CRC Press LLC

and ordinary differential equations. A description of these equations has been provided by Williams and
Otto [27]:

(2.10)

The reaction constants, initial conditions, and constant parameters are as follows:

The control objective of this system is to maximize the yield of the desired product P by regulating
the two related state variables Xc and Xg. In this example, our neural network has 4-10-10-6 morphology
as shown in Fig. 2.8.

Neural Network Learning Strategy

As shown in Eq. (2.1) of the event-based DEVS definition, the states of a continuous system are repre-
sented by the cross product of boundaries and inputs. Some initial control variable values can also be
employed as initial states. If a system is represented by n boundaries, m inputs, and k initial states, then

FIGURE 2.8 Neural Network Structure for CSTR.

dXa dt� Fai Fr rx1
 Xa
��

dXb dt� Fbi Fr rx1
 rx2 Xb

��

dXc dt� 2rx1 2rx2
 rx3
 Xc
�

dXe dt� 2rx2 Xe
�

dXg dt� 1.5rx3 Xg
�

dXp dt� rx2 0.5rx3
 Xp
�

rx1 5.9755E9 (12000 T)�
 XaXb V 60Fr()�exp�

rx2 2.5962E12 (15000 T)�
 XbXc V 60Fr()�exp�

rx3 9.6283E15 (20000 T)�
 XcXp V 60Fr()�exp�

 Fr Fai Fbi	�

 50 lb/ft3, V 60 ft3, 580�R T 680�R� �� �

Xi mass fraction�

Xa 0.075 Xe 0.208 Fai 170 lb/min� � �

Xb 0.57 Xg 0.0398 Fbi 679 lb/min� � �

Xc 0.015 Xp 0.019 T 645�R� � �
© 2001 by CRC Press LLC

n � m � k number of state spaces are necessary to represent the system completely at discrete levels.
For completeness, the states in the state space should be mapped to the neural network. For simplicity,
we took only the input variables except for the initial states as independent variables.

Figure 2.9 shows the two flow charts of state space mapping algorithm. Figure 2.9(a) is the original
state mapping scheme for monotonically increasing/decreasing systems. However, this scheme should be
modified so as to fit with saturated plants as shown in Figure 2.9(b). First, in case of monotonic systems,
control outputs should be determined using output partitioning. Then a sequence of control inputs
should be selected such that the inputs move the current state of the plant to the target one. Finally, the
control inputs are applied to the plant, and time windows measured. On the other hand, inputs within
an operating range are first selected with random distribution for saturated plants. This is because it is
difficult for the designer to find the inputs that make the output of the controlled plant saturated with
a specific desired value. Thus initially, randomly selected inputs are applied to the plant and then the
output of the plant is determined to be saturated or not.

The saturated state becomes an output state which can be used as training data. The saturation time
is used to decide time windows. After collecting data, it is mapped to a neural network. To determine
the mapping rate of the neural network model, a total sum square error (TSSE) is employed. The learning
procedure is stopped only when the predetermined error bound, �, is satisfied. As adequacy of the neural
network model is dependent on �, the value of � should be carefully selected.

Algorithm 2.1 shows a detailed description of the collecting method of the mapping data.

Algorithm 2.1 Mapping-data-Collecting()
// N: the number of learning patterns //

1 for i � 0 to N
 1 // getting of N learning patterns //
2 select uniformly distributed random inputs within the operating range

FIGURE 2.9 Flow Chart of State Space Mapping (a) original scheme (� in case of monotonic systems) (b) modified
scheme (� in case of saturated systems).
© 2001 by CRC Press LLC

3 record initial states
4 determine saturation time (Algorithm 2.2)
5 set collected data (Algorithm 2.3)
6 end for

The original mapping process from a plant to a neural network is shown in Fig. 2.2. However, this
method cannot be applied to a plant that has a saturation property because the output partitioning does
not affect the mapping process. For plants with a saturation property, inputs to the plant should be
selected first; then the plant is determined to be saturated or not. If saturated, the saturation time is
stored and used as a time window. That is, the target states are decided not from output partitioning in
the original scheme but from the saturation property of the plants. Thus, the initial state and saturation
state are taken to be the current state (CS) and target state (TS) respectively. In brief, the original method
first determines the current state and target state with the output partitioning and then determines inputs
with the input sampling. Afterwards, the length of time it takes for current state to reach it’s target state
is determined. Our method, on the other hand, first determines the inputs with the random sampling
and then checks the saturated state with time. The saturated state and saturation time are regarded as a
target state and a time window respectively.

The detailed description of the procedure for the determination of saturation time (time windows) is
shown Algorithm 2.2.

Algorithm 2.2 Saturation-time-determination()
// P: the number of plant output variables //
// plant(): a simulation plant with discrete time-based simulation //
// st(j): a saturation time of j ’th output variable //
// ct: a simulation time //
// dt: a delta time //

1 do // determination of the saturation times //
2 for k � 0 to P
 1 // saving the previous plant outputs //
3 p_output_old(k) ← p_output(k)
4 for k � 0 to P
 1 // checking saturation //
5 plant (ct, initial(P), p_input(M), p_output(P))
6 if p_output(k) � p_output_old(k) then
7 st(k) ← ct
8 end if
9 end for

10 ct ← ct + dt
11 until all p_output(P) � all p_output_old(P)

Although the neural network model represents the dynamics in a broader range, it cannot be exactly
the same as the real plant itself. This is because the learning of the neural network is not complete. Thus,
we add a Gaussian noise to the saturation time to provide a robustness against the external disturbances.
Algorithm 2.3 shows details of the data setting procedure.

Algorithm 2.3 Data-setting()
// N: the number of learning patterns //
// M: the number of plant input variables /
// P: the number of plant output variables //

1 for i � 0 to N
 1
2 for j � 0 to P
 1
3 nn_inp_pat(i, j) ← initial(j) // setting initial states //
4 nn_inp_pat(i, j 	 P) ← p_output(j) // setting target states //
5 end for
© 2001 by CRC Press LLC

6 for j � 0 to P
 1 // adding Gaussian noise //
7 time1 ← st(j) � gasdev()
8 time2 ← st(j) � gasdev()
9 min_time(j) ← min(timel, time2) // determining time windows//

10 max_time(j) ← max(timel, time2)
11 end for
12 for j � 0 to P
 1 // setting min. and max. times //
13 nn_out_dat(i, j) ← min_time(j)
14 nn_out_dat(i, j 	 P) ← max_time(j)
15 end for
16 for j � 0 to M
 1 // setting inputs //
17 nn_out_dat(i, j 	 2P) ← p_Input (j)
18 end for

The whole algorithm is outlined as follows. First, inputs within operating ranges are randomly selected
with uniform distribution and are stored for later use. Second, current plant outputs are stored as initial
states. Third, the selected inputs are applied to the plant, which is simulated with discrete time-based
simulation. Finally, the time at which the output of the plant is saturated is measured and stored. Using this
information, the state space of the plant is mapped into a neural network as an event-based model of the plant.

2.4 Simulation Results

Based on our event-based control scheme, we realized an event-based control system, HICON (High-level
Intelligent CONtroller), with a neural network model of a plant on an expert system ART-IM/windows [29].
In this experiment, the CSTR plant was simulated using Eq. (2.10) with a discrete time based simulation
method at 50 ms time intervals. The neural network plant model must complete learning the elements
of the table model before the control operation begins.

Using the neural network model, a neural network manager generated the time windows and control
outputs for the controller. New data obtained by the control operation can also be learned to dynamically
adapt to the control environment. This dynamic learning provides flexible modelling capability to the
event-based control system. Figure. 2.10 shows the overall controlled situation. The input/output states
of the controlled plant are respectively depicted in the middle/bottom boxes of “CSTR Plant” window.
In the output state, the desired set points are represented by bold lines and the controlled output by thin
lines. As previously mentioned, the steady state error due to the incomplete learning is observed. This
steady state error is generated only when the controlled plant has a saturation property. That is, when
the plant output is saturated with respect to an input, model-plant mismatch causes the steady state error.

2.5 Conclusions

This chapter discussed a neural network application method for event-based intelligent control and
supervisory control. We showed the usefulness of neural network modeling through an experiment of a
chemical plant with a saturation property. This control method can be applied to any type of systems
even hybrid systems composed of discrete event and continuous systems. In application to supervisory
control, its diagnosis capability will enhance the performance of the supervisory control. The scheme
may be viewed as a combined method of time-based diagnosis and state-based control. Experimental
results showed that this scheme could be used to control a complex nonlinear plant and could be
associated with the higher knowledge-based task management modules to construct more autonomous
control system in further works [30, 31, 16].

Acknowledgments

The authors would like to thank Dr. J. J. Song for his helpful suggestions.
© 2001 by CRC Press LLC

References

1. K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using
Neural Networks,” IEEE Trans. on Neural Networks, vol. 1, pp. 4–27, Mar. 1990.

2. Y. Ichikawa and T. Sawa, “Neural Network Application for Direct Feedback Controllers,” IEEE
Trans. on Neural Networks, vol. 3, pp. 224–231, Mar. 1992.

3. C.-C. Lee, “Intelligent Control Based on Fuzzy Logic and Neural Net Theory,” Proceedings of the
International Conference on Fuzzy Logic, pp. 759–764, July 1990.

4. C.-T. Lin and C. G. Lee, “Neural-Network-Based Fuzzy Logic Control and Decision System,” IEEE
Trans. on Computers, vol. 40, pp. 1320–1336, Dec. 1991.

5. S. ichi Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy Neural Net-
works with the Back-Propagation Algorithm,” IEEE Trans. on Neural Networks, vol. 3, pp. 801–806,
Sept. 1992.

6. F. Highland, “Embedded AI,” IEEE Expert, pp. 18–20, June 1994.
7. P. Antsaklis, “Defining Intelligent Control,” IEEE Control Systems, pp. 4–5,58–66, June 1994.
8. R. Shoureshi, “Intelligent Control Systems: Are They for Real ?,” Journal of Dynamic Systems,

Measurement, and Control, vol. 115, pp. 392–401, June 1993.
9. B. P. Zeigler, “High Autonomy Systems: Concepts and Models,” Proceedings of AI, Simulation, and

Planning in High Autonomy Systems, pp. 2–7, Mar. 1990.
10. S. Chi, Modelling and Simulation for High Autonomy Systems. PhD thesis, University of Arizona,

1991.
11. S. H. Jung, Multilevel, Hybrid Intelligent Control System: Its Framework and Realization. PhD thesis,

KAIST, Feb. 1995.
12. B. P. Zeigler, “DEVS Representation of Dynamical Systems: Event-Based Intelligent Control,” Pro-

ceedings of the IEEE, vol. 77, pp. 72–80, Jan. 1989.

FIGURE 2.10 Result of CSTR Plant Control.
© 2001 by CRC Press LLC

13. B. P. Zeigler, Object Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and
Endomorphic Systems. Academic Press, 1990.

14. B. P. Zeigler, Theory of Modelling and Simulation. John Wiley & sons, 1976.
15. B. P. Zeigler, Multi-Faceted Modelling and Discrete Event Simulation. Academic Press, 1984.
16. S. H. Jung, T. G. Kim, and K. H. Park, “HICON: A Multi-Level, Hybrid Intelligent Control System,”

IEEE Trans. on Systems, Man and Cybernetics. submitted to IEEE Trans. on Systems, Man and
Cybernetics.

17. J. J. Song and S. Park, “Neural Model Predictive Control For Nonlinear Chemical Processes,” Journal
of Chemical Engineering of Japan, vol. 26, no. 4, pp. 347–354, 1993.

18. A. Benveniste and P. L. Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Language,”
IEEE Trans. on Automatic Control, vol. 35, pp. 535–546, May 1990.

19. C.-J. Luh and B. P. Zeigler, “Abstracting Event-Based Control Models for High Autonomy Systems,”
IEEE Trans. on Systems, Man and Cybernetics, vol. 23, pp. 42–54, JANUARY/FEBRUARY 1993.

20. C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic Recurrent Neural Networks: Theory and
Applications,” IEEE Trans. on Neural Networks, vol. 5, pp. 153–155, Mar. 1994.

21. J. J. Song, Intelligent Control of Chemical Processes Using Neural Networks and Fuzzy Systems. Ph.D.
thesis, KAIST, 1993.

22. P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,”
SIAM J. Control and Optimization, vol. 25, pp. 206–23O, Jan. 1987.

23. P. J. G. Ramadge, “Some tractable supervisory control problems for discrete-event systems modeled
by buchi automata,” IEEE Trans. on Automatic Control, vol. 34, pp. 10–19, Jan. 1989.

24. R. Kumar, V. Garg, and S. I. Marcus, “Predicates and prediate transformers for supervisory control
of discrete event dynamical systems,” IEEE Trans. on Automatic Control, vol. 38, pp. 232–247,
Feb. 1993.

25. T. Ushio, “A necessary and sufficient condition for the existence of finite state supervisors in
discrete-event systems,” IEEE Trans. on Automatic Control, vol. 38, pp. 135–138, Jan. 1993.

26. J. S. Ostroff and W. M. Wonham, “A framework for real-time discrete event control,” IEEE Trans.
on Automatic Control, vol. 35, pp. 386–397, Apr. 1990.

27. W. T. I. and R. Otto, “A Generalized Chemical Processing Model for the Investigation of Computer
Control,” Trans. Am. Inst. Elect. Engr., vol. 79, pp. 458–465, 1960.

28. C. McFarlane and D. Bacon, “Adaptive Optimizing Control of Multivariable Constrained Chemical
Processes. 1. Theoretical Development, 2. Application Studies,” Ind. Eng. Chem. Res., vol. 28,
pp. 1828–1835, 1989.

29. “ART-IM/Windows Programming Language Reference.” Inference Corporation, 1991.
30. T. G. Kim and B. P. Zeigler, “AIDECS: An AI-Based, Distributed Environmental Control System

for Self-Sustaining Habits,” Artificial Intelligence in Engineering, vol. 5, no. 1, pp. 33–42, 1990.
31. T. G. Kim, “Hierarchical Scheduling in an Intelligent Environmental Control System,” Journal of

Intelligent and Robotic Systems, vol. 3, pp. 183–193, 1990.
© 2001 by CRC Press LLC

3
A Rule-Based Expert

System for Designing
Flexible Manufacturing

Systems

3.1 Introduction
3.2 Flexible Manufacturing Systems
3.3 A Hybrid Expert Simulation System

The Input Expert Systems (IES) • The Simulator • The
Output Expert Systems (OES)

3.4 An Example on FMS design with HESS

Designing advanced manufacturing systems like flexible manufacturing systems (FMSs) involves the
solution of a complex series of interrelated problems. In this paper, we present an expert system to aid
this design process for FMSs. The proposed system combines a rule-based expert system with computer
simulation in order to capture dynamics of FMSs, evaluate design alternatives of FMSs, and seek effective
ones with user friendly interface.

3.1 Introduction

Advanced manufacturing systems like flexible manufacturing systems (FMSs) are capital-intensive. Design-
ing functional, yet cost-effective FMSs is a challenging task because it involves the solution of a complex
series of interrelated problems. The importance of early design activities is emphasized for highly automated
manufacturing systems. About 80% of the total budget is committed at the design stage (Vollbracht 1986)
and 55% of the engineering cost is spent by the project authorization point (Harter and Mueller 1988).

A typical flexible manufacturing system (FMS) consists of groups of versatile numerically-controlled (NC)
machines that are linked by a material handling system (MHS). Machines within each group are tooled
identically and are capable of performing a certain set of operations. Operations and material movements are
all under a central computer control. Since FMSs were introduced in the early 1960s, broader applications of
FMSs have been developed in the areas of injection molding, metal forming and fabricating, and assembly.
In 1989, roughly 1200 FMSs existed worldwide. According to forecasts, between 2500-3000 FMSs will be
operating in the year 2000 (Tempelmeier and Kuhn 1993). FMSs, however, are highly capital-intensive and
FMS designers are interested in seeking minimal-cost or minimal resource-usage design alternatives that satisfy
performance and technical requirements such as throughput capacity and flexibility capacity.

Given selection of part types to be produced, we study a design problem of FMSs that consist of multiple
types of NC machines. This problem seeks minimal cost design subject to meeting throughput requirements.

Heungsoon Felix Lee
Southern Illinois University
© 2001 by CRC Press LLC

The decisions to be made include the number of machine groups, the number of machines at each group, the
number of pallets, the number of transporters, and batch transfer size. When parts are small, a batch of parts
can be mounted on a pallet and transferred together between machine groups in order to reduce material
handling operations. At the early design stage of complex manufacturing systems like FMSs, different design
issues are highly related and should not be treated independently (Heavey and Browne 1996). Highly significant
interactions between the design factors may invalidate simple one-factor-at-a-time procedures for finding a
minimum-cost system design. In FMSs, machines are flexible and versatile and there is a large latitude in
allocating workload among machine groups. Clearly, there are strong interactions between the workload
allocation and the optimal system configuration and between the batch size and the MHS capacity.

Research works on FMS design problems can be divided into three groups based upon the modeling
techniques employed. These are queueing networks, integer programming, and simulation. Many
researchers have used closed queueing network (CQN) models to solve design problems for flexible
manufacturing systems (FMSs). Machines, at each machine group, are modeled as a multiserver station
and pallets carrying work-in-process inventories modeled as the fixed job population circulating in CQN.
A Markovian closed queueing network model is used by Vinod and Solberg (1985), Shanthikumar and
Yao (1988), Dallery and Stecke (1990), Kouvelis and Lee (1995), and Tetzlaff (1995). All of these works
deal with specific decisions, assuming that many other design decisions are already known. Also, they
make several assumptions for ease of analysis such as exponential service times and large buffer spaces,
which are often unrealistic.

Researchers have also used integer programming (Whitney and Suri 1985, Graves and Redfield 1988,
Afentakis 1989). These integer programming models do not take into account the aspects of material
handling issues and product flows, of resource contention and machine idle time, and of random events
occurring on the assembly floor such as machine breakdowns or machine tool jams.

Simulation has been used by several researchers (Thompson et al. 1989, Nandkeolyar and Christy
1992, Winters and Burstein 1992). Simulation is the process of designing a model of a real system and
conducting experiments with this model for the purpose of understanding the behavior of the system
and/or evaluating various strategies for the operation of the system (Zeigler 1984). Simulation is flexible
to represent an FMS at any level of detail realistically. However, it can be also costly and time consuming
to develop, validate and run simulations for many design alternatives before one good alternative is
chosen. Furthermore, one cannot tell how good the chosen alternative is because simulation does not
usually provide an optimal solution or benchmark with which the chosen alternative can be compared.
Simulation design processing is a numerical technique without the functions of reasoning and symbolic
processing. A relatively high level of training is necessary to perform useful simulation studies. Managers,
as unskilled users, may have difficulty building a simulation model, validating the simulation, and
interpreting the results of simulations.

An expert system is a computer system that can solve problems using expertise and knowledge of the
system environment in ways that mimic a human expert in a specialized problem area (Kusiak and Chen
1987, Rao and Lingaraj 1988). Thus, expert system technology can speed problem solving and address
problems in complex and difficult problem domains (Tolar and Platt 1992). Expert systems were first
applied in production and operations management. Today, expert systems and easy-to-use expert system
shells are used in many business fields.

The relationship between expert systems and simulation is that expert knowledge often reflects time-
dependent phenomena, even though that knowledge is usually in a rough form such as natural language
or rules. By bridging gaps between qualitative and quantitative approaches, expert systems and simu-
lation can greatly benefit each other (Fishwick 1991). This combined system is called a knowledge-
based simulation system or a hybrid expert simulation system (HESS) in the literature. Its theoretical
background is presented by Elzas etc. (1989) and Fishwick and Modjeski (1991) and examples of successful
applications are presented by Stirling and Sevinc (1991), Eisenberg (1991), and Lee et al. (1996). In this
paper, we present a new HESS application to FMS design.

The proposed HESS has advantages over other systems using queuing networks, integer programming,
or simulation. Since the HESS uses simulation as a component, it obviates restrictions and assumptions
© 2001 by CRC Press LLC

required by queueing networks and integer programming. The proposed HESS has a nice user interface
and obviates drawbacks of simulation as follows.

1. With user input for FMS design parameters, it automatically generates correct simulation programs
so that users do not need to write simulation programs and verify them.

2. It interprets the simulation results and provides expert suggestions for improvement for FMS design.
3. It allows reiterations with changes of some FMS design parameters until a particular desired design

or a small number of potential design alternatives are found. All these activities are seamless and
users are not required to have knowledge on simulation or expert systems.

The HESS can be further improved by combining queuing network or integer programming
approaches (Lee and Stecke 1996). The latter approaches can provide more effective initial FMS design
to the HESS than the user input which usually relies on guess. This will help to reduce the number of
iterations the HESS needs to undergo.

The remainder of this paper is organized as follows. In Section 3.2, we give a brief description of a
typical FMS, in Section 3.3, we present the structure and user interface of the proposed HESS, and in
Section 3.4, we illustrate the proposed HESS with an example.

3.2 Flexible Manufacturing Systems

An example of an FMS appears in Fig 3.1. This FMS produces different sizes of housings for automatic
transmissions. It consists of four large 5-axis machining centers (called Omnimills), three 4-axis machining
centers (Omnidrills), two vertical turret lathes (VTLs) and an inspection machine. Each machine has a
limited-capacity tool magazine that hold tools assigned to it. The 16-station load/unload (L/UL) area
provides a queuing area for parts entering the system, finished parts leaving the system, and in-process
inventories. Three manual workers work in the L/UL area for loading/unloading and fixturing parts. Two
transporters run on a straight track and carry 15 pallets among the machines and the L/UL stations.

Another example of an FMS appears in Fig. 3.2. This FMS has several CNCs and a centralized tool
supply system where the tools of the cassettes are preadjusted and prepared for operation at a tool setup
area. Afterwards they are either stored at a central tool magazine or transported to a local tool magazine
at a machine. Two L/UL stations are located on the left hand side and represent the interface between
the FMS and its production environment. Central buffer areas are placed along the transportation track.
These buffer areas are temporary waiting spaces for parts that are waiting to be processed by the next
machine after the current processing on another machine. These spaces are limited due to a limited
floor space or storage facility. With use of the waiting spaces that can temporarily hold parts, a machine
can continue operating while the following machines are busy or stopped and under repair.

Parts are loaded on pallets and enter an FMS at the L/UL station and then are routed through different
processing resources (stations or machine groups) for various operations. Transport resources (automated
guided vehicles (AGVs) or transporters) may be required to route parts from one station (machine group) to
another with some attendant travel time. If conveyors move parts between machine groups, there is no or very

FIGURE 3.1 Sundstrand/Caterpillar FMS.
© 2001 by CRC Press LLC

little waiting time for transport resources, and only a travel time between processing resources. A processing
resource may go through an up and down cycle. For example, a machine breaks down and needs to be repaired.

The number of pallets circulating in the system remains more or less constant during a production
period. This is the case when a base part fixed on a pallet enters a system at a loading station and travels
through various machine groups for different operations. Upon completion, it travels to an unloading
station where a finished part is taken off the pallet and is shipped and another base part is fixed on the
pallet and the process repeats. This policy is common in both advanced and traditional manufacturing
systems (Lee 1997, Spearman et al. 1990). The number of pallets circulating in the system affects the
production rate and is an important decision variable.

Since FMSs simultaneously produce different products, an operating policy has to be specified concerning
a process rule and an input rule. A process rule determines which part type is to be processed next on a
machine while an input rule determines which part type is to be released into the system at the L/UL station.
We use FCFS for the process rule. The input rule we use to choose a part type, such that ratios among
completed plus work-in-process parts, are maintained throughout the entire production as close to ratios
among their production requirements as possible. These rules help to achieve balancing workloads in machines
since different part types require different processing times and at the same time to meet all production
requirements. These rules are simple and easy to control yet effective in FMS operation (Lee and Stecke 1996).

3.3 A Hybrid Expert Simulation System

O’Keefe (1986) recognized the important roles of expert systems and simulation in support of decision
making and the relative strengths of these two tools and proposed a taxonomy for combining simulation
and expert systems into a HESS. The concept of HESS is to integrate existing simulation and expert system
tools and exploit the knowledge of the expert system programmer as well as that of the simulation modeling
expert (Shannon and Adelsberger 1985). One of the classes in O’Keefe’s taxonomy is the use of an expert
system as an intelligent user interface or front end to a simulation tool. When the skilled designer builds
a hybrid expert simulation system of this sort, the relatively unskilled user is spared the problems of building,

FIGURE 3.2 FMS with two AGVs and a central tool magazine. (From Tempelmeier, H. and Kuhn, H., Flexible Manu-
facturing Systems: Decision Support for Design and Operation, 1993, copyright ©John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.)
© 2001 by CRC Press LLC

validating, and interpreting the results of a simulation model and the time and effort necessary to get
simulation results is considerably reduced. The structure of such a HESS consists of three sub-systems (Input
expert system, Simulator, and Output expert system) and is illustrated in Fig. 3.3 (Lavary and Lin 1988).

We developed and implemented a HESS on a PC. The proposed HESS uses Siman V (Pegden et al.
1995) for the simulation tool and VP-Expert (Moose et al. 1989) for the expert system shell. Neither of
these tools has provision for interfacing with the other, so we constructed interfaces in Turbo Pascal.
Figure 3.4 shows the detail structure of the HESS.

The Input Expert Systems (IES)

The input expert system verifies the compatibility of the components of the input vector through reference
to its knowledge base which contains realistic ranges of variables in the input vector. It eliminates
unnecessary runs of the simulator by excluding erroneous input vectors and enhances the functionality
of the input system with a user friendly interface.

The Input Expert System (IES) is composed of a VP-Expert program and IO.EXE program in Turbo
Pascal. These programs provide an easy-to-use interface for entry of basic system variables by users,
conveniently capturing the sequence of data necessary for the simulation. The input variables are sum-
marized in Fig. 3.5. With the user input, the IES generates file.DAT, a user generated file name, which
is the data file to be used by the Simulator for automatic simulation code generation. In addition to the
input variables, the user can control the simulation by entering simulation variables such as a run length
and a warm-up period to avoid the effect of transient behavior.

The Simulator

The Simulator captures the simulation model of FMSs. It is based on a discrete-state process-interaction
modeling approach in which the system state changes at events on discrete-points in time and events are
updated as entities (parts) arrive and flow through the system. The core of the simulator is the Automatic
Siman Code Generator (ASCG). ASCG automatically generates a complete Siman program based on the
system and simulation input data the user enters via IES. Since a Siman simulation program consists of a
model frame and an experiment frame, the generated Siman Code leads to two files “File.MOD” and “File.EXP”.

FIGURE 3.3 The conceptual structure of the proposed HESS.

End
Suggestion

to alter variables
or finish

Input Expert Systems

Input Vector: User-Interface

Automatic
Simulation
Code
Generator

Simulation

Output Expert System

Recommendation/
Suggestion

Simulator
© 2001 by CRC Press LLC

The model frame describes the logical flow of entities within the system while the experimental frame provides
the experimental conditions for executing the model frame. ASCG is written in Turbo Pascal. ASCG has been
designed to be flexible and consider a wide range of variables, as the user is given choices and suggested changes
on input variables that would lead to more effective FMS design. After the simulation program is generated,
the HESS compiles and runs the simulation by use of Siman V.

The Output Expert Systems (OES)

The output expert system interprets and analyzes the simulation results and makes recommendations to
the user on changes in the input vector in order to find a more effective FMS design. Thus, the user is
shielded from the actual simulation output and is relieved of the task of its interpretation. The Output
Expert System (OES) is composed of a VP-Expert and a Readout.EXE program. Readout.EXE reads
file.OUT, which is the output of the simulator, makes numeric calculations, and returns the information
to VP-Expert. The VP Expert program applies expert rules to make recommendations for an improved
FMS design. Users then decide whether to accept the recommendations or not. As in the case of the
Input Expert System, the Output Expert System is designed with a user-friendly interface.

The rules are based on the empirical experience and heuristic knowledge of experts that allow identification
and elimination of bottlenecked and underutilized resources while, at the same time, meeting the system

FIGURE 3.4 The detail structure of the proposed HESS.

Suggestion/
Recommendation
to alter variables

or finish

DOS Executable file
VP-Expert file
Siman function File
Procedure/data flow
File creation/data input

Settings.DAT

File.DAT

File.MOD File.EXP

Work Files

Work File

File.OUT

Alter Vectors

Resource
Planning

EndPrint File

File.RPT
(Output Master File)

A. Input Expert system

Input Vector
VP-Expert

Input Variables
Detail: .EXE file

Automatic Siman
Code Generator:
.EXE file

Siman V

Siman V

Siman V

Compiling

Linking

Simulating

C. Output Expert
System

C. Output Expert
System

Siman Output
Readout: .EXE file

VP-Expert

VP-Expert

Interpreting

Recommendation

Input Vector
Modifier: .EXE file

Suggestion/
Recommendation
to alter variables

or finish

B. Simulator
© 2001 by CRC Press LLC

objective or design requirements. The rules use threshold values for machine and transporter utilizations to
determine if each resource type is over-utilized or under-utilized. Both threshold values are tentatively set at
75%. In practice, the threshold values would depend on various factors used in the industries and be supplied
by users who find these values through their knowledge of and experimentation with their systems.

The user can control the input variables to meet all product requirements at minimal use of resources. The
rules in Fig. 3.6 show the decision tree for recommendations for an improved FMS design. The recommen-
dations are suggested changes on one or more variables of the followings: the number of machines, the number
of transporters, the number of pallets, and the batch size. When parts are small, a batch of parts can be
mounted on a pallet using a special fixture. For example, a tombstone fixture allows up to four parts to be
loaded on a pallet (Luggen 1991). A batch of parts are processed consecutively at a machine and then moved
together to the next machine by a transporter. Batch sizing can be effective in increasing throughput when
material handling resource causes a bottleneck. However, an unnecessarily large batch size increases the work-
in-process inventories and system congestion without increasing throughput.

The OES also generates File.RPT which contains summary results of every simulation run as the user
explores various FMS designs, following recommendations provided by the OSE. Results are written in
the file, including a vector of input data, simulation summary result, and recommendations (Levary and
Lin 1988). Currently the results are used to avoid redundant simulation runs, but in a more elaborated
HESS, the knowledge base of past runs could be used for more sophisticated rules.

3.4 An Example on FMS design with HESS

An FMS produces three different products, each of which has a different route among four machine
groups. These three types take 25%, 30%, and 45% of total parts produced. Travel time between machine
groups is always 3 minutes. Each operation time is exponentially distributed. Each machine group fails
every 4 hours on average and the average repair time is 15 minutes. Both follow exponential distributions.
Thirty pallets are available and 2 transporters are used to move parts fixtured on pallets between machine
groups. The batch size is fixed to one in this example. Machine type and the number of machines for
each group are summarized in Table 3.1.

FIGURE 3.5 Objective and input variables of FMS design.
© 2001 by CRC Press LLC

As each part moves through the FMS, it is processed at each machine group according to its visitation
sequence. (See Table 3.2). At each group, a part waits in the queue, seizes the first available machine,
is delayed by the processing time, is released by the machine, and then continues to its next group. On
completion, a finished part leaves the system and at this time another base part enters the system.

The FMS is designed to meet weekly demands of three products, (125, 225, 150) with minimal use of
resources. It operates in 5 days per week, 2 shifts per day, and 8 hours per shift. The simulation length is
set to 5800 minutes, which is the warm-up period of 1000 minutes followed by one week, (i.e., 4800 minutes

TABLE 3.1 Number of Machines in Each
Machine Group

Machine
Group Machine Type

Number of
machines

1 CNC-mill 7
2 VTL 3
3 Drill Presses 6
4 Shapers 4

FIGURE 3.6 Expert system decision tree for FMS design.
© 2001 by CRC Press LLC

[5 days/week � 2 shifts/day � 8 hours/shift � 60 minutes/hour]). The FMS designer initiates the proposed
HESS with the number of machines 7, 3, 6, 4, for the four machine groups. In the first run, the following
report is produced:

Summary Report 1

Project title: FMS design
Number of machines in each machine group: 7 3 6 4
Average machine utilization: 72.3%
Number of pallets: 30
Number of transporters: 2
Transportation utilization: 65.1%
Batch size: 1
Average time in system: 278.180
B/N machine group: #4 Queue Size = 7.787
Least B/N machine group: #1 Queue Size = 0.214
Total number of parts produced: 518
Type 1: 131, Type 2: 232, Type 3: 155

All demands are met and the least bottlenecked machine group is group 1. After the first run, the HESS
gives two recommendations–R1: Decrease the number of transporters and R2: Decrease the machine
number of machine group. The manager selects the second recommendation and decreases the number
of CNC1s from 7 to 6. The simulation is run again. Table 3.3 lists a summary of 9 simulation runs and
recommendations/actions taken for the 9 successive runs.

The recommended FMS design is 5 CNC-mills, 3 VTLs, 6 drill presses, 4 shapers with 2 transporters
and 21 pallets, since this plan requires the minimal level of resources among those that meet demands
(see Run number 7 in Table 3.3). The summary report for this FMS design is provided below. The
entire session with the proposed HESS for this case study took less than 30 minutes on a PC.

Summary Report 7

Project title: FMS design
Number of machines in each machine group: 5 3 6 4
Average machine utilization: 78%
Number of pallets: 21
Number of transporters: 2
Transportation utilization: 69%
Batch size: 1

TABLE 3.2 Processing Times for Three Product Types

Jobs
Operation
Type

Percent
of Jobs

Sequence
Number

Machine Type
(group number)

Average
Processing

Time

1 25 1 CNC-mill (1) 35
2 Drill Presses (3) 45
3 Shapers (4) 18

2 45 1 CNC-mill (1) 35
2 VTL (2) 25
3 Shaper (4) 45
4 Drill Press (3) 30

3 30 1 CNC-mill (1) 30
2 Shaper (4) 20
3 VTL (2) 15
4 Drill Press (3) 45
© 2001 by CRC Press LLC

Average time in system: 198.6
B/N machine group: #4 Queue Size = 2.655
Least B/N machine group: #1 Queue Size = .507
Total number of parts produced: 511
Type 1: 129, Type 2: 229, Type 3: 153

Acknowledgment

Dr. Lee’s research is supported in part by grants from the National Science Foundation (Grant No.
DDM-9201954) and from Southern Illinois University at Edwardsville.

References

Afentakis, P. (1989). A loop layout design problem for flexible manufacturing systems. International
Journal of Flexible Manufacturing Systems, 1, p. 175.

Dallery, Y. and Stecke, K. E. (1990). On the optimal allocation of servers and workloads in closed
queuing networks. Operations Research, 38, p. 694.

Eisenberg, M. (1991). The Kineticist’s workbench: qualitative/quantitative simulation of chemical reac-
tion mechanisms. Expert Systems with Applications, 3(3), p. 367.

Elzas, M. S., Oren, T. I. and Zeigler, B. P. (1989). Modeling and simulation methodology: Knowledge
systems’ paradigms. Amsterdam: North Holland.

Fishwick, P. A. (1991). Knowledge-based simulation. Expert Systems with Applications, 3(3), p. 301.
Fishwick, P. A. and Modjeski, R. B. (1991). Knowledge based simulation: Methodology and application.

New York: Springer Verlag.
Graves, S. C. and Redfield, C. H. (1988). Equipment selection and task assignment for multiproduct

assembly system design. International Journal of Flexible Manufacturing Systems, 1, p. 31.
Haddock, J. (1987). An expert system framework based on a simulation generator. Simulation, 48, p. 46.
Harter, J. A. and Mueller, C. J. (1988). FMS at Remington. Manufacturing Engineering, 100, p. 91.
Heavey, C. and Browne, J. (1996). A model management systems approach to manufacturing systems

design. International Journal of Flexible Manufacturing Systems, 8, p. 103.
Kouvelis, P. and Lee, H. L. (1995). An improved algorithm for optimizing a closed queuing network

model of a flexible manufacturing system. IIE Transactions, 27, p. 1.

TABLE 3.3 Summary of Simulation Runs and Actions Taken for the Successive Runs&

Run
Number

Resource Plan:
(m/c groups),
(transporters,

pallets)
Demand

Met
Average m/c
Utilization*

Transporter
Utilization

Recommendation/
Action Taken

1 (7,3,6,4), (2,30) met 72% (under) 65% (under) decrease m/c group 1 by 1
2 (6,3,6,4), (2,30) met 78% (over) 71% (under) decrease transporters by 1
3 (6,3,6,4), (1,30) not met 74% (under) 97% (over) increase transporters by 1

and decrease pallets by 3
4 (6,3,6,4), (2,27) met 79% (over) 73% (under) decrease pallets by 3
5 (6,3,6,4), (2,24) met 76% (over) 70% (under) decrease pallets by 3
6 (6,3,6,4), (2,21) met 73% (under) 69% (under) decrease m/c group 1 by 1
7 (5,3,6,4), (2,21)# met 78% (over) 69% (under) decrease pallets by 3
8 (5,3,6,4), (2,18) not met 71% (under) 66% (under) increase pallets by 2
9 (5,3,6,4), (2,20) not met 76% (over) 69% (under) terminate HESS

& Batch size in this example is fixed to one.
* Average m/c utilization is an aggregate average of machine utilizations over all machine groups. 75% is

used as the threshold value to determine if machines or transporters are over-utilized or under-utilized.
This resource plan is recommended since it requires the minimal level of resources among ones that

meet demands.
© 2001 by CRC Press LLC

Kusiak, A. and Chen, M. (1987). Expert systems for planning and scheduling manufacturing systems.
European Journal of Operational Research, 56, p. 113.

Lee, H. F. (1997). Production planning for flexible manufacturing systems with multiple machine types:
a practical method. To appear in International Journal of Production Research.

Lee, H. F., Cho., H. J. and Klepper, R. W. (1996). A HESS for resource planning in service and
manufacturing industries, Expert Systems with Applications, 10, p. 147.

Lee, H. F. and Stecke, K. E. (1996). An integrated design support system for flexible assembly systems.
Journal of Manufacturing Systems, 15, p. 13.

Levary, R. R. and Lin, C. Y. (1988). Hybrid expert simulation system (HESS). Expert Systems, 5, p. 120.
Li, Z., Tang, H. and Tu, H. (1992). An expert simulation system for the master production schedule.

Computers in Industry, 19, p. 127.
Moose, A., Schussler, T., and Shafer, D. (1989). VP-Expert. Paperback Software International.
Moser, J. G. (1986). Integration of artificial intelligence and simulation in a comprehensive decision-

support system. Simulation, 47, p. 223.
Nandkeolyar, U. and Christy, D. (1992). Evaluating the design of flexible manufacturing systems.

International Journal of Flexible Manufacturing Systems, 4, p. 267.
O’Keefe, R. (1986). Simulation and expert systems — a taxonomy and some examples. Simulation, 47,

p. 10.
Palaiswami, S. and Jenicke, L. (1992). A knowledge-based simulation system for manufacturing sched-

uling. International Journal of Operations and Production Management, 12, p. 4.
Pegden, C. D., Shannon, R. E., and Sadowski, R. P. (1995). Introduction to simulation using Siman. McGraw

Hill, New Jersey.
Rao, H. R. and Lingaraj, B. P. (1988). Expert systems in production and operations management:

classification and prospects. Interfaces, 18, p. 80.
Shannon, R. E. and Adelsberger, H. H. (1985). Expert systems and simulation. Simulation, 46, p. 275.
Shanthikumar, J. G. and Yao, D. D. (1988). On server allocation in multiple center manufacturing

systems. Operations Research, 36, p. 333.
Spearman, M. L., Woodruff, D. L., and Hopp, W. J. (1990). CONWIP: a pull alternative to Kanban.

International Journal of Production Research, 28, p. 879.
Stirling, D. and Sevinc, S. (1991). Combined simulation and knowledge-based control of a stainless

steel rolling mill. Expert Systems with Applications, 3(3), p. 353.
Tempelmeier, H. and Kuhn, H. (1993). Flexible Manufacturing Systems: Decision Support for Design and

Operation. John Wiley and Sons, Inc., New York, NY.
Tetzlaff, U. (1995). A model for the minimum cost configuration problem in flexible manufacturing

systems. International Journal of Flexible Manufacturing Systems, 7, p. 127.
Thompson, G., Lafond, N., and Kekre, S. (1989). Managing operational costs in flexible assembly with

asynchronous flows. Proceedings of the 3rd ORSA/TIMS Conference on Flexible Manufacturing
Systems, Cambridge, MA, K. Stecke and R. Suri (Eds.), Elsevier Science Publishers B. V., Amsterdam,
p. 199.

Tolar, K. and Platt, R. G. (1992). MAG-EX: a magnetic fabrication expert system. Computers and
Industrial Engineering, 16, p. 165.

Vinod, B. and Solberg, J. J. (1985). The optimal design of flexible manufacturing systems. International
Journal of Production Research, 23, p. 1141.

Vollbracht, G. R. (1986). The time for CAEDM is now. Proceedings of the Fourth National Conference
on University Programs in Computer-Aided Engineering, Design and Manufacturing, Purdue Uni-
versity, W. Lafayette, IN, p. 86.

Whitney, C. K. and Suri, R. (1985). Algorithms for part and machine selection in flexible manufacturing
systems. Annals of Operations Research, 3, p. 239.

Winters, I. J. and Burstein, M. C. (1992). A concurrent development tool for flexible assembly systems.
International Journal of Flexible Manufacturing Systems, 4, p. 293.

Zeigler, B. P. (1984). Theory of modeling and simulation. Krieger.
© 2001 by CRC Press LLC

4
Tool Condition

Monitoring in
Manufacturing Systems
Using Neural Networks

4.1 Introduction
4.2 Machining Tool Conditions

Tool Wear Mechanism • Forms of Tool Wear • Flank
Wear • Crater Wear • Groove Wear

4.3 Sensors and Signal Processing
Dynamic Force • Acoustic Emission (AE) • Wavelet Packet
Analysis of AE and Force Signals • Vibration
(Acceleration) • Coherence Function of
Cross Vibration Signals

4.4 Feature Extraction
4.5 Neural Network Architectures

Multi-layer Perceptron (MLP) • Kohonen Networks • ART2
Networks

4.6 Tool Condition Identification Using
Neural Networks
MLP for Force Sensor with Simple
Pre-Processing[32] • Feature requirements • An Integrated
Fault Diagnosis Scheme • Experiment • Discussion of
Results • Single-ART2 Neural Network with Acousting
Emission Sensing • Transient Tool Condition
Identification • Tool Wear Monitoring • Single-ART2 Neural
Network with Acoustic Emission and Force Sensing • Multi-
ART2 Neural Network with Force and Vibration
Sensing • Feature Information

4.7 Conclusions
References

4.1 Introduction

Tool condition monitoring is crucial to the efficient operation of any machining processes where the
cutting tool is in constant or intermittent contact with the workpiece material and is subject to continuous
wear. It presently acquires greater importance than ever as manufacturing systems are increasingly

G.S. Hong
National University of Singapore

M. Rahman
National University of Singapore

Y.S. Wong
National University of Singapore
© 2001 by CRC Press LLC

required to provide greater automation and flexibility while maintaining a high level of productivity [10].
The more recent computer numerical controllers can be programmed to monitor the time spent by a
cutting tool in machining and automatically changes the tool when the total machining time spent by
the tool reaches its tool life. This tool life is determined experimentally by conducting a controlled set
of machining tests. The useful life of the tools tends to be conservatively taken and may be wasted,
resulting in frequent tool changes and longer machine downtime, thereby decreasing the system produc-
tivity. On the other hand, there may be tools that fail prematurely compared with the average tool. Tools
can also fail earlier when used in conditions not similar to those employed in the experimental determi-
nation of the tool life. A premature tool failure can result in damage to the workpiece and disrupt the
automated machining operation. Hence, a suitably developed tool wear monitoring technique is needed
to utilize the tool more efficiently while preventing premature tool failure. Several tool wear monitoring
techniques have been developed and reported [7, 26, 6, 39, 8, 35, 43, 42, 44]. A few commercial monitoring
systems have also been developed for use with CNC machines [31]. The monitoring approaches are
typically based on acoustic emission, motor current, vibration, and force sensing, or their combination,
and are primarily developed for application in roughing operations. Further research aims to improve
the reliability of the monitoring system to minimize false alarms and allow the system to be used over a
wider range of machining conditions. More recent attempts adopt sensor fusion techniques [33, 42] so
as to rely on more than one type of sensor inputs for more robust deduction of the state of the cutting
tool. A general scheme of such an approach is shown in Fig. 4.1. It consists of two stages: a sensing and
preprocessing stage and a sensor fusion stage. In the sensing and preprocessing stage, the signal from a
sensor is conditioned and processed to derive information pertinent to the machining process. This
preprocessing is commonly referred to as feature extraction. Important features obtained from a sensor
signal or a set of sensor signals are then integrated or “fused” together using an appropriate sensor fusion
technique to determine the tool condition. The objective is to associate the different extracted feature
pattern with a corresponding wear condition. One of the techniques used is to utilize the associative
capability of neural network to arrive at a more reliable conclusion on the tool condition.

This chapter discusses some neural network applications to tool condition monitoring for turning
process. Different types of tool conditions are first introduced in Section 4.2. Section 4.3 then presents
various common sensor used for tool condition monitoring and sensing parameters that are sensitive to
tool wear conditions. However, the information embedded in the sensors is convoluted such that the
association of the tool condition with the measured sensor signal is not apparent. Some preprocessing
techniques to extract the information from the relevant sensor signals are described. Thus, Section 4.4
discusses the importance of feature extraction process to enhance the sensitivity and robustness of tool
condition predictions. Due to the variance in the cutting condition and the chaotic nature of the cutting
process, a single feature is normally not sufficient for reliable tool condition prediction. However, an
increased number of feature components inherently imply more complex heuristic rules to be employed
to associate each feature pattern with a corresponding tool condition. A popular approach to such a
problem is to utilize the learning capability of neural network [16, 8, 32, 33] to combine these feature
components to produce some indices. Such reduced indices are usually more manageable such that simple
heuristic law can be applied to associate these indices with a corresponding tool conditions. Section 4.5
introduces some common neural network architectures used in tool condition monitoring processes. In
Section 4.6, various case studies are discussed to illustrate the application of these neural network
examples to tool condition monitoring.

FIGURE 4.1 A general tool condition monitoring scheme.
© 2001 by CRC Press LLC

4.2 Machining Tool Conditions

Machining can be performed efficiently if the tool geometries are very precise. Unfortunately, as the
cutting process continues, wear changes the shape of the cutting edge and ultimately the tool life gets
terminated when such changes are detected. In the following section, the wear mechanisms and the forms
of tool wear are discussed.

Tool Wear Mechanism

The main mechanisms by which the cutting tools wear are attrition wear, abrasion wear, diffusion wear,
edge chipping, and plastic deformation of cutting edge [25].

• Attrition wear: attrition wear is caused by the plucking out of microscopic fragments from the
tool surface. In this wear mechanism, the work material seized to the tool is subsequently carried
away by the moving chip and this imposes local tensile stresses on the cutting edge and many tiny
particles may be torn out from the tool [41].

• Abrasive wear: abrasive wear is caused by the penetration and ploughing out of the hard particles
from a softer surface. The inclusions in materials, such as carbides, oxides, and nitrides, that are
harder than the tool material cause abrasive wear of the tool [36]. Since the built up edge (BUE)
possesses high hardness, their fragmented torn out parts may also contribute to the abrasive wear
of tools.

• Diffusion wear: diffusion wear takes place when the soluble atoms of the tool material diffuse into
the work material across tool-work interface and are swept away with the chip [36]. This may also be
caused by the diffusion of the work material into the tool and thus weakening the structure. Machining
temperature, solubility, and cutting speed are the main controlling factors for diffusion rate.

• Edge chipping: at the start of a cut, when cutting with an uneven depth of cut or during interrupted
cutting, sudden loads may be imposed on the cutting edge. Under such conditions, brittle carbide
and ceramic tools may crack or fracture [40]. Cracks may also be formed due to thermal and mechan-
ical fatigue arising from interrupted cutting [37]. If these cracks propagate it may cause small fragments
of the tool to break away.

• Plastic deformation of cutting edge: during machining, the cutting edge of a tool is subjected to
very high normal loads. At high cutting speeds, very high temperature is generated at the cutting
edge of the tool and that may cause the tool material to soften and deform under high compressive
stresses. This causes the tool tip to become rounded and blunt as a result of plastic deformation.
The blunt cutting edge may become an additional source for further heat generation as it rubs
against the freshly-machined work surface, causing further softening of the tool material and
resulting in plastic collapse [40].

Different forms of tool wear and deformation processes, together with the regions on a tool in which
these are likely to take place are shown in Fig.4.2.

Forms of Tool Wear

Tool wear is a common cause of, and inevitable precursor, to tool failure in machining processes. The
extent of the tool wear has a strong influence on the surface finish and dimensional integrity of the
workpiece. Main forms of tool wear are flank war, crater wear, nose wear and groove (or notch) wear.
Figure 4.3 shows the various wear and fracture surfaces that may be present on a worn cutting tool [38].
The measurement criteria for different types of wear are shown in the Fig. 4.4 [38].

Flank Wear

The most commonly observed phenomenon is the flank wear. The width of the wear land, VB (Fig. 4.4),
is often used as a quantitative parameter of tool wear and it can easily be measured quite accurately. With
© 2001 by CRC Press LLC

the increase of flank wear, friction between the tool flank and the newly machined work surface increases
and that leads to higher cutting forces and temperatures. Excessive flank wear may cause severe vibration
leading to inefficient machining.

Crater Wear

Another form of common tool wear that appears is a crater on the rake face where the chips move over
the tool surface. The formation of the crater usually starts at a distance from the cutting edge. With the
elapse of time, it gradually becomes deeper and may lead to the weakening and breakage of the cutting
edge. The crater wear is most common when cutting is done at relatively cutting speed on high-melting-
point metals. The depth of crater, KT (Fig. 4.4), is often used as a quantitative parameter of tool wear.

Groove Wear

Groove wear may be observed at the flanks (both major and minor) at the position where the chip crosses
the edge of the tool. If the groove wear becomes very deep, it may cause the tool to fracture. In practice,
the tool life, which is a measure of the useful time span of the tool, is determined either by the flank
wear or crater wear. Tool wear is attributed to several factors, such as the properties of the tool and
workpiece materials, cutting conditions, tool geometry, and chip formation. When a tool wears, it affects

FIGURE 4.2 Wear mechanisms on cutting tools and their locations: (a) attrition wear, (b) abrasion wear, (c)
diffusion wear, and (d) plastic deformation of cutting.

FIGURE 4.3 Various wear and fracture surfaces that may be present on a worn cutting tool.
© 2001 by CRC Press LLC

the cutting force and the stress waves generated at the tool-workpiece interface due to friction and
deformation. At times, there is increased vibration in the machine.

4.3 Sensors and Signal Processing

Tool conditions that have adverse effects on the machining process and need to be monitored include
tool wear, various forms of tool damage, chatter, and chip breakage [30]. When the condition of a tool
deteriorates, it affects the cutting force and the stress waves generated at the tool-workpiece interface due
to friction and deformation. Sometimes, there is increased vibration in the machine. Thus, sensing
methods measuring force, directly or indirectly (e.g., torque, current, or power of the spindle motor),
acoustic emission, and vibration can be used to determine tool wear. The original force, (AE) and
vibration signals require signal conditioning and processing to extract useful information. Commonly
used tool wear sensing methods are based on cutting force and acoustic emission sensing. The following
sub sections present examples of preprocesses force, AE and vibration signals and their correlation with
tool conditions.

Dynamic Force

In the frequency domain, the dynamic tangential force has been found to exhibit a characteristic trend
that can be used to indicate the extent of wear of the cutting tool [21]. Figure 4.5 shows the magnitude
of the dynamic tangential force at the natural frequency of the tool overhang for a turning tool [27]. It
shows a monotonic increase with the flank wear. As the tool approaches failure, it displays a relatively
sharp decline. When the cutting tool is new, the sharp edge of the tool minimizes contact between the
tool and the workpiece. Hence, the dynamic force is initially small. As the tool wears, the contact surface
area between the tool and the workpiece increases, resulting in rubbing and increases in the dynamic
tangential force. For an uncoated tool without grooves, as the tool approaches failure, crater wear becomes

FIGURE 4.4 The measurement criteria for different types of wear.
© 2001 by CRC Press LLC

significant. As the depth and width of the crater increases, it has the effect of increasing the effective
normal rake angle (i.e., making the cutting edge relatively sharper) and correspondingly reduces the
dynamic tangential force.

The decrease in the dynamic force component at the natural frequency of the tool overhang does not
always occur. It depends on the manner at which the crater wear progresses and the geometry of the
crater so formed. In the case of coated and grooved inserts, there is a sharp increase in the dynamic force
component near tool failure. This continues until tool failure as can be seen in Fig. 4.6. During the cutting
operation, the tool insert shows little crater wear because the chip-breaker groove does not allow chips
to flow continuously across the rake face of the insert. Hence, crater wear is not the cause of tool failure

FIGURE 4.5 Dynamic tangential force at tool overhang frequency (turning).

FIGURE 4.6 Increase in dynamic force component near tool failure.
© 2001 by CRC Press LLC

for this type of inserts. In the case of a coated insert, flank wear increases at a slow rate at the beginning
of the tool life because of the titanium nitride (TiN) coating. When the coating is worn off, the flank
wear proceeds at a faster rate until tool failure.

Generally, the use of the amplitude change in the dynamic force component is dependent on the insert
characteristics and the machining conditions. This is one of the problems of relying on only a single
feature information, such as that obtained in either a time or frequency domain, which in the aforemen-
tioned case, is the peak frequency amplitude in the frequency domain.

Acoustic Emission (AE)

AE refers to the emission of elastic stress waves due to rapid changes in strain energy as a result of
structural change in the material, such as during plastic deformation, fracture, or phase change. The
frequency range of the AE signal is much higher than that of the vibrations in the machine tool and
environmental noise. Therefore, a relatively uncontaminated signal can be obtained by using a high-pass
filter. Figure 4.7 shows the flank wear of a turning insert, the corresponding resonant force at the natural
frequency of the tool overhang and the root mean square (RMS) and band power in the frequency band
of 300 to 600KHz of the AE signal. Both the resonant force and AE-RMS show a surge in amplitude as
the tool approaches failure. The band power in the frequency band of 300 to 600 kHz indicates increased
bursts of AE in the higher frequency range, due most probably to higher incidents of cracking and
chipping of the insert.

Wavelet Packet Analysis of AE and Force Signals

Signal processing approaches of the AE and force signals for the purpose of feature extraction typically
utilize the time-domain or frequency-domain analytical method. These approaches include the use of
FFT, statistical analysis, and stochastic modeling (such as AR, ARMA). They provide only the time or
frequency domain information that is generally more suitable for the analysis of stationary process. The
machining process, on the other hand, may not necessarily be stationary. A global signal processing
method which incorporates both the time and the frequency domains is more suitable for the analysis
of a non-stationary process. The short-time Fourier transform (STFT) is currently the standard method
for the analysis of a non-stationary process. The short-time Fourier transform (STAFT) is currently the
standard method for the time-frequency analysis of signals [4]. Another commonly used method is the
Wigner distribution, which originates from the classical works of Wigner in 1932. Du et al. [9] have
used the exponential time-frequency distribution of acoustic emission for tool wear study in turning.
In the last few years, a new method called the wavelet analysis has been developed with much progress
both in the theoretical and applied areas. Like the Wigner distribution and short-time Fourier transform
(STFT), the wavelet transform provides time-frequency analysis of signals but the wavelet transform
adapts the window. A short window is needed to achieve the required fine resolution in the high-
frequency range while a long window is needed to encompass the low-frequency range. The Wigner
distribution and windowed Fourier transform use a uniform window size which can result in an uneven,
and low frequency resolutions. Meanwhile, the Wigner distribution contains interference terms which
are undesirable in practical applications. The wavelet analysis is a more advanced signal processing
method. It offers the significant advantage of multi-resolution analysis of signals. Hence, both long and
short windows can be used to capture the desired signal features. As a generalization of the wavelet
transform, the wavelet packet (WP) decomposition together with the best basis algorithm have been
developed by Coifman et al. [5], which can represent the signal in a most compact way. The wavelet
packet analysis allows for the representation of the signal in both the time and frequency domains.
Another appealing characteristic is that the computation time of this algorithm is as fast as the FFT
and on-line implementation is possible. The wavelet packets contain modulated waveforms which have
good time-frequency localization properties. Each waveform is called a time-frequency atom and can
be assigned three parameters: frequency (f), scale(s), and position (p). The definition of the wavelet
packets {Wf,s,p} and wavelet packet decomposition are given in [11].
© 2001 by CRC Press LLC

Given a signal x, the wavelet packet transform can be represented as a linear mapping:

(4.1)

The above mapping represents the orthonormal wavelet transform. Hence, there exists a unique inverse
transform to reconstruct the signal x:

(4.2)

FIGURE 4.7 Flank wear, cutting force at tool overhang frequency and RMS and band power of acoustic emission
(turning).

WP:
X n W n⇒

x w f, s, p()→ WP x() x,Wf,s,p〈 〉� �

WP 1� :
W n X n⇒

w f, s, p() x WP 1� x()�→ w f, s, p(),Wf,s,p〈 〉�

© 2001 by CRC Press LLC

In the above wavelet packet transform, any basis sets from the orthonormal bases can be used to represent
the analyzed signal. This provides more freedom in deciding which basis is to be used to represent the
given signal. There must be a best-basis among them which can represent the signal in the most compact
way (i.e., using the least number of coefficients). In order to find this best-basis, Coifman and Wicker-
hauser [5] introduced the concept of the information cost function which is defined to be real-valued.
Then the cost function is used as a measure to search for its minimum over all bases in the wavelet packet
library to obtain such a best basis for the signal. It should be larger when the coefficients are roughly the
same size and smaller when most coefficients are negligible, but only a few coefficients need to be retained.
One of the cost functions proposed is the entropy cost function defined as follows. The Shannon-Weaver
entropy of a sequence x � {xj} is:

(4.3)

where pj � . For this entropy, exp(H(x)) is related to the number of coefficients needed to represent
the signal to a fixed mean square error. The search for the best-basis requires O(N log N) operations.

Through the above process, a compact set of wavelet packet coefficients is obtained. A phase-plane
plot is employed to graphically represent the time-frequency properties of the analyzed signal. In the
phase-plane plot, the wavelet packet coefficients are displayed on a 2-D time-frequency plane. In this
representation, each wavelet packet coefficient is associated with a time t and frequency f, with its time
and frequency uncertainty amount �t and �f, respectively. The result is interpreted as a rectangular patch
of dimensions �t by �f, located around (t, f) on the phase plane. The smallest area (�t by �f) of the
rectangular patch is limited by the Heisenberg uncertainty principle. The patch is assigned a color or gray
scale in proportion to the amplitude of the corresponding coefficient. Figure 4.8 gives a phase plane of
a wavelet packet. It is obvious that the phase plane representation of the signal can give us the global
view of its time-frequency feature patterns.

The best-basis wavelet packet decomposition provides an efficient and flexible scheme for time-
frequency analysis of non-stationary signals. The major advantages of this method lie in the following:

• It globally optimizes the signal representation to provide a compact and sparsity representation
of the signal pattern, i.e., the one with the fewest significant coefficients; and

• It possesses the computational speed of FFT.

FIGURE 4.8 Phase plane of a wavelet packet.

H x() pj log pj
j

���

x
2

x

© 2001 by CRC Press LLC

The acoustic emission signal is usually of two distinct types, continuous and discontinuous or burst
(see Fig. 4.9). In the machining process, the continuous-type AE signals are generated in the shear zone,
at the tool-chip interface, and at the tool-flank-workpiece interface while the discontinuous burst-type
signals are generated due to tool fracture, chipping, and chip breakage [11]. The wavelet packet method
has been applied to the AE signals from the turning process to obtain a comprehensive set of time-
frequency feature patterns (in the form of phase plane) corresponding to important tool conditions
[29, 16, 17]. Figures 4.10, 4.11, 4.12, 4.13, and 4.14 show the time-frequency feature patterns in the
phase plane representations after the best-basis wavelet packet transform of the corresponding AE signals
obtained for different tool conditions.

Vibration (Acceleration)

Another possible approach to monitoring tool wear in turning is to measure the vibration of the tool
shank using an accelerometer. For example, there exists a peak at the natural frequency f 0 of the tool
overhang in spectra of the acceleration signal. Sometimes, another peak can also be found at half of the
resonant frequency as shown in Fig. 4.15(a). However, does not always exist, as can be seen in
Fig. 4.15(b) for the case of the coated tool under the same machining conditions. Studies on the tool
shank vibration indicate that although there exists a characteristic trend in the amplitude of the natural

FIGURE 4.9 Continuous- and burst-type AE signals.

FIGURE 4.10 Normal state of tool.

f 1�2 f 1�2
© 2001 by CRC Press LLC

frequency f0, this trend is not consistent [13, 24]. A more reliable approach is to employ the coherence
function of two cross vibration signals.

Coherence Function of Cross Vibration Signals

The coherence function between two cross accelerations from the bending vibration of the tool shank
has been found to be suitable for the identification of both tool wear and chatter in turning [23]. The
cross accelerations in the horizontal (X) and vertical (�) directions are measured by two piezoelectric

FIGURE 4.11 Intensive tool wear.

FIGURE 4.12 Tool chipping.
© 2001 by CRC Press LLC

sensors mounted on the tool shank in a CNC lathe, as shown in Fig. 4.16. The coherence function of
the two acceleration signals x(t) and z(t) is defined as

where Gx(f) and Gz(f) are the respective auto-spectra of x(t) and z(t), and Gxz(f) is the cross-spectrum
between x(t) and z(t). � 0 when x(t) and z(t) are uncorrelated over the range of frequency f. � 1

FIGURE 4.13 Tool fracture.

FIGURE 4.14 Chip breakage.

�
2 f()

Gxz f() 2

Gx f()Gz f()
-----------------------------�

0 �
2 f() 1��

�
2

�
2

© 2001 by CRC Press LLC

when x(t) and z(t) are completely correlated for all f. Otherwise, according to the degree
of correlation between x(t) and z(t).

Figures 4.17(a) and (b) show the coherence function of the acceleration signals measured during
turning of a nickel-based super alloy [4]. As can be seen from the figures below, the value of the coherence
function at the chatter frequency reaches unity at the onset of chatter. Its values at the first natural
frequency of the tool shank approach unity in the severe tool wear stage. The advantage of using this
method is that the thresholds for detecting severe tool wear and chatter can be easily set for the following
two reasons: first, the values of coherence function are normalized to a range of between zero to unity
and secondly, they are also not so susceptible to changing cutting conditions because the value of
coherence function is close to unity at the onset of chatter and severe tool wear.

FIGURE 4.15(a) Acceleration of tool overhang (uncoated turning insert).

FIGURE 4.15(b) Acceleration of tool overhang (coated turning insert).

0 �
2 1� �
© 2001 by CRC Press LLC

FIGURE 4.16 Setup for measurement of X- and Z-accelerations of tool shank.

FIGURE 4.17(a) Coherence function of X- and Z-
accelerations at onset of chatter.

FIGURE 4.17(b) Coherence function of X- and Z-accelerations at different tool wear.
© 2001 by CRC Press LLC

4.4 Feature Extraction

Once a preprocessed signal exhibits characteristics of features that can be correlated with the tool
conditions, it is necessary to develop suitable techniques to extract those features. The successful iden-
tification of the various tool conditions depends on how the features can be reliably extracted from the
raw or preprocessed sensor signals for the sensor fusion stage. These features can be expressed in the
form of a feature vector from different signal sources. The selected features should comprehensively
characterize the different tool conditions. Although redundant features can reinforce the decision process
in the determination of the tool condition, a minimum possible set of complementary features may have
to be used to reduce computation requirements. For reliable and generalized identification of tool
conditions, features used should not be sensitive to machining parameters, such as speed/feed, tool/work-
piece materials, tool geometry, etc. In practice, this requirement is very difficult to meet. One method
of achieving this is to have some means of normalizing the preprocessed output, such as the use of the
aforementioned coherence function. By using a normalized output, threshold setting is confined to a
range between zero and unity and is simpler to set. Another is to employ some form of pattern recognition
to deduce the state of the tool from characteristic patterns of the processed outputs rather than by some
single-value threshold setting.

4.5 Neural Network Architectures

After the feature extraction, an inference process is
needed to associate each feature vector to a corre-
sponding tool condition. This classification process
usually involves an inference engine to map groups
of feature vectors to their associated tool condi-
tions. Such process, especially when crisp logic rule
based methodology is employed, can be extremely
tedious for feature vectors of large dimension. As
discussed in the previous section, more extracted
feature components are needed to reinforce the
identification decision and complement each other
in their limited operational range. A more practical approach is to use an intelligent system which can
“learn” itself to correct inference decision via past examples. A solution to such problem is to use an
artificial neural network as a classifier [8, 16, 17, 29, 33, 34].

An artificial neural network is an information-processing system inspired by the performance of the
human brain. It consists of a collection of very simple processing element called the neuron as shown
in Fig. 4.18. The neuron embodies a node (soma) with multiple inputs (dendrite) and an output (axon).
The output of the node can be described by

(4.3)

where wi, is the weight of the node associated with each input and f(•): is called
a transfer function of the neuron.

The collection of such neurons forms a neural network. A type of neural network is characterized by
three fundamental factors as follows:

• Transfer function—the transfer function defines the way the output associated with the inputs
and their corresponding weights, and the type of activation function used.

• Architecture—the architecture defines the pattern of connections between neurons and the num-
ber of layers of connection.

• Learning algorithm—the method of determining the weights on the connections.

FIGURE 4.18 A simple processing element.

y f w1, w2,…, wn, x1, x2,…, xn()�

 i 1, n[]�� Rn R→
© 2001 by CRC Press LLC

There are numerous types of neural networks developed to suit the needs of their applications [12, 14,
18, 45]. This chapter does not intend to show all types of neural networks but the three common types
of neural networks that are used in the case study have examples in the following sections. There are
Multi-layer Perceptron (MLP), Kohonen Network, and Adaptive Resonance Theory 2 (ART2).

Multi-Layer Perceptron (MLP)

This is the most common neural network model used by many researchers and is better known as the back-
propagation network due to the way it is trained [14]. A simple M-layer MLP is illustrated in Fig. 4.19 with
each neuron represented by a circle and each interconnection, with its associated weight, by an arrow.
For each neuron, the ith neuron in pth layer, its output, can be described by the equations

 (4.4)

(4.5)

where fp (•) is any monotonically increasing activation function. A common choice is to use the sigmoid
function for all the hidden layers and a linear function for the output layer. That is:

(4.6)

The number of hidden layers in the network and the number of nodes for each layer are arbitrary. Hecht-
Nielsen [15] has proved that one hidden layer is sufficient to approximate a bounded continuous function
to an arbitrary accuracy. However, one hidden layer may result in an excessive number of neurons used
in the hidden layer. Thus, for practical implementation, one hidden layer is used for simple functions
and two hidden layers are used for functions that are more complex.

The learning law employed by this network is the gradient decent based delta rule:

(4.7)

and

 (4.8)

where J it the cost function usually defined as and 	i is the desired output of the node.

FIGURE 4.19 A M-layers multi-layer perceptron networks.

hi
p() wij

p()vj
(p 1) � , for p 1,M[]�

j�1

Np 1�

��

i
p() fp hj

p()()�

fp h()
1

1 e h�
�

------------------ , for p M�

h , for p M�

�

wij
new() wij

old()
�wij��

�wij
�J

�wij

---------��

�i 1�

ny 	i yi�()2 ith
© 2001 by CRC Press LLC

With the assumption of fx(•) and fy(•) as defined in Eq. 4.7 and Eq. 4.8, respectively, the training
procedure can be summarized as follows:

• Step 1: Read in the input pattern and the desired output (x,)

• Step 2: Propagate the signal forward by Eq. 4.5 and Eq. 4.6

• Step 3: Calculate the output layer error, � as

(4.9)

• Step 4: Back propagate this error to the hidden layer by

(4.10)

• Step 5: Calculate by

(4.11)

• Step 6: Update the weights by

(4.12)

• Step 7: Go to Step 1

Kohonen Networks

Kohonen Network [19] is comprised of a single layer network as shown in Fig. 4.20. This network uses
a learning technique called competitive learning. Only one component of the output vector is activated
(or ON) at a time. It is a network used for clustering operation.

For each output neuron, the output compete with one another by the equation below:

(4.13)

(4.14)

FIGURE 4.20 A Kohonen Network.

�i 	i yi��

�i
(p 1)� f�(hi

(p 1)�) wji
p()

�j
p()

j
��

�wij

�wij
p()

�i
p()yj

(p 1)�
�

wij
p() wij

p()
�wij

p()
��

hi D wi, u() 0��

yi

1, hi
min

j
hj{ }�

0, otherwise

�

© 2001 by CRC Press LLC

where D(•,•) is an metric function which measures the “distance” vectors and
is the weight vectors that connect the ith out with the input vector u. For this network, the activation
function sets the output node whose weight vectors is closest to the input pattern to one and the rest of
the output node to zero. The metric function D(•,•) can be any distance measurement, say the Euclidean
norm. However, for computational simplicity, the Hammin distance

(4.15)

is more commonly used.
The learning process for the Kohonen network only involves the weights associated with the winning

output nodes. Hence, Kohonen learning is sometime referred to as competitive learning. The Kohonen
learning law can be presented as

(4.16)

As shown in Eq. 4.17 that the learning law employed by Kohonen network does not involve the desired
output, it does not require past examples to train the network. It is sometime referred as self-organizing
network.

ART2 Networks

The adaptive resonance theory (ART) was developed by Carpenter and Grossberg [2] in two forms. One
form, ART1 is designed for handling binary pattern whereas ART2 [1] can accept patterns of continuous
magnitude. As shown in Fig. 4.21, a typical ART2 network is composed of two successive stages or layers
of cells–an input representation layer F1 and a category representation layer F2. These layers are linked
by feedforward and feedback weight connections that define a pattern specified by a corre-
sponding F2 cell. Each F1 cell consists of three processing sub-layers with six nodes that enhance the

FIGURE 4.21 An ART2 network.

Rnu Rnu R→� wi Rnu�

D wi, u() wij uj�
j 1�

nu

��

wi
new() wi

old()
 u wi

old()
�()yi, i� 1, ny[].���

wij,�ji()
© 2001 by CRC Press LLC

salient feature and suppress noise in the received signals, as shown in Fig. 4.21. Their activities can be
characterized by the following equations:

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

 (4.22)

where

(4.23)

Every cell in the F2 layer competes with the others by the rule denoted in Eq. 4.25 until the only winner
remains active:

(4.24)

in which

(4.25)

The degree of match between an input pattern and a responded feedback pattern is measured by the
combined normalized feedforward/feedback vector r � with

(4.26)

where 0 � c � 1 and � 1.

ui Ii asi��

vi

ui

e u�
------------------�

ti f vi() bf qi()��

si

ti

e t�
----------------�

pi si g yj() �ji�
j 1�

M

���

qi

pi

e p�
------------------�

f x()
x, if x ��

0, if x ��

for 0 � 1� �()�

g yj() d if yj, max
r 1 M,[]�

yr{ } i.e., jthF2 cell is active,�

0 otherwise,

�

yj pi . wij
i 1�

N

��

r1,r2,…,rN()

ri

si cpi�

e s cp� �
-----------------------------------�

cd
1 d�

© 2001 by CRC Press LLC

The vigilance parameter �, which has a value of between 0 and 1, determines how well an input pattern
matches with the feedback pattern of the active F2 cell. The closer � is to 1, the more sensitive is the system
to mismatches. The matching criterion is defined as shown in the table below.

(4.27)

where

a. For F2 is reset so that the active cell is deactivated with an output value of zero.
Meanwhile, the input pattern is considered to mismatch with the stored pattern.

b. For F2 is not reset. The active cell supposedly presents the proper class of input
pattern during the classification operation, and is activated with an output value of one. Besides,
if the active F2 cell has not been encoded with any pattern, such as during the initial learning,
then a new category is established in the weighted connections with the cell, or the input pattern
is merged into the weighted connections with the correctly encoded or stored pattern during the
multi-sample learning cycle.

The feedforward and feedback weights are adjusted according to the following equations

(4.28)

(4.29)

Further details of the ART2 algorithm can be found in the description by Carpenter and Gorssberg [1].

4.6 Tool Condition Identification Using Neural Networks

Features extracted from the sensor inputs are synthesized for more reliable and accurate estimation of the
state of the process. Basically, tool condition diagnostics approaches can be divided into two categories: [3]

• Statistical Approach. In this approach, estimates of the state variables are obtained by evaluating process
models based on the physics of the process. Statistical data concerning the physical properties of the
materials are used. Bayesian estimator and Shafer-Dempster reasoning methods are examples of this
approach.

• Training Approach. The synthesis occurs through a mechanism or a mode which first learns through
a training phase on how the synthesis should occur. Methods based on this approach go through a
training phase to capture the behavior or learn to synthesize the data.

This chapter present the works based on the training approach, in which, neural networks are used
as the learning mechanism.

The following sections demonstrate three different approaches to the application of the neural network
for tool condition identification. The first example uses very simple preprocessing and an MLP network
to identify various tool conditions for the turning process. The following three examples use a combi-
nation of ART2 networks. Two are based on a single-ART2 network and employ a two-step feature
extraction strategy for the identification of tool wear state. The first single-ART2 network uses only

Condition Match Result

r � e mismatch��

r (� e proper match)��

r � e,��

r � e,��

wij t 1�() 1 g yj()�[] wij t() pi�[] pi��

wij t 1�() �g yi()si 1 �g yj() g yj() 1�()�{ }wij t()��

�ij t 1�() �g yj()si 1 �g yj() g yj() 1�()�{ }�ij t()��
© 2001 by CRC Press LLC

acoustic emission sensing and a wavelet transform technique in the signal processing. The other uses
both force and acoustic sensing. The third neural network consists of multiple ART2 sub-networks and
uses three sensors to measure acoustic emission and cross vibrations from the tool shank. The input
feature information to the multi-ART2 network is obtained from the distribution of the coherence
function between two cross vibration signals and the power spectrum of the acoustic emission signal in
the effective frequency bandwidth of these signals.

MLP for Force Sensor with Simple Pre-processing [32]

In modern manufacturing processes, an essential part of a machining system is the ability to monitor
and automatically diagnose the faults that occur in the machining process. In practice, such faults are
not isolated and they are often co-existing. Figure 4.22 shows the coexistence of various cutting conditions
in a typical turning process. It is therefore important to identify these faults from the detected abnormal
phenomena during the machining process.

The occurrence of a fault can be due to either system characteristics’ changes (true reflection of a fault)
or propagation of other undetected faults. It is important that the root of the fault must be detected
correctly. Otherwise, this may result in a wrong control action being taken. The process of fault detection
in machining processes consists of the detection of abnormality, followed by the identification of the
cutting state and then the recognition of the cause of the fault. This section focuses the discussion on
the monitoring of tool wear, chatter vibration, and chip breaking in a turning process.

Feature Requirements

From the pattern recognition viewpoint, the necessity for process diagnostics is to extract enough
independent governing features for the purpose of identification. In this experiment, the exact value of
the dynamic cutting force is not important. It is the sudden variation from its normal zero-mean value
that reflects the presence of chip breaking. This phenomenon is reflected as “spikes” in the dynamic
cutting force. The magnitudes of the spikes are more distinctive in the worn tool than the fresh tool.
These spikes usually have negative values of a few times the magnitude of the normal zero-mean values.
Therefore, a subtraction from its maximum value will ensure all data to have positive value and high
spikes are the point of chip breaking as suggested by Eq. (4.31). However, these spikes are usually of high
magnitude. Therefore, the set of data is divided into ten data subsets defined in Eq. (4.30) to avoid these
chip-breaking spikes from dominating the other inherent properties of the signal. Four features are

FIGURE 4.22 A typical tool wear experiment.
© 2001 by CRC Press LLC

extracted from the cutting force in feed direction with the following operation:

1. The signal (2000 data points) is passed through a low-pass filter to eliminate the high frequency noise.
2. This signal is divided into ten data subsets Si, for i � [0, 9] with

(4.30)

where x(i) is the filtered dynamic component of cutting force.
3. For each Si, the data are transformed into an absolute valued data by

(4.31)

where

(4.32)

4. For each pre-processes data yi(.), the following features are extracted.

• The mean value Fi of yi is defined by

(4.33)

where �1 is a scaling factor.

• Similarly, the variance Vi of yi is defined as

(4.34)

where �2 is a scaling factor.

• To avoid the presence of too many high valued spikes, the ratio Ri of mean and variance is also
introduced as

(4.35)

• Another dominating property is the magnitude Di of the spike which is defined as

(4.36)

• One important property is the frequency of chip breaking. This can be measured via its coherent
coefficient Pi which is defined by

(4.37)

These features form the input to the MLP for the diagnosis process.

An Integrated Fault Diagnosis Scheme

In this case, an intelligent faults diagnosis scheme (IGDS) is proposed. For a fixed interval, the IFDS
collects 2000 points of the dynamic cutting force component measured in the feed direction which are
sampled over a time span of 0.8 second. This set data is filtered to cut-off the high-frequency noise

Si x 200i 0�(), x 200i 1�(),…, x 200i 199�(){ }�

yi x 200i t�() xmax
i

� , for t 0, 199[],i 0, 9[]���

xmax
i max x 200i+0(), x 200i+1(),……, x 200i 199�()[]�

Fi

�1

200
--------� yi t()

t 0�

199

��

Vi

�2

200
--------� yi t() Fi�[]2

t 0�

199

��

Ri �3
�Vi/Fi�

Di �4
� max yi t(){ }, for t 0 199,[]��

Pi

yi t() Fi�[] � yi t 1�() Fi�[]
t�1

199

�

yi t 1�() Fi�[]2

t�1

199

�
--�
© 2001 by CRC Press LLC

component. The filtered data are divided into ten subsets of 200 points, in which five features are extracted
from each subset to form a feature vector. These ten feature vectors are used in the MLP.

The MLP has an architechture of 5-8-3 and sigmoid function as its threshold function. The five input
nodes of the MLP correspond to the five feature components of the extracted feature vector and these
will be explained in the next section. The minimum of one hidden layer in a multi-layer perceptron is
inevitable due to the linear separability properties of perceptron. This experiment shows that a hidden
layer with eight nodes is sufficient for the purpose of identification. The output values of the MLP are
between 0 and 1. When a binary decision is needed, output values of less than 0.5 are considered to be
0 or otherwise to be 1. The first, second, and third component of the output layer represent the level of
tool wear, chatter vibration, and chip breaking, respectively and can distinguish typical patterns: (0,0,0),
(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Noting that, (0,1,1) and (1,1,1) are redundant in
actual machining process. This is because long chips are not produced when chatter vibration occurs.

Experiment

A lathe was used in this experiment on chip breaking, chatter vibration, and tool wear in turning. Three
workpiece of ASSAB 760 steel each with sizes of �60 � 1000, �130 � 700, and �130 � 260 mm. Two
types of inserts, AC25 coated and G10E uncoated, were used. The cutting speeds were varied from 50–160
m/min, feed rates from 0.1–0.4 mm/rev. and depth of cut from 0.5–1.5 mm. Three kinds of chip breaking
experiments has been carried out under the conditions mentioned above. The first was under cutting
state of chatter vibration with fresh tool, and the size of the workpiece was �60 � 1000 mm and AC25
coated inserts were used in the experiments to guarantee that no tool wear occurred in one cutting pass.
The second was under cutting state of chatter vibration with a worn tool and the size of the workpiece
was �130 � 700 mm G10E uncoated inserts were used to ascertain at least the average flank wear land
width VB, of 0.3 mm in one cutting pass and when AC25 coated inserts were used, no chatter vibration
occurred in machining process. The third was under the cutting state of no chatter vibration with a worn
tool. The size of the workpiece was �130 � 260 mm and G10E inserts were used.

Discussion of Results

A total of 136 measurement samples (200 data point per sample) corresponding to variance levels of
chip breaking and the cutting states (tool wear and chatter vibration) were collected. For each measure-
ment sample, the set of data are divided into ten data subsets in which a feature vector of five features
is extracted from data sets. This forms a total of 1360 feature vectors for the experiment. Among these
1360 feature vectors, representative training samples belonging to types of measurement samples were
chosen and used to train the MLP. The remaining sets of feature vectors were used for testing and
validation.

During the training stage, the target states of the output nodes were fixed at 0 for patterns of fresh
tool, no chatter vibration and short comma chips; and 1 for patterns of worn tool, chatter vibration and
long chips, respectively. The learning rate of the FDNN is 0.2 and its momentum coefficient is 0.4. The
weights were initialized to uniformly distributed random values between �0.1 and 0.1. During the testing
stage for each sample, the final output vector of the IFDS is the mean value of the MLP output vectors
for the ten subgroup of feature vectors.

Figure 4.23 shows the relationship between each features and the six typical patterns. It is clear that the
system will fail when insufficient feature components are used for the identification process. Table 4.1 shows
the training results with different number of features used as the input vector. The results in Table 4.1 show
that a minimum of four feature components (P, F, V and D) must be used for successful identification.
However, experiments show that the addition of the mean ration (R) enhances the convergent rate in MLP
training. Hence, all the five feature were used as the input vector to the MLP.

This system has been tested on a completely new set of data and shown an approximately 95% success
rate.
© 2001 by CRC Press LLC

Single-ART2 Neural Network with Acoustic Emission Sensing

As shown in the section entitled “wavelet packet analysis of AE and force signals,” using the best basis
wavelet packet transform and phase plane representation, a comprehensive set of time-frequency feature
patterns corresponding to different tool conditions can be obtained from the AE signals generated during

TABLE 4.1 Training Results with Different Number of Features

Number
of Features 1 2 3 4 5

Features P; F; V;
D; R

PF; PV; PR; PD;
FV; FR; FD; VR;

VD; RD

PFV; PFR; PFD; PVR;
PVD; PRD; FVR;
FVD; FRD; VRD

PFVD PFVDR

Training Results Failure Failure Failure Success Success

FIGURE 4.23 The relationship between features and typical patterns.
© 2001 by CRC Press LLC

turning. Based on the processed information, a new strategy for multiple tool condition identification
has been established. An efficient separation scheme using the inverse wavelet transform for the separation
of burst AE and continuous AE has also been developed. This method plays a key role in the progressive
tool wear identification of a tool condition classification approach based on an ART2 neural network
discussed in this section. Figure 4.24 shows a graphical presentation of this approach.

Given on AE signal from the turning process, a stationary check is first conducted to judge the state
of the signal (stationary or non-stationary). If the signal is stationary, then it will be used for tool wear
monitoring. If the signal is non-stationary, it is first separated into burst and continuous signals by using
a separation scheme. The burst signal is then used for the identification of transient tool conditions, such
as the tool fracture, chipping, etc., and the continuous signal is used for tool wear monitoring.

The characteristics of this approach based on wavelet packet transform and ART2 neural network [29]
are:

• Wavelet packet transform is employed for AE signal separation and burst AE signal feature extrac-
tion.

• For tool wear monitoring, a two-step feature extraction scheme is employed aiming at obtaining
more meaningful feature vector related to tool flank wear process.

• An unsupervised ART2 neural network is employed for multi-category classification of tool con-
ditions. Two separately trained ART2 networks are used for automatic classification of transient
tool conditions (fracture, chipping, and chip breakage) and progressive tool flank wear.

Transient Tool Condition Identification

As presented earlier, the time-frequency feature of the tool fracture, chipping, and chip breakage each
produces a set of characteristics components in a certain frequency range at the location of the burst. Tool
fracture produces the largest magnitude in almost the entire frequency range. Chip breakage produces the
smallest magnitude in a very narrow frequency range, and those of chipping have characteristics that are
between the other two states. Based on this understanding, a transient tool condition identification
approach is proposed as shown in Fig. 4.25.

A feature vector corresponding to frequency band value of the wavelet packet coefficients in the phase
plane at the burst location is extracted. In the phase plane, the entire frequency range is divided into 16 equal
zones (each zone equivalent to 62.5 kHz), and two time indices ts and te which indicates the start and end
point of the burst signal are determined from the separated AE burst signal. At each frequency division, all
wavelet packet coefficients within the time interval ts and te are summarized. Thus, a feature vector Ft

FIGURE 4.24 Multiple tool condition monitoring system.
© 2001 by CRC Press LLC

containing 16 elements is derived. Figure 4.26 shows the typical feature pattern of fracture, chipping, and
chip breakage. The characteristics of the above three typical feature vectors can be summarized from Fig. 4.26:

• For tool fracture and chipping, the last 8 elements of the feature vector (corresponding to 0.5–1 MHz)
are generally of the same value, while the first 8 (corresponding to 0–0.5 MHz) have varied values.
The difference lies in that the sum of the last 8 elements is no less than the first 8 for tool fracture,
while, for chipping, the case is just opposite.

• For chip breakage, there only exists a dominant element somewhere between 0–0.5 MHz while
the remaining ones are nearly zero.

From the above feature extraction process, the advantage of wavelet packet analysis over FET is evident.
Only with this efficient time frequency analysis can this kind of feature extraction in certain time location
be made possible.

An ART2 network with 16-element input is trained to classify these three transient tool conditions. A total of
20 train patterns is employed to train the ART2 network (including 3 patterns from the fracture, 2 from the
chipping, and 15 from chip breakage). Then the trained ART2 network is used for the transient tool condition

FIGURE 4.25 Transient tool condition identification approach.

FIGURE 4.26 Feature patterns of different AE burst signals.
© 2001 by CRC Press LLC

identification from sampled data of AE signal. Fracture, chipping, and chip breakage incidents that have occurred
during the capture of the sampled AE signal during the machining test have been successfully identified.

Tool Wear Monitoring

As mentioned previously, the acoustic emission signal from the flank wear process originates mainly from
rubbing between the workpiece and tool flank face. If this rubbing process is even and continuous in
machining, we expect a consistent increase in the continuous AE signal. However, in practical machining,
the tool flank wear is not a uniform process so that fluctuation in the AE signal is normally encountered.
Nevertheless, the energy of the AE signal pertinent to the tool flank wear is generally related to severity of
rubbing between the workpiece and tool flank. The experimental signal shows that although there is much
variation in the AE signal energy during flank wear, there exists a progressive increase in the AE energy in
a certain frequency range (300 kHz–600kHz) with tool flank wear, as shown in Fig. 4.27.

In view of the above reason, a special feature analysis approach has been developed. As shown in Fig. 4.28,
this approach essentially applies a two-step feature extraction (the primary and secondary feature extraction)
strategy, coupled with an ART2 neural network for condition identification. Figure 4.29 shows a sample of
primary and secondary AE features. A feature vector Fw is derived from primary and secondary AE features
and used as input to ART2 neural network. Preliminary results show that for un-grooved tool inserts,
good classification results have been directly achieved. For grooved tool inserts, there is significant inter-
ference from chip breakage. As a result, the burst signal separation scheme has to be applied before a
correct identification result can be obtained. Table 4.2 shows the results of the ART2 classification results
of experimental test data obtained for different machining conditions involving coated and uncoated tools
and different workpiece materials.

FIGURE 4.27 AE energy characteristics with tool flank wear.

FIGURE 4.28 Tool wear identification from the continous AE signal.
© 2001 by CRC Press LLC

Single-ART2 Neural Network with Acoustic Emission and Force Sensing

Based on acoustic emission and force sensing, an intelligent sensor system Fig. 4.30 has been developed
to integrate multiple sensing, advanced feature extraction, and information fusion methodology [28].
Such a system employs

• More than one sensor to extend the effective range of the sensing system.

• Signal processing techniques to extract the compact feature vector sensitive to the monitored tool
condition.

• Information fusion methodology to make correct decisions about the condition of cutting tool.

A two-step feature extraction strategy is proposed. Spectral, statistical, and dynamic analysis have been
used to determine primary features from the sensor signals. In the primary feature determination, three
features from the acoustic emission, the frequency band power (300 kHz–600 kHz) by FFT and the skew
and the kurtosis by statistics, are obtained. One prominent feature from the tangential force signal, the
natural frequency component resulting from the tool overhang [20], is also derived. Figure 4.31 shows
an example of the behaviour of these features with the tool flank wear. It can be seen that the frequency
band power exhibits increasing activities while the skew and the kurtosis have decreasing activities as the

FIGURE 4.29 Primary and secondary AE features for tool wear identification.
© 2001 by CRC Press LLC

TABLE 4.2 Identification Results by ART2 Network for Different Cutting Conditions

Case Speed Feed DOC Work Tool Identification Result
 (m/min) (mm/r) (mm)

DOC-Depth of cut; A-ASSAB760; B-ASSAB705.

X-uncoated ungrooved; Y-coated ungrooved; Z-coated grooved

FIGURE 4.30 Intelligent sensor system for tool wear monitoring.
© 2001 by CRC Press LLC

flank wear progresses. As the values of the skew and the kurtosis are negative and positive, respectively,
they provide complementary functions that have the effect of enhancing feature contrast. The tangential
force components at the natural frequency of the tool overhang display an accelerated increase trend
with respect to the tool wear before falling rapidly preceding the onset of tool failure. Another important
characteristics of these four features, as experimental results show, is that they are nearly independent
of the cutting conditions. Although changes in the cutting conditions may expedite or impede the tool
wear process, the nature of the aforementioned features generally does not change.

Although the trends of the four primary features correlate well with the tool flank wear, they cannot
be reliably used, either as an individual monitoring index or collectively as a feature vector for the decision
making process. This is because of the severe variation of the features during the tool wear process (as

FIGURE 4.31 Primary features.

FIGURE 4.32 Secondary features.
© 2001 by CRC Press LLC

shown in Fig. 4.31). Experimental evidence shows that even for the least varied force feature, there are
still occasional fluctuations along the process of the tool flank wear, let alone the other three greatly
flucturated AE features. For the purpose of getting more meaningful features, further refinement of the
primary features is necessary for reliable tool flank wear identification.

Therefore, a secondary feature refinement is further applied to the primary features in order to obtain
more correlated feature vector to the tool flank wear process. For each of the primary features, two refined
features are extracted, namely the mean and the standard deviation within a moving window (Fig. 4.32).
For a feature series (it can be frequency band power, skew, kurtosis, or tangential force component at
the natural frequency of tool overhang) P(n) (n � 1,2,…,N), where N is the number of data sample,
the secondary features in the moving window (n, n � l � 1) can be represented as follows (l is the
window size):

1. Mean value

(4.38)

2. Standard deviation

(4.39)

From the above process, a feature vector F is obtained:

F � {fm, fs, pm, ps, sm, ss, km, ks}

• fm, pm, sm, km correspond to the mean values of the four primary features (the tangential force
component, the frequency band power, the skew, and the kurtosis);

• fs, ps, ss, ks are the standard deviation values of the four primary features.

Figure 4.33 shows a typical representation of the above feature vector. It can be seen from Fig. 4.33
that the refined features are more meaningful to the tool flank wear than the primary features. The
general feature vector patterns which reflect the fresh and worn states are given in Fig. 4.34. It can be

FIGURE 4.33 Pattern of feature vectors for fresh and worn tools.

mean
1
l
-- P i()

i n�

n l 1��

�� i n,…,n l 1���

std
1

l 1�
------------ P i() mean�()2

i n�

n l 1��

�� i n,…,n l 1���
© 2001 by CRC Press LLC

seen from Fig. 4.34 that the fresh state feature pattern is quite different from that of the worn state. In
the fresh state, the standard deviation and mean of the force feature and frequency band power are
smaller than those of the skew and kurtosis. While in the worn state, the case is just the opposite. One
thing worth noting is that the standard deviations from the four primary features are more prominent
than their corresponding mean values. Therefore, the feature vector thus obtained can distinctively reflect
the tool wear state. For a neural network, the more meaningful features we have, the more reliable and
faster the classification can be achieved.

Note that the window size l is determined experimentally and the first l samples are used to calculate
the first feature vector. Therefore, it is assumed that tool is fresh within the first l sample. This assumption
is practically acceptable because the time used to obtain the first l sample is very short. The flank wear
of the tool is very unlikely to occur in such a short time.

After obtaining a meaningful feature vector F, it is then used as input to an ART2 neural network
for the fusion of AE and force information and decision-making of the tool flank wear state. As shown
in Table 4.3, the experimental results confirm that the developed intelligent sensor system can be reliably
used to recognize the tool flank wear state over a range of cutting conditions. The cutting conditions
of the turning tests used to verify the proposed system include various types of inserts and workpiece
materials under different machining conditions. The ART2 recognition results are listed in the last
column of Table 4.3 (the X-axis represent cutting time in minutes). Table 4.4 shows the flank wear
values at identified intermediate tool wear states (uncoated tool only) and worn state of tool (both the
uncoated tool and coated tool). From the results obtained, it can be seen that:

1. For both the uncoated and coated tools, the fresh and worn states of the turning tool are all
successfully recognized. The worn tools are identified around 0.3 mm of the measured flank wear
value which is very close to those used in industry.

2. For uncoated tools inserts, the tool flank wear states have been classified into three categories: the
fresh state (0), intermediate wear state (1) and worn state (2). The worn state occurs around the
tool flank wear threshold value of 0.3 mm. The existence of the intermediate tool wear state may
be caused by the fuzziness of the feature information between the fresh state and the worn state
of the tool, since there is no clear cut information between the fresh and worn state in the wearing
process of the uncoated insert tool. The intermediate state (1) can be used as a warning index in
tool wear monitoring of the uncoated tools.

3. For coated tool inserts, the tool flank wear states have been correctly classified into two categories:
the fresh (0) and the worn (1) states. Unlike uncoated tools, no intermediate flank wear state has
been produced. This is because the wear process of the coated tool inserts is quite different. The

FIGURE 4.34 Parallel multi-ART2 neural network for tool condition monitoring.
© 2001 by CRC Press LLC

tool flank wear increases very slowly until it reaches a point where the coated materials near the
tool edge are worn off. Then the tool flank wear increases significantly because in this case the
tool insert is similar to an uncoated one. So, distinct information between the fresh and worn
states has been produced.

TABLE 4.3 Cutting Conditions and Identification Results of Test Data

Process Speed Feed Depth
of Cut

Workpiece Tool Identification Result

Note: A-SNMN-120408; B-SNMG120408

TABLE 4.4 Tool Flank Wear Value Identified by ART2

Intermediate Wear States (mm) Worn States (mm)

TEST1 0.30 0.45
TEST2 0.25 0.40
TEST3 0.20 0.35
TEST4 0.15 0.30
TEST5 — 0.30
TEST6 — 0.48
© 2001 by CRC Press LLC

4. The proposed approach is less dependent on cutting conditions, since the features selected are
only those relevant to the nature of the tool wear. The change of cutting conditions may expedite
or slow down the tool flank wear. However, when tool wear occurs the characteristic of the primary
features are fixed. Therefore, cutting conditions have little influence on this approach, as the above
results indicate (Table 4.5).

Multi-ART2 Neural Network with Force and Vibration Sensing

The value of � determines the granularity in which the input patterns are classified by the network. For
a given set of patterns with different classes, a larger value of � may result in finer discrimination between
patterns of the same class and a smaller value of � may lead to the merging of some of the classes into
a single category. In a complex situation, the input patterns can be presented in different classes (such
as tool failure and chatter), with each class having several cases (e.g., the various types of tool condition,
the different frequencies or different magnitudes of chatter as well as the different cutting conditions).
Due to the varied boundaries and dispersions of the various classes of input patterns, it is difficult to
choose an accurate value of � for a single-ART2 network to classify all the patterns correctly, which is
even less possible in a complex situation. In view of the varying cases, the network may not effectively
represent each class of input patterns with only one cell in the F2 layer of the ART2 network. It then
becomes necessary to encode or enroll more cells in the F2 and F1 layers in order to handle the different
classes as well as their cases in complex patterns. The corresponding increase in the computation time
for the expanded single-ART2 network then makes it less feasible for on-line use.

Due to the aforementioned limitations of the single-ART2 network, a novel parallel multi-ART2 neural
network (as shown in Fig. 4.34), has also been developed to recognize tool conditions and machining
chatter in turning operations [22]. With the multi-ART2, each subnetwork is individually designed with
its own network parameters and is fed with the appropriate feature vector(s) relevant to a targeted
machining condition (that is, only one of the input categories) so that the setting of the threshold is
easier, compared with that for the single-ART2 network. In Figure 4.34, the input vector I consists of
multiple features extracted from both vibration and AE signals. The input vector �, also with multiple
elements, contains features based on the vibration signals only. The neural network consists of four
parallel ART2 subnetworks with the binary outputs denoted by Y1, Y2, Y3, and Y4, respectively. These
sub networks are employed to identify the following four categories of tool states: machining chatter,
tool failure, simultaneous severe tool wear, and chatter. According to the simultaneous outputs of the
multi-ART2 network (i.e., Y1, Y2, Y3 and Y4), the patterns of the four machining states can be indicated
by the following:

1. chatter: if Y1 � 1, Y2 � 0, Y3 � 0, Y4 � 0.
2. tool failure (severe wear and breakage): if Y1 � 0, Y2 � 1, Y3 � 0, Y4 � 0.
3. simultaneous chatter and severe tool wear: if Y1 � 0, Y2 � 0, Y3 � 1, Y4 � 0.
4. normal: if Y1 � 0, Y2 � 0, Y3 � 0, Y4 � 1.

During the learning process, each of the four ART2 sub-networks is trained to represent one category
of input patterns through arranged sample learning by grouping the test samples according to the
respective categories. The F2 cells within an ART2 subnetwork characterize the typical cases of each
category. Hence, if needed, more categories can be achieved by adding more ART2 subnetworks while
more cases of each category can be handled by enrolling more F2 cells in the respective category
representation sub-layer. To minimize the possibility that an input pattern does not match the existing
patterns, the multi-ART2 network can be retrained to represent a new pattern according to the following
two cases:

1. The input pattern does not belong to any of the existing categories and needs to be oriented. In
this case, an additional category can be incorporated by adding a new ART2 subnetwork with the
new input data, without any changes in the other ART2 subnetworks.
© 2001 by CRC Press LLC

2. The input pattern is considered to be a specific case of one of the existing categories. In this case,
the new pattern can be merged into the weighted connections with a newly added cell by the new
input data, with no changes in the other cells.

Furthermore, four finer vigilance thresholds �1, �2, �3, and �4 for the four ART2 subnetworks are employed
in place of a single vigilance threshold � which is set to classify all categories for single-ART2 network. By
appropriate setting of their threshold values, �1, �2, �3, and �4 are directed at the respective four categories
of input patterns (a)–(d) so that four specialized classifiers are formed on their feedforward/ feedback weight
connections. The values of the other parameters, such as a, b, c, d, and �, are also chosen for every F1 cell
of each ART2 sub-network so as to enhance the contrast of the information that is correlated with the
corresponding category.

When a new input pattern is presented for classification, the multi-ART2 network carries out parallel
processing and fast searching among the four ART2 subnetworks. The operation of the parallel multi-
ART2 neural network

1. Competition within each subnetwork: each of the four ART2 subnetworks operates for the single-
ART2 network. Hence, only one cell in an F2 sub-layer of a subnetwork is activated, which
represents one of the four patterns (a)–(d);

2. Competition among the subnetworks: when two or more F2 cells from different subnetworks happen
to be activated after Step 1, the F2 cell with the maximum degree of match is the one selected to
represent the corresponding one of the four patterns (a)–(d) as the final result classified by the
multi-ART2 network.

Feature Information

With reference the coherence function for the acceleration signals:

(4.40)

If the concerned frequency range is divided into N1 appropriate bands, �fi � fi � fi�1(i � 1, 2,…, N1),
the maximum value of the coherence function in each band is

(4.44)

An N1-feature vector is thereby extracted from the acceleration signals as

 (4.45)

Ten frequency bands are used, (i.e., N1 � 10). Five are distributed over the chatter range from 0 to
500 Hz with �fi � 100 Hz. One is from 500 Hz to 3 kHz. The remaining four ranges are around the first
natural frequency of the cantilever shank, from 3 kHz to 5 kHz with �fi � 500 Hz, for monitoring the
tool condition. Figure 4.35 presents an example of the increase in the maximum frequency-band value
pertaining to the coherence function of the two acceleration signals corresponding to the onset of chatter.
Different distribution characteristics have been observed for the severe tool wear as well as the simultaneous
onset of chatter and severe tool wear [23].

It has also been found from a careful study of the power spectrum that the AE signal emitted during
the turning operation is more sensitive to chipping, breakage and severe wear of the cutting tool in the
characteristic frequency range of 200 kHz–500 kHz. Hence, the spectrum in this band embodies the
input patterns corresponding to the conditions of the tool. Meanwhile, the AE spectrum in the same
frequency band does not exhibit a consistent relation to the occurrence of chatter. If the power spectrum

� f() Gxz f() � Gx f().Gz f()�

�i max. � f(), f fi 1� ,fi()�[] i 1,2,…,N1�()�

� �1,�2,…,�N1()�
© 2001 by CRC Press LLC

of AE signal is G(f) and the chosen frequency range is separated into N2 equivalent frequency bands,
�fj � fj �fj�1 (j � 1, 2,…, N2), then the relative weighted power ratio in each band is

(4.41)

with

(4.42)

� is the weight, T2 and T1 (T2 � T1) are two threshold constants which can be estimated during sample
runs. T2 and T1 indicate the lower levels of the AE spectrum in normal and abnormal tool conditions,
respectively. Thus, the N2-feature vector extracted from the AE signal is

(4.43)

N2 is set to 10 for the frequency range of 200 kHz–500 kHz, so that �fj � 30 kHz. Based on the
aforementioned vectors of � and �, the N-input feature vector I from both acceleration and AE signals
is assigned as follows:

where N � N1 � N2 is chosen to be 20 in this study.
With the above input feature information from the maximum coherence function of two acceleration

signals and the relative weighted frequency-band power ratio of an acoustic emission signal, the multi-
ART2 network has been found to identify various tool failure and chatter states in turning operations
with more than 93% success rate over a wide range of cutting conditions, compared to that of
71.4%–89.3% obtainable with the single-ART2 neural network (Tables 4.6 and 4.7).

FIGURE 4.35 Frequency band distribution of maximum coherence function (Chatter) Depth of Cut - 2 mm; Feed-
45 mm/min; Speed-72 m/min; Workpiece-S45C; Tool-P10.

�j �G f() f � G f() f j(d
fj 1�

fj

�d
fj 1�

fj

� 1 2,…, N2),� �

�

1.0 G f() T2�,
0.5 T1 G f() T2��,
0.25 G f() T1�,

�

� �1, �2,…,�N2()�

I I1, I2,…, IN()�

 �, �()�

 �1, �2,…,�N1; �1, �2,…,�N2()�
© 2001 by CRC Press LLC

4.7 Conclusions

Tool conditions monitoring is an important component in modern manufacturing environment, in
particular, the machining processes. The chapter presented some simple neural networks architectures
for the application of tool condition monitoring. The approaches presented in the examples illustrates
the use of neural network to identify the tool condition from the input feature vectors. The chapter also
illustrates the important of sufficiently rich feature data to be extracted for successful identification.

TABLE 4.5 Machining Conditions

Cutting Speed
(mm/min)

Feed Rate
(mm/min)

Depth of Cut
(mm)

Workpiece
Material

Tool Type
(Insert)

C1 134 50 1.7
C2 134 70 2.5 S45C P10
C3 95 70 1.7
C4 95 50 2.5
C5 95 100 1.7
C6 134 70 2.0
C7 95 70 2.5
C8 64 50 3.1
D1 85 27 1.0
D2 85 35 2.0 Aluminum K6
D3 70 35 1.0 alloy
D4 70 27 2.0
D5 70 50 1.0
D6 85 27 1.5
D7 70 35 1.5
D8 62 35 2.0

TABLE 4.6 Experimental Results based on Multi-ART2 Network

(Sample Size/Machining Conditions�)

Pattern Categories Training Classification
Recognized Rate

(%)

Chatter 2/C2, C4 16/C2, C4, C7, C8 100
Tool Breakage 4/D1-D4 8/D1-D8 100
Severe Tool Wear 4/C1-C4 8/C1-C8 87.5
Chatter & Tool Wear 2/C2, C4 8/C2, C4, C7, C8 87.5
Normal State 8/C1-C4, D1-D4 16/C1-C8, D1-D8 100
Total (�) 20/C1-C4, D1-D4 56/C1-C8, D1-D8 96.4

TABLE 4.7 Experimental Results Based on Single-ART2 Network

(Sample Size/Machining Conditions�)

Pattern Categories Training Classification
Recognized Rate

(%)

Chatter 2/C2, C4 16/C2, C4, C7, C8 93.8
Tool Breakage 4/D1-D4 8/D1-D8 87.5
Severe Tool Wear 4/C1-C4 8/C1-C8 62.5
Chatter & Tool Wear 2/C2, C4 8/C2, C4, C7, C8 62.5
Normal State 8/C1-C4, D1-D4 16/C1-C8, D1-D8 81.3
Total (�) 20/C1-C4, D1-D4 56/C1-C8, D1-D8 80.4

(�Refer to Table 4.1 for specific machining conditions.)
© 2001 by CRC Press LLC

References

1. Carpenter, G.A. and Grossberg, S., “ART2: Self-organization of stable category recognition codes
for analog input patterns,” Applied Optics, Vol. 26, No. 23, (1987) pp. 4919–4930.

2. Carpenter, G.A. and Grossberg, S., “A massively parallel architecture for a self-organizing neural
recognition machine,” Computer Vision, Graphics, and Image Processing, 37, 54–115, 1987.

3. Chryssoloursis, G. and Domroese, M., “Sensor synthesis for control of manufacturing process,”
J. Engineering for Industry, Trans. ASME, May 1992, pp. 158–174.

4. Cohen, L., “Time-frequency distributions—A review,” Proceedings of the IEEE, Vol. 77, 1989,
pp. 941–981.

5. Coifman, R., Meyers, Y., Quake, S., and Wickerhauser, M.V., “Signal processing and compression
with wavelet packets,” Progress in Wavelet Analysis and Applications, Meyer and Roques Ed.,
Editions Frontieres, Toulouse, France, 1992, pp. 77–93.

6. Colgan, J., Chin, H., Danai, K., and Hayashi, S. R., “On-line tool breakage detection in turning:
A multi-sensor method,” Trans. ASME Journal of Engrg. for Industry, Vol. 116, February 1994,
pp. 117–123.

7. Dornfeld, D. A., “In-process recognition of cutting states,” Int. Journal JSME, Series C, Vol. 37, No. 4,
1994, pp. 638–650.

8. Dornfeld, D. A., “Neural network sensor fusion for tool condition monitoring,” Annals of CIRP,
1990, pp. 101–105.

9. Du, R., Elbestawi, M. A., and Yan, D., “Time-frequency distribution of acoustic emission for tool
wear detection in turning,” Proc. of 4th World Conference on Acoustic Emission, Boston, M.A.,
1991, pp. 269–285.

10. Editors, “Future view: Tomorrow’s manufacturing technologies,” Manufacturing Engineering,
January 1992, pp. 76–88.

11. Emel, E., and Kannatey-Asibu, E., “Tool failure monitoring in turning by pattern recognition
analysis of AE signals,” Trans. ASME J. Eng. Industry, Vol. 110, 1988, pp. 137–145.

12. Fausett, A., “Fundamentals of neural networks, architectures, algorithms, and applications,” Prentice-
Hall International Ltd., 1994.

13. Gui, J.S., “On-line tool failure monitoring of carbide inserts,” B. Eng. Thesis, Department of
Mechanical and Production Engineering, National University of Singapore, 1994/95.

14. Hecht-Nielsen, R., “Neurocomputing,” Addison-Wesley Publishing Company, 1989.
15. Hecht-Nielsen, R., “Theory of backpropagation neural network,” Proc of the Int. Conf on Neural

Networks, I, 593–611, IEEE Press, New York, June 1989.
16. Hong, G.S., Rahman, M., and Zhou, Q., “Using neural network for tool condition monitoring

based on wavelet decomposition.” International Journal of Machine Tools & Manufacture: Design,
Research and Application, 36, no. 5 (1996): 551–556.

17. Hong, G.S., Rahman, M., and Zhou, Q., “Tool condition monitoring using neural network.” In
Proceedings of the 26th International Symposium on Industrial Robots, pp. 455–460. Singapore:
International Federation of Robotics, 4 October 1995.

18. Khanna, T., “Foundations of neural networks,” Addison-Wesley Publishing Company 1990.
19. Kohonen, T., “Self-organization and associative memory” (3rd Edition), Berlin: Springer-Verlag.
20. Lee, K.S., and Gan, C.S., “On the correlation between dynamic cutting force and tool wear,”

International Journal of Machine Tools & Manufacture: Design, Research and Application, Vol. 29,
pp. 295, 1989.

21. Lee, K.S., Lee, L.C., and Teo, C.S., “On-line tool wear monitoring using a PC,” Journal of Materials
Processing Technology, Vol. 29, 1992, pp. 3.

22. Li, X.Q., Wong, Y.S., and Nee, A.Y.C., “A comprehensive identification of tool failure and chatter
using a multi-ART2 neural network,” To be published in ASME Journal of Manufacturing Science
and Engineering.
© 2001 by CRC Press LLC

23. Li, X.Q., Wong, Y.S., and Nee, A.Y.C., “Tool wear and chatter detection using the coherence function
of two crossed acceleration signals,’’ International Journal of Machine Tools & Manufacture: Design,
Research and Application, Vol 4, 1997, pp. 425–435.

24. Lim, C., “Tool wear in milling,” B., Eng. Thesis, Department of Mechanical and Production
Engineering, National University of Singapore, 1995/96.

25. Lim, Y.H.C., “Surface coating for cutting tools,” Ph.D. Thesis, Department of Mechanical and
Production Engineering, National University of Singapore, 1996/97.

26. Matsushima, K., Bertok, P., and Sata, T., “In-process detection of tool breakage by monitoring
the spindle motor current of a machine tool,” ASME Winter Annual Meeting, Phoenix, Arizona,
Nov. 1982, pp. 145–153.

27. Nee, A.Y.C., Wong, Y.S., and Chan, K.Y., “Force pulsations in milling,” Society of Manufacturing
Engineers, Technical Paper, No. MRR78–09, U.S.A. (1978).

28. Niu, Y.M., Wong, Y.S. and Hong, G.S., “An intelligent sensor system approach to reliable tool flank wear
recognition.” To be published in The International Journal of Advanced Manufacturing Technology.

29. Niu, Y.M., Wong, Y.S., Hong, G.S., and Liu, T.I., “Neural-based multi-category classification of tool
conditions using wavelet packets and arts network.” To be published in ASME Journal of Manu-
facturing Science and Engineering.

30. Niu, Y.M., Wong, Y.S., and Hong, G.S., “A comprehensive review on tool condition monitoring
techniques,” TRME-002-CON96, Dept of Mech & Prod Eng, National University of Singapore,
1996.

31. Owen, J.V., “Feedback from the cutting edge,” Manufacturing Engineering, January 1993, pp. 39–45.
32. Rahman, M., Hong, G.S., and Zhou, Q., “On-line cutting state recognition using neural network.”

The International Journal of Advanced Manufacturing Technology (October 1995): 87–92.
33. Rangwala, S., Dornfeld, D. A., “Sensor integration using neural network for intelligent tool con-

dition monitoring,” J. Engineering for Industry, Trans. ASME, Vol 112, Aug., 1990, pp. 219–228.
34. Tansel I. N., Wagiman, A., and Tziranis, A., “Recognition of chatter with neural networks,” Inter-

national Journal of Machine Tools & Manufacture, Vol. 31(4), pp. 539–552, (1991).
35. Tonshoff, H.K., “Development and trends in monitoring and control of machining processes,”

Annals of CIRP, 1988, pp. 611–622.
36. Trent, E.M., “Metal Cutting,” 3rd Edition, Butterworth-Heinemann, Oxford, 1991.
37. Trent, E.M., “Tool wear and machinability,” Journal of the Institute of Production Engineers, Vol. 38,

pp. 105–130.
38. Venkatesh, V.C., and Sathithanandam, M., “A discussion on tool life criteria and total failure causes,”

Annals of the CIRP Vol. 29/1/1980, pp. 19–22.
39. Waschkies, E., Sklarczyk, C., and Hepp, K., “Tool wear monitoring in turning,” Trans. ASME Journal

of Engrg. for Industry, Vol. 116, Nov. 1994, pp. 521–524.
40. Wright, P.K. and Bagchi, A., “Wear mechanisms that dominate tool-life in machining,” Journal of

Applied Metal Working, Vol. 1, No. 4, pp. 15–23, 1981.
41. Wright, P.K. and Trent, E.M., “Metallurgical appraisal of wear mechanisms and processes on high-

speed-steel cutting tools,” Metals Technology, Vol. 1, pp. 12–23, 1974.
42. Chryssoloursis, Domroese, M., and Beaulieu, P., “Sensor integration for tool wear estimation in

machining,” Sensors and Controls for Manufacturing, Vol. 33, ASME Winter Annual Meeting, pp.
115–123.

43. Zhou, Q., Hong, G.S., and Rahman, M., “New tool life criterion for tool condition monitoring
using neural network”. Engineering Applications of Artificial Intelligence, 8, no. 5 (1995): 579–588.

44. Zhou, Q., Hong, G. S., and Rahman, M., “A neural network approach for the on-line diagnosing
of tool wear.” In Proceedings of the IEEE International Conference on Neural Network Applications
to Signal Processing, 17–20 August 1993, pp. 132–137. Singapore, 1993.

45. Zurada, J.M., “Introduction too artificial neural systems,” Info access Distribution Pte Ltd., 1992.
© 2001 by CRC Press LLC

5
Intelligent Real-time

Expert System
Environment in
Process Control

5.1 Introduction
5.2 An Expert Systems Approach
5.3 Real-time Control and Petri Nets
5.4 Overview of Fuzzy Logic

Fuzzy Expert Systems • Fuzzy Control

5.5 Overview of Petri Nets
Fuzzy Petri Nets • Hybrid Petri Nets

5.6 The Continuous Fuzzy Petri Net Concept
5.7 Definition of a Continuous Fuzzy Petri Net

Execution of a Continuous Fuzzy Petri Net • CFPN Places •
CFPN Transitions

5.8 Examples
A Simple Control Example • Dealing with Large CFPN
Networks

5.9 Conclusions

This chapter discusses the fundamental issues in a real-time expert system environment for process
control. A new methodology which integrates Petri Net, fuzzy logic, and real-time expert system called
Continuous Fuzzy Petri Nets (CFPN) is presented. This methodology has already been applied to the
monitoring of an oil refinery processing unit. The major advantage of CFPN is that it provides a novel
approach for engineers to carry out system modeling, operational analysis, process monitoring, and
control. The developed system can relieve the operator from monitoring sensor data information and
allow him to concentrate on the higher level interpretation of process event occurrences.

5.1 Introduction

The process control industries embody a major sector of activities in our modern society. They include
petrochemical, pharmaceutical, pulp and paper, rubber and plastics, food and beverage, glass, metal
industries etc. Efficient and safe operation of these process control systems is mandatory in the advance-
ment of any society or country. Automation of process control plants very often involves automating a
process or a combination of a number of subprocesses that need to be controlled. At the top level of

Grantham K. H. Pang
The University of Hong Kong

Raymond Tang
Esso Petroleum Canada

Stephen S. Woo
Esso Petroleum Canada
© 2001 by CRC Press LLC

operation, a corporate computing system could have all the information of the process, including all the
business and manufacturing aspects. At the middle level, a supervisory computer carries out the network
communications and maintains the database and application. At the lowest level of operation, it consists
of the control and instrumentation layer with instruments to monitor, sense, and manipulate the process
variables. There are many opportunities to introduce artificial intelligence (AI) or expert systems (ES)
into process control, especially at the supervisory host computer level. This level is tightly integrated into
the control layer.

In recent years, many interesting applications for expert systems have been developed and introduced
in process control systems. The applications of intelligent systems could appear in many areas. First,
alarm management is one of them. In a plant environment, either a large quantities of alarms go off at
the same time or no alarms go off. An expert system which would intelligently figure out what is really
causing the problem and what to do about it would be of tremendous benefit in the safety and operational
functioning of a plant. The second important use of an expert system is in scheduling. It is a very tough
problem because it affects all of the other aspects of the plant environment. The problem is particularly
complicated in the batch processing industries where a finite run of one item is followed by a finite run
of another item. Proper scheduling affects the productivity and inventory control of the plant. Thus, it
could have important financial consequences to the operation. The third area is in supervisory control
and optimization. Supervisory control and optimization adjusts the parametric coefficients in the various
traditional control structures throughout the plant. It would require an intelligent system to identify that
there is a need to tune, to reason about which tuning method to employ, and then to go ahead and apply
the new tuning coefficients.

5.2 An Expert Systems Approach

The AI/ES approach to process control is both viable and necessary in many situations. The first is the
existence of manufacturing processes whose behavior does not make them suitable for conventional
techniques. For example, there are system properties which are intractable using a model-based approach
but can be overcome using a rule-based approach. That is, a collection of formulas cannot totally model
the process and allow you to arrive at a solution functionally and analytically. These properties can include
nonlinearities in the dynamics of the process and unreliable or scarce measurements of process variables.
Under such circumstances, a control strategy which relies on mathematical models is often ineffective
and valid in only a narrow range of operating conditions.

Another situation which points to the use of expert systems is when the control of the process mimics
certain qualities that are normally associated with the way human beings function. It may exhibit some
reasoning, based on broad understanding, to focus experience, skill, and knowledge on an aspect of a
problem at just the right time. Also, there is a need to search, which is somewhat related to not being
able to find a closed form analytical solution. Very often, the problem at hand could deal with objects
and relationships between objects. There may be many non-numerical data and associations involved in
the process.

The environmental and safety concerns are crucial in the control of many industrial processes. Three
outstanding incidents that have raised the public awareness are the Three-Mile Island incident, the methyl
isocyanate release at Bhopal, and the nuclear failure at Chenobyl. In some cases, it has been shown that
traditional control schemes have had success in optimizing raw material and energy efficiencies but cannot
fulfill the role of monitoring safety and environmental aspects of a process simultaneously. It has become
evident that the human operator plays an extremely important role in the mitigation of process plant
accidents. However, a typical process plant may include hundreds of interacting units of various types. A
human operator of such a plant could be provided with computer displays of the plant status. The operator
may be responsible for measurement readings and alarm indicators of the order of thousands, or even ten
thousands. Also, the information is presented at a lower level than individual measurements or trend plots
of measurements. The interpretation of these readings and displays is the operator’s responsibility. Hence,
it is clear that the operator suffers from an overload of information.
© 2001 by CRC Press LLC

In process control plants, the human operator is responsible for choosing the operating setpoints
which can affect the quality, safety, and economy of the plant. In addition, he is in charge of the plant
startup, shutdown, load change, and production changes. Of particular significance is the handling of
accidents and emergency conditions. A skillful operator may have years of experience in observing process
behavior and the results of control action. He should be aware of the process equipment failure modes
and the pattern of behavior they induce. The failure of sensors and the consequences on control and
alarm behavior of the control plant is also very important. Very often, there is a trend in the measurement
readings or a pattern of events which leads to an emergency situation. An experienced operator would
be able to detect such a trend or sequence of events and apply the correct actions before the crisis occurs.
In the face of a flood of low-level measurements and alarms, it is very difficult to filter the information
and make the appropriate judgment. An expert systems approach can bring along great benefits in such
a situation.

5.3 Real-time Control and Petri Nets

The field of Artificial Intelligence (AI) now embodies a broad range of tools and techniques that permit
the representation and manipulation of knowledge. With the advancement of both computer hardware
and software, AI will continue to have a profound effect in areas such as process control. In this chapter,
a novel approach called Continuous Fuzzy Petri Net (CFPN) for real-time process control and modeling
is described. Continuous Fuzzy Petri Net combines several paradigms and technologies–Fuszzy control,
Petri nets and real-time expert systems. These three areas are integrated to produce a powerful tool in
the area of real-time process control supervision.

Petri Nets were selected because of its inherent quality in representing logic in an intuitive and visual
way. Brand and Kopainsky [4] discussed the principles and engineering method of process control with
Petri nets. Techniques of fuzzy control was incorporated because it is well known that operators and
engineers often provide inexact knowledge in the form of rules, heuristics, or even conflicting knowledge.
This problem is especially prevalent in the process control industries where plant operation is sometimes
more of an art than a science. Fuzzy logic provides a framework for amalgamating these uncertainties
and ad-hoc techniques into a mathematically-sound method for logical inferencing. Hence, fuzzy control
is appropriate for the process control area of application.

Real-time expert systems form the backbone of this CFPN approach. The issues of real-time expert
system play an important role in setting constraints and providing goals for the proposed Continuous
Fuzzy Petri Net. In particular, knowledge base validity maintenance over time is an important issue. A
method for the aging of assertions based on temporal distance from the present state is adopted as a
means of automatic truth maintenance.

The Fuzzy Petri Net method presented in this chapter was developed for ESSO (Imperial Oil Ltd.) in
Canada. The objective was to provide advanced process monitoring at an oil refinery process in Sarnia,
Ontario. The tool was implemented using the G2 [11] real time expert system, from Gensym Corporation.
G2 is a very powerful expert system development environment for building intelligent real-time appli-
cations. It is an object-oriented and graphical tool, together with a structured natural language. The
physical and abstract aspects of the application can be represented using the G2 objects. The object-
oriented environment allows the user to create new object instances by cloning existing objects or by
defining objects and their properties and behaviors. All objects are organized in a hierarchical class
structure and multiple inheritance is also allowed. The objects have built-in connectability which allows
the developer to connect objects graphically to represent the data and logic flows. This feature allows G2
to represent the Fuzzy Petri Net concept. The set of objects created for CFPN is shown in Fig. 5.1.

Another fundamental feature of G2 is the ability to capture knowledge by creating generic rules,
procedures, formulas, and relationships, that apply across entire classes of objects. The basis of devel-
oping expert systems is that knowledge can be captured and represented in the form of rules. The rules
of G2 work in real time and mimic the human ability to reason on specific situations. The rules can be
data-driven (or event-driven) and get triggered when new measurements are obtained from the process.
© 2001 by CRC Press LLC

Alternatively, rules can be data seeking through backward chaining to invoke other rules, procedures, or
formulas. This goal-driven feature is also implemented in CFPN and it is useful as a trouble-shooting
and diagnostic tool. When the process has deviated from its desirable performance, CFPN helps to
analyze the possible causes of the problem. The graphical objects and generic rules embody the knowl-
edge of the process and its structure. The appropriate rule would be invoked automatically to infer the
causes of the variance in the system operation and the possible causes of the problem and their remedy
procedures.

As a tool for intelligent control, Fuzzy Petri Net can be used in many ways. It can be used to improve
operator decision support. This, in turn, can improve the performance of the plant. For example, the
aim could be an increase of octane content of the petroleum products, which means an increase of yield
and profit. Another aim could be to optimize operations like continuous catalytic reformer (CCR). The
Fuzzy Petri Net can also be used as a diagnostic tool. It can act an assistant to the operator and help to
monitor the operation and trend of hundreds or thousands of sensors and actuators. If it senses an
impending incident (the possibility of an undesirable event is high), it can alert the engineer with a color
coded alarm. Remedy procedures can also be suggested to the operator. Thus, it is seen as an “extra pair
of eyes” against problems.

5.4 Overview of Fuzzy Logic

In 1965, Lotfi A. Zadeh developed the idea of fuzzy logic and fuzzy sets [27]. Developing his ideas further
in 1973, the concept of linguistic variables was introduced [28, 29, 30, 31]. Linguistic variables have
values which are words rather than numbers. For instance, a linguistic variable “speed” may have values
“fast,” “slow,” and “not very fast” and so on. Essentially, fuzzy logic provides a mathematical approach to
dealing with the world which is full of imprecision and vagueness. In combination with fuzzy IF-THEN
rules, the concept has been found useful in dealing with uncertainty in real world tasks.

FIGURE 5.1 CFPN Symbol.
© 2001 by CRC Press LLC

Fuzzy Expert Systems

Many areas of research, such as medical diagnosis and process control, have taken advantage of the use
of expert systems. However, imprecision and uncertainty were found to be an important aspect of these
fields. Thus, traditional expert systems have been evolved to fuzzy expert systems to tackle these prob-
lems.[12]

The method for handling imprecision must be excellent in order for an expert system to succeed in
becoming a useful tool. It has to be simple and natural so that a domain expert, such as a plant operator,
can transform his knowledge into an expert system knowledge-base without difficulty.

Visualization is a powerful method in creating an environment which facilitates the translation from
expert knowledge to expert system. One fuzzy expert system tool which is particularly relevant to this
chapter is CASNET [26]. CASNET is a semantic net-based expert system where each node represents a
state and has an associated certainty factor. There are forward and reverse weights associated with each
node that give the strengths of causation between nodes. These weights correspond to the following
interpretations: sometimes, often, usually, always, etc. Rules attached with a confidence value between
�1 and 1 are used to link observations with states. The CFPN also takes advantage of the visual qualities
in a net-based approach to expert system knowledge representation.

Fuzzy Control

One application area which has caught the attention of fuzzy logic researchers was control systems. Thus,
fuzzy logic control was born and has made fuzzy logic an important and popular research topic. One of
the first industrial applications of fuzzy logic control was F. L. Smidth Corp.’s cement kiln which became
operational in Denmark during 1975 [13]. In a conventional control scheme, what is modeled is the
system or process being controlled, whereas, in a fuzzy logic controller, the focus is on the human
operator’s behavior. Fuzzy controllers adjust the system parameters through a fuzzy rule-base expert
system. The rule-base forms a logical model of the thought processes a human operator might go through
in manipulating the system. In conjunction with the two key processes of fuzzification and defuzzification,
the link between vagueness and exactness is established to make fuzzy logic a practical tool in process
control.

The process of fuzzification is used to evaluate an exact or crisp value to its linguistic equivalent. The
membership function plays a key role in this process. The membership function does not necessarily
represent a probability density function. In fact, it is more of a similarity measure. Although probabilities
may be a good starting point, the shape of the membership function can be quite arbitrary. In practice,
it may often be obtained by gathering information from an experienced operator’s opinion. The mem-
bership functions in practical fuzzy control may need to be fine tuned further to achieve better control.
The reciprocal process of defuzzification brings the vague and imprecise logic of a fuzzy rule-base expert
system back to the exact world of the system it is controlling. The fuzzy rule-base reaches some conclusions
and makes recommendations on how to change the system parameters. Membership functions from
various recommendations are combined and weighted, and through defuzzification, a crisp control value
is obtained. There are various methods for defuzzification. The centroid method is a popular approach,
where the centroid of the various weighted membership functions of all recommendations is taken as
the crisp control value.

5.5 Overview of Petri Nets

Petri Net, as an approach to discrete event system modeling and analysis, has found great diversity and
versatility. Since its creation in 1962 by Carl A. Petri [20], a rich body of knowledge concerning Petri
Net theory and applications has been developed. Petri Nets have been used with varying success in
modeling logic systems in many diverse fields, such as flexible manufacturing systems [16, 32, 6, 33],
software engineering [14, 23, 24, 3], as well as process control and monitoring [22, 4, 1].
© 2001 by CRC Press LLC

The most basic type of Petri Net is referred to as Ordinary Petri Net. It consists of components called
places, transitions, tokens, and arcs. Hence, it is also known as Place/Transition Nets [5,2] Petri Nets
have been applied in many diverse areas, which have prompted many variations and extensions of the
Ordinary Petri Net. Some of the major variations are Color Petri Nets [15], Timed Petri Nets [21],
Stochastic Petri Nets [19], Fuzzy Petri Nets [18, 25, 6, 7, 10] and Hybrid Petri Nets [17].

Fuzzy Petri Nets

Fuzzy Petri Nets [18, 25, 6, 7, 8, 9, 10] have been developed to model uncertainty in a knowledge base
system. Tokens in these approaches represent uncertain assertions with a truth value between zero and
one.

Looney [18] first defined the concept of fuzzy Petri net and applied it for rule-based decision making.
Since that time, various models have been developed. Cardoso et al. [6] have attempted to introduce
uncertainty in the marking of a Petri net with application in the monitoring of Flexible Manufacturing
Systems. They aimed to reduce the combinatorial explosion of the complexity of the Petri net by
considering a larger set of transitions as enabled by a marking with uncertainty.

In the paper by Chen et al. [7], they have developed a fuzzy Petri Net (FPN) which can work as a tool
for real-time expert system modeling. However, CFPN offers more, as it is also useful as a tool for real-
time expert control of both continuous and discrete systems. The fuzzification and defuzzification
elements in the CFPN allows it to do this. The FPN does not include these elements. The FPN of Chen
et al. is capable of dealing with uncertainty, but does not address the final step which is to bring that
uncertainty to a crisp action.

Garg et al. [8] have also made modifications to the original Petri net model which is used for the
representation of a set of fuzzy formulas. The resulting model can be used for automated reasoning and
decision making in a fuzzy environment. However, the model is simple as it only represents knowledge
in the form of propositional or first-order logic. Bugarin and Barro [9] have also proposed a fuzzy Petri
net model for the knowledge representation of fuzzy production rules. Algorithms for the execution of
the fuzzy Petri nets are developed and the process is carried out for the sup-min compositional rule of
inference. A continuous fuzzy Petri net tool was described by Tang et al. [10]. An object-oriented
description of the approach was presented. In this chapter, a formal definition of the Continuous Fuzzy
Petri Net is given.

Hybrid Petri Nets

In the paper by Le Bail, Alla and David [17], a type of Petri Net which combined continuous Petri Nets
with traditional Petri Nets, call Hybrid Petri Nets was introduced. Their approach was based on dividing
a token into smaller units. Therefore, a continuous firing of transitions will build up sufficient of those
smaller units to form one token unit.

In CFPN, the token at a place does not get accumulated. The certainty factor associated with the token
represents the certainty of the assertion associated with the place. The CFPN approach is meant to provide
continuous real-time inferencing. It has the ability to continuously make new inferences as sensor readings
are updated.

5.6 The Continuous Fuzzy Petri Net Concept

In this section, a brief discussion of Continuous Fuzzy Petri Net is given. Continuous Fuzzy Petri Net as
a modeling tool combines the paradigms of Fuzzy Logic and Petri Nets, each having different character-
istics and advantages in one integrated tool. Therefore, a new paradigm that takes advantage of both
approaches, through visual programming, is formed.

The Continuous Fuzzy Petri Net extends from an ordinary Petri net which consists of places, transitions,
arcs, and tokens. In CFPN, places can be used to denote fuzzy propositions or other declarative knowledge.
© 2001 by CRC Press LLC

The presence of a token represents the actual assertion and the degree of which an assertion holds true.
The certainty of an assertion is color coded to provide added visual stimulus to the user. Transitions are
used as functional nodes which can be used to represent linguistic hedges, fuzzification and defuzzification
procedures, as well as logical operations such as AND, OR, and NOT. Arcs are used to interconnect the
elements to form the logical structure of the Continuous Fuzzy Petri Net. Together, they form an intuitive
visual representation of a fuzzy expert control system.

This Continuous Fuzzy Petri Net approach also introduces two important extensions to the Petri Net
concept. These are the addition of a time based pattern matching algorithm for fuzzification and negative
certainty values in the fuzzy logic paradigm.

The implication of the use of continuous to describe this approach is to contrast the difference between
some of the previous work in the area of Fuzzy Petri Nets, where the Fuzzy Petri Net was used as a one-
shot inferencing mechanism for knowledge representation or deals with strictly discrete event systems.
This approach is meant to provide continuous real-time inferencing for the purpose of process control
and modeling. Hence, it has the ability to continuously make new inferences as sensors are updated in
real-time.

5.7 Definition of a Continuous Fuzzy Petri Net

A generalized Continuous Fuzzy Petri Net structure can be defined as a 12-tuple:
CFPN � (P, T, P, I, O, �, �, �, �, �, 	,
), where

P � is a finite set of fuzzy places.
T � is a finite set of fuzzy transitions.
P� is a finite set of propositions.
I � P � T → {0, 1} is an input function that defines the set of directed arcs from P to T.
O � T� P → {0, 1} is an output function that defines the set of directed arcs from T to P.
� � P → {Source, Intermediary, Action, Alarm, Recommendation}

is a mapping of fuzzy place to fuzzy place subclass.
� � T → {AND, OR, MULT, CF, NOT, Buffer, Hedge,

Intensifier, 1 � Fuzzifier, N � Fuzzifier, Defuzzifier}
is a mapping of fuzzy transition to fuzzy transition subclass.

� � P → P is a bijective mapping from fuzzy places to propositions.
� � T → [0, 1] is a mapping of fuzzy transition to a real value between zero and one, denoting a

threshold value.
� � T → {d} is a mapping of fuzzy transition to time delay d, expressed as a time interval.
	 � T � I � O → [�1, 1] is a mapping of fuzzy transition and arc to a real value between zero and

one, denoting a weighting.

 � P → [�1, 1] is a mapping of fuzzy place to a real value between zero and one, and denotes the

certainty value of the place.
P and T define a set of fuzzy-places and fuzzy-transitions, respectively. � maps each fuzzy-place to a
fuzzy proposition. (e.g., “temperature is high”). � and � define, respectively, the threshold and time delay
associated with each fuzzy-transition. These establish a set of basic functions that a fuzzy-transition is
to perform.

The functions I and O establish the presence of fuzzy-arc connections between fuzzy-places and fuzzy-
transitions. 	 defines the weighting of these fuzzy-arcs.

The associated mapping functions � and � determine the particular subclass of fuzzy place and fuzzy
transition which each node (P � T) belongs. These subclasses define the nature of each fuzzy-place and
fuzzy-transition. The symbol F(�) will be used to represent a formula associated to a particular fuzzy-
transition such as min, max, or fuzzify, which will be explained in a later section. These characteristics
of the fuzzy entities provide us with the reasoning power in the CFPN approach.

p1, p2, …, pn{ }
t1, t2, …, tm{ }
1, 2, …, n{ }
© 2001 by CRC Press LLC

 maps each fuzzy-place to a certainty value (or certainty factor, which we will use interchangeably).
When this
 function assigns a certainty value to a fuzzy-place, the corresponding fuzzy proposition
becomes a fuzzy assertion. The certainty value tells us the degree of belief or disbelief we have of the
fuzzy propositions defined in the knowledge base embedded in the Continuous Fuzzy Petri Net. So, in
other words, a fuzzy proposition is simply a logical statement (e.g., “the humidity is low”), about which
we have no idea of its truth or falseness. However, a fuzzy assertion occurs when a fuzzy proposition is
assigned certainty value (e.g., “the humidity is low with a degree of truth of 0.7”). The
 function also
assigns a marking to the Continuous Fuzzy Petri Net and puts a token in a fuzzy-place to denote when
a fuzzy proposition becomes a fuzzy assertion.

Figure 5.1 illustrates the symbols used to represent each type of fuzzy-place (mapped by �) and fuzzy-
transition (mapped by �) within the CFPN approach.

Execution of a Continuous Fuzzy Petri Net

In the CFPN approach, which is similar to Looney’s approach [18], tokens are not consumed when they
are fired. This is in contrast to how they are commonly used in other Petri Net approaches. The presence
of a token in a fuzzy-place denotes a fuzzy assertion. A fuzzy assertion does not become invalid after a
fuzzy-transition fires; therefore, tokens remain within fuzzy-places regardless of the firing state of a fuzzy-
transition. This is necessary because we want to represent the truth states of the system we are modeling
and/or controlling rather then simply providing a reasoning mechanism.

The certainty value of each fuzzy-place is determined by whether or not it is being substantiated. A
fuzzy-place is substantiated by any tokens that are fed into that particular fuzzy-place. Tokens are modeled
as a continuous entity since the CFPN is trying to deal with continuous real-time inferencing. Tokens
are created inevitably at a source place as sensors are updated. Tokens are fed into a fuzzy-place by any
of its input fuzzy-transitions. A fuzzy-transition fires if the absolute value of the certainty factor, evaluated
by the formula governing the behavior of the fuzzy-transition, equals or exceeds the threshold value of
that particular fuzzy-transition. Hence, a fuzzy-place is substantiated by a token if:

where is the certainty value modifier of the fuzzy-transition, feeding the fuzzy-place, and,
F(x(t)) is the formula governing the behaviour of the fuzzy-transition. This function represents the
mathematical or logical function performed by a fuzzy-transition such as min, max, fuzzify, etc. x(t) is
the set of inputs to the fuzzy-transition at time, t, representing the certainty value of tokens feeding a
fuzzy-transition from all of its inputs. However, note that transitions such as buffer, not, intensifier, hedge
and the fuzzifier have only one input. is the threshold of the fuzzy-transition

While a fuzzy-place is being substantiated, the certainty value of a fuzzy-place is given by:

for one or more fuzzy-transition inputs. represents the modifier of the fuzzy-arc connecting
a fuzzy-transition to the fuzzy-place and d is the delay of the transition with the rest defined
as above.

When a fuzzy-place is not substantiated by any fuzzy-transition output, the certainty of is given
by:

where Age(�) is a formula governing the aging process of the fuzzy-place and was the time the
fuzzy-place was last substantiated. The current time t will always be greater then or equal to The
formula Age(�) is defined such that (t) � , for t � and (t) � for t � That
is Age(�) is a non-increasing function of time. In effect, the Aging function determines the certainty value

	 ti() F� x t()() � ti()�

	 ti() ti()

� ti() ti.
pj

j t d�() 	 ti pj�()	 ti() F� x t()()�

	 ti pj�()
ti pj, ti,

pj pj

j t() Age
j to(), t to�()�

pj to

pj to.

j
j to() to
j
j t1(), t1.
© 2001 by CRC Press LLC

of a token that has been put into a fuzzy-place. While a fuzzy-place is being substantiated, we can view
the situation as a token continuously replacing an old one, thereby resetting to to the current time
continuously. (e.g., t �)

CFPN Places

The mapping function � determines the nature of a fuzzy-place within the Continuous Fuzzy Petri Net
framework. Each place has a certainty factor associated with it and this represents the degree of truth or
disbelief we have about a certain fuzzy assertion or state. The CFPN approach assigns a color to the
associated token within each of these places to reflect the certainty to take advantage of the visual quality
of Petri Nets. A different color coding scheme is used for each type of fuzzy-place. For example, inter-
mediary places may have a color scheme that range from white through grey to black, while an alarm
place may have a color scheme that range from green through yellow to red.

Source Place

This type of fuzzy-place is used to collect real time sensor data. Its certainty indicates the freshness of
the data. As sensor readings are obtained, the certainty of a fuzzy-source is set to fuzzy-source places are
the input interfaces of the CFPN to the external world.

Intermediary Place

The intermediary place is used to denote general fuzzy assertions and intermediary fuzzy assertions which
may be used in combination to make conclusions. The certainty indicates the degree of truth of the
assertion.

Action Place

The action place is used to store the results from a defuzzifier transition and specifies a particular control
output value that should be sent to an actuator. This type of place is the output interface of the CFPN
to the external world. This completes the final step in the aim of using CFPN to encompass fuzzy control
from sensor gathering, through inferencing, to control decisions.

Alarm Place

The alarm place is used to assert fuzzy propositions that can be construed as an alarm condition (e.g.,
“the boiler is overheating”). The certainty factor indicates the degree of truth of the alarm condition. Also,
a graded belief of an alarm condition can be used as a sort of early warning system, such that an alarm
condition can be seen to develop (and action can be taken immediately) rather than wait until a full
fledged alarm condition has occurred.

Recommendation Place

The recommendation place is used to make recommendations (e.g., “set valve high”) to a defuzzifier
transition. The certainty indicates the confidence of the particular action we are recommending. These
objects are usually connected to a defuzzifier transition. As a tool for a practical application, it was
found that it was necessary to define a reasonable action for all possible logical states. For example, we
have a recommendation with a positive certainty to “set value high.” If the statement is “do not set value
high,” it does not necessarily mean we actually want it to be set to anything in particular. That is, the
certainty factor of that case is zero, while a negative certainty factor would have meant some particular
action to take place. Each recommendation place also has a membership function associated with it.
The membership function determines the range of valid control values for that recommendation and
is required for the defuzzification process.

CFPN Transitions

The function F(�) governing the behavior of a fuzzy transition is determined by the mapping function
�. The actual functions for each of the possible mappings are described in this section.

to
© 2001 by CRC Press LLC

AND Transition

This type of fuzzy-transition is used to form logical AND constructs for a fuzzy rule base. It uses the
minimize function to model this behavior. That is, the lowest certainty value of all input fuzzy-places is
obtained as the resultant certainty.

The AND transition function is defined as:

F(x(t)) � min(x(t))

where x(t) is the set of inputs to the fuzzy-transition at time, t, representing the certainty value of tokens
feeding a fuzzy-transition from all of its inputs. Each component of x(t), is defined as
 � 	(I(
�)) with being an input fuzzy-place to the fuzzy-transition

OR Transition

The OR transition is used to form logical OR constructs for a fuzzy rule base. The maximize function
is used to model this behavior. The highest certainty value of all input fuzzy-places is obtained as the
resultant certainty.

The OR transition function is defined as:

F(x(t)) � max(x(t))

with x(t) defined as previously.

MULT Transition

The MULT transition is used to multiply all input certainty values which can be used to represent
conditional probabilities. This is an alternative definition for the logical AND condition. Depending on
the purpose of their application (i.e., to base the conclusion on either the conditional probabilities or
the MYCIN approach), one would choose between these two types of AND transitions.

The MULT transition function is defined as:

where (t) is the certainty value of each input fuzzy-place weighted by their connecting fuzzy-arcs. Each
(t) is defined as a component in x(t) and n is the number of components.

CF Transition

This transition is used as a certainty factor (CF) combiner (from which its name is derived). It is used
to combine positive and negative evidence for a fuzzy assertion. The algorithm adopted allows any number
of fuzzy conditions whose certainty can range from �1 to 1, to be combined to form a resulting fuzzy
assertion with certainty within a range of �1 to 1. All positive evidence strengthens the measure of belief
(as do negative evidence for the measure of disbelief).

Just as the MULT transition is an alternative model for a logical AND operator, the CF transition can
be used as an alternative model for a logical OR. This type of fuzzy-transition is appropriate in modeling
fault detection rules. Often, a fault condition depends not only on the strength of a single condition but
upon several highly coupled conditions. One condition may add confidence to another while others may
reduce the degree of confidence to form a combined level of confidence.

The CF transition function is defined by the following algorithm:

1) MB � 0
2) MD � 0
3) for all (t) � 0 {MB � MB � (t) � MB � (t)}
4) for all (t) � 0 {MD � MD � � MD � }
5) CF � (MB � MD)

xi, pi() pi

tj pi tj.

F x t()() �i�1
n xi t()�

xi

xi

xi xi xi

xi xi t() xi t()
© 2001 by CRC Press LLC

where (t) is the certainty value of tokens of each input fuzzy-place weighted by their connecting fuzzy-
arcs. Each (t) is defined as x(t) in the AND-transition. MB and MD represent the intermediate level
of belief and disbelief of a fuzzy assertion. The difference between these two values is the actual certainty
value (or degree of truth) of the fuzzy assertion we are deducing.

Buffer Transition

The buffer transition allows only one input place. This transition simply passes the certainty value it
receives from an input fuzzy-place to its outputs after applying the usual modifiers and fuzzy-transition
actions.

The buffer transition function is defined as:

F(x(t)) � x(t)

where x(t) is defined as in the AND-transition. It can be used to model simple time delay or certainty
factor modifier like an arc.

NOT Transition

This type of transition is used to model logical NOT constructs for a fuzzy rule base. It also allows only
one input place.

The NOT transition function is defined as:

F(x(t)) � (1 � �x(t)�) � sign(x(t))

where x(t) is defined as in the AND-transition.

Intensifier Transition

An intensifier transition is used to apply a contrast intensifier upon input certainty values. This serves
to increase the strength of the certainty value when beyond a threshold value (i.e., 0.5), but decrease it
when below this threshold. Essentially, it serves to create a steeper slope on membership functions,
bringing it closer to traditional bi-level logic. That is, it has the effect of reducing the fuzziness of an
assertion. Like the Buffer transition, an intensifier allows only one input fuzzy-place.

The intensifier transition function is defined as:

where x(t) is defined as in the AND-transition.

Hedge Transition

The hedge transition is used to apply linguistic hedges (e.g., “very,” “slightly”) to fuzzy assertions. This is
accomplished by multiplying the magnitude of the incoming certainty value by a power factor. This
transition allows only one input fuzzy place.

The hedge transition function is defined as:

where x(t) is the certainty value of each token in each input fuzzy-place weighted by their connecting
fuzzy-arcs. � is the power factor attribute of the fuzzy hedge transition, where � � 0.

1-Fuzzifier Transition

A 1-fuzzifier transition contains a fuzzy membership function which can be used to map a single sensor
data value to a certainty factor.

xi

xi

F x t()() 2 x t()2 sign x t()(), for 0.0 �x t() 0.5�����

F x t()() (1 2 1 x t())2
�()�() sign x t()()�� , for 0.5 �x t() 1.0���

F x t()() x t() � sign x t()()��
© 2001 by CRC Press LLC

The 1-Fuzzifier transition function is defined as:

where (�) is a membership function of a fuzzy set F, Val() is the data value of the input fuzzy-source
place . x(t) is defined as in the AND-transition and it can be used to model sensor uncertainty.

N-Fuzzifier Transition

These transitions contain a pattern and a tolerance value for each data point in a reference pattern. Each
point of the reference pattern is compared with our historical data, with each point being evaluated for
its similarity to this reference pattern and combined with equal weighting to form a single membership
rating from 0 to 1. This evaluation also checks for partial matching of the reference pattern to detect
conditions that maybe building up to the situation which we are trying to detect with our reference
pattern. This is a very important function, as it allows the CFPN to provide a sort of early warning
method, by producing a certainty factor evaluation which gradually increases as the data pattern becomes
a closer match to the reference pattern. Figure 5.2 illustrates this procedure.

The N-Fuzzifier transition function is defined as:

where (�) is a membership function for each reference point q(i). The pattern q has n data points.
w(i) is the i�th data point of the input fuzzy-source place. The max operator is used to represent the
operation of shifting the reference pattern over the data points. Both the pattern and data points are
stored in an array. The array is matched as is, and then shifted by one point to check for gradual matching
up to the present time t.

FIGURE 5.2 N-Fuzzifier Pattern Matching Procedure.

F x t()() �F Val pi()() x t()��

�F pi

pi

F x t()() maxj�0
t �

q i()
w i j�()()t

i�t�n�1�
n

x t()��

�q i()
© 2001 by CRC Press LLC

Defuzzifier Transition

The defuzzifier transition is used to defuzzify recommendations for actions deduced from a fuzzy rule
base. Fuzzy assertions are converted into crisp control output values through a defuzzifer transition.
Defuzzifiers must have at least one fuzzy-recommendation and one fuzzy-action place connected to it
in order to operate properly.

A special case occurs when (t) is a negative number. In order for the CFPN to provide a concise
method for representing control actions such as “set valve to not low,” as well as reconciling the incor-
poration of a measure of disbelief, negative certainty factors were used to model this behavior. We
propose that when a defuzzifier transition receives a recommendation with a negative certainty, the
formula 1 � should be used in place of the normal membership function defined for an input
fuzzy-recommendation. This provides us with a logical and consistent method for extending the fuzzy
logic paradigm to include �1 to 1 logic. Figure 5.3 illustrates this procedure.

The control output value is calculated as:

where D is the domain of discourse, which is the continuous range of possible real values from which
crisp values are to be mapped onto fuzzy sets. g(y) is defined as , over all input fuzzy-
recommendation places. (y) is the membership function of a recommendation such as “set power
high” and (t) is the certainty of the i�th recommendation, thus it is used as a weighting factor on the
membership function associated with that recommendation. (t) is defined as in the AND-transition.

FIGURE 5.3 Defuzzifying with Negative Certainty Values.

xi

�F �F

y g y() � yd
D

�

g y() yd
D

�

� �Fi y() xi t()�()
�Fi

xi

xi
© 2001 by CRC Press LLC

5.8 Examples

A Simple Control Example

This example illustrates how one might develop an application from input sensor values to control output,
by combining various logic elements of the CFPN approach to form a fuzzy rule-base. Objects such as
the Buffer transition and the OR transition are introduced. Fuzzy-recommendation places, a Defuzzifier
transition and an Fuzzy-action place are also used in the example to illustrate the control aspect of the
Continuous Fuzzy Petri Net.

The CFPN constructed for this example represents the following two rules:

IF the temperature is low OR
the pressure is increasing as (0,1, 2, 3, 4, 5) then
set power to high

and another rule

IF the temperature is high then
set power to low

Referring to Fig. 5.4, the readings of the temperature and pressure sensors are simulated by a sawtooth
waveform which varies from 0 to 10 units. The temperature sensor (source place) feeds into two different
1-fuzzifiers: temperature high and temperature low. A simple linear mapping of the temperature values
to a certainty factor is done by each of these two fuzzifier transitions. The N-fuzzifier transition attempts
to match the pressure sensor reading to a reference pattern which varies as (0, 1, 2, 3, 4, 5). Each of the
recommendation places, power-low and power-high, contains a membership function which determines
what is considered as a low and high power setting, respectively. For the power-low setting, a triangular
membership function where the power setting of 0 has a certainty of 1.0 and a power setting of 10 has

FIGURE 5.4 A Simple Control Example.
© 2001 by CRC Press LLC

a certainty of 0.0 is defined. The membership function of the power-high setting is simply the reverse
with a power setting of 0 having a certainty of 0.0, and a setting of 10 having a certainty of 1.0.

The DISPLAY-PANEL shows the temperature and pressure sensor readings, along with their corre-
sponding certainty values for each fuzzy assertion. The last graph in this example shows the control
output (power setting) produced by this fuzzy rule-base.

Dealing with Large CFPN Networks

For a large industrial process, one may be faced with the problem of constructing a large CFPN to model
the complex process control and diagnostic knowledge-base. To combat this problem, a separate window
can be used to hold each fuzzy rule.

Within the G2 framework, a large Continuous Fuzzy Petri Network can be subdivided into several
workspaces. Various “windows” can be used to access these workspaces. Some may be used to hold alarm
conditions and sirens or to access other sub-windows. Figure 5.5 illustrates how this windowing structure
operates. In this example, the CFPN is divided into six sub-workspaces or “windows” (four of which are
shown). In addition, a STATUS-WINDOW is used to access these sub-workspaces and to hold any alarms
created by the fuzzy rule-base represented by the CFPN. The CFPN has also been used for the monitoring
of a Waste Effluent Treatment System (WETS) was developed at an ESSO oil refinery site in Sarnia, Ontario,
Canada. The objective was to provide an enhanced detection and response system so as to avoid any
reportable environmental incidents. A component of WETS, an Oily Water System, is shown in Fig. 5.6.

5.9 Conclusions

In this chapter, an intelligent real-time expert system environment based on the Continuous Fuzzy Petri
Net (CFPN) is described. The CFPN concept has been implemented using the G2 real-time application
development tool. G2 is a powerful tool ideal for the application due to its object-oriented and graphical
tools, as well as the features of concurrent real-time execution, real-time rules, and structured natural
language that support rapid prototyping. A formal definition of the Continuous Fuzzy Petri Net is

FIGURE 5.5 Sub-Windows for large CFPN networks.
© 2001 by CRC Press LLC

presented. The execution and the function of the various components of the Continuous Fuzzy Petri Net
are described. A time based pattern matching algorithm for fuzzification is also given. In addition, negative
certainty values in fuzzy logic has been introduced as well as a method for handling negative certainty
values in the defuzzification process.

A simple control example, using a Continuous Fuzzy Petri Net, is presented to illustrate the concepts
developed in this chapter. ESSO Canada Ltd. has adopted the CFPN approach and has integrated it
successfully with their refinery process monitoring system in Sarnia, Ontario, Canada. The Continuous
Fuzzy Petri Net has addressed areas not covered by previous work on Fuzzy Petri Nets and it operates on
a different level of logic compared to David and Alla’s Continuous Petri Nets. Hence, the development of
CFPN has made a contribution to the field, especially in that it has been used in a real industrial setting.
Indeed, CFPN has provided significant insight into the understanding of the dynamics of the system at
ESSO and has helped them to develop a process diagnostic system for the monitoring of an oil refinery.

The Continuous Fuzzy Petri Nets approach is a new direction in Petri Net development. It combines
the flexibility of fuzzy logic and the graphical nature of Petri Nets to form a tool which can be useful for
monitoring, diagnosis, decision support, and intelligent control.

References

1. K-E. Årzén, Grafcet for intelligent real-time systems, In Proceedings of 12th IFAC World Congress,
Vol.4, pp. 497–500, Sydney, Australia, July 1993.

2. R. Y. Al-Jaar and A. A. Desrochers, Petri Nets in Automation and Manufacturing, In G.N. Saradis
(ed), Advances in Automation and Robotics: Knowledge-Based Systems for Intelligent Automation,
Vol. 2, pp. 153–225, Greenwich, Connecticut, JAI Press, Inc., 1990.

FIGURE 5.6 Oily water system.
© 2001 by CRC Press LLC

3. M. Baldassari and G. Bruno, PROTOB: An Object Oriented Methodology for Developing Discrete
Event Dynamic Systems, In K. Jensen and G. Rozenberg (eds), High-level Petri Nets: Theory and
Application, Springer-Verlag, pp. 624–648, 1991.

4. K. P. Brand and J. Kopainsky, Principles and engineering of process control with petri Nets, In IEEE
Transactions on Automatic Control, Vol. 33 No. 2, pp. 138–149, Feb., 1988.

5. W. Brauer, W. Reisig, and G. Rozenberg (eds.), Advances in Petri Nets 1986, (Parts I and II), Petri
Nets: Central Models and Their Properties and Petri Nets: Applications and Relationships to Other
Models of Concurrency. Proceedings of an Advanced Course, Bad Honnef, Germany, Sept. 8–19, 186.
Lecture Notes in Computer Science, Vol. 254 and 255, Springer-Verlag, New York, 1987.

6. J. Cardoso, R. Valette, and D. Dubois, Petri nets with uncertain markings, In G. Rozenberg (ed.),
Advances in Petri Nets, Lecture Notes in Computer Science, Vol. 483, Springer-Verlag, pp. 65–78,
1990.

7. S. M. Chen, J. S. Ke, and J. F. Chang, Knowledge Representation Using Fuzzy Petri Nets, In IEEE
Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, Sept. 1990.

8. M. L. Garg, S. I. Ahson, and P. V. Gupta, A fuzzy Petri net for knowledge representation and reasoning,
Information Processing Letters, 39, pp. 165–171, 1991.

9. A. J. Bugarin and S. Barro, Fuzzy reasoning supported by Petri nets, IEEE Trans. on Fuzzy Systems,
Vol. 2, No. 2, pp. 135–150, May 1994.

10. Tang, R., G. K. H. Pang, and S. S. Woo, A Continuous Fuzzy Petri Net Tool for Intelligent Process
Monitoring and Control, IEEE Trans. on Control Systems Technology, Vol. 3, No. 3, pp. 318–329,
Sept. 1995.

11. G2 Reference Manual, G2 Version 3.0, Gensym Corp., 125 CambridgePark Drive, Cambridge MA
02140, U.S.A, 1992.

12. L. O. Hall and A. Kandel, The Evolution from Expert Systems to Fuzzy Expert Systems, In A. Kandel
(ed.), Fuzzy Expert Systems, CRC Press, Boca Raton, 1992.

13. P. Holmblad and J-J. Stergaard, Control of a Cement Kiln by Fuzzy Logic, In M. M. Gupta and
E. Sanchez (eds.), Fuzzy Information and Decision Processes, Amsterdam, North-Holland, pp.
398–399, 1982.

14. G. S. Hura, H. Singh, and N. K. Nanda, Some design aspects of databases through Petri Net modeling,
In IEEE Transactions on Software Engineering, Vol. 12 No. 4, pp. 505–510, April 1986.

15. K. Jensen, Coloured Petri Nets and the invariant method, In Theoretical Computer Science, Vol. 14,
pp. 317–336, Springer-Verlag, 1981.

16. E. Kasturia, F. DiCesare, and A. Desrochers, Real time control of multilevel manufacturing systems
using colored petri nets, In IEEE Int’l Conference on Robotics and Automation, pp. 1114–1119, 1988.

17. J. Le Bail, H. Alla, and R. David, Hybrid Petri Nets, In Proceedings of 1’st European Control Conference,
Grenoble, France, July 1991.

18. C. G. Looney, Fuzzy Petri Nets for Rule-Based Decision making, In IEEE Trans. on Systems, Man,
and Cybernetics, Vol. 18, No. 1, pp. 178–183, Jan/Feb 1988.

19. S. O. Natkin, Les reseaux de Petri stochastiques et leur application a l’evaualtion des systems infor-
matiques, These de Docteur-Ingenieur, Conservatoire National des Arts et Metiers (CNAM), Paris,
June 1980.

20. C. A. Petri, Kommunikation mit Automaten, Ph.D. dissertation, University of Bonn, Bonn,
West Germany, 1962.

21. C. Ramachandani, Analysis of asynchronous concurrent systems by timed Petri Nets, Ph.D. disserta-
tion, Dept. of Electrical Engineering, MIT, Cambridge, MA, Sept. 1973.

22. W. H. Ray, Advanced Process Control, McGraw-Hill, New York, 1981.
23. W. Reisig, Petri Nets for software engineering, In Petri Nets: Applications and Relations to Other

Models of Concurrency, Springer-Verlag, Berlin, pp. 63–96, 1986.
24. W. Reisig, Petri Nets in Software Engineering, In W. Brauer, W. Reisig and G. Rozenberg (eds), Petri

Nets: Applications and Relationships to Other Models of Concurrency, Springer-Verlag, New York,
pp. 63-96, 1987.
© 2001 by CRC Press LLC

25. R. Valette, J. Cardoso, and D. Dubois, Monitoring manufacturing systems by means of Petri nets with
imprecise markings, In Proceedings of the IEEE Int’l Symposium on Intelligent Control 1989, pp.
233–238, Albany, New York, Sept. 1989.

26. S. M. Weiss and C. A. Kulikowski, Representation of expert knowledge for consultation: the CASNET
and EXPERT projects, In P. Szolovits (ed), Artificial Intelligence in Medicine, AAAS Symp. Series,
Westview Press, Boulder, CO, 1982.

27. L. A. Zadeh, Fuzzy Sets, In Information and Control, V. 8, pp. 338–353, 1965.
28. L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, In

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, pp. 28–44, 1973.
29. L. A. Zadeh, The concept of a linguistic variable and its applications in approximate reasoning—Part 1, In

information Sciences, Vol. 8, pp. 199-249, 1975.
30. L. A. Zadeh, The concept of a linguistic variable and its applications in approximate reasoning—Part 2, In

information Sciences, Vol. 8, pp. 301-357, 1975.
31. L. A. Zadeh, The concept of a linguistic variable and its applications in approximate reasoning—Part 3, In

information Sciences, Vol. 9, pp. 43-80, 1975.
32. W. X. Zhang, Representation of assembly and automatic robot planning by petri net, In IEEE Trans.

on Systems, Man, and Cybernetics, Vol. 19 No. 2, pp. 416–422, March/April 1989.
33. M. C. Zhou, F. DiCesare, and D. Rudolph, Control of a flexible manufacturing system using petri

nets, In 1990 IFAC Congress, Vol. 9, pp. 43–48, Tallinn, USSR, 1990.
© 2001 by CRC Press LLC

6
Adaptive Neuro-Fuzzy

Control Methods for
Milling Operations in

Manufacturing Systems

6.1 Introduction
6.2 Adaptive Control System for Milling Operations
6.3 Adaptive Neuro-Fuzzy Control of Milling

Operations
Milling Controlled Process • Neuro-Fuzzy Logic Controller
• Learning Algorithm for the Neuro-Fuzzy
Logic Controller

6.4 Computer Simulation and Experimental
Verification
Computer Simulation • Experimental Results
and Discussion

6.5 Conclusions

In this chapter, an adaptive neuro-fuzzy control system is developed and then applied to control milling
processes with non-linear and time-varying cutting characteristics. First, a neuro-fuzzy logic controller
is employed to obtain a constant milling force under varying cutting conditions. To obtain optimal
control performance, a learning algorithm is used to tune the weights of the fuzzy rules. It is shown that
the developed neuro-fuzzy logic controller can achieve an automatic adjustment of feed rate to optimize
the production rate with a constant cutting force in milling operations.

6.1 Introduction

Increasing the productivity of machine tools is a principal concern for the manufacturing industry. In
recent years, computer numerical control (CNC) has made great progress to increasing the productivity
of machine tools [1]. However, a common drawback for CNC technology is that the selection of cutting
parameters in the numerical control program is not straightforward, depending greatly upon the well-
experienced programmers. To avoid the occurrence of a broken tool, poor surface accuracy, or varying
cutting conditions, conservative cutting parameters are usually chosen in the whole machining cycle so
as to reduce the productivity of CNC machine tools. Therefore, the use of an adaptive control system
for adapting the cutting parameters to the cutting conditions is required [2]. However, machining

Y. S. Tarng
National Taiwan University
of Science and Technology

N. T. Hua
National Taiwan University
of Science and Technology

G. J. Huang
National Taiwan University
of Science and Technology
© 2001 by CRC Press LLC

processes contain complicated, non-linear, and time-varying characteristics due to the interaction of the
dynamics of the chip-removal process, the structural dynamics of the machine tool, and the dynamics
of the machine tool driver. Hence, the design of the adaptive controller in machining operations with
high control performance is a difficult task even using various forms of modern adaptive control algo-
rithms [3-6].

During the past decades, fuzzy control has been proven to be a powerful tool for dealing with
complicated, non-linear, and time-varying systems [7]. This is because the fuzzy control action is based
directly on the linguistic rules acquired from the knowledge of experts and expressed mathematically
through the theory of fuzzy sets [8]. As a result, the fuzzy control can simulate the control action that
a human expert would take when controlling the given process. The fuzzy control has also been applied
to the control of milling operations [9]. However, there are some drawbacks to the approach using
the fuzzy control. First, the fuzzy control design has relied on a priori knowledge of human experts
and, thus, the controller performance is dependent on the quality of this expertise. Second, a reliable
linguistic rule for the controlled process may not always be obtainable. Third, some significant process
changes may be outside the operator’s experience and the design procedure appears to be limited by
the elucidation of the heuristic rules. Furthermore, evaluation and tuning of the fuzzy logic controller
are typically done by a time-consuming trial and error manner. To solve these problems, an adaptive
neuro-fuzzy logic controller has been proposed in this study. The adaptive neuro-fuzzy controller has
a learning algorithm and is capable of modifying linguistic rules based on an evaluation of the system
performance [10]. As a result, the proposed controller can start from an empty linguistic rule base.
The modification of linguistic rules is achieved by assigning a credit to the control action based on
the present control performance. Milling processes with varying depths of cut [11] are the controlled
plant used in this study. It is shown that an optimal neuro-fuzzy logic controller can be obtained by
a learning process to achieve an on-line adjustment of feed rate in milling operations with a constant
cutting force.

In the following sections, an overview of the adaptive control of milling operations using the adaptive
neuro-fuzzy control is described first. A milling process model used as the controlled plant is described
next. Then, the development of the adaptive neuro-fuzzy control in milling operation with a constant
cutting force is described. Finally, computer simulation and experimental verification of the adaptive
neuro-fuzzy control system in milling operations are shown.

6.2 Adaptive Control System for Milling Operations

Basically, the use of an adaptive control system with a constant cutting force in milling operations
is to achieve an automatic on-line adjustment of feed rate for optimizing the production rate. Usually,
during the milling process, the radial or axial depth of cut increases; correspondingly, the cutting
force increases also or even exceeds the preset constant cutting force. It is expected that the control
system senses this increase and immediately generates a smaller feed rate to avoid tool breakage. On
the other hand, as the radial or axial depth of cut decreases, the cutting force will decrease below the
preset constant cutting force. Under this condition, the control system senses this decrease and
automatically generates a larger feed rate to maintain the preset constant cutting force with a higher
cutting efficiency.

In reality the definition, such as that for the larger or smaller feed rate, contains a certain degree of
uncertainty and vagueness. Furthermore, machining processes contain highly non-linear, time-varying
and complex characteristics. Therefore, designing the adaptive control system for machining operations
is a challenging task. It has been shown that the adaptive neuro-fuzzy control not only has the better
potential for controlling non-linear, time-varying, and complex system, but also is a very effective tool
for dealing with an uncertain and vague system [12]. Therefore, an adaptive neuro-fuzzy control system
has been proposed and developed for the control of milling operations in the present study.
© 2001 by CRC Press LLC

6.3 Adaptive Neuro-Fuzzy Control of Milling Operations

The overall block diagram of the adaptive neuro-fuzzy control system in milling operations is shown in
Fig. 6.1. It is shown that the measured cutting force Fc is compared with the reference cutting force Fr

from which the error of the cutting force � and the change of the cutting force CF are obtained. These
two signals, E and CF, are then sent into the neuro-fuzzy logic controller for generating the change of the
feed rate . In addition, these two signals are also used to tune the structure of the neuro-fuzzy logic
controller for improving the control performance in milling operations. The feed rate U is calculated based
on the change of the feed rate . Therefore, an integral control action is generated to eliminate the
steady state force error and then the measured cutting force Fc is equal to the reference cutting force Fr .
However, the feed rate U must be constrained to a finite value to prevent an excessive cutting force
breaking the cutting tool. Therefore, the maximum feed rate Umax is used if the feed rate U is greater
than Umax. The determined feed rate, which is called the command feed rate Ucom, is sent directly to the
machine tool driver system for producing the real feed rate Vf. The cutting tool then proceeds with the
real feed rate Vf to cut a workpiece and to generate the measured cutting force Fc again. Hence, an on-
line adjustment of feed rate to maintain the constant measured cutting force Fr under varying cutting
conditions, can be achieved based on this control system.

Milling Controlled Process

For the machine tool driver shown in Fig. 6.1, the transfer function between the command feed rate
Ucom, and the real feed rate Vf can be expressed as:

(6.1)

where Kn is the gain of the servo; �n is the natural frequency of the servo; � is the damping ratio of the
servo; and s is the variable of the Laplace transform.

The feed per tooth ft in the milling process can be expressed as:

(6.2)

where m is the number of teeth and N is the spindle speed (rpm).

FIGURE 6.1 Block diagram of the adaptive neuro-fuzzy control system in milling operations.

�U

�U

Vf s()
Ucom s()

Kn

s/�n()2 2� s/�n() 1� �
--�

ft

Vf

Nm
---------�
© 2001 by CRC Press LLC

The chip thickness h on each cutting edge, varying not only by the rotation position of the cutting
edge but also by the cutter run-out, can be expressed as:

(6.3)

where �i is the rotation angle of the i-th cutting edge, ri is the radius of the i-th cutting edge, and hi is
the over-cut chip thickness for the i-th cutting edge, which can be expressed as:

(6.4)

The tangential force and the corresponding radial force acting on the cutting edge can be expressed as:

(6.5)

(6.6)

where b is the axial depth of cut and kr is the ratio of the tangential force and radial force.
The cutting forces acting on the cutting edge in the X and Y directions can be obtained by decomposing

the tangential force Ft and radial force Fr into the X and Y directions:

(6.7)

(6.8)

Then, the cutting forces in the X and Y directions with multiple cutting edges can be expressed as:

(6.9)

(6.10)

and

(6.11)

where m is the number of teeth on the cutter, �s is the start angle of cut, and �e is the exit angle of cut.
Basically, the start angle of cut �s and the exit angle of cut �e are a function of the radial depth of cut

and the geometry of workpiece. Finally, the resultant cutting force Fc can be expressed as:

(6.12)

h
ft �isin ri rr	1	() hi if ft �isin ri ri	1
�� �

0 if ft �isin ri ri	1��

�

hi ft �isin ri	 j ri	 j	1	 until ft �isin ri	k ri	k	1 0
	��
j �1

k

��

Ft ksbh�

Fr krFt�

Fx �i() Ft �icos Fr �isin��

Fx �i() 	Ft �isin Fr �icos��

FX i()Fx �i()�
i�1

m

��

FY i()Fy �i()�
i�1

m

��

� i() 1 if �s �i �e��

0 otherwise

�

Fc FX
2 FY

2
�()1/2

�

© 2001 by CRC Press LLC

From Eqs. (6.1) through (6.12), it can be seen that the transfer function of the controlled process between
the resultant cutting force F and the command feed rate Ucom contains complicated, non-linear, and time-
varying characteristics. The change of cutting parameters such as axial depth of cut b, spindle speed N,
and radial depth of cut varies the open-loop gain of the controlled process. Since the performance of the
control system (Fig. 6.1) is characterized by the open-loop gain of the controlled process, any variation
in these parameters will directly affect the control system response and might even cause instability.
Therefore, the use of the neuro-fuzzy logic controller for improving control performance under variations
of these cutting parameters will be discussed next.

Neuro-Fuzzy Logic Controller

The neuro-fuzzy logic controller developed in this study is composed of a number of fully interconnected
nodes and well organized into four layers (i.e., input layer, membership layer, rule layer, and output layer).
Nodes on the first layer are used to receive and normalize the physical inputs of the controller by the scaling
factors. The normalized physical inputs are then fuzzified by the membership functions in the second layer.
Next, the third layer performs a fuzzy reasoning on control rules to generate an inference output on each
rule. Each inference output has its corresponding weight in the output layer. Finally, the weighted inference
outputs are summed to produce the output of the controller. The structure of the two-input-one-output
neuro-fuzzy control system used in milling operations is shown in Fig. 6.2. In the following, the function
of the neuro-fuzzy logic controller is described as follows.

The measured resultant cutting force Fc is compared with a reference cutting force Fr and converted
into two controller inputs, the cutting force error E and the cutting force change CF, that is:

(6.13)

(6.14)

where i is the index of time increment for sampling the cutting force.

FIGURE 6.2 Structure of the two-input-one-output neuro-fuzzy logic controller.

E i() Fr Fc i()	�

CF i() Fc i() Fc i 1	()	�
© 2001 by CRC Press LLC

Therefore, there are two nodes in the input layer of the controller. The two inputs are normalized in
the closed interval [1, 1] by multiplying the corresponding scaling factors, GE and GCF, that is:

(6.15)

(6.16)

where e(i) and cf(i) are the two normalized inputs.
The normalized inputs are then mapped into suitable linguistic values by using the membership

function of the fuzzy sets. A simple triangular shape of the membership function for grading the
membership of the class from members to non-members is used in this study. The triangular membership
function A(x)for a linguistic (fuzzy) set A where 	b � x � b is defined as:

(6.17)

In the membership layer, seven linguistic sets are defined as follows: NB - negative big; NM - negative
medium; NS - negative small; ZE - zero; PB - positive big; PM - positive medium; PS - positive small.
Figure 6.3 shows the shapes of seven linguistic sets for the two normalized inputs. As discussed before,
each normalized input is mapped into seven linguistic sets; therefore, the membership layer has fourteen
nodes due to the two normalized inputs (Fig. 6.2). As to the rule layer, 49 (7 �7) linguistic rules are
constructed because seven linguistic sets of the normalized input e are fully interconnected with seven
linguistic sets of the normalized input cf. It also means that 49 nodes are available in the rule layer. Let
the j-th linguistic (fuzzy) control rule be described as follows:

if e is Aj and c f is Bj then z is Cj.

By taking the product compositional operation [7], the fuzzy reasoning of the control rule yields an
inference output. Suppose e � eo and cf � cfo are the two normalized inputs at time i. The membership
function for the j-th rule can be expressed as:

 (6.18)

The inference output has its corresponding weight in the output layer. The weighted
inference output is equal to the product of the inference output and its corresponding weight .

FIGURE 6.3 Shapes of the seven linguistic sets.

e i() GE E i()�

cf i() GCF CF i()�

A x()

x b�
a b�
------------- b x a� �	

x b	
a b	
------------- a x b� �

�

cj
i() Aj

xo() Bj
yo()�()�

cj
i() wj i()

cj
i() wj i()
© 2001 by CRC Press LLC

The weighted inference outputs are summed to produce the output value of defuzzification u(i), that
can be expressed as:

(6.19)

where n is the total number of fuzzy rules in the rule layer.
The output value of defuzzification �u(i), multiplied by the output scaling factor of the controller

GU results in the change of feed rate �U(i), that is:

(6.20)

Finally, the feed rate U can then be expressed as:

(6.21)

Learning Algorithm for the Neuro-Fuzzy Logic Controller

It is known that the use of the developed neuro-fuzzy logic controller in milling operations is to achieve
an on-line adjustment of feed rate with a constant cutting force. To reach the constant cutting force Fr

as soon as possible, the cutting force error E and the cutting force change CF must quickly approach
zero. Therefore, a performance index that is a function of the normalized force error e(i) and the
normalized force error change cf (i) during cutting must be minimized. The performance index PI can
be defined as:

 (6.22)

where k is the total number of sampling data and � is a weighting factor.
The negative gradient of the performance index for the optimal control performance [13] can be

expressed as:

(6.23)

To simplify the learning process, only the weight connected with the maximum inference output is
adjusted. A change of weight for the j-th rule with the maximum inference output ; (i)can be expressed
as:

(6.24)

where � is the learning rate.
The new weight corresponding to the maximum inference output can then be expressed

as:

 (6.25)

�

u i() cj
i()wj i()

j �1

n

���

�U i() GU�u i()�

U i() U i 1	() �U i()��

PI
1
2
-- e i()2

� cf i()2
��()

i�1

k

��

�PI e i()	 cf i()	()�	

�wj i() � �PI	()
e i()
cf i()

�

wj i()new
j i()

wj i()new wj i()old wj i()���
© 2001 by CRC Press LLC

6.4 Computer Simulation and Experimental Verification

Computer Simulation

In the simulation, a 12 mm diameter HSS end mill with four flutes, rotating 400 rpm, machining 6061
aluminum blocks (ks � 1500 N/ , kr � 0.6) was used. The reference force of 300 N and the maximum
feed rate Umax of 75 mm/min were selected in the control loop (Fig. 6.1). The peak resultant cutting force
in a revolution is the criterion to be controlled in the adaptive neuro-fuzzy control system. The scaling
factors of the controller, GE � 0.0033, GCF � 0.0017, GU � 0.1, were chosen, respectively. Since this
control system is a sampled-data system, the machine tool driver [Eq. (6.1)] needs to be identified by
using Z-transform.

The cut geometry with the changes of the axial depth of cut in milling operations is shown in Fig. 6.4.
Figure 6.5 shows the variation of the PI value with the number of learning (cutting) cycles. The weighting
factor � � 6 and the learning rate � � 0.25 were used in the learning process. It can be seen that the PI
value decreases as the number of learning cycles increases. The initial learning convergence of the PI value
is very fast, followed by a period of slower convergence to the minimum value. Hence, it can be clearly shown
that control performance of the milling process becomes better and better through the learning process.

FIGURE 6.4 Cut geometry with the changes of the axial depth of cut.

FIGURE 6.5 Effect of the PI value on the learning cycle.

mm2
© 2001 by CRC Press LLC

The learning process was terminated after 15 cutting cycles because the improvement rate of the PI value
became insignificant. After the learning process is completed, the weights in the output layer are no
longer changed and the neuro-fuzzy logic controller is ready to be applied for machining tests.

Experimental Results and Discussion

To verify the adaptive neuro-fuzzy logic controller, cutting tests with the same cutting conditions as
mentioned before were performed on the CNC machining center. The cutting force signal was obtained
from a dynamometer (Kistler 9255B) mounted under the workpiece and the feed rate signal was directly
measured and extracted from the CNC controller. Both signals were recorded on a PC-486 through a
data acquisition board (DT2828).

Figure 6.6 shows the measured feed rate and measured cutting force during machining of the cut
geometry with the changes of the axial depth of cut. As shown in Fig. 6.4, the end mill starts 2.0 mm
from the workpiece. Since the end mill has not entered the workpiece, the maximum feed rate should
be used in order to save the machining time (Fig. 6.6(a)). Once the cutting tool starts to engage the workpiece
with the axial depth of cut of 6 mm, a sudden overshoot of the cutting force is generated (Fig. 6.6(b)). The
cutting tool is quickly slowed down to prevent the excessive cutting force breaking the cutting tool. After
the cutting force returns to the level of the reference force Fr, the cutting tool proceeds at a constant feed
rate. A similar cutting phenomenon is also shown in the change of the depth of cut from 6 mm to 12 mm.

A more complicated pocket workpiece with a spiral-out tool path (Fig. 6.7) was used in the experiments.
In this pocket machining, the radial depth of cut varies not only by way of different traveling paths but
also by different positions of a path [14]. Figure 6.8(a) shows the cutting force and machining time using
the constant feed rate generated by a commercialized CAD/CAM system. The use of the constant feed rate
generated by the CAD/CAM system is the most common approach in the industry. Figure 6.8(b) shows
the cutting force and machining time using the adaptive feed rate generated by the adaptive neuro-fuzzy
controller. It is shown that machining time saved is about 23% through this approach.

FIGURE 6.6 Experimental results with the changes of the axial depth of cut: (a) measured feed rate; (b) measured
cutting force (reference force 300 N; spindle speed = 400 rpm).�
© 2001 by CRC Press LLC

6.5 Conclusions

An adaptive neuro-fuzzy control system in milling operations has been described in this paper. The main
advantage of this approach is that the control performance of the neuro-fuzzy logic controller can be
improved through the learning process. As a result, the proposed adaptive controller starts from an
empty rule base and the design cycle time for the neuro-fuzzy control system can be greatly reduced.

FIGURE 6.7 Pocket machining with a numerical control tool path.

FIGURE 6.8 Measured cutting forces for the pocket machining: (a) without the adaptive neuro-fuzzy control;
(b) with the adaptive neuro-fuzzy control (reference force = 300 N; spindle speed = 400 rpm).
© 2001 by CRC Press LLC

Computational simulations and experimental cutting tests have been performed in milling operations
to confirm the proposed method. Good control performance of feed rate and cutting force in milling
processes have also been shown. Hence, a powerful technique for constructing the adaptive control system
in milling operations has been demonstrated in this study.

Acknowledgements

The authors wish to thank Associate Professor Z. M., Yeh, Institute of Industrial Education and Tech-
nology, National Taiwan Normal University, Taipei, Taiwan, for his help in the course of this work. This
research was supported by the National Science Council of the Republic of China, Taiwan under grant
number NSC82-0422-E-011-017.

References

[1] Groover, M., Automation, Production Systems, and Computer Integrated Manufacturing, Prentice-
Hall, Englewood Cliffs, NJ, 1987.

[2] Koren, Y., Computer Control of Manufacturing Systems, McGraw-Hill, New York, 1983.
[3] Elbestawi, M. and Sagherian, R., Parameter adaptive control in peripheral milling, International

Journal of Machine Tools and Manufacture, 27(3), 399–414, 1987.
[4] Launderbaugh, L. and Ulsoy, A., Model reference adaptive force control in milling, ASME Journal

of Engineering for Industry, 111, 13–21, 1989.
[5] Elbestawi, M., Mohamed, Y., and Liu, L., Application of some parameter adaptive control algo-

rithms in machining, ASME Journal of Dynamic Systems, Measurement, and Control, 112, 611–617,
1990.

[6] Tarng, Y. S. and Hwang, S. T., Adaptive learning control of milling operations, Mechatronics, 5(8),
937–948, 1995.

[7] Pedrycz, W., Fuzzy Control and Fuzzy Systems, John Wiley, New York, 1989.
[8] Zadeh, L., Fuzzy sets, Information Control, 8, 338–353, 1965.
[9] Tarng, Y. S. and Cheng, S. T., Fuzzy control of feed rate in end milling operations, International

Journal of Machine Tools and Manufacture, 33(4), 643–650, 1993.
[10] Yeh, Z. M., Tarng, Y. S., and Nian, C. Y., A self-organizing neural fuzzy logic controller for turning

operations, International Journal of Machine Tools and Manufacture, 35(10), 1363–1374, 1995.
[11] Tarng, Y. S., Cheng, C. I., and Kao, J. Y., Modeling of three-dimensional numerically controlled

end milling operations, International Journal of Machine Tools and Manufacture, 35(7), 939–950,
1995.

[12] Brown, M. and Harris, C., Neurofuzzy Adaptive Modeling and Control, Prentice-Hall, Englewood
Cliffs, 1994.

[13] Anstrom, K. J. and Wittenmark, Adaptive Control, Addison-Wesley, Reading, MA 1989.
[14] Tarng, Y. S. and Shyur, Y. Y., Identification of the radial depth of cut in numerical control pocketing

routines, International Journal of Machine Tools and Manufacture, 33(1), 1–11, 1993.
© 2001 by CRC Press LLC

7
Instrumental Robots

Design with
Applications to
Manufacturing

7.1 Introduction
The Design Cycle for Instrumental Robots

7.2 The Design of Function-Oriented Robots
Conceptual Design of Task-Driven Robot-Arms • Conceptual
Design of Work-Constrained Robot-Arms • Computer Aids
Based on Functional Modeling and Simulation • The ‘SIRIxx’
CAD Environment: The Basic Modules • Specialised Options
of the CAD Environment

7.3 The Design of Process-Attuned Robots
Simultaneous Design of Robot-and-Process • The Robot
Setting: Equipment Modularity • The Robot Fitting:
Versatility by Process Back-Poising • Robot Dynamics with
Constrained Motion Duties • A Challenging Option: Robots
with Cooperation

7.4 Modulated-Control Example Developments
The Process-Adapted Control Planning
Set-Up • Command Planning: Tip Wavering Under
Inertial Coupling • Measurement Robot Based on Controlled
Laser Scanning • Modulated Command Options:
Position/Force Feedback • Expert Steering Commands:
Compliant Assembly by Force Control

7.5 Redundant Mobility Robots with Cooperation
Process Conditioning Environments: Deburr Operation • The
Automation of Precision Deburr Operations • A Cooperative
Fixture for Work-Parameters Adaptation • The Impedance
Control of the Cooperating Fixture • The Multi-Robot
Assembly of Compliant Components

7.6 Conclusions

7.1 Introduction

Instrumental robotics are developed to provide functionally oriented equipment, having duty adapted
activity performance figures in order to accomplish sets of required tasks, with proper autonomy ranges.
Basically, robots characterize the domain of intelligent automation, supplying the “active” adaptation of the
actuating, handling, grasping, or machining dynamics. Active behavior innovates conventional feedback

R.C. Michelini
University of Genova

G.M. Acaccia
University of Genova

M. Callegari
University degli Studi di Ancona

R.M. Molfino
University of Genova

R.P. Razzoli
University of Genova

automation, making it possible to modulate the dynamics as a case arises, while tasks are performed. It is
usually understood that adaptivity has to be related to outfit and reset actions, enabled with “knowledge”
of the ongoing duty sequences and surrounding influences. Furthermore, task-driven equipment is usually
concerned with “uncertainty,” since it’s end-effector is interfaced to the structured “external” world. The
uncertainty is overridden by knowledge-intensive techniques, that mainly exploit system hypotheses to drive
the manipulation dynamics with due account for instance, of the modeled nonlinear inertial couplings and
observation data to modify the current behavior while counteracting the external off-setting influences.

The domain of instrumental robotics is characterized by its task-dependence by the detailed specifi-
cation of operation duties, and by the current recognition of execution charges. The robot behavior is
mainly assumed to evolve according to structured patterns, i.e., distinguishing the related developments
from those that are typically investigated in the field of the artificial intelligence applications and aiming
at autonomous agents interfaced to unstructured environments. In this field, the operation autonomy
presumes on-line task-planning, performed by exploiting goal-oriented bent and self-learning abilities to
generate (turn by turn), proper activity patterns. Autonomy under-emphasizes robots as rigs that do jobs.
Matching a “generic” robot to a task requires costly interfaces, a complex program, and cannot reach
“optimal” schedules. Functional bent due to instrumental turn, on the other hand, reaches effectiveness
which resorts to off-process task-programming by acknowledging “optimal” activity modes, prearranged
to secure the accuracy, dexterity, efficiency, and versatility figures required to exactly fill out the wanted
set of tasks (and not aim at some generic goals).

The idea behind functional bent is equivalent to a paradigm in robotics stating: “as soon as a task is
acknowledged into a series of instructions, then equipment can be devised to do it.” Actually, the ability to
recognize operation models might become restrictive: a person could be able to perform “undefined”
tasks, filling gaps with skill; better plans could be stated moving the “intelligence” from manufacturing
to artifacts’ redesign. The two issues are different and the second has entrepreneurial value. When
instructions lack a quantitative basis, it cannot attempt to perform an audit for quality data or artifacts
would be delivered with unpredictable specification; and, when product-and-process are simultaneously
poised by reengineering, economic and technical criteria could be stated quantitatively to recognise good
or bad artifacts. Economic considerations make understanding that the functional bent might become
misleading, if built as an unnecessaryly complex technology-driven solution. Artifacts really need to be
offered with “fit-for-use” properties and should be designed with bound operation range and application
scope. Activity outlook, rather than sophistication, is the winning alternative of instrumental robotics,
shifting the concern on adapting products to improving the manufacturing effectiveness and the client’s
satisfaction.

The Design Cycle for Instrumental Robots

The integrated approach to instrumental robotics attempts to simultaneously define activity modes and
functional devices. The design of task-driven robots is a very exacting request to achieve the required
operational performance with a return-on-investments benefit. It is incumbent on the designer to set
operational rules that assure the fulfilment of the charges as specified by the activities model. It is
understood, that outside such range a task-driven robot does not operate properly. It might possibly
acknowledge a set of feasible tasks and progress as far as possible or, more correctly, generate “help” or
“warning” messages. The integrated design cycle in instrumental robotics, Fig. 7.1, will iterate the
following five steps:

1. Specification of the behavioral requirements of the tasks need be executed, with choice sets of
competing activity modes so that technology-driven solutions will demonstrate their consistency
(through prototypal implementations or the like) and could be classified in terms of cost-driven
assessments.

2. Model the operational performance of the hypothesized robotic equipment, in connection
with the acknowledged task-oriented specifications. The setting of consistent manipulation

architectures and the (parametric) generation of the related structural and functional contexts are
linked to each others.

3. Assess the characteristic features of each solution, with checks on the functional operativity
(activity mode and process lay-out) and on the discriminating patterns (technological details and
performance achievements) to reduce the development costs. This step exploits simulation and
virtual reality checks while it uses prototyping only for critical components.

4. Reconsider the duty figures (versatility, efficiency, dexterity, and accuracy) and of the preset
constraints to evaluate hidden merits and dearths. The step requires careful testing on the speci-
fications and on the models, particularly when the prospective instrumental robot suggests ‘new’
operation modes as compared to conventional (anthropocentric) robotics.

5. Iteration of the cycle, whenever appropriate.

The steps cannot be undertaken unless the behavioural specifications, the relational contexts, the
performance assessments, and the reengineering options are quantitatively recognized. Design steps profit
from computer aids, supported at different levels of details and the functional and structural models of
the proposed robotic fixtures; the addition of “helps” manage the decision loops at the users’ interface.
Functional bent is a powerful means for the choice of efficient instrumental robots when the design starts
conceptualizing with all available data. Due to task dependency, processing of the supporting knowledge
is needed along the life-cycle of the fixture: to program duty updating, control fitting, activity modes
planning, and to transfer the pertinent data each time the robot’s charges are modified (as a different
class of tasks has to be accomplished). The computer aids are essential to the robot, since the final set-
up’s effectiveness depends on the duties actually enabled.

To design instrumental robots is a challenging process using technical and economical targets. Technical
concern leads to overemphasizing robotic capabilities, increasing sophistication, and pushing the func-
tional bent to make complex tasks feasible. The return-on-investments criteria need to redefine artifact’s
construction and manufacturing actions so that robot and duty can be balanced within the reach of
“lean” engineering. A clear division between robot and task does not exist. That is why one should be
in the position to assess advantages of “advanced” options in order to start reengineering and establish
the solution that matches any particular request. Basically the design of instrumental robots could split
according to two tracks:

• One design investigates technology-driven options and, mainly by computer simulation, looks for
“advanced” setups fit to perform any prospected task no matter how complex, joining “interfacing”
equipment and software to achieve the goals, and the issues transferring “exaggerated” ability to
robots. This can be recognized on the condition that the adequacy for manufacturability is
previously fully analyzed.

• Another explores how fit-for-use artifacts could be designed to favor manufacturing and, simul-
taneously, how processes could be modified to produce them with the available equipment. The

FIGURE 7.1 The design cycle of instrumental robots.

issues possibly slow down innovation, setting aside the features capable of upgrading product
quality or improving plant productivity.

The second track faced by manufacturing engineers is at the shop-floor level, aimed at flexible auto-
mation with the economy of scope rules. An example of typical issues in “intelligent” settings is given
by the authors in the chapter “Techniques in computer-integrated assembly for cost effective develop-
ments” [MAC98]. The first track is mainly dealt with in this chapter. The organization of the matter
bears the following scheme:

• A section recalls the main features of the issues achieved by computer simulation. The presentation
avails itself of an extended programming aid (the ‘SIRIxx’ set of packages) properly generated to
offer opportunities for experimenting sophisticated solutions.

• A section considers alternatives for upgrading functional bent to emphasize process and econom-
ical dependence and exploring simultaneous engineering and hardware-software modularity (i.e.,
standard mechanical parts, normalized command, and/or mobility).

• Further (two) sections give details about example developments aiming at robots with advanced
control opportunities (dynamical nonlinearity compensation, redundant position/force control,
etc.) and robots with sophisticated manipulation architectures (multiple robot configuration,
redundant mobilities robots, etc.).

7.2 The Design of Function-Oriented Robots

Robots got their name from a Slavish root meaning “heavy labor,” thus, they are developed to replace manual
workers. They should be endowed with handy skills and training ingenuity “sufficient” to accomplish the
considered tasks. A robot and it’s duty are inseparable, but quite soon the difficulty of quantitative and
deterministic job descriptions that humans were able to perform appeared. Designers started to equip the
robot with further capability to fill the gaps in the job description. This innovation moved to end fixed
automation and special-purpose equipment and to use computer intelligence for flexible automation and
multi-task equipment. The achievements are technology-driven issues and business-driven economic pat-
terns that appear as constraints to slow down replacements until return-on-investment (ROI) is verified.

The problem, however, is not just economical or technical. To assess its “fitness-for-purpose,” the fixture
ought to exist and be tested in the proper surroundings, to verify potential and effectiveness. The checks
should cover, besides instrument functional appropriateness, the soundness of robot duties in terms of
scheduled goals and task usefulness and increase process reliability and product quality. The design of
function-oriented devices, on these grounds, splits into a series of accomplishments (see Fig. 7.2); of course,
the separation by conceptual stages or detail levels is mainly done for academic purposes. The practical
development of “new” robots, before “new” applications, is undertaken with the know-how of previously
tested equipment. A design cycle can be started at any point, neglecting noncritical details or postponing
underspecified phases. Phases in re-engineering, nevertheless, can only be started with “sufficient” knowl-
edge on both robot technology and simultaneous engineering. In this chapter, attention is focused on robot
technology; however, for instrumental robotics, the design will move from an “effectiveness” model, with
“price-time” figures, to a return-on-investment model by monitoring process-added value and productivity
performance. If a robot costs too much or takes too long to do the tasks, it will fail in the marketplace. The
“effectiveness” model leads to recognition of the close binding of robotics and design and the critical support
provided by CAD opportunities.

Conceptual Design of Task-Driven Robot Arms

The design of task-driven equipment aims at robots with operation capabilities and planning options to
allow feasibility of the desired charges (regardless of the complexity or product-process consistency). The
subject has been tackled from different standpoints related to the handling architectures [BeP97],

[LII96b], [LYK97], [MAC93], [RoB97]; to the manipulation dynamics [Asd88], [AsH79]; or to the path
planning [ACH95], [Alg97], [CCS91], [Whi69b], [ZOY96a], [ZOY96c] requirements, and a lot of prac-
tical know-how is available. Example results provide hints on the evolution of the design in robotics,
from advanced technology-driven fixtures, to (just technical) fit-for-purpose solutions. Topics are
reviewed following the authors’ experiences and are presented, without presuming completeness, con-
sidering example issues, starting from abstract users’ interface requests and entering into technical details
that make possible the planned tasks with increasing performance.

• Path planning and architectural analysis. Path planning deals with the mapping of the end-effector
set-points defined in the work-space, into actuation commands fed to each joint. In general, the
effector should possess six degrees of freedom (three angular and three displacement co-ordinates)
and the arm needs to combine the related number of powered mobilities. The robot is thus, a
multi-variable system requiring adapted inputs for steering the tip location and attitude. Six
powered mobilitiy manipulators are basic references for establishing kinematic path-planning
problems.

The forward (to the work-space) and the backward (to the joint-space) kinematics can be stated after
the manipulation architecture is selected. These (algebraic and nonlinear) transforms are:

(7.1)

where x-work-space coordinates and q-joint-space coordinates. The kinematic inversion is generally
unsolved, unless a few geometric restrictions are introduced to specialize an algebraic solution (as
exemplified by the later mentioned SIRI-CA package).

The availability of the forward and backward kinematics (7.1) can immediately be used to explore the
considered architecture’s worthiness to accomplish the given set of tasks. The analysis has to be done as
the initial job of the design cycle; sometimes less than six mobilities could be sufficient and “reduced”
degrees-of-freedom robots are “good” choices. Sometimes, obstacles in the work-space or in the joint-
space are properly avoided with additional powered joints and “redundant” mobilities robots are a “better”

FIGURE 7.2 Conceptual stages and detail levels of the robot design.

x f q() q g x() q Qn x Xm
��� �

option. The six-mobilities case is, however, basic reference to begin analyses and to obtain practical
descriptions useful for CAD opportunities. The forward kinematics is usually defined with bounded
spans of the joint coordinates; the mapping leads to closed domains of the work-space with shapes, (Fig.
7.3), which are related to the robot architectures according to patterns that can be used for classifying
purposes.

To simplify the generation of computer solutions, linearized models are considered, assuming that
velocity vectors, in both spaces, should steer the tip to smoothly approach the target. For the reference

FIGURE 7.3 Example of robot architectures and related work-domains: (a) cartesian structure; (b) cylindrical
structure; and (c) articulated structure.

architecture of an arm with six sequential mobilities, the so-called ‘Jacobian approximation’ holds:

(7.2)

(7.3)

Jacobian matrices mapping end-effector’s angular velocity (instead of Euler angles’ rates of change) can
be easily worked out by exploiting the previous relations (7.2). At each point, the Jacobian matrix is
computed (as incremental ratio) and (numerically) inverted to enable a rate control, Fig. 7.4 (after the
mapping is calibrated).

The approach is not without drawbacks for mapping accuracy and useful tricks are, therefore, explored.
The traditional task of programming has been based on “teach-by-doing” and by that way:

• The static calibration is performed with (external) work-space references.

• The path planning may introduce rate compensation (depending on localized trajectory anomalies,
on speed biasing influences, etc.).

• The setting of the instructions is trimmed to the specialized charges of each application, without
explicitly acknowledging the actual robot behavior.

• The operation scheduling does not require models of the physical world (provided that teaching
is fulfilled exactly replicating every work condition).

Time delays always occur with digital controllers related to sampling and processing rate. Unstable or
swaying paths could be established, unless commands are fulfilled with no closed-loop meddling. Com-
puter compensation of the time-delays is possible, if robot behavior and coupled surroundings models
are stated (with possible account of uncertainty through fuzzy logic), or if sensorized interfaces operate
on joints and at the work-space end. The compensation, however, is fixture-dependent and, assuming
the approximated mapping (7.2), traceability of calibration tests are run and deviations assessed (by
sensitivity analysis) for any of the allowed tasks.

• Control planning and performance analysis. Control planning is concerned with the choice of
feedback loops to be applied at each actuator to make “dynamics shaping” so that the effector
executes the assigned tasks with the “best” effectiveness. Again considering six-mobilities arms as
reference architecture, the joint-space dynamics for unconstrained motion maneuvres is given by:

 (7.4)

where Q is joint actuation force or torque; �(q) is mass matrix of the robot; B(q) is centroid off-set
unbalances; is transport and Coriolis terms; and is friction and damping terms.

The reference dynamics (7.4) are nonlinear with combined effects of the carried links modifying the driving
actuation needed at each joint and to impart a co-ordinated motion for the direct control of the tip. High
performance robots are pushed to operate at high speed and acceleration. The dynamic coupling nonlinear-
ities could generate undesired troubles, when feedbacks were established for linearized approximations only.

FIGURE 7.4 The work-space incremental control scheme.

ẋ
dx
dt
------ �f

�q

dq
dt
------ �f

dq
------ q̇ J q̇ q̇

�f
dq

1�

ẋ J 1� ẋ����� �

�x ẋ�t Jq̇�t J�q �q J 1�
�x����

Q A q() q̇̇ B q() C q,q̇() D q,q̇()� � ��

C q q̇,() D q q̇,()

The free motion joint-based models dynamics has, thus, to deal with the actuation errors:

(7.5)

where q, , and are the desired position, speed, and acceleration; Ep and Ev are the gains of
proportional and derivative feedbacks.

The suppression of unacceptable back-nuisances is easily performed if the dynamics is properly
modeled (7.4) and used as modulation gain, while closing the control loop in the joint-space. This means
to exploit the canonical transform which is known to exist for (series of) rigid bodies joined by pivots.
The compensation, Fig. 7.5, is easily done on condition, of course, that the architecture of the arm is
assessed with known masses, centers of mass, mass quadratic moments, principal directions, etc. After
compensation, the actuated joints are uncoupled and can be designed to behave as properly controlled
linear second-order blocks. The scheme is a valid option when the coordinated motion control remains
a hidden attribute. For instance, tasks are programmed on-line via “teach-by-doing” with due account
of the desired performance.

Task programming is presently preferably done off-line supported by intelligent interfaces. The setting
refers to the work space and selection of the properly controlled behaviour of each joint needs explicitly
deal with the forces and torques transmitted by the distal link. Then, the transforms of the generalized
forces can be stated as the dual approximation of the kinematics mapping, leading to:

where: (7.6)

The compensation scheme, Fig. 7.6, can be modified accordingly, providing a clear guess on the
operation conditions with, however, additional computations to be performed in real time. The command
setting which follows is known as ‘transposed local adaptation’ since it is operated in the work space,
then mapped in the joint space. The strategy gives useful results, when only joint displacements are
observed, while the tip location in the workspace, not directly measured, cannot be used for off-setting
the task errors.

A different approach tries to avoid real-time reckoning with the local relations (7.2) and (7.5); instead,
it exploits current measurements for closing the control loops. As a matter of fact, all robots have encoders
to obtain joint (absolute) displacements and to compute joint velocities; with addition of accelerators,
(Fig. 7.7), alternative evaluations of the inertial couplings (7.4) are possible, to enable compensation

FIGURE 7.5 Joint-based actuation with linearizing and uncoupling feedback.

Q A q()u� u Ep qd q�() Ev q̇d q̇�() q̇̇d� ��

q̇d q̇̇d

�Q JT
�F �F JT[] 1�

� � �Q JT �f
�q

T

�

feedbacks, or to trim the parametric choices of A(q), B(q), , or . Further opportunities are
provided by measurements in the workspace. The direct observation of the tip linear and angular motion
has been based on optical devices (cameras, laser sensors, etc.) with, nevertheless, data fusion drawbacks.
Relevant advantages are expected by force/torque sensors located at the end-effector for measuring the
interactions with the external world. The use of the information, however, needs more sophisticated
models, with inclusion of the compliance attributes of the arm (joints, links, etc.) and of the interfaced
bodies.

Conceptual Design of Work-Constrained Robot-Arms

The previous paragraph has mainly considered how to drive an arm so that its tip moves along a given
path with prescribed attitude. Coordinate measurement machines are good examples of such an approach.
Instrumental robots more usually characterized by tasks, with sharply changing charges, and splits the
path planning (and control design) to deal with three different models, (Fig. 7.8), for usual duty condi-
tions. Generally, these are reduced to unconstrained or constrained manueuvers. The third one, dealing
with transient constraint manueuvers, needs be accounted for in front of special applications by using
computer-aids.

Robot behavior under transient and work-constrained conditions is over-specified when the analysis
is limited to rigid body degrees-of-freedom. For practical purposes, investigations are undertaken trying
to separate the different influences. In order to be concerned only by a relevant phenomenon (any other
input being reduced to be a disturbance); example developments; for instance, are

FIGURE 7.6 Work-space commands with compensation of nonlinearities.

FIGURE 7.7 Sensor-driven compensation of nonlinearities.

C q,q̇() D q,q̇()

• Manipulators, having links and/or joints with (lumped or distributed) compliance, carrying masses
(sensors, etc.) and sweeping a region with prescribed paths;

• Manipulators, having rigid (compliant) parts, colliding against compliant (rigid) walls, with dif-
ferent paths and bouncing coefficients;

• Manipulators, with rigid (compliant) parts, performing actions (machining, assembly, etc.) with
controlled position and force of the tip.

The conceptual design of robots is said to be concerned by “duty programming” (with “duty” moni-
tored about “task” departure). The addition of “advanced” abilities is still not essential for most of current
industrial robot applications. It follows that topics in sophisticated activity modes are well acknowledged,
while practical achievements lag far behind. A reason might be the lack of field experience, with clear
assessment of actual opportunities. Few concepts are, therefore, recalled to provide hints on how the
“duty charges” should be tackled (with respect to simple “tasks”) through actuation ‘flexibility’ (besides
“rigid” work-cycles). It can be started by noting that trained and skilled operators, when assembling
artifacts, exploit force data to steer the joining motion; thus, performing position control and force
modulation. Then, six-axis force-torque sensors are basic rig for anthropomorphic assembly and redun-
dant control strategy applies, Fig. 7.9, by steering the separate feedback loops according to needs.

When one tries the “peg in the hole” task with such a sensorized robot, it may happen that instabilities
arise unless the feedback time delay is chosen to match the combined “wrist, peg, and contact zone”
stiffness. The force modulation should not be thinner than the measured contact force error. These kinds
of instabilities do not depend on the path followed during the co-ordinated motion. By further analyzing
the same task, the normal (indenting) and the tangential (friction) components of the contact forces are
assessed to understand how insertion progresses along the prescribed directions (e.g., the sequence of
Fig. 7.37). Current data is then, available to assess friction and damping effects and to feed engineered

FIGURE 7.8 Characteristic duty conditions during robot maneuvers.

FIGURE 7.9 The combined position/force controller.

compliance so that assembly is fulfilled with delicacy (out of measurement uncertainty) unachievable by
people. This means that position/force control is a simple affair of performance: when the combined
accuracy, dexterity, efficiency, and versatility figures will be useful for transferring given quality data to
the industrial artefact, the option could be checked in terms of return on investment.

Deburring tasks also highly profit by redundant control to grind out weld beads, to finish precision
casts, or to honey machined surfaces aiming at constant quality artifacts (not depending on the ability
of skilled operators or on the attention to accomplish the job), with cost reduction if burrs removal is
granted with accuracy and delicacy. The application is later recalled, with introductory details on the
process from a conceptual design viewpoint. The description of tip-to-burr interactions is given by a
locally linearized impedance, binding the (generalized) force and displacement components, according
to the (approximated) model:

 with: (7.7)

where the reduced inertia M, damping H, and stiffness K depend on the solid zone to be ground and on
the actual interfacing characteristics of the powered arm.

Here again, stability problems need, be addressed, due to the contrasting requirements on the normal
and on the tangential stiffness figures. The removal of the dithering behavior cannot be extended to avoid
the “worst case burr” everywhere in the work space when the deburring robot operates on a fixed artifact
because of the contact rigidity between grinding wheel and piece. In spite of that, industrial applications
exist (from Japan) with the force-torque sensor technology embedded into six mobilities robots. A better
option is possible, carrying the piece by means of a six mobilities rig, so that the contact rigidity is
properly modified, process-adapting normal and tangential stiffness. As mentioned, details of the option
are later recalled.

The introductory comments of the paragraph give hints about possible “advanced” solutions. The
analysis of existing applications to manufacturing (still covering the largest share for instrumental robot-
ics) shows, most of the time quite monotonical replication of manipulation architectures and activity
modes. The replication may depend on the functional orientation (meaning that once the task bent leads
to an effective rig, it is no use looking for a different one), still the capability of investigating noncon-
ventional architectures and/or behavioural options might suggest how to get out from assessed habits,
aiming at ‘unexpected’ upgrading, by means of alternatives (in particular, if these have already been
checked by virtual reality experiments). This is the reason to look for sophisticated models, capable of
duplicating the dynamics and control strategies of the instrumental robots, with consistency of details
up to the sought technical charges. The models are explored by means of computer aids, leading to
comparative assessments and providing, as decision support, a choice of the function-oriented structural
settings (component, facility-configuration and command, CFC, frame) and the operation-befit activity
modes (monitoring, decision-manifold and management, MDM, frame).

Computer Aids Based on Functional Modeling and Simulation

Computer aids, providing virtual reality experimentation, are a powerful means for fostering the inno-
vation in the field, carefully checking feasibility and effectiveness of new CFC frames and/or new MDM
frames, while helping to evaluate the expected return on investment. Computer simulation is a critical
means, as the instrumental robotics does not move from anthropocentric functional models, rather it
acknowledges task-oriented solutions for the setup of more effective activity modes. Certainly in many
cases, robots have been conceived for replacing man, giving rise to replication of ‘anthropomorphic
devices’; in other cases, they have been developed to perform tasks out of mens’ potentialities, giving rise
to new fields of ‘instrumental robotics,’ depending on the conditioning applications, on the transferred
level of autonomy and intelligence, and on the actualy achieved performance (accuracy, dexterity, effi-
ciency, and versatility).

The design of operation-oriented robots is a fascinating technical challenge by aiming at the “best” fixtures
no matter how complex, providing the conformance to specification is reached and the desired tasks are

�F̃E G s()�x̃� G s() Ms2 Hs K� ��

properly accomplished. The subsequent sections of this chapter try to mitigate the challenge by looking for
balanced solutions by having the complexity relieved by the fitness for purpose of the ‘economy of scope’
approach. By now, the design cycle, Fig. 1, according to the mentioned four steps, is iterated to bring forth
pace-wise (performance-pulled and knowledge-pushed) betterments, until ‘best’ setups are obtained. Iter-
ation progresses with CAD modules supplying virtual-reality display of robot actual dynamics, interfaced
with expert modules, as decision support for addressing improved solutions. CAD codes, moreover, help
to enter into the details of the predicted functional behavior, to assess the standards to be preserved according
to specification, and the entities to be monitored for pro-active maintenance diagnostics.

Several CAD opportunities are available to help the designer, principally,

• General purpose software (such as Pro/ENGINEER series), granting background tools for the
buildup of any personalized CAD instance.

• Computer packages suitably arranged into a virtual reality environment to provide systematic
support for comparative assessments between competing equipments.

• Computer programs, purposely developed in the framework of a particular project, to give efficient
account of the peculiarities of the application.

All three opportunities are useful. The first deserves growing interest since the offered software covers
larger and larger CAD details and is endowed with friendly interfaces (costs are the main drawback).
The third is largely exploited as soon as the robot equipment is chosen at the suitable level of specification
and is the intermediate opportunity best suited to explore for innovation. Typical aspects are considered,
hereafter referring to the work carried on by the Industrial Robot Design Research Group at the University
of Genova, Italy, which has prepared and used the CAD environment SIRIxx, Fig. 7.10, to develop
instrumental robots properly tailored to individual applications.

FIGURE 7.10 The SIRIxx robots’ design environment.

These packages could be further distinguished by application range; on one side, operation bent is
faced as general priority:

• Path planning and architectural analysis are linked with the aid of a set of modules, programmed
to generate forward and backward kinematics, for several robots’ families.

• Control planning and performance analysis are assessed with the help of a library of modules,
programmed to generate example steering strategies, at different levels of complexity.

At higher levels of details, product-and-process matching is explored addressing to less conventional
settings and/or more demanding situations:

• Duty planning and function fitting are investigated with the aid of animated displays or robot co-
operation to weigh task requirements departures.

• Work constraints and process conditions are tackled by means of control modulation or special
effects assessment in front of exacting effects.

This CAD support has been developed over the past ten years with a modular base in order to expand
the covered subjects, while preserving computational efficiency. The results have been collected system-
atically and used as pre-set data for the later discussion of knowledge-based architecture SIRI-XE
[ACM88]. The main characteristics of the packages are presented in several papers, with example devel-
opments. We defer to the references for details since only a short overview is given hereafter.

The ‘SIRIxx’ CAD Environment: The Basic Modules

The usefulness of recurrent design-cycle is better explained with examples of the SIRIxx series of packages
[AMM87], [AMM90], [ACM91b] which provides useful hints on opportunities and issues underlying
systematic investigations. The first group of packages is organised as general purpose CAD support.

• SIRI-CA: providing the usual path-planning objectives. It is built on the availability of forward
and backward kinematics of 32 families of open-chain manipulators [ACM86].

• SIRI-AD: assuring the automatic generation of the nonlinear dynamics of open-chain manipula-
tors [AMM84b]. It exploits a step-wise recurrent formulation propagating the dynamical behavior
[MMA83].

• SIRI-CL: performing the path-planning and generating the dynamics of three families of closed
cinematic chain manipulators. The package presents an oriented structure, exploiting the special-
ization of the internal constraints [ACM96c].

• SIRI-SC: assessing the robot dynamical performance with competing control strategies [AMM84a],
[BMM85]. A modular and extended library of options is provided to help robot control planning.

With the recalled packages, the design cycle evolves, according to the four logic steps of Fig. 7.1, to
give rise to sequences of phases, Fig. 7.11, such as:

1. The robot topology is provided by a first specification, employing the application area functional-
data and the workspace general-constraints.

2. The payload and mobility requirements provide the main structural properties of the manipulator
members and joints.

3. The productivity, with related speed and accuracy figures, makes possible an initial selection of
the actuating devices.

4. The task complexity and the functional performance are detailed jointly with the observation
schemes to define the control strategies.

5. The architectural consistency is equalized by assessing the robot dynamical behaviour for the set
of allocated tasks.

6. The job integration of the (software/hardware) resources is performed with concern to the robot
communication constraints.

To develop a suitable robotic equipment, an extended background is required which joins the results
of the experimentation on existing devices with the investigation on the (structural and behavioral)
properties of feasible solutions obtained by a functional description based on the current dynamics. The
CAD-environment helps close a set of information loops, Fig 7.12. The designer needs explicit access to
all the parameters that may significantly affect the robot operativity. The architectural analysis is required
to set the configuration data, giving topology and geometrical bounds. In terms of the structural attributes,
the basic choices concern the

• Actuation data to comply with pay-loads and throughput;

• Observation data to define the appropriate sensing and monitoring scheme;

• Regulation data to specify the control strategies granting the wanted performance.

In parallel, the designer should fix the conditioning bounds, specifying the

• Execution data for the management of the scheduled job agendas;

• Co-ordination data for specifying communication and synchronization requests;

• Organization data for prescribing action modes depending on the assigned tasks.

Along with the development cycle, the designer faces interlaced problems, namely,

• The parameters of the functional models (inferred from presumed system hypotheses) should be
adapted to improve robot performance with respect to the selected tasks.

FIGURE 7.11 Basic development phases in the robot design.

• The models, identifying the task implementation, shall be modified (updating system hypotheses)
improving the reference knowledge with account of the conditioning functional criteria.

Typical situations faced by a designer for developing robotic equipment are covered briefly.

• Architectural analysis—The setup of the robot layout is, logically, one of the final issues (it is at
the fifth phase in Fig. 7.11); production engineers, however, shall directly define a preliminary
architecture for their own application by simply considering existing robots (with, possibly, special-
purpose rigging). The SIRI-XE framework is available for that purpose. It is based on the X-ARS
package [ACM88] that essentially comprises: a general data-base, where investigated robots are
orderly catalogued into frames with a hierarchical presentation of the available information: a
data-base management block employed for creating, deleting, or modifying the frames and/or their
contents; a user interface for interactive operations (through a nested menus sequence) or for
assisted operation (through an ‘‘expert’’ block); and an expert manager with a rule-based procedural
knowledge providing the inference mechanism based on heuristics for the selection of application-
consistent robots.

The possibility to broaden, update, and modify robot records is a noteworthy option of the framework.
Robot technology is a rapidly evolving area: new devices have to be added; classification criteria, updated;
and functional abilities, modified, etc. It is important, moreover, to have an instrument that may be
personalized according to the application needs. A database management block is required to help code
new knowledge on robot performance under actual running conditions and to expand the structural and
behavioural data. The SIRI-XE framework exploits this database management block to implement the
ordered recording of existing robots in terms of combined architectures-tasks data. Then the X-ARS
procedural knowledge can be employed as expert consultant: in this mode a set of consistent functional
features (configurational conditions and/or programming resources) is recommended and the user can
accept, reject, or modify the suggestions, updating the robot directory with these ‘new’ options.

FIGURE 7.12 CAD environment for robot design.

• Activity-modes analysis—The robot functional characterization depends on the set of tasks to be
performed in the workspace once the robot topologies are selected, Fig. 7.13. Tasks are basically
described in terms of activity modes, plotting the path and the attitude of the end-effector. The
requirement is investigated solving the backward-kinematics problem (referred to trajectory plan-
ners), to plot the mobilities (or joints co-ordinates) trends. The solutions, referred to six-degrees-
of-freedom robots, can present singularities and the selection of the correct branching needs
complex tests when numerical procedures are implemented.

The hindrance is removed by the SIRI-CA framework: with resort to the operation constraints, that
characterize actual manipulators, a set of modular elements are chosen; and then, restricting the study
to six mobilities configurations, expressed by sequences of sliding or revolving joints, analytical solutions
are worked out [ACM86]. The SIRI-CA framework contains a library for generating task-consistent
sequences of activity modes, (i.e., three mobilities are basically employed for covering the work volume
and three for the local position trimming and the attitude setting). The availability of analytical formats
for workspace to joint space mapping provides a direct check on the robot congruence with regard to
both the fixed and moving obstacles in the task domain.

• Dynamic nonlinearities analysis—Factory automation, with the increased versatility of the
resources, moves toward high performance (in speed and accuracy) fixtures. Their dynamics
should be generated, fully describing the inertial crosscoupling effects, to quantify the actual
properties [ACM96d]. With heavy pay-loads, member compliance effects should be considered
[AMP89], [Kov97]. Several programming facilities already exist. The package SIRI-AD was orig-
inally developed by the authors and employed as a service kernel of the simulation environment
[AMM84b], modularly built for the development of robotic equipment. It can be expanded to
cover different actuation possibilities.

This package is based on the recurrent modeling of the dynamics of the supported rigid bodies going
back from the distal member to the fixed base. A preprocessing block (incorporating a 3-D geometric
modeler) for shaping the robot arms and computing the related structural parameters (center of gravity
positions, bulk quadratic moments, etc.) is included. The user can display the robot topology and check
the configurations, all along any given task, each time calling on the graphic routines for visual presen-
tations. The dynamics depends on the actuation laws and the solutions are available in the joint space

FIGURE 7.13 Selection of path-consistent robot topologies.

and in the work-space. Referring to the development stages of Fig 7.2, the SIRI-AD framework provides
the pertinent data for setting the actuators, once a reference configuration is obtained with the help of
the SIRI-CA package.

• Steering strategies analysis—Robot design, (Fig. 7.11), needs the phases of selecting the control
strategies; of verifying the task-congruence effectiveness; and of integrating the equipment in the
manufacturing process. The availability of high efficiency processing devices enables families of
feasible strategies with comparatively high sophistication-level control-schemes. Dynamic nonlin-
earities can be accounted for if the appropriate simulation facilities are employed starting with
the ideation phase.

The SIRI-SC framework is, accordingly, built as standard CAD reference with modular layout; it can be
extended to include all the different control options in use or proposed [ACM93], Fig. 7.14, such as,

• Point-to-point and path-continuous control with kinetically-balanced feedback;

• Position-follower control with force feedback and partial kinematics compensation;

• Piece-wise control with local (numerical) inversion of the (full) dynamics equations;

• Global compensation control by uncoupling of dynamical nonlinearities interactions;

• Adaptive (model referenced) optimal control with weighted rms performance index;

• Statistical observer control with parametric (fading memory) trajectory estimator;

• Probabilistic observer control with a stochastic (Gauss-Markov) dynamics modeler.

The global compensation control is a very efficient option, bringing higher performance with some
computational burden; however, practical implementations are still lacking, in reason, mainly of the

FIGURE 7.14 Features of the SIRI-SC framework.

restricted familiarity with the stability of motion of nonlinear systems. The reference to approximated
models having the compensation limited to backward kinematics transforms [MPM78] is considered for
the cases liable to simple use. The adaptive optimal control [AMM84a] deserves special interest for
theoretic studies. The results have ‘‘robustness’’ limitations and generally present computation problems.
The inclusion of observers with the function of (multi-variable) feed-forward compensators, is also useful.
A good bargain between performance and complexity is obtained with polynomial fading-memory
filtering [BMM85]. The control strategy based on the numerical inversion of the dynamics equations
[Whi69a], [AMM87] is finally included in the SIRI-SC library to be employed to generate the reference
trajectories for the performance estimation of the different control strategies.

The ability of changing the manipulator dynamics, by setting a command law that depends on the
running behaviour, can be used to force the motion according to given requirements. Dynamics ‘‘shaping,’’
for instance, allows the uncoupling of each joint as linear (second order) block provided that the
appropriate compensation is applied. The result can be obtained by acceleration data and feedback closure
or by model-based feed-forward modulation. When both options exist, the self-calibration is simply
performed along with unconstrained tasks.

Specialized Options of the CAD Environment

The simulation environment SIRIxx has purposely been developed for assessing, with reliableness, the
robot accuracy, dexterity, efficiency, and versatility figures. The environment has been expanded, on a
modular base, for dressing the analysis abilities for innovatory robotics, into standard evaluation frames.
In order to achieve additional or particular properties, as required for most advanced applications, a
second group of packages has been developed aiming at more detailed goals. Example packages are:

• SIRI-AT: providing the animation of the tasks progression possibly interfaced to time-varying
surroundings [CMP94]; the graphic restitution is based on standard softwares.

• SIRI-UM: showing the consequences of elastic and anelastic impacts of the end-effectors against
fixed or moving obstacles [ACM96a]. Impulses are propagated along the members to the joints
and the related actuators.

• SIRI-HD: generating combined position/force feed-backs, interfaced with structured or unstruc-
tured surroundings [ACC93], where redundancy improves accuracy and versatility.

• SIRI-MR: assessing the options of multi-robot equipment with co-ordination to enable recurrent
job refinement [ACM91a, AMM91c]; cooperation improves dexterity and efficiency.

The list is recalled to show how diversified subjects arise during actual design cycles. As before, short
comments on the typical situations faced by a designer are given.

• Operation details analysis—The visual restitution by means of the SIRI-AT animation is a powerful
aid for robot path planning including obstacles avoidance checks. At a higher level of complexity,
the assessment of the collision effects is provided by the SIRI-UM package [ACC94a]. The technical
literature on the subject leaves more questions open than solved. The impacts of robot members
(against rigid or compliant bodies) are usually non-central with reflected effects on both normal
and tangential rebounding speed components. Fully consistent analyses do not exist (unless for
the single-degree-of-freedom case) and they could lead to unnecessary complexity models since
practical situations do not require control of the collision behavior but rather only to avoid
unacceptable fall-offs. Then, with SIRI-UM, a simplified analysis is provided based on the intro-
duction of suitable bouncing coefficients which supply a consistent restitution of the impact,
correctly complying with energy decay and momentum balance requirements.

The analysis of details is quite often neglected, since the activity modes selected for the progression
of the requested tasks should avoid the pitfall of even approaching the related risks. High performance
robots, in any case, must compensate discontinuities at the engagement phase, when the unconstrained
navigation phase stops giving place to the constrained work phase. The region could characterize collision

effects with rebounding and bouncing phenomena, [ACC94b]. The resort to simplified identification
procedures to support appropriate task setting operations looks promising, by-passing the theoretical and
practical difficulties of fully developed models. Duly assessed system hypotheses help the self-calibration
of the codes, to fit continuity link-up.

• Task extension analysis—Functional redundancy is a basic option in advanced robotics. The related
technical literature is large with several suggestions [AsA88], [AsH89], [AsY89], [Ben97], [ACH86b],
[AaH77], [ESG90], [KiT97], [LiY97], [Sim75]. The command redundancy is a simple option with
different implementations [AMM91a], [AsI89], [CPP96], [Des96], [FFM97], [MHS97], [Pel96],
[RaC85], [Whi87], [WLY96a], [YLI96]. It is studied by the SIRI-HD package by combining force and
position feedbacks. Mobility redundancy is a more complex option, with several fall-offs [HuJ86],
[KAG96a], [LII96], [LiA92], [MiI96], [NoH89], [UIH97], [YoZ93], [ZLY87]. It is tackled with the
SIRI-MR package introducing the combined cooperation of multiple-robot fixtures. Example devel-
opments are discussed in the following paragraphs and hints are given as introductory remarks and
for the re-design operations based on process-matching requests.

The ability of separately closing position force controls can be used for driving the robot to follow a
trajectory, transmitting a pre-set effort law. During the work phases of the robot, independent sensing
devices provide useful data for closing the appropriate feedback loops. When state expansion makes it
possible to model the interfacing context, the dependence of force data and position data requires fading
away of the redundancy (suppressing over-specification). Processing of the extra information is for
calibration purposes.

The attribution of operation redundancy is a design trick to comply within robotics when the requested
functions are not easily faced by the usual six mobilities. Addition of freedom to a single arm has
anthropomorphic justifications and is a good contrivance when the end-effector, for instance, operates
within a bounded work space previously reached through a narrow entry. Trajectory and control plannings
usually split into sub-tasks: the approaching (or latching) and the operation (or tracking) tasks. More
general setups based on multi-robot equipment with cooperation deserve special attention (Fig. 7.15).
Situations leading to such directions are quite different, thus, a general purpose simulation environment
is a very important design aid usefully explained with case applications.

7.3 The Design of Process-Attuned Robots

The study of specialized options, generally, profits the systematic approach built by using the general
purposes-modules of SIRIxx and recording the results into the data-base of the SIRI-XE package. Still,
detailed developments sometimes, require further studies when the individual applications concern, for
example, subtle details or broad duty areas. In the former instances, accurate modeling of tasks progression

FIGURE 7.15 Robots with cooperation setup.

might result in difficulty, critically effecting the recognition of negligible effects on task planning. In the
latter instances, consistent identification of unique robot setups could fail unless relevant refixturing or
retro-fitting are performed to accomplish each sub-set of tasks. Operation peculiarities and job capabil-
ities are both easily assessed when the design of the “new” fixtures follows a modularly-constrained
development track.

Emphasis on modularity to expand robot’s permitted activity modes has to be faced at both the CFC
and the MDM frame levels. The philosophy that lies behind ‘‘earlier’’ robotics was that hardware fixtures
should have been capable of being adapted by merely reprogramming. Selection of equipment that will
best suit the needs of flexible automation is, however, a more difficult and costly exercise. The goal is
simplified by joining the use of proper CAD supports (e.g., SIRIxx) with the standardization of the
reference units and functions as well, so that the appropriate set-ups and fit-outs would effect outcome
by combining a series of modules. The specification of the suited solution is alleviated by the previously
performed analysis procedure on the standard units and functions and the synthesis procedure follows,
(Fig. 7.16), according to the rule: ‘‘to determine the appropriate CFC frame, by joining the set of modules
(functions and units) with the proper MDM frame, enabling the set of useful tasks with performance
explicitly weighed by process specialisation.’’ On these grounds, modularity is exploited as conditional
aid of the ideation stages, (Fig. 7.2), indeed, the architecture setting has task-driven global bounds which
specialize any given acceptable topology—the governing fitting has performance-driven approval tests
to verify innovation appropriateness.

This “global” design cycle exploits modularity for a two-fold choice orientation:

• General purposes kinematics modeling techniques, control strategies assessments, etc., provide
the classification rules for acknowledging the functional units consistency in relation to the process
and for comparing their appropriateness to perform the tasks.

• Technical data, specially attributed to each unit, immediately provides the mechanical design param-
eters of the proposed solution (geometry, center of mass, weight, mass quadratic moments, joint
stiffness, velocity/acceleration/torque limits, etc.) to help identify the expected performance figures.

Three of the four steps of the design-cycle procedure, (Fig. 7.1), are accomplished transferring the
properties of the units with “global” consistency assessments. The fourth step leads to reconsidering the
duty figures as actual achievements, readily starting the re-design activity with focus on the actual process
where robots are introduced. The results of each new design-cycle procedure are background knowledge
to start the process back-poised design of specialized equipment; in particular, by means of the already
mentioned SIRI-XE package. They are stored, (Fig. 7.13), into a properly ordered database. Innovation
is built step after step, acknowledging the “task requirements—functional blocks” pairs in terms of
weighed performance indices (technical figures ‘accuracy, dexterity, efficiency, and versatility’ and eco-
nomical return on investment). The designer makes inquiries from background knowledge that he can

FIGURE 7.16 Synthesis of process-attuned modular equipment.

extract from overall formalized solutions when the process, to which the robot has to be linked, has
already been studied. Most of the time, he will receive suggestions or only preliminary-by-default solu-
tions. The logic of the SIRI-XE package, (Fig. 7.17), is built on sets of rule-based procedures that can be
expanded or modified by the user to personalize, not only the reference knowledge, but the decisional
patterns.

It should be noted that knowledge updating and maintenance of the expert system will become difficult
to keep the reference background at satisfactory levels. Indeed, ‘‘industrial robotics’’ has reached the range
of technological appropriateness and the number of equipment grants return-on-investment to manu-
facturers. In other fields, large opportunities like to be established as soon as the critical threshold of
economic efficiency is achieved (this is expected to be, e.g., the case of micro-robotics).

Simultaneous Design of Robot-and-Process

The design of instrumental robots is strongly affected by the on-duty requirements concerning the facility
and the related functional blocks. Actually, design does not end with the development (from conception,
to construction) of the fixture. It should cover its life-long management including every action for
programming and re-fixturing or for fitting and calibration. Indeed, the ‘‘quality’’ of the accomplished
tasks and, indirectly, of the processed artifacts should be granted by restoring actions (pro-active plan-
ning), aimed at avoiding, extra costs of products approval tests and risk of regeneration jobs for the
delivered services. Thereafter, return-on-investment in flexible automation is assessed by showing the
advantages obtained by the setting the appropriate layout and fitting of proper governing logic. Among
the advantages, process-granted ‘‘quality” is an inherent fall-out to be taken into account.

This discourse has been dealing with the design of instrumental robots, emphasizing the computer aids,
prepared basically as CAD instruments for the development of the equipment for intelligent manufactur-
ing. Industrial robots, in this context, are function-oriented equipment with duty adaptivity and ‘intelli-
gence’ to that goal. For factory automation, robots have in-charge jobs (handling, inspection, assembly,
etc.) required to enable unmanned running operations, in time-varying production plans and product
mixes. Robotics is, thus, the reference technology for intelligent manufacturing, as opposed to fixed
automation; the functional orientation is the basic design reference to comply with versatility (while
productivity lays behind). Due to the variability of the production process, the action modes are large in
number and tightly cross-coupled; then, computer aids, and ideation phases are relevant for on-duty
iterated use, to manage hardware and software resources, and to provide helpful assistance to fit up and
refit, to trim and adapt, etc. the available facilities so that the actual situations are faced with the best pre-
set capabilities.

FIGURE 7.17 Decision cycle supported by the SIRI-XE package.

The evaluation of the return on investment appears to be a complex business since effectiveness has
to be enabled along the operation life of the robot. Best performance, in fact, is achieved step by step on
the condition that transparent knowledge processing is done during the robot life-cycle, from the con-
ception along the running phases to the final breaking up, in order to make it possible

• to simulate the actual robot dynamical behavior aiming at virtual reality checks;

• to perform data fusion, with measurement restitution steered by system hypotheses;

• to promote command options, depending on control/mobility redundancies;

• to explore operation alternatives, suggested and assessed by expert modules.

Robotics is a multi-disciplinary area, obtained by merging many technologies to work out “mechatronics”
issues through the cooperative effort of experts in several fields. Cooperative knowledge processing means
that scientifically consistent bounds are established between engineers which concurrently work toward the
solution with participated responsiveness. Experts may operate independently (at their own concern),
putting in common requests and results and sharing the over-all reference knowledge. Final robots possess
properties selected through the collaboration (with contribution, from designers and users), on condition
that a unifying CAD environment is accessed simultaneously by all involved people.

This is the main idea of simultaneous engineering, with side off-springs such as

• integrating application studies with research seductive option with fruitful issues; and

• economic considerations cannot be separated from technical specifications, but need to be assessed
with care, to help rank design alternatives in terms of process requests.

The criteria can be used to build an expert system, which helps to recognize good from bad fixtures.
The job cannot be accomplished unless manufacturing engineers are asked to cooperate, so that no single
issue dominates. The cooperation presumes structured knowledge environments and, possibly, modu-
larly-arranged processing aids. From the collaborative effort, robots might be modified by removing or
simplifying functions to agree with process fundamentals. With re-engineering, moreover, product-and-
process may be changed as well, as technology-driven solutions are revised.

The Robot Setting: Equipment Modularity

In flexible automation, the main emphasis is reserved to “programmability.” Robots are developed to be
able to adapt themselves to any new product or process merely by reprogramming. The issue depends
on (Fig. 7.18) the combined accuracy, dexterity, flexibility, and versatility figures needed by the manu-
facturing strategies: “versatility” means how far the task domain extends; “flexibility” specifies the on-
process adaptability range; “dexterity” measures the duty level of complexity; and “accuracy” specifies
the metrologic criticality of each operation. These are technical requests to be weighed against “produc-
tivity” for manufacturing applications. Robots, of course, never reach the productivity of special purpose
devices used in fixed automation. Yet, single-purpose resources become useless when artifacts to be
processed are modified. To preserve high productivity, while making it possible to recover the resources
for different productions, ‘modular robots’ could be the right solution. The implementations are a typical
issue of simultaneous engineering as standardization presumes the combined knowledge of robotics and
the process-and-product design; the technical literature [BZL89], [CLC92], [GKY84], [HWM86],
[Kan83], [KeK88], [LeR87], [MuM84], [ShS84], [SmC82], [TeB89], [Wur86] provides several useful
indications.

A modular robot consists of standard units (links, joints, auxiliary rigs, etc.) which may be configured
into suited arms as soon as new tasks are defined. This authorizes the exploitation of oriented devices (e.g.,
arms with only one or two mobilities) each time this is consistent with a given manufacturing process.
Versatility is fully fixed off-process while flexibility is compressed as low as possible. The productivity can
rise considerably on the current tactical horizons, due to the final fixture specialization. The stops, to
implement the “new” robots of each new production program, are an unavoidable drawback to be removed

by careful, simultaneous engineering (putting in parallel artefacts and production resources development)
and standardizing previously arranged hardware and software units.

On the marketplace, (Fig. 7.19), the modular robots are offered with different levels of complexity.
The assembly of small plastic artifacts, to be delivered by extended batches, is a sample case where the
rig modularity has been explored to reach return on investment [ACM96e]. The development of the
fixtures is, basically, concerned with an inventory of properly assorted units and by composition proce-
dures based on pre-established patterns, such as

• Units are self-standing structures (links, joints, sensors, grippers, etc.).

• Each unit has self-contained function (e.g.: link with included actuator).

• Congruent units connect each other, through standard coupling.

• Auxiliary units (sensors, etc.) can be superposed, regardless of size, type, etc.

• Individual unit has optimized design, in terms of a selected set of charges.

• Reference setups are available, with properly tested characteristics.

• Software modularity provides fit-out schemes, with known performance.

• Similar other prescriptions automatize the access to the inventory.

The conceptual design, then, is very effectively done with help of the basic packages of the SIRIxx
environment.

FIGURE 7.18 Performance figures of instrumental robots.

FIGURE 7.19 Example robot built with modular units.

• SIRI-CA supports path planning and architectural analysis to minimize the number of mobilities,
frozen-joints models that are used to specify actual links and the architectures are analyzed with
respect to only the task-driven paths.

• SIRI-SC assures control planning and performance analysis. The structural parameters are directly
transferred from the inventory and the control strategies are programed for use on related pro-
cessing units.

The modularization considered in this paragraph establishes constraints mainly on the mechanical
side of robotics. Sensing and computer units are already available as standard units; thus, no relevant
limitation is expected. Now, robots are dextrous devices charged to accomplish, with autonomy, given
tasks; being allowed to use their intelligence of the world they are interacting with according to this
definition, the modular fixtures happen to be classified as ‘robots,’ depending on the amount of ‘intelli-
gence’ they are using, properly equipped for on-process duties. Overall flexibility is, in any case, the winning
option to working out the appropriate setup by the off-line investigation and to transfer the efficient
supervision at the level of on-line operativity. In summary, the design of process-attuned robots, by
integrating series of properly standardized units, is aimed at timely equipment re-setting (CFC frame)
while performing the overall re-engineering of product-and-process.

The Robot Fitting: Versatility by Process Back-Poising

Reference to standard units only is often too restrictive resulting in final configurations too complex or
not properly balanced and, in general, poorly optimized. A different kind of modularity has been discussed
in the chapter based on the idea of process back-poised standardization. At this stage, the innovation could
bring unsuspected options and few hints are given. Instrumental robots are operation-oriented devices
with programmable functions related to allocated tasks and adaptivity depending on the autonomy latitude
and performance ranges. Their development requires the previous acknowledgement of the on-duty
behavior to be established within actual operation conditions with model-based computer simulation
(starting at earlier conceptualization, during the design steps, and covering the life-long task programming
to manage the on-duty fitting). The process-attuned standardization simply means to fix a set of procedures
(rules or algorithms) in order to systematically combine the “activity modes” (of production agendas) and
the “equipment set-ups” (of processing resources).

Then, upgrading in instrumental robotics is explored by mapping functions (MDM frame) into equip-
ments (CFC frame) which share, as a standard feature, the knowledge of the tasks to be performed. Once
the resources are detailed, the planning is the critical request and the effectiveness endowment is dramat-
ically dependent on the capability (based on system hypotheses) of continuously assessing the task pro-
gression, aiming at adapting the operation sequences in such a way that disturbances are filtered and off-
setting influences are avoided. The issue is reached (Fig. 7.20) by exploiting dated process information
and the conditioning relational contexts and is based on

• The availability of models with manipulation dynamics so that robot behavior is predicted with
the requested approximation;

• The inclusion of standard sensing devices, to provide directly or indirectly, visibility on every
quantity which may affect robot performance;

• The ranking of the feasible redundant setups in order to supply control fits in and/or mobility
options for higher robot effectiveness;

• The access to common decision aids with incorporated ‘expertise’ to simplify the robot setup and
to improve its operation efficiency.

With process-attuned standards, an instrumental equipment is directly related to the tasks and, in a
moderate manner, affected by methods or procedures that man has discovered to obtain, results. This
becomes the starting point to innovation. Actually, robot potentialities are considered more and more
to supply effective solutions to the many manipulation tasks that actually are out of man’s possibilities.

Between the new fields of instrumental robotics, the area of micro-dynamical systems, for instance,
deserves attention and several example applications, (Fig. 7.21), already cover specialized market areas.
These new applications of instrumental robotics are characterized by the need of exploiting to the highest
degree the amount of information available, since the success critically depends on the ability of acknowl-
edging the task progression with continuity. This acknowledgement is based on the availability of appro-
priate models of the controlled manipulation dynamics; extended (direct or indirect) visibility on the
process variables; and convenient redundancy of the controlling capabilities. In other words, we seek a
robot with versatility capable of being properly balanced to the process requirements. As a particular
instance, micro-robotics is recognized as requiring sophisticated model-based computer-simulators,
observers-driven sensors-data fusion, and dynamics-shaping control capabilities. These research efforts
are, however, common trends for instrumental robotics, for developing specialized and effective devices
with the low-cost desirability which assures market rentability.

The equipment resetting and retro-fitting are accomplishments that introduce the shift from a “special”
technology, such as robotics, to a broader engineering context, namely, the design activity. At the end of the
evolution, robots might not preserve a technological independence any more (adding multi-disciplinary
knowledge); by now, innovation is issued with aids which help solve an engineering design problem. Micro-
robotics has been used to exemplify the trend: designers look at “on-duty” (process-attuned) prerequisites
as a principal concern of a re-engineering business; not as advanced achievement of robot technology.

FIGURE 7.20 Basic requirements for robot’s design effectiveness.

FIGURE 7.21 Example applications in micro-robotics.

Robot Dynamics with Constrained Motion Duties

Aimed at process tuning, the robot’s manueuvers will principally be concerned with constrained motion
models, (Fig. 7.8). In Section 7·2, the connection between a robot and the environment has already been
given by means of the “impedance” G(s); binding the incremental deviation of the coupling force (and
torque) �FE with the position (and attitude) infinitesimal off-sets of the end-effector from the equilibrium
location, the linearized model follows:

 with: (repeated) (7.7)

When the coupled work path starts, the model (7.4) describing the dynamical behaviour of the robot
can be linearized to become:

(7.8)

where �QA is the incremental actuation torque; the (reduced inertial terms); the (reduced stiffness)
heavily depend on the configuration, the reduced damping is less sensitive, and the gyroscopic term,
D , since the second order in becomes negligible after linearization.

To reduce off-set errors, the industrial robot controllers resort to joint commands (7.5) with, possibly,
an integrative term,

(7.9)

�Qm computed at the joint axes (the desired acceleration may not appear, being seldom available).
Therefore, if the behavior of each actuator is approximated inside the motors linear range (before
saturation), by the “equivalent” inertia and damping terms:

(7.10)

(where � is the matrix of gear ratios from motors to joint axes), then the closed loop dynamics is stated,
with respect to the linear approximation (7.8), provided that the external inputs �x or �FE and the
actuation commands �QA are bounded both in magnitude and in frequency.

The effectiveness of instrumental robots by process-data acknowledgement shall not divert attention from
their inborn faculties, namely, the behavioral adaptivity. This, rather than abstract qualification, corresponds
to the ability of figuring out the dynamics by means of models by granting quantitative prediction of the
motion. The aspects are considered to suggest a patterned approach for feeding in the process “knowledge”
(possibly, by modularly arranged CAD supports) and to introduce concepts quite general in respect to the
example applications of the following sections. In fact, a model remains a representation of the actual behavior
for a certain duty range. The deviation is called the model (structural) uncertainty and the interlacing between
deep knowledge frames (e.g., the above stated equations (7.7)–(7.10)) and shallow knowledge links (e.g., the
rules of qualitative reasoning) should be explored to reduce this uncertainty [MCR96].

According to the said goal, the show of useful process data is enabled, recognized, and exploited, during
the duty progression, mainly, for two reasons:

• For instrumental robots, as outcome of task departure monitoring; and

• For autonomous robots, as instance of task-planning success/failure.

In the first case, robot effectiveness is improved by means of the recalled options, (e.g., dynamics shaping
to compensate the inertial coupling between joints) and redundant control (to have independent mod-
ulation of the effector position and force). In the second case, the availability of structured knowledge

�F̃E G s()� x̃� G s() Ms2 Hs K� ��

�QA Aq
�
� q̇̇ Bq

�
�q Dq

�
� q̇ JT

�FE�� ��

Aq
� Bq

�

Dq
�

q q̇,() q̇

�Qm E1 qd q�()dt Ep qd q�() Ev qd q�()����

�Qm �
2Jm q̇̇ �

2hmq̇�()� �QA�

frames of the arm behavior can help modify task-planning, with relevant advantages for highly sensorized
devices.

The concept of dynamics shaping has been defined as the capability of modifying the steering planning
by combined adaptive feedbacks [Yos93]. The compensation of the reflected inertia dynamical coupling
is quite an obvious modulation to counteract the internally generated inertia load. Up-grading is apparent
for rigid arms required to track high speed navigation paths. Moving to the robot back-loads generated
by external couplings, earlier studies, before any snags due to limited stiffness, considered strategies based
on separate loops for position or force commands. The extension is justified by considering how redun-
dancy is used by people to preserve the stability of motion, e.g., during everyday walking, or for expanding
dexterity and versatility, for complex exercises. The model-based connection of force and position feed-
backs is a primary goal for development in robotics. Most of the recalled micro-manipulation tasks, (Fig.
7.21), needing the graduation of the impressed force jointly with the effector displacement steering, require
control redundancy. In fact, due to dynamics nonlinearity, any changes of accuracy or efficiency figures
will also require task-driven adjustments, making control planning necessary in addition to path planning.
Simple example developments are discussed in Section 7.4, for explanatory purposes.

One question is, moreover, the fact that robots could be required to operate with totally or partially
unstructured constraints. As a general rule, the request is faced by “intelligence” of the outside world mastered
by learning schemes to expand the range of successful duties. The practical evaluation of the effectiveness
figures of abstractly defined duty ranges, however, worsen due to the arbitrariness of the reference
standards and to difficulties of establishing consistent gauges. Instrumental robotics of recent years has
preferred the gathering of “intelligence” of the outside world expanding experimental information and
profitably doing data-fusion by combining sensor measurements and system hypotheses; whereas auton-
omous robots may struggle against vagueness another way, by learning cycles built, e.g., on qualitative
reasoning. Computer aids, with knowledge frames similarly based on the said four logic steps, (Fig. 7.1),
can be used for exploring the feasibility of prospective tasks when open-duty activity modes are addressed
for goal-oriented planning performed into unknown surroundings and unpredictable disturbances.
Steering self-adaptability, learning ability, and recovery options are evaluated by fully autonomous agents
with virtual reality experiments, supplying a rival show of closed-duty applications of the fixed automa-
tion. Iteration of functional design cycles, then, operatively provides a decision pattern for training
procedures, granting self-learning abilities.

The integration of on-line measurements is the last, but not the least, of the problems related to
process-tuning. Sensing devices are extensively used to measure internal coordinates e.g., encoders for
joint angles. The addition of angular accelerometers makes it possible to obtain signals for the compen-
sation, as shown in Fig. 7.7, of the nonlinear inertial couplings during the unconstrained navigation
phases. Image analysis and optical scanning are useful means to derive surveillance functions for pre-
setting the engagement phases; sensing devices at end-effector or wrist provide data for tactile recognition
and hectic reactions and the incorporation into system knowledge profits by identifying a structured
relationship of interactions at the robot/surroundings interface. Availability of reliable, low-cost devices
supports the trend [ArM83], [FLG97], [DeS98], [HiH83], [Hil85], [LiG93], [RoM66], toward inclusion
of new measurements. Quality and effectiveness require accurate calibration procedures and the related
cost and time should be compressed and accounted for. The answer is “intelligent instrumentation,”
having standard self-calibration capabilities. The robot is specified through model-based control account-
ing for actual nonlinear dynamics; and, to conclude calibration, is endowed by a duly modeled interface.
The data, collected by specified duty sequences, are processed and compared with “virtual” measurements
for automatic calibration of the sensing and restitution devices.

The discussion on the on-process opportunities for expanding current information by means of
learning capabilities and artificial reasoning or of measurement devices and data fusion, however, should
not divert attention from pertinent models, such as the one represented by the Eqs. (7.7) through (7.10),
which help describe the manipulator dynamics within given application ranges. This assumes a “nearly”
valid prediction of the process evolution to be compared with measurements to have an insight on
whether external disturbances would superimpose.

A Challenging Option: Robots with Cooperation

Process conditioning pops up as brain wave and multi-robot systems for task parallelism appear as
innovation aiming at better productivity and/or effectiveness. The subject has already been concerned
in several studies and sample applications exist with loose cooperation figures between units. To assess
these figures, the specification of the multi-functional framework is requested, explicitly defining the
relational structures of the task/performance cross-dependence and for the job-flow/resources concur-
rence. The co-operation problem is stated, at this stage, as distinguishing control loops (closure of physical
feedback) and decision schemes (closure of logic nets), and join the efficiency of the in-line command
operation with the flexibility of the in-process adaptivity whenever requested by the application. For
duty-specification, the aspects to investigate include:

• Functional description of the job to assess the advantages of robot cooperation.

• Executional constraints with specification of task programming requirements.

• Govern and information fit-out to select control and communication setup.

Schedule meshing analysis, (Fig. 7.22), is done at first, to recognise if duties are closely bounded,
sequentially related, or mainly self-sufficient. Cooperation, in fact, increases plant productivity as
robots share portions of the job and are able to perform a large variety of actions. Therefore, task
complexity, (Fig. 7.23), is analyzed to set the handling architecture and to fix the govern level hierarchy,
namely:

• Logic sequencing, at lower scheduler level, to comply with the nesting of (off-process speci-
fied) tasks ‘‘closed-duty’’ agendas, accomplishing in parallel independent actions, to improve
productivity.

• Communicate synchronized coordination, at intermediate planner level, to obtain the task-
coordination by means of ‘‘sync-duty’’ operations, respecting the sequentiality of actions with
priority constraints.

• Decisional mechanisms activation, at upper controller level, for matching tasks and ‘‘open-duty’’
environment in order to fulfilled jobs actually requiring collaborative effort to grant reliable results.

A third issue, data sharing requests are considered, to be satisfied at

• Operation range: scheduling/sequencing; devising/planning; observing/controlling;

• Govern range: centralized (controller level) or decentralized (scheduler level) policy.

The design of efficient multi-robot equipment depends on the application. It can be viewed as the
most satisfying setup between conflicting goals such as: duty flexibility vs. setting quickness; task versatility
vs. plant productivity; and job autonomy vs. quality assurance. Due to the complexity of the contrasts,
choice of solutions needs to be explored since conceptualization, (referring to actual running conditions
to check functional and decisional options exactly in the duty specification frame of the particular case).
To limit development costs, general purpose CAD packages are a convenient means. A number of
alternatives can be explored by comparing charges and benefits and contrasting functional and decisional
options with quantitative figures of the robots’ performance.

Handling and governing structures are the central issue in developing the overall fixture. The first
characterizes defining the functional components: end-effectors, joints, kinematic chains, actuators,
sensors, etc., and needs to be adapted to the manipulation surroundings (i.e. workspace, job requests,
tasks agenda, information interfaces, control operations, etc.). Dexterity and accuracy push toward
integrated sensing/command blocks and hybrid position/force control loops for the arm-coordination.
The study is, accordingly, carried on by appropriate functional models: first, for the preliminary com-
mand-setting and path-planning with simple kinematic models; then, with full dynamic models that
should include a library of control strategies, for operation checking and performances evaluation. The
governing structure, (Fig. 7.24), has to continuously adapt actions to current situations related to on-going

FIGURE 7.22 Specification of the schedules by “duty modes.”

FIGURE 7.23 Cooperation classing by “task modes.”

FIGURE 7.24 Decision-and-govern modes of multi-robots.

job progression. The scheduler activates the tasks parallelism and, once verified, the planned job sequenc-
ing. The controller, congruent with flexible surroundings, requires full visibility of tasks progression to
exploit the updated knowledge on current situations; to modify the state depending on the scheduled
duties; and eventually, to adapt the robot behavior in relation to the situational changes. The context
brings a hierarchic knowledge reference framework to distinguish the “external” from the “internal”
structural conditions and to prepare solving procedures consistent with the acknowledged relational
schemes.

The preparation of the activity modes can be separated from their execution by the tasks given to the
individual arm and the trajectories (with the related motion-wait conditions). Job fulfillment is pro-
grammed (planner level) off-line and synchronisation only is enabled during implementation. To govern
cooperating robots, thus, requires a communication structure between units assuring

• At the scheduler level, the monitoring of closed-duty agendas;

• At the planner level, the sequencing of sync-duty agendas;

• At the controller level, the coordination of open-duty agendas.

7.4 Modulated-Control Example Developments

Improvement of robot potential has been related to the ability of modulating the behavior to reach
accuracy, dexterity, flexibility, and versatility so that the specified handling tasks (even out of man’s
capability) are performed. The challenge, characterized by the use of dynamics shaping and/or force
modulation, to subdue unwanted effects on the manipulator behavior, is by adapting the control to the
on-going duties. Dynamics shaping corresponds, in fact [Yos93], to compensate systematic offsets or
drifts which may arise due to: actuation nonlinearities, mobilities inertial couplings, transmission com-
pliance, actuation backlash, sensors’ bias, or the like, using error signals, measured or computed with
respect to pre-set dynamics, in the joint-frame. Conversely, aiming at the force modulation, typical studies
[AnH89] have considered strategies based on two commands (position or force), conveniently switched
to drive the arm as the duty is modified to constrained motion manueuvers. A simpler setting lies in the
impedance control ([Dra77], [Sal80], [Hog80], [Hog81], [Hog85], [KKN95], [Mil96], [Pel96], [CaB97])
which enables a force feedback mapped from position data on the condition that the coupling stiffness
matrices are known. Both approaches could be explored to supply task-orientation aimed at position
and/or force combined control. This strategy is suggested by the observation of how the redundancy is
exploited by (trained) living subjects to preserve stability of motion and to improve dexterity and
versatility (even the running of a man on discontinuous ground requires multifarious adaptivity, to select
a complex balance of position and force reactions and to carry on with a stable gait). The availability of
redundant information enables sets of (hybrid) options for governing the robots to stick to the planned
task, even when biasing effects arise.

The above considerations show that to enable control adaptation means, at least: redundancy, as far
as actuation actions, and transparency, as far as dynamics effects. The redundancy is investigated by
models properly extended to cover (with the robot dynamics) the effects of the surroundings. The
visibility is assured either

1. By a state observer, generated according to the a priori knowledge of the process. This will generate
the robot behavior by means of the model. The basic control strategies to uncouple the work-
space errors for the actuation feedback requires explicit shaping of the dynamics as internal
reference knowledge; or

2. By a self-sufficient observation scheme based on sensors and processing units. State coordinates
(in the workspace and in the jointspace) are measured to assure tasks execution (in workspace)
with up-dated commands (in jointspace) and proper control of both, tip position and transmitted
force.

The two options can be exploited simultaneously, building combined solutions:

• The internal model is important for the on-line processing of the uncoupling feedback based, for
instance, on the “computed” torque method; and

• The sensors provide further data, useful to adapt, via supervisory mode, in-progress schedules
and co-ordination requirements.

To improve robot performance, the reflected loads shall be “accommodated” rather than resisted.
Earlier studies aimed at compensating the effects in a non-conflicting way. The manueuvers are recog-
nized by the way the position controls unconstrained motion degrees-of-freedom (force control for
constrained motion). Example cases are further discussed to show the relevance of the control planning,
with respect to more traditional approaches (confined at the stage-of-path planning, only); in particular,
for situations that might lead to an erratic robot behaviour, suppressing wavering through errors
compensation, and improving accuracy and dexterity without penalizing versatility and efficiency;
namely,

• An example deals with inconsistencies of the control capabilities that could appear depending on
the reflected-inertial dynamic coupling.

• The second, aiming at measurement robots gives hints to design a high performance device when
handling effectiveness ought be joined with steady accuracy.

• The third introduces position/force control problems showing the coupled stiffness effects on the
path planning repeatability.

• The last considers haptic manipulation using touch information to close position-and-force feed-
back to keep ‘sufficient’ stability margins to the robot motion while the tasks progress.

The Process-Adapted Control Planning Setup

Robots are non-linear mechanical systems. The handling dynamics shows undesirable behavior such as:
joints cross-coupling due to the reflected inertial terms; driving misfits produced by backlash, stiction,
saturation, etc.; vibrations and accuracy losses rising from lumped and distributed compliance; and so
on. From the actuation stand, each motor has to drive a load which depends on varying mechanical
parameters with modulating inertial, compliance, and damping couplings effects. The locally linearized
model with inclusion of motor and transmission effects reduced to the robot joint axes combines Eqs.
(7.8) and (7.10), to obtain:

(7.11)

where motors’ effects are scaled by the gear ratio � and the reflected dynamics adds to give: �

, equivalent inertia; � (); equivalent damping; and � (), equiv-
alent stiffness. The terms and , as said, heavily depend on the configuration, but are somewhat
equalized when high gear ratios are used.

The model approximation is apparent each time the architecture deviations are not negligible; the
motion does not progress slowly and without impacts, and one of the following facts holds:

• The motors are not geared through a speed reducer, i.e., direct drive actuation is used;

• Quick changes are tracked in the joint space (the ‘equivalent’ parameters vary rapidly as no steady
contribution dominates), even if the end-effector moves slowly;

• High accuracy is required for given tasks, such as at contact-transient for quick plough during
assembly operations.

�Q̃m �
2Jm Aq

�
�()s2

�
2hm Dq

�
�()s km

� Bq
�

�()� �[]�q̃ JT
�F̃E

1

km
�

-----�
1

�
2km

1
kA

-----�� �

JT
�

�
2Jm Aq

�
�() hT

�
�

2hm Dq
�

� kT
� km

� Bq
�

�
Aq

� Bq
�

The back effects of the constrained motion appear in the work space and have to be transformed in the
jointspace leading to:

 since:

(7.12)

Then the closure of feedback loops by with the usual error signals (7.5) or (7.9). The real behavior
differs from the model (12) due to the set of discrepancies, to be evaluated in the practice, resorting to
harmonic describing functions. These are defined for fixed classes of bounded magnitude and frequency
[GrM61]; thereafter, letting represent the true manipulator dynamics at the selected con-
figuration and for a driving harmonic wave of given amplitude, Fig. 25, the local deviation is expressed by:

(7.13)

which confines the identified model, with respect to the true open-loop behavior, into specified bounds,
separately dealing with:

• Manipulation uncertainty which includes the local linearization of the dynamics and the additional
non-linearities on gearing stiction and stiffness; and

• Operating uncertainty which corresponds to insufficient knowledge on the coupled impedance
G(j) � [(K� 	2 M) + j	 H] parametrization.

The closed-loop behavior, (7.5) or (7.9), deals with further non-linearities such as motor saturation,
which can be modeled as open-loop gain reduction for each given frequencies band.

For developing high-performance robots, models shall be “nearly” valid within each considered oper-
ation range. In this practice, the designer is mainly concerned with the two-duty conditions: free motion

FIGURE 7.25 The identification rule for the set of describing models.

FIGURE 7.26 Computed-torque control.

�Q̃m JT
� s2 hT

� s kT
�

� �[]�q̃ JTG s()J�q̃�� �F̃E G s()�x̃ G s()J�q̃� �

Kq
F j	; ;;
()

Kq
F j	 	j �	 ��q,,;() hT

� j	 kT
� JT

�
	

2
��() JTG j	()J�{ }� eq

E j	 	j �	 ��q,,;()�

and constrained motion. In any case, the relevance of the non-linear uncoupling and the perspectives (that
dynamics shaping opens), are well explained by examples. The approaches proposed to figure out controls
able to cope with the non-linear effects of the dynamics [ACM93], [AAC94] have as common an idea to
change the actuation law in order to suppress the coupling so that the robot is forced to keep a linear
behaviour while performing the assigned tasks. Coupled motion is, instead, controlled looking for “accom-
modation” attempts ruled by devising mechanical impedance figures in the frequency domain and by
designing proper compensators by means of the (linearized) harmonic describing functions.

The effectiveness of the compensation strategy, with the first example, is proved looking at an existing
robot: its dynamics is, first, verified by simulation with either the existing command or via the compen-
sation, (Fig. 7.25), based on dynamics shaping aiming at fully suppressing the handling behavior incon-
sistencies by means of the “computed torque” method. The results show the usefulness of simulation for
the transparent assessment of the task progression and for helping the control planning. The ability of
expanding versatility and dexterity, moreover, is related to the possibility of including touch data on the
end-effector path tracking. The exploitation of haptic artificial reality, however, cannot be effectively
enabled, unless the composition laws of position and force data are related to the robot desired behavior,
for performing the dynamics shaping. The basic comments are introduced by the second example.

Command Planning: Tip Wavering Under Inertial Coupling

The idea behind the “computed” torque method is that once gravity unbalances and transport terms are
compensated, the forcing contribution Q� related to the inertial coupling, should be superposed to cancel
out undesirable effects and to assure that globally each robot mobility will behave as a perturbed double
integrator with pre-established stability and robustness margin. Choice of the uncoupling compensation
can be done by optimizing a performance index purposely defined for the set of the prescribed task paths
(for improving steady efficiency), or according to general stability criteria in front of sharp disturbances
(for a better transient behavior).

To consider this second option, Fig. 26, the following compensation:

(7.14)

will force the joint actuation, after uncoupling, to behave as a linear second-order block with critical
damping. Downstream of the inertial compensation module, the model includes the additional non-
linearity due to motors’ saturation. With higher gains, the control reacts promptly as long as joint motors
remain in the proportional range (before saturation). This may reduce the loop safety margin, yielding
to intolerable oscillations, unless the appropriate feed-forward compensation is computed, by modifying
the command gains when the driving setting exceeds the saturation threshold. In such a case, the
compensation of the reflected coupling inertial terms can only be approximated (at least for the individual
feedback of the saturated joint actuator).

A quite instructive example problem was obtained during the investigations carried out with an industrial
robot from a leading enterprise of the field. In order to reach a very accurate description of the robot actual
dynamics, the setting of the centroids and of the mass quadratic moments of each individual member were
obtained with a 3D solid modeler interfaced to the SIRIxx package. The original control modules provided
by the robot manufacturer were analyzed and conveniently modeled. Then, simulation was carried out
according to the testing procedures programmed with the standard operation prescriptions, in order to
have the set of validation references for trimming of the SIRIxx code (see Fig. 7.27, for a typical test sheet),
before carrying on comparative studies with more complex control strategies.

A particular trial is represented by the synchronous steering commands: a joint-interpolated trajectory
is assigned between two points close to work-space boundaries, (Fig. 7.28), with the joint actuators that

Qc �Q Q�
� A q() Ep qd q�() Ev q̇d q̇�() q̇̇d� �[] B q() C q q̇,() D q q̇,()� � �� �

simultaneously start and stop and only exploit the convenient speed modulation for controlling the end-
effector position and attitude. Even if the driving command settings do not exceed the saturation
threshold of the motors, an undesirable wavering appears on the fifth joint of the robot (and of the model
simulated with the original control setup). This causes current oscillations in the related motor, as can
be seen in Fig. 7.29. The hindrance completely disappears when the compensation of the reflected inertial

FIGURE 7.27 Test sheet for the simulation trial (courtesy
COMAU).

FIGURE 7.28 The synchronous steering commands test.

FIGURE 7.29 Disturbing effects of the non-linear reflected inertia couplings.

terms is introduced, (Fig. 7.30), in the model. The coupling dynamic modulation is very slight during
usual operation tasks and is, in most of the cases, practically negligible on the end-effector when measured
as out-of-all robot performance. The robot manufacturer was aware of this “anomalous” joint behaviour
that could be avoided only by modifying the “admissible” task. Instead of looking at the inertial coupling
effects, he was wondering about compliances in joint transmissions, aimed at increased stiffness without
removing the dithering effects.

Explanatory evidence is easily reached by simulation once the robot behavior is modeled by means of
a convenient code, (such as SIRIxx) making explicit reference to real architectures and contrasting the
accuracy and dexterity limitations, and experimenting on facilities having a control strategy based on
dynamics shaping. These kinds of results are, in the practice, quite often disregarded by robot manufac-
turers, as the “anomalies” appear (normally) for quite “pathological” manueuvers and are completely
absent for rather extended duty ranges.

Measurement Robot Based on Controlled Laser Scanning

Measurement robots [CDM96] offer the cue for applications in control planning once the handling set-
ups are properly selected. The form features restitution by contact or proximity sensors and needs free-
motion high speed manueuvers and wide work-spaces. Laser scanning is a different option, assuring the
detection of 3-D contours for remote shape recognition, with accuracy depending on the correct aware-
ness of the sweeping path. In every situation, the balanced aims of low price and high performance
require the careful design of the equipment to improve the effectiveness while keeping the mechanism
to simplest dispositions. An example case is, for instance, the recognition of the cutting edge contour of
tools to assess the wear-out degree and to verify the fitness-with purposes condition of on-going machin-
ing tasks. High contrast is mandatory and structured light is good by projecting light stripes onto the
work surface or by layered illumination with laser beams. The design of the rig, accurately performing
the mechanical scanning at high speed, shall certainly have to resort to uncoupling the actuation of each
arm mobility. Then the fit of the sweeping path has to face abrupt swerves with reversal motors motion.
The selection of the structural elements rizes according to critical changes. Hints about appropriate
solutions are given hereafter, with purposely focused concern on the conception of a wrist with high
manueuvers repeatability.

The measurement setting basically comprises the carrier of the optical beam source for back-lighting
of the selected tool and the CCD camera. The image processor is run on a PC (by Speroni Power Vision
software) to achieve contour resolution up to the requested detail level. Spacing and alignment are
trimmed at fitting out of the carrying yoke; this shall approach sequentially the tools during their idle
periods, properly fixing the position and the attitude of the yoke, to accomplish the complete analysis
of the 3D cutting edge with reference to the given form features. The instrumented end-effector bears

FIGURE 7.30 Manipulator’s behavior with dynamics compensation control.

inherent complexity to allow setting and fitting operations; additional requisites concern its smooth
driving, without quivers and jerks.

Some monitoring tasks are better performed by front illumination so an optional episcopic vision
kit, with adjustable light intensity, can be used for the set of tasks that are properly carried out this
way (Fig. 31). For that purpose, two cameras with different fields of vision can be used according to
the present needs.

FIGURE 7.31 Shots of sound (a) and broken (b) tools illuminated by the episcopic vision kit. (Courtesy Speroni S.P.A.)

FIGURE 7.32 Concept solutions for alternative wrist settings.

FIGURE 7.33 Assembly view (a) and design table (b)
of the chosen wrist.

The appropriate equipment characterizes as a five-mobilities arm, with three links assuring the
navigation path, ending with a high accuracy wrist. This needs the positioning assured in elevation of
the sight line during arm-navigation. Then, a roll and yaw motion is performed to gather information
on the cutting edge wear. Different concepts have been considered, (Fig. 7.32), including an in-parallel
actuated arrangement [FaH97]; basic design specifications shall consider

• Backlash rejection to keep high accuracy during the laser beam scanning;

• Design compactness to increase dexterity and avoid impediments when carrying on data acquisi-
tion;

• Low weight to reduce dynamics back-effects during the work-cycle;

• Cost-effective design to increase product competitiveness.

The final solution, (Fig. 7.33), uses a direct drive of the roll and yaw axes, even if this implies higher
loads to be carried by the roll motor and a bulkier structure. It seems to be the best solution, granting
the requested high accuracy for camera’s motion. Driving is realized by means of two AC brushless
servomotors with harmonic drive reducers plus resolvers and holding brakes.

The solution, quite simple and composed of few parts, dramatically reduces backlash effects. The
presence of a motor, directly mounted on the yaw axis, requires minimizing the masses to reduce the
inertial coupling, while preserving high dexterity to the wrist motion. The development takes advantage
from parametrical CAD tools for both the structural and dynamical analyses. The outcoming lay-out, to
satisfy the functional requirements, brings to a set of technical features (such as: close together axes,
rugged housing, camera nearby axes, etc.) that provide large stiffness and increase the driving efficiency,
allowing high accuracy and repeatability. A simple PD controller is finally used, with the tuning of
proportional and derivative gains obtained testing the robot (by extended simulation) during the exe-
cution of real operative tasks. This kinematical setting is uncoupled which makes it easier to design the
control with the exception, of only a singularity at the center of the working space, when the roll axis is
aligned with the yoke plate axis.

Modulated Command Options: Position/Force Feedback

Sometimes information redundancy is needed to perform complex tasks especially when the robot
interacts with poorly structured surroundings or the task itself requires control of the contact forces (like:
precision assembly, parts finishing, etc.). In these cases; position/force methods with distinct feedback
loops might be used to be able to trim the value of the applied force and the attained position along the
given axes of the (possibly) compliant engagement. The evaluation of the interaction force between robot
and environment is sometimes directly measured and sometimes indirectly assessed with the impedance
control that simply aims at monitoring the tip displacement and at making use of the contact path of the
end-effector with the environment, to obtain the information.

The SIRI-HD package, [AMM91a], [ACC93], (as already pointed out in Fig. 7.9), has been based on
the redundant control options, and independent feedback loops are closed for position-attitude and for
force-torque errors. Joint rates are monitored while force rates can either be measured by a wrist sensor
or deduced through a model of the coupling. The resulting control forcing terms Fc are finally transformed
into the appropriate actuation signals as usual, by means of the transposed Jacobian matrix (7.6). In
general, the control logic is switched by convenient [S] and matrices that select the combination of
“position” or “force” commands separately for unconstrained or constrained maneuvers. The choice
depends on the task progression. Compliance and dynamics of the manipulated object can be considered
explicitly, during SIRI-HD programming. The overall scheme, finally, allows:

• The setting of joint-space commands for controlling the interfacing force;

• The closure of force loops by respect of sensors at the robot wrist;

• The closure of position loops by respect of sensors in the work space.

S[]

With the impedance control, when the tip is in contact with its environment and a new reference location
is commanded, the resulting interactions are under control. The fixture accepts position-attitude set points
and reflecting force-torque outputs which depend on the (assumed) interfacing impedance. The method
easily applies to the usual position-controlled robots, reprogramming the feedback gains by means of the
force mapped signals. On the contrary, the retrofit of position-control fixtures requires (costly) force
sensors and the balancing of the two separate feedbacks on the transmitted force and on the tip location
(with respect to an absolute reference frame). Many times, however, contact force control is sufficient to
successfully accomplish manipulation tasks as the tip constrained motion provides path steering with
“convenient” tolerances. These situations are, thus, consistent to the “computed” torque method on the
condition, of course, that, throughout, checks based on the actual running requirements are performed.

An example simulational testing program, carried out to assess the actual force control behavior, has
been widely done with employed industrial robots, (Fig. 7.34). The equipment was forced to follow
different trajectories and its controlled behaviour did successfully perform the given tasks, always applying
the prescribed normal pressures even when tracking very complex lines needing the simultaneous acti-
vation of the six axes. The results of (Fig. 7.35) are related to the tracking of a rectilinear path with time-
varying reference force, exerted on a 100 kN/m stiffness environment. It is shown that the transmission
of a sinusoidal forcer causes a noisy response in the position-commanded mobilities due to the engage-
ment coupling, but the amount of the errors is quite small all along the duty range. (Besides that, after
an initial transient, the force signal is tracked and preserved with nice approximation.)

FIGURE 7.34 The Robot COMAU Smart 6.10R (cour-
tesy COMAU).

FIGURE 7.35 Reference and attained path for the sim-
ulation task (a) and for behavior of the manipulator (b).

The force feedback is, for the said reasons, employed for assembly and machining operations requiring
comparative accurate skill. The simulated trials show that, for a given robot and equal applied forces,
the performances slightly decrease as the stiffness function (13) of the robot-environment interaction
increases. Force errors, however, stay within the range of the hundredths of the programmed set-points
unless a rigid-wall engagement is approached. Beyond some given stiffness thresholds, in fact, the end-
effector presents the wavering behavior with downgrading of tip attitude. As a general rule, for a stiffness
ranging between 10 and 1000 kN/m and for the considered quite severe tasks, tests have confirmed the
good performances that the existing robotic equipment could realize if provided with a control strategy
that duly combines the position/force feedbacks during the work cycle with dynamic compensation along
the navigation phase. Dynamics shaping assures high manipulation performance for very fast approaching
paths. The force feedback grants adaptive end-effector operativity for a comparatively wide stiffness
range. In fact, during constrained manueuvers, compliant arms operate on interfaced objects supported
by compliant jigs, etc. The “computed” torque method deals with joint impedance effects requiring that
the desired contact force is a function of the tip current position. When this function is poorly known,
force and position are also, poorly assessed. The “measured” torque method by-passes such uncertainty,
on condition, to put force sensors at the end-effectors or at the supporting jigs.

Expert Steering Commands: Compliant Assembly by Force Control

The introduction of a force/torque transducer at the connecting wrist, (Fig. 7.36), is still unusual for
industrial applications due to extra costs of the setup and also in terms of the current programming
software. However, the independent measurement of the force/torque components exerted by the robot
tip is being viewed with increasing interest since efficient and low cost instrumented wrists started to
become available. Haptic manipulating feel, indeed, is being considered for instrumental robotics as an
additional opportunity to expand versatility and dexterity up to (and above) the range of human poten-
tialities. This is a critical requirement; for instance, to technically and commercially assess the appropri-
ateness of the devices of the emerging fields of micro-machines and of micro-dynamics. Touch
information is, in fact, useful for modulating the feedback in order to keep “sufficient” stability margins
to the robot motion, while the task progresses.

It has been demonstrated, [AnH89], that independent position-and-force controls may lead to instability.
Unless the overall dynamics is taken into consideration, to reset the feedback gains by writing the manip-
ulation laws directly in terms of the effector frame (which does not correspond with the work frame
anymore) with joint weighing the ‘robot-arm and coupled-environment’ process. Due to the variety of real
occurrences, however, the models for combining position and force controls should be assessed only about
actual task situations. These models usually consider a global work-space frame G{y} separate from the tip
frame P{x}, which follows the strain of the interfacing medium. Unless for very high stiffness, the relations
(7.7) and (7.12) have to be modified to include the transforms between these two frames:

 with: (7.15)

with: (7.16)

FIGURE 7.36 Schematic of a force/torque transducer.

y Tx� F G s()x� G s() Ms2 Hs k� ��

F � T 1� F� F� G� s()y� G� s() M �s2 H �s K �
� ��

The CAD facilities are useful to specialize the knowledge setup required in order to establish the
programs for tasks scheduling; to fix the agendas for job planning; and to design the decisional schemes
for operation testing. Expert supervisors follow joining continuous controllers for the work phases with
the logic steering of the task depending on the acknowledgement of given thresholds. A typical study
deals with plugging a part in a (prepared in advance) seat (slot, hole, etc.). The reference phases would
cover: part picking up; approaching motion; and insertion with check of operation soundness. This last
conveniently splits into sub-phases aimed at the simple “peg-in-hole” forced fitting, (Fig. 7.37). Several
situations may arise and condition monitoring by the wrist transducer provides the visibility on the
process, to grant the result.

The situational analysis is performed by the ‘expert’ supervisor, recognizing:

• The peg collision feature at the end of the navigation path, with a preliminary guess about the
engagement line slant;

• The peg tilting feature at single point bump, with identification of topology constraints due to
the front seat shape;

• The peg engagement feature at two zones contact, with assessment of tip maneuvers to recover
the proper attitude;

• The peg insertion feature at the forced operation, with path control to keep zero offset for the
wrist torque;

• The peg fitting feature, at the plugging end, with stroke settling as for specifications and actual
part mating tolerances.

Monitoring provides information about incorrect settings, such as jammed or loose fit; the force-
torque sensor, (in addition to the steering commands), makes it possible to acquire the data for on-
process quality checks.

The assembly task, according to the said description, is an occurrence-driven process with relevant
advantages supplied by an “expert” supervisor typically incorporating a heuristic decision logic process.
Instrumental robotics will possibly consider special applications such as those of the micro-dynamical
systems where the option would bring noteworthy advantages, thus, leading to fixtures with return-on-
investment. The domain of sophisticated fixturing is further discussed in the next section with focus on
the possibility of functional redundancy in addition to the command redundancy.

7.5 Redundant Mobility Robots with Cooperation

Operation-driven design is powerful help for setting robot’s effectiveness, provided that functional models
are stated detailing manipulation dynamics up to the certainty ranges of the needed performance figures.
The field of instrumental robotics is fitted up by talented solutions for factory automation. Industrial
manipulators support most of the work cycles and only loosely assessed manufacturing processes meet
drawbacks, such as surface deburr. Most of the time, the enterprises in these cases have resorted to hand

FIGURE 7.37 Assembly with reactive steering.

interventions when geometric constraints, edging compliance, shape variability, and tolerated span rep-
resent a highly demanding mix of requirements despite unsteady machining patterns. Automated deburr-
ing, in fact, now runs into deficiencies when modeling the process and this prevents accurate and efficient
issues. The fixtures have perhaps been developed by miming too much manual habits, even if no reason
at all exists that task-oriented solutions should profit by anthropocentric rules. By this conventional
approach, a deburring robot presents a performant manipulating arm, with the finishing tool at the tip,
conveniently actuated and extensively sensorized. It’s functionality shows limitations, that actually, a
skillful and trained operator overcomes with craft and ingenuity, adapting the operation modes to the
task progression.

The switching to robotic equipment for precision deburr has to be reached by looking over the process
again, to establish a setup aiming at smooth engagement; position-and-force control; steady repetitive-
ness; and, in general, highly adaptive fit-outs based on skillful survey of the work progress to restore
correctness. By robotizing, once accuracy figures are achieved, productivity and tolerances are preserved
according to total quality conditions, therefore, assuring improved product finishing as compared to
manual operation. Robotic equipment, with cooperation, is an important alternative to be considered.
The example case addresses this target. The deburring tool is operated by a six degrees-of-freedom arm.
The work-piece is borne by a similar six degrees-of-freedom rig whose mobilities are controlled to interact
with the machining end-effector. The rig, in this context, reduces to a platform whose position and
attitude are driven by task-oriented requests. Functional innovation, “cooperation” task setting, is related
to the ability of establishing work sequences that depend on the deburr cycles to be executed. The
dynamics of the bearing rig and of the operating arm need to be programmed concurrently.

To that purpose, the analysis of the cooperation opportunities is the preliminary step to correctly and
efficiently integrating work and handling facilities. This can be done with the already mentioned package
SIRI-MR which combines a series of blocks; that is, (SIRI-CA) for configuration analyses; SIRI-AD for
dynamics generation; and SIRI-SC for control strategy choice. With the SIRI-MR package, a virtual
reality duplication of the multi-agent ‘environment’ is provided to characterize robots cooperation. A
design sequence with SIRI-MR presents as follows:

1. Specification of functional cooperation figures: primary goal is paths selection and tasks timing. The
SIRI-MR package is employed as “planner-frame” (essentially based on the SIRI-CA block) and
between “feasible” paths of the individual arms, the ‘job-consistent’ trajectories for the multirobot
system are singled out.

2. Specification of operational coordination figures: this second design step is aimed at trajectories
setting and control trimming; to change “feasible” dynamics into “tasks-consistent” dynamics; and
the SIRI-MR package is employed as ‘controller-frame’ based on the SIRI-SC block with the
included SIRI-AD block options.

3. Specification of multirobot performances: efficiency testing and accuracy check are performed on
job-consistent (according to given functional cooperation figures) paths and with tasks-consistent
(according to the chosen duty coordination figures) dynamics. The SIRI-MR package is fully
enabled as “cooperation-frame” according to the selected duty (Fig. 7.21), task (Fig. 22), and
govern (Fig. 7.23) modes.

The following presentation refers to the above ideas to exemplify how cooperating fixtures are selected
to supply process attuned solutions. The deburr process is reviewed first; then discussion is turned to a
powered platform purposely built as a cooperating rig when provided by position/attitude commands
with control of the interfacing force components.

Process Conditioning Environments: Deburr Operations

Machining of work-pieces commonly results in burrs left on material bodies. These burrs have to be
removed, due to piece safe handling, fitting, or assembling, because of functional requests on the surface
shape (e.g., for fluid flows mating) on the body properties (e.g., stress intensity concentrators relief).

Today, burr removal is still mostly carried out by hand, which means a time-consuming and boring job.
Finishing moreover, highly depends on skill and mastery of trained workers. Since labor becomes more
and more expensive, artifact’s cost is influenced considerably by this process. In some cases, the deburr
process causes 35% of the final price [KBK86]. In addition, manual burr removal does not allow
persistency of tolerated figures and replication of exactly defined chamfer profiles which is critical for a
variety of artefacts. This so-called precision deburring is, however, requested to reach total quality,
particularly in the production of diversified turbomachinery blades and nozzles (to reduce turbulent
flows); the manufacturing of gear, shaft, or cranks (to relieve local stress); the assembly of high speed
rotors (to keep dynamic balance); or etc. By robotic deburring, moreover, the reject rate of products
would be far lower. In the near future, automatic burr removal processes could aim at zero-defects
production and wider exploitation of the equipment, today developed as technology driven contrivance
might become a market driven option for factory automation.

For robot execution, the process shall first be quantitatively modeled; starting with a proper estimation
of burr size and shape [HoG87] , [KWB88], [AsT96]. To satisfy finishing results, the fixtured unit should
be able to avoid the so-called “worst case burr”; namely, a maximum size burr occasionally occurring
when the machining forces do not concentrate according to given geometries. The amount of material
to be removed per unit time, Fig. 7.38, the so-called ‘‘material removal rate’’ (MRR), can be expressed
by a simple balance:

(7.17)

where AB is the burr’s cross sectional area, AC is the chamfer’s cross sectional area, and vT is the tool
speed along the edge to be deburred, (Fig. 7.38). Of course, the mentioned areas can be expressed in
function of other parameters such as contact forces, strength of the material, etc., to connect geometries,
strains, stresses, and machining operations.

The tangential area ratio: , typically varies between 0 and 2 depending on burr size,
where the value 2 refers to ‘‘worst case burr.’’ In practice, large variations causing diversified situations
need to be faced. Process variability ranges need to be further analyzed to fix standard reference figures.
During deburring, the normal Fn and the tangential Ft components stress, (both robot and piece). The
current cross sectional area of burr and chamfer, therefore, depend on both the normal and tangential
projections. Then, the variation of normal and tangential components (�Fn and �Ft) is related to the
respective projections of the cross sectional areas of burr and chamfer, that is:

(7.18)

FIGURE 7. 38 Details of the burrs removal process.

MRR AB AC�()vT AC RM 1�()vT RM AB�AC� � �

RM AB/AC�

�Fn fn �AB��Ac()n �Ft ft �AB��AC()t� �

Of course, the chamfer normal and tangential projections do not depend on the burr size. On the
contrary, the burr size modifies its cross sectional area projections. Burr size, more precisely, greatly
affects the tangential force Ft, whereas it has considerably smaller affect on the normal force Fn. Moreover,
a constant chamfer surface quality is required regardless of burr size. This means that the material removal
rate (MRR) shall remain steady; otherwise, the dressing process with small burrs suddenly changes to
rough-machining process, yielding the ‘‘worst case burr’’ occurrence with bad surface finishing. Since RM

varies between 0 and 2, the control system must monitor the variations of Ft, and Fn and modify the tool
speed to keep MRR constant. The option requires control of the mutual positions of the tool cutter and
the piece surface attitude with closure of independent force/torque feedbacks. The analysis of the deburr
process [PeV96], [RLC97], [KBK86] shows that the proper robotic solution should carry on, in parallel,
the position/attitude command and the force/torque modulation at the engagement boundary between
cutting tool and compliant surface.

A six mobilities arm, without force feedback, suffers from considerable drawbacks, represented by
three-dimensional vibrations that upset the chamfer path. This results in unsatisfactory surface edge
quality which is important in precision deburring. The wavering behavior depends on the discontinuities
of the exchanged machining forces and on the compliance of piece supports and tool drivers. An attempt
at preserving the finished surface quality has been sought through stochastic control [Pek64] or by means
of adaptive end-effectors. Redundant mobilities can be added at the deburring front-end, in the way that
the conventional 6 d.o.f. serial arm makes the main engagement (e.g., force control setting) and the extra
mobilities carry out secondary compensation (e.g., position trimming). The set-up could be explored
through passive adaptation. As usual, the behavior of the fixture is described by a mass-spring-damper
model with normal direction mechanical impedance (ratio of contact force to end-effector deflection,
as a frequency function) given by:

with: (7.19)

A large normal impedance causes the end-point to balance grinder forces remaining close to the
pre-set trajectory. Given the volume of metal to be removed, the desired tolerance in the normal
direction prescribes that the value of this impedance shall not exceed conditions yielding burr excitation
resonance. At the same time, it is necessary not to produce high tangential contact forces since tool
stall (or even breakage) may occur with dangerous normal skips. It follows, Eqs. (7.18) and (7.19),
that the end-effector needs to operate all along with bounded interaction forces which implies small
tangential impedance. On the other hand, uncertainties in the end-effector position are smoothed by
a large compliance in the normal direction, at least up to the robot resonance range. All in all, the
end-effector shall show the following behavior in the normal direction:

� |Gn (j)|, large for all 	 in the 	R band; |Gn (j)|, small for all 	 in the 	B band;
� 	R � � 	B where: 	B, burr resonance range; 	R, robot resonance range.

The Automation of Precision Deburr Operations

It is possible to design a passive end-effector with such dynamic characteristics but it would be impossible
to let it also meet the condition on the tangential direction (large compliance). Because of the role played
by the constant mass of the grinder, making equal the dynamic behavior of the end-effector in both
directions at high frequencies, when a large normal stiffness is chosen to improve the quality of the
surface finish, and then the end-effector will not be compliant enough to compensate for robot oscilla-
tions. This is why an active system is required to optimize the process parameters and to compensate for
robot oscillations while showing large stiffness in the normal direction [BEL91], [HeK91], [YOY94],
[KIK90], [KuW92], [StS90], [VaP96], [WET90], [WhT92], [WKT90]. Active dynamical systems can
either operate by control redundancy or by functional cooperation. In the first case, distinct position/
attitude and force/torque sensors are used to accomplish redundant tool-tip control. The setup still suffers

Fn j	() Gn j	()xn j	()� Gn j	() Kn 	
2M�() j	Hn��

Kn M�

deficiencies as the uncoupling of normal and tangential behavior is hindered by inertial effects of the
equal massic terms. As for functional cooperation, redundant mobilities are required, namely:

• Addition of independently actuated members to the arm (serial d.o.f.) [YHM94];

• Inclusion of an actuated rig for holding the piece to be deburred (parallel d.o.f.).

The first solution suffers from given snags: low stiffness of the open chain with critical control setups
constraints requiring nasty trimming and arduous presetting operations; and band limitation in partic-
ular with variable operation ranges depending on extended mixes of pieces to be deburred.

The second solution offers several advantages:

• The redundant mobilities extend versatility and dexterity enhancing the robot accessibility along
the surface edge to be deburred. The rig d.o.f. can be used to hold the piece in a pose that favors
the robot end-effectors work-trajectories;

• The adaptivity can be upgraded by intersecting paths operation modes with efficient sweep of the
workspace and exploration of task planning which avoids collisions at engagements or undue
penetration during deburr;

• The efficiency can be improved: the execution times can be reduced with low absolute speeds of
each cooperating robots, but high relative speeds of the work-tip;

• The same accuracy can cover the full workspace; robot position/attitude along the main move-
ments may be compensated by the position/attitude tracking of the cooperative rig, which is
responsible for the servoed movements;

• Critical tasks can be faced with repetitiveness: sharp corners, for instance, are tracked without
considerable speed reduction by obtaining smooth paths by split tracks (this is important for
precision deburr, when corner-rounding is not admissible);

• Closed kinematic chain allows a lighter rig design which results in lower mass inertia and better
dynamic behavior of the cooperating equipment used to get rid of the partner robot oscillations,
as is the case with precision deburr;

• Further quality and efficiency betterments are obtained by adaptive job planning aiming at pre-
venting worst case burr or, at least, avoiding uttermost courses within the variability range of the
removed burrs.

Obviously, there are certain drawbacks, too. Two robots, instead of one, result in higher costs. Coupled
motion requires more sophisticated control which further increases costs. Programming is more time-
consuming compared to a single robot, particularly in case of adaptive path planning and tightly bound
dynamics. These handicaps are reduced when proper standardization is reached by the cooperating rig,
the control architecture, and the programming aid. In the first instance, the in-parallel actuated platform
offers quite an effective option. It is close-packed, easily powered, and suited for position/attitude tracking.
Control and programming burdens are drastically reduced by referring to CAD packages, such as the
SIRI families of codes, and using them for the design, development, setting, and fitting operations in
virtual reality surroundings, all along the robots life-cycle.

A Cooperative Fixture for Work-Parameters Adaptation

The cooperating engagement of the piece-supporting rig needs proper performance in terms of position
tracking ability, reactive stiffness, attitude controllability, etc., in a way to upgrade arm’s accuracy, dex-
terity, efficiency, and versatility according to requests. The mechanical architecture of this rig is based on
an in-parallel actuated platform (originally designed at the Polytechnic of Turin [RoS92], to support
assembly operations). The development has also been studied [ACC94c], in view of micro-robotics
applications [ACM95]. A solid model of the fixture provided the principal features of the rig. It consists
of a platform, actuated, in parallel, by three driving blocks, each one displacing a vertex of an equilateral
triangle which specifies attitude and position of the reference plane. Each driving block is obtained by

two superposed planar parallelograms moving vertically. The platform is fixed to the upper parallelograms.
The linking is assured by spherical bolts that are impinged at its lower side and can also slide along
guideways, fixed to the top beam of the upper parallelogram. The guiding slots, placed orthogonally to
their carrying beams, form an angle of 120° between each other; the coupled parallelograms have beams
linked by ball bearings to reduce friction. They are driven by a pair of DC motors, solid with the rig base
to reduce the inertial effects. For position accuracy, the upper four bars, Fig. 7.39, are moved by a backlash-
free gear train, not linked to the bottom cranks; the lower four bars are directly driven by the twin motor.

The setup repeats three times and the final the assembly with the plate results in a system with six
degrees of freedom; thus, the rig has six servo-motors to be controlled. The rig dynamics has been
analyzed [MAC97], by assessing

• The actuation kinematics using the geometrical constraints to model the forward and backward
mappings, which link workspace and platform control coordinates; and

• The open-loop dynamics combining inertial terms and constrained motion to generate the
reflected loads on the driving commands.

The modeled platform was used for the functional validation of the cooperating rig. The prototype
weighs about 5 kg and is supposed to be able to carry a same amount as pay-load. The working space
is small with path continuity hindrances at the out-boards but the platform is requested to accomplish
only small oscillations around its ‘‘central’’ positions. Both direct and inverse dynamics simulations have
been performed: the imposed trajectories of inverse simulations have been chosen to be straight lines
(in the working space) tracked with sinusoidal time laws. The period of the sinusoids has been chosen
so that maximum accelerations around 1 g are obtained, except the few cases in which high acceleration
motions (10 g) have been considered. Fig. 7.40, for instance, shows the torques needed to track an oblique

a b c

FIGURE 7.39 The powered co-operating rig example: (a) multibody model; (b) linking of table and upper paral-
lelogram (particular); and (c) side view of one platform’s driver.

FIGURE 7.40 Inverse dynamics: plot of required torques [N m] (a): full payload (5 kg) – (b): no payload.

straight line of 3 mm stroke with change of attitude about a ‘‘horizontal’’ configuration, with and without
the maximum allowed payload. Figure 7. 41, instead, shows the three orthographic projections of
platform’s free motion paths, when an initial vertical velocity of 0.1 m/s is assigned.

Comparison of results obtained by several test cases provides the main characteristics of the equipment.

• The global dynamical behavior of the system is mainly affected by the dynamics of the actuation
system, as the contribution of the payload/table group is quite negligible.

• The motion is more easily obtained when it is parallel to one actuation side rather than normal to it.

• As already pointed out by other researchers [SoC93], the working space is considerably restricted.

• Compared to the small-scale realizations [ACM95], the equipment is moderately sensitive to the
influence of the gravitational field.

This kind of fixture deserves particular interest for its ability of accurate tracking, in position and
attitude, any three dimensional surface. The rig, Fig. 42, simultaneously controlled with the arm equipped
by deburr chamfer gives rise to a redundant mobilities setup. Joint force-and-displacement governing
strategies can be enabled to reach the very high versatility and dexterity figures of human operators while
improving the efficiency achievements with operation continuity and the steady accuracy of the surface
finishing by an impedance control, with the displacement term represented by the relative motion between
the deburring robot and the supporting platform.

FIGURE 7.41 Direct dynamics: orthographic projection of platform’s free motion (initial vertical velocity of 0.1
m/s): (a): full payload (5 kg) (b): no payload.

FIGURE 7.42 Block-schema of a deburr stand with cooperating robots.

The Impedance Control of the Cooperating Fixture

As noted on pages 7–31 through 7–33, the starting point of impedance control design is the choice of
two stiffness KP and damping HP matrices to obtain desired coupling effects at the tip or, which is the
same, to have interaction forces at the interface given by

(7.20)

Such external forces are, of course, independent variables and the motor torques can be computed so
that the actual tip displacements are related to the developed forces (7.20), for instance (for gravity
compensation) by applying

(7.21)

This approach, thus, consists of monitoring the dynamic relationship between force and position,
rather than separately measuring the two quantities. It must be noted that, by varying the KP and HP

matrices, either a force control or a trajectory control is obtained. In fact, by increasing the values of the
stiffness elements in the KP matrix, the control system tends to keep the end-effector closer to the assigned
path; while a decrease of such values ends up with a more compliant end-effector. Commonly the HP

matrix is chosen to reach critical damping along the trajectory controlled directions.
Stiffness and damping matrices are usually expressed in a local work-frame {L}, attached at the piece

in the contact point with the tool and with x and y axes parallel to the tangential and normal directions.
Therefore, calling and these local matrices, a time-varying mapping with the global frame {G}
is needed. That is why, also in case of constant process requirements, (i.e., fixed stiffness and damping
values for the various directions) actual KP and HP matrices change during normal contouring operations.

(7.22)

where is the rotation matrix between global and local frames.
The stiffness matrix can be selected diagonal with principal elements chosen to grant the desired

compliant task; namely, the terms related to tangential translations have low values (i.e., the interaction
is characterized by low stiffness) for the direction along which force must be limited; the terms for the
directions along which trajectory has to be controlled, i.e., and the other two directions have large values
(only limited by the available control bandwidth). The matrix is, moreover, chosen to be diagonal
and composed of the desired damping coefficients in each direction with critical damping selected along
trajectory controlled directions. As for rotations, the requirement is to follow the assigned attitude as
close as possible. The related (high) stiffness, accordingly, will be isotropic in the working space. In this
case, best choice seems to be the use of the equivalent angle-axis representation that expresses the rotation
between reference and actual tool frames giving the axis r along which rotation occurred and the related
angle � . Thereafter, the relation (7.20) is preserved for the impedance control of the linear motions,
while for the rotational ones, the following equivalent formula is used:

 (7.23)

The setup is completed by the compensation of gravity terms via feed-forward cancellation of the
related contributions. Exact compensation can be computationally heavy as the full forward kinematics,
which are rather complex [ACC94c], shall be evaluated on-line. A good compromise is the off-line
evaluation of the gravity terms corresponding to the assigned path, with their on-line updating, Fig. 7.43,
at lower rates with respect to the inner control loop. Computation of the trimming terms and reflection
to the motors are easily performed once the dynamics is known [ACM95], [MAC97].

FE KP x xd�() HP ẋ ẋd�()��

QP B qp() JT qp() Kp x xd�() Hp ẋ ẋd�()�[]��

K�P H�P

KP qP() R qP()[]L T
G KP� R qP()[]L

G HP qP() R qP()[]L T
G HP� R qP()[]L

G� �

R qP()[]L
G

K�P

H�P

ME kP�r hp	��

A further improvement can be obtained, for the present application, by adopting a non-linear law for
the stiffness along the tangentia direction, Fig. 7.44. The ‘‘optimal’’ value (k2) can be used for working
conditions near the reference state while the compliance is stiffened if the tool is working outside the
standard range. By this way, even for difficult tasks, the need of resetting the cooperative fixtures (serial
robot and platform) is almost avoided. In fact, if the platform is going out of the working space, an
increased stiffness brings the reset to standard working conditions. To be able to keep the usual matrix
forms, a virtual stiffness is introduced with the behavior shown in the Fig. 7.44, plotted against the
position error e in the tangential direction. The related damping factor must be accommodated
accordingly, within the same working range.

The whole system has been studied by computer simulation with Pro/MECHANICA (by Parametric
Co.). It is a complex multibody package that has been used to solve the complex DAE model of platform
dynamics and to test the proposed control system. Several tricks have been used to simplify the model
while preserving the correctness of the dynamical behaviour and finally, Fig. 7.39, a fixture with 10 parts
and 9 kinematic pairs has been worked out.

To perform a few simulation trials, the deburring process model was also needed. With reference to
the above considerations, this has been particularized for the case of deburring of aluminium aeronautical
components, for which many experimental data were available [Hic85], [KiH86]. Therefore, the tangen-
tial and normal forces between tool and component are synthetically expressed [JKL97], [Jok97] by
experimental relations:

(7.24)

with t, time, displacement and velocity of platform in tangentialdirection, Vtool velocity of the tool,
and 	burr, frequency of the surface grooves.

The presence of the motors modifies the system’s response and the described model needs to be aug-
mented with the addition of a (first order) dynamic block for each torque motor. As expected, the overall
response is affected by higher damping. Then, to finish a surface with a steady undulation (left by previous

FIGURE 7.43 Scheme of the impedance control system (prime symbols are related to translations and double prime
to rotations).

FIGURE 7.44 Variable structure stiffness (a) and virtual equivalent stiffness (b).

ks
v

ks
v

Ft Ft Vtool 	burr ẋ x t, , , ,() Fn; Fn Vtool 	burr ẋ xt, , ,()� �

x ẋ,

machining), the transient trend, Fig. 7.45, shows the slight accomodation of the sinusoidal interaction force
and features the relevant path stability, Fig. 7.46. Once the system that is charged by the sudden force and
torque step comes back home, the surface finishing, it shall be pointed out, does not depend on global
displacements (rather only on the relative displacements).

This control, as expected, characterizes, by simplicity and robustness, parametric uncertainty even if
with limited dynamic performance. Indeed, it is not required to explicitly solve the manipulator inverse
kinematics, since the actuation law is given in terms of work-space errors; moreover, it does not require
measurement the interaction forces or to explicitly assess the environment stiffness.

The Multi-Robot Assembly of Compliant Components

The domain of robots with cooperation opens several other possibilities as in the case, for instance,
aiming at improving assembly effectiveness. During the joining tasks, some components may characterize
by large compliance and settling cannot neglect the mutual deflections during processing. An automotive
body, for instance, is composed of different bent sheet metal pieces; these are positioned by clamping
rigs to be spot welded into parts, further handled to be joined together to form structural bodies
(passenger compartment, engine box, rear trunk, wheel shields, etc.). To achieve proper dimension
tolerances, the shaping accuracy around some 0.5 mm is needed, regardless of sheet warping, by quick

FIGURE 7.45 Simulation output: deburr forces with and without compliant fixture.

FIGURE 7.46 Typical results: platform tangential displacements.

and reliable part positioning. Valuable aid is supplied by multi-robot assembly, based, e.g., on a position-
controlled master with a force-controlled slave.

In front of large compliances, a better set-up would address a coordinated control, with a supervisor
steering two robots, Fig. 7.47, each holding a deformable payload, (Fig. 7.15), to be positioned and joined
together, within tolerated figures. The analysis develops by modeling the components of known compli-
ance, so that the navigation paths bring the pieces with due assessment of their perturbed geometry, Fig.
7.48. For assembly, (e.g., the (outer) forged sheet-steel and the (inner) pressed trimming face) to obtain
a car door, some simplifying assumptions are, generally, say,

• The manipulator links and transmission compliances are neglected;

• The effects of the gravitational potential energy are omitted;

• The grip zones hold both pieces without local energy storage build-up;

• The back-coupling of the pieces strain conditions on the arm is ignored;

• The contact mechanics assumes the central impact between matching shapes;

• The pieces joining is fulfilled by a single stroke with damping out of the efforts;

and other similar hypotheses, to bound the overall degrees-of-freedom in handling and assembly.
The dynamics of the cooperating robots will, finally, be described by using the model (7.5) for the free

motion phase, followed by the linearized approximation (7.8) as soon as the joining operation starts. The
interfacing force �FE is given by assessing the contact model between the cooperating robots grip points
with interposed compliant payload. The description consists of separate coordinate frames for each tip and

FIGURE 7.47 The coordinated control architecture of multi-robot fixtures.

FIGURE 7.48 Handling model for the carried compli-
ant shells.

for the workspace using the transforms (7.15) and (7.16). The last could possibly be omitted, by enabling
a steering logic for bringing the joining movement to follow a normal direction with respect to the clinching
surface. Thereafter the contact model is simply expressed by the reaction force at any of the grip points:

(7.20)

where y-relative displacement vector between tips.
The identification of the generalized mass, damping, and stiffness can be obtained by means of a finite-

elements code, directly used to study the strain behaviour of the pieces once the contact is established.
A detailed investigation is given in [MiI96], with rather extended simulation results. All things considered,
an effective assembly stand can use standard cylindrical arms to accomplish the picking and approaching
maneuvers; the wrists shall properly allow small accomodations, say:

• Angular shifts:—pan, around a vertical axis;—tilt, around a transverse horizontal axis;—yaw,
around a normal horizontal axis; and

• Linear shifts: vertical and lateral moves aside;

while the linear move for clinch fastening is, as said, impressed through the arms by an impedance control.
The set-up leads to effective solutions on condition of slightly modifying the pieces (for safe feeding

and handling). The transposition of similar arrangements to micro-manipulation tasks deserves special
attention especially in front of duty sequences in the microscopic range out of many possibilities.

7.6 Conclusions

The development of instrumental robots has been addressed in this chapter, mainly as a “technical”
problem looking for “highly effective” rigs according to function-oriented requirements. The goal is
basically related to the capability of modeling the devices’ behaviour. Several texts, [Ard87], [AsS86],
[Cra89], [Koi89], [Pau81], [Riv88], [VuK89], [FGL87], [McK91], show how to obtain the manipulators
dynamics, based on the Lagrange’s approach or on the Newton-Euler equations. Suitable computer codes
are, as well, already available to provide solutions at different levels of accuracy. The issues, however,
could suffer ‘economical’ drawbacks when the robot abilities happen to be overemphasised as compared
to the duty actually required to achieve the instrumental scopes. Therefore, ‘‘leanness’’ is not stressed
enough to address artifact-and-process re-design and all business re-engineering, so that the finally chosen
instrumental robot will perform the assigned tasks with no function, duty, or resource redundancy.

On such a preamble, the design activity will outgrow the possibilities of most teams and only iterative
attempts might try to approach “balanced” solutions, on condition of being able to assess the fixtures
actual behavior, within real operation conditions. The “obvious” idea of experimenting on prototypes is
not considered while rising costs and the interacting surroundings will sometimes supply incomplete,
incorrect or improbable settings. This is the main reason for developing the CAD series of packages, such
as the SIRIxx environment, Fig. 7.49, to have an integrated reference for assessing the controlled dynamics
of task-oriented high-performances manipulators by virtual reality testing.

The virtual reality simulation is used as CAD support in the ideation and technical specification phases
of the equipment and helps, as off-process reference, for tasks programming and control tuning, each
time the actual use of the equipment needs to be modified. The main feature of simulation is that it
allows different types of analyses (so that it covers most advanced performance robotics requirements)
by integrated knowledge frames (in order not to lose the specialization effectiveness, aiming at each
sectorial field application). An illustration of the capabilities has been given, emphasizing the ability of
shaping the dynamics and of managing the redundancy.

The design of an instrumental robot starts by acknowledging sets of competing task-driven solutions,
supporting the setup of highly effective operation modes. Structured functional models must be established,

F� G� s()y�

so that the dynamics of each robotic equipment can be generated throughout assessment of the accuracy,
dexterity, efficiency, and versatility figures achieved by each particular solution.

Once the functional models are available, the design procedure extensively exploits CAD-based tests
for virtual reality experimentation before actually building prototypal devices that might fail to reach the
requested technical and economical effectiveness. The approach success, however, depends on the appro-
priateness of the model. In fact, whether reductive equivalencies (to lower the degrees of freedom),
approximations (to suppress nonlinearities), motion constraints (to simplify cross-coupling effects), etc.
are not properly stated, the generated dynamics does not provide correct reference to assess the robot
performance, in terms of accuracy, dexterity efficiency, and versatility.

The engineering practice suggests different ways for “proper” modeling and we have already pointed
out how developments in instrumental robotics will share the methods of the integrated design activities.
As a general rule, it is worth distinguishing

• The manipulation dynamics: the forced motion of hinged solid bodies in the joint-space is the
basic model with the unavoidable transport effects of inertial terms and Coriolis acceleration. The
refining might cover: joints and links compliance; transmission and actuation effects; etc.

• The interfaced surroundings coupling: the constrained motion of the robot tip, active in an inde-
pendently defined workspace, is the basic model with (possibly) reduction to joint-space driven-
commands through “impedance’’ control state extension with account of the measured variables.

• The logic steering govern: the programming abilities are the basic means to deal with task vari-
ability and with occurrence uncertainty. Shallow knowledge models are used to expand the rela-
tional frames with “expert” modules, having overseeing and decision support functions.

• The monitoring of actual returns: value cycle models are defined to assess the real cost of the
innovation in terms of beneficial fallout on the products once potentialities are fully explored
(including on-process exploitation of quality data), so that checks are run on the economical
side.

The chapter concern is, mainly, to design instrumental robots whose performance is driven by the
capability of accomplishing a given set of tasks. Then attention is focused on the deep knowledge needed

FIGURE 7.49 Synoptic presentation of the main SIRIxx packages.

to describe their dynamics. The addition of nonexploited abilities results in unacceptable costs; thus, the
reasonable connection between tasks domain and functions assignments has to be done from the ideation
steps to understand the technical appropriateness of each prospected solution in terms of actual returns.
To that purpose, the SIRIxx environment provides the conditioning references, in terms of structured
(deep knowledge) constraints. Technically “advanced” options have, in particular, to be explored before
implementing real facilities. Aiming at that, the study profits by moving along the design cycle with
standard steps.

The basic development stages for the design of instrumental robots, Fig. 7.11, require clear visibility
on both the material resources (CFC frame) and on the logic resources (MDM frame) properties. On
these premises, effectiveness can be reached by iterating the design cycle, Fig. 7.1, with due account of
a few simple suggestions. Dynamics shaping and control planning are steps directly faced to achieve
high robot performance by conventional setups. The availability of a library of control modules makes
it easy to characterize the dynamic behavior in competing running conditions. The library SIRIxx
includes common and sophisticated schemes; it can be generally used for control planning operations
and as specialized aid for performing dynamics shaping. Of course the dynamic modelization implies
knowledge about all links’ centroids and mass quadratic moments; these parameters might be measured
or experimentally identified, when actual robots are already available; alternatively, they are evaluated
with the help of a solid modeler (interfaced to the SIRIxx package), at the earlier robot design or
development stages. The inertial coupling is seldom considered by existing manufacturers of robotic
equipment; such effects may be liable, however, of serious consequences on actual performance, since
they introduce task modulation on the feedback gains; dynamics shaping, thus, is expected to become
an important feature for advanced robotics, as dexterity and accuracy must be joined to high speed
requests.

The function modulation aspects are commented in the Section 7.2 and expounded in Section 7.4,
considering example cases: dynamics inconsistencies induced by coupling inertial effects; accuracy upgrad-
ing by the redesign of a fixtured wrist; dexterity improvement by redundant force control; versatility
expansion by expert steering. The latter cases introduce the opportunities given by further sophistication;
this is a step ahead in terms of sophistication and the option needs to be carefully evaluated to assess the
return on investment. In the Section 7.3, concepts are reviewed by addressing the operation redundancy
as a re-engineering issue to obtain process-attuned robots. The job can be grounded on standard rules by
exploiting modularity, against the proper classification of the activity modes and the distinct presetting
of the functional units. When the application area grants return (e.g., in micro-dynamics), the sophisti-
cation leads to mobility redundancy (cooperating robots) and command redundancy (position and force
control).

Section 7.5 is devoted to these advanced developments of robotics with attention on manufacturing
applications. The basic motivations of using robots with cooperation for automatic precision deburring
is discussed, with hints on the machining process to show how the ‘external’ conditions are faced by
manual workers and how a cooperating fixture might automatize the operations (with steady quality
issue). The functional redundancy appears as a worthy opportunity, also, for assembly tasks, particu-
larly to join highly compliant pieces or in front of micro-handling cases. All these situations require
properly sophisticated models of the rigs dynamics, so that the design choices might be, step by step,
validated with virtual reality simulation, before moving to the implementation of real fixtures.

Acknowledgments

We gratefully acknowledge the financial support of CNR (Italian Research Council) for the basic devel-
opments of these studies leading to the implementation of series of SIRIXX packages, under the frame
of the project PFR (Progetto Finalizzato Robotica). We also thank the manufacturing companies that
cooperated with us for the different developments, particularly: COMAU Robotica (Beinasco, Torino)
and Speroni S.p.A. (Spessa, Pavia).

References

[AAC94] G.M. Acaccia, C. Aiachini, M. Callegari, R.C. Michelini, R.M. Molfino. 1994. Dynamics shaping
for the control of instrumental robots, Proc. 10th ISPE/IFAC Intl. Conf. on CAD/CAM, Robotics
and Factories of the Future: CARs & FOF ‘94, Ottawa, Aug. 21–24. 514–520.

[ACC93] G.M. Acaccia, M. Callegari, R. Caracciolo, R.C. Michelini, R.M. Molfino, M. Torbidoni. 1993.
Redundant position/force control for advanced robot applications, Advances in Computer Cyber-
netics and Information Engineering, George E. Lasker, Ed. (The International Institute for Advanced
Studies in Systems Research and Cybernetics Publ., Windsor, CA). 63–72.

[ACC94a] G.M. Acaccia, P.C. Cagetti, M. Callegari, R.C. Michelini, R.M. Molfino. 1994. Contact mechan-
ics description of robot engagement tasks, Proc. IASTED Intl. Conf. Applied Modelling and Simu-
lation: AMS ‘94, Lugano, Jun. 22–24. 32–35.

[ACC94b] G.M. Acaccia, P.C. Cagetti, M. Callegari, R.C. Michelini, R.M. Molfino. 1994. Modelling the
impact dynamics of robotic manipulators, Preprints 4th IFAC Symp. on Robot Control: SY.RO.CO.
‘94, Capri, Sept. 19–21. 559–564.

[ACC94c] G.M. Acaccia, P.C. Cagetti, M. Callegari, R.C. Michelini, R.M. Molfino. 1994. Dynamic model
of a robotised fixture for co-operative deburring operations, Proc. 2nd European Solid Mechanics
Conference: EUROMECH‘ 94, Genova, Sept. 12–16.

[ACC95] G.M. Acaccia, M. Callegari, L. Consano, R.C. Michelini, R.M. Molfino, S. Pampagnin, R.P.
Razzoli. 1995. Universal master for remote micro-manipulation, Proc. First ECPD Int. Conf. on
Advanced Robotics and Intelligent Automation, Athens, Sept. 6–8. 499–504.

[ACH95] G.M. Acaccia, M. Callegari, D. Hagemann, R.C. Michelini, R.M. Molfino, S. Pampagnin, R.
Razzoli, H. Schwenke. 1995. Robotic fixture for experimenting antropomorphic vision, Proc. 7th
Intl. Conf. on Advanced Robotics: ICAR ‘95, Sant Feliu de Guìxols, Sept. 20–22. 237–244.

[ACM86] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino. 1986. Architectural analysis of
robotic industrial manipulators, Proc. AFCET/IASTED Intl. Symp. on Robotics and Artificial Intel-
ligence, Toulouse, Jun. 18–20. 579–598.

[ACM88] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino, P.A. Piaggio. 1988. X-ARS: a con-
sultation program for selecting the industrial robot architectures, Artificial Intelligence in Engineer-
ing: Robotics and Processes, J.S. Gero Ed. (Elsevier Publ., Bath, UK). 35–58.

[ACM91a] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino, M. Recine. 1991. Functional
coordination of multirobot equipment, Proc. 14th IASTED Intl. Symp. Manufacturing and Robotics,
Lugano, Jun. 25–27. 122–125.

[ACM91b] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino, M. Recine. 1991. SIRIxx: a simu-
lation programming environment for the design and the management of industrial robots, Atti
Convegno ANIPLA, Milano, 29–30 ott. 461–474.

[ACM93] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino. 1993. Dynamic control of robots,
Proc. 3rd Intl. Symp. on Measurement and Control in Robotics: ISMCR ‘93, Turin, Sept. 21–24, 1993.
Bs.I-13:Bs.I–18.

[ACM95] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino, R. Razzoli. 1995. Dynamics of a
multi-powered platform for task-steered instrumental robots, Proc. IX World Congress on the Theory
of Machines and Mechanisms, Milano, Aug. 30–31/Sept. 1–2. 1816–1820.

[ACM96a] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino. 1996. The impact dynamics of
robotic arms, Proc. 2nd ECPD Int. Conf. on Advanced Robotics, Intelligent Automation and Active
Systems, Vienna, Sept. 26–28. 313–320.

[ACM96b] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino. 1996. Innovations in instrumental
robotics: concurrency operations and co-operation, redundancy modulation and control, Proc.
27th Intl. Symp. on Industrial Robots: ISIR ‘96, Milano, Oct. 6–8. 37–42.

[ACM96c] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino, R.P. Razzoli. 1996. Assessing the
dynamics of articulated manipulators with closed kinematic chains, Proc. 27th Intl. Symp. on
Industrial Robots: ISIR ‘96, Milano, Oct. 6–8, 1996. 575–580.

[ACM96d] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino, R.P. Razzoli. 1996. The design of
robotic equipment for flexible automation, Proc. 2nd ECPD Int. Conf. on Advanced Robotics,
Intelligent Automation and Active Systems, Vienna, Austria, Sept. 26–28. 554–559.

[ACM96e] G.M. Acaccia, M. Callegari, R.C. Michelini, R.M. Molfino. Simulational assessment of a
modular assembly facility. 1996. Proc. Intl. Conf. on Concurrent Engineering and Electronic Design
Automation: CEE ‘96, Robinson College, Cambridge, Apr. 10–12. 37–41.

[ADA89] E.W. Aboaf, S.M. Drucker, C.G. Atkeson. 1989. Task-level robot learning; juggling a tennis ball
more accurately, Proc. IEEE Int. Conf. on Robotics and Automation,. XXX. 1290–1295.

[Alg97] E.A. AlGallaf. 1997. Manipulation of ill-conditioned configurations by a robot hand: employment
at local and global dexterities, Mechatronics, 7(5): 479–503.

[AMM84a] G.M. Acaccia, R.C. Michelini, R.M. Molfino, P.A. Piaggio. 1984. Simulation of adaptive
controlling strategies for industrial robots, Proc. Intl. Symp. Applied Modelling and Simulation,
Nice, 19–21 June.

[AMM84b] G.M. Acaccia, R.C. Michelini, R.M. Molfino. 1984. Computer-aided design procedures for
the design of industrial robots: on-line generation of the dynamics equations, Proc. Intl. Symp.
Computer Aided Design, Nice, Jun. 19–21. 183–187.

[AMM87] G.M. Acaccia, R.C. Michelini, R.M. Molfino. 1987. Development of CAD codes for the job
integration of industrial robots, Intl. J. Robotics, 3(3/4): 371–388.

[AMM90] G.M. Acaccia, R.C. Michelini, R.M. Molfino, M.A. Recine. 1990. Simulational programming
environment for the development of industrial multirobot systems, Proc. ISCIE-ASME Symp. on
Flexible Automation, Kyoto, Jul. 9–12. 849–855.

[AMM91a] G.M. Acaccia, R.C. Michelini, R.M. Molfino, M.A. Recine. 1991. Assessment of position/force
dynamic control performances for advanced robotics, Proc. 5th Intl. Conf Advanced Robotics, Pisa,
Jun. 19–22. 1465–1468.

[AMM91b]G.M. Acaccia, R.C. Michelini, R.M. Molfino, M.A. Recine. 1991. Information reference setup
for the development of industrial multirobot systems, Intl. J. Computer Applications in Technology,
4(3): 137–148.

[AMM91c] G.M. Acaccia, R.C. Michelini, R.M. Molfino, M.A. Recine. 1991. Modeling the coordination
of multi-robot equipment, Proc. 6th Intl. Conf. CAD/CAM, Robotics and Factories of the Future,
London, Aug. 19–22. 870–876.

[AMP89] H. Asada, Z.D. Ma, J.H. Park. 1989. Inverse dynamics of flexible robot arms: feasible solutions
and arm design guidelines, Proc. ASME Winter Meting, Robotics Research, ASME DSC-Vol. 14.
279–287.

[AnH89] C.H. An, J.M. Hollerbach. 1989. The role of dynamic models in cartesian force control of
manipulators, Intl. J. of Robotics Research , 8(4). 51–72.

[Ara83] S. Aramaki. 1983. Flexible playback control of an artificial hand, Trans. Society of Instrument and
Control Engineer. 19 (6).

[Ard87] D.D. Ardayfio. 1987. Fundamentals of Robotics, Marcel Dekker Inc., New York, 1987.
[ArM83] S. Arimoto, F. Miyazaki. 1983. Stability and robustness of P.I.D. feedback control for robot

manipulators of sensory capability, Proc. 1st Int. Symp. Robotics Research.
[AsA88] H. Asada, Y. Asari. 1988. The direct teaching of tool manipulation skills via impedance identi-

fication of human motions, Proc. IEEE Int. Conf. on Robotics and Automation. 1269–1274.
[Asd83] H. Asada. 1983. A geometrical representation of manipulator dynamics and its application to

arm design, ASME J. Dynamic Systems, Measurement and Control, 105. 131–1335.
[AsH79] H. Asada, H. Hanafusa. 1979. Playback control of force teached robots, Trans. Society of Instru-

ment and Control Engineers. 15(3).
[AsH89] H. Asada, S. Hirai. 1989. Towards a symbolic-level force feedback recognition of assembly process

states, Proc. 5th Int. Symp. of Robotic Research, Tokyo.
[AsI89] H. Asada, H. Izumi. 1989. Automatic program generation from teaching data for the hybrid

control of robots, IEEE Trans. on Robotics and Automation, 5(2): 163–173.
[AsS86] H. Asada, J.J.E. Slotine. 1986. Robotic Analysis and Control, John Wiley Inc., New York, NY.

[AsT96] N. Asakawa, Y. Takeuch. 1996. Automatic deburring of cast iron workpiece: removal of projection
on a convex sculptured surface, Proc. 3rd Japan-France Congress on Mechatronics, Besancon.
686–690.

[AsY87] H. Asada, K. Youcef-Toumi. 1987. Direct-Drive Robots: Theory and Practice, The MIT Press, Mass.
[AsY89] H. Asada, H., B.-H. Yang. 1989. Skill acquisition from human expert through pattern processing

of teaching data, Proc. IEEE Int. Conf. on Robotics and Automation. 1302–1307.
[BAL91] D.F. Baldwin, T.E. Abell, M.C. Lui, T.L. De Fazio, D.E. Whitney. 1991. An integrated computer

aid for generating and evaluating assembly sequences for mechanical products, IEEE J. Robotics
and Automation, 7(1): 78–94.

[BCQ86] M.A. Bronez, M.M. Clark, R. Quinn. 1986. Requirements development for a free-flying robot:
the ROBIN, Proc. IEEE Int. Conf. on Robotics and Automation. 667–672.

[BEL91] G.M. Bone, M.A. Elbestawi, R. Lingarkar, L. Liu. 1991. Force control for robotic deburring,
ASME J. Dynamic Systems, Meas. and Control.113 (3): 395–400.

[Ben97] D. Benarieh. 1997. Task management in a multi-robot environment, Computer Integrated Man-
ufacturing Systems. 10(2): 123–131.

[BeP90] W.K. Belvin, K.C. Park. 1990. Structural tailoring and feedback control synthesis: an interdisci-
plinary approach, J. of Guidance, Control, and Dynamics. 13(3): 424–429.

[BeP97] N.P. Belfiore, E. Pennestri. 1997. An atlas of linkage-type robotic grippers, Mechanism and
Machine Design. 32(7): 811–833.

[BMM85] F. Bonsignorio, R.C. Michelini, R.M. Molfino, P.A. Piaggio. 1985. Polynomial control for
assembly robots, Proc. Vll Intl. Symp. Robotics & Automation, Lugano, Jun. 24–26.

[BoJ85] D.S. Bodden, J.L. Junkins. 1985. Eigenvalue optimization algorithms for structure/controller
design iterations, J. of Guidance, Control, and Dynamics. 8(6): 697–706.

[BZL89] B. Benhabib, G. Zak, M.G. Lipton. 1989. A generalized kinematic modeling method for modular
robots, J. of Robotic Systems. 6(5): 545–571.

[CaB97] C. Canudas DeWit, B. Brogliato. 1997. Direct adaptive impedance control, Automatica. 33(4):
643–654.

[CBZ90] R. Cohen, B. Benhabib, G. Zak. 1990. Kinematic modeling of modular robots with non-parallel
and near-parallel axes units, Proc. ASME Mechanisms Conference, DE-Vol. 25, Chicago, Sept.
147–152.

[CCS91] P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano. 1991. Task space dynamic analysis of
multiarm system configurations. Intl. J. of Robotics Research, 10(6): 708–715.

[CDM96] M. Callegari, F. Drago, R.M. Molfino, F. Principe, D. Speroni. 1996. High repeatability active
vision wrist for 3D shapes measurements, Proc. 27th Intl. Symp. on Industrial Robots, Milano, Oct.
6–8. 347–352.

[ChL97] J.H. Chin, S.T. Lin. 1997. The path pre-compensation method for flexible arm robot, J. Robotics
and Computer Integrated Manufacturing. 13(3): 203–215.

[CLD92] R. Cohen, M.G. Lipton, M.Q. Dai, B. Benhabib. 1992. Conceptual design of a modular robot,
ASME J. Dynamic Systems, Measurement and Control. 114. 117–125.

[CMP94] P. Cagetti, R.C. Michelini, F. Pampagnin, R. Razzoli. 1994. SIRIAT: an animation module for
virtual reality simulation of robotic manipulators, Proc. 27th ISATA on Mechatronics, Aachen, Oct.
31–Nov. 4. 609–616.

[CPP96] P.H. Chang, B.S. Park, K.C. Park. 1996. An Experimental Study on Improving Hybrid Posi-
tion/Force Control of a Robot Using Time Delay Control. Mechatronics. 6(8): 915–931.

[Cra89] J.J. Craig. 1989. Introduction to Robotics: Mechanics & Control, Addison Wesley, Reading.
[DeL87] J. DeSchutter, J. Leysen. 1987. Tracking in compliant motion automatic generation of the task

frame trajectory based on observation natural constraints, Proc. 4th Int. of Robotics Research.
215–22.

[DeS89] C.W. DeSilva. 1989. Control Sensors and Actuators, Prentice Hall Inc., New Yersey.
[Des96] R.M. DeSantis. 1996. Motion/Force Control of Robotic Manipulators. ASME J. Dynamic Systems,

Measurement and Control, 118(2): 386–389.

[Dra77] S.H. Drake. 1977. Using compliance in lieu of sensory feedback for automatic assembly, Proc.
IFAC Symp. on Information and Control Problems in Manufacturing Technology, Tokyo.

[ESG90] S.D. Eppinger, R.P. Smith, D.A. Gebala, D.E. Whitney. 1990. Organizing the tasks in complex
design projects, Proc. ASME Design Automation Conference: Design Theory and Methodology, Vol.
DE–27, Chicago, Sept. 39–46.

[FaH97] Y. Fang, Z. Huang. 1997. Kinematics of a three-degrees-of-freedom in-parallel actuated manip-
ulator mechanism, Mechanism and Machine Design. 32(7): 789–796.

[Fer66] W.R. Ferrell. 1996. Delayed force feedback, Human Factors. 449–455.
[FFM97] L. Ferrarini, G. Ferretti, C. Maffezzoni, G. Magnani. 1997. Hybrid Modeling and Simulation

for the Design of an Advanced Industrial Robot Controller. IEEE Robotics & Automation Magazine.
4(2): 45–51.

[FGL87] K.S. Lu, R.C. Gonzales, C.S.G. Lee. 1987. Robotics: Control, Sensing, Vision and Intelligence.
McGraw-Hill, New York, NY.

[FiM92] W.D. Fisher, M.S. Mujtaba. 1992. Hybrid position/force control: a correct formulation. Intl. J.
of Robotics Research, 11(4): 299–311.

[FWY86] S. Fortune, G. Wilfgong, C. Yap. 1986. Coordinated motion of two robot arms, Proc. IEEE Int.
Conf. on Robotics and Automation, San Francisco, Apr. 7–10. 1216–1223.

[GHW83] R.E. Gustavson, M.J. Hennessey, D.E. Whitney. 1983. Designing chamfers, Robotics Research.
2 (4): 3–18.

[GKY84] S.D.V. Gruzdev, O.B. Korytko, E.I. Yurevich. 1984. Modular electro-mechanical industrial
robots, Elektroteknika. 55 (4): 4–7.

[GrM61] D. Graham, D. McRuer. 1961. Analysis of Non-Linear Control Systems, John Wiley, New York.
[GrR88] S.C. Graves, C.H. Redfield. 1988. Equipment selection and task assignment for multiproduct

assembly system design, Int. J. of Flexible Mfr. Sys. 1: 31–50.
[Gus88] R.E. Gustavson. 1988. Design of cost-effective assembly systems, Proc. Successfully Planning and

Implementation of Flexible Assembly Systems, SME, Mar., Ann Arbor, MI.
[HaA77] H. Hanafusa, H. Asada. 1977. A robotic hand with elastic finger and its application to assembly

processes, Proc. IFAC Symp. on Information Control Problems in Production Engineering, 127–138.
[HaN89] A.M.A. Hamdan, A.H. Nayfeh. 1989. Measure of modal controllability and observability for

first- and second-order linear systems, J. of Guidance, Control, and Dynamics. 12(3): 421–428.
[HeK91] M.G. Herr, H. Kazerooni. 1991. Automated robotic deburring of parts using compliance control,

ASME J. Dynamic Systems, Meas. and Control. 113(1): 60–66.
[Hic85] P.K. Hickman. 1985. An Analysis of Burrs and Burr Removal on Aircraft Engine Parts. SB Thesis.

MIT.
[HiH83] G. Hirzinger, J. Heindl. 1983. Sensor programming: a new way for teaching robot parts and

forces/torques simultaneously, Proc. 3rd Int. Conf. on Robot Vision and Sensory Controls. 549–558.
[HiL85] G. Hirzinger, K. Landzettel. 1985. Sensory feedback structures for robots with supervised learn-

ing, Proc. IEEE Int. Conf. on Robotics and Automation. 627–635.
[HKS92] T. Hamilton, A. Kondoleon, D. Seltzer. 1992. Automation of inertial instruments, C.S. Draper

Lab report P-3190, Presented at Joint Services Data Exchange for GN&C, Palm Springs, Oct.
[Hog79] N. Hogan. 1979. Adaptive stiffness control in human movement, ASME J. Advances in Bioengi-

neering, 53–54.
[Hog80] N. Hogan. 1990. Control of mechanical impedance of prosthetic arms, Proc. JACC.
[Hog81] N. Hogan. 1981. Impedance control of a robotic manipulator, Winter Annual Meeting of the

ASME, Washington.
[Hog85] N. Hogan. 1985. Impedance control: an approach to manipulation, Part I-III, ASME J. Dynamic

Systems, Measurement, and Control. 107(1): 1–23.
[HoG87] R. Hollowell, R. Guile. 1987. An analysis of robotic chamfering and deburring, ASME Winter

Annual Meeting: Robotics Theory and Applications.
[HuJ86] S.S. Hussaini, D.E. Jakopac. 1986. Multiple manipulators and robotic workcell coordination,

Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, Apr. 7–10. 1236–1241.

[HWM86] R. Harrison, R.H. Weston, P.R. Moore, T.W. Thatcher. 1986. Industrial applications of pneu-
matic servo-controlled modular robots, Proc. 1st National Conf. on Production research (U.K.).
229–236.

[IOY94] M. Ichinohe, K. Ohara, K. Yamaguchi, K. Maeda. 1994. Development of deburring robot for
cast iron with vision and force sensing, Proc. 24th Intl. Symp. on Industrial Robots. 49–54.

[IYI96] S. Ito, H. Yuasa, K. Ito, M. Ito. Energy-based pattern transition in quadrupedal locomotion with
oscillator and mechanical model, Proc. Intl. IEEE Conf. Man and Cybernetics, Beijing. 2321–2326.

[Jen86] L.M. Jenkins. 1986. Telerobotic work system: space robotics applications, Proc. IEEE Int. Conf.
on Robotics and Automation. 804–806.

[JKL97] H.E. Jenkins, T.R. Kurfess, S.J. Ludwick. 1997. Determination of a dynamic grinding model.
ASME J. Dynamic Systems, Measurement and Control, 119(2): 289–293.

[Jok97] T.A.E. Jo Ko. 1997. A dynamic surface roughness model for face milling, Precision Engineering,
20(3): 171–178.

[KAG96] M. Katayama, K. Asada, X.Z. Zheng, M. Yamakita, K. Ito. 1996. Self-organisation of a task
oriented visuo-motor map for a redundant arm, Proc. IEEE Conf. Emerging Technologies and Factory
Automation, Hawaii. 302–308.

[Kam83] L.J. Kamm. 1983. Recent applications of modular technology robots, Proc.,13th Int. Symp. on
Industrial Robots. 11.66–11.74.

[Kaz87] H. Kazerooni. 1987. Automated robotic deburring using electronic compliance impedance con-
trol, Proc. IEEE Intl. Conf. on Robotics and Automation, Raleigh, USA, Mar. 31-Apr. 3. 1025–1032.

[Kaz89] H. Kazerooni. 1989. On the Robot Compliant Motion Control. ASME J. Dynamic Systems,
Measurement and Control, 111(3): 416–425.

[KBK86] H. Kazerooni, J.J. Bausch, B.M. Kramer. 1986. An approach to automated deburring by robot
manipulators, ASME J. Dynamic Systems, Meas. and Control. 108(4): 354–359.

[KeK88] L. Kelmar, P.K. Khosla. 1988. Automatic generation of kinematics for a reconfigurable modular
manipulator system, IEEE Proc. Int. Conf. on Robotics and Automation. 663–668.

[KHB92] W.S. Kim, B. Hannaford, A. Bejczy. 1992. Force reflection and shared compliant control in
operating telemanipulators with time delay, IEEE Trans. Robotics & Automation, 8(2): 176–185.

[KiH86] R. King, R. Hahn. 1986. Handbook of Modern Grinding Technology. 34–38.
[KIK90] O. Kashiwagi, K. Ono, E. Izumi, T. Kurenuwa, K. Yamada. 1990. Force-controlled robot for

grinding, IEEE Int. Workshop on Intelligent Robots and Systems. 1001–1006.
[KiT97] S. Kirk, E. Tebaldi. 1997. Design of robotic facilities for agile automobile manufacturing. Indus-

trial Robot. 24(1): 72–77.
[KKM90] R.L. Kosut, G.M. Kabuli, S. Morrison, Y.P. Harn. 1990. Simultaneous control and structure

design for large space structures, Proc. American Control Conference. 860–865.
[KKN95] A. Kato, N. Kondo, N. Narita, K. Ito, Z.W. Luo. 1995. Compliance control of direct drive

manipulator using ultrasonic motor, Theory and Practice of Robots and Manipulators. 125–130.
[Koi89] A.J. Koivo. 1989. Fundamentals for Control of Robotic Manipulators, John Wiley, New York, NY.
[Kov97] J. Kovecses. 1997. Joint motion dynamics and reaction forces in flexible link robotic mechanism,

Mechanism and Machine Design. 32(7): 869–880.
[KuW92] T.R. Kurfess, D.E. Whitney. 1992. Predictive control of a robotic grinding system. ASME J.

Dynamic Systems, Measurement and Control, 114(4): 412–420.
[KWB88] T.R. Kurfess, D.E. Whitney, M.L. Brown. 1988. Verification of a dynamic grinding model, ASME

J. Dynamic Systems, Meas. and Control. 110(4): 403–409.
[LAM88] H.G. Lee, S. Arimoto, F. Miyazaki. 1988. Liapunov stability analysis for PDS control of flexible

multi–link manipulators, Proc. 27th Conf. on Decision and Control. 75–80.
[LBH89] D.K. Lindner, J. Babendreier, A.M.A. Hamdan. 1989. Measure of controllability, observability

and residues, IEEE Trans. Automatic Control, 34(6): 648–650.
[LeR87] G. Legnani, R. Riva. 1987. Kinematics of modular robots, Proc. World Congress on Mechanisms

and Machine Theory, Spain. 1159–1162.

[Li97] Y. Li. 1997. Hybrid control approach to the peg-in-hole problem. IEEE Robotics & Automation
Magazine. 4(2): 52–60.

[LiA92] S. Liu, H. Asada. 1992. Transferring manipulative skills to robots: representation and acquisition
of tool manipulative skills using a process dynamics model. ASME J. Dynamic Systems, Measure-
ment and Control, 114(2): 220–228.

[LiG93] K.B. Lim, W. Gawronski. 1993. Actuator and sensor placement for control of flexible structures,
Control and Dynamic Systems: Advances in Theory and Applications, C.T. Leondes Ed., Academic
Press.

[LII96a] Z.W. Luo, K. Ito, M. Ito, A. Kato. 1996. Dynamic co-operative manipulation of flexible objects,
Japan-USA Symp. Flexible Automation, Boston. 229–232.

[LII96b] B.L. Lu, K. Ito, M. Ito. 1996. Solving inverse kinematics problems of redundant manipulators
in an environment with obstacles, using separable nonlinear programming, Proc. Japan-USA Symp.
Flexible Automation, Boston. 79–82.

[LII96c] Z.W. Luo, K. Ito, M. Ito, A. Kato. 1996. On co-operative manipulation of dynamic objects, J.
Advanced Robotics. 10(6): 621–636.

[LiJ89] K.B. Lim, J.L. Junkins. 1989. Robust optimization of structural and controller parameters, J. of
Guidance, Control, and Dynamics. 12(1): 89–96.

[LIK96] Z.W. Luo, M. Ito, A. Kato, K. Ito. 1996. Nonlinear robust control for compliant manipulation
on dynamic environment, J. Advanced Robotics. 10(2): 213–227.

[LuI96] B.L. Lu, K. Ito. 1996. A parallel and modular multi-sieving neural network architecture with
multiple control networks, Proc. Intl. IEEE Conf. Man and Cybernetics, Beijing. 1303–1308.

[LWP80] J.Y.S. Luh, M.W. Walker, P.R. Paul. 1980. On-line computational scheme for mechanical manip-
ulators, ASME J. of Dynamic Systems, Measurement and Control. 102: 69–76.

[LYK97] S.H. Lee, B.J. Yi, Y.K. Kwak. 1997. Optimal kinematic design of an anthropomorphic robot
module with redundant actuators, Mechatronics. 7(5): 443–464.

[MAC93] R.C. Michelini, G.M. Acaccia, M. Callegari, R.M. Molfino. 1993. Virtual reality technique for
the development and integration of robotic manipulators, Proc. 9th Intl. Conf. on CAD/CAM,
Robotics and Factories of the Future, St. Petersburg, May 17–20. 425–430.

[MaC96] L. Markov, R.M.H. Cheng. 1996. Conceptual design of robotic filament winding complexes.
Mechatronics. 6(8): 881–896.

[MAC97] R.C. Michelini, G.M. Acaccia, M. Callegari, R.M. Molfino, R.P. Razzoli. 1997. Dynamics of a
cooperating robotic fixture for supporting automatic deburring tasks, Proc. Intl. Conf. Informatics
and Control, St. Petersburg, Jun. 9–13, 1244–1254.

[MAC98] R.C. Michelini, G.M. Acaccia, M. Callegari, R.M. Molfino, R.P. Razzoli. 1998. Techniques in
computer integrated assembly for cost effective developments, in Computer Aided and Integrated
Manufacturing Systems Techniques and Applications, Cornelius T. Leondes, Ed., Gordon & Breach
Publ., Newark, NJ, 1998.

[Mak80] H. Makino. 1980. Research and development of the SCARA robot, Proc. 4th Intl. Conf. on
Production Engineering, Tokyo, Japan Society of Precision Engineering. 885–890.

[MaR89] T. Marilier, J.A. Richard. 1989. Non-linear mechanic and electronic behavior of a robot axis
with a harmonic drive gear, J. of Robotics and Integrated Manufacturing. 213(5): 129–136.

[McK91] P.J. McKerrow. 1991. Introduction to Robotics. Addison-Wesley, Sydney.
[MCR96] R.C. Michelini, M. Callegari, G.B. Rossi. Robots with uncertainty and intelligent automation,

Proc. 2nd ECPD Int. Conf. on Advanced Robotics, Intelligent Automation and Active Systems, Vienna,
Sept. 26–28. 31–39.

[MHS97] B.J. McCarragher, G. Hovland, P. Sikka, P. Aigner, D. Austin. 1997. Hybrid dynamic modeling
and control of constrained manipulation systems. IEEE Robotics & Automation Magazine. 4(2):
27–44.

[Mic92] R.C. Michelini. 1992. Decision anthropocentric manifold in robotic manufacturing, Proc. 4th
ASME Intl. Symp. on Flexible Automation, San Francisco, USA, Jul. 12–15. 467–474.

[MiI96] J.K. Mills, J.G.-L. Ing. 1996. Dynamic modeling and control of a multi-robot system for assembly
of flexible payloads with applications to automotive body assembly. J. Robotic Systems. 13(12):
817–836.

[Mil96] J.K. Mills. 1996. Simultaneous control of robot manipulator impedance and generalized force
and position. Mechanisms and Machine Theory. 31(8): 1069–1080.

[MiS87] D.F. Miller, J. Shim. 1987. Gradient-based combined structural and control optimization, J. of
Guidance, Control, and Dynamics, 10(3)

[MMA83] R.C. Michelini, R.M. Molfino, G.M. Acaccia. 1983. The development of modular simulation
procedures for the design of task-dependant industrial robots, Proc. Intl. Symp. Robotics & Auto-
mation, Lugano, Jun. 22–24.

[MPM78] R.C. Michelini, P.L. Polledro, C. Marcantoni Taddei. 1978. Position steering of industrial robots
by statistical controllers, Proc. 8th Intl. Symp. on Industrial Robots Stuttgart, May 31–Jun. 1.

[MuM84] R. Muck, J.A.G. Mammern. 1984. Modular mechanical engineering, IFS, Proc. Int. Conf. on
Advances in Manufacturing. 271–282.

[MuP97] P. Muraca, P. Pugliese. 1997. A variable structure regulator for robotics, Automatica, 33(7):
1423–1426.

[NeW78] J.L. Nevins, D.E. Whitney. 1978. Computer controlled assembly, Scientific American, 238(2):
62–74.

[Nil69] N. Nilsson. 1969. A mobile automation: an application of artificial intelligence techniques, Proc.
Int. Joint Conf. on Artificial Intelligence. 509–520.

[NoH89] S.Y. Nof, D. Hanna. 1989. Operational characteristics of multi-robot systems with cooperation,
Intl. J. Production Researches. 27(3)

[NWD89] J.L. Nevins, D.E. Whitney, T.L. De Fazio, R.E. Gustavson, A.C. Edsall, R.W. Metzinger, W.A.
Dvorak. 1989. A strategy for the next generation in Concurrent Design of Products and Processes in
Manufacturing, McGraw-Hill, New York, NY.

[OKA97] F. Ozturk, N. Kaya, O.B. Alankus, S. Sevinc. 1997. Machining features and algorithms for set-
up planning and fixture design, Computer-Integrated Manufacturing Systems. 9(4): 207–216.

[PaA91] J.H. Park, H. Asada. 1991. Dynamic analysis of noncollocated flexible arms and design of torque
transmission mechanisms, Proc. American Control Conference. 1885–1890.

[PaA94] J.H. Park, H. Asada. 1994. Concurrent design optimisation of mechanical structure and
control for high speed robots, ASME Trans. J. Dynamic Systems, Measurement and Control. 116:
244–256.

[Pau8] R.P. Paul. 1981. Robot Manipulator: Mathematics, Programming, and Control, The MIT Press,
Mass.

[Pek64] J. Peklenik. 1964. Contributions to the theory of surface characterisation, CIRP Annals. 12:
173–178.

[Pel96] M. Pelletier. 1996. Synthesis of hybrid impedance control strategies for robot manipulators. ASME
J. Dynamic Systems, Measurement and Control, 118(3): 566–571.

[PeV96] W. Persoons, P. Vanherck. 1996. A process model for robotics cup grinding, CIRP Annals. 45(1):
319–325.

[RaC81] M.H. Raibert, J.J. Craig. 1981. Hybrid position/force control of manipulators, ASME, J. of
Dynamic Systems, Measurement and Control, 102(2): 126–133.

[Riv88] E.I. Rivin. 1988. Mechanical Design of Robotics, McGraw Hill, New York.
[RLC97] W.B. Rowe, Y. Li, X. Chen, B. Mills. 1997. Case-based reasoning for selection of grinding

conditions, Computer-Integrated Manufacturing Systems. 9(4): 197–205.
[ROB97] S. Reignier, F.B. Ouezdou, P. Bidaud. 1997. Distributed method for inverse kinematics of all-

serial manipulators, Mechanism and Machine Design. 32(7): 855–867.
[RoM66] R.A. Rothchild, R.W. Mann. 1966. An EMG controlled force sensing proportional rate elbow

prosthesis, Proc. Symp. on Biomedical Engineering, Milwaukee.
[RoS92] A. Romiti, M. Sorli. 1992. A parallel 6 d.o.f. manipulator for cooperative work between robots

in deburring, Proc. 23rd Intl. Symp. on Industrial Robotics:Barcelona. 437–442.

[SaK97] V. Santibanez, R. Kelly. 1997. Strict Lyapunov functions for control robotic manipulators,
Automatica. 33(4): 675–682.

[Sal80] J.K. Salisbury. 1980. Active stiffness control of a manipulator in cartesian coordinates, Proc. 19th
IEEE Conf. on Decision and Control. Albuquerque

[She86] T. Sheridan. 1986. Merging mind and machine, Technol. Rev. 23(7): 32–40.
[ShS84] V.I. Shub, M.K. Selder. 1984. Pneumatic modular industrial robots, Elektrotekhnika. 55(4): 7–9.
[Sim75] S.N. Simunovic. 1975. Force information in assembly processes, Proc. 5th Intal. Symposium on

Industrial Robots, Chicago, IL
[SmC82] R.C. Smith, K. Cazes. 1982. Modularity in robotics: technical aspects and applications, IFS

Proc., Int. Conf. on Robotics in the Automotive Industry (UK). 115–122.
[SoC93] M. Sorli, M. Ceccarelli. 1993. On the workspace of a 6 d.o.f. platform with three articulated

double-parallelograms. Proc. Intl. Conf. on Advanced Robotics: Tokyo. 147–152.
[SpF91] V.A. Spector, H. Flashner. 1991. Modeling and design implications of noncollocated control in

flexible systems, ASME J. Dynamic Systems, Measurement and Control. 112: 186–193.
[SSG87] T.M. Stepien, L. Sweet, M. Good, M. Tomizuka. 1987. Control of tool-workpiece contact force

with application to robotic deburring, IEEE Trans. on Robotics and Automation. 3.
[Ste81] D.V. Steward. 1981. The design structure matrix, IEEE Trans. Eng. Mgt., 28(3): 71–74.
[StS90] D.M. Stokic, D. Surdilovic. 1990. Simulation and control of robotic deburring, Intl. J. of Robotics

and Automation. 5(3): 107–114.
[TeB89] D. Tesar, M.S. Butler. 1989. A generalized modular architecture for robot structures, ASME J. of

Manufacturing Review. 2(2): 91–117.
[UIH87] M. Uchiyama, N. Iwasawa, K. Hakomori. 1987. Hybrid position/force control for the coordi-

nation of two-arms robot, IEEE Conf. Robotics and Automation, Raleigh, USA
[VaP96] H. VanBrussels, W. Persoons. 1996. Robotic deburring of small series of castings, CIRP Annals,

45(1): 405–410.
[Ver83] S.A. Vere. 1983. Planning in time: windows and durations for activities and goals, IEEE Trans.

on Pattern Analysis and Machine Intelligence. 5(3): 246–266.
[VuK89] M. Vukobratovic, N. Kirkanski. 1989. Real-Time Dynamics of Manipulation Robots, Springer

Verlag, New York, NY.
[WaD75] P.C. Watson, S.H. Drake. 1975. Pedestal and wrist force sensors for industrial assembly, Proc.

5th Intl. Symposium on Industrial Robots, Chicago, IL.
[Wat76] P.C. Watson. 1976. A multidimensional system analysis of the assembly process as performed

by a manipulator, Proc. 1st North American Robot Conference, Chicago, IL.
[WET90] D.E. Whitney, A.C. Edsall, A.B. Todtenkopf, T.R. Kurfess, A.R. Tate. 1990. Development and

control of an automated robotic weld bead grinding system, ASME J. Dynamic Systems, Meas. and
Control. 112(2): 166–176.

[Whi69a] D.E. Whitney. 1969. Resolved motion rate control of manipulators and human prostheses,
IEEE Trans. Man-Machine Systems. 10(2): 47–53.

[Whi69b] D.E. Whitney. 1969. State space models of remote manipulation tasks, IEEE Trans. Automatic
Control. 14(6): 617–623.

[Whi72] D.E. Whitney. 1972. Mathematics of coordinated control of prosthetic arms and remote manip-
ulators, ASME J. Dynamic Systems, Measurement and Control. 93(4): 303–309.

[Whi77] D.E. Whitney. 1977. Force feedback control of manipulator fine motions, ASME Journal of
Dynamic Systems, Measurement and Control. 99(2): 91–97.

[Whi82] D.E. Whitney. 1982. Quasi-static assembly of compliantly supported rigid parts, ASME J.
Dynamic Systems, Measurement and Control. 104: 65–77.

[Whi93] D.E. Whitney. 1993. From robots to design, ASME Trans. J. Dynamic Systems, Measurement and
Control. 115: 262–270.

[WhR86] D.E. Whitney, J.M. Rourke. 1986. Mechanical behavior and design equations for elastomer
shear pad remote center compliances, ASME Journal of Dynamic Systems, Measurement and Control.
108(3): 223–232.

[WhT92] D.E. Whitney, E.D. Tung. 1992. Robot grinding and finishing of cast iron stamping dies, ASME
J. Dynamic Systems, Measurement and Control. 114: 132–140.

[WKT90] D.E. Whitney, T.R. Kurfess, A.B. Todtenkopf, M.L. Brown, A.C. Edsall. 1990. Development and
control of an automated robotic weld bead grinding system, ASME J. Dynamic Systems, Measure-
ment and Control. 112(2): 166–176.

[WLY96a] J.Q. Wu, Z.W. Luo, M. Yamakita, K. Ito. 1996. Adaptive hybrid control of manipulators on
uncertain flexible objects, J. Advanced Robotics. 10(5): 469–485.

[WLY96b] J.Q. Wu, Z.W. Luo, M. Yamakita, K. Ito. 1996. Gain scheduled control of robot manipulators
for contct tasks on uncertain flexible objects, Proc. Intl. IEEE Conf. Man and Cybernetics, Beijing.
41–46.

[WLY96c] J.Q. Wu, Z.W. Luo, M. Yamakita, K. Ito. 1996. Adaptive hybrid control for a robot interacting
with uncertain flexible environments, 13th IFAC World Congress, San Francisco. 235–240.

[Wur86] K.H. Wurst. 1986. The conception and construction of a modular robot system, IFS, Proc. Int.
Symp. on Industrial Robotics, Belgium. 37–44.

[YHM94] T. Yoshikawa, K. Harada, H. Murakami. 1994. Dynamic hybrid position/force control of flexible
arms by macro-micro manipulator systems, Proc. ISCIE-ASME Intl. Conf. Flexible Automation, Jul.
11–18. 65–72.

[YLI96] M. Yamakita, Z.W. Luo, K. Ito. 1996. Potential field representation of environment model and
its application to robot’s force/position hybrid control, Proc. Intl. IEEE Conf. Emerging Technologies
and Factory Automation, Hawaii. 316–321.

[Yos93] T. Yoshikawa. 1993. Dynamics shaping in robot force control and artificial reality, Proc. Intl. Conf.
on Advanced Robotics, Tokyo. 3–8.

[YoZ93] T. Yoshikawa, X.-Z. Zheng. 1993. Coordinated dynamic hybrid position/force control for multi-
robot manipulators handling one constrained object. Intl. J. Robotics Research, 12(3): 219–230.

[ZLJ87] Y.F. Zheng, J.Y.S. Luh, P.F. Jia. 1987. A real time distributed computer system for coordinated
motion control of two industrial robots, IEEE Conf. Robotics and Automation, Raleigh, USA.

[ZOY96a] X.Z. Zheng, K. Ono, M. Yamakita, M. Katayama, K. Ito. 1996. Trajectory planning and control
for robotic batting/catching tasks, Proc. Japan-USA Symp. Flexible Automation, Boston. 17–23.

[ZOY96b] X.Z. Zheng, K. Ono, M. Yamakita, M. Katayama, K. Ito. 1996. A control structure for robotic
dynamic manipulation, Intl. IEEE Conf. Man and Cybernetics, Beijing. 1489–1494.

[ZOY96c] X.Z. Zheng, K. Ono, M. Yamakita, M. Katayama, K. Ito. 1996. A robotic dynamic manipula-
tion system with trajectory planning and control, Intl. IEEE Conf. Emerging Technologies and Factory

Automation, Hawaii. 309–315.

8
Object-Oriented
Techniques and

Automated Methods for
Robotic Assembly in

Manufacturing Systems

8.1 Introduction
8.2 Intelligent Assembly Planning and Knowledge

Representation
Structure of an Intelligent Assembly Planning System •
Knowledge Representation in Intelligent Robotic Systems

8.3 Principles of Object-Oriented Techniques
Basic Concepts and Definitions • Special Features •
Methodology and Models

8.4 Applications to Robotic and Automated Assembly
Object-Oriented Modeling • Knowledge Representation •
Assembly Operations • Other Automated Assembly
Applications

8.5 Conclusion

8.1 Introduction

Object-oriented techniques and automated methods are used in various situations for improving char-
acterization and solutions of certain types of engineering problems related to manufacturing systems.
Conceptual assembly, particularly robotic assembly, are fields where these techniques and methods are
widely applied [8, 11].

Conceptual assembly is usually a complex task involving geometric and physical constraints between
components which requires a large amount of information and computation. A mechanical assembly is
a set of interconnected parts representing a stable unit in which each part is a solid object. Surface contacts
between parts reduce the degrees of freedom for relative motion. A subassembly is a non-empty subset
of these parts, having one or more elements in which every part has at least one surface contact [24, 25].

In most industrial organizations, the construction of a mechanical assembly is typically achieved by
a series of assembly operations (i.e., the insertion of a bolt into a hole). The first stage in programming
an assembly system is to identify the operations necessary to manufacture the given assembly and to
specify the sequence in which they are to be performed. The generation of such an ordered sequence of
operations is called the assembly planning problem [20].

Samuel Pierre
École Polytechnique Montréal

Monjy Rabemanantsoa
École Polytechnique Montréal

Wilfried G. Probst
Université du Québec

The problem of robotic assembly planning can be viewed as a problem of generating assembly
sequences dedicated to computer-integrated manufacturing. In fact, most computer-integrated manu-
facturing systems develop structures based on technical criteria for acquiring and processing data and
for determining how well those systems support design documentation requirements. A flexible robotic
assembly is often achieved by integrating both data processing and knowledge processing for use by
manufacturing engineers in offline programming from an assembly plan, which is an ordered sequence
of operations that constructs the product from its component parts [25]. The determination of a plan
involves searching in a state space where a feasible course of action would transfer the parts from their
initial states to goal states.

There exists in the literature various approaches to performing assembly planning [27, 28]. Some of
these generate only monotone and linear plans while others generate monotone and non-linear plans.
Other plans deal with non-monotone and non-linear assembly planning using the technique of ray tracing
in which parts are represented by the Constructive Solid Geometry (CSG) model [15, 30]. A plan is linear
if each operation performed in it moves only one part at a time. In cases where groups of parts can be
moved together, plans are considered to be non-linear and are referred to as subassemblies.

Considering certain combinatorial aspects related to plan generation, and hence to robotic assembly,
many researchers have proposed the use of heuristic-search techniques and intelligent-automated methods
to deal with robotic assembly in manufacturing systems. This chapter follows this orientation and presents
various object-oriented techniques, which perform robotic assembly in manufacturing systems. It is orga-
nized as follows: Section 8.2 summarizes the fundamentals of robotic assembly and discusses some robotic
systems. Section 8.3 expounds on the basic principles of object-oriented techniques. Section 8.4 analyzes
certain robotic and automated assembly architectures. Finally, Section 8.5 describes some automated
assembly applications.

8.2 Intelligent Assembly Planning and Knowledge
Representation

Planning is a process that searches for a sequence of actions (or operations) in order to achieve a goal
statement. This original objective is normally too complex or too abstract to be accomplished through
a single operation, so it is often necessary to break it down into smaller, simpler subgoals. In an ideal
situation, a subplan for each subgoal can be formulated independently and a complete plan can be derived
by simply combining the subplans. However, in practice, subplans often interact (i.e., the achievement
of certain goals may actually prevent the accomplishment of others). This conflict problem presents major
difficulties in a planning process but Artificial Intelligence techniques may be helpful in addressing such
difficulties [5, 16, 29].

Structure of an Intelligent Assembly Planning System

An intelligent assembly planning system can be structured as a typical knowledge-based system [3]. As
shown in Fig. 8.1, it contains a knowledge base, a control structure, and a blackboard. The knowledge
base records information about the assembly problem domain and the expertise of the assembly planning.
It includes workpiece structures, assembly operations, and assembly principles.

The workpiece structures describe the relationships among workpiece components and their associated
properties; whereas, the assembly operations are descriptions of robot actions that can be used to assemble
workpieces. The assembly principles can be viewed as “rules of thumb,” (i.e., empirical guidelines of
assembly experts), including the methods of ordering the component assembly sequence and posting
constraints should certain situations arise [5]. The control structure utilizes knowledge-base information
to generate assembly plans and integrates a structure analyzer and a plan generator.

As shown in Fig. 8.2, the planning process consists of two phases: structure analysis and plan generation
[5]. During structure analysis, the system analyzes the workpiece structures according to the guidelines
of assembly principles. This includes: refining an abstract workpiece (one that can be disassembled into

more than one part) into sub-components; deciding on the subcomponent assembly sequence; and
posting assembly operation constraints for each subcomponent. A plan generator subsequently follows
analysis information in order to select assembly operations. The status of the assembly domain, the
properties of the components, and the constraints determine the selection of operations.

Finally, the blackboard records intermediate hypotheses and decisions, which the system manipulates.
This includes: the current state of the assembly or assembly status; components being assembled or
assembly sequences; and constraints and plans.

Knowledge Representation in Intelligent Robotic Systems

The area of robotics and automation systems has been undergoing an expanded revolution over the past
three decades. At first, computing and sensory capabilities were not present in robotic systems. The first
generation evolved into systems with limited computational and feedback capabilities. The second

FIGURE 8.1 Components of a Mechanical Assembly Planning System.

FIGURE 8.2 Different Phases of a Planning Process.

generation began including systems with multi-sensory and decision-making capabilities. The third gener-
ation robotic systems, called intelligent robotic systems, are equipped with a diverse set of visual and non-
visual sensors and are being designed to adapt to changes within their workspace environment [23].

Regarding intelligent robotic systems, their modeling requires utilization and implementation of
concepts and ideas drawn from various fields. In point of fact, Artificial Intelligence and, more precisely,
knowledge-based systems as well as Operations Research and Control System Theory, constitute the
background required to tackle the multiple challenges of such a modeling. Industrial automation systems,
Flexible Manufacturing Systems (FMS), Computer Integrated Manufacturing (CIM) systems in general
as well as telerobotic systems, are among the more frequent applications [24].

In intelligent robotic systems, knowledge may be represented either symbolically or numerically.
Symbolic knowledge representation includes: rule-based, frame-based, associative networks, logic-based,
and object-oriented systems. Numerical representation refers to mathematical models and is contingent
upon the specific application domain.

For intelligent robotic and automation systems, time may or may not be critical in knowledge repre-
sentation techniques depending on the level of knowledge processing. For example, the time factor is
critical in knowledge-based systems for control applications as most of these have been developed to
enhance, monitor, or modify online the dynamic system operation. Generally, an offline knowledge-
based system may be developed for high level planning and decision making and a real-time system for
online information processing. However, overall timing constraints may have to be taken into account
regarding the specific application under consideration [32].

At least two criteria are frequently used to compare and judge knowledge representation schemes for
the particular types of systems [14]:

1. Expressive power of the representation in comparison with other representation schemes and the
range of control problems for which the representation is suitable; and

2. Computational complexity of reasoning, using particular representations, in comparison with
other representations and the limitations of its applicability imposed by issues of complexity.

Recently, the topic of intelligent robots has attracted a great deal of attention among researchers.
Considering the social situation of the lack of highly skilled, experienced technicians and workers, it
would seem logical to automate the manufacturing and fabricating process. Proceeding from this idea,
Kamrani et al. [13] have proposed an intelligent knowledge-based system as a solution to the problem
of selecting an optimal robot for cell design. New tasks are being defined for robots in order to meet the
challenges of flexible manufacturing systems. Associated with this is an increasing variety of robots from
which to choose. The selection of an optimal robot for a particular task constitutes a major problem.

Various parameters must be considered and the user should choose an industrial robot whose char-
acteristics satisfy the requirements of the intended tasks. Massay et al. [17] have proposed a hierarchical
design approach, which can serve as a basis for the off-line development of effective robotic systems.

On the other hand, a hardware and software methodology leading to a knowledge-based system has
been introduced in [32] for use in intelligent robotic systems. This knowledge-based system has been
derived for the organizational level of such a system and is being used to develop off-line plan scenarios
to execute a user-requested job. The knowledge base contains all the information related to the class of
problems that the system has been designed to solve, while the inference engine operates upon the
knowledge base. Although separate entities, the knowledge base and inference engine have been so
designed as to enable them to operate closely together as a unit.

Similarly, an expert support system has been proposed to provide flexible manufacturing systems (FMS)
with the capability of adjusting in real-time to changes in the manufacturing environment. The key com-
ponent of this support system is the “information cell,” which is controlled by the flow of information
between the cell and its environment.

The concept and prototype of a hierarchically structured knowledge-based system for coordinated
control of a welding robot and a positioning table is presented in [31]. The knowledge-based system
determines appropriate weld parameters (voltage, speed, feedrate) on the basis of the job description. It is

also capable of planning the optimum table orientation and robot trajectory and controlling the welding
process [19].

An integrated environment for intelligent manufacturing automation has been proposed in [3]. The
knowledge-based integrated environment is based on the following components: interface to external
environment, meta-knowledge base, database, inference mechanism, static blackboard, and interface to
other subsystems. This approach has been applied to the product design in a manufacturing process.

Planning a sequence of robot actions is especially difficult when the outcome of actions is uncertain,
as is inevitable when interacting with the physical environment. Christiansen and Golbert [6] have
compared two algorithms for automatic planning by robots in stochastic environments: an exponential-
time algorithm maximizing probability and a polynomial-time algorithm maximizing a lower bound on
the probability. They have considered the case of finite state and action spaces where actions can be
modeled as Markov transitions. As these algorithms trade off plan time for plan quality, their performance
is compared to a mechanical system for orienting parts. This leads to two properties of stochastic actions
which can be used to choose between these planning algorithms for other applications.

Regardless of specific applications, the knowledge-based systems described above have been developed
to enhance the capabilities and flexibility of robotic systems dedicated to industrial automation. Their
common limitation is that they are not easily modifiable to accommodate different versions or potential
deviations from the initial class of problems for which they have been designed [32]. Object-oriented
techniques integrating concepts, such as class, instance, inheritance, and genericity, can deal with such
a limitation.

8.3 Principles of Object-Oriented Techniques

Object-Oriented (OO) technology constitutes one of the most important software evolutions of the
1990s. It refers to object-oriented programming, design, analysis, and databases, and covers methods for
either design or system analysis. An overview of such a technology is presented in this section.

Basic Concepts and Definitions

In the field of object-oriented techniques, designers think in terms of objects: they create objects; add
behaviour to them; make them interact; and observe the results. From a programming point of view, an
object represents anything real or abstract (whose attributes are represented by data types and behaviors)
which are controlled by operations. An object is defined by a list of abstract attributes often called instances
or class variables. Communication between objects is done across well-defined interfaces.

Figure 8.3 illustrates an object, whereas Fig. 8.4 gives an object-oriented example of an “Employee.”
Moreover, objects can be categorized into object types, which is specified during object-oriented analysis.
Classes refer to the software implementation of such object types. Details of classes are determined in
object-oriented design.

FIGURE 8.3 Concept of an Object.

In order to interact with an object, a request is sent to it, causing an operation to be triggered. Such
operations are called member functions or methods in object-oriented programming and are elicited from
responses to messages transmitted to objects. Therefore, a method constitutes a procedural specification
that alters the state of an object or determines the message to be successfully processed by such an object.

Fig. 8.5 illustrates the message passing between three classes of objects. Concretely, a class represents
a collection of objects sharing attributes and methods.

Encapsulation refers to the practice of including everything within an object that it requires, in such
a way, that no other object ever needs to be aware of its internal structure which resulted in packaging
together its data and operations. Consequently, details of its implementation are hidden from its user. This
is referred to as information hiding, in that the object conceals its data from other objects and allows the
data to be accessed via its own operations.

An abstract data type (ADT) is an abstraction similar to a class that describes a set of objects in terms
of an encapsulated or hidden data structure. All interfacing occurs through operations defined within
the ADT, providing a well-defined means for accessing objects of a data type and running the appropriate
method. Therefore, although objects know how to communicate with one another across well-defined
interfaces, they are not normally allowed to know how other objects are implemented, thus protecting
their data from arbitrary and unintended use. To summarize, the ADT gives objects a public interface
through its permitted operations. Furthermore, all operations that apply to a particular ADT also apply
to the instances of that ADT.

FIGURE 8.4 An Example of an Object.

FIGURE 8.5 Messages Passing among Classes.

Furthermore, deriving new classes from existing classes is called class inheritance (or simply inheritance)
and constitutes an implementation of generalization. The latter states that the properties of an object
type apply to its subtypes which have the derived classes. With single inheritance, a class is derived from
a one-base class.

In multiple inheritance, a class can inherit data structures and operations from more than one superclass.
Fig. 8.6 illustrates a simple inheritance, where the class Rectangle inherits several operations from Polygon
and Square inherits certain operations from Rectangle. The real strength of inheritance comes from the
ability to make data structures and operations of a class physically available for reuse by its subclasses.

Polymorphism refers to the ability of objects, belonging to different classes but related by inheritance,
to respond dissimilarly to the same member function call. It enables the writing of programs in a general
fashion in order to handle a wide variety of existing and specified related classes. One strength of
polymorphism is that a request for an operation can be made without knowing which method should
be invoked. It is particularly effective for implementing layered software systems. For instance, in oper-
ating systems, each type of physical device may operate quite differently from the others, whereas
commands to read or to write data from and to those devices can have a measure of uniformity.

Therefore, object-oriented techniques provide facilities for representing two impressive concepts:
abstraction and inheritance. They also change the way designers or developers think about systems. In
fact, this way of thinking is more natural for most people than the techniques of structured analysis and
design. As well, all entities consist of objects that have certain types of behavior. Certain objects may be
quite different despite sharing many of the same attributes and exhibiting similar behaviors.

Special Features

In the domain of object-oriented techniques, analysts, designers, and programmers use the same con-
ceptual models for representing object types and their behaviors. They all draw hierarchies of such object
types where the subtypes share the properties of their parent. Also, they consider objects as being
composed of other objects, use generalization or encapsulation, and think about events changing the
states of objects and triggering certain operations.

FIGURE 8.6 Example of Inheritance.

Program complexity is a measure of program understandability. Avoiding such complexity improves
program reliability and reduces the effort needed for its development and maintenance. Object-oriented
techniques provide two important ways to divide complex software into simple procedures. First, methods
result in a state change of an object which is usually simple and easy to implement. Secondly, each
operation is isolated from cause and effect. In fact, after being triggered by a number of events, an
operation executes the associated method to change the state of an object but does not recognize its cause
and effect. That is to say, the operation has no knowledge of what event caused it to happen, nor why,
and is unaware of what operations will be set off as a consequence of its events. Therefore, reduction in
complexity is partly due to the fact that object-oriented classes can be self-contained and divided into
methods.

Moreover, systems can be built from existing objects since inheriting operations from a superclass
enables code sharing and structure reuse among classes. When creating a new class, instead of completely
rewriting data members and member functions, the programmer can designate the new class to inherit
them from a previously defined class. This leads to a high degree of reusability, which saves money,
shortens development time, and increases system reliability.

Today, software factories manage well as possible libraries of reusable classes, to maximize reusability
and minimize maintenance costs. Developers who create new classes are evaluated according to the re-use
of such classes. On the other hand, designers who utilize existing classes are evaluated regarding the way
they re-use those classes. In other words, developers or designers should strive to increase the functionality
of the classes they use by building new objects from existing objects. Moreover, object types can be
designed for customization according to the needs of various systems, resulting in a method that can be
reused on different software platforms and on multiple interacting processors.

Object-oriented techniques allow for the building of complex and reliable systems in a simple way.
The code is directly related to defined objects and to methods that manipulate those objects. Each method
is relatively simple; easy to change; and can be quickly created using pictures, tables, declarative statements,
equations, database access, report generation, rules, and nonprocedural techniques. As systems become
increasingly complex, new functionality can be directly added to existing classes for building these powerful
systems. Therefore, by using good class libraries, a designer can assemble complex software in a fluid way.
There is no need to be concerned with the internal workings of a class. If an object type functions well, it
can be treated as a black box whose interior never necessitates scrutiny. Furthermore, created objects can
be quickly and repeatedly modified.

Obviously, object-oriented techniques result in numerous advantages. First, each object in a system
turns out to be relatively small, self-contained, and manageable. This reduces the complexity of systems
development and may lead to higher quality systems, which are less expensive to build and maintain. In
addition, once an object is defined, implemented, and tested, it can be reused in other systems. Indeed,
reusability can greatly increase productivity since the reused objects are generally proven products. Finally,
an object-oriented system can be modified or enhanced very easily by changing some types of objects
or by adding new types of objects without interfering with the rest of the system. Those potential benefits
constitute the driving force behind the object-oriented revolution.

Methodology and Models

Object-oriented techniques enable the building of real-life models that include two important features:
a representation of the object types with their structures and a representation of the object behaviors. A
set of diagrams should be created for each of these aspects: object-structure diagrams showing the objects
and their interrelationships, and event diagrams showing what happens to the objects. The first aspect
concerns object types, relationships between objects, and inheritance. It refers to the Object Structure
Analysis (OSA) and corresponds to the class structure design. The second view concerns the behavior of
objects and what happens to them over time, which refers to the Object Behaviour Analysis (OBA) and
method design.

The OSA defines the object types and the way in which they are associated. This leads to the following
questions:

• What types of objects exist? What are their functions and how are they related? What are the useful
subtypes and supertypes?

• Is a certain kind of object composed of other objects?

• Such questions allow for the identification of the classes and the definition of superclasses, sub-
classes, their inheritance relationships and the methods to be used, which result in the detailed
design of the data structure.

The OBA relates to the following questions:

• Which states can the object types be in? What types of events change these states?

• What succession of events occurs?

• What operations result in these events and how are they triggered?

• Which rules govern the actions taken when events occur?

These questions lead to the detailed design of methods, using either procedural or nonprocedural
techniques. Consequently, the input to the code generator is developed, screen design is done, dialogues
between objects are designed and generated, and prototypes are built.

Events cause an object-oriented system to take various actions. In order to describe processes in terms
of events, triggers, conditions, and operations, event diagrams constitute a primary means of commu-
nicating object-oriented behavior, showing events and the operations set in motion by the methods.
They express processes in a more rigorous fashion which makes the code easy to be generated using a
sequence of operations (drawn with rounded-cornered boxes and easily understood). Such diagrams
must be precise (with an engineering-like precision), which can speed up work, improve the results,
enhance creativity, and simplify maintenance. For strategic-level planning, an Object-Flow Diagram
(OFD) is useful for indicating the constructed objects and the activities that produce and exchange them.
A three-dimensional box is used to represent real-life objects that flow between activities.

In an object-oriented context, the data structure of an object type can be manipulated only through
the methods of the object class. As for changing the state of an object, requests must be sent in order to
activate the associated methods. Each state change is usually simple to program, which leads to the
division of programming into relatively uncomplicated parts. Also, each object performs a specific
function independently of the others, and responds to requests neither knowing the reasons for such
requests nor the consequences of their actions. As a result, classes can be largely changed independent
of other classes, which renders them relatively easy to test and to modify.

8.4 Applications to Robotic and Automated Assembly

In a robotic and assembly manufacturing environment, the available flexibility introduces another degree
of complexity in decision making. The assembly operations are descriptions of robot actions that can be
used to match components and subcomponents. It is important that robot planners not be obliged to
analyze an assembly but rather to use a path-planning generated by the assembly in order to structure the
issuing of task level commands. To achieve this, the architecture must be designed to retrieve data through
contents and not through a fixed predefined structure. “Which components have a champfix and five edges?”
is a type of question which requires an answer that object-oriented databases can satisfactorily provide.

Object-Oriented Modeling

The way object-oriented databases reason about geometry is by recognizing certain geometric features
of objects [18]. To this end, representations of designed objects in terms of features must be developed.
As a result, an important use of the database is the design of a knowledge-based system. Learning techniques

can also be used to obtain relevant information automatically and to guide the system in search of good
planning solutions [2].

As presented earlier, object-oriented concepts are based on fundamental principles of complexity
management which are very helpful for complex object modeling and data manipulation related to
complex entities such as computer-aided design (CAD) or computer-aided engineering (CAE) system
environment [1, 10]. In the assembly domain, the objects are typically composites or aggregates of
components. The term “composite object” is commonly used to denote a layered abstraction model. The
use of abstract data types enhance program modularity since modifying the object structure does not
affect the manipulation of external objects. Abstract data type can be implemented as an object collection
with the same structure and representing a class.

Each object is characterized by a specific identifier OID (object identifier) [25]. However, two similar
objects with the same dimensions, but a dissimilar OID, are said to be different. Thus, through the
development phases of composite objects, the OID provides a natural paradigm for maintaining the
uniqueness of objects independent of structure or content.

Object identity allows for direct graph modeling and objects are characterized by properties. A property
may be an object characteristic such as an attribute, a function, or a subobject component. For example,
the object circle can have the following properties:

• Simple attribute: radius (R);

• Composite attribute: center (x, y, z);

• Function: surface .

A class may be defined as a description of the behavior of a collection of objects in a modular way
(e.g., circles with the same radius, polygons wth a common shape). The concept of “class hierarchy”
eliminates the possibility of specifying and storing redundant information. It integrates the previous
notions of “superclass” as a higher level mode; “subclass” as a lower level mode; and “methods” as
operations that can either retrieve or update the state of an object.

For assembly process planning, methods are very useful in an inheritance hierarchy (a method defined
for a class is inherited by its subclasses). Data integrity is ensured by a procedure called “demon,” a
triggered operation associated with an object when a particular condition occurs. In this context,
geometrical and topological information is not sufficient for establishing assembly planning design rules.
Geometric interference, physical constraints, tolerances, and kinematic relationships are all important
issues to be addressed in assembly planning design.

Geometry helps to make a representation scheme for parts and products, and it refers to the places
where the objects are located. Topology defines the connectivity between geometric elements and is in
charge of processing the rules for connecting elements of geometry to produce a part. It also refers to
the reasons why objects are located in some specific places. Tolerances can be defined as acceptable
variations between design and manufacturing processes that allow for the various components to be
assembled into a product. As a result, the use of an object-oriented approach provides the tool, without
any interactive means, for modeling entities and properties, as well as for managing design information
effectively. Fig. 8.7 shows an object-oriented representation of a superclass SOLID-3D.

Knowledge Representation

Various approaches have been proposed in assembly-planning literature [1, 4, 7, 9, 28]. Rabemanantsoa
and Pierre [21–23] have also proposed an approach based on the idea of viewing the planning with
intermediate states and considering the whole assembly as a hierarchy of structures. Therefore, the
knowledge base integrated in our system consists of three parts: component structures, intermediate states,
and primitive structures. These parts contain the physical information related to knowledge of the design
intent such as geometry topology, features, and tolerances. Each component is represented by a frame,
which consists of a name and a number of properties. For example, Fig. 8.8 shows the panel frame of a
mechanical part: number of faces, number of flat surface, composite surface, etc.

�R2()

To characterize the intermediate states, the input scheme is represented by a set of assembly operations
along with their states. In this context, the state of a component is defined as either the initial component
or another position induced by a set of predefined operations [20]. Given a product with “n” compo-
nents, we have P � (p1, p2 ,…,pn), and the set of states of each component is S = (s1, s2,…,sk) for “k”
maximum states.

FIGURE 8.7 Object-Oriented Representation of a Complex Object.

FIGURE 8.8 Panel of Mechanical Parts.

p

Let the set of predefined assembly trajectories for each component in be T � (t1, t2, …, tj) where j
is the total number of trajectories. The knowledge contains a change of state along a fixed trajectory, that
is, for component , an assembly operation is denoted as a triple:

A � {P, S, T}

The primitive structures are necessary to ensure the completeness of the knowledge. They involve a
small number of parts or components which interact positionally with one another in simple ways [21].
The three types of primitive structures currently being considered are shown in Fig. 8.9:

1. Contact: in this structure; two components interact in such a way that they are in contact and
each component can be moved into the structure in any direction through an infinite half-space.

2. Insert: in this structure, two components interact in such a way that each one has to mate in a
specific direction if the other is already present.

3. Solid: this structure is similar to (1), except for the two components not being in contact with
each other.

Another way to consider the knowledge representation is using a CAD database. This architecture
provides different levels of abstraction for modeling the parts through the object-oriented database
illustrated in Fig. 8.10.

The link structure of the system between the database and the CAD design uses the method developed
by Shah and Bhatnagar [27]: intrinsic and explicit characteristics (type 1); intrinsic and implicit charac-
teristics (type 2); and extrinsic characteristics (type 3). For example, a hole should be described in terms

FIGURE 8.9 Primitive structures.

FIGURE 8.10 Database Structure.

P

pi P�

of diameter, length, and an orientation vector; these parameters are type 1 because they may be available
in the database itself. The radius of a hole is type 2 because it may be derived from the center coordinates
and the diameter. However, if the angle between the axes of two holes of equal diameter is needed, this type
3 information is not available in the database itself, but would depend on the concept utilized in the model.

The Artificial Intelligence (AI) techniques relating to decision tree and production rule provide better
understanding of the surfaces. For example; if two surfaces have the same ordinate, the AI techniques
make it possible to check whether these surfaces are adjacent or in contact. The positions of the surfaces
depend on the spatial relationships between each pair of components by using the coordinate frame
(body axis system) attached to the basic component. The knowledge is expressed in terms of mobility
(M) and contact functions for each pair of parts. The two functions C and M are then used by an expert
system called XGEN to generate assembly sequences [25].

As defined earlier, a mechanical assembly is a composition of interconnected parts forming a stable
unit. Interconnection implies that one or more surfaces are in contact. The body axis system has six
directions attached to each basic component. Contact and mobility of one component with respect to
another are then evaluated for each of the n components within the six degrees of freedom in a spatial
relationship. This results in a combination of two into n.

As illustrated in Fig. 8.11, the contact C of component “b” with respect to component “a” is a function
C(a, b) � (V1,V2,V3,V4,V5,V6), and the relative mobility M of component “b” with respect to component
“a” is a function M(a, b) � (V1,V2,V3,V4,V5,V6). The part union angle � is used to express the contact
angle, while the rotation � is used to express the relative mobility angle. A part mating along an assembly
axis having �i � 0 and �i � 0 is defined as an orthogonal assembly trajectory; when and
we have a non-orthogonal assembly trajectory. An attachment by means of a screw is defined as a circular
assembly trajectory. Hence, contact and mobility functions are expressed as follows:

C(a,b) � (V1 : �1, V2 : �2 ,V3 : �3, V4,V5,V6) and

M(a,b) � (V1 : �x, V2 : �y ,V3 : �z, V4,V5,V6)

FIGURE 8.11 Example of a Non-Orthogonal Assembly Trajectory.

�i 0� �i 0,�

20o

V2

V3

V1

V5

V6

V4

θ2
θ3 φy

φz

φx

θ1

y y

x

z
z

xo o

c

b

a

Figure 8.11 is an example of a non-orthogonal assembly trajectory developed with this system. For
the set of parts composed of three components, there are 3! � 6 possible solutions. To overcome the
combinatorial explosion risk, our approach uses Vk (k � 1,6) to represent the six degrees of freedom. The
spatial relationship of one component, with respect to another one, considers one pair of components,
that is, the combination of 2 into n, where n � 3. The referential {R2} provides an “explicit relative
mobility condition.” Both referentials are attached to the lower component when considering each pair
of components. Furthermore, from the semantic data modeling point of view, each Vk (k � 1,6) is coded.

In the contact function C, we have Vk � 0,1,2 representing the absence of contact, presence of contact,
and presence of lateral contact respectively. When we take into account these mating conditions, the contact
function of component “b” in relation to component “a” (Fig. 8.11) is expressed as follows: C(a,b) �

(2,1:20,2,2,1,2), in which V1 � V3, � V4 � V6 � 2, indicating the presence of lateral contact along these
directions. (V2 :�2) � (1: 20) indicates the contact angle and the assembly trajectory at a positive angle
equal to 20° with respect to V2 � Y axis. V5 � 1 shows contact between “b” and “a” in that direction.

In the relative mobility function M, we have Vk � 0,1,2,3,4, representing no relative mobility, the
possibility of mobility, presence of an orthogonal assembly trajectory, existence of a circular trajectory,
and presence of a non-orthogonal assembly trajectory respectively. Hence, the relative mobility of com-
ponent “b” in relation to component “a” is M(a,b) � (0,4,1:20,0,0,0) in which V1 � V4 � V5, V6 � 0,
indicating that “b” cannot be moved along these directions. V2 � 4 signifies that there is a non-orthogonal
assembly trajectory using V2 � Y as reference axis. (V3: �z) � (1: �20) indicates that the relative mobility
is at �20° (clockwise rotation) with respect to the V3 � Z axis. The knowledge representation for spaital
data models, relating to the example of Fig. 8.11, is shown in Table 8.1.

Assembly Operations

The plan generation formulates the assembly operations, using the knowledge base plus a set of scheduling
rules, to achieve the goal. Using learning techniques, the supervision architecture is given capabilities for
generating the plan. For each plan level, the main functions consist of dispatching, monitoring, diagnosis,
and recovery [21]. The result is a decision tree:

• Dispatching: taking care of global coordination activities to be performed by a high-level cell
controller. Approaches to derive the control algorithm are usually based on constant rules used
to post constraints. Dispatching is the basic “operation-selection.”

• Monitoring: in model-based monitoring, the sensory conditions to test in each situation are well
defined in the model. Moreover, discrete monitoring is used to check goal achievement after the
execution of operations. Continuous monitoring is used to check sensory conditions during the
execution of operations. If an exception is detected, the diagnosis function is called upon.

• Recovery: this function is called to update the global state and the complete operation description
is stored in the plan.

TABLE 8.1 Knowledge Representation

C: Contact M: Mobility

C(a,b) � (2,1:20,2,2,1,2) M(a,b) � (0,4,1:�20,0,0,0)
C(a,c) � (2,0,0,2,1,0) M(a,c) � (0,1,1,0,0,1)
C(b,c) � (0,0,0,0,0,0) M(b,c) � (1,1,1,1,0,1)

�1 � 0; �2 � 20°; �3 � 0 �y � 0; �z � �20°
Note: Note:
0 � no contact 0 � no relative mobility
1 � presence of contact 1 � possibility of moboility
2 � lateral contact 3 � circular trajectory

4 � non-orthogonal trajectory

Other Automated Assembly Applications

The object-oriented techniques and automated methods eliminate the traditional steps of off-line
programming. The assembly architecture, designed through artificial intelligence, solves the use of
advanced curve and surface definition features in the relationship between the shapes to be manipulated.

For many years, some predefined tasks in the robotic field have been solved using sensor-based
reasoning and/or the trajectory-generation algorithm [9, 12, 33]. These procedures use the constraints
of the system to implement operation sequences for achieving specified goals. The basis for establishing
a set of design rules for robotic and automated assembly yielded some more generalized design guidelines
in 1986 [11]. In 1988, Sanderson et al. [26] introduced a method for the task planning of robotic
manipulation in space application.

The major driving applications are part handling and product design. Effective and efficient utilization
of assembly techniques requires that the robot task sequence be compatible with the design of compo-
nents. Then, experimentation was carried out on an automated assembly of mechanical parts in a high
mix product environment. The concept of replacing a certain standard simulation technique to provide
motion descriptions and task parameters has been carried out by the automated assembly. It may be
viewed as the tool of choice for a growing range of applications. The knowledge state of the manipulation
motions and operations are defined and validated before accessing the real robot. 3-D modeling has also
streamlined the tooling stage. The system is incorporating embedded task planning, with accompanying
control synthesis and past architecture, to support goal-directed activities in an uncertain environment.
Surface modeling has been defined and produced within tolerances as small as tenths of millimeters in
order to be installed on production assemblies and still meet design requirements.

When provided with the assembly tree, the robot planner is capable of considering the objects in a
given coordinate frame to deduce which features of a component mate with which others. Fig. 8.12 presents
the assembly tree structure, which is handled by a robot planner to perform the specific operations related
to Fig. 8.11. Fig. 8.13 shows the capability of the system to handle various levels of component complex-
ities. According to the assembly theory, there are 6! � 720 possible solutions excluding constraints for
the six components.

FIGURE 8.12 Robotic Assembly Sequence of the Example in Fig. 8.11.

8.5 Conclusion

This chapter discussed the object-oriented techniques and automated methods currently utilized for
robotic assembly in manufacturing systems. More precisely, it addressed the problem of knowledge
representation in intelligent systems dedicated to assembly planning and robotic assembly. Many real
assembly-planning systems are built on the paradigm of artificial intelligence and are implemented as
knowledge-based systems. Some of them aim at generating mechanical assembly sequences, which satisfy
a set of assembly requirements and may be assembled by humans or robots. All the feasible assembly
sequences can be generated as a tree sequence structure and then evaluated, the most appropriate one
being chosen to carry out the equipment layout.

For managing geometrical data, topological and abstraction, object-oriented modeling appears to be
a suitable approach. According to this course of action, data are stored as examples of abstract data types
and all conceptual entities are objects. A class inherits all instances from its superclass. In this context,
the question of robotic assembly planning has been discussed as a problem of generating assembly
sequences derived from a model-based object recognition. Thus, the output is a list of feasible assembly
sequences for use by offline robotic programming to determine the manipulator path generation. A
predefined path generation can be very helpful for applications in the fields of telerobotics, machining
operations, and automated assembly systems.

Robotic assembly is a difficult process. In fact, numerous transformations must be performed to
capture the object features through the set of coordinate frames for each surface. Such a task can become
a time-consuming iterative motion. Finally, there is a need to minimize the kinematic computation by
providing the robot with knowledge of sequence generation of the components to be assembled.

FIGURE 8.13 Equipment Layout with its Robotic Assembly Sequence.

References

1. Angermuller, G. and Hardeck, W. (1987), CAD Integrated Planning for Flexible Manufacturing
Systems with Assembly Tasks, IEEE CAD Journal, pp. 1822–1826.

2. Camasinka-Matos, L.M., Seabra Lopes, L., and Barata, J. (1994), Execution Monitoring in Assem-
bly with Learning Capabilities, IEEE International Conference on Robotics and Automation, pp.
272–280.

3. Cha, J., Rao, M., Zhou, Z., and Guo, W. (1991), New Progress on Integrated Environment for
Intelligent Manufacturing Automation, Proceedings of the 6th IEEE International Symposium on
Intelligent Control, Arlington, VA.

4. Chakrabasty, S. and Wolter, J. (1994), A Hierarchical Approach to Assembly Planning, IEEE Inter-
national Conference on Robotics and Automation, Vol.1–4, pp. 258–263.

5. Chang, K.H. and Wee, W.G. (1993), A Knowledge-Based Mechanical Assembly Planning, in Expert
Systems in Engineering Applications, S.G. Tzafestas (Ed.), pp. 291–306.

6. Christiansen, A.D. and Goldberg, K.Y. (1995), Comparing Two Algorithms for Automatic Planning
by Robots in Stochastic Environments, Robotica, Vol. 13, No. 6, pp. 565–573.

7. Conradson, S., Weinstein, M., Wilker, J.S., and Yencho, S.A. (1987), Automated Material Handling,
(Automated Assembly and Product Design as a System), IEEE Proceedings of the 8th Int. Conf. on
Assembly Automation, pp. 67–68.

8. Ferland, M., O’Shea, J., and Rabemanantsoa, M. (1993), Robotic Interface for CAD/CAM Integra-
tion. Proceedings of Dept. of National Defense on Workshop on Advanced Tech. in Knowledge-Based
Systems and Robotics, Ottawa, ON, Canada.

9. Homem de Mello, L.S. and Sanderson, A.C. (1989), A Correct and Complete Algorithm for the
Generation of Mechanical Assembly Sequences, IEEE Journal of Int. Conf. on Robotics and Auto-
mation, CH2750-8, pp. 56–61.

10. Hurt, J. (1989), A Taxonomy of CAD/CAE Systems, Manufacturing Review, Vol. 2, No. 3, pp. 170–178.
11. Jackson, A.J. and McMaster, R.S. (1986), Product Design for Robotic and Automated Assembly,

Proc. of IEEE International Conference on Robotics and Automation, Vol. 2.
12. Jarvis, R.A. (1988), Configuration Space Collision-Free Path Planning for Robotic Manipulators,

Robots in Australia’s Future Conference, ARA, pp. 193–204.
13. Kamrani, A.K., Shashikumar, S., and Patel, S. (1995), An Intelligent Knowledge-Based System for

Robotic Cell Design, Computers & Industrial Engineering, Vol. 29, pp. 1–4.
14. Kokar, M., Anderson, C., Dean, T., Valavanis, K., and Zadrozny, W. (1990) Knowledge Represen-

tations for Learning Control, Proceedings of the 5th IEEE International Symposium on Intelligent
Control, Philadelphia, PA, USA.

15. Lee, Y.C. and Fu, K.S. (1983), A CSG Based DBMS for CAD/CAM and its Supporting Query
Language, IEEE CAD Journal, pp. 123–128.

16. Marque-Pacheu, G., Gallausiaux, J.M., and Jormier, G. (1984), Interfacing Prolog and Relational
DBMS, in New Applications of Databases, E. Gelenbe (Ed.), Academic Press.

17. Massey, L.L., Udoka, S.J., and Ram, B. (1995), Robotic System Design: a Hierarchical Simulation-
based Approach, Computers & Industrial Engineering, Sept., No. 29, pp.1–4.

18. Nnaji, B.O. (1988), A Framework for CAD-Based Geometric Reasoning for Robot Assembly Lan-
guage, Int. Journal Proc. Res., Vol. 26, no. 5, pp. 735–764.

19. Pfeiffer, F. and Johanni, R. (1987), A Concept for Manipulator Trajectory Planning, IEEE Journal
of Robotics and Automation, RA-3, 3, pp. 115–123.

20. Rabemanantsoa, M. and Pierre, S. (1993), A Knowledge-Based Approach for Achieving Assembly
Tasks, Proceedings of the 14th Canadian Congress of Applied Mechanics CANCAM 93, Kingston, ON,
Canada, Vol.1, pp. 51–52.

21. Rabemanantsoa, M. and Pierre, S. (1993), An Integrated Knowledge-Based System for Flexible
Assembly Process Manufacturing, 2nd. Int. Conf. on Computer Integrated Manufacturing, Singapore,
pp. 789–798.

22. Rabemanantsoa, M. and Pierre, S. (1993), A Knowledge-Based System for Assembly Process-
Planning, IEEE SESS 93 Int. Conf. on Artificial Intelligence, Brighton, England, pp. 267–272.

23. Rabemanantsoa, M. and Pierre, S. (1993), A Knowledge-Based Approach for Robot Assembly
Planner, IEEE Proceedings of Canadian Conf. on Electrical and Computer Engineering, Vancouver,
BC, Canada, pp. 829–832.

24. Rabemanantsoa, M. and Pierre, S. (1996), Robotic Assembly for Computer-Integrated Manufac-
turing, International Journal of Robotics and Automation, Vol. 11, No. 3, pp. 132–140.

25. Rabemanantsoa, M. and Pierre, S. (1996), An Artificial Intelligence Approach for Generating
Assembly Sequences in CAD/CAM, Artificial Intelligence in Engineering, Vol. 10, No. 2, pp. 97–107.

26. Sanderson, A.C., Peshkin, M.A., and Homem de Mello, L.S. (1988), Task Planning for Robotic
Manipulation in Space Applications, IEEE Trans. on Aerospace and Electronic Systems, Vol. 24,
no. 5, pp. 619–628.

27. Shah, J. and Bhatnagar, S. (1989), Group Technology Classification from Feature-Based Geometric
Models, Manufacturing Review, Vol. 2, pp. 204–213.

28. Shah, J.J. and Rogers, M.T. (1988), Functional Requirements and Conceptual Design of the Feature-
Based Modeling System, CAD Journal, Vol. 5, pp. 9–15.

29. Swift, K.G. (1987), Knowledge-Based Design for Manufacture, Prentice-Hall, London, England.
30. Tsao, J. and Wolter, J. (1993), Assembly Planning with Intermediate States, IEEE International

Conference on Robotics and Automation, Vol. 1–3, pp. 71–78.
31. Thompson, D.R. and Ray, A. (1987), A Hierarchically Structured Knowledge-Based System for

Welding Automation and Control, Proceedings IEEE International Symposium on Intelligent Control,
Philadelphia, PA, USA.

32. Valavanis, K.P. and Tzafestas, S.G. (1993), Knowledge-Based (Expert) Systems for Intelligent Con-
trol Applications, in Expert Systems in Engineering Applications, S.G. Tzafestas (Ed.), pp. 259–268.

33. Woodbury, R.F. and Oppenheim, I.J. (1988), An Approach to Geometric Reasoning in Robotics,
IEEE Trans. on Aerospace and Electronic Systems, Vol. 24, no. 5, pp. 630–645.

9
CAD-Based Techniques

in Task Planning and
Programming of Robots
in Computer-Integrated

Manufacturing

9.1 Introduction
9.2 Strategies for Off-Line Programming (OLP)

Text-Level Programming • Graphic-Level Programming •
Object-Level Programming • Task-Level Programming

9.3 Strategies for Task Planning and Programming
Geometric Modeling • Task Specification • Grasp Planning
• Path Planning • Trajectory Planning • Calibration
• Post Processing

9.4 CAD-Based Task Planning Implementation
System Structure • Design Modeling of Assembly Parts and
Workcell • Task Specification • Task Decomposition •
Transformation of Robot Locations and Workstation
Calibration • Robot Kinematics and Assembly Process
Simulation Module

9.5 Future Research
9.6 Conclusions

Acknowledgments
References

The key to future robotic system utilization in flexible assembly systems (FASs) relies heavily on rapid
task planning and programming of robots. Furthermore it has become evident that the complete inte-
gration of the design, analysis, and off-line verification of robotic operations in computer-integrated
manufacturing (CIM) environment is required. These requirements place an important emphasis on
techniques and systems for planning and programming of the assembly tasks within the framework of
CIM systems.

This chapter presents techniques for integrated task planning and programming of robotic operations.
Such techniques generally employ computer-aided design (CAD) platforms to fully exploit their database
and modeling capabilities. Various approaches to off-line programming is presented. The techniques for
modeling, task specification, and database structuring are described. Such systems require methods for
robot-independent program generation and the subsequent simulation and verification of the application
programs including calibration of fixtures and local frames and are also presented here.

Bijan Shirinzadeh
Monash University

9.1 Introduction

Dynamic global competition has compelled many manufacturing industries to be more concerned with
productivity, cost reduction, and flexibility due to the reduction of the product life cycles [1, 2]. Recent
research efforts have focused on the development of CIM systems to increase productivity and resource
management. Robots are chosen, in the manufacturing environment, primarily for their flexibility and
rapid response to changeovers. However, in order to take advantage of this flexibility, the production
engineer needs to rapidly plan the task and develop application programs for the robotic operations.

There exists a large number of “on-line” and “off-line” robot programming systems and languages
[3, 4]. Most industrial robots are still programmed using traditional “on-line” programming systems,
commonly referred to as “teach-mode-programming.” In this approach, a programmer physically moves
the robot by a teach-pendant through the desired locations [5]. The locations are then recorded and can
be replayed when needed. “On-line” programming of robots is a time-consuming process and not very
efficient in a flexible manufacturing environment. Furthermore, the ‘‘on-line’’ programming technique
requires the use of the actual robot which is physically put through the desired sequence of actions [6, 7].
This method is mainly used for large batch manufacturing environments.

A more advanced approach allows task specification and programming a robot off-line using task
planning and off-line programming techniques [5]. The task planning and off-line programming (OLP)
systems have the potential to reduce the programming time [8]. These combine computer modeling and
simulation to perform task specifications and generate programs off-line. Such systems do not require
direct physical access to the robot or its environment during the planning and programming phase [9].
However, they do require reprogramming of critical locations or frames on the actual manufacturing
fixtures. This chapter briefly describes the different approaches to programming systems. Such off-line
programming systems provide the basic building blocks for more advanced task planning systems and
their integration within the CIM environment. This chapter also presents techniques for integrated task
planning and verification of robotic operations. The focus of attention will mainly be directed at robotic
assembly operations.

9.2 Strategies for Off-Line Programming (OLP)

Text-Level Programming

The most basic level of off-line programming is the manipulator-level or text-based programming. At this
level, the focus of attention is the manipulator and other associated devices, such as grippers. The task
description consists of how the manipulator is to be moved through the required points [9]. This method
provides better control over the robot and it is generally identical to the robot native language [10]. It
also provides for a relatively cost effective and reliable programming facility. However, writing text-based
programs in languages such as VAL II (Staubli) and ARLA (ABB) is not easy. The user must generally
think in 3-D space without any visual aids. In addition, the user must have a background in programming,
since most manipulator-level languages are usually extensions of languages such as PASCAL and BASIC.

Graphic-Level Programming

Graphic-level programming is a combination of teach-mode and manipulator-level programming tech-
niques [9]. Graphic-level programming eliminates some of the difficulties in 3-D visualization during
off-line programming. In graphic-level programming, the user programs the positions to which the robot
is required to move by assigning frames on objects and storing their locations [5]. This level of program-
ming is off-line but robot-dependent, requiring the robot model to be a resident in the system [10]. Most
commercial systems use this technique and examples of such systems include IGRIP (Deneb), CimStation
(SILMA), and ROBCAD (Technomatix). This technique is sometimes referred to as teach-mode pro-
gramming on screen [11].

Object-Level Programming

In an object-level program, the user decides the order of assembly, approach, and departure vectors, and
the user’s description of the task is in terms of the objects that have to be handled [9]. The user must
provide a set of commands that describes spatial relationships among objects that have to be handled.
For example, a situation where a plate is placed on a block with two holes aligned may be described by:

This level of programming is off-line and robot-independent; however, translators are still required to
generate manipulator-specific programs. Object-level programming systems, such as RAPT, require the
user to provide detailed definition of various features; such as top of block, side of plate, holeA, etc. This
specification of features on objects must generally be carried out in conjunction with an advanced modeling
system. In addition, this level of programming requires special care in the development of spatial relation-
ships and thorough testing of the program [12]. This is mainly due to the fact that the possibility of
ambiguous situations, and thus errors in the program, is extremely high using this approach. Research in
this area focuses attention on improving the feature specification and integrated modeling capabilities.

Task-Level Programming

A task-level programming system generates motion and strategy plans based on the specified task or the
final goal [9]. A task-level programming, sometimes referred to as objective-level programming, requires
a very complete model of the robot and its work cell environment. The system must also generate all
possible steps for task planning, grasp planning, path planning, trajectory planning, and post-processing
[13]. The system must also be able to deal with uncertainties and sensor actions. The user is not required
to define spatial relationships between objects, only high-level task commands. In the proposed objective-
level programming language, the user specifies the task the robot must achieve.

The user must also provide information such as the parts to be used, their initial layout, and the final
assembly layout. The system is responsible for planning how the assembly is to be done; determining the
approach and departure vectors; how and where to grasp the parts; how to use sensors; and how to
maneuver parts around obstacles. The final result must be simulated on the graphics screen in order to
assist with the final decision (i.e., the engineer must have the final say). A fully functional task-level
planning and programming system does not yet exist, although it must be emphasized that attention has
been focused on research and development of the modules or sub-systems for such task-level program-
ming systems [14]. Therefore, experimental systems with some of the task-level functionalities are being
developed by researchers.

9.3 Strategies for Task Planning and Programming

An idealized task planning and programming system consists of a number of sub-systems or sub-modules.
Fig. 9.1 shows a schematic diagram of important sub-modules which have received attention within the
framework of off-line task planning and programming systems. These include geometric modeling, task
specification, grasp planning, path planning, simulation, and calibration. Individual sub-modules will
be described within this section.

Geometric Modeling

Task programming systems require a very complete model of the assembly environment to allow computer-
aided planning operations to be performed. Therefore, a geometric modeling platform is an essential
component of such planning systems (i.e. planners). In fact, a versatile computer-aided task planning
and programming system is generally built on an accurate and user-friendly modeling platform [15].

AGAINST/ top of block, bottom of plate;
COPLANAR/ side of block, side of plate;
ALIGNED/ holeA of block, holeB of plate;

Geometric models must be developed before any task actions can be expanded into sequences of robot
operations [16].

Objects in the workspace have to be modeled using solid models rather than wire frames. This approach
will assist in retrieving the 3-D information about the objects from the database because this information
is required during computer-assisted planning operations. The planning operations may include task
specification, grasp planning, path planning, and interference detection of robotic tasks and workpieces
[17]. For example, the interference detection may be carried out by testing the intersection of the robot
solid model and the union of all other objects. This technique can also be employed for grasp planning
which will be described later. Two categories for modeling include constructive solid geometry (CSG)
and boundary representation (B-Rep).

Constructive Solid Geometry

Constructive solid geometry (CSG) constructs solid objects from a set of solid geometric shapes [18].
This method uses motional and combinatorial operators to combine a few primitive shapes such as cube,
wedge, cone, cylinder, etc. A CSG scheme can be specified by a context-free grammar, as listed below:

Each primitive of a solid object is described by its volumetric parameters such as length, width, height,
etc., and its position relative to a reference frame. These primitives are stored in leaf nodes, as an ordered
binary tree and the operators are stored in the non-terminal nodes. During CSG’s implementation, the
depth of the tree should be monitored very carefully because it can lead to inefficient data retrieval when
the tree is too deep. This problem can be overcome by representing each subassembly as a tree in itself
and all the subassemblies are combined into the final tree. This method can generally be used for task
planning because the final goal can be described as a tree of subassemblies.

FIGURE 9.1 The hierarchical structure for task planning and off-line programming.

�mechanical part� �� �object�
�object� �� �primitive� �

�object� �motion op� �motion
arguments��

�object� �set operator� �object�
�primitive� �� cube � wedge � cone � cylinder � ...
�motion op� �� rotate � translate � scale � ...
�set operators� �� union � intersection � difference �

complement � ...

Boundary Representation (B-Rep)

Boundary representation (B-Rep) technique segments a solid object into its non-overlapping faces or
patches, and models these according to their bounding edges and vertices [19]. The resulting data
structure constructs a directed graph containing object, face, edge, and vertex nodes. The geometric
representation of the object may be described as follows in Fig. 9.2:

• Each face is described by it bounding edges

• Each edge is described by its vertices

• Each vertex is stored as Cartesian coordinates

The external loop of a face (f1e) follows a right hand rule where a face is transversed in counter-
clockwise direction. An internal hole in a part may also be considered in B-Rep for possible fixture contact
point. The boundary loop (f1i), a hole in a face, is transversed in clockwise direction which is opposite
to the external loop [19]. This method produces more efficient sources of geometric data for producing
line drawings, graphic interaction (e.g., accessing a face, edge, or vertex), task specification, and graphic
simulation as compared to CSG.

Therefore, a model may contain several objects in a scene (i.e., an assembly). Each object is referenced
by the topological information and metric information. In addition, strategies are being developed to
include information about manufacturing characteristics as a list added to the object characteristics [20].
These may include information such as fixture identification number; manufacturing cell type (e.g.,
automated, manual); material and manufacturing operation to be performed together with machine type
(e.g., robot, milling, etc.); and other programmable aspects (e.g., static frames, dynamic frames, sensor
application, calibration, etc.). A schematic diagram of the three types of information list is shown in Fig. 9.2.

FIGURE 9.2 Structure of boundary representation (B-Rep) for a cuboid.

Task Specification

Task specification details the task-and-assembly sequence operation for robot programming. The final
goal is decomposed into a set of subgoals and is governed by the process sequence, feasibility, and
geometric constraints [21]. These constraints imply precedence relationships that will guarantee the
correct order for the execution of the operation (i.e., drill object A first before inserting object B into A).
Feasibility constraints verifies that all the objects and the extra features, such as “hole in the object,” are
available or exist. Geometric constraints can be determined by analyzing the geometry of the operation.
These constraints are more concerned with the collision problems between a robot and the objects and
also between the objects being handled with other objects. Task specification must also work very closely
with path planning to ensure a collision-free path.

Many strategies for obtaining the sequence of operations have been developed. These methods are
generally based on the three constraints mentioned above. Laperriere et al [22] have developed strategies
by using a ‘Relation Diagram’ method. This method is based on geometric and dimensional information.
Rocha and Ramos [21] have developed a strategy called TPMS, where the sequence is derived by using
the symbolic plan operation method. Their method accounts for pre-existing manufacturing systems
and the robot programming platforms.

Once the sequence has been determined, a computer program which executes that sequence must be
generated and stored in the robot controller’s memory or operation data files. Each step in the assembly
sequence has to be translated into robot executable motions and operations. Every motion and operation
are the elements that can be used to change the state of the assembly setup or the environment (i.e.,
approach object A, close gripper, and screw object A to object B).

The choice of an assembly sequence may depend on additional facts such as time, cost, stability, or
ease of assembly. In the past decade, research efforts have focused on the establishment of strategies for
automated assembly sequence generation. Such techniques make use of rule-based decision-making
approaches to generate precedence for assembly sequence [23]. It must be noted that a complete survey
of such research efforts is out of the scope of this chapter. There has also been an increase in research
efforts to develop strategies for multiple manipulators [24]. Such studies have developed approaches that
regard each manipulator and machine as an agent. The strategy analyzes the behavior and the geometric
restriction to sequence of operations for each manipulator and machine.

Grasp Planning

Grasp planning is an important issue that must be considered in order to achieve a truly flexible task
planning and off-line programming system. Once the task has been specified, a grasp planner provides
all feasible grips of the assembly part and provides an optimal grip [25]. Detailed information, such as
description of the part to be grasped, feeder, and assembly task are required in the planning. The planner
determines the nonfree regions (Fig. 9.3), based on the gripper size, contact with feeder or assembly, and
forbidden part faces such as threaded or fragile faces [26]. These regions are defined as “the regions on
a part where the fingertip cannot be placed.” The free regions are then used to determine the finger
domain, which is an area on a part where a fingertip can be placed.

FIGURE 9.3 Non-free region caused by a face on the
workpiece.

A grip plane is a plane where the finger contact points are located. This plane is normally situated on the
perpendicular side of the insertion direction, as it will reduce the degrees of freedom [27]. In the finger domain,
edges are excluded if grid plane is outside the friction cone belonging to the edge’s face, as shown in Fig. 9.4.
The calculation of the angle of the friction cone in the grip plane may be performed using the following:

(9.1)

To grasp an object without slipping, it is normally grasped at the centre of mass. In this way, torque
on the fingertip surfaces is minimized [27]. However, different types of grippers will have their own
effective method of grasping the objects to be manipulated. A parallel-jaw gripper is one of the most
commonly used grippers (shown in Fig. 9.5). It uses a parallelogram mechanism and the fingertips extend
and retract slightly in order to remain parallel. When the two edges are finally resolved, two grip points
can be assigned to the edges by using following equation:

(9.2)

These grip points are normally placed on the two parallel surfaces that are not obstructed by other
features of the part. The grasping force must be within the friction cones of the grip points as shown in
Fig. 9.6 [28]. Thus, an object is normally grasped on the center of mass to minimize the torque on the

FIGURE 9.4 Schematic illustration of angle �gp of a
friction cone in the grip plane.

FIGURE 9.5 Schematic diagram of a parallel-jaw gripper.

FIGURE 9.6 Grasp domain for a 2-fingered gripper.

�gp � �2tan�
2tan()� 1 �2tan	()()

1�2
atan�

P2 b1 b2 b1�() p1 a1�()� a2 a1�()
()	�

fingertip surfaces. The length l is checked against the maximum gripper opening. If the length l is longer
than the maximum gripper opening, then the grip points are not feasible and have to be changed. The
optimal grasp sites may be analyzed and rated based on the stability, grasp time, and potential mating
trajectories [25].

Path Planning

Path planning is an important phase within the task planning process. Research efforts have been mainly
focused on establishment of strategies to automatically search all feasible paths and then find the optimal
path. The planner automatically excludes those paths that result in collisions between the robot and
objects in the work cell, and between objects that are being handled with other objects [29, 30]. There
are several advanced strategies for path planning [31]; however, the general path planning can be
categorized into three broad techniques: hypothesize-and-test, penalty function, and free space.

Hypothesize-and-test algorithm hypothesizes a candidate path from start to finish and tests the imme-
diate path for possible collisions. Collision can be detected by examining the intersection between the
solid objects. If any collisions are detected, then collision avoidance planning should be executed. This
avoidance planner analyzes the obstacles involved in the collision and stores them in the interference
data file so that the system is able to avoid the same case. The planner then defines a new immediate
configuration by moving the colliding objects. It examines the new path again for possible collision and
this is executed recursively until a collision-free path is found.

Penalty function encodes the presence of objects for each manipulator configuration. If there are any
collisions, the planner yields an infinite value; however, the value will drop off sharply as the manipulator
moves away from the obstacles. Overlaying the workspace with a 3-D grid and calculating the function
at each grid point can reduce the computational time.

Free-space finds a path within the known subsets of free space. This method will miss a path if it has
not been mapped. The free space is represented by regular geometric shapes with links. The planner only
deals with free space rather than the space occupied by obstacles. It detects the free space of the object
against the width of the robot plus clearance. If the path is determined to be too narrow, then the path
will be eliminated. This procedure is repeatedly executed until an optimum path is found. It must be
mentioned that there are also application areas where a desired path is required to be found to follow
complex contoured surfaces [32]. Examples of these application areas include deburring, painting, and
welding [33–36].

Trajectory Planning

After an appropriate path has been found (i.e., path planning), the task planner has to convert this path
description into a time sequence of manipulator configurations. Trajectory planning deals with this
problem. There are two types of constraints. These include task related and robot related constraints,
shown in Fig. 9.7.

Task constraint is related to the task itself and the time taken for that task to be executed. For instance,
a typical task constraint is to maintain the orientation of the gripper unchanged relative to a datum or
world coordinate frame during the execution. On the other hand, the time constraint focuses attention

FIGURE 9.7 Constraints for trajectory planning.

on limiting the time period for the action to be performed and also it tries to maximize the equipment
use. The robot-related constraint deals with the ability of the system to smooth the chosen path. There
are two types of general path-following strategy available: linear interpolation motion and joint inter-
polated motion. These strategies will be explained, in detail, in the following subsections.

Linear Interpolation Motion

Linear interpolation motion causes the end-effector of the robot to follow the straight line segment drawn
between two adjacent points [5]. It continually calculates the inverse transformation in order to obtain
joint controller set points. Figure 9.8 illustrates the straight line motion of a revolute robot. The end-
effector coordinate frame rotates about an axis k, fixed on the end-effector coordinate frame by an angle
� during the travel of the gripper from the initial to the goal position [37]. The formulation of this
method is given below and it is based on the intermediate configuration:

P(j) � (Pgoal � Pinitial)
 (j�n) 	 Pinitial (9.3)

R(j) � Rinitial
 Rot(k, �
 (j�n)) (9.4)

T(j) � P(j)
 R(j) (9.5)

where n represents the number of intermediate configurations plus one, P is the matrix representing the
position of the manipulator with respect to the world coordinate frame, R is the matrix representing the
rotation of the manipulator with respect to the world coordinate frame, and, T is the matrix describing
the transformation of the end-effector coordinate frame with respect to the world coordinate frame.

There are some drawbacks to straight line motion in terms of real time control and this is due to the
continual computation of inverse kinematics. Hence, velocity and acceleration controls are needed in
order to perform a smooth end-effector movement. However, a predictable trajectory path can be
obtained and any collisions during the motion can also be detected.

Joint Interpolation Motion

Joint interpolation strategy calculates the change in the joint variables required to achieve the final
location. Figure 9.9 illustrates a joint interpolated motion of a revolute robot. This strategy controls the
joint motors so that all the joints reach their final values at the same time [38]. Leu and Mahajan [39]
suggested that the joint variables are linear with respect to the path length and the motion should follow
the formulation given below:

q(j) � [qgoal � qinitial]
 (j�n) (9.6)

where j represents the identification number for (i.e., j-th) intermediate configuration increment; q
defines the vector representing joint variables; and n is the number of intermediate configurations plus
one. It must be emphasized that in the joint interpolation, the end-effector does not produce a predictable

FIGURE 9.8 Example of a robot path undergoing linear
interpolation.

trajectory path. This is due to the fact that the joint angles are interpolated between via points; therefore,
unexpected collisions between obstacles may occur during the movement.

Calibration

Off-line programming may produce inaccurate robot programs in terms of positioning and orientation
[40]. This is due to the differences between the computer models of the manipulator and objects in the
working space to that of the actual ones. Offsets of the zero positions of the robot, differences in the link
lengths, and misalignment of the joints are some sources of errors [2, 41]. An idealized off-line program-
ming system should take into account mechanical deficiencies such as:

• Inaccuracies in the arm element dimensions

• Internal play of joints

• Internal non-linearities of gearing

• Deflection of arm elements and servo-positioning errors

The gap between model and reality can be narrowed by calibrating the robot and obtaining the actual
working paths [2]. This can be done by reteaching the robot manually for various working points (e.g.,
corner of a feeder). A relationship has to be established between the working coordinate system and the
measuring coordinate system. A mathematical model for this relationship can be derived based on the
nominal coordinate system (XR, i), actual coordinate system (XM, i), scale (�), and rotational matrix (D)
about x, y, and z axes.

XR, i � T 	 v DXM, I (9.7)

D � D (x,)
 D (y, �)
 D (z, �) (9.8)

where i represents the identification number of position (e.g., i-th position), XR, i represents resultant position
vector, XM, i defines the actual measured position vector, and T defines the desired position vector. In general,
robot calibration can be classified into two types, static and dynamic [2, 41]. Static calibration identifies
those parameters which primarily influence the static positioning of a manipulator. The dynamic calibration
identifies those parameters that influence motion characteristics. Various procedures have also been devel-
oped to identify calibration parameters. Further, there are several accuracy measurement techniques includ-
ing cable measuring system [41], machine vision [42], theodlite system, and laser tracking [43]. Accurate
calibration will lead to significant accuracy improvement (generally by a factor of 10).

Post Processing

Once a robot program has been fully developed, it is necessary to translate it into the control language
of the target robot [44]. Post processing is divided into three stages: reformatting, translation, and
downloading [45]. Reformatting verifies the input file for syntactical errors and adds appropriate motion
and function information, determines coordinate frame for command, and establishes sequences for

FIGURE 9.9 Example of a robot path undergoing linear
interpolation.

sub-tasks. Translation phase translates the list of information as per rules. This stage deals with the robot’s
natural language and it will be different for robots that have different format/grammar and thus manip-
ulator-level languages [46]. The program that is generated by the translator must be loaded onto the
robot’s controller memory. As with any numerically controlled (NC) machines, there are two methods
to download the program: downloading the program using a serial interface and downloading the
program using a portable medium (e.g., floppy disk) that is compatible with the robot controller.

9.4 CAD-Based Task Planning Implementation

The underlying strategies and individual components for task planning and programming were described
in the previous section. This section will focus on procedures and implementation to perform task
planning and programming. Although, the procedure has been developed based on a CAD modeling
facility, it is similar to a majority of other research-based as well as commercial planning and programming
systems [5]. Furthermore, the focus of our attention will be confined to layered and flexible assembly/
disassembly operation, as this is one of the most difficult robotic applications.

System Structure

The detailed structure of the system consists of six modules, shown in Fig. 9.10. These include:

• design modeling of assembly parts and work cell

• task specification

• sorting and task decomposition

• verification and simulation

• program transfer to the work cell controller

• work cell controller communication link

Here, we direct our attention to the structure and procedure for a planning and programming system
built on a CAD modeling platform (initially on Medusa, currently on AutoCAD). Therefore, assembly
parts and fixtures are the components that must be physically manipulated and are required for planning.
The assembly parts and other components in the work cell are modeled using the solid modeler in CAD
environment. The tasks to be performed are specified during the task planning session. This procedure
tags information about the tasks onto the workpiece model. An automated grasp planning may be added
at this level. However, for the purpose of the overall system development, the grasp locations are specified
manually via frame assignment. Grasp planning is still an important area of research and no commercial
systems provide such capabilities.

The planner retrieves the information tagged onto the models and performs sorting and matching of
assembly parts for various stages of assembly. This function of the planner, known as access/retrieval,
has been the focus of automated object-oriented task decomposition for layered assembly. Thus, the
appropriate software modules decompose the higher level task commands and automatically create a
“robot-independent” program. It must be emphasized that automated path planning would generally be
integrated into the planner at this level of operation.

A trajectory planner solves the inverse kinematic equations that perform linear and joint interpolation.
The time and robot related constraints can also be included at this level. This module evaluates the joint
angles for linear and joint interpolation and generates a ‘robot-dependent’ program. The ‘robot-
dependent’ program contains commands and point-to-point motion data files for a specific manipulator.
The off-line verification or simulation of the program is the primary aim of any planning and program-
ming system. Therefore, at this level, the user can view the robot movement and assembly operation for
final verification and validation of the robot program.

The final process is to download the command and point-to-point motion data files to the work cell
controller. The work cell control software retrieves the command and “point-to-point” motion data files,
generates commands in a format that is understood by the robot, and sends these commands to the

FIGURE 9.10 Structure of the task planning and programming.

robot which in turn performs the assembly operation. The capability to perform workstation calibration
is also built to readjust positions in the robot programs.

Design Modeling of Assembly Parts and Work Cell

Modeling of various components of a robot manufacturing cell is divided into four categories: static
components, dynamic components, robot manipulator, and assembly parts. The static components of
the manufacturing cell are elements which are stationary and may include assembly tables, partfeed
machines, fixtures, and part storage. The dynamic components of the cell are elements which may change
their locations during the manufacturing operation. The dynamic components are designated with a
dynamic reference datum and examples of these components are interchangeable grippers, turntables,
and pallets a on conveyor system. The static and dynamic components are modeled as convex polyhedrals
and stored in the appropriate format in the database [46]. The models are retrieved and displayed by the
verification module during simulation of robotic assembly operations.

The manipulator is modeled as a series of links in the synchronized (i.e., home) position and with
a coordinate frame attached to each link [47]. This information is not required for assembly task
specification or robot-independent program generation. As with static and dynamic components within
the cell, it is only used for the final verification of the assembly task and simulation purposes during the
robot-dependent program generation. Assembly parts are modeled with respect to the reference coordi-
nate frame fixed to each station. Thus, the models of the assembly parts are stored within the CAD
database just as they would appear at various assembly stages. This procedure will also produce the
correct “pose” of the assembly parts referenced by a local coordinate frame fixed to each station through-
out the robotic assembly process. The procedure follows a practical structure for assembly/disassembly
operations (Fig. 9.11). Figure 9.12 shows the structure for access/retrieval of 3-D models representing
various assembly stages.

Therefore, the assembly process is represented in 3-D model drawings and the task planning is
performed on the these models. Figure 9.13 shows an example of the assembly part coordinate frames

FIGURE 9.11 Representation of assembly/disassembly stages.

attached to each station. It must be noted that the design modeling of the individual assembly parts and
the assembled product is a common practice in industry today. Hence, minimal effort is required in
adding appropriate frames and description to these models for planning and programming purposes.

Task Specification

The specification of the task can be carried out using objective commands such as “Pick,” “Place,” “Insert,”
etc. In general, frames are assigned (i.e., tagged) to the model to signify the grasp locations. It must be
emphasized that task planning has been partially built into the design modeling procedure and it will also
be completed by the task decomposition software modules [48]. Other information such as robot speed
and robot motion mode (e.g., R: rectangular, J: joint) may also be attached to the model (Fig. 9.14). The
layer on which these commands are placed may be turned off, if required.

A macro program has also been developed to allow the specification of complex approach and
departure vectors. The program forms construction lines and computes the approach vector, (aH),
orientation vector (oH), and normal vector (nH). Hence, the hand orientation is fully defined with respect
to a specified frame.

(9.9)

The approach (a), orientation (o), and normal (n) vectors in their normal form do not have much
meaning to the manufacturing engineer and carrying all the elements of the matrix is not very efficient.

FIGURE 9.12 Structure for access/retrieval and processing of assembly task specifications.

T
nF OF aF |

pF
------------------|-----

O O O
|

1
|

|

|
|

|
|

�

FIGURE 9.13 Design modeling of assembly parts.

FIGURE 9.14 Example of the task specification on CAD model.

Therefore, once all the components of the vectors in the matrix TH (i.e., hand coordinate frame) are
determined and normalized, the orientation angles, Roll, � (i.e., rotation about the Z axis), Pitch, � (i.e.,
rotation about the Y axis), and Yaw, � (i.e., rotation about the X axis) are determined using the following
relationships:

(9.10)

(9.11)

(9.12)

where nH, aH, and oH represent the normal, approach, and orientation vectors in hand coordinate frame,
respectively. The above orientation angles (specified in degrees) are reported to the designer and included
in the command. Wire frames may be used to create intricate paths when these are required. It must be
emphasized that the above procedure is not required for layered assembly (i.e., assembly directions from
the above are generated automatically using an offset vector).

Task Decomposition

In commercially available systems such as CATIA, IGRIP, and ROBCAD, the task and individual manip-
ulator motion must be specified sequentially by the user. However, in the approach adopted system a
software program was developed to access the CAD data base (i.e., 3-D model data) and automatically
retrieve the geometrical data. This software program also retrieves task instructions tagged to the model
(i.e., stored in the CAD data base during the task specification phase). The attributes tagged to each
planned task are also retrieved. The objects’ names are used to match assembly parts in various stages
such as “partfeed” and “assembly” within the assembly process. Thus, the software module performs
sorting and sequencing of the assembly operations and robot movements and, finally, generating a ‘robot-
independent’ program. Figure 9.12 shows the sequence of retrieval of model data together with the
subsequent task and object matching operations. The robot program will then be generated in a format
appropriate for subsequent simulation. The geometrical data will also be stored in a structured boundary
representation (B-rep) format as discussed previously (Fig. 9.2).

Figure 9.15 shows the structure of the software for the “main block” (e.g., assembly block) of Fig. 9.12,
and thus a detailed description of the above software operations. Other blocks utilize a similar structure.
As relevant robotic manufacturing information is gathered, these are stored in the data base. The software
program initially accesses the model file (which contains the model of the assembly layout), extracts the
designer’s instructions, and begins to work backward to subassembly and partfeed models (i.e., feeders,
pallets, etc.). The name of each object from the assembly layout is then matched against those from the
subassembly and partfeed layouts and sequencing of assembly operation is performed, thereby completing
the process of programming of the assembly operation. The program then sequences the output operation
by retrieving the necessary information from the model files containing the initial location of the
assembled product in the assembly station and the final location of the assembled parts in the output
station.

Transformation of Robot Locations and Workstation Calibration

The output from the previous software module is a series of tasks, generally referred to as a “robot-
independent” program. This contains robot poses fixed to the individual station coordinate frame. The
next phase involves transformation of these movements into grasp locations attached to the universe
(i.e., world) coordinate frame. This is generally defined as the coordinate frame at the base of the robot
(i.e., robot coordinate frame). This software module utilizes transformation vectors to describe the

�tan nHY
�nHX

�

�tan n� HZ
/ � ncos HX

� nHY
sin	()�

�tan � asin HX
�cos aHY

�()� �sin oHX
� oHY

cos	()�

relationships between station coordinate frames and the universe coordinate frame. These transforma-
tions may be modified by simply specifying the translation transform (i.e., vector components x, y, and
z) and orientation transform (i.e., roll, pitch, and yaw orientation about x, y, and z). Figure 9.16 shows
the schematic arrangement of the coordinate frames.

FIGURE 9.15 Detailed flow diagram of the ‘Main Block’ in the software program.

The following relationship may be used to determine the pose of the manipulator with respect to the
universe coordinate frame:

(9.13)

where is the transformation describing the location of the universe coordinate frame with respect
to a particular station coordinate frame, is the transformation matrix describing the location of the
hand with respect to the universe coordinate frame, is the transform describing the location of the

FIGURE 9.16 Schematic representation of assigning coordinate frames.

T
S

U T
U

H
 T
S

i T
i

i 1� . . . T
1

H

�

T
S

U

TU
H

T
S

i

i-th local coordinate frame with respect to the station coordinate frame, and is the transform
describing the (i-1)th local coordinate frame with respect to the i-th local coordinate frame. Finally,
is the transform describing the hand coordinate frame on the assembly part with respect to the 1-th local
coordinate frame. Pre-multiplying both sides of the equation by will result in the position and
orientation of the hand with respect to the universe coordinate frame:

(9.14)

If there is no local frame and the location of the hand is with respect to the station coordinate frame,
then the equation can be simplified to:

(9.15)

where all the transformation matrices are of the form:

(9.16)

In practice, the transform is obtained by jogging the robot (i.e., moving the manipulator arm
under manual control) to the coordinate frame of a particular station and performing the status request.
The position vector acquired in this manner may be directly used in the above software module. Fur-
thermore, the technique may also be used to calibrate the robot workstation and thus, reduce the robot
positioning errors associated with advanced off-line programming techniques. However, it must be
emphasized that this approach is concerned with digitizing the workstation and it is not a replacement
for robot calibration.

The calibration procedure utilizes a precision-made rod referred to as the “calibration rod.” This is
attached to the center line of the end-effector. This procedure requires the operator to jog the robot to
various control locations (C1 � C4), align the tip of the calibration rod with the control locations on a
particular station, and record their positions [50]. Fig. 9.17 shows a schematic illustration of the procedure
and a schematic diagram of the geometrical information. The calibration software determines the refer-
ence datum for the workstation (i.e., C1). It also generates transformation vectors with respect to the
robot base coordinate frame U, and determines the calibration factors for the workstation (as shown in
Fig. 9.17). It must be noted that the tool center point (TCP) offset for the robot end-effector must be
set accordingly.

The industrial robot manipulators possess good repeatability but not absolute accuracy. The approach
described employs the manipulator arm to obtain the reference coordinate frame fixed to each station
and the programmed movements are calibrated in relation to this frame. This provides a better absolute
accuracy over the range of assembly workstation. The technique reduces the inaccuracies in positioning
due to long range movement in relation to the robot coordinate frame. The approach has been developed
so that it can also use a vision system to perform the calibration [51].

Robot Kinematics and Assembly Process Simulation Module

The simulation module is the final step in order to generate the command and point-to-point motion
data files. This is generally referred to as the “robot native program.” This module retrieves the hand poses
generated by the previous software operations; determines the pose of the wrist with respect to the robot
coordinate frame, and solves the robot kinematic equations to determine the robot joint angles for the

T
i

i 1�

T
1

H

T
S 1�

U

T
U

H T
S 1�

U T
S

i T
i

i 1� . . . T
1

H

�

T
U

H T
S 1�

U T
S

H
�

T

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

�

T
S 1�

U

purpose of simulation. It also determines the location of the robot wrist in quaternion, as required by the
robot controller (e.g., ABB IRB 2400), for the purpose of generating the command and motion data file(s).

The simulation can generate motion trajectories according to straight line motion increment or joint
interpolated motion increment. As joint angles for a given pose of the wrist are determined, they are
checked against the limits of the robot joint angles. If, for a given pose, any of the calculated robot joint
angles exceeds the limit, then the module reports this to the user and logs the event. The module retrieves
the geometrical data describing robot linkages, stations, feeders, pallets, and assembly parts at various
stages of the assembly process and any other equipment and objects that are required to be in the scene.
The module determines the location of all the objects in relation to the universe frame using the
appropriate transformations. Simulation process is based on the method of coordinate transformation
for describing both the manipulator and objects (Fig. 9.18).

The main intention of such graphics systems is to provide the visualization of the entire work cell as
well as the animation of the movements of robots and peripherals. In addition, such systems can be

FIGURE 9.17 Calibration procedure and geometrical aspects of the workstation.

viewed as building blocks toward the integrated CIM solutions that support the manufacturing cycle,
from CAD to CAM and distribution [52–54].

9.5 Future Research

The task planning and programming system described is currently being ported to a PC-based CAD
package (AutoCAD). The technique is also being examined for implementation on a large modeling
and simulation platform such as Deneb’s Envision system. In addition, the strategies and formulation
are being further developed to include automatic sequence and assembly directions using screw
theory. In this approach, disassembly sequence and direction may be generated first and then reversed
to determine possible assembly sequence and directions. The planner is being developed further to
include a more extensive library of manufacturing operations and to include rules and mathematical
formulations for engagement and disengagement of assembly parts.

9.6 Conclusions

Computer-aided design (CAD) has become an integral part of design in manufacturing and many other
fields of engineering. It has also become obvious that the cost of programming robots is an important
issue in robot-based flexible manufacturing and CIM environment.

This chapter has briefly presented strategies for task planning and programming. This chapter has also
described individual modules (i.e., building blocks) for such systems. The structure and development
strategies for a CAD-based and off-line task planner has also been described. The development employed
a commercial CAD package for the process of design modeling of the assembly parts and task specification.

FIGURE 9.18 Photograph showing the simulation of the assembly.

The approach adopted in development of a dedicated software program to retrieve parts’ geometry and
instructions which are embedded into the design models was presented.

The strategies to retrieve the appropriate task information from the assembly layout and work backward
to automatically generate lower level task commands was also presented. The system is being modified
and further developed for operation on PC-based platform and Unix-based Envision (Deneb) modeling
and simulation platform.

Acknowledgments

This research is partly supported by an Engineering Research Council (ERC) Small Grant from Monash
University, a Monash Research Fund (MRF) grant, and a Harold Armstrong Research Fund. The author
wishes to thank his research assistants at Robotics & Mechatronics Research Laboratory, Department of
Mechanical Engineering, Monash University.

References

1. H. K. Rampersad, State of the art in robotic assembly. Int. J. Industrial Robot, Vol. 22, No. 2,
pp. 10–13, 1995.

2. K. Schroer, Robot calibration—closing the gap between model and reality. Int. J. Industrial Robot,
Vol. 21, No. 6, pp. 3–5, 1994.

3. J. C. Latombe, Une analyse structuree d’outils de programmation pour la robotique industrielle.
Proc. Int Seminar on Programming Methods and Languages for Industrial Robots. INRIA, Roc-
quencourt, France, June 1979.

4. S. Bonner, K. G. Shin, A comparative study of robot languages. Computer Dec, pp. 82–96, 1982.
5. D. M. Lee, W. H. ElMaraghy, ROBOSIM: a CAD-based off-line programming and analysis system for

robotic manipulators. Computer-Aided Engineering Journal, Vol. 7, No. 5, pp. 141–148, October 1990.
6. A. R. Thangaraj, M. Doelfs, Reduce downtime with off-line programming, Robotics Today, Vol. 4,

No. 2, pp. 1–3, 1991.
7. Y. Regev, The evolution of off-line programming. Industrial Robot, Vol. 22, No. 3, pp. 3, 1995.
8. W. A. Gruver, B. I. Soroka, J. J. Craig, T. L. Turner, Evaluation of commercially available robot

programming languages. Proc. 13th Int. Symposium on Industrial Robots, Chicago, 1983.
9. J. J. Craig, Issues in the design of off-line programming systems. Fourth Int. Symposium on

Robotics Research, University of California, Santa Cruz, pp. 379–389, 1987.
10. M. Kortus, T. Ward, M. H. Wu, An alternative approach to off-line programming. Industrial Robot,

Vol. 20, No. 4, pp. 17–20, 1995.
11. P. Sorenti, GRASP for simulation and off-line programming of robots in industrial applications.

Proc. of Conference on Welding Engineering Software, Essen, DVS N0 156, pp. 55–58, Sept 1993.
12. R. J. Popplestone, A. P. Ambler, T. M. Bellos, An interpreter for a language for describing assemblies.

Artificial Intelligence, Vol. 14, pp. 79–107, Aug. 1980.
13. L. I. Liberman, M. A. Wesley, AUTOPASS: an automatic programming system for computer

controlled mechanical assembly. IBM Journal of Research and Development, pp. 321–333, July
1977.

14. R. Mattikalli, D. Baraff, P. Khosla, Finding all stable orientations of assemblies with friction. IEEE
Trans. Robotics and Automation, Vol. 12, No. 2, pp. 290–301, 1996.

15. J. J. Craig, Introduction to Robotics, 2nd, Addison-Wesley Publishing, 1989.
16. B. Shirinzadeh, A simplified approach to robot programming from CAD system. Fourth Int.

Conference on Manufacturing Engineering, pp. 141–145, Brisbane, Australia, 1988.
17. T. N. Wong, S. C. Hsu, An off-line programming system with graphics simulation. Int. J. Advanced

Manufacturing Technology, Vol. 6, pp. 205–223, 1991.
18. J. Shah, P. Sreevalsan, A. Mathew, Survey of CAD/feature-based process planning and NC pro-

gramming techniques. Computer-Aided Engineering Journal, Vol. 8, No. 1, pp. 25–33, 1991.

19. B. Shirinzadeh, A CAD-based design and analysis system for reconfigurable fixtures in robotic
assembly. Computing & Control Engineering Journal, Vol. 5, No. 1, pp. 41–46, 1994.

20. B. Shirinzadeh, Strategies for planning and implementation of flexible fixturing systems in a
computer integrated manufacturing environment. J. Computers in Industry, Vol. 30, pp. 175–183,
1996.

21. J. Rocha, C. Ramos, Task planning for flexible and agile manufacturing systems, McGraw-Hill
Inc, 1987.

22. L. Laperriere, H. A. ElMaraghy, Automatic generation of robotic assembly sequences. Int. J.
Advanced Manufacturing Technology, Vol. 6, pp. 299–316, 1991.

23. V. N. Rajan, S. Y. Nof, Minimal precedence constraints for integrated assembly and execution
planning. IEEE Trans. Robotics and Automation, Vol. 12, No. 2, pp. 175–186, 1996.

24. H. Chu, H. A. ElMaraghy, Integration of task planning and motion control in a multi-robot
assembly workcell. Robotics & Computer-Integrated Manufacturing, Vol. 10, No. 3, pp. 235–255,
1993.

25. H. L. Welch, R. B. Kelley, The analysis of potential mating trajectories and grasp sites. Int. J. of
Advanced Manufacturing Technology, Vol. 8, pp. 320–328, 1993.

26. Z. Shiller, S. Dubowsky, Robot path planning with obstacles, actuator, gripper, and payload
constraints. Int. J. Robotics Research, Vol. 8, No. 6, pp. 3–18, 1989.

27. S. Ahmad, J. T. Feddema, Static grip selection for robot-based automated assembly systems. J.
Robotic Systems, Vol. 4, No. 6, pp. 687–717, 1987.

28. Y. L. Xiong, D. J. Sanger, D. R. Kerr, Geometric modeling of bounded and frictional grasps,
Robotica, Vol. 11, pp. 185–192, 1993.

29. S. Cameron, Obstacle avoidance and path planning. Industrial Robot, Vol. 21, No. 5, pp. 9–14, 1994.
30. T. D. Luk, Planning collision-free paths in Cartesian space. Robotics Today, Vol. 5, No. 3, pp. 1–3,

1992.
31. T. Lozano-Perez, Automatic planning of manipulator transfer movements. IEEE Trans. Systems,

Man, Cybernetics SMC-11, 10, pp. 681–689, 1981.
32. Y. Itoh, M. Idesawa, T. Soma, A study on robot path planning from a solid model. J. Robotics

Systems, Vol. 3, No. 2, pp. 191–203, 1986.
33. S. Stifter, Collision detection in the robot simulation system SMART. Int. J. Advanced Manufac-

turing Technology, Vol. 7, pp. 277–284, 1992.
34. M. J. Tsai, S. Lin, M. C. Chen, Mathematical model for robotic arc-welding off-line programming

system. Int. J. Computer Integrated Manufacturing, Vol. 5, No. 4 & 5, pp. 300–309, 1992.
35. R. O. Buchal, D. B. Cherchas, F. Sassani, J. P. Duncan, Simulated off-line programming of welding

robots. Int. J. Robotics Research, Vol. 8, No. 3, pp. 31–43, 1989.
36. S. H. Suh, J. J. Lee, Y. J. Choi, S. K. Lee, Prototype integrated robotic painting system: software

and hardware development. Journal of Manufacturing Systems, Vol. 12, No. 6, pp. 463–472, 1993.
37. H. Wapenhans, J. Holzl, J. Steinle, F. Pfeiffer, Optimal trajectory planning with application to

industrial robot. Int. J. Advanced Manufacturing Technology, Vol. 9, pp. 49–55, 1994.
38. K. S. Moon, K. Kim, F. Azadivar, Optimum continuous path operating conditions for maximum

productivity of robotic manufacturing systems. J. Robotics & Computer-Integrated Manufacturing,
Vol. 8, No. 4, pp. 193–199, 1991.

39. M. C. Leu, R. Mahajan, Computer graphic simulation of robot kinematics and dynamics. Proc.
8th International Conference on Robots, pp. 1–20, June, 1984.

40. G. Wiitenberg, Developments in off-line programming: an overview. Industrial Robot, Vol. 22,
No. 3, pp. 21–23, 1995.

41. J. F. Quinet, Calibration for offline programming purpose and its expectations. J. Industrial Robot,
Vol. 22, No. 2, pp. 10–13, 1995.

42. B. Shirinzadeh, Y. Shen, Three dimensional calibration of robotic manufacturing cell using
machine vision techniques. Proc. of Pacific Conference on Manufacturing, pp. 360–365, Seoul,
Korea, 1996.

43. M. Vincze, J. P. Prenninger, H. Gander, A laser tracking system to measure position and orientation
or robot end-effectors under motion. Int. J. Robotics Research. Vol. 13, No. 4, pp. 305–314, 1994.

44. K. V. Kamisetty, Development of a CAD/CAM robotic translator for programming the IBM 7535
SCARA robot off-line. J. Computers in Industry, Vol. 20, pp. 219–228, 1992.

45. K. V. Steiner, M. Keefe, Interactive graphics simulation with multi-level collision algorithm. Journal
of Manufacturing Systems, Vol. 11, No. 6, pp. 462–469, 1992.

46. B. Shirinzadeh, H. Tie, Object-oriented task planning and programming system for layered
assembly and disassembly operations. Proc. of the ARA/IFR International Conference, Robots for
Competitive Industries, pp. 354–360, Brisbane, 1993.

47. P. Fanghella, C. Galletti, E. Giannotti, Computer-aided modeling and simulation of mechanisms
and manipulators. J. Computer-Aided Design, Vol. 21, No. 9, pp. 577–583, 1989.

48. B. Shirinzadeh, H. Tie, G. Lin, Computer integrated task planning and programming of robotic
assembly operations. Proc. Second International Conference, CIM, Vol. 2, pp. 599–605, Singapore,
1993.

49. P. K. Venuvinod, Automated analysis of 3-D polyhedral assemblies: assembly directions and
sequences. Journal of Manufacturing systems, Vol. 12, No. 3, pp. 246–252, 1993.

50. B. Shirinzadeh, H. Tie, Experimental investigation on the performance of a reconfigurable fixturing
system. International Journal of Advanced Manufacturing Technology, Vol. 10, pp. 330–341, 1995.

51. B. Shirinzadeh, C. Paragreen, W. Lee, Calibration of robotic cell for CAD-based planning using
machine vision techniques. Proc. of Twelfth International Conference on Robotics and Factories
of the Future, pp. 132–137, London, 1996.

52. T. S. Kang, B. O. Nnaji, Feature representation and classification for automatic process planning
systems. Journal of Manufacturing Systems, Vol. 12, No. 2, pp. 133–145, 1993.

53. S. Chakrabarty, J. Wolter, A structure-oriented approach to assembly sequence planning. IEEE
Trans. Robotics and Automation, Vol. 13, No. 1, pp. 14–29, 1997.

54. C. P. Tung, A. Kak, Integrating sensing, task planning, and execution for robotic assembly. IEEE
Trans. Robotics and Automation, Vol. 12, No. 2, pp. 187–201, 1996.

55. G. Kim, S. Lee, G. Bekey, Interleaving assembly planning and design. IEEE Trans. Robotics and
Automation, Vol. 12, No. 2, pp. 246–251, 1996.

10
Physical Model

Technique for Design of
Robotic Manipulators in
Manufacturing Systems

10.1. Introduction
10.2. Technique of Physical Models of Solution Space

for Robotic Manipulators
Model of Solution Space for 3-DOF Delta Parallel Robots •
Model of Solution Space for F/T Sensors Based on Stewart
Platform

10.3. Performance Evaluation Criteria for Design of
Robotic Mechanisms
Three Kinds of Workspaces • Three Kinds of Singularities •
Global Conditioning Index • Global Velocity Index • Global
Payload Index • Global Deformation Index • Global Error Index

10.4. Performance Atlases for Design of Serial Robots
with Three Moving Links
Robotic Principle Motion • Atlases of Workspace Criteria • Atlas
of Global Conditioning Index • Global Workspace Atlas •
Atlases of Global Velocity Index • Atlases of Global Payload
Index • Atlases of Global Deformation Index • Distribution of
Commercial Robots on the Solution Space Model

10.5. Atlases for Design of F/T Sensor Based on
Stewart Platform

10.6. Conclusions

10.1 Introduction

The mechanical design of industrial robots requires the application of engineering expertise in a variety
of areas. Important disciplines include machine design, structure design, and mechanical, control, and
electrical engineering. Traditionally, mechanism design has been based largely on use of specifications
including number of axes, workspace volume, payload capacity, and end-effector speed. Robots have not
been designed to perform specific tasks but to meet general performance criteria.

In the design of industrial robots, the design of the robotic mechanisms is one of the most important
activities because these mechanisms determine the performance characteristics of the robotic machines.

Although some methods and criteria have been developed for robotic mechanism design and many
types of robotic mechanisms have been proposed, there has not been a unified method for the design.

Feng Gao
Hebei University of Technology

One reason for this is that there has not been a method to visualize the performance characteristics of
robots and many criteria just show the local performance characteristics of robots.

In this chapter, a novel method of the physical model technique for the design of robotic mechanisms
is introduced. We establish several kinds of physical models of solution space for serial and parallel robots
[1-9]; propose many important global performance criteria for evaluation of robotic mechanisms; and
utilize the physical model technique and performance criteria to construct the performance atlases of
robotic mechanisms which are used to analyze the relationships between the performance criteria and
link lengths of robotic mechanisms. The performance atlases are a very efficient and useful tool for
design of robotic mechanisms.

10.2 Technique of Physical Models of Solution Space
for Robotic Manipulators

As you know, link lengths of robotic mechanisms may vary between zero and infinity. This means that
links can be very long or short and can be measured by different units or unit systems (such as meter,
millimeter, foot, and inch). It is very difficult to investigate the relationship between the performance
criteria and link lengths of all the robots. Therefore, it is convenient to eliminate the physical sizes of the
robotic mechanisms to investigate the robotic design method.

Model of Solution Space for Robots with Three Moving Links

Human arms, legs, and fingers, and limbs of animals and insects can be viewed as mechanisms with
three moving links. Fingers of dextrous hands [10–22], arms of industrial robots [23–27, 32–35], and
legs of walking machines [28–30] often consist of three moving links. Therefore, an understanding
of the relationships between the criteria and the dimensions of three-moving-link mechanisms is of
great importance for design of fingers, arms, and legs of robotic machines. The robotic mechanisms
with three moving links can be used for 3-, 4-,…, 7-DOF serial robots, as shown in Fig. 10.1. For
example, if joints A, B, and C are revolute pairs, it can be viewed as a 3-DOF robotic mechanism.
When joints A and C are spherical pairs and joint B is a revolute pair, they comprise a 7-DOF redundant
spatial robotic mechanism. Therefore, to investigate the robotic mechanisms with three moving links
has generality.

Because the link lengths may have a wide range of possible values, it is convenient to avoid explicit
use of the physical sizes of the mechanisms during analysis and design. We shall define normalized
parameters of the mechanisms and construct a physical model of the solution space as follows.

FIGURE 10.1 A serial robotic mechanism with three
moving links. (a) 3-D model, (b) 2-D model with 3 coor-
dinates.

To facilitate the analysis, we normalize the parameters of a serial mechanism as shown in Fig. 10.1 If the
link lengths of the mechanism are (i � 1, 2, and 3), we define

(10.1)

(10.2)

where, is the nondimensional parameter of the robotic mechanisms with three moving links. From
Eqs. (10.1) and (10.2), we obtain:

(10.3)

(10.4)

Let and be orthogonal coordinate axes. Using Eqs. (10.3) and (10.4), we generate a physical model
of the solution space, as shown in Fig. 10.2, consisting of an equilateral triangle ABC for which any possible
combination of the link lengths is represented by and . The resulting model graphically provides
a means to represent all possible mechanisms with three moving links. In this model, points A, B, and
C have coordinates (3, 0, 0), (0, 3, 0), and (0, 0, 3), respectively; then edges BC, AB, and AC satisfy conditions

, and , respectively. Within triangle ABC, we inscribe another equilateral triangle
EFG, where edges EG, FG, and EF satisfy and, , respectively
(as shown in Fig. 10.2(b). Triangle EFG divides triangle ABC into regions I, II, III, and IV. Table 10.1
describes the geometric characteristics of the four classes of mechanisms.

By using the solution space model, we can investigate relationships between performance criteria and
link lengths of the robotic mechanisms.

TABLE 10.1 Dimensional Properties of Mechanisms with Three Moving Links

Region Dimensional Characteristics Distribution

I � AEG
II � FGC
III � BEF
IV � EFG

FIGURE 10.2 Model of solution space for mechanisms with three moving links.

Ri

ri Ri L; i� 1, 2, and 3� �

L R1 R2 R3� �() 3��

ri

r1 r2 r3� � 3�

0 ri 3, i� � 1, 2, and 3.�

r1, r2, r3

r1, r2, r3

r1 0, r2 0� � r3 0�
r1 r2 r3 r2,� r1 r3�� � , r3 r1 r2��

r1 r2 r3��

r2 r1 r3��

r3 r1 r2��

r1 r2 r3 r2 r1 r3 r3 r1 r2��������

Model of Solution Space for 2-DOF Parallel Planar Manipulators

Since parallel robots have advantages, compared with serial robots (i.e., their stiffness, speed, payload,
and precision are higher), much research has been devoted to them.

2-DOF parallel-planar manipulators (PPMs) are an important class of robotic manipulators that can
follow an arbitrary planar curve. Because of their usefulness in applications, these mechanisms have
attracted the attention of researchers who have investigated their workspace, mobility, and methods for
analysis and design [36–42].

Although much research has been devoted to 2-DOF PPMs, there has not been a study of the relationships
between the criteria and link lengths of 2-DOF PPMs. The reason for this is that there has not been an
effective method to solve the problem.

Figure 10.3 shows a typical 2-DOF PPM. Since any of the actual link lengths of the manipulator lies in
the range zero to infinity, we have to eliminate the physical size of the manipulator from the discussion. Let:

(10.5)

where is the actual length of link i and is the nondimensional relative length of link i. And

(10.6)

where L is the average length of all links for the manipulator. Gosselin [31] has shown that the parallel
manipulator should be symmetric, so that we have the following results:

(10.7)

These conditions show us that the two input links should have the same length and the two coupling
bars also have the same length. Therefore, the sum of the five link lengths is

(10.8)

If the manipulator can be assembled, the range of the relative link lengths should be 0 to 2, so

(10.9)

FIGURE 10.3 A typical 2-DOF PPM. (a) 3-D model,
(b) 2-D model with 3 coordinates.

ri Ri L� i 1, 2, 3,…,5�()�

Ri ri

L
1
4
-- Ri

i 1�

5

��

R5 R1 and R4 R2; r5 r1 and r4 r2� � � �

2r1 2r2� r3 4� �

0 ri 2 i = 1, 2, 4, 5() and 0 r3 2��� �

Using these equations and inequalities, the model of the solution space for 2-DOF PPMs can be
constructed as shown in Fig. 10.4(a), which is an isosceles trapezoid ABCD. Within the model, all 2-
DOF PPMs can exist and the relationships between the different criteria and dimensions of the manip-
ulators can be investigated.

For convenience, the model of the solution space, which is an isosceles trapezoid ABCD in the
coordinate system as shown in Fig. 10.4(a) can be changed into the isosceles trapezoid ABCD in the xy
coordinate system as shown in Fig. 10.4(b), by using the following equations:

(10.10)

where

When the input links and are located at the extreme positions and the angular velocities and
 are not equal to zero, the angular velocities and must be equal to zero, that is

(10.11)

From Eqs. 10.7, 10.8, and 10.11,

we can derive three conditions:

(10.12)

(10.13)

(10.14)

FIGURE 10.4 Model of the solution space for 2-DOF PPMs.

r1r2r3

x

y
 1�cos	

0
 1�cos	 1� 4 cos	()

0 1

r1

r3

�

	 sin 1
 1�4�

r1 r5 �2
˙

�4
˙ �1

˙ �5
˙

�1
˙ 0 and �5

˙ 0� �

�1
˙

�5
˙

 1

r1r5sin �1 �5
()
--- r2r5sin �5 �2
() r4r5sin �4 �5
()

r1r2sin �1 �2
() r1r4sin �4 �1
()

�2
˙

�4
˙

�

Line 1: 2r2 r3�

Line 2: 2r2 2r1 r3 or r2� 1� �

Line 3: 2r1 2r2 r3 or r1� 1� �

Using Eqs. (10.12), (10.13), and (10.14), three lines can be drawn on the model of solution space,
which divide the model into five regions I, II1, II2, III1, and III2, as shown in Fig. 10.4(b). By analyzing
the characteristics of the mechanisms in the five regions, respectively, the mechanisms can be classified
as four types, as shown in Table 10.2.

In Table 10.2, we define

UDCM � Unrestrained double crank 2-DOF PPMs;
RDCM � Restrained double crank 2-DOF PPMs;
DRM � Double rocker 2-DOF PPMs;
CPM � Change point 2-DOF PPMs.

Model of Solution Space for 3-DOF Parallel Planar Manipulators

Since 3-DOF parallel planar manipulators (PPMs) can follow both an arbitrary planar curve and an
orientation, they are an important class of robotic manipulators. Figure 10.5 shows a typical 3-DOF
PPM. Since any of the actual link lengths of the manipulator lies in the range zero to infinity, we have
to eliminate the physical size of the manipulator from the discussion.

Nondimensional Parameters of 3-DOF PPMs

Let

(10.15)

TABLE 10.2 Complete Classification of 2-DOF PPMs

Type No. Region Symbol of Type Dimensional Characteristics

1 I UDCM
2 II1 RDCM

II2 RDCM
3 III1 DRM

III2 DRM
4 Line 1 CPM

Line 2 CPM
Line 3 CPM

FIGURE 10.5 A typical 3-DOF PPM.

ri Ri L i = 1, 2, 3,…,12()��

r2 1�

r2 1 r1 1 2r2 r3�����

2r2 r3 r1 1���

2r2 r3 r1 1���

2r2 r3 r1 1���

2r2 r3�

2r2 2r1 r3 or r2� 1� �

2r1 2r2 r3 or r1� 1� �

where is the actual length of link i and is the nondimensional relative length of link i. And

(10.16)

where L is the average length of all links for the manipulator. Gosselin [31] has shown that the parallel
manipulator should be symmetric, so that we have the following results:

(10.17)

Therefore, only four parameters (and) are needed to consider. From Eqs. (10.15), (10.16),
and (10.17), we see that the sum of the 12 nondimensional relative link lengths is

(10.18)

Model of Solution Space for 3-DOF PPMs

If the manipulator can be assembled, the range of the nondimensional relative link lengths should be 0 to 2, so

(10.19)

Using these equations and inequalities, the model of the solution space for 3-DOF PPMs can be con-
structed, which is an irregular octahedron ABCDEF as shown in Fig. 10.6. Within the model, all 3-DOF
PPMs can exist and the relationships between the different criteria and dimensions of the manipulators
can be investigated.

FIGURE 10.6 The physical model of the solution space for 3-DOF PPMs. (a) , (b) , (c) ,
(d) , (e) .

Ri ri

L
1

12
----- Ri

i 1�

12

��

R9 � R5 � R1

R10 � R6 � R2

R11 � R7 � R3

R12 � R8 � R4

 and

r9 � r5 � r1

r10 � r6 � r2

r11 � r7 � r3

r12 � r8 � r4

r1, r2, r3, r4

r1 r2 r3 r4� � � 4�

0 ri 2 i = 1, 2,…, 12()� �

r4 0� 0 r4 1� � r4 1�

1 r4 2� � r4 2�

Planar Closed Configurations with Coordinates

When takes several values (such as 0, 0.2, 0.4, 0.6, 0.8, 1.0,…, 1.8), a set of plane equations can be
obtained by means of Eq. 10.18. Therefore, is an auxiliary coordinate axis in the model of the solution
space. When taking and , respectively, five types of
planar closed configurations with the three coordinates are obtained (as shown in Fig. 10.7).
When , the mechanisms have no motion.

As shown in Fig. 10.8, a planar closed configuration has three coordinates . Since only
two of them are independent in a plane, we can use two orthogonal coordinates x y to express

 by using the following equations. When , and are given, we can calculate coordinates
x and y from Eq. (10.20). When x and y are given, we can calculate , and from Eq. (10.21).

FIGURE 10.7 Five types of planar closed configurations.

FIGURE 10.8 The coordinate transformation.

r1r2r3

r4

r4

r4 0, 0 r4 1, r4 1, 1 r4 2,� ��� �� r4 2�
r1r2r3

r4 2�
r1r2r3

r1r2r3 r1, r2 r3

r1, r3 r3

The Eqs. (10.20) and (10.21) are useful for constructing the performance atlases within the planar
closed configurations.

(10.20)

(10.21)

Classification of all 3-DOF PPMs

Among the four links, , and in a 3-DOF PPM, when the sum of any two link lengths is
equal to the sum of the other two link lengths, it is designated as a change point 3-DOF PPM. Physically,
it means that all four links (, and) can be collinear. According to the definition of change
point 3-DOF PPM, we yield the conditions that express three kinds of change point 3-DOF PPMs as
follows:

(10.22)

(10.23)

(10.24)

The Eqs. (10.22), (10.23), and (10.24) can define three planes, respectively. By using the three planes, the
model of the solution space as shown in Fig. 10.6 can be divided into eight parts. Within the planar closed
configurations, Eqs. (10.22), (10.23), and (10.24) express three lines (as shown in Figs. 10.7 and 10.8),
which partition the planar closed configurations into eight regions I, II, III, IV, V, VI, VII, and VIII.
Each region defines a type of 3-DOF PPMs. According to analysis of the dimensional characteristics of
the 3-DOF PPMs within the regions I~VIII, the inequalities Eqs. (10.25)–(10.32) can be derived.

(10.25)

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)

x

y
 3�3
 3�3 0

0 0 1

r1

r2

r3

�

r1

r2

r3

 3�2
 1�2
 2 r4�2

3�2 1�2
 2 r4�2

0 1 0

x

y

1

�

r1, r2, r3 r4

r1, r2, r3 r4

r1 r4� r2 r3� 2� �

r2 r4� r1 r3� 2� �

r3 r4� r1 r2� 2� �

r1 r2 r3 r4 r1 r3 r2 r4 r1 r4 r2 r3�����������

r2 r1 r3 r4 r2 r3 r1 r4 r2 r4 r1 r3�����������

r3 r1 r2 r4 r3 r2 r1 r4 r3 r4 r1 r2�����������

r3 r1 r2 r4 r3 r2 r1 r4 r3 r4 r1 r2�����������

r2 r1 r3 r4 r2 r3 r1 r4 r2 r4 r1 r3�����������

r1 r2 r3 r4 r1 r3 r2 r4 r1 r4 r2 r3�����������

r4 r1 r2 r3 r4 r2 r1 r3 r4 r3 r1 r2�����������

r4 r1 r2 r3 r4 r2 r1 r3 r4 r3 r1 r2�����������

Table 10.3 shows the eleven types of 3-DOF PPMs, where 3-crank T-i (i � 1, 2, 3, and 4) means the 3-
crank-type-i 3-DOF PPMs; 3-rocker T-i (i � 1, 2, 3, and 4) expresses the 3-rocker-type-i 3-DOF PPMs;
and Change point T-i (i � 1, 2, and 3) denotes the change-point-type-i 3-DOF PPMs. Therefore, there
are four types of 3-crank 3-DOF PPMs, four types of 3-rocker 3-DOF PPMs and three types of change
point 3-DOF PPMs (as shown in Table 10.3).

Model of Solution Space for 3-DOF Delta Parallel Robots

Delta parallel robots (DPR) are a specific class of parallel manipulators that can position a platform in
a region of 3-D space so that the platform remains parallel to a specified reference plane. DPRs have
applications in the manipulation of lightweight objects for the electronic, food, and pharmaceutical
industries. Although researchers have investigated the forward and inverse kinematics, inverse dynamics,
sizes, singularities, and working volume of DPRs [44–50], insufficient attention has been given to the
analysis of relationships involving the link lengths of DPRs.

We shall consider a DPR, as shown in Fig. 10.9, where is the length of the ith link; , are
the lengths of the input links; are the lengths of the parallelogram supporting rods;

 are the lengths of the output links; and are the lengths of the fixed link.

TABLE 10.3 Complete Classification of 3-DOF PPMs

No. Region Proposed Name
Characteristics
of link lengths

Dimensional
Characteristics

1 I 3-crank T-1 �the shortest Inequality (10.25)
2 II 3-crank T-2 �the shortest Inequality (10.26)
3 III 3-crank T-3 �the shortest Inequality (10.27)
4 IV 3-rocker T-4 �the longest Inequality (10.28)
5 V 3-rocker T-1 �the longest Inequality (10.29)
6 VI 3-rocker T-2 �the longest Inequality (10.30)
7 VII 3-rocker T-3 �the longest Inequality (10.31)
8 VIII 3-crank T-4 �the shortest Inequality (10.32)
9 Line 1 Change point T-1 Equality (10.22)
10 Line 2 Change point T-2 Equality (10.23)
11 Line 3 Change point T-3 Equality (10.24)

FIGURE 10.9 A typical 3-DOF DPR.

Ri R1, R5, R9

R2, R6, R10

R3, R7, R11 R4, R8, R12

r1

r2

r3

r3

r2

r1

r4

r4

r1 r4� r2 r3��

r2 r4� r1 r3��

r3 r4 r1 r2���

Nondimensional Parameters of DPRs

We define

(10.33)

By dividing the link length (i � 1, 2,…, 12) by L, we obtain twelve nondimensional parameters

(10.34)

Therefore,

(10.35)

Gosselin [31] proposed that parallel robotic manipulators should be symmetric because the tasks to be
performed by the manipulators are unknown and unpredictable. By symmetry, one obtains

(10.36)

The symmetry assumption will be used throughout this paper. From Eqs. (10.35) and (10.36), the relative
link lengths of the DPR satisfy the relationship

(10.37)

It is well known that a DPR cannot be synthesized if one of the link lengths exceeds the following
maximum values:

(10.38)

If one of all the link lengths r1 (i � 1,2,3, and 4) satisfies Eqs. (10.37) and (10.38), the DPR can be
synthesized, but it cannot move. Eq. (10.38) is the zero-mobility condition for DPRs, which defines four
zero-mobility planes.

Model of Solution Space for DPRs

Let , and be orthogonal coordinate axes. Using Eqs. (10.37) and (10.38) and the conditions

(10.39)

we can establish the model of the solution space as shown in Fig. 10.10. The model is an irregular
hexahedron ABCDEFG as shown in Fig. 10.10(b), for which any possible combination of the link lengths
is represented by values of the links , and . The resulting model provides a means to reduce
the 12-D infinite space to the 3-D finite one.

L
1

12
----- Ri

i 1�

12

��

Ri

ri Ri L (i� 1, 2,…, 12)� �

ri
i 1�

12

� 12�

R1 � R5 � R9

R2 � R6 � R10

R3 � R7 � R11

R4 � R8 � R12

 and

r1 � r5 � r9

r2 � r6 � r10

r3 � r7 � r11

r4 � r8 � r12

r1 r2 r3 r4� � � 4�

r1 4, r2 4, r3 2, and r4 2� � � �

r1, r2 r3

0 r1 4, 0 r2 4, 0 r3 2, and 0 r4 2,����� �� �

r1, r2, r3 r4

Planar Closed Configurations

Consider the link (i � 1, 2, 3, and 4) in a DPR, where the sum of any two link lengths, except r3 and
r4, is equal to the sum of the other two link lengths. For this situation we call the DPR a change point
one. Physically, this means that all four links may be collinear (as shown in Fig. 10.11). Therefore, two
change point planes are defined by:

(10.40)

(10.41)

By giving several values for , a set of plane equations can be obtained from Eq. (10.37). Therefore,
is an auxiliary coordinate axis in the model of the solution space. When is given, Eq. (10.37) can be
expressed as

(10.42)

which is an equation of a plane. When and , respectively,
a set of planes is obtained. These planes are called “planar closed configurations” with coordinates

, which are isosceles trapezoids, as shown in Fig. 10.12.
Using Eqs. (10.40) and (10.41), lines 1 and 2 can be drawn on the five types of planar closed

configurations as shown in Fig. 10.12. These two lines are change point lines on which all the change
point DPRs exist.

FIGURE 10.10 The model of the solution space for 3-DOF DPRs. (a) , (b) .

FIGURE 10.11 Two types of the branches of change point DPR. (a) , (b) , (c) , (d)
, (e) .

r1 r4� r2 r3�� r2 r4� r1 r3��

r4 0� 0 r4 1� � r4 1�

1 r4 2� � r4 2�

ri

r1 r4� r2 r3��

r2 r4� r1 r3.��

r4 r4

r4

r1 r2 r3� � 4 r4
�

r4 0; r4 1; r4� 1; r4 1;�� � r4 2�

r1 r2 r3

Coordinate Transformation

As shown in Fig. 10.12(a), the planar closed configurations have coordinates . Only two of these
are independent. For convenience, we should utilize two orthogonal coordinates x y to express .
Thus, by use of

, (10.43)

we can transform coordinates into x y. Eq. (10.43) is very useful for construction of the
performance atlases. In addition, if the values of x and y are known, the values of , and can be
calculated by

(10.44)

FIGURE 10.12 Five types of planar closed configurations.

r1 r2 r3

r1 r2 r3

x

y
 2 3�3 3�3

0 1

r2

r3

 �

r1 r2 r3

r1, r2 r3

r1

r2

r3

 3 2�
 1 2�
 4 r4

3 2� 1 2�
 0

0 1 0

x

y

1

�

Classification of DPRs

By using Eqs. (10.40) and (10.41), lines 1 and 2 can be drawn on the planar closed configurations (as
shown in Fig. 10.12). These lines separate planar closed configurations into four regions I, II, III, and
IV. Each expresses a class of DPRs. For convenience of classification, we define a virtual planar slider-
crank mechanism OA1B1C1D, which is a branch of the Delta mechanism as shown in Fig. 10.13.

Because Delta mechanisms treated in this section are symmetric, we only need to consider the four
links (i � 1, 2, 3, and 4) which describe a virtual planar slider-crank mechanism. In Fig. 10.13, point
D is the center of the platform when the three input links have the same angle with respect to their start
positions, i.e., when the three input links r1, r5 and r9 are located at the same plane with the frame. We
assume point D is a virtual slider that can slide only along the line OD, because only when the center
of the platform (point D) moves along the line OD do the three input links have the same motion and
it is possible to investigate the mobility of Delta mechanisms. From the virtual planar slider-crank
mechanism, we derive the velocity equation

We know that when input link r1 is located at the extreme position and the angular velocity is non-
zero, the angular velocity must be zero. Thus, we obtain the results:

From this, we derive the conditions which can be used to determine the extreme positions of link ,
as shown in Fig. 10.14, that is,

FIGURE 10.13 Virtual planar slider-crank mechanism
for DPRs. (a) , (b) .

FIGURE 10.14 Virtual mechanisms with extreme positions of input link r1. (a) Perspective view, (b) top view.

ri

�̇1 J�̇2�

�̇2

�̇1

�̇1 0 and J 0� �

r1

�2

�
2
---- or

�
2

�

�2

�
2

� �2

�
2
----�

or these equations.

(10.45)

(10.46)

That is, if the virtual slider-crank mechanism satisfies one of the Eqs. (10.45) and (10.46), the revolving
input link does not exist. On the contrary, if it does not satisfy both of them at the same time, the
conditions for existence of the revolving input link are obtained:

(10.47)

(10.48)

From Eqs. (10.47) and (10.48), we can further derive the conditions for existence of the revolving input
link of the virtual slider-crank mechanism as

(10.49)

(10.50)

Using these conditions, we can classify the Delta mechanisms. Table 10.4 describes the resulting classi-
fication. We achieve six classes of Delta parallel robots, that is, one type of 3-crank Delta mechanisms,
three types of 3-rocker Delta mechanisms, and two types of change point Delta mechanisms. Table 10.4
also shows the dimensional characteristics of these classes.

Model of Solution Space for F /T Sensors Based on Stewart Platform

Force/torque (F/T) sensors can be used for monitoring forces of variable directions and intensity (such
as wind-tunnel testing, adaptive control of machines and thrust stand testing of rocket engines [51]),
measuring inertia force (computer input device: Smartpen [52]) or contact force to feed it back to the
command signal and estimating the location of the contacts between robot and environment through
force measurements so that they have been applied to manufacturing, robotics, military, electronic, and
computer industries, and so on. Therefore, a multiaxis F/T sensor is a critical component of an automated
system for extending the capability of manipulation and assembly, especially with contact tasks that
require mechanical operations involving interaction with the environment or objects.

Although many kinds of F/T sensors have been developed, Stewart-platform transducer F/T sensor is
a novel and specific one. Some research has been devoted to this kind of sensor. Kerr [53] presented
Stewart-platform transducer force sensor, and Nguyen [54] and Ferraresi [55] analyzed Stewart-platform

TABLE 10.4 Classification of DPRs

No. Region Name Dimensional Characteristics

1 I 3-Crank DPR
2 II 3-Rocker 1 DPR
3 III 3-Rocker 2 DPR
4 IV 3-Rocker 3 DPR
5 line 1 Change Point 1DPR
6 line 2 Change Point 2DPR

�1 max sin 1
 r2 r3 r4
�()�r1[]�

�1 MIN sin 1
 r3 r2
 r4
()�r1[]�

r1

r2 r3 r4
�()�r1 1

r3 r2
 r4
()�r1 1

r1 r4 r2 r3���

r1 r3 r2 r4���

r1 r4 r2 r3 r1 r3 r2 r4�������
r1 r4 r2 r3 r1 r3 r2 r4�������

r1 r4 r2 r3 r1 r3 r2 r4�������

r1 r4 r2 r3 r1 r3 r2 r4�������

r1 r4� r2 r3��

r1 r3� r2 r4��

force sensor. Because the structure of Stewart-platform force sensor is a kind of parallel mechanism, the
technique for analysis and design of parallel mechanisms can be used for the F/T sensor.

In this section we propose a model of the solution space for the structures of the F/T sensors based
on the Stewart platform, which is the foundation for investigation of the design method of the sensor.

Consider the F/T sensor mechanism based on Stewart platform as shown in Fig. 10.15. Because the
link lengths may have a wide range of possible values, it is convenient to avoid explicit use of the physical
sizes of the mechanisms during analysis and design. We shall define normalized parameters of the sensor
mechanisms and construct the model of the solution space.

Since the parallel mechanisms should be symmetric [31], there are four parameters in the sensor
mechanism as shown in Fig. 10.15, that is, , and , where

Let

(10.51)

(10.52)

where is the length of link i, is the normalized, nondimensional length of link i, and L is the
average link length of the mechanism. Therefore, the sum of the normalized link lengths is

(10.53)

If the mechanism can be assembled, the normalized link lengths satisfy

(10.54)

FIGURE 10.15 The mechanism of the sensor based on Stewart platform.

R1, R2, R3 �AB

�AB �A �B
 0� �AB 120�� �()�

�A A2A3� A4A5� A6A1�� � �

�B B2B3� B4B5� B6B1�� � �

180� �A
 A1A2� A3A4� A5A6�� � �

180� �B
 B1B2� B3B4� B5B6�� � �

L R1 R2 R3� �()�3�

r1 = R1�L, r2 R2�L, and r3 R3�L� �

Ri ri

r1 r2 r3� � 3�

0 r1 1.5 , 0 r2 1.5, � r3 3� �� �� �

where

(10.55)

From the conditions (10.53) and (10.54), a physical model of the solution space for the sensor mechanisms
can be constructed as shown in Fig. 10.16, which is the rhombus ABCD. By placing the model on a
plane, the planar closed configuration of the solution space with three coordinates can be obtained as
shown in Fig. 10.17. Within the model ABCD, we can investigate relationships between the criteria and
parameters of the sensor mechanisms.

10.3 Performance Evaluation Criteria for Design
of Robotic Mechanisms

The design of robotic mechanisms can be simplified by the criteria that permit the analysis of tradeoffs. In
recent years, researchers have presented some performance criteria based on workspace geometry [56–64],
isotropy [65–68], dexterity [69–73], global conditioning index [43], and singularity [74–76]. By use of
the criteria, optimization has been used as a design tool [31, 77–81].

In this section, we list the major performance criteria that provide a foundation for using the technique
of the solution space models to design robotic mechanisms.

FIGURE 10.16 A physical model of the solution space
for the sensor mechanisms.

FIGURE 10.17 Planar closed configuration of the solu-
tion space.

� r1
2 r2

2 2r1r2cos
�AB

2

� and 0 ���

Three Kinds of Workspaces

We consider a robot consisting of a manipulator and an end-effector. The robot structure may be serial
or parallel. The workspace of a robot defines the useful positions and orientations of the end-effector.
In this section, we consider the following three types of workspaces:

• Reachable Workspace: the set of points attainable by a point attached to the end-effector.

• Dextrous Workspace: the set of points of the workspace in which an end-effector can have arbitrary
orientations.

• Global Workspace: the set of points that the end-effector can reach when all orientations of the
end-effector are given [31].

Three Kinds of Singularities

To improve robot performance, singular configurations must be identified at the design stage because
singularities lead to an instantaneous change in the degrees of freedom of the mechanism. They also
result in a loss of the controllability and degradation of the natural stiffness that may lead to high joint
forces or torques. There are three kinds of singularities [75]. The first type occurs when

(10.56)

where [J] is the Jacobian matrix of the robotic mechanism. The corresponding configurations are located
at the boundary of the workspace of the manipulator or on internal boundaries between regions of the
workspace in which the number of solutions of the inverse kinematic problem differs.

A second type of singularity occurs when

(10.57)

This type of singularity results in an unwanted degree of freedom of the manipulator. Such a configuration
must be avoided because the manipulator is not controllable. This type of singularity, however, cannot
occur in serial manipulators.

A third type of singularity only occurs for parallel manipulators,

(10.58)

Global Conditioning Index

The global conditioning index is an important measure for control of the manipulator. It is defined as
the inverse of the condition number of the Jacobian matrix [J] integrated over the reachable workspace
and divided by the volume of the workspace. In particular, a large value of the index ensures that the
manipulator can be precisely controlled. To evaluate the global behavior of a manipulator, Gosselin [43]
defined the global conditioning index,

(10.59)

where

(10.60)

det J() 0�

det J() �.→

det J() 0
0
-- .→

� A�B� ,

A
1

||J||||J 1

 wd
w

��

B wd
w

��

Here, B is the volume of the reachable workspace w, and

(10.61)

where n is the dimension of the square matrix [J], and [I] is the identity matrix having the same dimension
as [J].

Global Velocity Index

The global velocity index is a measure of robotic speed. We define the global maximum and minimum
velocity indices to be the extreme values of the end-effector velocities integrated over the reachable
workspace and divided by the volume of the workspace.

The linear velocity V and angular velocity � of the end-effector are related to the input velocities by

(10.62)

From Eq. (62), we obtain

(10.63)

(10.64)

Let

(10.65)

(10.66)

and

(10.67)

where and are Lagrange multipliers. From Eqs. (10.66) and (10.67), necessary conditions for
extreme values of the linear and angular velocities of the end-effector are

(10.68)

(10.69)

From Eqs. (10.68) and (10.69), we see that and are eigenvalues of and ,
respectively, so that extreme values of the velocities are

(10.70)

(10.71)

||J|| tr J
1
n
--- I[]JT

 �

�̇

V
�

J[] �̇() Jv

J�

�̇()� �

||V||2
�̇()T

Jv[]T Jv[] �̇()�

�
2

�̇()T
J�[]T J�[] �̇()�

�̇
2

�̇()T
�̇() 1,� �

Lv �̇()T
Jv[]T Jv[] �̇() �v �̇()T

�̇() 1
[]
�

Lv �̇()T
J�[]T J�[] �̇() �� �̇()T

�̇() 1
[]
�

�v ��

�Lv

��v

-------- 0 : �̇()T
�̇() 1
 0,

�Lv

� �̇()
------------ 0 : Jv[]T Jv[] �̇() �v �̇()
 0� � � �

�L�

���

--------- 0 : �̇()T
�̇() 1
 0,

�L�

� �̇()
------------ 0 : J�[]T J�[] �̇() �� �̇()
 0� � � �

�v �� Jv[]T Jv[] J�[]T J�[]

Vmax �V max and Vmin �V min� �

�max �� max and �min �� min� �

Because [J] depends on the configuration of the manipulator, extreme values of the end-effector velocity
cannot characterize the robotic performance. We define global velocity index, a criterion involving the
end-effector velocity, as follows:

(10.72)

(10.73)

where and are the global maximum and minimum linear velocity indices, respectively;
 and are the global maximum and minimum angular velocity indices, respectively; B is the

volume of the reachable workspace; and

Global Payload Index

The global payload index is a measure of the capability of payload that can be handled by the robotic
mechanisms. We define the global maximum and minimum payload indices to be the extreme values of
the robotic payload integrated over the reachable workspace of the robot and divided by the volume of
the workspace.

The external force F and torque T applied at the end-effector are related to the input force or torque
 by

(10.74)

If , we obtain

(10.75)

Using the same method as in the previous section,

(10.76)

(10.77)

where and are the maximum and minimum eigenvalues of the matrix , respec-
tively; and and are the maximum and minimum eigenvalues of the matrix ,
respectively.

�V max

CV max

B
-------------- and �V min

Cv min

B
------------� �

�� max

C� max

B
-------------- and �� min

C� min

B
-------------� �

�V max �V min

�� max �� min

Cv max Vmax() w and CV mind
w

� Vmin() w,d
w

�� �

C� max �max() w and C� mind
w

� �min() w.d
w

�� �

�

�() J[]T F

T
 �

det JT() 0�

F

T
 JT[] 1

�() JF

JT

�()� �

Fmax �F max and Fmin �F min� �

Tmax �T max and Tmin �T min� �

�F max �F min JF[]T JF[]
�T max �T min JT[]T JT[]

When the input torque is a unit vector, the global payload indices are

(10.78)

(10.79)

where and are the global maximum and minimum force payload indices, respectively;
 and are the global maximum and minimum torque payload indices, respectively; and

(10.80)

(10.81)

Global Deformation Index

The global deformation index is a measure of the stiffness of the robotic end-effector. We define the
global maximum and minimum deformation indices to be the extreme values of the end-effector defor-
mation integrated over the reachable workspace of the robot and divided by the volume of the workspace.

The input forces or torques are related to the deformation by

(10.82)

where

(10.83)

In Eq. (10.83), is the deformation of joint i of the input link i; is the stiffness of actuator i at
joint i (i � 1,2 ,..., m); and [I] is an m � m identity matrix. We assume

(10.84)

which means that all actuators have the same stiffness. From Eqs. (10.74) and (10.82), the deformation
(D) of the end-effector is

(10.85)

From Eqs. (10.84) and (10.85), we obtain a representation for the compliance matrix of the manipulator as

(10.86)

 is the stiffness matrix. Because we only investigate the relationship between the criteria and link
lengths of robots, let k be equal to 1. From Eqs. (10.85) and (10.86), we obtain

(10.87)

�F max

CF max

B
------------- and �F min

CF min

B
-------------� �

�T max

CT max

B
------------- and �T min

CT min

B
-------------o� �

�F max �F min

�T max �T min

CF max Fmax w and CF mind
w

� Fmin w d
w

�� �

CT max Tmax w and CT mind
w

� Tmin w d
w

�� �

�() K[] �q()�

K[] I[] k1 k2 …km()T
�

�q() �q1 �q2…�qm ()T
�

�qi ki

ki k,�

D() J[] �q() J[] K[] 1
 J[]T F T()T C[] F T()T
� � �

C[] J[] K[] 1
 J[]T 1
k
-- J[] J[]T

� �

C[] 1

D()
DP

DO

 C[]

F

T
 CP

CO

F

T
 � � �

where and express the position deformation and orientation deformation of the end-effector,
respectively. Thus, we have

(10.88)

(10.89)

Using the method of Section 3.4, we derive

(10.90)

(10.91)

where and are maximum and minimum eigenvalues of , respectively, and
 and are maximum and minimum eigenvalues of .

The global positional and orientational deformation indices can be represented by

(10.92)

(10.93)

where and are the global maximum and minimum position deformation indices,
respectively; and are the global maximum and minimum orientation deformation
indices, respectively; and

Global Error Index

The global error index is a measure of accuracy of the robotic end-effector. We define the global maximum
and minimum error indices to be the extreme values of the end-effector error integrated over the reachable
workspace of the robot and divided by the volume of the workspace.

Errors in the end-effector motion can be divided into two parts,

(10.94)

where is the error concerning the input motion tolerance �� ; and is the error relative
to the tolerance of the dimensions of the robotic mechanism. Therefore, we obtain the position error of
the end-effector as

(10.95)

DP() DO()

DP() CP[] F T()T
�

DO() CO[] F T()T
�

DPmax �DP max and DPmin �DP min� �

DOmax �DO max and DOmin �DO min� �

�DP max �DP min CP[]T CP[]
�DO max �DO min CO[]T CO[]

�Dp max

AP max

B
------------- and �Dp min

AP min

B
-------------� �

�DO max

AO max

B
-------------- and �DO min

AO min

B
--------------� �

�Dp max �Dp min

�DO max �DO min

AP max DP max w and AP mind
w

� DP min w , d
w

�� �

AO max DO max w and AO mind
w

� DO min w . d
w

�� �

�E() �E�() �ED()��

�E�() �ED()

�EP() �E�P() �EDP()��

and the orientation error of the end-effector as

(10.96)

Since

(10.97)

Comparing Eq. (10.97) and (10.62), we obtain

(10.98)

(10.99)

where and are the global maximum and minimum position error indices with respect
to the input motion tolerance ��, respectively; and are the global maximum and
minimum orientation error indices with respect to the input motion tolerance ��, respectively.

Next, relative to the dimensional tolerance of the mechanism, we consider errors

(10.100)

where (�D) is the dimensional tolerance of the robotic mechanism, and is the error transformation
matrix with respect to the dimensional error.

Using the method in the section entitled “Global Velocity Index,” we derive

(10.101)

(10.102)

where and are maximum and minimum eigenvalues of matrix , respec-
tively; and are maximum and minimum eigenvalues of . Therefore, the
global position and orientation error indices relative to the dimensional tolerances can be obtained by

(10.103)

(10.104)

where and are the global maximum and minimum position error indices relative to
the tolerance of the dimensions of the mechanism, respectively; and are the global
maximum and minimum orientation error indices relative to the dimensional tolerance of the mecha-
nism, respectively; and

�EO() �E�O() �EDO().��

�E�P

�E�O

 J[] ��() JV

J�

��()� �

�E�P max �V max and �E�P min �V min ��

�E�O max �� max and �E�O min �� min ��

�EDP max �EDP min

�E�O max �E�O min

�EDP

�EDO

 JD[] �D() JDP

JDO

�D()� �

JD[]

�EDPmax
�EDP max and �EDPmin

�EDP min� �

�EDOmax
�EDO max and �EDOmin

�EDO min� �

�EDP max �EDP min JDP[]T JDP[]
�EDO max �EDO min JDO[]T JDO[]

�EDP max

AEDP max

B
----------------- and �EDP min

AEDP min

B
-----------------� �

�EDO max

AEDO max

B
------------------ and �EDO min

AEDO min

B
------------------� �

�EDP max �EDP min

�EDO max �EDO min

AEDP max �EDP max w and AEDP mind
w

� �EDP min w, d
w

�� �

AEDO max �EDO max w and AEDO mind
w

� �EDO min w, d
w

�� �

The criteria described in this section involve kinematic and dynamic properties and characterize robot
performance. These results provide a basis for analyzing and designing robotic mechanisms. Because the
solution space model applies to both serial and parallel robotic mechanisms, the criteria have wide
application to many different types of robotic mechanisms.

10.4 Performance Atlases for Design of Serial Robots
with Three Moving Links

Human arms, legs, fingers, and limbs of animals and insects can be viewed as mechanisms with three
moving links. Fingers of dextrous hands, arms of industrial robots, and legs of walking machines often
consist of three moving links. Therefore, an understanding of the relationships between the criteria and
the dimensions of three-moving-link mechanisms is of great importance for design of fingers, arms, and
legs of robotics machines.

In this section, we use the technique of physical models of solution space proposed in Section 10.2
and the evaluation criteria presented in Section 10.3 to investigate the relationships between the criteria
and the dimensions of mechanisms with three moving links. In addition, the distribution of the 63
commercially available industrial and research robots within the model of solution space is discussed.

Robotic Principle Motion

Although a biological system can provide compact actuation of fingers, arms, and legs with multiple degrees
of freedom, planar motion provides the most significant contribution to kinematic and dynamic perfor-
mance. We define the principle motions produced by robotic mechanisms with three moving links as
that produced by joints sharing a common and parallel axis. Since industrial robots often are built in
this manner, this type of motion is very important for design.

By using the theory of the principle motions, many robotic mechanisms with three moving links as
shown in Fig. 10.3 can be simplified as 3-DOF planar mechanisms. For this reason, the treatment
described in this chapter is restricted to mechanisms that produce principle motions, that is, 3-DOF
planar serial mechanisms as shown in Fig. 10.18.

Atlases of Workspace Criteria

The workspace of a manipulator determines attainable positions and orientations of its end-effector. We
shall consider the reachable workspace, dextrous workspace, and global workspace. The atlases of reach-
able, dextrous, and global workspaces can be represented on the solution space as shown in Figs. 10.19,
10.21, and 10.22.

Reachable Workspace Atlas

The reachable workspace of a 3-DOF planar serial mechanism, as shown in Fig. 10.18, consists of all
points traversed by the end effector. Two types of reachable workspaces are the loop and the plate as

FIGURE 10.18 A 3-DOF planar mechanism.

shown in Table 10.5. Using this information, one can calculate the areas of the reachable workspace of
all possible 3-DOF planar serial mechanisms and plot the contours of equal area on the model of the
solution space. Figure 10.19 shows the reachable workspace atlas of 3-DOF planar serial mechanisms,
which provides a convenient graphical method to analyze the relationship between the reachable work-
space and the link lengths. By inspection of Fig. 10.19, we conclude the following:

• In region IV, the reachable workspace has maximum area equal to 9�.

• In regions I, II, and III, the area of the reachable workspace is inversely proportional to , p � 1,
2, 3, respectively.

• The reachable workspace is symmetric about axes , and , respectively.

Dextrous Workspace Atlas

The dextrous workspace of a robot is an important criterion for performance evaluation. Since the robot
end-effector may have to achieve a given pose from a particular direction, it is of practical interest to
determine these directions.

TABLE 10.5 Two Types of Reachable Workspace

Region Shape Area

I
II
III

IV 0 9�

FIGURE 10.19 Reachable workspace atlas. (a) Single loop, (b) plate, (c) double loops.

rMAX rMIN

r1 r2 r3� � r2 r1
 r3
 4� 3 r1
()r1

r1 r2 r3� � r2 r1
 r3
 4� 3 r2
()r2

r1 r2 r3� � r3 r1
 r2
 4� 3 r3
()r3

r1 r2 r3� �

rp

r1 r2, r1 r3� � r2 r3�

For the convenience of analysis, we assume a 3-DOF robot to be a virtual four-bar linkage ABCDA,
shown in Fig. 10.18. AD is named the virtual frame ; AB is called the virtual input link ; BC is
the virtual couple link ; and CD expresses the virtual output link . For the virtual output link

 of the “virtual four-bar linkage” to be a crank that is capable of continuous rotation through 360°,
the following Grashoff ’s conditions must be satisfied:

(10.105)

or

(10.106)

where, if is the shortest of the four links, we utilize inequalities (10.105); if is the shortest, we
utilize inequalities (10.106). From Grashoff ’s theory, we obtain the following criterion:

If the output link is a crank, i.e., the conditions (10.105) or (10.106) are satisfied, the dextrous
workspace of the 3-DOF robot exists in this position, and conversely.

By means of the criterion and the solution space, we obtain the following classes of dextrous workspace:
(1) null, (2) single-loop, (3) plate, and (4) double-loop. Three of these classes are shown in Fig. 10.20.

Figure 10.21 shows the relationship between the areas of the dextrous workspaces and the link lengths
of all 3-DOF planar serial mechanisms. From Figs. 10.2(b) and 10.21, we conclude the following:

FIGURE 10.20 Classification of dextrous workspace.

FIGURE 10.21 Dextrous workspace atlas.

r4() r1()
r2() r3()

r3

r1 r3 r2 r4 r2 r3 r1 r4 r4 r3 r1 r2 r3 is the shortest()�����������

r1 r4 r2 r3 r2 r4 r1 r3 r3 r4 r1 r2 r4 is the shortest()�����������

r3 r4

r3

• When is small and , the area of the dextrous workspace is large and approximately
equal to 9�.

• Within regions I2, II2, and III as shown in Fig. 10.2(b), the dextrous workspaces of the robots do
not exist, which are null.

• Within regions I1 and II1, the dextrous workspaces of the robots are a single-loop.

• Within regions IV1, IV2, and IV6, the dextrous workspaces of the robots is a plate.

• When , the robots have large dextrous workspaces. This result
has important consequences for design of robots with dextrous manipulation.

• Within regions IV3 and IV4, the dextrous workspaces of the robots are a double-loop.

Global Workspace Atlas

Using the results of Gosselin and Angeles [31], we derive the global workspace areas of the 3-DOF planar
serial manipulator as follows:

(10.107)

The global workspace implies that when all orientations of the output link are given, the end-
effector can reach points in the space spanned by coordinates x, y, .

By use of Eq. (10.107), contours in the global workspace of all 3-DOF planar serial manipulators can
be plotted on the model of the solution space. Fig. 10.22 illustrates the relationship between the volume
of the global workspace and the link lengths. We conclude the following:

• When is small and the global workspace has maximum volume and is approximately
equal to .

• If is specified and the volume of the global workspace is large.

• The volume of the global workspace is inversely proportional to

FIGURE 10.22 Global workspace atlas.

r3 r1 r2�

r1 r2 r3 r1 region IV1()���

AGW � r1 r2�()2 r1 r2
()2

[] �3d

0

2�

� 8�
2r1r2� �

�3 r3

�3

r3 r1 r2� ,
18�

2

r3 r1 r2� ,

r3.

Atlas of Global Conditioning Index

By using Eq. (10.59), contours in the global conditioning index of all 3-DOF planar serial manipulators
can be plotted on the model of the solution space.

In particular, a large value of the index ensures that the manipulator can be precisely controlled. Fig. 10.23
describes the relationship between the global conditioning index and the link lengths of all 3-DOF planar
robotic mechanisms.

From Fig. 10.23, we see that

• If is small, and , the global conditioning index of the robots is large.

• The global conditioning index of mechanisms located on lines parallel to axis is inversely
proportional to .

Atlases of Global Velocity Index

Using Eqs. (72) and (73), the atlases of the global maximum and minimum linear velocity indices are
plotted on the solution space model of robotic mechanisms with three moving links. Figs. 10.24 and
10.25 illustrate relationships between the global maximum and minimum linear velocity indices and
the link lengths of 3-DOF planar robotic mechanisms, respectively. From Figs. (10.24) and (10.25), we
conclude the following:

• If and , the global maximum linear velocity index of the robots is small
as shown in Fig. 10.24.

• In region IV, we obtain a large value of the global minimum linear velocity index. This result is
very important for design of robots in which the end-effector should move quickly as shown in
Fig. 10.25.

• In the case of serial robots, the global maximum and minimum angular velocity indices are equal
and constant.

Atlases of Global Payload Index

By means of Eqs. (10.78) and (10.79), the atlases of global maximum and minimum force payload indices
are constructed on the solution space model. Figs. 10.26 and 10.27 are contours of global maximum and
minimum force payload indices for 3-DOF planar robotic mechanisms, respectively. And Fig. 10.28

FIGURE 10.23 Atlas of global conditioning index.

r3 r1 r2� r1 r2�

r3

r3

r1 r2 r3�� r1 r2�

describes the global maximum torque payload index. From Figs. 10.26, 10.27, and 10.28, we obtain the
following:

• If is small and , the global maximum force payload index is small; if is given
and , the global maximum force payload index is large, and values of the global max-
imum force payload index of mechanisms located on lines parallel to the axis is inversely
proportional to and symmetric about the axis as shown in Fig. 10.26.

• If is given and , the global minimum force payload index is small; the global
minimum force payload index of mechanisms located on lines parallel to the axis is propor-
tional to and symmetric about the axis as shown in Fig. 10.27.

FIGURE 10.24 Atlas of global maximum linear veloc-
ity index.

FIGURE 10.25 Atlas of global minimum linear velocity index.

r3 r1 r2� r3

r1 r2�
r3

r3 r1 r2�

r3 r1 r2�
r3

r3 r1 r2�

• If is small and , the global maximum torque payload index is small; if is given,
and , the global maximum torque payload index is large; and the global maximum
torque payload index of the mechanisms located on lines parallel to the axis is proportional
to and symmetric about the axis as shown in Fig. 10.28.

FIGURE 10.26 Atlas of global maximum force payload index.

FIGURE 10.27 Atlas of global minimum force payload index.

r3 r1 r2� r3

r1 r2�
r3

r3 r1�r2

Atlases of Global Deformation Index

The global deformation index is a measure of stiffness of the end-effector. The global maximum and
minimum deformation indices can be calculated by Eqs. (10.92) and (10.93).

Figures 10.29 and 10.30 represent contours of the global maximum and minimum position defor-
mation indices for 3-DOF planar robotic mechanisms, respectively. Figure 10.31 represents contours

FIGURE 10.28 Atlas of global maximum torque payload index.

FIGURE 10.29 Atlas of global maximum position deformation index.

of the global maximum orientation deformation index. From Figs. 10.29, 10.30, and 10.31, we see
that

• If and , the mechanisms have a small global maximum position defor-
mation index as shown in Fig. 10.29. This result is important for robot design because we would
like to reduce position deformation.

• In region IV, the global minimum position deformation index is large as shown in Fig. 10.30.

FIGURE 10.30 Atlas of global minimum position deformation index.

FIGURE 10.31 Atlas of global maximum orientation deformation index.

r1 r2 r3�� r2 r3�

• If in region I, the global maximum orientation deformation index is small as shown
in Fig. 10.31.

We have developed performance atlases for the design of serial robotic mechanisms with three moving
links by plotting performance criteria on the model of the solution space. The atlases describe the
relationships between the performance criteria and the link lengths of all the robotic mechanisms and
can be used to design the robotic mechanisms. The technique described in this section can be utilized
to analyze and design other types of robotic mechanisms.

Analysis of Commercially Available Robots

The parameters of 63 commercially available industrial and research robots are listed in Table 10.6.
Figure 10.32 shows how these robots are distributed in the solution space, where each point is one of 63
industrial robot’s geometric representation by link lengths. From Fig. 10.32, we see that all of the robots
are located at the area in the solution space model of three-moving-link
robotic mechanisms.

The performance criteria proposed in this chapter involve kinematic and dynamic properties and
characterize robot performance, which provide a basis for analyzing and designing optimum robotic
mechanisms. The physical model technique, solution space model is a useful tool for investigation of the
relationships between the performance criteria and link lengths of both serial and parallel robotic
mechanisms. From the performance criterion atlases and an analysis of the results, we reach the following
conclusions. To design optimum robotic mechanisms, we should select the robotic mechanisms with
large reachable, dextrous, and global workspaces, large global conditioning index, large global minimum
velocity index, large global minimum payload index, small global maximum deformation index, and
small global maximum error index. For the robotic mechanisms with three moving links, the best region
for selecting the dimensions of three-moving-link robots is . In this region,
the robotic mechanisms have optimum performance characteristics and most commercially available
robots occur in the region on the solution space model. This conclusion
is very important for designing serial robotic mechanisms for use in manufacturing tasks of machine
tending, assembly, and welding. The physical model technique is a useful tool for analysis and design of
parallel robotic mechanisms [1,2,3,6,7,8].

10.5 Atlases for Design of F/T Sensor Based on Stewart Platform

In the design of F/T sensors, the structural design is particularly important since the sensors detect forces
and moments through the measurement of strains at specific points of their bodies. Much research has
been devoted to the sensor structure design. Watson [83] proposed the six-axis force sensor with three
vertical deformation components. Stanford Institute [84] investigated the tube design six-axis force
sensor. Schott [85] designed the double ring-shaped six-axis force sensor. Brussel [86] and Kroll [87]
studied the six-axis force sensor with four vertical deformation components. Shimano [88] was the first
researcher who presented and designed the cellar six-axis force sensor. Uchiyama [89] and Bayo [90]
studied the systematic design procedure of the Maltese cross-bar-type force sensor. Little [91] designed
the force sensor having three beams. Bicchi [82] investigated the miniaturized cylindrical force sensor
for mounting on the fingertips of the dextrous hand. Diddens et al. [52] designed the ring-shaped three-
axis micro force sensor for mounting in the Smartpen. Kaneko [92] proposed the twin-head type six-
axis force sensor. Kerr [53] presented the Stewart-platform transducer force sensor. Nguyen [54] and
Ferraresi [55] analyzed the Stewart-platform force sensor. Because the structure of the Stewart-platform
force sensor is a kind of parallel mechanism, the technique for analysis and design of parallel mechanisms
can be used for the design of this type of sensor.

Because it is very important to investigate the performance criteria for evaluation of the force sensors,
many researchers have paid attention to this problem. Uchiyama et al. proposed an index for the
evaluation of a structural isotropy of the force sensor body [93] and studied a systematic design procedure

r1 r2 r3� �

r1 r2, r3 r1 and r3 r2���()

r1 r2, r3 r1 and r3 r2���

r1 r2, r3 r1 and r3 r2���()

TABLE 10.6 Dimensions of Commercial Robots

Original Dimensions
(in mm unless specified) Scaled Dimensions

No. Name

1 Pentel Puha-2 315 315 0 1.5 1.5 0.0
2 Pentel Puha-1 160 100 0 1.8462 1.1538 0.0
3 Sankyo Skilam-1 400 250 0 1.8462 1.1538 0.0
4 Sankyo Skilam-2 200 160 0 1.6666 1.3333 0.0
5 Argonne Nat. Lab. E-2 18.875�� 40�� 5.75�� 0.8762 1.8568 0.2669
6 Alpha II 177.8 177.8 129.5 1.0995 1.0995 0.8010
7 Rhino XR-3 228.6 228.6 9.5 1.4695 1.4695 0.0610
8 Intelledex 660T 304.8 304.8 228.6 1.0909 1.0909 0.8182
9 Milacron T3-756 44�� 55�� 1�� 1.3200 1.6500 0.0300
10 Nachi-8601 1135 1500 135 1.2292 1.6246 0.1462
11 Seiko 600-5 310 310 50 1.3881 1.3881 0.2238
12 Pentel-3 GL-50 250 250 0 1.5000 1.5000 0.0
13 ABB IRB L6/2 22.5�� 26�� 0 1.3918 1.6082 0.0
14 Binks 88-800 39.6�� 50�� 0 1.3259 1.6741 0.0
15 Daewoo, NOVA-10 650 850 100 1.2187 1.5938 0.1875
16 Waseda Univ. -1 300 250 270 1.0976 9.1466 0.9878
17 Waseda Univ. -2 295 250 150 1.2734 1.0791 0.6475
18 Waseda Univ. -3 305 230 175 1.2887 0.9718 0.7395
19 Kayaba Co. Ltd. 580 410 235 1.4204 1.0041 0.5755
20 MELARM Lab. 630 550 0 1.6017 1.3983 0.0
21 Sankyo SR8437 400 400 0 1.5000 1.5000 0.0
22 Sankyo SR8438 300 250 0 1.6364 1.3636 0.0
23 Fanuc S-6 600 559.02 100 1.4297 1.3320 0.2383
24 Fanuc S-700 700 816.24 200 1.2236 1.4268 0.3496
25 Fanuc LR Mate-100 250 220 80 1.3636 1.2000 0.4364
26 Fanuc M-400 1150 780 0 1.7875 1.2124 0.0
27 Fanuc S-12 800 604.67 100 1.5950 1.2056 0.1994
28 Fanuc S-800 720 939.63 200 1.1615 1.5158 0.3227
29 Fanuc S-900 1050 1265.90 225 1.2397 1.4946 0.2657
30 Fanuc S-10 700 610 115 1.4737 1.2842 0.2421
31 Fanuc ARC Mate-100 600 559.02 100 1.4297 1.3320 0.2383
32 Fanuc ARC Mate-120 800 604.67 100 1.5950 1.2056 0.1994
33 Fanuc P-100 860 1209.34 0 1.2468 1.7532 0.0
34 Fanuc P-150 1000 1264.36 0 1.3249 1.6751 0.0
35 Fanuc S-500 900 1607.02 180 1.0048 1.7942 0.2010
36 Fanuc S-420i 950 1321.97 200 1.1529 1.6044 0.2427
37 Mitsubishi RV-M1 250 160 72 1.5560 0.9959 0.4481
38 Mitsubishi RV-M2 250 220 65 1.4019 1.2336 0.3645
39 Motoman-K10S 615 770 100 1.2424 1.5556 0.2020
40 Panasonic KS-V20 250 200 120 1.3158 1.0526 0.6316
41 Panasonic HR-50 275 275 0 1.5000 1.5000 0.0
42 Panasonic HR-150 425 425 0 1.5000 1.5000 0.0
43 Sony SRX-4 CH-LA 400 250 0 1.8462 1.1538 0.0
44 Sony SRX-4 CH-LZ 350 250 0 1.7500 1.2500 0.0
45 Stäubli RX-90 450 450 0 1.5000 1.5000 0.0
46 Stäubli RX-90L 450 650 0 1.2273 1.7727 0.0
47 Stäubli RX-130 625 625 0 1.5000 1.5000 0.0
48 Stäubli RX-130L 625 925 0 1.2097 1.7903 0.0
49 Stäubli RX-170 850 750 0 1.5938 1.4062 0.0
50 Stäubli RX-170L 850 1050 0 1.3421 1.6579 0.0
51 Seiko TT8030 400 400 40 1.4286 1.4286 0.1428
52 Seiko TT8550 225 225 0 1.5000 1.5000 0.0
53 Seiko TT8800 450 350 0 1.6875 1.3125 0.0
54 Seiko TT8010 300 200 40 1.6667 1.1111 0.2222
55 Seiko TT4000SC 356 305 0 1.6157 1.3843 0.0

R1 R2 R3 r1 r2 r3

to minimize a performance index for the force sensors [89]. Bayo et al [90] investigated the criteria of
the condition number, stiffness, and strain gauge sensitivity of the sensors. Diddens et al [52] used a
three-dimensional finite-element model to optimize the strain-gauge positions of the sensor.

Although extensive research has been directed toward the analysis and design of the structures of force
sensors, there has not been an effective way to relate performance criteria and the parameters of the sensor
structures. In this section, a geometric model of the solution space for the structures of the F/T sensors
based on the Stewart platform is proposed and used to investigate relationships between the criteria and
parameters of the structures of the F/T sensors.

Atlases of Condition Number of Jacobian Matrix

The condition number of Jacobian matrix is an important criterion for evaluation of the sensor mech-
anisms based on Stewart platform as shown in Fig. 10.15, since it is the measure of isotropy of a sensor.

TABLE 10.6 Dimensions of Commercial Robots (continued)

Original Dimensions
(in mm unless specified) Scaled Dimensions

No. Name

56 Seiko TT8010C 300 200 40 1.6667 1.1111 0.2222
57 Adept-1 16.73�� 14.76�� 0 1.5938 1.4062 0.0
58 Adept-3 559 508 0 1.5717 1.4283 0.0
59 Adept-1850 1000 850 70 1.5625 1.3281 0.1094
60 BUAA C1 Hand 46 20 13 1.7468 0.7595 0.4937
61 IRC XDH-9S/9A Hand 50 58 0 1.3889 1.6111 0.0
62 Tokushima Univ. Hand 48 30 0 1.8462 1.1538 0.0
63 Utah DH master 39.08 43.53 11.18 1.2500 1.3924 0.0

FIGURE 10.32 The distribution of commercial robots within the solution space. (a) , (b) ,
(c) , (d) .

R1 R2 R3 r1 r2 r3

�AB 10�� �AB 20��

�AB 30�� �AB 40��

Using the analysis approach of the parallel mechanisms, we can derive Jacobian matrix [J] for the force
sensor mechanisms. From Fig. 10.15, one derives

(10.108)

where is the force acted on the link i, and expresses the unit screw on the link i, i.e.,

(10.109)

(10.110)

(10.111)

where and are the coordinates of the points and in the coordinate system .
From Eq. (10.108), we can obtain

(10.112)

where

and

(10.113)

By comparing Eq. (10.74) with Eq. (10.112), we see that Jacobian matrix [J] of the mechanism has the
following relationship:

(10.114)

So the condition number of Jacobian matrix [J] can be calculated by the following equations:

(10.115)

where

(10.116)

Because

let

(10.117)

where E is the inverse of the condition number of Jacobian matrix.

fi$i
i 1�

6

� F() T()���

fi $i

$i si() Soi, si()T si()� 1, si()T soi() 0� � �

si() Bi Ai
()� Bi Ai
�

soi() Ai() si()� Ai() Bi()�[] Bi Ai
�� �

Ai() Bi() Ai Bi oA xAyAzA

F

T
 G[] f()�

f() f1 f2 f3 f4 f5 f6()T
� p

G[] s1 s2 s3 s4 s5 s6

so1 so2 so3 so4 so5 so6

�

J[] G[] 1

T

�

Cond ||J ||||J 1
 ||,�

||J|| tr J
1
n
--- I[]JT

 �

1 Cond �,��

E
1

Cond
-------------�

By using the Eq. (10.117), the atlases of condition number can be plotted within the model of the solution
space shown in Fig. 10.17. Figure 10.32 only shows four of the atlases of the condition number that can
describe the relationship between the condition number and the four parameters of the sensor mechanisms.

From the atlases of the condition number as shown in Fig. 10.32, we obtain the following important
result: if is small, , and both and are large; that is, in the region nearby the vertex D
on the model of the solution space, the mechanisms have large values of the condition number and
approximately equal to one, which means that the mechanisms in that region are isotropy. This result is
very important and useful for design of the sensor mechanisms, because a large value of the condition
number ensures that the force sensor can have high accuracy.

Atlases of Force and Torque Sensitivity

As shown in Fig. 10.15, from Eqs. (10.112) and (10.114), we know that the external force F and torque
T applied at the upper platform center are related to the forces (i � 1,2,…,6) by

(10.118)

So

(10.119)

(10.120)

Let

(10.121)

(10.122)

(10.123)

where and are scalar Lagrange multipliers. Using the same method as that in the section entitled
“Global Velocity Index,” we determine that when the force (f) (see Eq. (10.121)) is a unit vector, the
maximum and minimum values of the external force F and torque T applied at the upper platform center
as shown in Fig. 10.15 are

(10.124)

(10.125)

where and are the maximum and minimum values of the external forces, respectively;
 and express the maximum and minimum values of the external torques, respectively;

and and are eigenvalues of and , respectively.
Because we hope that the small force and torque applied at the upper platform center could make the

strain gages fixed on the six links have big strain, which means that the sensor has high force and torque
sensitivity, and the maximum values of the external force and torque should be as small
as possible, we only need to consider and .

r3 r1 r2� r1 r2

fi

F

T
 JT[] 1

f() JF

JT

f()� �

F 2 f()T JF[]T JF[] f()�

T 2 f()T JT[]T JT[] f()�

f 2 f()T f() 1� �

LF f()T JF[]T JF[] f() �F f()T f() 1
[]
�

LT f()T JT[]T JT[] f() �T f()T f() 1
[]
�

�F �T

Fmax �F max and Fmin �F min� �

Tmax �T max and Tmin �T min� �

Fmax Fmin

Tmax Tmin

�F �T JF[]T JF[] JT[]T JT[]

Fmax Tmax

Fmax Tmax

By using the Eqs. (10.124) and (10.125), the atlases of the indices and can be plotted
within the model of the solution space.

Figure 10.33 shows four of the atlases of the index which can describe the relationship between
the index and the four parameters of the sensor mechanisms. From the atlases of the index
we obtain the following important results: if is small, and both and are large, that
is, in the region near by the vertex D on the model of the solution space, the sensor mechanisms have
small values of the index which means that the force sensitivity of the sensors in this region is high.

Figure 10.34 shows four of the atlases of the index which can describe the relationship between
the index and the four parameters of the sensor mechanisms. From the atlases of the index

 we see that when the sensor mechanisms are located at the region near by the edges AB, AD,
and CD, the sensor mechanisms have small value of the index which means that the sensors
in the region have high torque sensitivity.

Atlases of Sensor Stiffness

Since the deformations of the upper platform of the sensor mechanism can describe the stiffness of the sensor,
we need to investigate the deformations. The force (f) is related to the deformation by, as shown in Fig. 10.15,

(10.126)

FIGURE 10.33 Four of the atlases of condition number. (a) , (b) , (c) , (d) .�AB 20�� �AB 30�� �AB 40�� �AB 50��

Fmax Tmax

Fmax ,
Fmax Fmax ,

r3 r1 r2�(), r1 r2

Fmax ,
Tmax ,

Tmax

Tmax ,
Tmax ,

f() K[] �q()�

where

(10.127)

(10.128)

Here, is the deformation of link i, which is connected with both upper platform and lower platform;
 is the stiffness of link i (i � 1,2 ,…, 6); and [I]is a 6 � 6 identity matrix. We assume

(10.129)

which implies that all six links have the same stiffness. Because of attention paid to investigation of the
relationship between the stiffness and the four parameters of the sensor mechanisms, we suppose k � 1.
From Eqs. (10.85) to (10.89), we obtain

(10.130)

FIGURE 10.34 Four of the atlases of the index . (a) , (b) , (c) , (d) .Fmax �AB 10�� �AB 30�� �AB 40�� �AB 50��

K[] I[] k1 k2 … k6()T
�

�q() �q1 �q2 … �q6()T
�

�qi

ki

ki k,�

D()
DP

DO

 C[]

F

T
 CP

CO

F

T
 � � �

where and express the positional deformation and orientational deformation of the upper
platform, respectively.

Let

(10.131)

(10.132)

(10.133)

where and are scalar Lagrange multipliers. As previously, from Eqs. (10.132) and (10.133),
necessary conditions for extreme values of the positional and orientational deformations of the upper
platform are

(10.134)

(10.135)

FIGURE 10.35 Four of the atlases of the index . (a) , (b) , (c) , (d) .

DP() DO()

F T()T 2
F T()T F T() 1� �

LP F T() CP[]T CP[] F T()T
�P F T()T F T() 1
[]
�

LO F T() CO[]T CO[] F T()T
�O F T()T F T() 1
[]
�

�P �O

DP max �Dp max , and DP min �Dp min ,��

DO max �DO max , and DO min �DO min ,��

Tmax �AB 30�� �AB 40�� �AB 50�� �AB 60��

where, and are maximum and minimum eigenvalues of , respectively;
 and are maximum and minimum eigenvalues of , respectively;

and are the maximum and minimum values of the positional deformations of the upper
platform, respectively; and and express the maximum and minimum values of the
orientational deformations of the upper platform, respectively.

Because we hope that when the force F and torque T are applied at the upper platform center, the
positional and orientational deformations of the upper platform are small at the same time, which means
that the sensor has high stiffness and the maximum values of the positional and orientational deforma-
tions should be as small as possible, we only need to consider and .

By using the Eqs. (10.134) and (10.135), the atlases of the indices and can be
plotted within the model of the solution space shown in Fig. 17.

Figure 10.35 and 10.36 show four of the atlases of the indices and , respectively,
which can describe the relationship between the indices and and the four parameters
of the sensor mechanisms. From the atlases of the index , we see that if is small, ,
and both and are large, that is, in the region near by the vertex D on the model of the solution
space, the sensor mechanisms have small values of the index and at the sametime,

FIGURE 10.36 Four of the atlases of the index . (a) , (b) , (c) , (d) .

�Dp max �Dp min CP[]T CP[]
�DO max �DO min CO[]T CO[] DP max

DP min

DO max DO min

DP max DO max

DP max DO max

DP max DO max

DP max DO max

DP max r3 r1 r2�
r1 r2

DP max DO max

DP max �AB 30�� �AB 40�� �AB 50�� �AB 60��

which means that the positional and orientational stiffness of the sensors with the mechanisms are high
in this region.

Sensor Design

By using the performance atlases as shown in Figs. 10.31 through 10.36, the four parameters
and of the sensor mechanisms can be easily selected to optimize sensor performance. From the
performance atlases, we see that when is small, , and both and are large, that is, in
the region near by the vertex D on the model of the solution space, the sensor mechanisms have optimum
performances.

Figure 10.37 is the CAD layout of sensor mechanism. Because we hope to make the sensor as small
as possible, the elastic joints are utilized to replace the spherical joints as shown in Fig. 10.38, which
makes it possible to manufacture the small size sensors.

To use the model of the solution space for design of the F/T sensor mechanisms based on Stewart
platform is a novel and useful method for investigation of the optimal sensor design. The three kinds of
atlases of the criteria, including condition number, force and torque sensitivity, and stiffness of the sensors
clearly show relationships between the performance criteria and parameters of all the sensor mechanisms.
By using the performance atlases, an optimal design for the sensor mechanism can be achieved. Because

FIGURE 10.37 Four of the atlases of the index

R1, R2, R3,
�AB

r3 r1 r2� r1 r2

DO max .

the elastic joints were proposed for replacing the spherical joints, the Stewart-based sensor can be designed
as small as possible.

10.6 Conclusions

The physical model technique is a simple, useful, and efficient tool for design of robotic manipulators.
By using the technique and the performance criteria, the relationships between the criteria and dimen-
sions of robotic mechanisms can be obtained as the performance atlases, which are easily utilized for
optimal robotic design.

References

1. F. Gao, X. Q. Zhang, Y. S. Zhao, and W. B. Zu, “Distribution of some properties in a physical
model of the solution space of 2-DOF parallel planar manipulators,” Mechanism and Machine
Theory, Vol. 30, No. 6, 1995, pp. 811–817.

2. F. Gao, X. Q. Zhang, Y. S. Zhao, and H. R. Wang, “A physical model of the solution space and the
atlases of the reachable workspaces for 2-DOF parallel planar manipulators,” Mechanism and
Machine Theory, Vol. 31, No. 2, 1996, pp. 173–184.

3. F. Gao, Y. S. Zhao, and Z. H. Zhang, “Physical model of the solution space of 3-DOF parallel planar
manipulators,” Mechanism and Machine Theory, Vol. 31, No. 2, 1996, pp. 161–171.

4. F. Gao, W. A. Gruver, and Y. Zhang, “Performance charts for design of robotic mechanisms with
three moving links,” IEEE SMC96, Oct. 14–17, 1996, Beijing, China.

5. F. Gao and W. A. Gruver, “Performance Evaluation Criteria for Analysis and Design of Robotic
Mechanisms,” IEEE CIRA’97, July 1997, Monterey, California.

6. F. Gao and W. A. Gruver, “The global conditioning index in the solution space of two degrees of
freedom planar parallel manipulators,” Proc. of the 1995 IEEE International Conference on SMC,
October 1995, Vancouver, Canada, Vol. 5, pp. 4055–4059.

7. F. Gao, X. J. Liu, and W. A. Gruver, “Performance Evaluation of Two Degree of Freedom Planar
Parallel Robots,” accepted for publication in Mechanism and Machine Theory, 1997.

8. F. Gao, W. A. Gruver, et al., “A geometric model for the analysis and design of Delta parallel robots,”
ASME Design Engineering Technical Conferences and Computers in Engineering Conference,
August 18–22, 1996, Irvine, California.

9. F. Gao and W. A. Gruver, “Criteria based analysis and design of three degree of freedom planar
robotic manipulators,” IEEE ICRA’97, April 20–25, 1997, Albuquerque, New Mexico.

FIGURE 10.38 CAD layout of sensor house.

10. F. Skinner, “Designing a multiple pretension manipulator,” Mechanical Engineering, September
1975, pp 30–37.

11. F. R. E. Crossley and F. G. Umholtz, “Design for a three-fingered hand,” Mechanism and Machine
Theory, Vol. 12, 1977, pp 85–93.

12. A. Rovetta, P. Vincentini, and I. Franchetti, “On development and realization of a multipurpose
grasping system,” Proc. of the 11th International Symposium on Industrial Robots, Tokyo, 1981,
pp 273–280.

13. T. Okada, “Computer control of multi-jointed finger system for precise object-handling,” IEEE
Transactions on Systems, Man and Cybernetics, Vol. SMC-12 (3), 1982, pp 289–299.

14. J. K. Salisbury, “Kinematic and force analysis of articulated hands,” Ph.D. Thesis, Stanford Univer-
sity, 1982, Report No. STAN-CS-82-921.

15. S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers, “The Utah/MIT dextrous hand: work
in progress,” The International Journal of Robotics Research, 1984, Vol. 3, No. 4, pp 21–50.

16. P. Dario and G. Buttazzo, “An anthropomorphic robot finger for investigating artificial tactile
perception,” The International Journal of Robotics Research, 1987, Vol. 6, No. 3, pp 25–48.

17. B. A. Grupen, T. C. Henderson, and I. D. McCammon, “A survey of general-purpose manipulation,”
The International Journal of Robotics Research, 1989, Vol. 8, No. 1, pp 38–62.

18. S. A. Stansfield, “Robotic grasping of unknown objects: a knowledge-based approach,” The Inter-
national Journal of Robotics Research, 1991, Vol. 10, No. 4, pp 314–326.

19. K. H. Hunt, A. E. Samuel, and P. R. McAree, “Special configurations of multi-finger multi-freedom
grippers–a kinematic study,” The International Journal of Robotics Research, 1991, Vol. 10. No.
2, pp 123–134.

20. R. N. Rohling and J. M. Hollerbach, “Modeling and parameter estimation of the human index
finger,” Proc. of the IEEE International Conference on Robotics and Automation, 1994, pp 223–230.

21. Y. Yang, Y. Zhang, and Q. X. Zhang, “A performance evaluation of HB-2 dextrous robotic hand,”
Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 1995, Vancouver,
Vol. 1, pp 922–927.

22. P. R. McAree, A. E. Samuel, K. H. Hunt, and C. G. Gibson, “A dexterity measure for the kinematic
control of a multifinger, multifreedom robot hand,” The International Journal of Robotics Research,
1991, Vol. 10, No. 5, pp 439–453.

23. T. Yoshikawa, “Manipulability of robotic mechanism,” The International Journal of Robotics
Research, 1985, Vol. 4, No. 2, pp 3–9.

24. T. W. Nye, D. J. LeBlanc, and R. J. Cipra, “Design and modeling of a computer-controlled planar
manipulator,” The International Journal of Robotics Research, 1987, Vol. 6, No. 1, pp 85–95.

25. C. J. J. Paredis and P. K. Khosla, “Kinematic design of serial link manipulators from task specifi-
cations,” The International Journal of Robotics Research, 1993, Vol. 12, No. 3, pp 274–287.

26. D. Tesar and M. S. Butler, “A generalized modular architecture for robot structures,” Manufacturing
Review, 1989, Vol. 2, No. 2, pp 91–118.

27. D. Tesar and M. Sklar, “Dynamic analysis of hybrid serial manipulator systems parallel modules,”
ASME Trans. Journal of Mechanisms, Transmission, and Automation in Design, 1988, Vol. 104,
pp 218–228.

28. P. Gorce, O. Vanel, and C. Ribreau, “Equilibrium study of ‘human’ robot,” Proc. of the IEEE
International Conference on Systems, Man and Cybernetics, 1995, Vancouver, Vol. 2, pp 1309–1314.

29. T. A. McMahon, “Mechanics of locomotion,” The International Journal of Robotics Research, 1984,
Vol. 3, No. 2, pp 4–28.

30. S. Hirose and O. Kunieda, “Generalized standard foot trajectory for a quadruped walking vehicle,”
The International Journal of Robotics Research, 1991, Vol. 10, No. 1, pp 3–12.

31. C. Gosselin and J. Angeles, “The optimum design of planar three-degree-of-freedom parallel
manipulator,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110,
No. 1, 1988, pp. 35–41.

 32. R. J. Schilling, Fundamentals of Robotics Analysis and Control, Prentice-Hall, Inc., 1990.

33. C. Y. Ho and J. Sriwattanathamma, Robot Kinematics: Symbolic Automation and Numerical
Synthesis, Ablex Publishing Corporation, 1989.

34. R. E. Parkin, Applied Robotic Analysis, Prentice-Hall, Inc., 1991.
35. H. Asada and Y. T. Kamal, Direct-Drive Robots Theory and Practice, MIT Press, 1987.
36. C. M. Gosselin and M. Guillot, “The synthesis of manipulators with prescribed workspaces,” Trans.

of ASME, J. of Mechanical Design, Vol. 113, 1991, pp. 451–455.
37. D. McCloy, “Some comparisons of serial driven and parallel driven manipulators,” Robotica, Vol. 8,

1990, pp. 355–362.
38. D. McCloy, “Planar linkages for parallel-driven manipulators,” The 4th Conference of the Irish

Manufacturing Committee, Limerick, Ireland, 1987.
39. A. Bajpai and B. Roth, “Workspace and mobility of a closed loop manipulator,” International J.

Robotics Research, No. 2, 1986, pp. 131–142.
40. H. Asada and K. Youcef-Toumi, “Analysis and design of a direct drive arm with a five-bar link

parallel driven mechanism,” Proc. of the American Control Conference, San Diego, 1984.
41. R. Stoughton and T. Kokkinia, “Some properties of a new kinematic structure for robot manipu-

lators,” ASME Design Automation Conference, DET-Vol. 10-2, 1987, pp. 73–79.
42. V. Kumar, “Characterization of workspaces of parallel manipulators,” ASME J. Mechanical Design,

Vol. 114, 1992, pp. 368–375.
43. C. Gosselin and J. Angeles, “A global performance index for the kinematic optimization of robotic

manipulators,” Trans. ASME, J. of Mechanical Design, Vol. 113, 1991, pp. 220–226.
44. F. Sternheim, “Computation of the direct and inverse geometric models of the DELTA4 parallel

robot,” Robotersysteme, Vol. 3, 1987, pp. 199–203.
45. F. Sternheim, “Tridimensional computer simulation of parallel robot. Results for the DELTA4

machine,” Proc. of the 18th International Symposium on Industrial Robots, Lausanne, 1988.
46. R. Clavel, “DELTA, a fast robot with parallel geometry,” Proc. of the 18th Int. Symposium on

industrial Robots, IFS Publications, 1988, pp. 91–100.
47. K. Miller and R. Clavel, “The Lagrange-based model of Delta-4 robot dynamics,” Robotersysteme,

Vol. 8, 1992, pp. 49–54.
48. F. Pierrot, A Fournier, and P. Dauchez, “Toward a fully parallel 6-DOF robot for high-speed

applications,” International Journal of Robotics and Automation, Vol. 7, No. 1, 1992, pp. 15–22.
49. F. Pierrot, C. Reynaud, and A. Fournier, “DELTA: a simple and efficient parallel robot,” Robotica,

Vol. 8, 1990, pp. 105–109.
50. F. Pierrot and A. Fournier, “Fast models for the DELTA parallel robot,” Proc. of I.F.I.P., Rome, Italy,

1990, pp. 123–130.
51. E. O. Doebelin, “Measurement systems applications and design,” McGraw Hill, New York, 1985.
52. D. Diddens, D. Reynaerts, and H. V. Brussel, “Design of a ring-shaped three-axis micro force/torque

sensor,” Sensors and Actuators A, 46–47, 1995, pp. 225–232.
53. D. R. Kerr, “Analysis, properties and design of a Stewart-platform transducer,” J. Mech. Transm.

Autom. design, Vol. 111, 1989, pp. 25–28
54. C. C. Nguyen, S. S. Antrazi, Z.-L. Zhou, and C. E. Campbell, Jr., “Analysis and experimentation

of a Stewart platform-based force/torque sensor,” International Journal of Robotics and Automa-
tion, Vol. 7, No. 3, 19, pp. 133–140.

55. C. Ferraresi, S. Pastorelli, M. Sorli, and N. Zhmud, “Static and dynamic behavior of a high stiffness
Stewart platform-based force/torque sensor,” Journal of Robotic Systems, Vol. 12, No. 12, 1995,
pp. 883–893.

56. K. C. Gupta and B. Roth, “Design considerations for manipulator workspace,” Trans. ASME, Journal
of Mechanical Design, Vol. 104, 1982, pp. 704–711.

57. J. K. Davidson, “A synthesis procedure for design of 3-R planar robotic workcells in which large
rotations are required at the workpiece,” Journal of Mechanical Design, Vol. 114, 1992, pp. 547–558.

58. C. D. Lin and F. Freudenstein, “Optimization of the workspace of a three-link turning-pair con-
nected robot arm,” The International Journal of Robotics Research, Vol. 5, No. 2, 1986, pp. 104–111.

10-46 Artifical Intelligence and Robotics in Manafacturing
59. C. M. Gosselin and M. Jean, “Determination of the workspace of planar parallel manipulators with
joint limits,” Robotics and Autonomous Systems, Vol. 17, 1996, pp. 129–138.

60. V. Kumar, “Characterization of workspaces of parallel manipulators,” Trans. ASME, Journal of
Mechanical Design, Vol. 114, 1992, pp. 368–375.

61. A. Bajpai and B. Roth, “Workspace and mobility of a closed-loop manipulator,” The International
Journal of Robotics Research, Vol. 5, No. 2, 1986, pp. 131–142.

62. M. Trabia and J. K. Davidson, “Design conditions for the orientation and attitude of a robot tool
carried by a 3-R spherical wrist,” Trans. ASME, Journal of Mechanisms Transmissions, and Auto-
mation in Design, Vol. 111, 1989, pp. 176–186.

63. G. R. Pennock and D. J. Kassner, “The workspace of a general geometry planar three-degree-of-
freedom platform-type manipulator,” Trans. ASME, Journal of Mechanical Design, Vol. 115, 1993,
pp. 269–276.

64. C. Gosselin, “Determination of the workspace of 6-DOF parallel manipulators,” Trans. ASME,
Journal of Mechanical Design, Vol. 112, 1990, pp. 331–336.

65. J. Angeles and C. S. Lopez-Cajun, “Kinematic isotropy and the conditioning index of serial robotic
manipulators,” The International Journal of Robotics Research, Vol. 11, No. 6, 1992, pp. 560–571.

66. J. Angeles, “The Design of Isotropic manipulator architectures in the presence of redundancies,”
The International Journal of Robotics Research, Vol. 11, No. 3, 1992, pp. 196–201.

67. C. A. Klein, “Spatial robotic isotropy,” The International Journal of Robotics Research, Vol. 10, No.
4, 1991, pp. 426–437.

68. M. Kircanski, “Kinematic isotropy and optimal kinematic design of planar manipulators and a 3-
DOF spatial manipulator,” The International Journal of Robotics Research, Vol. 15, No. 1, 1996,
pp. 61–77.

69. C. M. Gosselin, “The optimum design of robotic manipulators using dexterity indices,” Robotics
and Autonomous System, Vol. 9, 1992, pp. 213–226.

70. C. A. Klein and B. E. Blaho, “Dexterity measures for the design and control of kinematically
redundant manipulators,” The International Journal of Robotics Research, Vol. 6, No. 2, 1987, pp.
72–83.

71. F. C. Park and R. W. Brockett, “Kinematic dexterity of robotic mechanisms,” The International
Journal of Robotics Research, Vol. 13, No. 1, 1994, pp. 1–15.

72. P. R. McAree, A. E. Samuel, K. H. Hunt, and C. G. Gibson, “A dexterity measure for the kinematic
control of a multifinger, multifreedom robot hand,” The International Journal of Robotics Research,
Vol. 10, No. 5, 1991, pp. 439–453.

73. T. Yoshikawa, “Manipulability of robotic mechanisms,” The International Journal of Robotics
Research, Vol. 4, No. 2, 1985, pp. 3–9.

74. J. P. Merlet, “Singular configurations of parallel manipulators and Grassmann geometry,” The
International Journal of Robotics Research, Vol. 8, No. 5, 1989, pp. 45–56.

75. J. Sefrioui and C. M. Gosselin, “Singularity analysis and representation of planar parallel manip-
ulators,” Robotics and Autonomous Systems, Vol. 10, 1992, pp. 209–224.

76. D. K. Pai, “Genericity and singularities of robot manipulators,” IEEE Transactions on Robotics and
Automation, Vol. 8, No. 5, 1992, pp. 545–595.

77. C. J. J. Paredis and P. K. Khosla, “Kinematic design of serial link manipulators from task specifi-
cations,” The International Journal of Robotics Research, Vol. 12, No. 3, 1993, pp. 274–287.

78. K. V. D. Doel and D. K. Pai, “Performance measures for robot manipulators: a unified approach,”
The International Journal of Robotics Research, Vol. 15, No. 1, 1996, pp. 92–111.

79. C. Gosselin and J. Angeles, “The optimum kinematic design of a spherical three-degree-of-freedom
parallel manipulator,” Trans. ASME, Journal of Mechanisms Transmissions, and Automation in
Design, Vol. 111, 1989, pp. 202–207.

80 C. Gosselin and J. Angeles, “Kinematic inversion of parallel manipulators in the presence of
incompletely specified tasks,” Trans. ASME, Journal of Mechanical Design, Vol. 112, 1990, pp.
494–500.

81. C. Gosselin and E. Lavoie, “On the kinematic design of spherical three-degree-of-freedom parallel
manipulators,” The International Journal of Robotics Research, Vol. 12, No. 4, 1993, pp. 394–402.

82. A. Bicchi, “A criterion for optimal design of multi-axis force sensors,” Robotics and Autonomous
Systems, Vol. 10, No. 4, 1992, pp. 269–286.

83. P. C. Watson and S. H. Drake, “Pedestal and wrist force sensors for automatic assembly,” Proc. the
5th Int. Symp. on Industrial Robots, 1975, pp. 501–511.

84. “Robot Technology,” Kogon Page Ltd., London, 1983.
85. J. Schott, “Tactile sensor with decentralized signal conditioning,” The 9th IMEKO World Congress,

Beilin, 1982.
86. H. V. Brussel, et al., “Force sensing for advanced robot control,” Proc. of the 5th Int. Cof. on Robot

Vision and Sensory Controls, 1980.
87. E. Kroll, et al., “Decoupling load components and improving robot interfacing with an easy-to-

use 6-axis wrist force sensor,” Theory of Machines and Mechanisms, Proc. of the 7th World
Congress, 1986.

88. B. Shimano, et al., “On force sensing information and its use in controlling manipulators,” Proc.
of the 8th Int. Symp. on Industrial Robots, 1979.

89. M. Uchiyama, E. Bayo, and E. Palma-Villalon, “A systematic design procedure to minimize a
performance index for robot force sensors,” Trans. ASME, Journal of Dynamic Systems, Measure-
ment, and Control, Vol. 113, 1991, pp. 388–394.

90. E. Bayo and J. R. Stubbe, “Six-axis force sensor evaluation and a new type of optimal frame truss
design for robotic applications,” Journal of Robotic Systems, Vol. 6, No. 2, 1989, pp. 191–208.

91. R. Little, “Force/Torque sensing in robotic manufacturing,” Sensors, The Journal of Machine
Perception, Vol. 9, No. 11, 1992.

92. M. Kaneko, “Twin-head six-axis force sensors,” IEEE Transactions on Robotics and Automation,
Vol. 12, No. 1, 1996, pp. 146–154.

93. M. Uchiyama, Y. Nakamura, and K. Hakomori, “Evaluation of robot force sensor structure using
singular value decomposition,” Journal of the Robotics Society of Japan, Vol. 5, No. 1, 1987, pp. 4–10.

	ARTIFICIAL INTELLIGENCE AND ROBOTICS IN MANUFACTURING
	Preface
	Editor
	Contributors
	Contents
	Knowledge-Based System Techniques in the Design, Implementation, and Validation of Resource Scheduling on the Shop Floor of M
	1.1 Introduction
	1.2 Design of Knowledge-Based Scheduling Systems
	Constraint Representation
	Constructive Approach
	Iterative Repair
	Predictive and Reactive Scheduling
	Distributed Scheduling Systems
	Cooperative Problem Solving Systems
	Knowledge Elicitation for Scheduling Systems
	OR Algorithms in Systems
	Generalized Scheduling Systems
	Learning in Scheduling Systems
	Simulation-Based Scheduling Support

	1.3 Implementation Issues
	Transaction Databases
	User Interfaces
	Scheduling Horizons
	Cultural Issues

	1.4 Validation Issues
	Validation Against System Objectives or Goals
	Validation Against Manual Scheduler’s Criteria
	Validation With Simulations

	1.5 Conclusions
	References

	Neural Network Systems Techniques in the Intelligent Control of Chemical Manufacturing Plants
	2.1 Introduction
	2.2 Neural Network Construction for Event-Based Intelligent Control
	Brief Review of Event-Based Intelligent Control Paradigm
	Neural Network Construction Method
	Abstraction Process
	Neural Network Mapping
	Model-Plant Mismatch Caused by Incomplete Learning
	Neural Network Model for Supervisory Control

	2.3 Simulation Environment
	Continuously Stirred Tank Reactor (CSTR)
	Neural Network Learning Strategy

	2.4 Simulation Results
	2.5 Conclusions
	Acknowledgments
	References

	A Rule-Based Expert System for Designing Flexible Manufacturing Systems
	3.1 Introduction
	3.2 Flexible Manufacturing Systems
	3.3 A Hybrid Expert Simulation System
	The Input Expert Systems (IES)
	The Simulator
	The Output Expert Systems (OES)

	3.4 An Example on FMS design with HESS
	Summary Report 1
	Summary Report 7

	Acknowledgment
	References

	Tool Condition Monitoring in Manufacturing Systems Using Neural Networks
	4.1 Introduction
	4.2 Machining Tool Conditions
	Tool Wear Mechanism
	Forms of Tool Wear
	Flank Wear
	Crater Wear
	Groove Wear

	4.3 Sensors and Signal Processing
	Dynamic Force
	Acoustic Emission (AE)
	Wavelet Packet Analysis of AE and Force Signals
	Vibration (Acceleration)
	Coherence Function of Cross Vibration Signals

	4.4 Feature Extraction
	4.5 Neural Network Architectures
	Multi-Layer Perceptron (MLP)
	Kohonen Networks
	ART2 Networks

	4.6 Tool Condition Identification Using Neural Networks
	MLP for Force Sensor with Simple Pre-processing [32]
	Feature Requirements
	An Integrated Fault Diagnosis Scheme
	Experiment
	Discussion of Results
	Single-ART2 Neural Network with Acoustic Emission Sensing
	Transient Tool Condition Identification
	Tool Wear Monitoring
	Single-ART2 Neural Network with Acoustic Emission and Force Sensing
	Multi-ART2 Neural Network with Force and Vibration Sensing
	Feature Information

	4.7 Conclusions
	References

	Intelligent Real-time Expert System Environment in Process Control
	5.1 Introduction
	5.2 An Expert Systems Approach
	5.3 Real-time Control and Petri Nets
	5.4 Overview of Fuzzy Logic
	Fuzzy Expert Systems
	Fuzzy Control

	5.5 Overview of Petri Nets
	Fuzzy Petri Nets
	Hybrid Petri Nets

	5.6 The Continuous Fuzzy Petri Net Concept
	5.7 Definition of a Continuous Fuzzy Petri Net
	Execution of a Continuous Fuzzy Petri Net
	CFPN Places
	Source Place
	Intermediary Place
	Action Place
	Alarm Place
	Recommendation Place

	CFPN Transitions
	AND Transition
	OR Transition
	MULT Transition
	CF Transition
	Buffer Transition
	NOT Transition
	Intensifier Transition
	Hedge Transition
	1-Fuzzifier Transition
	N-Fuzzifier Transition
	Defuzzifier Transition

	5.8 Examples
	A Simple Control Example
	Dealing with Large CFPN Networks

	5.9 Conclusions
	References

	Adaptive Neuro-Fuzzy Control Methods for Milling Operations in Manufacturing Systems
	6.1 Introduction
	6.2 Adaptive Control System for Milling Operations
	6.3 Adaptive Neuro-Fuzzy Control of Milling Operations
	Milling Controlled Process
	Neuro-Fuzzy Logic Controller
	Learning Algorithm for the Neuro-Fuzzy Logic Controller

	6.4 Computer Simulation and Experimental Verification
	Computer Simulation
	Experimental Results and Discussion

	6.5 Conclusions
	Acknowledgements
	References

	Instrumental Robots Design with Applications to Manufacturing
	7.1 Introduction
	The Design Cycle for Instrumental Robots

	7.2 The Design of Function-Oriented Robots
	Conceptual Design of Task-Driven Robot Arms
	Conceptual Design of Work-Constrained Robot-Arms
	Computer Aids Based on Functional Modeling and Simulation
	The ‘SIRIxx’ CAD Environment: The Basic Modules
	Specialized Options of the CAD Environment

	7.3 The Design of Process-Attuned Robots
	Simultaneous Design of Robot-and-Process
	The Robot Setting: Equipment Modularity
	The Robot Fitting: Versatility by Process Back-Poising
	Robot Dynamics with Constrained Motion Duties
	A Challenging Option: Robots with Cooperation

	7.4 Modulated-Control Example Developments
	The Process-Adapted Control Planning Setup
	Command Planning: Tip Wavering Under Inertial Coupling
	Measurement Robot Based on Controlled Laser Scanning
	Modulated Command Options: Position/Force Feedback
	Expert Steering Commands: Compliant Assembly by Force Control

	7.5 Redundant Mobility Robots with Cooperation
	Process Conditioning Environments: Deburr Operations
	The Automation of Precision Deburr Operations
	A Cooperative Fixture for Work-Parameters Adaptation
	The Impedance Control of the Cooperating Fixture
	The Multi-Robot Assembly of Compliant Components

	7.6 Conclusions
	Acknowledgments
	References

	Object-Oriented Techniques and Automated Methods for Robotic Assembly in Manufacturing Systems
	8.1 Introduction
	8.2 Intelligent Assembly Planning and Knowledge Representation
	Structure of an Intelligent Assembly Planning System
	Knowledge Representation in Intelligent Robotic Systems

	8.3 Principles of Object-Oriented Techniques
	Basic Concepts and Definitions
	Special Features
	Methodology and Models

	8.4 Applications to Robotic and Automated Assembly
	Object-Oriented Modeling
	Knowledge Representation
	Assembly Operations
	Other Automated Assembly Applications

	8.5 Conclusion
	References

	CAD-Based Techniques in Task Planning and Programming of Robots in Computer-Integrated Manufacturing
	9.1 Introduction
	9.2 Strategies for Off-Line Programming (OLP)
	Text-Level Programming
	Graphic-Level Programming
	Object-Level Programming
	Task-Level Programming

	9.3 Strategies for Task Planning and Programming
	Geometric Modeling
	Constructive Solid Geometry
	Boundary Representation (B-Rep)

	Task Specification
	Grasp Planning
	Path Planning
	Trajectory Planning
	Linear Interpolation Motion
	Joint Interpolation Motion

	Calibration
	Post Processing

	9.4 CAD-Based Task Planning Implementation
	System Structure
	Design Modeling of Assembly Parts and Work Cell
	Task Specification
	Task Decomposition
	Transformation of Robot Locations and Workstation Calibration
	Robot Kinematics and Assembly Process Simulation Module

	9.5 Future Research
	9.6 Conclusions
	Acknowledgments
	References

	Physical Model Technique for Design of Robotic Manipulators in Manufacturing Systems
	10.1 Introduction
	10.2 Technique of Physical Models of Solution Space for Robotic Manipulators
	Model of Solution Space for Robots with Three Moving Links
	Model of Solution Space for 2-DOF Parallel Planar Manipulators
	Model of Solution Space for 3-DOF Parallel Planar Manipulators
	Nondimensional Parameters of 3-DOF PPMs
	Model of Solution Space for 3-DOF PPMs
	Planar Closed Configurations with Coordinates
	Classification of all 3-DOF PPMs

	Model of Solution Space for 3-DOF Delta Parallel Robots
	Nondimensional Parameters of DPRs
	Model of Solution Space for DPRs
	Planar Closed Configurations
	Coordinate Transformation
	Classification of DPRs

	Model of Solution Space for F /T Sensors Based on Stewart Platform

	10.3 Performance Evaluation Criteria for Design of Robotic Mechanisms
	Three Kinds of Workspaces
	Three Kinds of Singularities
	Global Conditioning Index
	Global Velocity Index
	Global Payload Index
	Global Deformation Index
	Global Error Index

	10.4 Performance Atlases for Design of Serial Robots with Three Moving Links
	Robotic Principle Motion
	Atlases of Workspace Criteria
	Reachable Workspace Atlas
	Dextrous Workspace Atlas

	Global Workspace Atlas
	Atlas of Global Conditioning Index
	Atlases of Global Velocity Index
	Atlases of Global Payload Index
	Atlases of Global Deformation Index
	Analysis of Commercially Available Robots

	10.5 Atlases for Design of F/T Sensor Based on Stewart Platform
	Atlases of Condition Number of Jacobian Matrix
	Atlases of Force and Torque Sensitivity
	Atlases of Sensor Stiffness
	Sensor Design

	10.6 Conclusions
	References

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

